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Abstract
In this paper we introduce the unification of Bernstein and Bleimann-Butzer-Hahn
basis via the generating function. We give the representation of this unified family in
terms of Apostol-type polynomials and Stirling numbers of the second kind. More
generating functions of trigonometric type are also obtained to this unification.
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1 Introduction
In this paper, we introduce a two-parameter generating function, which generates not only
the Bernstein basis polynomials, but also the Bleimann-Butzer-Hahn basis functions. The
generating function that we propose is given by

Ga,b(t,x;k,m) :=
[
–kxktk

( + ax)k

]m 
(mk)!

et[
+bx
+ax ] =

∞∑
n=

P (a,b)
n (x;k,m)

tn

n!
, ()

where k,m ∈ Z
+ := {, , . . .}, a,b ∈ R, t ∈ C. Here, x ∈ I where I is a subinterval of R such

that the expansion in () is valid. The following two cases will be important for us.
. The case a = , b = –. In this case, we let x ∈ [, ] and we see that

G,–(t,x;k,m) =
[
–kxktk

]m 
(mk)!

et[–x] =
∞∑
n=

P (,–)
n (x;k,m)

tn

n!

generates the unifying Bernstein basis polynomialsP (,–)
n (x;k,m) := Bn(mk,x) whichwere

introduced and investigated in []. We should note further that G,–(t,x; ,m) gives

G,–(t,x; ,m) = [xt]m

m!

et[–x] =
∞∑
n=

Bn(m,x)
tn

n!

which generates the celebrated Bernstein basis polynomials (see [–])

Bn(m,x) := Bn
m(x) =

(
n
m

)
xk( – x)n–m.
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Note that the Bernstein operators Bn : C[, ] → C[, ] are given by

Bn(f ;x) =
n∑

m=

f
(
m
n

)(
n
m

)
xk( – x)n–m, n ∈N := {, , . . .}

and by the Korovkin theorem, it is known that Bn(f ;x) ⇒ f (x) for all f ∈ C[, ], where
C[, ] denotes the space of continuous functions defined on [, ], and the notation ‘⇒’
denotes the uniform convergence with respect to the usual supremum norm on C[, ].
Very recently, interesting properties of Bernstein polynomials were discussed in [, –]
and [].
. The case a = , b = . In this case, we let x ∈ [,∞) and define

G,(t,x;k,m) :=
[
–kxktk

( + x)k

]m 
(mk)!

et[


+x ]

=
∞∑
n=

P (,)
n (x;k,m)

tn

n!
.

Wewill see that this generating function produces the generalized Bleimann-Butzer-Hahn
basis functions P (,)

n (x;k,m) :=Hn(mk,x). Furthermore, the special case

G,(t,x; ,m) =
[

xt
( + x)

]m 
(mk)!

et[


+x ]

=
∞∑
n=

Hn(m,x)
tn

n!

generates the well-known Bleimann-Butzer-Hahn basis functions:

Hn(m,x) :=Hn
m(x) =

(
n
m

)
xm

( + x)n
.

The Bleimann-Butzer-Hahn operators were introduced in [] and defined by

Ln(f ;x) =


( + x)n

n∑
m=

f
(
m
n

)(
n
m

)
xm; x ∈ [,∞),n ∈N.

Denoting CB[,∞) by the space of real-valued bounded continuous functions defined on
[,∞), they proved that Ln(f ) → f as n → ∞. On the other hand, the convergence is uni-
form on each compact subset of [,∞), where the norm is the usual supremum norm of
CB[,∞). For the review of the results concerning the Bleimann-Butzer-Hahn operators
obtained in the period -, we refer to [].
The following theorem gives the explicit representation of the basis family defined in

(). Note that throughout the paper, we let P (a,b)
n (x;k,m) :=  for n≤ mk.

