Unified Bernstein and Bleimann-Butzer-Hahn basis and its properties

Mehmet Ali Özarslan and Mehmet Bozer*

Correspondence:
mehmet.bozer@emu.edu.tr Eastern Mediterranean University, Mersin 10, Gazimagusa, TRNC, Turkey

Abstract

In this paper we introduce the unification of Bernstein and Bleimann-Butzer-Hahn basis via the generating function. We give the representation of this unified family in terms of Apostol-type polynomials and Stirling numbers of the second kind. More generating functions of trigonometric type are also obtained to this unification. MSC: 11B65; 11B68; 41A10; 30C15 Keywords: generating function; Bernstein polynomials; Bernoulli polynomials; Euler polynomials; Genocchi polynomials; Stirling numbers of the second kind

1 Introduction

In this paper, we introduce a two-parameter generating function, which generates not only the Bernstein basis polynomials, but also the Bleimann-Butzer-Hahn basis functions. The generating function that we propose is given by

$$
\begin{equation*}
\mathcal{G}_{a, b}(t, x ; k, m):=\left[\frac{2^{1-k} x^{k} t^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{t\left[\frac{1+b x}{1+a x}\right]}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; k, m) \frac{t^{n}}{n!}, \tag{1}
\end{equation*}
$$

where $k, m \in \mathbb{Z}^{+}:=\{1,2, \ldots\}, a, b \in \mathbb{R}, t \in \mathbb{C}$. Here, $x \in I$ where I is a subinterval of \mathbb{R} such that the expansion in (1) is valid. The following two cases will be important for us.

1 . The case $a=0, b=-1$. In this case, we let $x \in[0,1]$ and we see that

$$
\mathcal{G}_{0,-1}(t, x ; k, m)=\left[2^{1-k} x^{k} t^{k}\right]^{m} \frac{1}{(m k)!} e^{t[1-x]}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(0,-1)}(x ; k, m) \frac{t^{n}}{n!}
$$

generates the unifying Bernstein basis polynomials $\mathcal{P}_{n}^{(0,-1)}(x ; k, m):=\mathcal{B}_{n}(m k, x)$ which were introduced and investigated in [1]. We should note further that $\mathcal{G}_{0,-1}(t, x ; 1, m)$ gives

$$
\mathcal{G}_{0,-1}(t, x ; 1, m)=[x t]^{m} \frac{1}{m!} e^{t[1-x]}=\sum_{n=0}^{\infty} \mathcal{B}_{n}(m, x) \frac{t^{n}}{n!}
$$

which generates the celebrated Bernstein basis polynomials (see [2-8])

$$
\mathcal{B}_{n}(m, x):=B_{m}^{n}(x)=\binom{n}{m} x^{k}(1-x)^{n-m}
$$

[^0]Note that the Bernstein operators $B_{n}: C[0,1] \rightarrow C[0,1]$ are given by

$$
B_{n}(f ; x)=\sum_{m=0}^{n} f\left(\frac{m}{n}\right)\binom{n}{m} x^{k}(1-x)^{n-m}, \quad n \in \mathbb{N}:=\{1,2, \ldots\}
$$

and by the Korovkin theorem, it is known that $B_{n}(f ; x) \rightrightarrows f(x)$ for all $f \in C[0,1]$, where $C[0,1]$ denotes the space of continuous functions defined on $[0,1]$, and the notation ' \rightrightarrows ' denotes the uniform convergence with respect to the usual supremum norm on $C[0,1]$. Very recently, interesting properties of Bernstein polynomials were discussed in [7, 9-11] and [12].
2. The case $a=1, b=0$. In this case, we let $x \in[0, \infty)$ and define

$$
\begin{aligned}
\mathcal{G}_{1,0}(t, x ; k, m) & :=\left[\frac{2^{1-k} x^{k} t^{k}}{(1+x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{t\left[\frac{1}{1+x}\right]} \\
& =\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(1,0)}(x ; k, m) \frac{t^{n}}{n!} .
\end{aligned}
$$

We will see that this generating function produces the generalized Bleimann-Butzer-Hahn basis functions $\mathcal{P}_{n}^{(1,0)}(x ; k, m):=\mathcal{H}_{n}(m k, x)$. Furthermore, the special case

$$
\begin{aligned}
\mathcal{G}_{1,0}(t, x ; 1, m) & =\left[\frac{x t}{(1+x)}\right]^{m} \frac{1}{(m k)!} e^{t\left[\frac{1}{1+x}\right]} \\
& =\sum_{n=0}^{\infty} \mathcal{H}_{n}(m, x) \frac{t^{n}}{n!}
\end{aligned}
$$

generates the well-known Bleimann-Butzer-Hahn basis functions:

$$
\mathcal{H}_{n}(m, x):=H_{m}^{n}(x)=\binom{n}{m} \frac{x^{m}}{(1+x)^{n}} .
$$

The Bleimann-Butzer-Hahn operators were introduced in [5] and defined by

$$
L_{n}(f ; x)=\frac{1}{(1+x)^{n}} \sum_{m=0}^{n} f\left(\frac{m}{n}\right)\binom{n}{m} x^{m} ; \quad x \in[0, \infty), n \in \mathbb{N} .
$$

Denoting $C_{B}[0, \infty)$ by the space of real-valued bounded continuous functions defined on $[0, \infty)$, they proved that $L_{n}(f) \rightarrow f$ as $n \rightarrow \infty$. On the other hand, the convergence is uniform on each compact subset of $[0, \infty)$, where the norm is the usual supremum norm of $C_{B}[0, \infty)$. For the review of the results concerning the Bleimann-Butzer-Hahn operators obtained in the period 1980-2009, we refer to [13].

