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  ABSTRACT 

The current thesis aims to develop a peak demand forecast model suitable for 

developing countries based on their characteristic and availability of data. In this 

respect, we attempted to review a number of techniques used for energy forecasting 

and categorize them in terms of time ranges, the techniques used, and the cases in 

which they were employed. The advantages and disadvantages of each method were 

indicated and suitable approaches were devised to forecast the energy demand for 

small and large developing countries. We developed two different scenarios for small 

utilities depending on the availability of time series data. First, when considerable 

amount of time series data is available we proposed an econometric method to model 

the annual peak demand by which the key parameters affecting the electricity 

demand were discovered. The electricity demand was decomposed into weather 

sensitive demand and based demand to further examine the effect of extreme weather 

conditions on the peak demand. Second, when time series data is limited to merely 

annual peak demand records, an algorithm based on deterministic time series 

methods and fuzzy arithmetic was developed. These methods can be applied to 

forecast electricity demand of N. Cyprus and similar small islands. Thus, some 

advices were offered for electricity security plan of N. Cyprus. Finally, using the 

previously developed forecasting models, an approach was presented to forecast the 

peak demand of all developing countries based on their distinctive regional 

characteristic. The algorithm requires partitioning the country into smaller segments 

in which the previously developed forecast models for small utilities can be utilized. 
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ÖZ 

Bu tez çalışması “ile” elde bulunan veriler doğrultusunda azami talebin gelişmekte 

olan ülkelere göre tahmin edilmesi amaçlanmıştır. Bu bağlamda çeşitli teknikler 

kullanılarak belirli zaman aralıklarında enerji taleplerinin kategorize edilmeleri 

yardımıyla sonuca varılmıştır. Avantajlar ve dezavantajlar, her bir yöntem ışığında, 

gelişmekte olan büyük ve küçük ülkelerin enerji talep ihtiyaçları tahminine göre 

oluşturulmuştur. Zaman serisi verileri kullanılarak  iki farklı senaryo geliştirilmiştir. 

Öncelikle, öngörülebilen zaman verisi ışığında yıllık en yüksek elektrik talep miktarı 

ekonometrik metot modeli ile kilit parametreler baz alınarak belirlenmiştir. Elektrik 

talebi mevsimsel olarak değişkenlik göstermekle beraber kötü hava koşullarında en 

yüksek elektrik talebine ulaştığı saptanmıştır. 

İkinci olarak, zaman serisi verileri olarak sadece yıllık talep kullanıldığında 

saptanabilir zaman serisi metodu ve fuzi aritmetik modeli bağlı algoritma geliştirildi. 

Bu yöntemler Kuzey Kıbrıs Türk Cumhuriyeti ve benzeri adalardaki elektrik 

taleplerin tahmini için kullanılabilir. Bununla beraber, Kuzey Kıbrıs Türk 

Cumhuriyeti’nin elektrik güvenliği için çeşitli planlar da tavsiye edilmiştir. 

Sonuç olarak, geçmiş dönemlerde geliştirilmiş tahmin modellerini kullanarak 

gelişmekte olan ülkelerin en yüksek enerji talepleri o ülkelerin bulundukları coğrafi 

konumları göz önünde bulundurularak oluşturulmuştur. Bu algoritma daha önce 

geliştirilmiş tahmin teknikleri ile birlikte, ülkelerin küçük uygulama alanlarında  

kullanılabilinir. 
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Chapter 1 

1 INTRODUCTION 

1.1 Background 

Modern life depends on a huge amount of energy and providing the future energy 

demand has always remained a challenge. Worldwide energy demand is rising due to 

the population growth and technological advances and it is predicted to reach more 

than twice as the current level by 2050. The less access to the modern energy, the 

less will be the economic and human development of countries [1]. 

Electricity as one of the most significant components in energy sources has become a 

basic necessity of life. It becomes the central source of daily life energy usage and it 

can be considered not only as a key element for economic development, but also 

political and social security of a country. Electricity differs from other energy 

resources; its storage is not practical and its demand may vary dramatically at 

different times, regions and sectors. 

The time variation of electricity demand should be considered from the scale of 

milliseconds, seconds, up to time scale of years and decades[2], see Table 1. 

Electricity demand forecast is important for utility owners, power system managers, 

energy planners and system operators.  
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Table 1: Timescales in power systems management, planning and operation [2]. 

Time scale Systems issues  Power systems tools  

 ms to s  
Generator dynamics  

Motor load dynamics  

Transient stability management  

Power - frequency regulation  

  

Very short 

term 

min to1hour 

Demand variations  

Power interchanges  

Maintain economic operation  

Frequency control 

System stability  

Generation control  

Power flow  

economic dispatch 

Security analysis 

Fault analysis 

Short term  

Hours /days/ 

up to a week  

Weekly capacity planning  

Demand  

Weather prediction 

Unit commitment  

Medium term 

weeks/months 
Seasonal capacity planning  

maintenance scheduling 

market research  

Fuel provision 

Long term  

years  

Demand growth  

Plant retirement / overhaul  

Investment decisions  

Long term hydrological cycles  

Generation expansion planning  

Reliability checks (maintenance)  

Scenario analysis  

Production cost modeling  

 

The vast numbers of forecasting methods in the area of electricity demand 

forecasting indicate that there is still a need for developing more accurate and 

reliable forecasts. In this respect, peak demand forecasting is an important tool to 

ensure that the future electricity generations meet the future energy consumption. An 

accurate estimation requires abundant information and an appropriate budget. A 1% 

reduction of forecast error can save millions of dollars [3]. The information obtained 

from an appropriate forecast significantly reduces the cost of power generation and 

secure its supply. 

Different sectors, such as residential, commercial, industrial, agricultural, 

transportation, use electricity for different purposes. This can substantially affect the 

peak demand patterns and it might be required to be examined in the forecasting 

models. 
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1.1.1 Uncertainty 

Forecasting is always accompanied by several sources of uncertainty. Examples of 

uncertainty include uncertainties of data limitation and acquisition, and uncertainties 

as a result of idealization or simplification of the forecasted model. Uncertain data 

implies that information exhibit inaccuracy and questionability. The current study 

models these uncertainties by means of fuzziness. In Chapter 5 a model was 

suggested to deal with uncertainty. 

1.1.2 Integrated Resource Planning 

Utilities are always plan to reach the annual peak and energy demand forecast 

through the combination of supply side and demand side resources over a specified 

future period. This strategy is called Integrated Resource Planning (IRP), and despite 

the fact that it is time- and resource- intensive, it is quite beneficial. Not only utilities 

and consumers can benefit from IRP, it has also a positive environmental impact. 

Wilson and Biewald [4] indicated that IRP rules can be passed into law by 

government legislatures and utility commissions ought to put IRP regulations into 

action. The continuous rise in energy demand in N Cyprus and aging of the 

generation systems calls for initiation of a robust IRP process for adding or retiring 

power generating systems in the most cost-effective manner. Examining the addition 

of generation capacity (such as thermal, renewable, and etc.) and implementing 

energy efficiency are some IRP activities.  

It is important for the power producers and policy makers to estimate the power 

demand and electricity consumption several years ahead in order to devise IRP 

programs. Figure 1 illustrates the steps taken in the creation of an IRP. It should be 

noted that the first step of a successful IRP process is to have a reliable long term 

peak demand forecast. 
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Figure 1: An Integrated Resource Planning Process [5]. 

1.1.3 Energy in Developing Countries 

The developing economies can be generally distinguished from developed economies 

based on their human development index (HDI), which is associated with 

individual’s education, health and income [6].  

Developing countries play an important role in the world energy scene and they have 

a different energy feature from developed countries: 
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 Their development path can be unique and may not resemble more advanced 

countries. 

 They suffer from severe power shortages and regional imbalances. Therefore, the 

need for additional generation capacities and investment is not the same for all 

economies. Developing economies require additional generation capacities for 

industrialization and rural electrification, whereas, it is the increase in use of 

electric appliances that imposes additional need for electricity generation in 

developed economies. 

 Their structure and economic transition may change through time and their future 

may not follow the earlier trail 

 A data limitation is another problem of developing countries which encounter the 

use of forecasting models with challenge. 

These features, in fact, could differentiate their forecasting method from the 

industrialized countries. 

Furthermore, there are slight variations in type of power plants used to generate 

electricity in developed and developing countries. Thermal, hydropower and 

geothermal plants are used in both developed and developing countries. However, 

developing countries usually install small scale renewable energy technologies for 

rural energy needs, such as solar thermal, photovoltaic, and biomass. Meanwhile, 

because of technological complications in nuclear power plants these power plants 

are seldom pursued in developing countries. Other alternatives of power generation 

are marine and wind power plants which have been used by developing countries in 

small scales. 
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1.1.4 Small Island Developing States (SIDS) 

SIDSs are different from larger and landlocked developing countries and their energy 

provision may require more challenging approaches. Most SIDSs are extremely 

reliant on the import of fossil fuels for electricity generation. Their small sizes and 

remoteness can impose higher costs for fuel provision, higher risk for supply, chronic 

import/export imbalances and dependency on other economies[7]. Therefore, it is 

wise for SIDSs to decrease the import of energy and resort to renewable alternatives. 

In this regard, a robust energy plan and consequently an alternative energy 

forecasting are essential for these regions. 

1.1.5 North Cyprus 

Cyprus is one of the largest Mediterranean islands, with no preserved natural energy 

resources, and away from interconnected network of electricity and gas [8]. The 

island has been divided into north and south for more than four decades. Although, 

discovery of new fields of oil and gas near Cyprus may be promising, their extraction 

is not probable for couple of years and the fall of oil prices in the last year and 

geopolitical complications may further suspend using these resources. 

At present, total generation capacity of N. Cyprus is 331.3 MW.  KIB-TEK, as the 

state-owned utility firm, runs two oil fired steam power plants each with     MW 

capacity, has        MW Diesel cycles in Teknecik station, as well as a 1.3 MW 

Photovoltaic power plant in Serhatköy. The private utility company AKSA has 

       MW Diesel cycles in Kalecik station.  All Diesel cycles use heavy oil No.6. 

The average annual growth rate in the annual peak demand between 1991 and 2013 

was reported to be 6% [9][10][11].  The main driver of this growth was the 

development of tourism and construction industry. Currently KIB-TEK and AKSA 
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have no attempt on the load management, despite the increase in generation costs and 

demand. 

1.2 Scope and Objective of the Study 

Utilities are usually reliant on the long term forecast models in order to devise 

suitable plans by considering the economy, climate, demography and other 

influential determinants. However, the scale of the load system, the budget of 

forecast, as well as the availability of data are important factors in selecting 

forecasting methods. The smaller the size of the system the easier it becomes to catch 

the information for an accurate forecast. In contrast, the larger the size of the system, 

the more sophisticated the forecast requires to be and the harder will be capturing the 

necessary information for a precise forecast. Therefore, it is appropriate to 

differentiate the modeling of a system with proper available data from a system with 

limited data. The current thesis attempts to tackle these problems through the 

following objectives: 

1. to have a broad review on the energy and peak demand forecasting models, 

2. to develop long-term base and weather sensitive demand models using 

econometric variables as regressors for small size utilities, 

3. to develop long-term fuzzy regressions for small developing countries where data 

is limited to time series record of the peak demand, 

4. to compare the results of the two methods and give some suggestions for energy 

security plan of N. Cyprus, 

5. to develop a general approach of peak demand forecasting used for developing 

countries. 
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1.3 Organization of the Thesis 

Chapter 2 presents a thorough literature review on the energy forecasting models. 

Chapter 3 is dedicated to the development of the forecasting models required for this 

study. Having sufficient data imply that statistical methods is suitable for the 

forecast. In this regard, chapter 4 presents an econometric method for small utilities 

to forecast the annual peak demand. Proper information of the key variables on 

energy and peak demand is not usually obtainable especially in the developing 

countries. That is, detailed data on different indicators is sometimes limited and only 

utility records are available. Consequently, chapter 5 attempts to deal with this 

scenario by means of a fuzzy arithmetic technique in forecasting. Chapter 6 

introduces a partition-based peak demand forecasting that can be used in developing 

countries and finally chapter 7 concludes.  
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Overview 

Energy demand forecasting can be categorized from different views such as 

sourcewise- electricity, fossil fuel (coal, gas, oil), renewable energy (wind, solar) , 

sectorwise – residential, commercial, industrial, agricultural, transport,  periodwise- 

long, medium, and short term, as well as, method-wise. 

There are vast number of energy and peak demand forecasting models in the 

literature with their own cons and pros.  The extensive number of research in 

modeling and forecasting energy and peak demand indicate the importance and 

complexity of energy forecasting and the need for developing more accurate models. 

Every method has its own advantages and disadvantages and none of them has 

supremacy over others [12]. An appropriate forecasting model for one region may 

not be appropriate for another region. Hence, it is necessary to choose the most 

suitable forecast for each case and situation. In the following sections an extensive 

review of literature is presented. 

Based on the technique used in the forecasting model, it is possible to classify energy 

demand models as shown in Figure 2: 
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Figure 2: Different models used in energy demand forecasting 

2.2 Time Series Methods 

Time series methods assume that future electrical peak demand merely depends on 

historical demands. These models were originated first by deterministic characteristic 

and later stochastic models of time series were developed. Deterministic, 

autoregressive (AR), moving average (MA), autoregressive (integrated) moving 

average (ARIMA) , exponential smoothing (ES), and structural time series method 

(STSM) are some popular methods of time series that is explained in the following 

sub-sections.  

2.2.1 Deterministic Methods 

These models do not account for any of the underlying random components of the 

time series data. However, they have long been viewed as acceptable means of 

forecasting. They are of the simplest and fastest methods to apply [13]. The more 

data used in the model estimation, the more reliable the forecast model will be 
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(provided that the historical data have been accurately collected). Two main 

categories of deterministic method are given as follows. 

2.2.1.1 Linear Trend Model 

The general form of the linear trend model is: 

             (1) 

where   is year, and    is energy demand at the year  . Coefficients    and    can be 

estimated using two alternatives; namely, simple average method and simple 

regression method. These methods are explained in detail in section 3.3.1. 

2.2.1.2 Autoregressive Trend Model 

The general form of the autoregressive trend model is: 

                (2) 

This model states that the current value simply depends on the previous value. The 

coefficients    and    can be estimated using three methods of straight average rate 

method, the compound average rate method, and the simple regression method, see 

section 3.3.1. 