Theorem  If n≥ mk, we have

P (a,b)
n (x;k,m) = (–k)mxmk

(
n
mk

)
( + bx)n–mk

( + ax)n
.

http://www.advancesindifferenceequations.com/content/2013/1/55


Özarslan and Bozer Advances in Difference Equations 2013, 2013:55 Page 3 of 14
http://www.advancesindifferenceequations.com/content/2013/1/55

Proof Direct calculations give

Ga,b(t,x;k,m) =
[
–kxktk

( + ax)k

]m 
(mk)!

et[
+bx
+ax ]

=
(–k)m

(mk)!

(
xt

 + ax

)mk ∞∑
n=

(
 + bx
 + ax

)n tn

n!

= (–k)mxmk
∞∑

n=mk

(
n
mk

)
( + bx)n–mk

( + ax)n
tn

n!
. ()

Comparing () and (), we get the result. �

Corollary  By taking a = , b = – in Theorem , we obtain the explicit representation of
the unifying Bernstein basis polynomials []:

P (,–)
n (x;k,m) := Bn(mk,x) = (–k)mxmk

(
n
mk

)
( – x)n–mk .

Furthermore, Bn(m,x) = Bn
m(x) is the well-known Bernstein basis.

Corollary  Taking a = , b =  in Theorem , we get the explicit representation of the
generalized Bleimann-Butzer-Hahn basis:

P (,)
n (x;k,m) :=Hn(mk,x) = (–k)mxmk

(
n
mk

)


( + x)n
.

Moreover,Hn(m,x) =Hn
m(x) is the Bleimann-Butzer-Hahn basis function.

We organize the paper as follows. In Section , we obtain the representation of this
unified family in terms of Apostol-type polynomials and Stirling numbers of the second
kind. In Section , we give more trigonometric generating functions for this unification
and obtain a certain summation formula. All the special cases are listed at the end of each
theorem.

2 Representation in terms of Apostol-type polynomials and Stirling numbers
Recently [], the first author introduced the unification of the Apostol-Bernoulli, Euler
and Genocchi polynomials by

P (α)
a,b (x; t;k,β) :=

(
–ktk

βbet – ab

)α

ext =
∞∑
n=

Q(α)
n,β (x;k,a,b)

tn

n!(
k ∈N;a,b ∈R\{};α,β ∈C

)
. ()

For the convergence of the series in (), we refer to [, p.].
Some of the well-known polynomials included by Q(α)

n,β (x;k,a,b) are listed below.

Remark  Having k = a = b =  and β = λ in (), we get

Q(α)
n,λ(x; , , ) = B(α)

n (x;λ).
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Note that B(α)
n (x;λ) are the generalized Apostol-Bernoulli polynomials defined through

the following generating relation:

(
t

λet – 

)α

ext =
∞∑
n=

B(α)
n (x;λ)

tn

n!
(|t| < π when λ = ; |t| < | logλ| when λ �= 

)
,

where α and λ are arbitrary real or complex parameters and x ∈ R. Note that when λ �= ,
the order α should be restricted to nonnegative integer values. These polynomials were
introduced by Luo and Srivastava [] and investigated in [, ] and []. The Apostol-
Bernoulli polynomials and numbers are obtained by the generalized Apostol-Bernoulli
polynomials, respectively, as follows:

Bn(x;λ) = B()
n (x;λ), Bn(λ) = Bn(;λ) (n ∈N).

Taking λ =  in the above relations, we obtain the classical Bernoulli polynomials Bn(x)
and Bernoulli numbers Bn.

Remark  Letting k = –a = b =  and β = λ in (), we get

Q(α)
n, λ

(
x; ,

–

, 

)
= Gα

n (x;λ),

the Apostol-Genocchi polynomial of order α (arbitrary real or complex) which was de-
fined by [, ]. Here the parameter λ is arbitrary real or complex. These polynomials
are given as follows:

(
t

λet + 

)α

ext =
∞∑
n=

Gα
n (x;λ)

tn

n!
(|t| < π when λ = ; |t| < ∣∣log(–λ)

∣∣ when λ �= 
)
.

