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ABSTRACT

This study surveys the mathematical structure of a quantum error correcting codes and

the way they are developed through certain stages of error correction. In particular, the

families of Calderbank-Shor-Steane codes (CSS) and the stabilizer codes are discussed

and through elaborative examples it will be shown that the CSS codes are in the family

of the stabilizer codes. Since the study of the CSS codes depends on a firm knowledge

of classical coding theory, a rigorous mathematical review of the linear codes is done

separately. Analysing the structure of the stabilizer formalism is highly depended on

the effective use of some group theoretic notions. This structure is discussed in more

detail and examples will be given. As the ultimate application of the quantum error

correction the rules of the fault-tolerant quantum computing is explored and finding

the threshold condition of an example will be done.

Keywords: QEC, Coding theory, Stabilizer formalism, CSS codes, Fault-tolerant quan-

tum computing, Threshold condition
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ÖZ

Bu çalışma kuantum hata düzeltimin kodlarının matematiksel yapısını ve belli hata

düzeltilim evrelerinden nasıl geçtiğini incelemektedir. özellikle, Calderbank-Shor-

Steane (CSS) kod ailesi ve stabilizatör kodları ele alınarak, ve ayrıca ayrıntılı örnekler

ile CSS kodları stabilizatör kodlar ailesinden olduğunu gösterilmektedir. CSS kodları

klasik kodlama teorisine dayandığı için, matematiksel ayrıntılı bir şekilde lineer kod-

lar gözden geçirilmiştir. Stabilizatör biçimciliğin strüktürünün analizi gurup teorisi ta-

banında yapılmıştır. Bu biçimcilik detaylı şekilde tartışılacaktır ve örneklerle destek-

lenecektir. Kuantum hata düzeltimi kurallarının en uç uygulaması kusura dayanıklı

kuantum hesaplamaları incelenmiştir ve bir örnekte eşik seviyesinin nasıl bulunduğu

gösterilecektir.

Anahtar Kelimeler:Kuantum Hata Düzeltme, Kodlama teorisi, Stabilizör biçimciliği,

CSS kodları, hata düzeltimi kuantum hesaplamalar, eşik seviyesi şartı
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Chapter 1

INTRODUCTION

In 1984 Bennett and Brassard [1] invented a cryptographic key distribution using the

principles of quantum mechanics. The basic idea was if an Eve wants to read the

message sent by Alice to Bob through a transmission channel, she needs to measure

it and since the measurement destroys the state of a quantum system the existence

of the Eve can be detected. However the dawn of quantum computing goes back

1982 when Richard Feynman[30] put forward his conjecture that there is no general

purpose method that can simulate the evolution of a quantum system on a classical

computer. Later in 1985 D. Deutsch [3] proposed the concept of a quantum Turing

machine which is supposed to efficiently simulate any physical system including quan-

tum systems. A formal definition like this established a more formal way to think about

quantum computing however it was until early 90’s that the first quantum algorithms

appeared[4],[2],[12],[11]. The first of these algorithms was created by Deutsch and

Jozsa[4] in 1992 and speeded up the procedure of finding the solution of a classical

problem. As others’ attempts were turning into victory the field of quantum compu-

tation proved itself worthy of finding fast solutions for classical problems which were

known as NP-complete problems. The Shor algorithm [11],[10] contrived in prime fac-

torization of large integers in an efficient way and succeeded to break the RSA public-

key cryptosystem (This is the cryptosystem on which the internet security is based).
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Furthermore, L. Grover[5] made a great effort to propose an algorithm which made a

speed-up in unstructured search and found applications in optimization problems. And

finally Seth Lloyd[13] responded to Feynman’s conjecture by inventing the quantum

simulator algorithm in 1996. Meanwhile a question of the plausibility of making a

quantum computer which can perform these quantum computations was being asked.

The question stems from the extreme vulnerability of the quantum systems and the fact

that their interaction with the environment or the control devices make them loose their

quantumness and act like classical systems. In mid 90’s the pioneers of quantum com-

puting came up with protocols to correct for the errors arising in noisy computation

with quantum systems[26],[16]. While few proposals for the special-purpose quantum

computers, usually running a certain algorithm have been implemented to date, there

is still a long way to constructing a scalable general-purpose quantum computer due to

the substantial noise effects of the environment and controlling devices and the entan-

glement of the many qubits existing in such a quantum computer

This thesis is devoted to the study of the algorithms called quantum error correcting

codes (QECC). In addition, I give the basic concepts and methods in coding theory

upon which the QEC is developed since its advent. The tools from quantum compu-

tation needed to understand and analyse these methods are also given in the prelimi-

naries. To start analysing the framework of quantum error correction we need to know

about its more general stages, modelling the error, encoding, and error recovery steps.