The following theorem gives the explicit representation of the basis family defined in (1). Note that throughout the paper, we let $\mathcal{P}_{n}^{(a, b)}(x ; k, m):=0$ for $n \leq m k$.

Theorem 1 If $n \geq m k$, we have

$$
\mathcal{P}_{n}^{(a, b)}(x ; k, m)=2^{(1-k) m} x^{m k}\binom{n}{m k} \frac{(1+b x)^{n-m k}}{(1+a x)^{n}} .
$$

Proof Direct calculations give

$$
\begin{align*}
\mathcal{G}_{a, b}(t, x ; k, m) & =\left[\frac{2^{1-k} x^{k} t^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{t\left[\frac{1+b x}{1+a x}\right]} \\
& =\frac{2^{(1-k) m}}{(m k)!}\left(\frac{x t}{1+a x}\right)^{m k} \sum_{n=0}^{\infty}\left(\frac{1+b x}{1+a x}\right)^{n} \frac{t^{n}}{n!} \\
& =2^{(1-k) m} x^{m k} \sum_{n=m k}^{\infty}\binom{n}{m k} \frac{(1+b x)^{n-m k}}{(1+a x)^{n}} \frac{t^{n}}{n!} . \tag{2}
\end{align*}
$$

Comparing (1) and (2), we get the result.

Corollary 2 By taking $a=0, b=-1$ in Theorem 1, we obtain the explicit representation of the unifying Bernstein basis polynomials [1]:

$$
\mathcal{P}_{n}^{(0,-1)}(x ; k, m):=\mathcal{B}_{n}(m k, x)=2^{(1-k) m} x^{m k}\binom{n}{m k}(1-x)^{n-m k} .
$$

Furthermore, $\mathcal{B}_{n}(m, x)=B_{m}^{n}(x)$ is the well-known Bernstein basis.

Corollary 3 Taking $a=1, b=0$ in Theorem 1, we get the explicit representation of the generalized Bleimann-Butzer-Hahn basis:

$$
\mathcal{P}_{n}^{(1,0)}(x ; k, m):=\mathcal{H}_{n}(m k, x)=2^{(1-k) m} x^{m k}\binom{n}{m k} \frac{1}{(1+x)^{n}} .
$$

Moreover, $\mathcal{H}_{n}(m, x)=H_{m}^{n}(x)$ is the Bleimann-Butzer-Hahn basis function.

We organize the paper as follows. In Section 2, we obtain the representation of this unified family in terms of Apostol-type polynomials and Stirling numbers of the second kind. In Section 3, we give more trigonometric generating functions for this unification and obtain a certain summation formula. All the special cases are listed at the end of each theorem.

2 Representation in terms of Apostol-type polynomials and Stirling numbers

Recently [14], the first author introduced the unification of the Apostol-Bernoulli, Euler and Genocchi polynomials by

$$
\begin{align*}
& \mathcal{P}_{a, b}^{(\alpha)}(x ; t ; k, \beta):=\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} Q_{n, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{n!} \\
& \quad\left(k \in \mathbb{N}_{0} ; a, b \in \mathbb{R} \backslash\{0\} ; \alpha, \beta \in \mathbb{C}\right) . \tag{3}
\end{align*}
$$

For the convergence of the series in (3), we refer to [14, p.2453].
Some of the well-known polynomials included by $Q_{n, \beta}^{(\alpha)}(x ; k, a, b)$ are listed below.
Remark 4 Having $k=a=b=1$ and $\beta=\lambda$ in (3), we get

$$
Q_{n, \lambda}^{(\alpha)}(x ; 1,1,1)=\mathcal{B}_{n}^{(\alpha)}(x ; \lambda) .
$$

Note that $\mathcal{B}_{n}^{(\alpha)}(x ; \lambda)$ are the generalized Apostol-Bernoulli polynomials defined through the following generating relation:

$$
\begin{aligned}
& \left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} \mathcal{B}_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!} \\
& \quad(|t|<2 \pi \text { when } \lambda=1 ;|t|<|\log \lambda| \text { when } \lambda \neq 1)
\end{aligned}
$$

where α and λ are arbitrary real or complex parameters and $x \in \mathbb{R}$. Note that when $\lambda \neq 1$, the order α should be restricted to nonnegative integer values. These polynomials were introduced by Luo and Srivastava [15] and investigated in [16, 17] and [18]. The ApostolBernoulli polynomials and numbers are obtained by the generalized Apostol-Bernoulli polynomials, respectively, as follows:

$$
B_{n}(x ; \lambda)=\mathcal{B}_{n}^{(1)}(x ; \lambda), \quad B_{n}(\lambda)=B_{n}(0 ; \lambda) \quad\left(n \in \mathbb{N}_{0}\right)
$$

Taking $\lambda=1$ in the above relations, we obtain the classical Bernoulli polynomials $B_{n}(x)$ and Bernoulli numbers B_{n}.