Note that when λ �= –, the order α should be restricted to nonnegative integer values. The
Apostol-Genocchi polynomials and numbers are respectively given by

Gn(x;λ) = G
n(x;λ), Gn(λ) =Gn(;λ).

When λ = , the above relations give the classical Genocchi polynomials Gn(x) and
Genocchi numbers Gn.

Although our results do not contain the Apostol-Euler polynomials, for the sake of com-
pleteness, we give their definitions as a special case of the polynomial familyQ(α)

n,β (x;k,a,b).

Remark  Setting k +  = –a = b =  and β = λ in (), we get

Q(α)
n,λ(x; , –, ) = E (α)

n (x;λ).

http://www.advancesindifferenceequations.com/content/2013/1/55


Özarslan and Bozer Advances in Difference Equations 2013, 2013:55 Page 5 of 14
http://www.advancesindifferenceequations.com/content/2013/1/55

Recall that the Apostol-Euler polynomials E (α)
n (x;λ) are generalized by Luo [] and given

by the generating relation

(


λet + 

)α

ext =
∞∑
n=

Eα
n (x;λ)

tn

n!
(|t| < π when λ = ; |t| < ∣∣log(–λ)

∣∣ when λ �= ; α := 
)

for arbitrary real or complex parameters α and λ and x ∈ R. The Apostol-Euler polyno-
mials and numbers are given respectively by

En(x;λ) = E 
n(x;λ), En(λ) = En(;λ).

When λ = , the above relations give the classical Euler polynomials En(x) and Euler num-
bers En.

Now, recall that the Stirling numbers of the second kind are denoted by S(j, i) and defined
by (see [, p. ()])

(
et – 

)i = i!
∞∑
j=i

S(j, i)
tj

j!
.

The following theorem states an interesting explicit representation of the unified basis in
terms of Apostol-type polynomials and relation between Stirling numbers of the second
kind.

Theorem  The following representation:

P (a,b)
n (x;k,m) =


(mk)!

(
x

 + ax

)mk m∑
i=

(
m
i

)(
βd – cd

)m–i
β idi!

×
n∑
j=i

(
n
j

)
S(j, i)Q(m)

n–j,β

(
 + bx
 + ax

;k, c,d
)

holds true between the unified Bernstein and Bleimann-Butzer-Hahn basis and Apostol-
type polynomials.

Proof We get, using (), that

∞∑
n=

P (a,b)
n (x;k,m)

tn

n!

= Ga,b(t,x;k,m)

=
[
–kxktk

( + ax)k

]m 
(mk)!

et[
+bx
+ax ]

=


(mk)!

(
x

 + ax

)mk[ –ktk

βdet – cd

]m

et[
+bx
+ax ]

(
βdet – cd

)m

=


(mk)!

(
x

 + ax

)mk[ –ktk

βdet – cd

]m

et[
+bx
+ax ]

(
βd – cd + βd[et – 

])m. ()
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On the other hand, since

(
βd – cd + βd[et – 

])m =
m∑
i=

(
m
i

)(
βd – cd

)m–i
β id[et – 

]i

=
m∑
i=

(
m
i

)(
βd – cd

)m–i
β idi!

∞∑
j=i

S(j, i)
tj

j!
,

we can write from () that

∞∑
n=

P (a,b)
n (x;k,m)

tn

n!

=


(mk)!

(
x

 + ax

)mk[ –ktk

βbet – ab

]m

et[
+bx
+ax ]

×
m∑
i=

(
m
i

)(
βb – ab

)m–i
β ibi!

∞∑
j=i

S(j, i)
tj

j!
.

Now, using () in the above relation, we get

∞∑
n=

P (a,b)
n (x;k,m)

tn

n!

=


(mk)!

(
x

 + ax

)mk ∞∑
n=

Q(m)
n,β

(
 + bx
 + ax

;k, c,d
)
tn

n!

×
m∑
i=

(
m
i

)(
βd – cd

)m–i
β idi!