2.2.2 Autoregressive Methods 

Autoregressive models can be utilized provided that the peak demand is assumed to 

be in a linear combination of previous peak demands [3]. The autoregressive 

equation of order   can be written as: 

    ∑          

 

   

              (3) 

where    is the estimated peak demand at time t,    is the random disturbance, and 

    are unknown coefficients.   
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2.2.3 Autoregressive (Integrated) Moving Average 

Auto regressive moving average (ARMA) and autoregressive integrated moving 

average (ARIMA) are extensions of previously explained methods. These models are 

the combination of autoregressive (AR) coefficients multiplied by past values of the 

time series and moving average (MA) coefficients multiplied by past random shocks. 

Various criteria were devised to find the order of the time series with their own cons 

and pros, such as Akaika’s information criterion (AIC), multi-model partitioning 

filter (MMPF), Bayesian information criterion (BIC) and etc. Meanwhile, a good 

ARIMA model can be found using the three-stage procedure introduced by Box and 

Jenkins [14]. These stages are identification, estimation, and diagnostic checking.  

By the advent of computers, ARMA or ARIMA methods became popular in all 

disciplines such as energy and peak demand forecasting. Badri et al. [15] introduced 

a load forecast model based on various time series method to provide near-optimal 

statistical models of electric peak demand in United Arab Emirates. ARMA model 

were used for modeling the electricity demand loads in Greece [16]. A univariate 

Box-Jenkins ARIMA analysis was used to estimate the monthly electricity 

consumption of eastern province of Saudi Arabia [17]. Six forecast models including 

ARIMA were applied to forecast radiation over short time horizons in six places of 

North America [18]. SARIMA formula contains both a seasonal pattern and non-

seasonal parts. In addition, ARMAX [19]  or SARIMAX [20] are the extensions of 

the time series models by containing exogenous variables in the model. That is, 

another time series can be incorporated into the time series to improve the 

performance predictions. 
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2.2.4 Exponential Smoothing 

An extensive review of exponential smoothing (ES) methods was given by Everette 

and Gardner [3] in which exponential smoothing methods were considered as a 

special case of ARIMA and more extensively, a state space method. Exponential 

smoothing initiated in 1959 [21] and has been utilized as one of the traditional 

methods of peak demand forecasting [3]. It is modeled using a fitting function and it 

can be expressed as [22]: 

                    (4) 

where      is fitting function vector of the process,      is the coefficient vector, 

     is white noise, and   is the transpose operator. Exponential smoothing were 

used in a demand response algorithm to predict the required energy of appliances 

[23]. Exponential smoothing outperformed Neural Network (NN), ARIMA and 

Principle Component Analysis (PCA)  methods in forecasting the daily peak demand 

of Rio de Janeiro [24]. 

2.2.5 Structural Time Series Method (STSM) 

Unlike the traditional ARIMA models, the basic concept of STSM approach is to 

decompose a time series into unobserved components [25], such as trends and 

irregularities. This process allows for direct interpretations and it is similar to 

regression analysis. “As a result, the model selection methodology associated with 

structural models is much closer to econometric methodology”, [26]. STSM can be 

formulated based on either stochastic or deterministic trends. The method is the 

expansion of the co-integration technique which resulted in time series econometric 

modeling coupled with co-integration technique. The method were compared with 

other time series method to forecast the electricity price for a German utility [27]. 
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2.3 Regression Analysis 

Regression is the most commonly used method mainly due to its simplicity and ease 

of use. It relates different influential variables with the independent variable, which 

is mostly the energy demand. A linear regression was used for long term electricity 

consumption forecasting of Italy [28]. A functional regression  was used to  forecast 

the peak demand of a district [29]. 

2.4 Decomposition Methods 

For the peak demand analysis of Australia, Wang et al [12] decomposed the 

electricity demand data into diurnal, seasonal, and yearly components. They 

specified simple trend lines for each element and subsequently they projected annual 

average peak electricity up to 2020. South Africa’s daily peak demand was predicted 

by decomposing the SARIMA model into point forecast and volatility forecast [30]. 

2.5 Fourier Transform 

In classical statistical approaches, data is presumed to be stationary. However, if data 

shows fluctuation, mathematical transformation is one way to cope with non-

stationarity. At times, the time domain may not reveal the necessary information and 

as a result the frequency domain is used. Fourier transform (FT) is a commonly used 

method of transformation in many areas of engineering. However, the effect of time 

cannot be traced through it and thereby the short time Fourier transform (STFT) is 

used as one solution to the problem. STFT divides the signal into smaller parts so 

that each segment is considered stationary. In this respect, a windows function is 

selected. The window should be small to the extent that the stationarity remains valid 

and a good frequency resolution achieves. FT were used along with exponential 

smoothing to account for the weekly load demand [31]. FT was also used to forecast 

the periodic behavior of Spanish electric energy demand. Thus, the accuracy of the 
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forecast based on NN was improved [32]. FT was used to cancel the nonlinearity in 

the short term load forecasting of a province in Netherland [33]. 

2.6 Wavelet Transform 

In order to deal with resolution problems, wavelet transform (WT) was developed as 

an alternative method to STFT [34].  The proper resolution can be reached by 

automatic adaptation of window size. Wavelet offers a proper compromise between 

wavelength and smoothness resulting in appropriate behaviors. In general, two types 

of wavelet transform is defined; continuous transform and discrete transform [35]. 

Wavelet analysis was used in peak demand forecasting by decomposing load data 

into smaller frequency components. Each component can be analyzed and the 

forecast accuracy can be improved. In order to have a successful model, proper 

wavelet functions should be selected. 

WT were used to improve the accuracy of the short term load forecast based on 

generalized neural network (GNN) [36].  In the process of short term load and 

temperature forecasting, WT were used to decompose temperature and load time 

series [37]. In a NN method for electricity peak demand forecasting, a de-noisy WT 

was employed to remove a random noise from the time series and to obtain better 

performances [35].  

2.7 Neural Network 

Neural network (NN) models were extensively used for short term load forecasting 

and a few studies utilized NN for long term peak demand forecasting. The basic 

principle of NN stems from neuron activities of the brain. By mimicking the 

operations of human brain, scientists utilized various combinations of networks to 
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solve practical problems. In the design of NN, it is essential to decide on the type, 

size, and the number of neural being used. In addition, the network architecture and 

method of training is to be determined so that the most suitable network can be 

formed. 

The excellent scheduling capabilities of Artificial Neural Network (ANN) make 

them popular in the short term load forecasting. However, neural network may be 

accompanied by skepticism [38]. A general overview of electrical load forecasting 

using artificial intelligence (AI) was presented and various ANN based techniques 

were reviewed to attain the concept of smart grids and smart buildings [39]. It was 

argued that network complexity, forecast accuracy, convergence rate, and training 

algorithm are needed to be addressed in the future.   In an attempt to overcome the 

over-fitting problem and curse of dimensionality effects in neural network, a novel 

radial basis function (RBF) training algorithm was proposed by Wilamowski et al 

[40]. ANN based on back-propagation was presented for forecasting the daily load 

consumption of a large building [41]. ANN were also used to forecast heating, 

cooling and electrical load up to 24 hours in a large scale district [42] and it was used 

to forecast peak electricity demand up to 1 hour for a large government building [43].  

Some well-known ANN algorithms were reviewed for 24 h electric load forecasting 

[40]. In order to project the short term load  demand of northern areas of Vietnam, 

feed-forward neural network with a back-propagation algorithm was used [44]. 

Using ARIMA models and ANN structures, Lo and Wu [45] proposed a method to 

evaluate the risk that the supply industry in UK faces. They found no strong 

correlation between local demand and weather for the sample of data analyzed.  
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2.8 Support Vector Machine 

Support vector Machine (SVM) is a supervised machine learning procedure. It was 

invented in 1963 and it was later developed to handle different types of problems. 

Support Vector Classification (SVC) deals with classification problems and Support 

Vector Regression (SVR) is used for modeling and prediction. In SVM the data maps 

into a space with higher dimensions so that the solution can be reached more 

conveniently than in the original space. The training of the data is done in an iterative 

fashion and it is possible to increase the training data set to achieve better 

performances. 

SVM was applied for short term electrical load forecasting [46]. It was also used for 

time series predictions for midterm electric load forecasting [47]. In Italy electricity 

demand was predicted in the medium term using seasonal climate forecast of 

temperature [48]. SVR were used for long term prediction of Turkey’s energy 

consumption [49]. The global solar radiation (GSR) in Iran was forecasted for 

designing and implementation of solar power systems. It was found that SVR 

outperforms fuzzy linear regression (FLR). SVM were used to forecast the 

Taiwanese electricity load using simulated annealing algorithm [50]. In utilizing a 

hybrid approach based on WT for short term load forecasting, SVM showed better  

performances than ANN methods [51]. 

2.9 Fuzzy Models 

Fuzzy set theory was first presented by Lotfi A. Zadeh in 1965 [52] and since then 

became a major field in dealing with problems carrying uncertainty. A fuzzy set is an 

extension of the classical set in which each member may carry a degree of 

membership. Fuzzy set theory extends to many subdomains such as fuzzy logic, 
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fuzzy pattern recognition, fuzzy regression, fuzzy control and fuzzy arithmetic. 

Fuzzy based models were extensively used in energy models and forecasting. 

Suganthi et al [53] attempted to categorize fuzzy based models into fuzzy models, 

hybrid models and multi criteria decision models. However, it is more appropriate to 

review fuzzy models as follows. 

2.9.1 Fuzzy Logic 

Fuzzy logic is an intelligent based technique mimicking human or animal ways of 

dealing with every day’s tasks. It can handle imprecision and uncertainty where 

discrete logic can fail. In contrast with Boolean logic which is confined within true or 

false, fuzzy logic allows for some degrees of truth. That is, apart from the availability 

of 0 and 1 in discreet logic, the degree of truth in fuzzy logic can vary from 0 to 1. 

Therefore, the antecedents and consequences of “if and then” rules in fuzzy logic are 

fuzzy propositions.  

A fuzzy logic approach was used to forecast the electric load in Bahia state of Brazil 

[20]. Also, yearly electricity demand of Turkey was forecasted through fuzzy logic 

method [54]. 

2.9.2 Fuzzy Regression 

Fuzzy linear regression was first formulated by Tanaka in 1982 [55]. The general 

equation is written as: 

 ̃   ̃     ̃       ̃    (5) 

where the regression coefficients  ̃            as well as the dependent variable 

 ̃ are fuzzy and base on the feature of the problem independent variables    are 

considered either fuzzy or crisp. 
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Fuzzy linear regression were used for predicting the solar radiation in Iran [56]. Also, 

it was used as part of an intelligent algorithm to model energy consumption of Iran 

[57]. 

Möller and Reuter [58] propose a number of forecasting models based on an 

alternative left-right (LR) discretization technique as a class of fuzzy set theory. 

However, this method has not gain much attention to date. 

2.9.3 Fuzzy Arithmetic 

Fuzzy set theory forms the mathematical basis for fuzzy numbers and fuzzy 

variables. Fuzzy arithmetic is associated with the algebraic operation of fuzzy 

numbers. Hanss [59] introduced a well-organized  and systematic method in which 

the arithmetic of fuzzy numbers were significantly enhanced. The current thesis 

aimed to implement this algorithm in the area of peak demand forecasting. 

2.10 Bayesian Methods 

Bayes’ theorem was used to calculate the probability of demand power in appliances 

as part of a demand response algorithm [23]. Bayesian methods can be applied to all 

time series models as a model selection criterion [14], [16]. The method can also be 

used in artificial intelligence to tackle problems with uncertainty. This technique is 

called Bayesian Networks (BNs) and it deals with problems with uncertainty, 

randomness or both. The method were applied in renewable energy area and mostly 

for wind energy and hydroelectricity [60]. Dynamic Bayesian Network (DBN) were 

used to forecast the wind power of a wind farm in Mexico for a time horizon of 5 

hours [61]. 
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2.11 Kalman Filter 

Kalman filter is a recursive procedure for calculating the optimal estimator of the 

state vector given all the information available at initial time. The procedure is 

applied in reference [62] to find the electricity demand of industrial and residential 

sectors in Turkey. It also used as part of a Multi Model Partitioning filter (MMPF) to 

model the electricity load of Greece [16]. Wind speed and wind energy were 

forecasted using kalman filtering [63]. 

2.12 State Space Method 

State space form of equation is the main tool for estimating many computational 

techniques. Many models such as STSM [25], SVM, PSO [64], and etc. can be 

written in a well-posed method of state space method. 

2.13 Grey Prediction Models 

Grey models can be used when data is limited or shows chaotic features. Grey 

prediction models were utilized to forecast the demand of electricity in Turkey [65] 

and nonresidential electricity consumption of Romania [66]. 

2.14 Optimization 

Optimization can be used for optimal design of various models such as regression 

based models, ANN models [6] and etc. A comparison of optimized regression and 

ANN models was presented for long-term electrical energy consumption of 

developing and developed economies [6].  

Electricity system models are mostly based on optimization in order to minimize the 

cost, or to reach the environmental or financial goals [67]. Open Source Energy 

Modeling System (OSeMOSYS) as a full-fledged system optimization model was 

used for long-run energy planning. Welsch et al [68] introduced a long term energy 
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system model by using short term constraints. An integrated model was developed 

for power generation planning of Tokyo area  using optimization[69]. 

Due to the complexity of energy systems, traditional optimization methods may 

encounter with impractical computation time. Therefore, approximate methods such 

as metaheuristic techniques were developed in recent decades. A review of over two 

hundred optimization methods applied to renewable energy was concluded that 

optimization methods increased dramatically in recent years [70]. Therefore, some 

nature-inspired metaheuristic approaches were used in the area of energy forecasting 

which are given in the following sub-sections. 

2.14.1 Genetic Algorithm (GA) 

Genetic Algorithms (GA) was initially introduced in 1975 by Holland [71] and later 

it was used in optimization problems. GA is a numerical optimization technique, 

which depends on the mechanism of natural evolution such as crossover, mutation, 

and selection. Solution in conventional nonlinear optimization models can be reached 

by gradual variations from a single solution. However, GA maintains the population 

of solutions and subsequently they can attain better results. Nevertheless, 

convergence issues and prolonged run are some limitations of genetic algorithms.  

A genetic algorithm was used to forecast annual electricity demand [72].  

2.14.2 Particle Swarm Optimization (PSO) 

PSO is a metaheuristic optimization technique introduced first in 1995. It is a 

population based stochastic algorithm and unlike evolutionary methods, is not based 

on selection process. In PSO a number of n-dimensional vectors (particles) move 

around the search space and attempt to cluster together in optimal places of the 
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search space. This process has been used in long term electric load forecasting of 

Kuwaiti and Egyptian networks, [64].  

2.14.3 Shuffled Frog-Leaping (SFL) 

SFL is a meta-heuristic optimization technique that was introduced in 2008. This 

algorithm mimics the way frogs search for food in places with high amount of food. 