Remark 5 Letting $k=-2 a=b=1$ and $2 \beta=\lambda$ in (3), we get

$$
Q_{n, \frac{\lambda}{2}}^{(\alpha)}\left(x ; 1, \frac{-1}{2}, 1\right)=\mathcal{G}_{n}^{\alpha}(x ; \lambda),
$$

the Apostol-Genocchi polynomial of order α (arbitrary real or complex) which was defined by $[19,20]$. Here the parameter λ is arbitrary real or complex. These polynomials are given as follows:

$$
\begin{aligned}
& \left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{\alpha}(x ; \lambda) \frac{t^{n}}{n!} \\
& \quad(|t|<\pi \text { when } \lambda=1 ;|t|<|\log (-\lambda)| \text { when } \lambda \neq 1)
\end{aligned}
$$

Note that when $\lambda \neq-1$, the order α should be restricted to nonnegative integer values. The Apostol-Genocchi polynomials and numbers are respectively given by

$$
G_{n}(x ; \lambda)=\mathcal{G}_{n}^{1}(x ; \lambda), \quad G_{n}(\lambda)=G_{n}(0 ; \lambda) .
$$

When $\lambda=1$, the above relations give the classical Genocchi polynomials $G_{n}(x)$ and Genocchi numbers G_{n}.

Although our results do not contain the Apostol-Euler polynomials, for the sake of completeness, we give their definitions as a special case of the polynomial family $Q_{n, \beta}^{(\alpha)}(x ; k, a, b)$.

Remark 6 Setting $k+1=-a=b=1$ and $\beta=\lambda$ in (3), we get

$$
Q_{n, \lambda}^{(\alpha)}(x ; 0,-1,1)=\mathcal{E}_{n}^{(\alpha)}(x ; \lambda) .
$$

Recall that the Apostol-Euler polynomials $\mathcal{E}_{n}^{(\alpha)}(x ; \lambda)$ are generalized by Luo [21] and given by the generating relation

$$
\begin{aligned}
& \left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} \mathcal{E}_{n}^{\alpha}(x ; \lambda) \frac{t^{n}}{n!} \\
& \quad\left(|t|<\pi \text { when } \lambda=1 ;|t|<|\log (-\lambda)| \text { when } \lambda \neq 1 ; 1^{\alpha}:=1\right)
\end{aligned}
$$

for arbitrary real or complex parameters α and λ and $x \in \mathbb{R}$. The Apostol-Euler polynomials and numbers are given respectively by

$$
E_{n}(x ; \lambda)=\mathcal{E}_{n}^{1}(x ; \lambda), \quad E_{n}(\lambda)=E_{n}(1 ; \lambda) .
$$

When $\lambda=1$, the above relations give the classical Euler polynomials $E_{n}(x)$ and Euler numbers E_{n}.

Now, recall that the Stirling numbers of the second kind are denoted by $S(j, i)$ and defined by (see [22, p. 58 (15)])

$$
\left(e^{t}-1\right)^{i}=i!\sum_{j=i}^{\infty} S(j, i) \frac{t^{j}}{j!}
$$

The following theorem states an interesting explicit representation of the unified basis in terms of Apostol-type polynomials and relation between Stirling numbers of the second kind.

Theorem 7 The following representation:

$$
\begin{aligned}
\mathcal{P}_{n}^{(a, b)}(x ; k, m)= & \frac{1}{(m k)!}\left(\frac{x}{1+a x}\right)^{m k} \sum_{i=0}^{m}\binom{m}{i}\left(\beta^{d}-c^{d}\right)^{m-i} \beta^{i d} i! \\
& \times \sum_{j=i}^{n}\binom{n}{j} S(j, i) Q_{n-j, \beta}^{(m)}\left(\frac{1+b x}{1+a x} ; k, c, d\right)
\end{aligned}
$$

holds true between the unified Bernstein and Bleimann-Butzer-Hahn basis and Apostoltype polynomials.

Proof We get, using (1), that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; k, m) \frac{t^{n}}{n!} \\
& \quad=\mathcal{G}_{a, b}(t, x ; k, m) \\
& \quad=\left[\frac{2^{1-k} x^{k} t^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{t\left[\frac{1+b x]}{1+a x}\right]} \\
& \quad=\frac{1}{(m k)!}\left(\frac{x}{1+a x}\right)^{m k}\left[\frac{2^{1-k} t^{k}}{\beta^{d} e^{t}-c^{d}}\right]^{m} e^{t\left[\frac{1+b x]}{[+a x x}\right]}\left(\beta^{d} e^{t}-c^{d}\right)^{m} \\
& \quad=\frac{1}{(m k)!}\left(\frac{x}{1+a x}\right)^{m k}\left[\frac{2^{1-k} t^{k}}{\beta^{d} e^{t}-c^{d}}\right]^{m} e^{t\left[\frac{1+b x]}{[+a x x}\right]}\left(\beta^{d}-c^{d}+\beta^{d}\left[e^{t}-1\right]\right)^{m} . \tag{4}
\end{align*}
$$