∞∑
j=i

S(j, i)
tj

j!

=


(mk)!

(
x

 + ax

)mk ∞∑
n=

{ m∑
i=

(
m
i

)(
βd – cd

)m–i
β idi!

×
n∑
j=i

(
n
j

)
S(j, i)Q(m)

n–j,β

(
 + bx
 + ax

;k, c,d
)}

tn

n!
.

Whence the result. �

Now, we list some important corollaries of the above theorem.

Corollary  Since P (,–)
n (x; ,m) = Bn

m(x) and Q(α)
n,λ(x; , , ) = B(α)

n (x;λ), we obtain the fol-
lowing []:

Bn
m(x) =

xm

m!

m∑
i=

(
m
i

)
(λ – )m–iλii!

n∑
j=i

(
n
j

)
S(j, i)B(m)

n–j ( – x;λ).

Furthermore, for λ = , we have the following known relation:

Bn
m(x) = xm

n∑
j=m

(
n
j

)
S(j,m)B(m)

n–j( – x).
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Corollary  Since P (,–)
n (x; ,m) = Bn

m(x) and Q(α)
n, λ

(x; , – , ) = Gα
n (x;λ), we get

Bn
m(x) =

xm

mm!

m∑
i=

(
m
i

)
(λ + )m–iλii!

n∑
j=i

(
n
j

)
S(j, i)Gm

n–j( – x;λ).

Corollary  Since P (,)
n (x; ,m) =Hn

m(x) and Q(α)
n,λ(x; , , ) = B(α)

n (x;λ), we obtain

Hn
m(x) =


m!

(
x

 + x

)m m∑
i=

(
m
i

)
(λ – )m–iλii!

×
n∑
j=i

(
n
j

)
S(j, i)B(m)

n–j

(


 + x
;λ

)
.

Furthermore, when λ = , we have the following:

Hn
m(x) =

(
x

 + x

)m n∑
j=m

(
n
j

)
S(j,m)B(m)

n–j

(


 + x

)
.

Corollary  Since P (,)
n (x; ,m) =Hn

m(x) and Q(α)
n, λ

(x; , – , ) = Gα
n (x;λ), we get

Hn
m(x) =


mm!

(
x

 + x

)m m∑
i=

(
m
i

)
(λ – )m–iλii!

×
n∑
j=i

(
n
j

)
S(j, i)Gm

n–j

(


 + x
;λ

)
.

3 Generating functions of trigonometric type
In this section, we obtain a trigonometric generating relation for the unified Bernstein and
Bleimann-Butzer-Hahn basis. Furthermore, we give a certain summation formula for this
unification. We start with the following theorem.

Theorem  For the unified family, we have the following implicit summation formulae:

[
–lxl

( + ax)l

]m (–t)lm

(lm)!
cos t

(
 + bx
 + ax

)
=

∞∑
n=

(–)nP (a,b)
n (x; l,m)

tn

(n)!
,

[
–lxl

( + ax)l

]m (–t)lm

(lm)!
sin t

(
 + bx
 + ax

)
=

∞∑
n=

(–)nP (a,b)
n+(x; l,m)

tn+

(n + )!

()

and

[
–lxl+

( + ax)l+

]j (–t)(l+)j

(j(l + ))!
cos t

(
 + bx
 + ax

)
=

∞∑
n=

(–)nP (a,b)
n (x; l + , j)

tn

(n)!
,

[
–lxl+

( + ax)l+

]j (–t)(l+)j

(j(l + ))!
sin t

(
 + bx
 + ax

)
=

∞∑
n=

(–)nP (a,b)
n+(x; l + , j)

tn+

(n + )!
.

()
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Finally,

[
–lxl+

( + ax)l+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!
t sin t

(
 + bx
 + ax

)

=
∞∑
n=

(–)nP (a,b)
n (x; l + , j + )

tn

(n)!
,

[
–lxl+

( + ax)l+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!
t cos t

(
 + bx
 + ax

)

=
∞∑
n=

(–)nP (a,b)
n+(x; l + , j + )

tn+

(n + )!
.