The optimized solution is the location that each frog may possess. 

shuffled frog-leaping (SFL) and improved particle swarm optimization (IPSO) 

algorithms were used for optimal ANN models in order to forecast the energy 

consumption of the U.S. while the effects of DSM were considered [73]. A modified 

SFL algorithm were used to optimize a short term load and temperature forecasting 

[37]. 

2.14.4 Biogeography-Based Optimization (BBO) 

BBO was Introduced in 2008 by Dan Simon [74], is a stochastic optimization 

technique for solving multi-modal optimization problems. A hybrid model involving 

ANN and bio-geography based optimization was utilized to predict the electricity 

demand of each sector in India [75].  

2.15 Scenario Based Analysis 

One way to deal with the uncertainties of future demand is employment of scenario 

based analysis. The method can be used in long term electricity planning and design. 

It may outweigh optimization approaches in developing countries [67]. A scenario 

based analysis was used to shed light on the complicated electric energy system of 

Canada [76].  
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2.16 Hybrid Approaches and Combined Methods 

Hybrid approaches and combined methods were developed to benefit from the 

strength of several models. Since there is no one best approach, a proper linear 

combination of several methods may outperform each individual methods [77]. 

Various hybrid approaches of forecasting electricity demand were proposed for china 

[77], Finland [34], California, Spain [78], and Iran [51], [79]. A hybrid genetic-based 

adaptive neuro-fuzzy inference system (GBANFIS) was presented and compared 

with several methods to estimate the Iranian monthly electricity demand [80].  An 

integrated algorithm based on Fuzzy regression and ARMA was introduced for the 

energy consumption estimation of Iran and China [57]. A combined model based on 

data pre-analysis and cuckoo search optimization was proposed to forecast the 

electricity demand in Australia [81]. 

Based on the availability of data various approaches can be classified for energy 

forecasting, Figure 3. 

 Extrapolation: Models merely based on a single time series data. 

 Top-down approaches: Models that rely on the history of dependent data and all 

the necessary independent variables. 

 Expert systems: Models with no time series data which use expert knowledge.  

 Bottom-up approaches: Models with no time series data yet various end use data. 

 Integrated models: the combination of various approaches forms comprehensive 

approaches in energy demand. 
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Figure 3: energy forecast models based on the data requirements 

2.17 Top Down Approaches 

2.17.1 Econometric Methodology 

The econometric methodology also known as top-down approach estimates the peak 

and energy demand by considering the influence of endogenous and exogenous 

parameters. Therefore, it requires extensive amount of data and it demands capturing 

all the related variables for the estimations. A fail in catching the impact of 

exogenous effects in previous Turkish energy demand forecasts was resulted in an 

erroneous estimations [25]. 

In the literature, a number of various techniques have been used in energy demand 

estimation and modeling. Some categories of econometric methods are 1.Co-

integration, and 2. Error correction models (ECM) 3.trans-log wave, and etc. 
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In terms of influential parameters, constant parameter approach and time varying 

parameters (TVP) [62] are two approaches of forming the equations. 

The formulation can be based on regression methods, Bayesian methods, and etc.A 

regression based econometric method was discussed in chapter 4. 

2.18 Bottom-Up Approaches 

The bottom-up approaches extrapolate the estimated energy consumption of a 

representative set of individual houses to the regional and national levels. 

A long-term bottom-up model of electricity consumption was presented for the 

commercial class of Brazil, [82]. Using bottom-up load methods new demand side 

management (DSM) strategies were developed to reduce the daily peak loads [83] or 

to model the residential energy demand [84]. A bottom-up load model was also used 

for small-scale energy consumers to predict the consumption and shift the time usage 

of appliances for the peak power reduction purposes [85]. 

Table 2 illustrate an extensive review of models in the literature as well as the case 

that they were used and Table 3 shows their advantage and disadvantage. 

A comparison of optimized regression and ANN models were presented for long-

term electrical energy consumption of developing and developed economies [6]. A 

classification of long term electricity forecast was proposed by Esteves et al [86]; 

after a systematic review of all the related articles, it was found that the most 

commonly used methods in a descending order were statistical, computer 

intelligence, end-use, hybrid and other approaches. Statistical techniques consist of 

Bayesian [23] or traditional methods [13]. 
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting. 

 Method Activity Time Case - Sector remarks 

1.  

Univariate ARMA 

method using multi 

model partitioning filter 

(MMPF) [16]. 

An electricity demand 

load model 
Long term Greece 

The current ARMA used Akaike Corrected 

Information Criterion and a Kalman based 

filter. 

2.  

Univariate ARIMA 

based on Box-Jenkins 

[17] 

Electricity consumption 

forecast 
monthly 

Saudi Arabia – 

eastern region 

ARIMA features: data requirements are low, 

relatively simple, and accurate. It is not 

dependent on other variables.  

The model used a transfer function  to 

overcome the effect of sudden changes in 

weather parameters  

3.  
Six models including 

ARIMA[18] 
Forecast solar radiation Short term North America 

Six models were compared and the ARIMA 

in logs, with time varying coefficients 

showed better performance. 

4.  ARIMAX[19] 
Forecast cooling heating 

and electrical load 

Short term- 

hourly 

Hypothetical 

building in 

Victoria, Canada 

Forecast were used to design a CCHP system 

Exogenous variable: dry- bulb temperature 

5.  
Exponential smoothing 

[23] 

Price based demand 

response 
Short term smart home 

This technique can significantly reduce or 

even eliminate peak energy demand. 

6.  

Exponential Smoothing, 

Principle component 

analysis (PCA) [24]  

 

Comparing six univariate 

models for electricity 

forecasting 

short term 

Rio de Janeiro and 

England and 

Wales. 

Exponential smoothing outperformed NN, 

ARIMA and PCA methods. 

7.  
Structural time series 

model (STSM) [25] 

electricity consumption 

model  
Long term 

Turkey - 

residential 

Variables: expenditure and electricity prices 

In 2020 the range of residential electricity 

consumption is estimated to be between 48 

and 80 TWh. 
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

8.  
Various Time series 

models [27] 
Forecast electricity price Short term 

Germany – a 

utility 

STSM, AR and ARMA with various 

situations were investigated. 

9.  

Econometric model 

based on Linear 

regression model [28]  

electricity consumption  Long-term Italy 
Variables: electricity consumption record, 

GDP, GDP per capita and population. 

10.  
Functional regression 

[29] 
peak load forecasting  

Short-term  

(24h) 

a district heating 

system in Turin, 

Italy 

The current technique generalizes the 

classical multiple regression model. 

11.  Decomposition [12]  
forecasting of regional 

electricity demand 

Medium and 

long term 

Queensland, 

Victoria, and 

South East 

Queensland, 

Australia 

Simpler models can be used. Better insight 

can be reached by knowing the type of the 

day and season. 

12.  

Decomposition based 

on SARIMA model 

[30] 

Peak electricity demand 
Short term 

(daily) 
South Africa 

The problem is decomposed into point and 

volatility forecasting. 

This model outperforms piecewise linear 

regression. 

13.  
neural networks and 

Fourier series [32] 

electricity demand 

forecasting 

Medium term 

(monthly) 
Spain 

The accuracy of forecast based on NN was 

improved when Fourier transformation was 

used. 

14.  GNN and WT [36] Load forecasting Short term 
A substation in 

India 
WT improves the accuracy of GNN method 
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

15.  

Echo state networks 

(ESN) based on WT 

and SFL optimization 

[37] 

Load forecasting and 

weather forecasting 

Short term  

(1h and 24 h) 

North American 

electric utility 

WT were used as the first step for 

decomposition of temperature and load time 

series. 

16.  ANN [41] 
Electrical consumption 

forecasting  

from a few 

minutes to 

several days 

Large buildings 

(Hospital 

facilities) 

Data: load, weather, time of the day, type of 

day such as weekday or holiday,  

17.  NN with recursion [42] 
Load forecast for an 

energy system  

Hourly up to a 

day 

A large campus 

with 70000 

students and 

employees 

Weather (temperature and humidity) and time 

variables are the exogenous input data 

 

18.  ANN [43] Forecast peak demand Short term 

United States – 

government 

building 

Forecast can be used to reduce the charging 

for end-use peak electrical demand 

19.  ANN [44] Electric load forecasting short term 
Northern areas of 

Vientnam 

A feed-forward neural network with a back-

propagation algorithm was used 

Large data set were used for training. 

The results are satisfactory and comparable to 

other models 

20.  
Support vector Machine 

[46] 
electric forecasting Short term 

Eastern Saudi 

Arabia 

Contrary to AR or NN models, the training 

data is not limited  in SVM  

21.  
Support vector Machine 

[47] 
electric load forecasting Medium term 

EUNITE 

European network 

Appropriate segmentation of data improved 

the performance. 

Imprecise weather data forecast give rise to 

erroneous results.  
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

22.  
Linear regression model 

and SVM [48] 

electricity demand 

forecast 
Medium term Italy 

seasonal climate forecast of temperature were 

used 

23.  
Support vector 

regression (SVR) [49] 

modeling and prediction 

of electricity consumption 
Long term Turkey 

Turkish electricity consumption was 

predicted until 2026. Data used: 1975 to 2006 

24.  SVM [50] Forecast electricity load Short term Taiwan 

The parameters were selected through 

simulated annealing (SA) algorithms and then 

they were used in SVM model. 

The model outperforms ARIMA and GRNN 

25.  
WT +SVM & WT+NN 

[51] 
Load forecasting Short term Iran WT+SVM outperformed WT+NN 

26.  Fuzzy logic [54] 
Annual electricity 

demand forecast 
Long term Turkey GDP affects the annual electricity demand 

27.  

Econometric analysis 

using time varying 

regression [62] 

Estimation of the price 

and income elasticity of 

electricity demand 

Long term 

Turkey _  

industrial and 

residential 

The problem is stated in space state form and 

Kalman filter were used for optimization. 

Electricity price hardly affect the 

consumption since electricity is vital. 

28.  
Forecast of wind energy 

using Kalman filter [63] 
Wind energy forecast. 

Very short 

term 

Varese Ligure 

wind farm, Italy 

Kalman filter improved the prediction of 

numerical weather prediction software. 

 

29.  
Particle swarm 

optimization [64]  

Electric peak load 

forecasting. 
Long term Kuwait & Egypt 

The state space form was used to describe the 

problem and the error is minimized using 

PSO. It performed better than many 

conventional optimizations such as LSE. 

30.  

Grey prediction model 

with Holt- winters ES 

[66] 

electricity consumption 

forecast 
Long term 

Romania - 

nonresidential 

Linear logarithmic regression was used with 

data as electricity consumption, GDP and 

electricity price 
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

31.  Probabilistic [33]  
Peak electricity demand 

forecasting 
Short term 

A province of 

Netherland 

Peak demand is related with: day of the week, 

yearly seasonality, holidays,  and 

temperature, wind speed and luminosity 

32.  

econometric techniques 

based on time series 

[87]  

Electricity demand 

forecasting 
Long term Sri lanka 

Forecast based on all six time series do not 

vary significantly 

33.  
Multiplicative  

SARIMA [88] 

peak demand of 

electricity 

Monthly 

(medium term) 
India 

Multiplicative SARIMA model performs 

better that official reports 

34.  
A system dynamic 

approach [76] 

A comprehensive view on 

the electricity generation 
Long term Canada 

The Interaction between the supply and 

demand was modeled via a scenario analysis 

35.  

An econometric 

approach using 

Autoregressive 

distributed lag and 

particle adjustment [89] 

electricity demand 

forecast 

Long and short 

term  
Ghana 

Income is the main factor to influence the 

demand 

36.  

An econometric 

approach based on 

Structural time series 

model [90] 

Electricity demand 

forecast  
Long term Turkey 

Influential factors: electricity price, GDP, and 

demand trend. 

37.  

An econometric method 

based on Adaptive 

neuro-fuzzy network 

[91] 

Electricity demand Long term 
Ontario province - 

Canada 

The effect of, population, GDP, CDD and 

HDD, and housing was trivial compare to 

employment. That is, employment is the main 

driver for electricity demand.  

38.  

Scenario analysis using 

an electricity system 

model [92]  

Three electricity demand 

and supply scenarios 
Long term Japan 

Future work: impact of renewable energy 

generation  
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

39.  

LEAP: Bottom up 

accounting and scenario 

based analysis [93] 

energy alternatives 

planning 
Long range Turkey 

Two scenarios were studied in which demand 

of electricity and  CO2 emissions will 

increase 

40.  

Review traditional, NN, 

GA, Fuzzy rules and 

wavelet network 

methods [94] 

Review electric load 

demand forecasting 
long-term ----- 

Some load forecasting methods were 

discussed with their advantages and 

disadvantages 

41.  ANN [95] 

energy use forecast in 

wheat production of 

arable lands 

Long term 

Canterbury 

province, New 

Zealand - 

agriculture 

ANN outperforms multiple linear regression 

models. The main sources of energy 

consumption in wheat industry are electricity, 

fuel and fertilizer. 

42.  
A simple optimization 

model [96] 
Prediction of heat demand Short term 

District heating 

systems 

Simple models can outperform more 

advanced ones. Heating systems has 

similarities with electrical power systems. 

43.  
Univariate Abductive  

Network [97] 

energy demand 

forecasting 

Medium-term 

(monthly) 

A Power utility, 

US 

Abductive network methods were defined to 

overcome the shortcomings of NN methods. 

Namely, they select effective inputs and can 

be simpler than neural network models. 

44.  Abductive network [98] 
electric energy 

consumption 

Medium-term 

(monthly) 

Eastern Saudi 

Arabia 

Monthly average weather data gave better 

results than yearly average. 

 

45.  Fuzzy logic [20] forecast the electric load Long term 
Bahia state of 

Brazil 

Exogenous input: the number of customers, 

rainfall, and temperature 

SARIMAX and FIS were compared 

46.  DBN [61] Wind power forecast Short term 
Wind farm in 

Mexico 

History of the wind speed was used as the 

input data 
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

47.  Hybrid method  [78] load forecasting Short term California, Spain 
Hybrid Model is based on WT, triple ES and 

weighted nearest neighbor (WNN)  

48.  Hybrid approach[79] peak load forecasting 
Short term 

(Day ahead) 
Iran 

wavelet decomposition, ANN,  and GA 

optimization 

49.  

Hybrid approach based 

on  WT, SARIMA, and 

NN [34] 

Forecast electricity 

demand and price 
Short term Finland 

WT, ARIMA, and NN 

an appropriate forecast requires a trade-off 

between wavelength and smoothness. 