On the other hand, since

$$
\begin{aligned}
\left(\beta^{d}-c^{d}+\beta^{d}\left[e^{t}-1\right]\right)^{m} & =\sum_{i=0}^{m}\binom{m}{i}\left(\beta^{d}-c^{d}\right)^{m-i} \beta^{i d}\left[e^{t}-1\right]^{i} \\
& =\sum_{i=0}^{m}\binom{m}{i}\left(\beta^{d}-c^{d}\right)^{m-i} \beta^{i d} i!\sum_{j=i}^{\infty} S(j, i) \frac{t^{j}}{j!},
\end{aligned}
$$

we can write from (4) that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; k, m) \frac{t^{n}}{n!} \\
& \quad=\frac{1}{(m k)!}\left(\frac{x}{1+a x}\right)^{m k}\left[\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right]^{m} e^{t\left[\frac{1+b x]}{1+a x}\right]} \\
& \quad \times \sum_{i=0}^{m}\binom{m}{i}\left(\beta^{b}-a^{b}\right)^{m-i} \beta^{i b} i!\sum_{j=i}^{\infty} S(j, i) \frac{t^{j}}{j!} .
\end{aligned}
$$

Now, using (3) in the above relation, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; k, m) \frac{t^{n}}{n!} \\
&= \frac{1}{(m k)!}\left(\frac{x}{1+a x}\right)^{m k} \sum_{n=0}^{\infty} Q_{n, \beta}^{(m)}\left(\frac{1+b x}{1+a x} ; k, c, d\right) \frac{t^{n}}{n!} \\
& \quad \times \sum_{i=0}^{m}\binom{m}{i}\left(\beta^{d}-c^{d}\right)^{m-i} \beta^{i d} i!\sum_{j=i}^{\infty} S(j, i) \frac{t^{j}}{j!} \\
&= \frac{1}{(m k)!}\left(\frac{x}{1+a x}\right)^{m k} \sum_{n=0}^{\infty}\left\{\sum_{i=0}^{m}\binom{m}{i}\left(\beta^{d}-c^{d}\right)^{m-i} \beta^{i d} i!\right. \\
&\left.\quad \times \sum_{j=i}^{n}\binom{n}{j} S(j, i) Q_{n-j, \beta}^{(m)}\left(\frac{1+b x}{1+a x} ; k, c, d\right)\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

Whence the result.

Now, we list some important corollaries of the above theorem.
Corollary 8 Since $\mathcal{P}_{n}^{(0,-1)}(x ; 1, m)=B_{m}^{n}(x)$ and $Q_{n, \lambda}^{(\alpha)}(x ; 1,1,1)=\mathcal{B}_{n}^{(\alpha)}(x ; \lambda)$, we obtain the following [1]:

$$
B_{m}^{n}(x)=\frac{x^{m}}{m!} \sum_{i=0}^{m}\binom{m}{i}(\lambda-1)^{m-i} \lambda^{i} i!\sum_{j=i}^{n}\binom{n}{j} S(j, i) \mathcal{B}_{n-j}^{(m)}(1-x ; \lambda) .
$$

Furthermore, for $\lambda=1$, we have the following known relation:

$$
B_{m}^{n}(x)=x^{m} \sum_{j=m}^{n}\binom{n}{j} S(j, m) B_{n-j}^{(m)}(1-x) .
$$

Corollary 9 Since $\mathcal{P}_{n}^{(0,-1)}(x ; 1, m)=B_{m}^{n}(x)$ and $Q_{n, \frac{\lambda}{2}}^{(\alpha)}\left(x ; 1, \frac{-1}{2}, 1\right)=\mathcal{G}_{n}^{\alpha}(x ; \lambda)$, we get

$$
B_{m}^{n}(x)=\frac{x^{m}}{2^{m} m!} \sum_{i=0}^{m}\binom{m}{i}(\lambda+1)^{m-i} \lambda^{i} i!\sum_{j=i}^{n}\binom{n}{j} S(j, i) \mathcal{G}_{n-j}^{m}(1-x ; \lambda) .
$$

Corollary 10 Since $\mathcal{P}_{n}^{(1,0)}(x ; 1, m)=H_{m}^{n}(x)$ and $Q_{n, \lambda}^{(\alpha)}(x ; 1,1,1)=\mathcal{B}_{n}^{(\alpha)}(x ; \lambda)$, we obtain

$$
\begin{aligned}
H_{m}^{n}(x)= & \frac{1}{m!}\left(\frac{x}{1+x}\right)^{m} \sum_{i=0}^{m}\binom{m}{i}(\lambda-1)^{m-i} \lambda^{i} i! \\
& \times \sum_{j=i}^{n}\binom{n}{j} S(j, i) \mathcal{B}_{n-j}^{(m)}\left(\frac{1}{1+x} ; \lambda\right) .
\end{aligned}
$$

Furthermore, when $\lambda=1$, we have the following:

$$
H_{m}^{n}(x)=\left(\frac{x}{1+x}\right)^{m} \sum_{j=m}^{n}\binom{n}{j} S(j, m) B_{n-j}^{(m)}\left(\frac{1}{1+x}\right)
$$

Corollary 11 Since $\mathcal{P}_{n}^{(1,0)}(x ; 1, m)=H_{m}^{n}(x)$ and $Q_{n, \frac{\lambda}{2}}^{(\alpha)}\left(x ; 1, \frac{-1}{2}, 1\right)=\mathcal{G}_{n}^{\alpha}(x ; \lambda)$, we get

$$
\begin{aligned}
H_{m}^{n}(x)= & \frac{1}{2^{m} m!}\left(\frac{x}{1+x}\right)^{m} \sum_{i=0}^{m}\binom{m}{i}(\lambda-1)^{m-i} \lambda^{i} i! \\
& \times \sum_{j=i}^{n}\binom{n}{j} S(j, i) \mathcal{G}_{n-j}^{m}\left(\frac{1}{1+x} ; \lambda\right)
\end{aligned}
$$

3 Generating functions of trigonometric type

In this section, we obtain a trigonometric generating relation for the unified Bernstein and Bleimann-Butzer-Hahn basis. Furthermore, we give a certain summation formula for this unification. We start with the following theorem.