This can be done using a formalism called operator-sum representation. To instance

the general scheme of QEC we look at the simplest case, the three-qubit code and

2



compare it to its classical version and then move on to other examples such as Shor

nine-qubit code. These examples are repeated throughout the thesis since different as-

pects of quantum error correcting codes can be well clarified using them. The nature

of error in quantum computation and also the condition of quantum error correction is

discussed and compared with their classical counterparts. To this end, the formal con-

struction of QEC is pinned down, however the properties and algorithms of the main

families of quantum codes need to be discussed which will be brought into the focus

of this thesis. The family of the CSS codes and then the greater family of the stabilizer

codes will be met and their structures and stages of error correction will be discussed

in detail. Finally the theory of fault-tolerant quantum computing which is the ultimate

application of the quanmtum error correction will be inspected.
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Chapter 2

PRELIMINARIES

This chapter briefly reviews the postulates of quantum mechanics and the tools re-

quired in analysing the quantum error correction codes. It aims to give a review on

the useful tools required to read the rest of this thesis on quantum error correction ap-

proaches and serves as a refresher for the reader and by no means is a review of either

quantum mechanics or quantum computation.

2.1 Quantum Mechanics

2.1.1 Postulates of quantum mechanics In

this section we review the postulate of quantum mechanics[28] and in an axiomatic ap-

proach we refer to these postulates whenever needed.

• State Space Postulate

The state |yi of a quantum system is described using a unit vector in a Hilbert

space H. In classical physics and in a two-state system with sates 0 and 1, the

classical system can be either in state 0 or in state 1. If it is in a some possible

state, the probability of the system being in that state can only be one and the

probability of the system being in the other state is definitely zero. However

this is not the case when it comes to quantum systems such as a two level atom,

systems with two states of spin, etc. the system is in a superposition of states |0i

4



and |1i, each with some amplitude a0 and a1.

a0 |0i+a1 |1i (2.1)

• Evolution Postulate

The evolution of a closed quantum system can be described by a unitary operator.

This means that if the initial state of a closed quantum system is |yii, the state

of this system after an evolution can be written as

|y f i=U |yii (2.2)

The reversibility of quantum computation is actually based on the unitarity of

quantum evolution. In quantum physics the continuous time evolution of a

closed quantum system follows from the Schrödinger equation.

ih̄
d |y(t)i

dt
= H(t) |y(t)i (2.3)

where H(t) is the Hamiltonian of the quantum system.

• Composition of Systems Postulate

When two quantum systems are treated as a single entity within a composite

system, the Hilbert space of the combined system is the tensor product of the

Hilbert spaces of each of the subsystems, HA ⌦HB. In this case the state of the

system is |yAi⌦ |yBi, where |yAi and |yBi are the state of the two subsystems.

• Measurement Postulate

For a given orthonormal basis B = {|fii} of a state space HA for a system A, it is

5



possible to perform a Von Neumann measurement on system HA with respect to

the basis B that, given a state |yi = Âi ai |fii, outputs a label i with probability

|ai|2 and leaves the system in state |fii.

2.1.2 Pure and mixed states, density matrix We

describe the state of a quantum system which is in a pure state with a state vector |yi.

To describe a system which is in an ensemble of states with different probabilities we

should mention the state of the system using the following set.

{(|y1i , p1),(|y2i , p2), ...,(|yni , pn)} (2.4)

To avoid this hurdle we may use an operator to define a quantum system of mixed

states called density operator[28]. A density operator for a pure state can be written as

r = |yihy| (2.5)

The mixed state of a quantum system is written as

r = Â
i

pi |yiihyi| (2.6)

The trace of the density operator (density matrix) equates to 1 which is the sum of

the probabilities of the results of the quantum measurement, tr(r) = 1. A calculation

which we encounter very often in our journey to quantum error correction is applying a

unitary transformation on the density operator. If we would not use the density operator

formalism we would have to denote the use of the transformation U in the following

format.

{(U |y1i , p1),(U |y2i , p2), ...,(U |yni , pn)} (2.7)
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Instead using a unitary transformation in this formalism is actually transforming the

density operators of the pure states in the ensemble of states which is

Â
i

piU |yiihyi|U† =U
✓

Â
i

pi |yiihyi|
◆

U† =UrU† (2.8)

To check whether a quantum system is in pure or mixed state we can simply check for

the following inequality.

tr(r2) 1 (2.9)

The equality occurs when the system is in pure state and the otherwise case is reserved

for the mixed state.

The probability of being in a state |fi after measurement is calculated in this way.