()

Proof Writing k = l (l ∈N) in (), we get

[
–lxltl

( + ax)l

]m 
(lm)!

et[
+bx
+ax ] =

∞∑
n=

P (a,b)
n (x; l,m)

tn

n!
.

Letting t → it, we get

[
–lxl

( + ax)l

]m (it)lm

(lm)!
eit[

+bx
+ax ] =

∞∑
n=

P (a,b)
n (x; l,m)

(it)n

n!

and hence

[
–lxl

( + ax)l

]m (–t)lm

(lm)!

{
cos t

(
 + bx
 + ax

)
+ i sin t

(
 + bx
 + ax

)}

=
∞∑
n=

P (a,b)
n (x; l,m)

(it)n

(n)!
+

∞∑
n=

P (a,b)
n+(x; l,m)

(it)n+

(n + )!

=
∞∑
n=

(–)nP (a,b)
n (x; l,m)

tn

(n)!

+ i
∞∑
n=

(–)nP (a,b)
n+(x; l,m)

tn+

(n + )!
.

Equating real and imaginary parts, we get ().
Now, taking k = l + andm = j (l, j ∈ N) in (), we obtain

[
–(l+)xl+tl+

( + ax)l+

]j 
(j(l + ))!

et[
+bx
+ax ] =

∞∑
n=

P (a,b)
n (x; l + , j)

tn

n!
.

Putting t → it,

[
–lxl+(it)l+

( + ax)l+

]j 
(j(l + ))!

eit[
+bx
+ax ] =

∞∑
n=

P (a,b)
n (x; l + , j)

(it)n

n!
.
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Therefore, we get

[
–lxl+

( + ax)l+

]j (–t)(l+)j

(j(l + ))!

{
cos t

(
 + bx
 + ax

)
+ i sin t

(
 + bx
 + ax

)}

=
∞∑
n=

(–)nP (a,b)
n (x; l + , j)

tn

(n)!
+ i

∞∑
n=

(–)nP (a,b)
n+(x; l + , j)

tn+

(n + )!
,

which is precisely ().
Finally, for k = l + ,m = j + ,

[
–lxl+tl+

( + ax)l+

]j+ et[
+bx
+ax ]

[(j + )(l + )]!
=

∞∑
n=

P (a,b)
n (x; l + , j + )

tn

n!
.

Taking t → it,

[
–lxl+

( + ax)l+

]j+ (it)(l+)(j+)eit[
+bx
+ax ]

[(j + )(l + )]!
=

∞∑
n=

P (a,b)
n (x; l + , j + )

(it)n

n!
.

Thus,

[
–lxl+

( + ax)l+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!

[
–t sin t

(
 + bx
 + ax

)
+ it cos t

(
 + bx
 + ax

)]

=
∞∑
n=

(–)nP (a,b)
n (x; l + , j + )

tn

(n)!

+ i
∞∑
n=

(–)nP (a,b)
n+(x; l + , j + )

tn+

(n + )!
.

Equating real and imaginary parts we get (). �

Since we obtain the unified Bernstein family in the case a = , b = –, we have the fol-
lowing corollary at once.

Corollary  For the unified Bernstein family, we have the following implicit summation
formulae:

(
–lxl

)m (–t)lm

(lm)!
cos t( – x) =

∞∑
n=

(–)nBn(lm,x)
tn

(n)!
,

(
–lxl

)m (–t)lm

(lm)!
sin t( – x) =

∞∑
n=

(–)nBn+(lm,x)
tn+

(n + )!

and

(
–lxl+

)j (–t)(l+)j
(j(l + ))!

cos t( – x) =
∞∑
n=

(–)nBn
(
(l + )(j),x

) tn

(n)!
,

(
–lxl+

)j (–t)(l+)j
(j(l + ))!

sin t( – x) =
∞∑
n=

(–)nBn+
(
(l + )(j),x

) tn+

(n + )!
.