Theorem 12 For the unified family, we have the following implicit summation formulae:

$$
\begin{align*}
& {\left[\frac{2^{1-2 l} x^{2 l}}{(1+a x)^{2 l}}\right]^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!} \cos t\left(\frac{1+b x}{1+a x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l, m) \frac{t^{2 n}}{(2 n)!}} \tag{5}\\
& {\left[\frac{2^{1-2 l} x^{2 l}}{(1+a x)^{2 l}}\right]^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!} \sin t\left(\frac{1+b x}{1+a x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l, m) \frac{t^{2 n+1}}{(2 n+1)!}}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!} \cos t\left(\frac{1+b x}{1+a x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l+1,2 j) \frac{t^{2 n}}{(2 n)!},} \\
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!} \sin t\left(\frac{1+b x}{1+a x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l+1,2 j) \frac{t^{2 n+1}}{(2 n+1)!} .} \tag{6}
\end{align*}
$$

Finally,

$$
\begin{align*}
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!} t \sin t\left(\frac{1+b x}{1+a x}\right)} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l+1,2 j+1) \frac{t^{2 n}}{(2 n)!}, \tag{7}\\
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!} t \cos t\left(\frac{1+b x}{1+a x}\right)} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l+1,2 j+1) \frac{t^{2 n+1}}{(2 n+1)!} .
\end{align*}
$$

Proof Writing $k=2 l\left(l \in \mathbb{N}_{0}\right)$ in (1), we get

$$
\left[\frac{2^{1-2 l} x^{2 l} t^{2 l}}{(1+a x)^{2 l}}\right]^{m} \frac{1}{(2 l m)!} e^{t\left[\frac{1+b x}{1+a x}\right]}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; 2 l, m) \frac{t^{n}}{n!} .
$$

Letting $t \rightarrow i t$, we get

$$
\left[\frac{2^{1-2 l} x^{2 l}}{(1+a x)^{2 l}}\right]^{m} \frac{(i t)^{2 l m}}{(2 l m)!} e^{i t\left[\frac{1+b x}{1+a x}\right]}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; 2 l, m) \frac{(i t)^{n}}{n!}
$$

and hence

$$
\begin{aligned}
& {\left[\frac{2^{1-2 l} x^{2 l}}{(1+a x)^{2 l}}\right]^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!}\left\{\cos t\left(\frac{1+b x}{1+a x}\right)+i \sin t\left(\frac{1+b x}{1+a x}\right)\right\}} \\
& \quad=\sum_{n=0}^{\infty} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l, m) \frac{(i t)^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l, m) \frac{(i t)^{2 n+1}}{(2 n+1)!} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l, m) \frac{t^{2 n}}{(2 n)!} \\
& \quad+i \sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l, m) \frac{t^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

Equating real and imaginary parts, we get (5).
Now, taking $k=2 l+1$ and $m=2 j\left(l, j \in \mathbb{N}_{0}\right)$ in (1), we obtain

$$
\left[\frac{2^{1-(2 l+1)} x^{2 l+1} t^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j} \frac{1}{(2 j(2 l+1))!} e^{t\left[\frac{1+b x}{1+a x}\right]}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; 2 l+1,2 j) \frac{t^{n}}{n!} .
$$

Putting $t \rightarrow i t$,

$$
\left[\frac{2^{-2 l} x^{2 l+1}(i t)^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j} \frac{1}{(2 j(2 l+1))!} e^{i t\left[\frac{1+b x}{1+a x}\right]}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; 2 l+1,2 j) \frac{(i t)^{n}}{n!} .
$$

Therefore, we get

$$
\begin{aligned}
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!}\left\{\cos t\left(\frac{1+b x}{1+a x}\right)+i \sin t\left(\frac{1+b x}{1+a x}\right)\right\}} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l+1,2 j) \frac{t^{2 n}}{(2 n)!}+i \sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l+1,2 j) \frac{t^{2 n+1}}{(2 n+1)!},
\end{aligned}
$$

which is precisely (6).
Finally, for $k=2 l+1, m=2 j+1$,

$$
\left[\frac{2^{-2 l} x^{2 l+1} t^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j+1} \frac{e^{t\left[\frac{1+b x}{1+a x}\right]}}{[(2 j+1)(2 l+1)]!}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; 2 l+1,2 j+1) \frac{t^{n}}{n!}
$$

Taking $t \rightarrow i t$,

$$
\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j+1} \frac{(i t)^{(2 l+1)(2 j+1)} e^{i t\left[\frac{1+b x}{1+a x}\right]}}{[(2 j+1)(2 l+1)]!}=\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; 2 l+1,2 j+1) \frac{(i t)^{n}}{n!} .
$$

Thus,

$$
\begin{aligned}
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+a x)^{2 l+1}}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!}\left[-t \sin t\left(\frac{1+b x}{1+a x}\right)+i t \cos t\left(\frac{1+b x}{1+a x}\right)\right]} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n}^{(a, b)}(x ; 2 l+1,2 j+1) \frac{t^{2 n}}{(2 n)!} \\
& \quad+i \sum_{n=0}^{\infty}(-1)^{n} \mathcal{P}_{2 n+1}^{(a, b)}(x ; 2 l+1,2 j+1) \frac{t^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

Equating real and imaginary parts we get (7).