Â
i

pitr(|fihf | |yiihyi|)

= tr
✓

Â
i

pi |fihf | |yiihyi|
◆

= tr
✓
|fihf |Â

i
pi |yiihyi|

◆

= tr(|fihf |r) (2.10)

So to find the probability of being a certain state all we need to know is the density

matrix of the system and this means that if two system have the same density operators

they are indistinguishable. Another important usage of density operator arises when

we talk about the composite systems. Suppose a composite system consisting of two

systems A and B is constructed over HA ⌦HB then the density operator of this system

is rArB and thus the trace of the density operator of the system is tr(rArB). A usual
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operation that we face in our calculations is the trace-out operation which results in the

density operator of one of the systems building the composite system.

rA = trB(rArB) (2.11)

2.1.3 General quantum operations The

general quantum operation[28], often referred to as superoperator, appears in the frame-

work of quantum error correction and is the operation that attaches two subsystems to

form a composite system (one could be the state of the system of question and the other

subsystem the the ancilla states helping to carry out some operation in quantum com-

putation), transforms the state of the composite system using some unitary operation

and then ignores some subsystem or in other words traces out that subsystem.

rin 7! rout = trsubsystem

✓
U(rin ⌦ |ysubihysub|)U†

◆
(2.12)

It can be shown that a superoperator can be written in the following form

rin 7! Â
i

AirinA†
i (2.13)

where Ai is called is called Kraus operator and satisfies the following identity.

Â
i

AiA†
i = I (2.14)

2.2 Qubit and the model of quantum computation

2.2.1 Qubit and the Bloch sphere Ac-

cording to the postulate of state space, the state of a quantum system can be described
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by a unit vector in the Hilbert space.

|yi= a0 |0i+a1 |1i (2.15)

The probability amplitudes |a0|2 and |a1|2 add up to one. In a classical physical system

a bit accept values from {0,1} and it can be 0 or 1 at a time. This is a deterministic

system in which the probability of the system being 0 can be 1 while the probability of

the other state of the system is definitely 0. To visualize this system we may consider

the following diagram.

Figure 2.1: Visualization of the deterministic bit

We need to see the notion of a classical probabilistic bit as a stepping-stone towards

realizing a quantum bit (qubit) and its difference with the classical deterministic bit. A

probabilistic bit can take values from {0,1} with different probabilities simultaneously

and this means that it can be 0 with probability p0 and at the same time 1 with prob-

ability p1. A line connecting the two points in figure 2.2 can display a probabilistic

classical bit.

If we interpret the coefficients of |0i and |1i in the state of a state of a quantum system

or a qubit as the probability amplitudes, what is the difference between a probabilistic

9



Figure 2.2: Visualization of the probabilistic bit

and a qubit?

The difference is that a0 and a1 are complex numbers while p0 and p1 are real. A

complex number like a can be written as eif |a| where eif is called the phase factor.

The most general form of a single qubit is

|yi= cos(
q
2
) |0i+ sin(

q
2
)eif |1i (2.16)

Where q and f take values from 0 < q < p and 0 < f < 2p . The geometrical interpre-

tation of a single qubit in its most general form is a complex unit vector in unit sphere

with its head on the surface of the sphere pointing outwards. This sphere is called the

Bloch sphere[28]. Using the general form of a qubit, the polar points of the Bloch

sphere represent |0i and |1i. The points on the equatorial plane are also indicated in

figure 2.3. The use of the Bloch sphere guides us to a better understanding of the effect

of the quantum gates on qubits.

2.2.2 Circuit model of quantum computation In

quantum computation, to visualize the effects of the quantum operations on the qubits
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Figure 2.3: The Bloch sphere - visualization of a single qubit

we use the circuit model analogous to that of the classical computation. In this model

we have some wires or registers through which we feed in the input qubits and some

gates representing the quantum operations on the input qubits to give the outputs. In

|yini1 U1
|youti1

|yini2 U3
|youti2

|yini3

U2

|youti3

|0anci

|0anci

|0anci
Figure 2.4: Example of a circuit diagram

the example circuit diagram given in the above, the main input qubits |yinii are differ-

ent from the ancillary qubits called ancilla. The ancilla, often initialized to zero, help

us through different quantum operation such as swapping the values of two registers,

recovery operation in a quantum error correction framework, measuring a quantum

observable, etc. According to the postulate of measurement in quantum mechanics,
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when a measurement is performed the result of the measurement is an eigenvalue of

the observable. In fact the output of the measurement on a circuit diagram is the eigen-

state associated with that particular eigenvalue while the result of the measurement is

a completely classically probabilistic value which is the eigenvalue.

When computing the output of a circuit the following hints come very useful. The

input consisting of multiple qubits is, in fact, the tensor product of those qubits. So the

input to the above diagram is

|yini1 ⌦ |yini1 ⌦ |yini1 ⌦ |0anci⌦ |0anci⌦ |0anci (2.17)

Furthermore, to apply the gates on the tensored input qubit we need to tensor the gate

along the same instance of the circuit, that is

(U1 ⌦U1 ⌦ I ⌦ I ⌦ I ⌦ I)(I ⌦ I ⌦U2 ⌦U2 ⌦U2 ⌦ I)(I ⌦U3 ⌦U3 ⌦ I ⌦ I ⌦ I) (2.18)

where I is the identity operator. Each parenthesis corresponds to an instance of the

circuit. An instance is a time slice of the circuit during which at least one qubit passes

through a gate and the circuit goes one step further.