50.  Hybrid procedure [77] 
electricity demand 

forecasting 

Medium Term 

(Seasonal) 
China 

Hybrid model based on MA, combined and 

adaptive PSO 

51.  
Integrated 

procedure[57] 

Electricity consumption 

estimation 
Medium Term  Iran and China 

Integrated method is based on fuzzy 

regression  and ARMA 

52.  Neuro-fuzzy [80] 
electricity load 

forecasting 
Short term Iran 

genetic-based adaptive neuro-fuzzy inference 

system 

53.  Combined method [81] Forecast electrical power Short term Australia 
Cukoo search optimize the weight 

coefficients in the combined method  

54.  
Scenario based 

optimization model [69] 

Integrated power 

generation plan model 
long term Tokyo area, Japan 

Optimization and hourly simulation were 

used for planning future smart electricity 

systems. 

55.  A bottom-up model[84] Energy demand model Long term US 
The effect of new technologies on the energy 

usage pattern of a community was studied 

56.  
A bottom up approach 

[83] 
 Long term   

57.  Bottom up model[85]  Long term   



33 

Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

58.  
Hybrid approach based 

on ANN and BBO  [75] 

Sector-wise Electrical 

Energy Forecasting 
Long-term India 

Data: population, per capita GDP 

The accuracy of forecast was improved, local 

optima trapping resolved, the number of 

iterations were reduced and converged to the 

lowest MSE. 

59.  
Genetic Algorithm 

(GA) [72] 

electricity demand 

forecast 
Long term 

Turkey, industrial 

sector and total. 

Total electricity consumption is related with 

Population, import, export, and GNP. 

Industrial electricity consumption is related 

with import, export, and GNP. 

60.  
SVR and fuzzy linear 

regression (FLR) [56] 

Global solar radiation 

prediction 
long-term Iran 

Global solar radiation (GSR) prediction is 

required to design and construct the solar 

power plants. 

SVR noticeably outperforms FLR. 

61.  
ANN based on IPSO 

and SFL [73] 

Investigate the effect of 

DSM on electric energy 

forecasting 

Long term US 

IPSO – ANN shows better results. 

Data: electric energy consumption, GDP, 

IMP, EXP, POP 

62.  
Energy plus software 

[99] 

Impact of weather on 

peak demand and energy 

consumption 

Long term 

Three types of 

office building in 

17 climate zones 

weather variations affect electricity demand 

more than energy consumption 

63.  OSeMOSYS [68] energy system model 

Long term 

with short 

term 

constraints 

A simple system 
It is beneficial to consider short term 

constraints in long term models 
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Table 2: Summary of models used in the literature for energy and electricity peak demand forecasting (continued). 

 Method Activity Time Case - Sector remarks 

64.  

FORECAST-Tertiary 

(Bottom up 

approaches), 

[82] 

electricity consumption Long term 
Brazil - 

commercial class 

Consumption for commercial class is growing 

faster than that of the other classes. 
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Table 3: Advantages and disadvantages of models used in electric demand forecasting  

Method Advantage disadvantage 

Exponential 

Smoothing [22] 

[24] 

 Robustness  

 Simplicity 

 It is quick to implement 

 Difficulty in identification of 

the best exponential 

smoothing model. 

Time series 

method 

 Relatively high 

performance in short term 

 Minimal cost 

 Less data need 

 Relatively quick 

 Most simplest of models 

[100] 

 Hard to interpret error sources 

 Hard to deal with seasonality 

and nonlinearity  [81] 

 fail to deal with data with 

noise or errors   [16] 

 It produces only one result 

 Model selection is challenging  

Expert system 

 It benefits from the 

knowledge of experienced 

people with low price. 

 It can be used when no time 

series data is available [101] 

 Strong dependency on 

knowledge data base.[81] 

 Informed source may not be 

available. 

 Opinions sometimes biased. 

 At times opinions are 

contradictory 

Bottom-up (end 

use) method 

 It does not demand high 

skill 

 Ability to obtain clear 

engineering view on the 

results. 

 The only feasible method 

that can estimate the energy 

for a sector even without 

having historical time series 

data [84]. 

 They are capabel to model 

technological changes. [82] 

 Extensive detailed data 

requirements about the 

consumers or their appliances 

and different sectors [83]. 

 Data acquisition is difficult 

and costly 

 Hard to assess the 

technological variation. 

 Relationship between energy 

demand and end-use can vary 

by time 

 Wrong assumptions about 

consumer behavior can result 

in inaccurate conclusions 

Regression 

based 

Econometric 

methods 

 They provide detailed 

information on future levels 

of electricity demand 

 They model distinctly 

nonlinear relationships by 

linear devices 

 Models can be readily re-

estimated 

 Extensive data required for 

detailed disaggregated model 

 Models developed in one 

region may not be used in 

other regions. 

 Exogenous determinants are 

hard to determine, and their 

accurate data may not be 

accessible. [97] 
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Table 3: Advantages and disadvantages of models used in electric demand forecasting 

(continued) 

Method Advantage disadvantage 

Decomposition 

methods [12] 

[24] 

 Reducing the dimension of 

multivariate data sets 

simplify the problem 

 It is relatively easy for 

implementation 

 It can provide the 

knowledge of planning for 

base load generation and 

network upgrades. 

 

 Decomposition may be 

accompanied by some bias. 

 The components may not be 

easily decomposable 

Particle swarm 

optimization 

(PSO) [64] 

Advantage over conventional 

optimization algorithms 

 Reducing the computational 

complexity 

 Easily incorporated with 

other optimization tools 

 Ability to escape local 

minima. 

 Less sensitive to a good 

initial solution 

Compare to other 

evolutionary methods: 

 Easy programming 

 Less computational time 

and memory 

 Less parameters tuning 

 Promising convergence 

characteristics 
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Table 3: Advantages and disadvantages of models used in electric demand forecasting 

(continued) 

Method Advantage disadvantage 

Neural 

Networking 

(NN) 

[95] 

 They can solve nonlinear 

problems in a flexible and 

adaptable manner 

 They are able to model 

complex systems by using 

prior information 

 Their application are simple 

and their results are robust 

 Capability for universal 

function approximation 

 Resistance to noisy or 

missing data 

 Good generalization ability 

 Excellent scheduling 

capabilities is a reason to 

use it for STLF.[40] 

 Large computation time 

 Slow convergence rate [75] 

 difficulty in determining 

optimum network topology 

and training parameters [97]. 

 They are prone to returning 

solutions which are locally but 

not globally optimal [81] 

 Finding the best model is time 

intensive and depends on 

many factors: such as number 

of layers, number of neurons, 

activation functions, learning 

parameters, neural network 

architectures, and learning 

methods. 

Wavelet 

networks  

 It provides powerful and 

flexible tool to decompose 

and analyze peak demand 

data. 

 It is more accurate than 

multilayer NN [94] 

 There is no general rule in 

selecting the proper wavelet 

function. 

 Border distortion problem can 

distort the forecast 

Abductive 

Neural network 

[97], [98] 

 They select effective inputs 

and can be simpler than 

neural network models. 

 Reduction of over-fitting 

and improving 

generalization in 

applications 

 Selecting suitable independent 

variables are difficult and it 

requires labor-intensive 

iterations. 

Neuro- fuzzy 

 It is more accurate than 

regression models 

 It is more robust than NN 

methods in extrapolation of 

future estimates. 

 Minimal data requirements 

 It can deal with nonlinearity 

 Model development is time 

consuming compared to 

regression methods. 

 The accuracy and the 

interpretability of the obtained 

model are contradictory 

properties directly depending 

on the learning process and/or 

the model structure.[80] 

Fuzzy logic  Minimal data requirements 

 Ability to deal with 

uncertainty 

 Difficulty in forming the “if-

then” rules. 
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Table 3: Advantages and disadvantages of models used in electric demand forecasting 

(continued) 

Method Advantage disadvantage 

Fuzzy set theory 

(LR 

discretization) 

[58] 

 Minimal data requirements 

 Ability to treat the 

uncertainty to some extent. 

 Uncertainty is considered with 

underestimation. 

Fuzzy set theory 

(extension 

principle) [59] 

 Minimal data requirements 

 Ability to fully cover the 

uncertainty. 

 Limiting the forecast horizon 

due to the propagation of 

uncertainty  

Kalman filter 

[62] 

 Ability to handle 

measurements that change 

with time because of the 

recursive procedure [64] 

 

Support vector 

Machine (SVM) 

 The training data set in 

SVM can be larger than AR 

model, NN methods or GA. 

This can improves the 

accuracy of SVM 

 Network parameter selection 

can be problematic [64] 

Conventional 

nonlinear 

Optimization   Easy to implement 

 They make incremental 

changes to a single solution to 

the problem rather than 

maintaining the whole 

database of solutions.  

Genetic 

Algorithm (GA) 

 Robustness 

 It is suitable for parallel 

implementation[72] 

 Despite the incremental 

changes to a single solution 

of problems in conventional 

optimization, GA search by 

maintaining a population (or 

database) of solutions from 

which better solutions are 

created 

 Convergence issues and 

prolonged run are some 

limitations of genetic 

algorithms  

 Computational cost of GA can 

increase as the binary string 

gets longer for higher degree 

of precision [72] 

 Training data set should be 

decreased because some data 

is needed for testing the 

performance.  

Grey forecasting 

model 
 Simplicity 

 Easier to use compared with 

Box-Jenkins methods. 

 For an accurate results they 

can only combine with 

exponential growth trend [81] 
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2.20 Error Estimation Methods 

In order to measure the performance of the forecast various estimation methods were 

used in the literature. Some commonly used estimators are as follows: 

Mean Absolute Error (MAE) 

    
 

 
∑      

  

 

   

 (6) 

Mean Square Error (MSE) 

    
 

 
∑      

   

 

   

 (7) 

Root Mean Square Error (RMSE) [16] 

     √
 

 
∑      

   

 

   

 (8) 

Normalized root mean square error (NRMSE) [50] 

      √
∑       
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 (9) 

Mean Absolute Percentage Error (MAPE) [57] 

     
 

 
∑|

     
 

  
|

 

   

 (10) 
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2.21 Concluding Remarks 

The extensive review of forecast methods on the energy demand indicates that while 

a plethora of techniques is presented in the literature, there are still a number of gaps 

on many areas of energy forecasting. Some of the areas needed to be studied are 

models based on the size of the system, the uncertainty of the energy forecast due to 

lack of data, the method which is best suited for the country, the performance 

measurement methods, and having more comparative studies. The current thesis 

attempted to have a view on some of these problems. 
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Chapter 3 

3 PROPOSED METHODOLOGIES FOR PEAK DEMAND 

FORECASTING 

3.1 Introduction 

This chapter describes the methodologies used to forecast the annual peak demand 

for small utilities. The appropriate method can be selected depending on the 

availability of data. If historical data is rich and all the necessary key variables in 

defining the system of interest exist, econometric methods have the supremacy over 

any other methods. Chapter 4 is devoted to an econometric method for annual peak 

demand of small utilities such as N. Cyprus. On the other hand, when the necessary 

variables are limited or missing, a fuzzy peak demand forecasting model were 

utilized for the estimations, see Figure 4. Chapter 5 discusses the method by 

providing an algorithm to forecast the peak demand. The rest of the chapter discusses 

the econometric method used for small utilities. Subsequently, the Fuzzy Arithmetic 

Approach used to forecast the peak demand in developing countries was elaborated. 

Time series data 

availability

Fuzzy time series 

method discussed 

in Chapter 5

Only peak demand record

Econometric 

method discussed 

in Chapter 4

Ample time 

Series data

End- use method

No time 

series data

 
Figure 4: Chapters and Methodologies 
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3.2 Adoption of the Econometric Method for Small Utilities 

The econometric approach describes the connection between energy demand and the 

economic variables. It can be referred to as a top-down approach since it is dealt with 

aggregate values. The yearly values of various parameters which may influence the 

load system can be gathered.  Applying econometric theory, generally involves two 

types of variables, namely, endogenous and exogenous variables. Endogenous 

variables are the parameters associated with the utility’s internal environment while 

exogenous variables are factors influenced by the utility’s external environment. 

Some important economic variables which may be considered in the formulations are 

listed in Table 4. 

Table 4:Typical exogenous and endogenous variables used in econometric method 

Endogenous 

Variables 
Remarks Reference 

Electricity 

prices 

The prices should change during the historical 

period, otherwise its relation with electricity 

demand cannot be determined 

 

Number of 

customers 

Although there is a relation between population 

and number of customers, Number of customers 

are the people who has electricity meters and 

they are different than the population 

[20] 

Incentive 

program levels 

Incentive programs are the measures done by 

utilities to influence the electricity 

consumption. These programs could be either 

encouraging or discouraging 
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Table 4:Typical exogenous and endogenous variables used in econometric method 

(continued) 

Exogenous 

Variables 
Remarks Reference 

Price of 

Competing 

Products 

The competing products affect electricity 

consumption to some extent. For instance, if  

the price of oil, natural gas, solar panels, 

wind generation and etc. are cheap, they 

might be consider as an alternative means of 

energy consumption 

 

Population 
The number of residence has an important 

influence on the electric energy consumption 

[6][28] 

Per Capita 

Income 

The amount of money each person earns in 

the service territory can affect the 

consumption 

 

Gross domestic 

product (GDP) 

The total economic activities of a nation in 

terms of all goods and services may have an 

effect on the energy demand. 

[6] [89] [28] 

GDP per capita  [28] 

Unemployment 

rate 

High unemployment rates can be associated 

with a weak economy. It may indicate low 

economic activities or high residential 

consumption. Because more people may stay 

at home 

 

Degree of 

Urbanization 

 [89] 

Energy import  [6] 

Energy export  [6] 

Retail sales 

High retail sales may result in higher 

commercial and residential demand for 

electricity 

 

Housing Starts 

The more homes being built, the more 

commercial activity as well as residential 

customer is expected. 

 

New Businesses 

An increment in the number of businesses 

may lead to additional commercial or 

industrial activities or even more residence 

moving into the service area. 

 

Industry output  [89] 

Tourism 

The number of visitors to the community 

each year may have a considerable impact on 

the amount of electricity consumption. 

 

Temperature By knowing the weather patterns in the area  
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Table 4:Typical exogenous and endogenous variables used in econometric method 

(continued) 

Exogenous 

Variables 
Remarks Reference 

of the interest, the impact of the temperature 

on the consumption of electricity can be 

realized. The maximum and minimum 

temperatures are important especially when 

electric heating or air conditioning is 

necessary. Also HDD or CDD quantify the 

number of hours required to use heating or 

cooling equipment. 

[20] [19][33] 

[41] [42] 

Humidity  [42] 

Wind speed  [33] 

Luminosity  [33] 

precipitation 
The amount of daily rainfall may affect the 

energy demand especially in tropical areas. 