()
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Finally,

[
–lxl+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!
t sin t( – x)

=
∞∑
n=

(–)nBn
(
(l + )(j + ),x

) tn

(n)!
,

[
–lxl+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!
t cos t( – x)

=
∞∑
n=

(–)nBn+
(
(l + )(j + ),x

) tn+

(n + )!
.

()

On the other hand, taking l =  in () and (),we get the following relations for the Bernstein
basis:

xj
(–t)j

(j)!
cos t( – x) =

∞∑
n=

(–)nBn
j (x)

tn

(n)!
,

xj
(–t)j

(j)!
sin t( – x) =

∞∑
n=

(–)nBn+
j (x)

tn+

(n + )!

and

xj+
(–t)j

(j + )!
t sin t( – x) =

∞∑
n=

(–)nBn
j+(x)

tn

(n)!
,

xj+
(–t)j

(j + )!
t cos t( – x) =

∞∑
n=

(–)nBn+
j+ (x)

tn+

(n + )!
.

Since the case a = , b =  gives the unified Bleimann-Butzer-Hahn family, we immedi-
ately obtain the following corollary.

Corollary  For the unified Bleimann-Butzer-Hahn family,we have the following implicit
summation formulae:

[
–lxl

( + x)l

]m (–t)lm

(lm)!
cos

(
t

 + x

)
=

∞∑
n=

(–)nHn(lm,x)
tn

(n)!
,

[
–lxl

( + x)l

]m (–t)lm

(lm)!
sin

(
t

 + x

)
=

∞∑
n=

(–)nHn+(lm,x)
tn+

(n + )!

and

[
–lxl+

( + x)l+

]j (–t)(l+)j

(j(l + ))!
cos

(
t

 + x

)
=

∞∑
n=

(–)nHn
(
(l + )(j),x

) tn

(n)!
,

[
–lxl+

( + x)l+

]j (–t)(l+)j

(j(l + ))!
sin

(
t

 + x

)
=

∞∑
n=

(–)nHn+
(
(l + )(j),x

) tn+

(n + )!
.

()
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Finally,

[
–lxl+

( + x)l+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!
t sin

(
t

 + x

)
=

∞∑
n=

(–)nHn
(
(l + )(j + ),x

) tn

(n)!
,

[
–lxl+

( + x)l+

]j+ (–t)(lj+l+j)

[(j + )(l + )]!
t cos

(
t

 + x

)
()

=
∞∑
n=

(–)nHn+
(
(l + )(j + ),x

) tn+

(n + )!
.

Taking l =  in () and (), we get the following relations for the Bleimann-Butzer-Hahn
basis:

[
x

 + x

]j (–t)j

(j)!
cos

(
t

 + x

)
=

∞∑
n=

(–)nHn
j (x)

tn

(n)!
,

[
x

 + x

]j (–t)j

(j)!
sin

(
t

 + x

)
=

∞∑
n=

(–)nHn+
j

tn+

(n + )!
.

Finally,

[
x

 + x

]j+ (–t)j

(j + )!
t sin

(
t

 + x

)
=

∞∑
n=

(–)nHn
j+(x)

tn

(n)!
,

[
x

 + x

]j+ (–t)j

(j + )!
t cos

(
t

 + x

)
=

∞∑
n=

(–)nHn+
j+ (x)

tn+

(n + )!
.

Finally, we obtain a summation formula for the unified Bernstein and Bleimann-Butzer-
Hahn basis as follows.

Theorem  For all n, l ∈ N; a,b ∈ R, the following implicit summation formula holds
true:

P (a,b)
n+l (y;k,m) =

l,n∑
p,r=

(
n
r

)(
l
p

)
P (a,b)

n+l–r–p(x;k,m)
[
 + by
 + ay

–
 + bx
 + ax

]r+p

.