2.2.3 Quantum gates The

quantum gate[38] that are usually dealt with throughout this thesis are the Pauli matri-

ces.

I =

0

BB@
1 0

0 1

1

CCA X =

0

BB@
0 1

1 0

1

CCA
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Y =

0

BB@
0 �i

�i 0

1

CCA Z =

0

BB@
1 0

0 �1

1

CCA (2.19)

These are unitary operators which are in line with the reversible nature of quantum

computation. The effect of the X gate is in fact the action of a NOT gate, which means

that

X(a0 |0i+a1 |1i) = a1 |0i+a0 |1i (2.20)

Here is the effect of the Z gate.

Z(a0 |0i+a1 |1i) = a0 |0i�a1 |1i) (2.21)

The Dirac notations of the X and Z gates are really helpful.

X = |1ih0|+ |0ih1| (2.22)

Z = |0ih0|� |1ih1| (2.23)

And since Y = iXZ the effect of Y can be simply found out as below.

Y (a0 |0i+a1 |1i) = a1 |0i�a0 |1i (2.24)

Since two qubits are equivalent up to a global phase we can neglect the factor i in

equation 2.24. Using the Bloch sphere we can visualize the effect of these gates. The

X gate rotates a state vector on the sphere with p . This means that if the state vector is

at the north pole |0i it will be rotated to the opposite pole |1i. If the state vector is at
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the north pole of the sphere then the Z gate has no effect on it, however it changes |1i

to � |1i. These gates are all single qubit gates where the inputs and outputs are only

one qubit. Among the multiple qubit gates, the CNOT gate is very useful. The CNOT

gate is a two-qubit gate in which one register acts a control wire on the action of the

gate and the other register acts as the target wire on which the gate is applied. The

scheme of the gate is as follows. If the value of the control qubit |xi is equal to one

|xi • |xi
|yi X |x� yi

Figure 2.5: The diagram of a CNOT gate

the X gate flips the value of the the target qubit |yi and if it is equal to zero the X gate

takes no action. In practice, the value of the target qubit is often set to zero. In classical

CNOT gate if the value of the target bit is set to zero then the CNOT gate is used for

copying the value of the control bit onto the output on the target wire. However this

is not the case when it comes to quantum computation due to the no-cloning theorem

as we will see in section 4.1. In general a controlled U gate (c-U) can be constructed

using a control wire and a target wire.

•
U

Figure 2.6: Controlled U gate (c-U)
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The action of this gate[28] can be shown using the Dirac notation.

|0ih0|⌦ I + |1ih1|⌦U (2.25)

If the value of the control qubit is zero only the identity gate on the target qubit acts

and in another case if this value is one the U gate comes into play and the identity gate

does nothing.

Another useful single qubit gate which will have widespread use throughout the chap-

ters is the Hadamard gate with the matrix representation below.

H =
1p
2

0

BB@
1 1

1 �1

1

CCA (2.26)

The effects of the Hadamard gate on |0i and |1i are given.

H |0i= |+i= 1p
2
(|0i+ |1i) (2.27)

H |1i= |�i= 1p
2
(|0i� |1i) (2.28)

The |+i and |�i are called the Hadamard basis and are sometimes used in measure-

ments. |0i and |1i are called the computational basis. Sometimes in quantum circuits

we may desire to measure an observable in the Hadamard basis so that we need to ap-

ply the Hadamard transformation to the computational basis. The output of this gate on

computational basis vectors can be realized using the Bolch sphere. The Hadamard ba-

sis vectors are the points on the X axis of the equatorial plane shown in figure 2.3. This

means that the Hadamard gate applies a 90 degree rotation when applied on |0i and |1i.
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A very useful 3-qubit gate is the Toffoli gate. The Toffoli gate consists of two con-

trol wires and a target wire. It is in fact a controlled controlled NOT gate (CCNOT)

with the two control wires being in state |1i for the X gate to act on the target.

|xi • |xi
|yi • |yi
|zi X |x� y� zi

Figure 2.7: Toffoli gate

2.3 Classical noise, quantum operations, and quantum noise The

discussion of this section is motivated by its many later uses throughout the thesis[27].

A closed quantum system is the one that has no undesired interaction with its environ-

ment. Undesired interactions with the outside world provoke noise in quantum infor-

mation processing systems. In order to suppress the errors in a noisy channel, first we

will need to model the error where quantum operations are powerful tools to do so. As

one of the postulates of quantum mechanics, the dynamics of closed quantum systems

is described by unitary transformations which is a function of time. Here in analysing

the open quantum systems, quantum operations provide us with transformations that

describe the state of a quantum system at a final time with respect to the initial state of

the system. It also enables us to consider different scenarios including nearly closed

systems which have weak interactions with their environment, open system with strong

environmental coupling, as well as closed systems which become abruptly open to a

measurement operation. Prior to any description of quantum noise through quantum

operations it is worth having a short look at the classical noise. Classical information

systems made of 0s and 1s may undergo noisy channels where these bits get scrambled.
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Given that X and Y are the initial and final states of the bit, respectively, the probability

of the state of the bit being in Y is

p(Y = y) = Â
x

p(Y = y|X = x) p(X = x) (2.29)

where the conditional probability p(Y = y|X = x) is the transition probability between

the initial and final states. The probabilities of the states of the bit being in 0 and 1 are

p0 and p1 for the initial state, and q0 and q1 for the final state. These equations in (1)

can be written as 0

BB@
q0

q1

1

CCA=

0

BB@
1� p p

p 1� p

1

CCA

0

BB@
p0

p1

1

CCA (2.30)