[20] 

Type of day 
Electricity demand can change dramatically 

during holidays and weekdays. 

[33][41] 

Time of day 

Electricity reaches to its peak in a specific 

time of the day. This information can be 

required for short term forecasting 

[41][42] [33] 

 

3.2.1 Econometric Method in Small Utilities 

Energy forecast for large sized systems may call for sophisticated techniques. As an 

example, for larger systems with vast geographical variations temperature can be 

quite diverse in different regions and considering a single temperature value for the 

whole system may result in an erroneous outcome. However, temperature might be 

more uniform for smaller systems and considering a single value is reasonable.  

3.2.2 Adoption of Relevant data 

The variables used in econometric methods should be initially selected based on the 

experience and judgment of forecaster. In another words, the parameters affecting the 

energy demand can vary from country to country and case to case. For example, an 

industrial country has different influential parameters than a country which relies 
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more on tourism or agriculture. As another example, changing the energy prices in a 

country with high per capita income brings about small variation in energy 

consumption, while a change in electricity rate in a poor community imposes 

dramatic changes in energy pattern. 

3.2.3 Data Acquisition 

Collecting quality data is the key to a successful econometric load forecast. Data 

acquisition can be a labor-intensive and prolonged process. Yearbooks and reports of 

statistical departments can be one source of data. It may also require obtaining 

information from the electricity, meteorological, and statistical departments. 

Meanwhile, some data might be missing or very expensive to obtain. Moreover, 

multiple customer classes such as residential, industrial, commercial, and etc may 

call for further information. 

3.2.4 Analysis of Variance (ANOVA) 

After gathering the parameters that have the potential to affect the energy demand, a 

statistical procedure is needed to determine which variables to select and which 

variables to omit. In this regard, ANOVA can be utilized to distinguish the 

significance of each variable on the energy demand and remove the parameters 

which are insignificant. In this procedure some variables might be highly correlated 

with other variables. This situation is called multicollinearity and mistakenly can 

cause elimination of significant variables from the equations.  

3.2.5 Multiple Regression Model 

A multiple regression model describes the relationship between the dependent 

variable and the independent variables. For different systems different independent 

variables might be related; therefore, independent variables must be selected 

carefully regarding the characteristic of the system. It is advantageous to use linear 
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regression models, especially in developing countries. Also, the independent 

variables are not linearly interrelated with each other; that is multicollinearity does 

not exist. Several software packages can be used to find the coefficients of the 

regression model, such as Minitab or SPSS. 

3.2.6 Model Selection and Performance Evaluation 

Various methods can be used to evaluate the appropriateness of the best model. 

Relying on only one method may cause erroneous conclusions in accepting the best 

model. Plotting the graph of the predicted values versus real values is always the first 

step of verification, since “a picture is worth a hundred words.” Statistical factors 

such as   , adjusted   , F-ratio, t-statistic and Predicted Residual Sum of Squares 

(PRESS) are other elements for measuring the performance. These statistical 

indicators can provide adequate confidence for the accuracy of the results. 

MAPE and MASE can be used to measure the performance of the models. In order to 

ensure that the selection of in-sample and out-of-sample data does not affect the 

results, MAPE and MASE were calculated by sliding the in-sample and out-of-

sample data.  

3.2.7 Multiple Regression Model Forecast 

After determining the coefficients of the regression model and selecting the best 

model, the econometric model can be used to forecast energy demand into the future. 

In this regard, the behavior of the independent variables must first be projected.  

Predicting the behavior of the independent variables may require the knowledge of 

the experts. For instance, specialists who work in the utility may have a good idea of 

what will be happening to rates, at least in the near future. Another way of estimating 

the independent variables is to forecast each independent variable using an 
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appropriate model such as deterministic time series method. Subsequently, the 

energy demand can be forecasted by simply using the regression model. 

3.3 Development of the Fuzzy Arithmetic Approach for Developing 

Countries 

When the variables influencing the energy demand are absent or uncertain, applying 

econometric method is impossible. Therefore, employing simpler methods like 

univariate extrapolation may be one solution. univariate models benefit from being 

reliant on single time series data especially when exogenous variables are unknown 

or hard to acquire [97]. The simplifications of models can give rise to further 

uncertainties. Fuzzy arithmetic can be used when data is missing and models are 

simplified.  

3.3.1 Deterministic Time Series Methods 

As discussed in section 2.2.1 deterministic models are the fastest and easiest methods 

to apply in forecasting, especially when uncertainty exists. In order to find the 

parameters    and    of linear trend models, Eq. (1), two methods of simple average, 

Eq. (11) and simple regression, Eq. (12) can be used as follows: 
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 where                 (11) 

where T is the total number of the time series and     is the differences of peak 

demands in the interval t. Similarly:  
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Moreover the parameters    and    in Eq. (2) can be found through the following 

formulas:  

For Straight Average Rate method: 

            ∑
   

   

 

   

 (13) 

where      
  

    
  for interval t. For Compound Average Rate method 
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For Simple Regression method: 
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3.3.2 Advanced Fuzzy Arithmetic Procedure 

In the literature various operations were defined to carry out the arithmetic of fuzzy 

numbers. Transformation method of Hanss [59] was selected as a well-organized and 

systematic approach to deal with arithmetic of fuzzy numbers. The transformation 

method which was used in this study is briefly explained in the following sub-

sections. 

3.3.2.1 Decomposition of the Input Fuzzy Numbers 

Fuzzy numbers (such as peak demands)  ̃             can be segmented into 

finite sequences of their  -cuts denoted by       ̃  , with        . Thus, it is 
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convenient to generate   intervals of length     
 

 
 on the membership function,  , 

with    given by 

   
 

 
              (16) 

where       and      and   is known as decomposition number. Therefore 

                            (17) 

Hence, the     fuzzy number  ̃  can be represented in its decomposed form by the set 
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of       intervals, where 
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where   
   

 are intervals  and   
   

and   
   

 are the boundary values for each level of 

membership              , and for all fuzzy numbers,          ,  and 

      ̃   are the support of  the fuzzy set which include all the values with nonzero 

degree of membership. Figure 5 displays a fuzzy number with its decomposition 

procedure. 
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Figure 5: Decomposition of a typical peak demand as a fuzzy number. 

3.3.2.2 Transformation of the Input Intervals 

The reduced form of transformation method was used because the general trend of 

peak demand as the function of the problem  ( ̃   ̃     ̃ ) is expected to act 

monotonically. The intervals   
   

, found in the previous step can be transformed into 

arrays  ̂ 
   

 of the form 
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where   
   

and   
   

 are the left and right boundaries of the intervals   
   

   

                  . For example, using the reduced transformation method, 

and given the membership    , for  =3 fuzzy numbers, Eqs. (20) and (22) can be 

written as: 
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(24) 

The process can be shown geometrically by a nested cuboid in Figure 6 where Eq. 

(24) with     are the vertices of the outermost cuboid and     is the dot in the 

center of all cuboids. 

 1
 0 

 

 3
 0 

 

  1
 0 

 

  3
 0 

 

  2
 0 

 

 2
 0 

 

 𝑥3 

 𝑥2 

 𝑥1  
Figure 6: Reduced form of transformation method when three fuzzy variables are 

used [59]. 
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3.3.2.3 Model Evaluation 

At each of the columns of the arrays, the fuzzy-parameterized model can be 

determined through the standard arithmetic for ordinary numbers. That is, the  th 

element  ̂ 
     of the output array,  ̂             , can be found by 

 ̂ 
      ( �̂� 

   
 

  �̂� 
   

 
    �̂� 

   
 

 ) (25) 

where   can be any functional expression, and  �̂� 
   

 
 stand for the  th element of 

array  ̂ 
   

. 

3.3.2.4. Retransformation of the Output Array 

As a result of the application of fuzzy arithmetic, the output value can be obtained 

through the retransformation of the arrays  ̂    using the recursive formulas 

        
 

           ̂ 
       (26) 

        
 

          ̂ 
                  (27) 

with 

        
 

    ̂ 
         

 
    ̂ 

        (28) 

Therefore, the output,  ̂ , can be expressed in its decomposed representation with 

      intervals as 

  {                } (29) 

where 
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]       
  ̃       

   
   

   
           (30) 
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     [  
   

   
   

]  [   
    

]              
    

        ̃  (31) 

3.3.2.5 Recomposition of the Output Interval 

Finally, the output fuzzy number,  ̃, can be obtained through recomposition of the 

intervals                , of   regarding their levels of membership   .  

The output fuzzy number is the result of the forecast model and it is a fuzzy value. 

3.3.3 Evaluating the Performance of Fuzzy Forecast 

The first step in determining the best model for forecasting is employment of 

graphical visualization against time. This can reveal the characteristics of models and 

data. It should be noted that techniques for model evaluation of fuzzy numbers are 

different than ordinary numbers. Instead of only one value, a range of values with 

different possibilities are to be dealt with. Therefore one way to cope with the 

problem is defining the fuzzy distances.  Subsequently, MAPE can be calculated 

over the fuzzy distance, see section 5.3.3. 
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Chapter 4 

4 ECONOMETRIC MODEL FOR ANNUAL PEAK 

DEMAND FORECASTING IN SMALL UTILITIES 

4.1 Introduction 

It is essential to utilize forecast models for estimating both the energy consumption 

and the peak demand to produce consistent plans. For example, when energy models 

are not coupled with demand models it is difficult to decide whether a base load unit 

or a peak load unit would be more appropriate for power expansion. Also, successful 

implementation of clean energy projects and assessing their impact on the electric 

power systems can be realized more easily with the developed forecast models [102], 

[103]. For electricity forecasting, there are no universally accepted guidelines that 

prescribe which variables should be specified in which equations, [104]. Egelioglu et 

al [105] studied the N. Cyprus yearly electric energy consumption, using a multiple 

regression model based on economic variables and temperature. However, this study 

alone is not sufficient for planning the future generation system as demand 

forecasting was not considered. 

Electric energy demand can be modeled by determining the relationship between 

historical demand and other influential factors such as social, economy, demography, 

and climate. This kind of modeling is known as econometric method which is a 

common practice in electricity demand forecasting. Suganthi and Samuel [100] in 

their review paper classified energy models for demand forecasting into twelve 
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groups and among 364 papers that they cited, fifty of them used econometric 

methods in various applications of energy and for different cases.  

Providing STSM to estimate Turkish aggregate electricity demand, Dilaver et al [90] 

argued that the previous electricity demand forecasts were unsuccessful in Turkey. 

The reason was failure in selecting the main economic drivers. This can underline the 

importance of capturing the appropriate variables in econometric approaches.  

In order to forecast electricity demand of Ghana, Adom and Bekoe [89] employed 

two econometric approaches; auto regressive distributed lag (ARDL) and partial 

adjustment model (PAM). They examined the determinants of electric energy 

demand and in long and short-term. They concluded that industry, urbanization, and 

income surpass the negative efficiency effects and thereby electric energy 

consumption increases.  

In order to design the pricing policy in Turkey, Arisoy and Ozturk [62] urged on the 

necessity to study the main determinants of electric energy demand. They estimated 

the price and income elasticity of electricity demand. It was revealed that the change 

in price of electricity was not seriously affecting the residential and industrial 

electricity demands because electricity usage is crucial. 

Hyde et al. [106] presented an automated short term electricity forecast in Ireland, 

based on weather sensitive and weather insensitive load components. Hippert et al 

[38] in their review paper stated that although load systems exhibit nonlinearity, 

linear regression models and models that decompose the load into basic and weather- 

dependent components are still agreeable; because, they allow engineers to 
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understand their behavior. They argued that neural network may outperform standard 

forecasting and therefore it may be accompanied by skepticism. Pardo et al. [107] 

developed linear regression and AR models for electricity demand. The developed 

long term forecast was able to analyze the effects of exogenous determinants and 

anomalous events in Spain. Tabatabaie et al [108] studied the relationship between 

energy consumption and yield in producing two cultivars of plum through 

econometric models using structured questionnaire method. 

The larger the system is the more intricate and costly the process of obtaining and 

distinguishing the independent variables become. In Canada, Zahedi et al [91] 

estimated electric energy demand using adaptive neuro-fuzzy network. It was 

concluded that among six parameters which were used numbers of employment have 

the greatest impact on electricity demand.  Also, they proposed using simpler 

approaches like regression methods or Fourier series for systems in which non-

linearity is negligible or laborious methods are not desirable. 

By examining the impact of weather on both the peak demand and energy 

consumption of buildings in 17 cities around the world, Hong et al [99] concluded 

that the change in yearly weather condition affects the peak demand more than 

energy consumptions in buildings. 

A model used for one place may not be applicable in others. The model developed in 

this chapter is simple and it is especially suitable for small utilities (i.e., utilities 

having capacities less than 1000 MWe) that provide services to small geographical 

areas, such as N. Cyprus and many similar islands. These utilities are far away from 

the interconnected grid and they require an appropriate peak demand forecasting. 
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Similarly, many SIDSs are in the same vein and they require a full scale forecasting 

[7]. 

For a long term planning (i.e., ten to thirty years) utilities need to develop electrical 

demand and consumption models, which directly account for the impact of economic 

variables upon energy consumption [13]. Despite the rich literature on the energy and 

demand models, relatively few studies consider the scale of the load system. Large 

utilities provide electricity for usually a vast geographical area with different classes 

of customers and climatic conditions which make sophisticated load forecasts a 

necessity for them. However, in smaller sized utilities the parameters affecting the 

electricity consumption may not diverge substantially and subsequently they can use 

less time and labor intensive methods to prepare accurate load forecast. In this 

chapter we introduce an algorithm to estimate the peak demand of small-sized 

utilities. Using this method, it is expected that planners and investors who will plan 

or invest in small utility projects around the world will benefit the most. For instance, 

many SIDS which require distinct energy forecast [7] can use the model. Also, the 

impact of extreme weather conditions and climate change on energy and peak 

demand (e.g. [109], [110], [111]) can be monitored through estimation of base and 

weather sensitive demand. 

The remainder of the chapter is organized as follows. In section 2 the method of the 

current study is delineated and the statistical procedure is elaborated. Section 3 

discusses and presents the best model for the utility planning of N. Cyprus. Section 

4 contains the concluding remarks. 
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4.2 Approach 

The approach of the present study is illustrated in Figure 7. The methodology 

employed is based on the econometric method. The econometric methods yield 

acceptable forecasts when extensive information about the system together with the 

necessary data are available [112]. Therefore, effective parameters on the load 

system must be distinguished first and a substantial amount of data is to be collected.  