Proof Letting t → t + u in () and then using the fact that

∞∑
n=

∞∑
l=

A(l,n) =
∞∑
n=

n∑
l=

A(l,n – l), ()

we get

[
–kxk(t + u)k

( + ax)k

]m 
(mk)!

e(t+u)[
+bx
+ax ] =

∞∑
n=

P (a,b)
n (x;k,m)

(t + u)n

n!

=
∞∑
n=

P (a,b)
n (x;k,m)

n∑
l=

tn–lul

l!(n – l)!

=
∞∑

n,l=

P (a,b)
n+l (x;k,m)

tnul

n!l!
()
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and hence

[
–kxk(t + u)k

( + ax)k

]m 
(mk)!

= e–(t+u)[
+bx
+ax ]

∞∑
n,l=

P (a,b)
n+l (x;k,m)

tnul

n!l!
.

Multiplying both sides by e(t+u)[
+by
+ay ] and then expanding the function e(t+u)[

+by
+ay–

+bx
+ax ], we

get, after using () twice, that

[
–kxk(t + u)k

( + ax)k

]m 
(mk)!

e(t+u)[
+by
+ay ]

= e(t+u)[
+by
+ay–

+bx
+ax ]

∞∑
n,l=

P (a,b)
n+l (x;k,m)

tnul

n!l!

=
∞∑

n,l=

∞∑
r=

P (a,b)
n+l (x;k,m)

[ +by+ay –
+bx
+ax ]

r

r!
(t + u)r

tnul

n!l!

=
∞∑

n,l,p,r=

P (a,b)
n+l (x;k,m)

[
 + by
 + ay

–
 + bx
 + ax

]r+p tn+rup+l

n!l!r!p!
.

Now, using () with the index pairs (n, r) and (l,p), we get

[
–kxk(t + u)k

( + ax)k

]m 
(mk)!

e(t+u)[
+by
+ay ]

=
∞∑

n,l=

l,n∑
p,r=

(
n
r

)(
l
p

)
P (a,b)

n+l–r–p(x;k,m)
[
 + by
 + ay

–
 + bx
 + ax

]r+p tnul

n!l!
. ()

Since the left-hand side is equal by () to

[
–kxk(t + u)k

( + ax)k

]m 
(mk)!

e(t+u)[
+by
+ay ] =

∞∑
n,l=

P (a,b)
n+l (y;k,m)

tnul

n!l!
, ()

the proof is completed by comparing the coefficients of tnul
n!l! in () and (). �

In the case a = , b = –, we obtain the following result for the unified Bernstein family
at once.

Corollary  For all n, l ∈N, the following implicit summation formula:

Bn+l(mk, y) =
l,n∑

p,r=

(
n
r

)(
l
p

)
Bn+l–r–p(mk,x)[x – y]r+p ()

holds true for the unified Bernstein family. Taking k =  in (),we get the following relation
for the Bernstein basis:

Bn+l
m (y) =

l,n∑
p,r=

(
n
r

)(
l
p

)
Bn+l–r–p
m (x)[x – y]r+p.
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Since the case a = , b =  gives the unified Bleimann-Butzer-Hahn family, we have the
following result.

Corollary  For all n, l ∈N, the following implicit summation formula:

Hn+l(mk, y) =
l,n∑

p,r=

(
n
r

)(
l
p

)
Hn+l–r–p(mk,x)[x – y]r+p ()

holds true for the unified Bleimann-Butzer-Hahn family. Upon taking k =  in (), we get
the following relation for the Bleimann-Butzer-Hahn basis:

Hn+l
m (y) =

l,n∑
p,r=

(
n
r

)(
l
p

)
Hn+l–r–p

m (x)[x – y]r+p.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors completed the paper together. All authors read and approved the final manuscript.

Acknowledgements
Dedicated to Professor Hari M Srivastava.