The probability of a bit-flip error is denoted by p in the above equation and therefore

the probability of no error is given p�1. Also in this equation the 2⇥2 matrix is the

transition matrix which in general can be written using this equation

~q = E~p (2.31)

Here E, the evolution (transition) matrix holds the following properties: i. Positivity:

All the entries of E must be non-negative otherwise the probability of the final state

would be negative.ii. Completeness: All the columns of E must sum to one since we

need the sum of the probabilities to be normalized to one.In multiple-stage processes

(like having several gates in a circuit) it is reasonable to assume that that each gate

works correctly is independent of other gates working correctly or faulty. This process

which is known as a Markov process.To tackle the quantum noise we use density ma-

trix since we have an ensemble of states instead of using a vector with its entries being
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probability values. One can write this transformation as

r 0 = E (r) (2.32)

where E is a quantum operation. Unitary transformation UrU† and measurement

MrM† are examples of quantum operation where the density matrix is transformed

using the corresponding operator. Now in describing the changes (initial and final

states) of an open quantum system subject to noise we may take two approaches which

are equivalent. The first approach is the natural way of thinking about noise in quan-

tum systems and that is assuming the state of the system and the environment (source

of noise) as a product state of both. So the joint state is r ⌦renv. This assumption may

not be realistic since when the system undergoes a faulty channel and couples with

the environment it in fact gets correlated with the environment’s state. Nevertheless,

in practice we need to avoid these correlations experimentally and therefore this as-

sumption is reasonable. Thus to obtain the state of the system we need to trace out the

environment’s contribution

E (r) = trenv[U(r ⌦renv)U†] (2.33)

The other approach which leaves room for more mathematical convenience is called
operator-sum representation. Equation 2.33 can be re-stated as below.

E (r) = Â
k
hek|U [r ⌦ |EihE|]U†|eki

= Â
k
hek|U [|Eir hE|]U†|eki= Â

k
EkrE †

k (2.34)
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Where |Ei is the initial state of the environment and |eki are a basis for the environment

space. Here Ek = hek|U |eki are Kraus operators and satisfy the condition below

Â
k

E †
k Ek = I (2.35)

with I being the Identity. This condition is a result of the quantum mechanical version

of the completeness relation which requires that the trace of the system’s final state

density matrix must sum to one.

tr(E (r)) = tr[Â
k

EkrE †
k ]

= tr[Â
k

E †
k Ekr] = 1 ) Â

k
E †

k Ek = I (2.36)

Here we use the cyclic property of trace and the fact that the trace of r must sum to

one. The operators {Ek} of the quantum operation are called the operation elements

which will meet them later as error operator when modelling the errors in quantum

error correction procedures.
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Chapter 3

CLASSICAL CODING THEORY

This section provides an introduction to the coding theory and specifically the linear

codes[45]. The two main families of error correcting codes are linear and cyclic codes.

The study of the structure and construction of linear codes is motivated by their use in

establishing the early quantum error correcting codes such as Steane 7-qubit code and

quantum Golay code, a 23-qubit quantum code[34]. The constructions of these codes

are based on the 7-bit Hamming code and Golay code[46], respectively.

The main aim of creating error correcting codes is to protect the information sent

through a transmission channel by adding some extra bits. The physical implemen-

tation of a transmission channel as well as the process of sending and receiving a mes-

sage are prone to error, in such a way that a bit with a bit value of 0 may be changed to

1 or vice versa. It is in this context that we need to implement protocols known as error

correcting codes alongside the main procedure of sending and receiving messages.

Before formally introducing the linear codes, it is worth reviewing the simple example

of the three-bit repetition code. Studying this code helps us pin down the basic notions

of coding and further to extend these concepts to the quantum version of it.
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When being transmitted from one point to another point of a computer or even be-

ing stored, the information may be affected in an undesired way. We usually call this

unwanted influence a channel. The simplest channel we know is called a bit-flip chan-

nel and is described in the concept of the binary symmetric channel.

In a binary symmetric channel

• The probability with which the bit value is flipped from 0 to 1 is equal to the

probability of flipping a 1 to a 0.

• The probability p of flipping is equal for all bits and is p < 1
2 .

• The bit flips on distinct bits occur independently from each other.

The diagram below illustrates this channel. So the probability of no error is 1� p.