Distinguish the parameters 

which potentially affect the 

demand

Gather data

Select significant variables 

using ANOVA and avoiding 

Multicollinearity. Choose the 

best models regarding, 

adjusted, F-ratio, adequate 

precision, and PRESS

Model Evaluation 

(MASE or MAPE)

Final Model

Is the final model 

physically consistent with 

Weather and Base demand 

models as well as the 

Energy model?

Use the current method for 

planning purposes

Use Other Methods

Is it sensible to re-adjust 

the parameters?

Acceptable

Not acceptable

Not acceptable

Yes

No

Acceptable

Yes

No

 
Figure 7: Schematic of the Econometric Forecast Method for Small Utilities. 
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The final demand forecasting model can be developed by conducting the analysis of 

variance and performing statistical examination. Historical data (in-sample data) 

covered the period from 1992 to 2010 and for testing the model data from 2011 to 

2013 (out-of-sample data) were compared to the actual data. Furthermore, the 

accuracy of the results was assessed by regenerating the models using in-sample and 

out-of-sample data for five consecutive years. In order to have a comprehensive 

projection of the future supply, the current model is proposed to be coupled with the 

base and weather sensitive components of the annual peak demand as well as the 

annual energy consumption forecast.  

4.2.1 Data Acquisition 

the history of peak demand (L), the number of customers (electricity meters) (C) and 

electricity prices (P) were gathered for the period of 1992-2013, from annual reports 

[9], [10], and [11].  population (N), per capita income (PCI), and the number of 

tourists (T) were available on the yearly bases [113].  Finally, heating degree day 

(HDD) was estimated from the hourly temperatures [114].  

4.2.2 Explanation of the Technique 

The utilities’ internal and external variables were linked through the multiple 

regression analysis and via the formula: 

eVAVAVAVAVAVAAY  6655443322110  (32) 

where, Y represents the annual peak demand,    are the coefficients of regression and 

  is the residuals or error.    are the independent variables that may be associated 

with   such as P, T ,C, PCI, N, and HDD. The internal and external variables also 

known as endogenous and exogenous parameters are the determinants that are 

influenced by the utility's internal or external environment. These variables are 
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usually varies from case to case because of the dissimilarities in structure of the load 

system. The effect of all variables on the peak demand should be examined and 

appropriate variables should be selected in order to form the final regression model. 

4.2.2.1 Base Demand 

Base demand is associated with normal day-to-day activities. Base demand is 

independent of very hot or very cold weather and can be calculated by considering 

the climate of the region for each year.  In the Mediterranean weather of Cyprus 

usually during four months of the year cooling or heating units are used at their 

lowest demand and it can be said that the demand is free from the extreme weather 

conditions. Consequently, the average base demand for a year is calculated from the 

following equation [13]. 

4

4

1


 i

iMW

DemandBaseAverage   (33) 

where MWi  is the i
th

  lowest monthly peak demand of each year.  May and June in 

spring, as well as September and October in fall have the lowest electricity demand 

in N. Cypurs.  The base demand ratio (BDR) for the      year is defined as  

)MW(

)MW(

DemandPeakAnnual

DemandBaseAverage
BDR j   (34) 

the base demand for each year was determined from: 

jjj BDRDemandPeakDemandBase   (35) 

where j is the year, and “base demand j” and “peak demand j” are the base demand 

and peak demand at that year, respectively.  
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4.2.2.2 Weather-Sensitive Demand 

Weather-sensitive demand (WSD) is the demand that is affected by the extreme 

weather conditions.  Weather sensitive demand is the difference between the annual 

peak demand and the base demand. WSD is sensitive to the local weather pattern. In 

very cold or very hot weather electricity demand increases dramatically. In N. 

Cyprus, where in summer, air conditioning and in winter, electric water heaters are 

common, weather sensitive demand is expected to be highly significant. 

4.2.3 Data Analysis 

In N. Cyprus four sectors are benefited from electricity such as industrial, 

commercial, residential, and agricultural. The price of electricity is different for each 

sector based on the utilities’ policies.  In order to have a single value for the price, 

the electricity rates for all the customer classes were combined through the following 

equation [13] 












N

i

i

N

i

ii

GWh

RateGWh

P

1

1  (36) 

where GWhi is the amount of electric energy consumed by the i
th

 rate class, and Ratei  

is the price of the electricity of  the i
th

 rate class. Figure 8 illustrates the average 

historical electricity prices for all sectors.  
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Figure 8:  Weighted average electricity rate. 

Until 1995, electricity was imported from S. Cyprus free of charge due to a joint 

contract.  Thus, the electricity prices in N. Cyprus were trivial.  In 1995, KIB-TEK 

started to generate most of the energy consumed in N. Cyprus and raised the 

electricity prices to cover the generation cost. Also, due to the revaluation of the 

Turkish lira, and the rising fuel costs, a noticeable growth of tariff followed between 

2006 and 2008.  

Figure 9 represents the annual peak demand between 1992 and 2013. It is evident 

that the peak demand has increased dramatically except in 1995, 2001, and 2013.  

After examining the data, it was observed that in 1994 there was a power shortage 

due to a major accident at one of the steam power units accompanied by reduction in 

the power supplied by S. Cyprus after mid-1994. In order to cover the generation 

costs, in 1995 the rates were increased by 220% and towards the end of 2000 there 
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was a serious economic recession causing decreases in the growth of annual peak 

demand in 1995 and 2001 respectively.  In 2013, the country experienced the highest 

winter temperatures of the past few decades. Meanwhile, the electricity prices 

continued to rise in 2013 causing a remarkable decrease in the peak demand in 2013. 

 

Figure 9: Annual peak demand in N.  Cyprus. 

Figure 10 illustrates the historical time series for the number of tourists and per 

capita income (PCI) in logarithmic scale. The number of tourists and PCI increased 

almost at the same rate. They are highly correlated with each other. 
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Figure 10: Time plot of number of Tourists and Per capita Income (PCI) 

There is a strong linear relationship between the numbers of tourists and PCI. 

Normally, if two independent variables strongly correlate it is necessary to remove 

one of the variables to avoid multicollinearity. Number of tourists and PCI are 

strongly correlated. Although they are treated as independent variables in the 

developed models, PCI were removed later. 

Figure 11 shows the scatter plots of independent variables versus annual peak 

demand to visualize the relations between peak demand and other determinants. 
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Figure 11: Scatter plots of annual peak demand vs independent variables. 

The historical data between 1992 and 2010 were used to calculate the coefficients of 

regression in Eq. (32).  In order to assess the appropriateness of the developed 

models, ANOVA, graphical method, adjusted R
2
, F-test, PRESS and the scatter plot 

of residuals were used. 
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In the evaluation process of the econometric model both the Linear and exponential 

trend models were utilized. The linear trend model for the peak demand is given by:  

tAAYt 21   (37) 

where t is the time, and A1 and A2 are constants. Parameter A1 is the peak demand 

corresponding to the first year while A2 is the annual increase in maximum peak. 

Similarly, exponential trend equation is 

      𝑥       (38) 

where    and    are the unknown constants to be found. Historical data of annual 

peak demand is used to estimate the unknown parameters A1 and A2 in Eqs. (37) and 

(38).  

The base and weather-sensitive components of the annual peak demand are identified 

by using Eqs. (33) , (34) and (35).   Figure 12 shows the base demand, WSD and 

annual peak demand between 1992 and 2013. It indicates that the general trend for 

both base demand and WSD are increasing. 
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Figure 12:  Annual electricity peak demand, base demand and WSD. 

Finally, in order to test the model obtained by the in-sample data, out-of-sample data 

from 2011 to 2013 (representing the future) are used. Also, MASE and MAPE for 

various successive in-sample and out-of-sample data were calculated to ensure the 

accuracy of the final model [115],[116]. 

4.3 Model Selection and Discussions 

Since the size of the load system in N. Cyprus is relatively small, discerning its 

features and data gathering processes remain undemanding. Therefore, as 

aforementioned it is suitable to choose econometric method in describing the whole 

system [117].  

Analysis of variance for all variables was carried out and the results of the regression 
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statistically significant at the 5% level. Therefore, it could be deduced that model 2 

with four variables is an appropriate model. However, the strong correlation between 

the number of tourists and PCI causes multicolinearity, which only resolved after 

removing PCI from the equations. Removing PCI from the equations, it appears that 

HDD became significant at the 5% level. Consequently, the proposed model can be 

reduced to model 3 with five independent variables, and its features are presented in 

Table 5. 

Table 5: Annual peak demand model summary and corresponding parameters to 

check the adequacy of models * Predicted Residual Sum of Squares 

Model  Coefficients    

Adjusted 

   

P-value 

(95%) F-Ratio 

t-

statistic PRESS
*

 

1 

 

 

 

Constant 

C*1000 

P($/MWh) 

T*1000 

PCI($) 

N*1000 

HDD 

-213.897 

0.796 

-0.154 

0.172 

5.102E-06 

0.144 

0.477 

0.995 

 

0.993 

 

0.006 

0.003 

0.035 

0.001 

0.997 

0.016 

0.064 

441.757 

 

-3.315 

3.646 

-2.370 

4.452 

0.004 

2.814 

2.043 

515.540 

 

2 

 

Constant 

C*1000 

P($/MWh) 

T*1000 

N*1000 

-90.74 

0.78 

-0.22 

0.21 

0.39 

0.994 

 

0.992 

 

 

0.003 

0.003 

0.000 

0.042 

565.019 

 

 626.157 

 

3 Constant 

C*1000 

P($/MWh) 

T*1000 

N*1000 

HDD 

-213.966 

0.796 

-0.154 

0.173 

0.477 

0.144 

0.995 0.994 0.003 

0.001 

0.024 

0.000 

0.010 

0.048 

574.28 

 

 

 

-3.614 

4.049 

-2.558 

6.915 

3.013 

2.181 

498.268 

 

 

 

4     

    

63.83 

9.96 

0.916 - - - - - 

5     

    

83.64 

0.06 

0.942 - - - - - 
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Models 1, 2, and 3 consist of six, four, and five variables, respectively. Their values 

of R
2
 are not distinctly different.  Therefore, to determine the most appropriate model 

adjusted   , F-ratio and PRESS were used and model 3 was chosen as the best 

model; so the final regression model is as follows: 

HDDNTPCY 144.00.4770.1730.154-0.796-213.956 

  

(39) 

The F-ratio for model 3 is 574.28, is much greater than the critical value of F = 3.03 

for degrees of freedom (5, 13) at 5% level of significance.  This indicates that the 

model is highly significant. Figure 13 shows the actual and predicted annual peak 

demand of electricity in N. Cyprus. The figure shows that models 1, 2 and 3 have 

strong predictive ability. Model 4 is the time series model obtained from Eq. (37) and 

model 5 is the exponential trend from Eq. (38). Models 4 and 5 were used to evaluate 

the performance of the econometric models.  

It is crucial to evaluate the forecasting performance of the final model using in-

sample and out-of-sample data of various years. Table 6 shows the MASE and the 

MAPE for three out-of-sample data. 

Likewise, Figure 13 illustrates MAPE and MASE of regenerated models for several 

years. The results indicated that the regression model with 5 parameters has the best 

performance among all the other models especially when the in-sample data 

increases.  

Many researchers such as Armestrong [2] advised to use the longest possible in-

sample data for model training. Meanwhile, out-of-sample data is also necessary for 

evaluation of the forecast. However, KIBTEK utility was established in 1995 and the 
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electricity records are only available from 1991 onward and because of the scarcity 

of data in N. Cyprus the attempt was to make a trade-off between the number of out-

of-sample data and in-sample data. 

 
Figure 13: Actual and predicted annual electricity peak demand in N. Cyprus. 

0

50

100

150

200

250

300

1992 1996 2000 2004 2008 2012

P
ea

k
 d

em
an

d
, 

M
W

 

Actual Estimated, model 1

0

50

100

150

200

250

300

350

1992 1996 2000 2004 2008 2012
P

ea
k

 d
em

an
d
, 

M
W

 

Actual Estimated, model 2

0

50

100

150

200

250

300

1992 1996 2000 2004 2008 2012

P
ea

k
 d

em
an

d
, 

M
W

 

Actual Estimated, model 3

0

50

100

150

200

250

300

1992 1996 2000 2004 2008 2012

P
ea

k
 d

em
an

d
, 

M
W

 

Actual Estimated, model 4

0

50

100

150

200

250

300

350

1992 1996 2000 2004 2008 2012

P
ea

k
 d

em
an

d
, 

M
W

 

Actual Estimated, model 5



71 

Table 6: Measurement for the performance of models 
*
Mean Absolute Scaled Error 

**
Mean Absolute Percentage Error (%) 

Type of Error model 1 model 2 model 3 Linear Exponential 

MASE
*
 (In-Sample) 0.214 0.287 0.214 1.417 0.958 

MASE (out-of-Sample) 1.042 2.208 1.041 1.537 1.634 

MAPE
**

 (In-Sample) 2.025 2.642 2.025 9.427 6.828 

MAPE (out-of-Sample) 3.259 4.575 3.256 5.709 10.464 

 

Also, it is necessary to examine the model through WSD and base demand in order 

to deal with weather condition's abnormal fluctuation. For example, in 2013 apart 

from the increase in tariff, the decrease in the peak demand is attributable to 

uncommon decrease in the HDD in that year. This can also be seen in Figure 12. 

Although the base demand was slightly increased in 2013 compared to the previous 

year, WSD decreased substantially.  Furthermore, the base demand ratio is calculated 

to be 0.71 in 2013 compared to 0.65 of 2012. That is, despite the slight increase in 

base demand from 181 MW in 2012 to 184 MW in 2013, WSD dropped substantially 

from 98MW to 76 MW.  

Figure 15 shows the residuals plotted against the five explanatory variables after 

fitting model 3.  The other two panels display the residuals plotted against the fitted 

values. Randomly scattered residuals are the signs of an acceptable regression model. 
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Figure 14:MASE and MAPE for five consecutive in samples and out of samples 
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Figure 15: Residuals when annual peak demand is regressed against number of 

customers, electricity price, population, number of tourists, and heating degree days 

(HDD). 
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The econometric load forecasting method is based on econometric theory, thus a 

hypothesis that describes the relationship between peak demand or energy 

consumption and economic variables should be formed.  Two types of variables i.e., 

internal and external variables can affect the electricity peak demand. Internal 

variables include electricity prices, number of people connected with meters and 

incentive program levels. Utilities in N. Cyprus do not have incentive program levels 

so this variable was not considered in load forecasting. External variables are the 

factors influenced by the utility’s external environment.  External variables include 

price of competing products (i.e. oil and gas and etc.), PCI, GDP, population, 

unemployment rate, tourism, import and export, HDD, CDD and 

maximum/minimum temperatures and etc. that was discussed in section 3.2.3.  The 

econometric method requires a large, accurate historical database.  It is important to 

determine the reliability and the availability of the required data.  The developed 

model will be sufficient (i.e., reasonably accurate and satisfies the load forecast 

objectives) if more and reliable data are used.    