Since we obtain the unified Bernstein family in the case $a=0, b=-1$, we have the following corollary at once.

Corollary 13 For the unified Bernstein family, we have the following implicit summation formulae:

$$
\begin{aligned}
& \left(2^{1-2 l} x^{2 l}\right)^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!} \cos t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{B}_{2 n}(2 l m, x) \frac{t^{2 n}}{(2 n)!}, \\
& \left(2^{1-2 l} x^{2 l}\right)^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!} \sin t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{B}_{2 n+1}(2 l m, x) \frac{t^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

and

$$
\begin{align*}
& \left(2^{-2 l} x^{2 l+1}\right)^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!} \cos t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{B}_{2 n}((2 l+1)(2 j), x) \frac{t^{2 n}}{(2 n)!} \tag{8}\\
& \left(2^{-2 l} x^{2 l+1}\right)^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!} \sin t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{B}_{2 n+1}((2 l+1)(2 j), x) \frac{t^{2 n+1}}{(2 n+1)!}
\end{align*}
$$

Finally,

$$
\begin{align*}
& {\left[2^{-2 l} x^{2 l+1}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!} t \sin t(1-x)} \\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{B}_{2 n}((2 l+1)(2 j+1), x) \frac{t^{2 n}}{(2 n)!} \\
& {\left[2^{-2 l} x^{2 l+1}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!} t \cos t(1-x)} \tag{9}\\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{B}_{2 n+1}((2 l+1)(2 j+1), x) \frac{t^{2 n+1}}{(2 n+1)!}
\end{align*}
$$

On the other hand, taking l=0in(8) and (9), we get the following relations for the Bernstein basis:

$$
\begin{aligned}
& x^{2 j} \frac{\left(-t^{2}\right)^{j}}{(2 j)!} \cos t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} B_{2 j}^{2 n}(x) \frac{t^{2 n}}{(2 n)!}, \\
& x^{2 j} \frac{\left(-t^{2}\right)^{j}}{(2 j)!} \sin t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} B_{2 j}^{2 n+1}(x) \frac{t^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

and

$$
\begin{aligned}
& x^{2 j+1} \frac{\left(-t^{2}\right)^{j}}{(2 j+1)!} t \sin t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} B_{2 j+1}^{2 n}(x) \frac{t^{2 n}}{(2 n)!}, \\
& x^{2 j+1} \frac{\left(-t^{2}\right)^{j}}{(2 j+1)!} t \cos t(1-x)=\sum_{n=0}^{\infty}(-1)^{n} B_{2 j+1}^{2 n+1}(x) \frac{t^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

Since the case $a=1, b=0$ gives the unified Bleimann-Butzer-Hahn family, we immediately obtain the following corollary.

Corollary 14 For the unified Bleimann-Butzer-Hahn family, we have the following implicit summation formulae:

$$
\begin{aligned}
& {\left[\frac{2^{1-2 l} x^{2 l}}{(1+x)^{2 l}}\right]^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!} \cos \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{H}_{2 n}(2 l m, x) \frac{t^{2 n}}{(2 n)!},} \\
& {\left[\frac{2^{1-2 l} x^{2 l}}{(1+x)^{2 l}}\right]^{m} \frac{\left(-t^{2}\right)^{l m}}{(2 l m)!} \sin \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{H}_{2 n+1}(2 l m, x) \frac{t^{2 n+1}}{(2 n+1)!}}
\end{aligned}
$$

and

$$
\begin{align*}
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+x)^{2 l+1}}\right]^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!} \cos \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{H}_{2 n}((2 l+1)(2 j), x) \frac{t^{2 n}}{(2 n)!}} \tag{10}\\
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+x)^{2 l+1}}\right]^{2 j} \frac{\left(-t^{2}\right)^{(2 l+1) j}}{(2 j(2 l+1))!} \sin \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{H}_{2 n+1}((2 l+1)(2 j), x) \frac{t^{2 n+1}}{(2 n+1)!} .}
\end{align*}
$$

Finally,

$$
\begin{align*}
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+x)^{2 l+1}}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!} t \sin \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{H}_{2 n}((2 l+1)(2 j+1), x) \frac{t^{2 n}}{(2 n)!}} \\
& {\left[\frac{2^{-2 l} x^{2 l+1}}{(1+x)^{2 l+1}}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{(2 l j+l+j)}}{[(2 j+1)(2 l+1)]!} t \cos \left(\frac{t}{1+x}\right)} \tag{11}\\
& \quad=\sum_{n=0}^{\infty}(-1)^{n} \mathcal{H}_{2 n+1}((2 l+1)(2 j+1), x) \frac{t^{2 n+1}}{(2 n+1)!} .
\end{align*}
$$