Figure 3.1: The scheme of the binary symmetric channel

It is note-worthy that the channel through which no error occurs is called an identity

channel.

3.1 Three-bit Repetition Code The

three-bit repetition code[28] is a toy model to demonstrate the procedure of protecting

information against one such channel. The first step, as it was pointed out earlier, is to
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add a few ancillary bits (redundancy). So in a 3-bit code a single bit (0 or 1) is extended

to a string of three bits. As we will see later these ancilla need to be initialized to 0.

Therefor, we have

0 ! 000

1 ! 100

As the next step, encoding maps the resulted string to some altered bit sequence of

the same length according to the code. In the specific case of the repetition code, It is

mapped to a sequence of repeated bits, repeating the first bit; consequently called the

repetition code.

0 ! 000 ! 000

1 ! 100 ! 111

After encoding the ancilla (the last two bits in boldface) are called parity-check bits. In

general encoding extends the vector space of the message to a larger space. The vector

space of all triplets of {0,1} has 8 elements out of which we choose only 2 of them

through encoding to serve as our logical zero 0L = 000 and logical one 1L = 111. The

encoding process is being done through a couple of classical CNOT gates as shown

in the circuit diagram where l 2 {0,1}. A code is in fact a set consisting of these

encoded bit strings. The elements of a code are called codewords. The next stage

of an error correction is the recovery operation and decoding to get back the original

message. We need to recover the initial message through recovering the codeword

undergone a number of bit-flip errors. The idea of adding redundancy to the sent
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l • • l
0 l
0 l

Figure 3.2: Encoding circuit for the three-bit code

message is actually based on the fact that we may decontaminate the encoded message

using the information from the ancilla bits with some probability. The entire set of

erred codewords are given below provided that the input codeword is 000.

000 ! {((1� p)3,000),(p(1� p)2,100),(p(1� p)2,010),(p(1� p)2,001),

(p2(1� p),011),(p2(1� p),101),(p2(1� p),110),(p3,111)} (3.1)

For example, if the error has occurred on the first bit with probability p the other two

bit remain intact with probability (1� p)2 and if the first and the third bits have been

flipped the probability of occurrence of this word will be p2(1� p). The recovery op-

eration can be done by comparing the value of each bit with the other two and try to

guess the flipped bit based on the value of the majority bits. For instance, if the word

101 is received, one may conjecture that the second bit has been flipped and reverting

to 1 yields the initial codeword 111 and therefore the message has to be 1. While this

could be a possibility another one is that two errors might have happened instead of

one and hence the sent codeword might have been 000. As we will see later through

the notions of coding theory the 3-bit repetition code is a single-error correcting code

in a sense that having two or more errors leads to a set of unrecoverable errors. So the

set of correctable errors of this code is {000,100,010,001}. As we will see the idea of
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comparing the bit values coincides with the notion of nearest neighbor decoding.

Although comparing the bit values in order to determine the corrupted bit is possi-

ble in classical computation, due to the restrictions imposed by quantum mechanics

we will not be able to do so in quantum error correction and since we are interested to

extend the results of this study to quantum codes we must devise another scheme. As

long as we suppose that up to one bit flip has occurred we can determine the bit flipped

through computing the bits parities. The bits parity is computed by adding modulo 2

(XOR) of two bits. In this way when the values of the two bits agree the parity will be

zero (even) and it is one (odd) when the two are not like bit values. For example, if the

received word is 100 then the parity of the first and the second bits as well as that of

the first and the third bits is 1 which implies that the first bit is different from the other

two and needs to be reversed so as to get the recovered codeword. The computed par-

ities is called syndrome and plays an important role throughout the study of classical

error correcting codes as well as the quantum error correction. In a circuit diagram the

syndrome measurement is demonstrated by CNOT gates and the recovery operation

is displayed using a three-bit Toffoli gate as shown below. The additional ancilla bits

l
bit f lip

• • l

l • l

l • l
0 • •
0 • •

Figure 3.3: The circuit diagram for the three-bit repetition code
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initialized to zero are reserved for the syndrome measurement purpose and the hollow

controls in the recovery gates show that the corresponding wires are conditioned to be

zero in order to get the Toffoli gates act on the target bits. As we can see the idea of

computing the syndrome is essentially based on the comparison we made between the

bit values.

As we have seen having indistinguishable received codewords we encounter a set of

unrecoverable errors. So as to deal with a correctable set of errors we should consider

only those errors that yield codewords from disjoint subsets, i.e.

Ei(k) 6= E j(l) ; l 6= k (3.2)

where l and k are the logical zero and one and i and j indicate specific correctable

errors. This is the general criterion for error correction and the fulfillment of this con-

dition guarantees the existence of a recovery operation. Since this condition requires

the errors to be from disjoint subsets of the entire set of errors one can think of an

orthogonality condition for the correctable errors, however, this is not necessarily the

case in quantum error correction and the condition that the correctable errors need to

be orthogonal is relaxed to some extent(see section 4.2).