Large size utilities have larger total service areas and several types of customers.  A 

large size utility should consider doing separate load forecast for customer class and 

may need to divide its service area as discussed in chapter 6.  Large size utilities may 

need to perform short-term load forecasting (hourly, daily, weekly and etc.) for 

optimization reasons.  The forecast method depends on the objective of the load 

forecaster. Also, large size utilities prepare detailed load forecasts in order to produce 

a complete integrated resource planning.  Large utilities also analyze environmental 

externalities, risks, uncertainties and also conduct a complete public involvement for 

resource planning. 
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4.4 Conclusive Comments  

In the present study a long-term base and weather sensitive demand model was 

presented using econometric variables as regressors for small size utilities. Regions 

like N. Cyprus in which forecasting on the peak demand has never practiced before, 

are advised to use the current method, provided that sufficient data is available. Also, 

the current approach can be used as a benchmark to evaluate more advanced 

techniques in the future. 

The results suggest that among the six chosen variables the model which uses price 

of electricity, number of customers, tourists, population and HDD as variables, is the 

most suitable model for estimating future peak demand of N. Cyprus. The 

performance of this model was evaluated by regenerating models and recalculating 

their MASE and MAPE for five different in-sample and out-of-sample intervals. 

Determination of WSD and base demand is necessary to better examine the effect of 

weather conditions on the power demand requirements. In addition, energy models 

must be linked with peak demand models to provide a better vision for the forecaster.  

Using ANOVA analysis eases the regression process by avoiding the conventional 

need to calculate all possible regression models. Other models are not necessarily 

produce the optimal results [118]. However, relying on only one method may result 

in inaccurate conclusion. 

The better is the knowledge of the forecaster about the system the better predictions 

are expected. For an accurate forecast model, accurate and relevant parameters are 
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required. The model can be compared with different forecasting models for further 

validation. 

In the process of decision making for IRP, forecasting is the first step. The current 

forecast method is beneficial since physical meanings of variables can assist planners 

to have a better sense about the system and make better decisions on the system with 

higher certainty. For example, by forecasting the future independent parameters used 

in the peak demand model the period for power expansion can be estimated. 

Nevertheless, many unknown factors can bring about uncertainty and accordingly, it 

might be suitable to use more compelling approaches such as Bayesian probability or 

fuzzy arithmetic. The former needs to be practiced further in the area of load 

forecasting and the latter is the future work of authors. 
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Chapter 5 

5 FUZZY PEAK DEMAND FORECASTING MODEL FOR 

SMALL DEVELOPING COUNTRIES 

5.1 Introduction 

In the present chapter a fuzzy peak demand forecast model was developed to 

estimate the future power requirements of small developing countries. An accurate 

long term forecast requires extensive data and an appropriate budget for forecasting. 

However, many developing countries suffer from lack of information and budget. 

This impairs a straightforward solution for the estimations. In this respect, 

engineering end-use models mostly suffer from data deficiency and huge data 

gathering [119] and econometric approaches inadequately capture the developing 

countries features [67] due to data mismanagement. The uncertainties due to lack of 

data as well as small budget of forecast highlight a requisite for developing an 

effective method of forecasting used in developing countries. 

A plethora of forecasting techniques are available in the literature and forecasting 

models were classified from different views. In general, forecasting was categorized 

into two schemes of judgmental and statistical and the best method was chosen by 

means of a selection tree [120]. Based on the forecast horizon, forecasting can be 

categorized into short, medium, and long ranges [121]. Energy and demand models 

were also classified as simple and complex approaches [119]. At times results of 
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simple methods can be as accurate as complicated schemes especially when 

measured data is limited and uncertainty exists [96].  

In many developing countries institutional framework for governing the energy 

issues are not widely established [122]. Many statistical data which are readily 

available in developed countries may not be available in developing countries. 

Therefore, it is hard for the utilities to devise detailed forecasting models that are 

employed in developed countries. Although the utilities usually encounter difficulties 

attaining the required statistical data it is a common practice to keep a record of the 

maximum peak demand. The present work attempts to develop a new algorithm 

where the demand history is utilized as the only available data for demand 

forecasting. While forecasting is always accompanied by various sources of 

uncertainty, the focus of the current study is to deal with uncertainty due to data 

limitation and model simplification. One way to circumvent uncertainty is the 

employment of simple approaches, (eg. [119], [96] ). However, to the best of 

authors’ knowledge no systematic approach have been developed to employ simple 

methods and at the same time undertake uncertainties related with data limitations 

and model simplifications. Therefore, the current work tried to benefit from the 

simplicity of the time series methods and simultaneously the possible uncertainty 

was quantified and treated by a well-organized fuzzy arithmetic analysis.  

The rest of the chapter is organized as follows: Section 2 provides the case of N. 

Cyprus and section 3 presents the methodology of the study. An algorithm was 

utilized to deal with data inadequacy. Triangular fuzzy numbers were defined for the 

annual peak demand and classical univariate time-series extrapolations were 

employed to estimate the future peak demand using the fuzzy arithmetic and the 
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extension principle introduced by Lotfi A. Zadeh.  In order to minimize the 

overestimation of uncertainty and at the same time reaching to an acceptable result, 

the transformation method of Hanss was used. In section 4 the results were given and 

discussed. The most precise model was selected and verified through graphical 

representation and by iteratively calculating MAPE over the fuzzy distance defined 

in the literature. The annual peak demand was forecasted for the next ten years. 

Chapter 5 presents some concluding remarks. The obtained results showed that the 

developed model is accurate enough and can be used for policy advice in uncertain 

situations. 

5.2. Case of N Cyprus 

The case of the current chapter is chosen to be N Cyprus with small geographic 

variations. The attempt is to look into the electricity demand in N Cyprus, in which 

small utilities have been utilized for electricity generation. The country is seeking to 

implement cost-effective methods for forecasting the electricity consumption and 

demand. Many parameters such as economic, environmental or political situation can 

affect the demand. They are categorized as endogenous and exogenous parameters 

[13]. For example, an increase of temperature in a summer day can elevate the peak 

demand or increase in the electricity prices can adversely affect the use of electricity. 

These fluctuations may imply that the electricity record could be different to some 

extent, provided that the influential factors would be different. Usually, the impacts 

of these variations are not easily traceable, especially when necessary data is 

unavailable. In order to deal with these probable fluctuations peak demand can be 

considered as a fuzzy variable. Therefore, appropriate fuzzy numbers can be used for 

the annual peak demand. 
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In chapter 4 peak demand of N. Cyprus was modeled using an econometric method 

[5]. It was found that the current peak demand is highly correlated with five 

influential parameters; namely, Price, HDD, number of tourists, customers and 

population. However, obtaining these data is not always possible and in situations 

that only historical consumption is available, provided that a change in any of these 

parameters was occurred, peak demand was expected to be transformed. Figure 16 

illustrates the peak demand estimation based on the variation of HDD around the 

standard deviation. Annual peak demand due to weather variations using standard 

deviation is estimated to vary about 10 MW. Likewise, variation in other 

independent parameters could bring about differences in the annual peak demand 

record. In fact, in many developing countries necessary data is not available for 

sophisticated forecasting and the peak demand may be affected from different 

variables. Consequently, it is impossible to predict the peak demand by tracing their 

influential parameters. The aim is to let the peak demand to change to a certain 

degree so that it covers the uncertainties related with missing parameters and model 

simplifications. 
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Figure 16: Peak demand estimation using econometric method for the high and low 

HDD considering the standard deviation 

5.3. Methodology for Fuzzy Peak Demand Forecasting 

In this chapter an algorithm was proposed to forecast the annual peak demand of 

North Cyprus, as presented in Figure 17. The only data used was the annual peak 

demand from 1992 to 2013.  Conventional univariate time-series extrapolations were 

integrated with Hanss’ fuzzy arithmetic approach [59] grounded on Zadeh’s 

extension principle [123]. The effects of uncertainties were quantified using 

membership functions and fuzzy arithmetic analysis was utilized to mitigate the 

uncertainties related with absence of data (i.e. data other than historical peak 

demand).  
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Use a simple model 

(appendix A) to fit the data 

and find the variance 

Form fuzzy variables based 

on the variance found in 

the last step

Estimate the peak demand 

using transformation 

method, Appendix B

 Lowest MAPE 

defined in eq. (2.2) 

Forecast the annual peak 

demand using the selected 

model

Yes

Gather the history of 

annual peak demand 

Next Model

No

Decomposition of Input 

Fuzzy Numbers

Transformation of the Input 

Intervals

Evaluation of the Model

Retransformation of the 

Output Array

Recomposition of the 

Output Interval

 
Figure 17: the algorithm used for the forecast of annual peak demand 

The historical record of peak demand was utilized and fuzzified and its behavior was 

extrapolated for the future. Linear trend models (i.e. simple average method and 

simple regression method), eq (40) , and auto regressive models (i.e. straight average, 

compound average, and Autoregressive regression methods), eq (41), were fitted to 

historical peak demand values in order to find the best model in describing the 

historical pattern and future peak demand forecast. 

  ̃   ̃   ̃    (40) 
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  ̃   ̃   ̃   ̃    (41) 

Where   ̃ is the fuzzy demand at time t and  ̃ and  ̃  are fuzzy coefficients to be 

estimated. In order to estimate the parameters  ̃  and  ̃  , five aforementioned 

methods were selected which are explained in section 3.3.1.  

5.3.1 Fuzzification 

Fuzzy peak demands can be introduced by allowing the peak demands to belong to a 

fuzzy number rather than to entirely belong or not to belong to a specific number. 

For the description of fuzzy numbers, a membership function     ̃ for a fuzzy number 

 ̃ can be introduced, which has a mapping of the form 

  ̃         (42) 

It is suitable to use a triangular membership function of the form: 

  ̃  {

                            𝑥  �̅�    

   𝑥  �̅�              �̅�     𝑥  �̅�
   𝑥  �̅�              �̅�  𝑥  �̅�    

                            𝑥  �̅�    

  (43) 

where     ̃  is the membership function, 𝑥 denotes the energy consumption or peak 

demand, �̅� is the modal value of fuzzy number, and          are the left and the right 

hand worse case deviations. The deviations          were selected equally for each 

membership function depending of their variation from the fitted values. For each 

time series model, the standard deviation from the real values was calculated. These 

standard deviations were used to form the triangular fuzzy peak demands. A 

triangular membership function for peak demand is illustrated in the Figure 18. 



84 

 
Figure 18: A typical triangular Membership Function for peak demands (MW). 

In order to deal with fuzzy numbers, advanced fuzzy arithmetic was employed in this 

study and it is explained in brief in the following section. 

5.3.2 Advanced Fuzzy Arithmetic 

Various operations for the fuzzy arithmetic analysis exist in the literature which have 

their own strengths and drawbacks, such as extension principle, Hukuhara [124],      

operations [125], and etc. One well-posed structured method is to apply extension 

principle of Zadeh [123].with the aid of transformation method of Hanss [59]. The 

five steps of the aforementioned method were briefly elaborated in section 3.3.2. In 

order to implement fuzzy arithmetic calculations, reduced form of transformation 

method of Hanss were programmed, since the estimated functions are expected to 

behave as monotonic. 

5.3.3 Model Selection 

The performance of the models was evaluated using graphical representation and 

after comparing their MAPE defined as: 
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where  ̃  and  ̃   represent the actual and estimated peak demands and     ̃   ̃     is 

the distance between estimated peak demand  ̃ , and the real value  ̃ at time t. It is 

defined through HAUSDORFF distance [58] and in line with the notation of the 

current thesis it can be written as: 
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where   
   

and   
   

           , are the left and right boundaries of fuzzy numbers 

 ̃  for the level of membership    , see Figure 19. 
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Figure 19: distance between the two fuzzy numbers,  ̃  and  ̃  . 

In order to compare the models, the first 15 years (1992-2006) were used for the 

estimation of the next seven years (2007-2011). Meanwhile, to assure that the 

outcomes are reliable and independent from the initial sample values, the 
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calculations were repeated by increasing the in-sample data (i.e. decreasing the out of 

sample data). Eventually, the best model was selected to forecast the peak demand 

for the next 10 years. 

5.4. Forecast Models and Discussion  

Fortran 90 was used to carry out all the computations of the codes for the 

transformation algorithm and some conventional time series methods in an attempt to 

estimate the annual peak demand for N. Cyprus.  

Figure 20 to Figure 24 illustrate the results of forecast for five simple models. 17 in-

samples data were used to train the data and 5 out-of-samples data were used to 

evaluate the performance of each model. Real values were also plotted and compared 

with the estimated values. The most adequate model was selected using the graphical 

representation and through calculating MAPE. Despite the fact that models 3 and 5 

demonstrate a good fit for higher values of membership,  , they show substantial 

overestimation in lower membership values. In order to evaluate the forecasting 

performance MAPE were calculated for five consecutive in-sample and out-of-

sample data, see Table 7.  
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Table 7: Measurement for the performance of models for various in samples and out-

of-samples 
*
Mean Absolute Percentage Error 

Type of Error Model 1  Model 2 Model 3 Model 4 Model 5 

15 In-samples & 7 Out-of-samples 

MAPE
*
 (In-Sample) 0.152 0.098 0.284 0.087 0.508 

MAPE (out-of-Sample) 0.073 0.157 1.185 0.284 3.193 

16 In-samples & 6 Out-of-samples 

MAPE (In-Sample) 0.142 0.107 0.262 0.075 0.358 

MAPE (out-of-Sample) 0.075 0.119 1.073 0.248 1.693 

17 In-samples & 5 Out-of-samples 

MAPE (In-Sample) 0.116 0.108 0.228 0.071 0.220 

MAPE (out-of-Sample) 0.052 0.105 0.904 0.155 0.646 

18 In-samples & 4 Out-of-samples 

MAPE (In-Sample) 0.108 0.107 0.219 0.073 0.189 

MAPE (out-of-Sample) 0.058 0.100 0.833 0.129 0.431 

 

It can be seen from the table that model 1 has the lowest out-of-sample error with 

relatively high in-sample error, and model 4 has the lowest in-sample error but with a 

relative high out-of-sample error. However, model 2 is always stands second in rank 

in both in-sample and out-of-sample measurements and it can be selected as the best 

model among the others for the projection of power demand of N. Cyprus. Figure 20 

to Figure 24 illustrate the comparison of models with 17 in-sample and 5 out-of-

sample data. 
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Figure 20. Model 1:  Simple Average Method with 17 in-sample and 5 out-of-sample 

data 

 
Figure 21. Model 2: Simple Regression Method with 17 in-sample and 5 out-of-

sample data 
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Figure 22. Model 3: Straight Average Method with 17 in-sample and 5 out-of-sample 

data 

 
Figure 23. Model 4: Compound Average Method with 17 in-sample and 5 out-of-

sample data 
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Figure 24. Model 5: Autoregressive Regression Method with 17 in-sample and 5 out-

of-sample data 

Figure 25 illustrates the projection of peak demand for 2023 using model 2. It can be 

seen that the forecasted results showed conformity with the econometric method 

described in ref [5] especially when      . 