Received: 30 November 2012 Accepted: 31 January 2013 Published: 13 March 2013

References
1. Simsek, Y: Constructing a new generating function of Bernstein type polynomials. Appl. Math. Comput. 218,

1072-1076 (2011)
2. Acikgoz, M, Aracı, S: On generating function of the Bernstein polynomials. Proceedings of the International

Conference on Numerical Analysis and Applied Mathematics. AIP Conf. Proc. 1281, 1141-1143 (2010)
3. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys.

18(2), 133-143 (2011)
4. Bernstein, SN: Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Commun. Soc. Math.

Kharkov 13, 1-2 (1912-13)
5. Bleimann, G, Butzer, PL, Hahn, L: A Bernstein-type operator approximating continuous functions on the semi-axis.

Indag. Math. 42, 255-262 (1980)
6. Busé, L, Goldman, R: Division algorithms for Bernstein polynomials. Comput. Aided Geom. Des. 25, 850-865 (2008)
7. Kim, M-S, Kim, T, Lee, B, Ryoo, C-S: Some identities of Bernoulli numbers and polynomials associated with Bernstein

polynomials. Adv. Differ. Equ. 2010, Article ID 305018 (2010)
8. Kim, T, Jang, L-J, Yi, H: A note on the modified q-Bernstein polynomials. Discrete Dyn. Nat. Soc. (2010).

doi:10.1155/2010/706483
9. Morin, G, Goldman, R: On the smooth convergence of subdivision and degree elevation for Bézier curves. Comput.

Aided Geom. Des. 18, 657-666 (2001)
10. Phillips, GM: Interpolation and Approximation by Polynomials. CMS Books in Mathematics/Ouvrages de

Mathématiques de la SMC, vol. 14. Springer, New York (2003)
11. Simsek, Y, Acikgoz, M: A new generating function of (q-) Bernstein-type polynomials and their interpolation function.

Abstr. Appl. Anal. 2010, Article ID 769095 (2010)
12. Zorlu, S, Aktuglu, H, Ozarslan, MA: An estimation to the solution of an initial value problem via q-Bernstein

polynomials. J. Comput. Anal. Appl. 12, 637-645 (2010)
13. Ulrich, A, Mircea, I: The Bleimann-Butzer-Hahn operators old and new results. Appl. Anal. 90(3-4), 483-491 (2011)
14. Ozarslan, MA: Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 62(6), 2452-2462

(2011)
15. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal.

Appl. 308(1), 290-302 (2005)
16. Luo, Q-M: On the Apostol-Bernoulli polynomials. Cent. Eur. J. Math. 2(4), 509-515 (2004)
17. Luo, Q-M, Srivastava, HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials.

Comput. Math. Appl. 51(3-4), 631-642 (2006)
18. Srivastava, HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb.

Philos. Soc. 129(1), 77-84 (2000)
19. Luo, Q-M: Fourier expansions and integral representations for the Genocchi polynomials. J. Integer Seq. 12, Article ID

09.1.4 (2009)

http://www.advancesindifferenceequations.com/content/2013/1/55
http://dx.doi.org/10.1155/2010/706483


Özarslan and Bozer Advances in Difference Equations 2013, 2013:55 Page 14 of 14
http://www.advancesindifferenceequations.com/content/2013/1/55

20. Luo, Q-M: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka
J. Math. 48(2), 291-309 (2011)

21. Luo, Q-M: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 10,
917-925 (2006)

22. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)

doi:10.1186/1687-1847-2013-55
Cite this article as: Özarslan and Bozer: Unified Bernstein and Bleimann-Butzer-Hahn basis and its properties.
Advances in Difference Equations 2013 2013:55.

http://www.advancesindifferenceequations.com/content/2013/1/55

	Uniﬁed Bernstein and Bleimann-Butzer-Hahn basis and its properties
	Abstract
	MSC
	Keywords

	Introduction
	Representation in terms of Apostol-type polynomials and Stirling numbers
	Generating functions of trigonometric type
	Competing interests
	Authors' contributions
	Acknowledgements
	References