The following includes the definitions and propositions needed for studying the lin-

ear codes. Word w is a string over an alphabet Fq or GF(q), with Fq (GF(q)) being

a finite field of q elements. For the purpose of error correcting codes q = 2 with the

elements of the finite field or the alphabet being {0,1}. Hamming space Fn
q = H(n,q)
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is the vector space of all words of length n over GF(q). A code is a subspace of the

Hamming space H which contains at least two words and therefore the elements of

this subspace are called codeword. The 3-bit repetition code is a subspace with two

elements of F3
2 which has eight elements and the codewords are 000 and 111. Given

these codewords, the Hamming distance d is the minimum number of entires of one

of the bit strings which need to be altered in order to get the other one, hence d = 3

for the 3-bit repetition code. The Hamming distance has the properties of a distance

(metric) function. We have the following proposition.

Proposition 1 Given that u, v, and w are codewords,

i d(v,w)� 0 with equality iff v = w.

ii d(v,w) = d(w,v).

iii d(u,v)+d(v,w)� d(u,w).

The smallest distance between two distinct codewords of a code is called the minimum

distance. The following proposition helps us understand why the 3-bit repetition code

is a single-error correcting code.

Proposition 2 A code with minimum distance d is capable of correcting up to t errors

iff d � 2t +1.

Knowing that d = 3 the maximum number of error that can be corrected by the afore-

said code is 1, using the above proposition. Another notion that may be useful is the

Hamming weight of word w, wt(w), which is the number of nonzero bits of the word.
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The minimum weight of a code is the smallest weight of a nonzero codeword of the

code.

Notation We often use [n,k,d] or [n,k] to denote a certain code minimum distance

d and encoded words of length n while the length of the word before encoding is k.

The 3-bit code is a [3,1,3].

3.2 Linear Codes In

this section we deal with the definitions and useful theorems and propositions to study

the linear codes so this is a more formal approach to coding theory. As mentioned ear-

lier linear codes set the foundations for us to further study the quantum error correcting

codes and in particular the Calderbank-Shor-Steane codes or CSS codes in short.

A linear code C of length n over GF(2) is a subspace of the Hamming space H(n,2).

The repetition code is an example of linear codes.

C = {(l, ..., l) ; l 2 F2} (3.3)

Given that C? is a subspace of H(n,2) it is the dual code of C if any vector v in C? is

orthogonal to any element of C. So we can write

C? = {v 2 H(n,2) ; v.w = 0 8w 2C} (3.4)

where v.w is the inner product of the two vectors. We have the following theorem for

C and its dual.

27



Theorem 1 Let C be a linear code of length n over GF(2). Then,

1 |C|= 2dim(C), i.e. dim(C) = log2 |C|;

2 C? is a linear code and dim(C)+dim(C?) = n;

3 (C?)? =C

If C ✓C? then C is called a self-orthogonal code and if C =C?, it is called a self-dual

code.

The two algorithms to be specified below provide us with a method to find a basis

(not unique) for C and C? and gives out the generator and the parity-check matrices

for C which are the building block of encoding and decoding in error correction.

Algorithm 1

Input A nonempty subset S of H(n,2).

Output A basis for C = Span(S), Span(S) being the span of S and therefore S is the

spanning set of C.

Description

1. Form the matrix A with its columns the vectors in S.

2. Take this matrix to the row echelon form (REF).

3. Pick the nonzero rows to form a basis for C. These rows are independent.

Algorithm 2

Input A nonempty subset S of H(n,2).
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Output A basis for C? ; C = Span(S).

Description

1. Form the matrix A with its columns the vectors in S.

2. Take this matrix to the reduced row echelon form (RREF).

3. Form the matrix G to be the k⇥n matrix of nonzero rows of the RREF of A.

A !

0

BB@
G

0

1

CCA (3.5)

This is called the generator matrix of C.

4. Permute the columns of G to form
✓

Ik | X

◆
(3.6)

where Ik is the k⇥ k identity matrix. This called the standard form of the gener-

ator matrix G .

5. Form the following matrix.
✓

XT | In�k

◆
(3.7)

This is called the parity-check matrix H of C.

6. Pick the rows of H to form a basis for C?. These rows are independent.

For a [n,k,d] linear code the generator matrix G is a k⇥n matrix and the parity-check

matrix H is a (n�k)⇥n matrix. The second algorithm also provides a basis for C by
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computing the generator matrix G . To verify this one can simply check that the rows

of G are in C and for the linear independence of these rows.

Since the rows of H form a basis for C? then the span of its rows must be in C?.

As we know the vectors (codewords) in C? are orthogonal to the elements of C or

equivalently the span of rows of G . Therefore a (n� k)⇥ n matrix H with linearly

independent rows that meets the requirement H G T = 0 is a parity-check matrix for

C. This could be verified by simply writing the matrices G and H in their standard

forms.