Usually, the results of all forecasts differ from the real values to some extend and we 

cannot be confident to select the econometric method over the current method nor do 

we assure to select the current approach over the econometric models. However, 

unlike traditional forecasts which merely present a single value, the outcome of the 

current forecast provides a wider range and higher flexibility for planners in deciding 

for the future. 
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Figure 25: N. Cyprus peak demand forecast for 2023: a comparison between fuzzy 

peak demand and the econometric method 

It has been shown that using simple schemes can generate useful results in 

forecasting future peak demands with less number of data. These methods are 

inexpensive and can be easily utilized in the developing countries. However, 

simplification always increases the uncertainty and as a result advanced fuzzy 

arithmetic was used to deal with uncertainty. 

Due to advances of renewable energy in recent years, application of clean energy 

technologies seems to be an indispensable alternative for power generation. The 

investors need to decide how to finance the projects. This requires a sensible 

technique of forecasting. Underestimation of the demand can result in failure of the 

system and overestimation may call for costly generators and would be a press on 
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clean energy investments. As a result of the current practice, insufficient data by no 

means should prevent attending to forecast for the future, and decision makers will 

have a better idea as to how to postpone the investments of establishing expensive 

generators for the advantage of giving renewable energy generation more chances. 

Smallness and remoteness of an island like Cyprus imposes more energy costs than 

larger countries. The increase of cost is largely due to fuel transport, and lack of 

storage and distribution facilities. These island-specific attributes requires different 

way of development and consequently different approach of planning and policy 

formulation [7]. 

In order to prevent blackout and secure the electricity provision, a number of 

reliability criteria were designed in power plant management. In N-1 criterion the 

planned system capacity minus the largest generator is greater than peak load and N-

2 criterion calls for the system to be able to withstand the loss of two largest 

generators which can support the system even if a generator requires planned 

maintenance work and another is accidentally unavailable. 

In N. Cyprus the active power capacity is 293MW and it can rise to the full capacity 

of 331 MW using old and expensive generators. Meanwhile, the current annual peak 

demand record is 280 MW which is 50 MW below the full capacity. It is clear that a 

fail in any 60 MW steam generators can cause a blackout and it is evident that even 

at present the capacity is 10MW less than N-1 security criterion. 

In 2023 the power demand of N. Cyprus is expected to be raised to 390 MW using 

the econometric method and it is estimated to be in the range of 330-410 MW by 
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50% possibility using the fuzzy arithmetic approach, see Figure 26. The future 

uncertainties call for the employment of the fuzzy arithmetic approach rather than 

relying on a single value of econometric method. Clearly, with the existence of two 

60 MW steam generators the current capacity should be augmented. Therefore, 

according to N-1 criteria the existing capacity of 330 MW should be elevated by a 

range of 60 to 140 MW. This requirement would be decreased remarkably if small 

generators were utilized. For example, having used 17.5 MW diesel generators as the 

largest generator the N-1 security criterion would be met by increasing the capacity 

between 16 MW and 96 MW. Provided that the lower scenario occurs, that is, only 

16 MW increment would be needed, renewable energy could be an adequate source 

for power expansion. 

Upper bound 

estimation 

when µ=0.5

Lower bound 

estimation 

when µ=0.5

410 MW

390 MW

330 MW

 
Figure 26: Future power requirement of N. Cyprus 
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Nevertheless, for the current situation, a trade-off is needed between reaching 

economies of scale and at the same time ensuring security of supply. Having two 

large steam power generators resulted in a higher need of installed capacity to ensure 

reliability under the N-1 or N-2 criteria. This calls for the increment of the cost of 

power production or simply endangers the security of the supply. Therefore, it is vital 

to allow for small generators for the future power expansions and resort to reliance 

on S. Cyprus grid until the retirement of those big generators. The plan of connection 

to Turkey’s grid through the Mediterranean Sea is seen as another alternative of 

having a reliable system. However, its long term efficiency, cost, and geopolitical 

effect should be studied and be compared with indigenous renewable energy 

generation. 

It is evident that the electricity demand improves the economy and GDP growth all 

over the world. Therefore, some developing countries try to lower the cost of 

electricity generation by subsidizing the costs. This makes the least-cost method of 

electricity generation as an incorrect approach for meeting the future energy 

demands. Having a single public utility or few utilities makes the decision on the 

electricity tariff setting a political choice. 

N. Cyprus electricity generation is highly dependent on the import of fossil fuels. 

This imposes not only a huge economic burden, financial risks, and dependency, it 

can also bring about environmental setbacks. At the moment, the country demands a 

substantial financial aid each year and it is expected that the growth in the future 

demand will impose serious financial difficulties and macroeconomic stresses. 
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Interestingly, there is an endless amount of renewable energy sources in N. Cyprus, 

which makes it possible to cut the price of current modes of electricity generations. 

These indigenous recourses can reduce the dependency on the fossil fuel imports. 

Since renewable energy technologies (RETs) are particularly competitive in small-

scale applications, it is necessary to promote RETs in the energy plans and policies. 

5.5. Conclusive Comments 

The purpose of the present study is to develop a new algorithm in forecasting annual 

peak demand especially for the developing countries in which necessary data may 

not be available for sophisticated demand forecasting methods. Using the annual 

peak demand as the only available data, the future possibilities of power demand 

were estimated and were validated with the real values of N. Cyprus. The case study 

results exhibited the possible ranges of peak demand for N. Cyprus up to 2023. 

These possibilities should be viewed carefully by policy makers in order to develop 

medium to long term action plans for the future peak demand.  

The ranges of the future possibilities get wider as the forecast horizon increases. The 

growth of uncertainty attributes to fuzziness in the values of previous years and it is 

different than prediction interval, which can be presented by fan charts, [126]. This 

may imply that increasing the forecast horizon is accompanied by more fuzziness 

and it may give a wide spread of possibilities for the future peak demand. Therefore, 

forecasting using the current fuzzy arithmetic may be more appropriate for ranges up 

to ten years. 
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Chapter 6 

6 A GENERALIZED APPROACH FOR PEAK DEMAND 

FORECASTING IN DEVELOPING COUNTRIES 

6.1 Introduction 

Developing countries suffer from regional imbalances and they usually face rapid 

structural and economic transitions [127]. These variations can intensely affect the 

regional electricity demands in the long term and it can adversely affect the overall 

peak demand projection of a country. For example, an industry may thrive in one 

region of a country and as a result the local demand of electricity for that part 

escalates dramatically. In addition, population may rush to a city or migrate from one 

region to another region to seek better opportunities. A peak demand model which 

simply ignores these variations can slip into fallacies due to fail in capturing the 

appropriate exogenous effects [25]. 

Apart from the abovementioned problems, the climatic condition of a large country 

may vary dramatically from one region to another region [99]. That is, the weather 

profile of a country can be segregated into different regions with moderately similar 

weather pattern. For example, while the country usually enjoys the warmth of the 

weather in some regions at a particular time of the year, it may be under extreme cold 

weather in some other areas. Thus, in order to correctly forecast the electricity peak 

demand of the country, a model is required to be developed in dealing with regional 

weather variations.  
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Therefore, spatial variation of influential variables on the peak demand forecasting 

has been seldom dealt with in previously developed forecast models; thereby the 

previous estimations of peak demand for the whole country are by no means problem 

free, because regional characteristic were usually overlooked through their 

application. 

The current chapter attempts to tackle these problems by introducing a suitable 

forecast model through partitioning the country into smaller regions with unique 

characteristic. Subsequently, electricity demand can be forecasted for each region in 

order to deal with structural changes as well as diverse climatic variations. Also, the 

total electricity demand of the country can be forecasted by accumulating the 

estimated peak demand of all regions. 

The proposed model of partitioning the country into characteristically similar regions 

can be used in all developing countries and it is an extension of the previously 

developed forecasting models used for small utilities. That is, in addition to small 

utilities, peak demand in larger countries with diverse climatic conditions and 

regional features can also be forecasted by combining the previously developed 

methods. 

6.2 Partitioning the Country into Characteristically Similar Zones 

In dividing the country into characteristically similar zones it is essential to consider 

the similarities or distinctive characters of each region such as climate features, 

economy, demography and other influential factors that can affect the peak demand. 

This procedure can be carried out by an expert who is familiar with the unique 
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characteristic of different regions. Figure 27 can be prepared as a typical schematic 

of a country with diverse regional structures. 

Cold weather condition

Agriculture based area

Touristic areas

Nature land

High tourist attraction

Hot and humid weather

Populated area

Moderate weather

Populated area

Industry based

Relatively hot weather condition

Population with low density

Agriculture based area

Population 

Emigration due to 

water shortages

Cold weather condition

Population with low density

Very hot

Industry based

 
Figure 27: Typical partitioning of a representative country based on its major 

distinctive attributes 

All these regions have distinctive structures. For example, while one region has less 

population, with a lot of tourists and a hot weather profile, another region might be 

densely populated, with lack of tourist attraction and moderate weather condition. 

Therefore, for each region dissimilar parameters might be correlated with the 

electricity peak demand, which can makes the calculations more accurate. 

In partitioning the county into several distinctive zones, it is better to use normal 

weather conditions and to avoid weather anomalies. It might be necessary to take 

several years of weather data in order to assure about the normality of weather 

conditions.  
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Due to the scarcity of databases in some regions, the available data may be limited to 

the history of the peak demand. Also, the scales of the divisions are not very small 

compared to the spatial load forecasting studies which aim at small scale grid and 

equipment allocation purposes [128]. 

6.3 Methodology for Partition-Based Peak Demand Forecasting  

Figure 28 illustrates an algorithm to forecast the peak demand for all developing 

countries by considering the distinguished characteristic of different regions. 

Provided that some distinctive features can be found in different locations, the entire 

country can be divided into smaller regions with relatively similar electricity pattern. 

Consequently, peak demand in these small partitions can be forecasted based on the 

availability of time series data. If necessary data in defining the load system is 

available for a region, the use of econometric method, developed in chapter 4, is 

preferable. However, if the peak demand records are the only existing data, the 

preference is with the fuzzy peak demand models, developed in chapter 5. 
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Figure 28: Peak demand forecasting for developing countries based on the 

geographical characteristic variation and data availability 

6.4 Discussions and Conclusive Remarks 

Availability of data for each region such as provincial electricity demand, existence 

of weather stations, and other statistic and demographic variables related to that 

region can improve the accuracy of the forecast. If necessary data is available in a 

region econometric methods are superior, while if data is limited to simply the peak 

demand records, fuzzy arithmetic approach is the alternative. The total peak demand 

will be the summation of peak demands for all the divisions. 

The effect of regional characteristic and weather variations on the provincial load 

distribution can also be investigated in the long run to assure preventing regional 

power shortages and for the safe and effective provision of electricity for all the 

regions. Due to the large scale of weather variation and geographical features, the 
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scale of the current approach is quite larger than special load forecasting techniques 

in which different cellular types is used in quite smaller scales [128]. 

Each region may have its own distinguished pattern in using electricity and thereby 

the demand of electricity in different regions might be correlated with dissimilar 

parameters. As an example, electricity demand in a touristic place is highly 

dependent on the number of tourists coming to that area, while the peak demand in 

an industrial region might be more related with the export of the goods. As another 

example, some areas of a country might usually have a very cold or hot climate 

compared to other regions. A model that correlates average values of parameters to 

the peak demand of the entire country can possibly fail to capture the correct 

exogenous effects. Hence, in order to estimate the peak demand of a large county, it 

is recommended to partition the county into smaller zones with similar features and 

determine the peak demand of each region. 

The current approach highlights the requisite to seek for a regional and more 

extensive data acquisition process through the whole country. Since this procedure is 

a top-down approach, the feature of the time series data used in this model is 

different than end-use data. The first can be recorded in local or provincial databases, 

while the latter can be determined through observation, surveys or questionnaires. 

However, obtaining end-use data is more expensive and labor-intensive and at times, 

the availability or the quality of the end use data might be questionable in the 

developing countries. 
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Chapter 7 

7 CONCLUSION 

In this study some algorithms were presented to forecast the energy demand of 

developing countries based on their size and data availability. In this regard some 

suitable approaches of energy demand forecasting were reviewed in different 

countries and for various cases; subsequently, the advantages and disadvantages of 

each model were listed. 

Energy peak demand forecasting was shown as a first step of a successful IRP. 

However, the differences in the traits of developing and developed countries 

highlighted a requisite to devise alternative forecasting approaches for developing 

countries and especially for SIDSs. 

We demonstrated the use of multivariate regression-based econometric method and 

univariate fuzzy arithmetic based time series models for long-term energy demand 

forecasting of N. Cyprus as an example of a SIDS. 

First, when necessary data is available an econometric method was used. Various 

endogenous and exogenous variables were tabulated for different cases and it was 

found that price of electricity, number of customers, tourists, population and HDD 

are the five determinants of electricity peak demand of N. Cyprus. The 

decomposition of the peak demand into the WSD and base demand provides an 
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engineering view on the effect of extreme weather condition on the electricity peak 

demand.  

Second, when data is limited to merely the historical annual peak demand, 

deterministic time series models were used with the aid of advanced fuzzy 

arithmetic. An algorithm was presented which provides a range for the possible peak 

demand for the future. Accordingly, the future capacity can be planned with more 

flexibility and it can promote RETs in the energy plans and policies. 

In practice, multivariate forecasts rely on the forecast of their external variables and 

usually, the forecast of independent variables compound the forecasting efforts and it 

ends up with more uncertainty. On the other hand, univariate forecasts do not depend 

on additional external parameters that are often unknown or hard to obtain. 

Therefore, the advantage of univariate models is that they are only reliant on a single 

time series data especially when other exogenous determinants are unavailable or 

hard to obtain. 

Finally, a generalized peak demand forecasting algorithm was proposed to forecast 

the peak demand for developing countries. The model is suitable for the large 

countries that exhibit distinctive characteristic in different regions. Each region can 

be studied separately and energy demand forecast models are developed based on the 

availability of data for each case. 
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