Taking $l=0$ in (10) and (11), we get the following relations for the Bleimann-Butzer-Hahn basis:

$$
\begin{aligned}
& {\left[\frac{x}{1+x}\right]^{2 j} \frac{\left(-t^{2}\right)^{j}}{(2 j)!} \cos \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} H_{2 j}^{2 n}(x) \frac{t^{2 n}}{(2 n)!},} \\
& {\left[\frac{x}{1+x}\right]^{2 j} \frac{\left(-t^{2}\right)^{j}}{(2 j)!} \sin \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} H_{2 j}^{2 n+1} \frac{t^{2 n+1}}{(2 n+1)!}}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& {\left[\frac{x}{1+x}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{j}}{(2 j+1)!} t \sin \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} H_{2 j+1}^{2 n}(x) \frac{t^{2 n}}{(2 n)!},} \\
& {\left[\frac{x}{1+x}\right]^{2 j+1} \frac{\left(-t^{2}\right)^{j}}{(2 j+1)!} t \cos \left(\frac{t}{1+x}\right)=\sum_{n=0}^{\infty}(-1)^{n} H_{2 j+1}^{2 n+1}(x) \frac{t^{2 n+1}}{(2 n+1)!} .}
\end{aligned}
$$

Finally, we obtain a summation formula for the unified Bernstein and Bleimann-ButzerHahn basis as follows.

Theorem 15 For all $n, l \in \mathbb{N}_{0} ; a, b \in \mathbb{R}$, the following implicit summation formula holds true:

$$
\mathcal{P}_{n+l}^{(a, b)}(y ; k, m)=\sum_{p, r=0}^{l, n}\binom{n}{r}\binom{l}{p} \mathcal{P}_{n+l-r-p}^{(a, b)}(x ; k, m)\left[\frac{1+b y}{1+a y}-\frac{1+b x}{1+a x}\right]^{r+p} .
$$

Proof Letting $t \rightarrow t+u$ in (1) and then using the fact that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{l=0}^{\infty} A(l, n)=\sum_{n=0}^{\infty} \sum_{l=0}^{n} A(l, n-l) \tag{12}
\end{equation*}
$$

we get

$$
\begin{align*}
{\left[\frac{2^{1-k} x^{k}(t+u)^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{(t+u)\left[\frac{1+b x}{1+a x}\right]} } & =\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; k, m) \frac{(t+u)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \mathcal{P}_{n}^{(a, b)}(x ; k, m) \sum_{l=0}^{n} \frac{t^{n-l} u^{l}}{l!(n-l)!} \\
& =\sum_{n, l=0}^{\infty} \mathcal{P}_{n+l}^{(a, b)}(x ; k, m) \frac{t^{n} u^{l}}{n!l!} \tag{13}
\end{align*}
$$

and hence

$$
\left[\frac{2^{1-k} x^{k}(t+u)^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!}=e^{-(t+u)\left[\frac{1+b x}{1+a x}\right]} \sum_{n, l=0}^{\infty} \mathcal{P}_{n+l}^{(a, b)}(x ; k, m) \frac{t^{n} u^{l}}{n!l!}
$$

Multiplying both sides by $e^{(t+u)\left[\frac{1+b y}{1+a y}\right]}$ and then expanding the function $e^{(t+u)\left[\frac{1+b y}{1+a y}-\frac{1+b x}{1+a x}\right]}$, we get, after using (12) twice, that

$$
\begin{aligned}
& {\left[\frac{2^{1-k} x^{k}(t+u)^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{(t+u)\left[\frac{1+b y}{1+a y}\right]}} \\
& \quad=e^{(t+u)\left[\frac{1+b y}{1+a y}-\frac{1+b x}{1+a x}\right]} \sum_{n, l=0}^{\infty} \mathcal{P}_{n+l}^{(a, b)}(x ; k, m) \frac{t^{n} u^{l}}{n!l!} \\
& =\sum_{n, l=0}^{\infty} \sum_{r=0}^{\infty} \mathcal{P}_{n+l}^{(a, b)}(x ; k, m) \frac{\left[\frac{1+b y}{1+a y}-\frac{1+b x}{1+a x}\right]^{r}}{r!}(t+u)^{r} \frac{t^{n} u^{l}}{n!l!} \\
& =\sum_{n, l, p, r=0}^{\infty} \mathcal{P}_{n+l}^{(a, b)}(x ; k, m)\left[\frac{1+b y}{1+a y}-\frac{1+b x}{1+a x}\right]^{r+p} \frac{t^{n+r} u^{p+l}}{n!l!r!p!} .
\end{aligned}
$$

Now, using (12) with the index pairs (n, r) and (l, p), we get

$$
\begin{align*}
& {\left[\frac{2^{1-k} x^{k}(t+u)^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{(t+u)\left[\frac{1+b y}{1+a y}\right]}} \\
& \quad=\sum_{n, l=0}^{\infty} \sum_{p, r=0}^{l, n}\binom{n}{r}\binom{l}{p} \mathcal{P}_{n+l-r-p}^{(a, b)}(x ; k, m)\left[\frac{1+b y}{1+a y}-\frac{1+b x}{1+a x}\right]^{r+p} \frac{t^{n} u^{l}}{n!l!} . \tag{14}
\end{align*}
$$

Since the left-hand side is equal by (13) to

$$
\begin{equation*}
\left[\frac{2^{1-k} x^{k}(t+u)^{k}}{(1+a x)^{k}}\right]^{m} \frac{1}{(m k)!} e^{(t+u)\left[\frac{1+b y}{1+a y}\right]}=\sum_{n, l=0}^{\infty} \mathcal{P}_{n+l}^{(a, b)}(y ; k, m) \frac{t^{n} u^{l}}{n!l!}, \tag{15}
\end{equation*}
$$

the proof is completed by comparing the coefficients of $\frac{t^{n} l^{l}}{n!!}$ in (14) and (15).
In the case $a=0, b=-1$, we obtain the following result for the unified Bernstein family at once.

Corollary 16 For all $n, l \in \mathbb{N}_{0}$, the following implicit summation formula:

$$
\begin{equation*}
\mathcal{B}_{n+l}(m k, y)=\sum_{p, r=0}^{l, n}\binom{n}{r}\binom{l}{p} \mathcal{B}_{n+l-r-p}(m k, x)[x-y]^{r+p} \tag{16}
\end{equation*}
$$

holds true for the unified Bernstein family. Taking $k=1$ in (16), we get the following relation for the Bernstein basis:

$$
B_{m}^{n+l}(y)=\sum_{p, r=0}^{l, n}\binom{n}{r}\binom{l}{p} B_{m}^{n+l-r-p}(x)[x-y]^{r+p} .
$$

Since the case $a=1, b=0$ gives the unified Bleimann-Butzer-Hahn family, we have the following result.

Corollary 17 For all $n, l \in \mathbb{N}_{0}$, the following implicit summation formula:

$$
\begin{equation*}
\mathcal{H}_{n+l}(m k, y)=\sum_{p, r=0}^{l, n}\binom{n}{r}\binom{l}{p} \mathcal{H}_{n+l-r-p}(m k, x)[x-y]^{r+p} \tag{17}
\end{equation*}
$$

holds true for the unified Bleimann-Butzer-Hahn family. Upon taking $k=1$ in (17), we get the following relation for the Bleimann-Butzer-Hahn basis:

$$
H_{m}^{n+l}(y)=\sum_{p, r=0}^{l, n}\binom{n}{r}\binom{l}{p} H_{m}^{n+l-r-p}(x)[x-y]^{r+p}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 30 November 2012 Accepted: 31 January 2013 Published: 13 March 2013

References

1. Simsek, Y: Constructing a new generating function of Bernstein type polynomials. Appl. Math. Comput. 218, 1072-1076 (2011)
2. Acikgoz, M, Aracı, S: On generating function of the Bernstein polynomials. Proceedings of the International Conference on Numerical Analysis and Applied Mathematics. AIP Conf. Proc. 1281, 1141-1143 (2010)
3. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 18(2), 133-143 (2011)
4. Bernstein, SN: Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Commun. Soc. Math. Kharkov 13, 1-2 (1912-13)
5. Bleimann, G, Butzer, PL, Hahn, L: A Bernstein-type operator approximating continuous functions on the semi-axis. Indag. Math. 42, 255-262 (1980)
6. Busé, L, Goldman, R: Division algorithms for Bernstein polynomials. Comput. Aided Geom. Des. 25, 850-865 (2008)
7. Kim, M-S, Kim, T, Lee, B, Ryoo, C-S: Some identities of Bernoulli numbers and polynomials associated with Bernstein polynomials. Adv. Differ. Equ. 2010, Article ID 305018 (2010)
8. Kim, T, Jang, L-J, Yi, H: A note on the modified q-Bernstein polynomials. Discrete Dyn. Nat. Soc. (2010). doi:10.1155/2010/706483
9. Morin, G, Goldman, R: On the smooth convergence of subdivision and degree elevation for Bézier curves. Comput. Aided Geom. Des. 18, 657-666 (2001)
10. Phillips, GM: Interpolation and Approximation by Polynomials. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 14. Springer, New York (2003)
11. Simsek, Y, Acikgoz, M: A new generating function of $(q-)$ Bernstein-type polynomials and their interpolation function. Abstr. Appl. Anal. 2010, Article ID 769095 (2010)
12. Zorlu, S, Aktuglu, H, Ozarslan, MA: An estimation to the solution of an initial value problem via q-Bernstein polynomials. J. Comput. Anal. Appl. 12, 637-645 (2010)
13. Ulrich, A, Mircea, I: The Bleimann-Butzer-Hahn operators old and new results. Appl. Anal. 90(3-4), 483-491 (2011)
14. Ozarslan, MA: Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 62(6), 2452-2462 (2011)
15. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308(1), 290-302 (2005)
16. Luo, Q-M: On the Apostol-Bernoulli polynomials. Cent. Eur. J. Math. 2(4), 509-515 (2004)
17. Luo, Q-M, Srivastava, HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51(3-4), 631-642 (2006)
18. Srivastava, HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 129(1), 77-84 (2000)
19. Luo, Q-M: Fourier expansions and integral representations for the Genocchi polynomials. J. Integer Seq. 12, Article ID 09.1.4 (2009)
20. Luo, Q-M: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48(2), 291-309 (2011)
21. Luo, Q-M: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 10, 917-925 (2006)
22. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)

Cite this article as: Özarslan and Bozer: Unified Bernstein and Bleimann-Butzer-Hahn basis and its properties. Advances in Difference Equations 2013 2013:55.

Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2013 Özarslan and Bozer; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