H G T =

✓
XT | I(n�k)

◆

0

BBBBBB@

Ik

��

XT

1

CCCCCCA
= XT +XT = 0 (3.8)

The last addition is addition modulo 2 and hence results in zero when adding two equal

digits. In practice what we are given is the generator or the parity-check matrix of a

particular code and we can find the other one using algorithm 2 for our encoding and

decoding purposes.

3.3 Encoding A

basis for C, [n,k] can be written as {r1, ...,rk}. C as subspace of the Hamming space

H(n,2) possesses 2k elements of the total elements of H(n,2) which are 2n. Each of

these 2k codewords of C can be written as a linear combination of the basis. Having

v 2C,

v = u1r1 + ...+ukrk (3.9)
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where ui 2 GF(2) or we can consider the base vectors ri as the rows of the generator

matrix G and uis as the coordinates of the vector u = (u1, ...,uk) 2 Fk
2 . Then we can

write

v = uG = u1r1 + ...+ukrk. (3.10)

Every word in Fk
2 can be encoded using the generator matrix G whose rows are a basis

for the code C. The encoding gives the codewords in C. Given C in its standard form

we get an insight into the result of the encoding procedure, namely the codeword.

v = uG = u
✓

I | X

◆
=

✓
u | uX

◆
(3.11)

So the first k bits of the codeword are in fact the initial word that was encoded and

called the message bits and the last n�k bits which are the redundancy added to protect

the information against noise are called the check bits.

3.4 Decoding Prior

to any attempt to decode an encoded message the notion of coset of the code C and its

associated definition, coset leader, should be pinned down. A coset of C determined

by u is defined

C+u = {v+u ; v 2C} (3.12)

where u 2 H(n,2). For example the cosets of the following code

C = {0000,1011,0101,1110}

are arranged in an array called (Slepian) standard array. A word of minimum weight

in a coset is called a coset leader. So the first element of each coset is a coset leader

for that coset. The following is a very useful theorem about the properties of cosets of
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Codeword! 0000 1011 0101 1110

Cosets# 0000+C 0000 1011 0101 1110

0001+C 0001 1010 0100 1111

0010+C 0010 1001 0111 1100

1000+C 1000 0011 1101 0110

Table 3.1: Slepian standard array

a code C.

Theorem 2 Let C be an [n,k,d] linear code over GF(2). Then,

i every vector of Fn
2 is in some coset of C;

ii for all u 2 Fn
2 , |C+u|= |C|= 2k;

iii for all u,v 2 Fn
2 , u 2C+ v implies that C+u =C+ v;

iv two cosets are either identical or have empty intersection;

v there are 2n�k different cosets of C;

vi for all u,v 2 Fn
2 , u� v 2C iff u and v are in the same coset.

3.4.1 Nearest Neighbor Decoding The

idea upon which the nearest neighbor decoding is based is to find a codeword that is

closest to the received word w. In other words the codeword with the minimum dis-

tance is the most probable codeword that was initially sent before any error has oc-

curred. Given that the original codeword sent is v, then the distance between v and w
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gives the error e.

e = w� v (3.13)

Since v is in C and using the fact that addition and subtraction are equivalent in binary

arithmetic then we can say e = w� v 2 w+C where w+C is a coset of C. Therefore

w�e= v2C and by theorem 2 (vi) both w and e are in the same coset. The error string

is supposed to be of least weight or in other words very small (like one bit flip, oth-

erwise it leads to the unrecoverable set of errors) so it can be considered as the coset

leader in w+C. Adding the coset leader to the received word w we most probably

reach at the original codeword that was sent.

The following example uses the nearest neighbor decoding with C = {0000,1011,0101,1110}

and the standard array given before.

Suppose that received word is w = 1101. We look up for w in the standard array

which is in the last coset 1000+C. Then we find the coset leader and add it to the

given word to find the codeword which is closest to w.

coset leader = 1000

codeword = 1101+1000 = 0101

0101 is the element at the top of the same column as w is located. Noted that the coset

0100+C as well as cosets determined by words of weight greater that 2 are not in-

cluded in the standard array since they are the same as the present cosets and therefore

lead to ambiguity.
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2 

3.4.2   Syndrome Decoding 
 

 
is a time-consuming task for codes of larger length n to search for the received word 

in a look-up table like the standard array. Syndrome decoding uses the notion of syn- 

drome in coding theory and its properties to find the word in a look-up table called 

standard decoding array (SDA) and then to decode it. 

 
 
 

Given a [n,k,d] linear code with the parity-check matrix H , the syndrome of a word 
 

w ∈  H (n, 2) is given by  
 
 
S(w) = wH T (3.14) 

 
 
 
 

The word syndrome is in F n−k . The following theorem states the important properties 

of syndrome. 

 
Theorem 3 For v, w ∈  H (n, 2), we have 

i S(v + w) = S(v) + S(w); 

ii S(v) = 0 iff v is in C; 
 
 

iii S(v) = S(w) iff v and w are in the same coset of C. 
 
 

iii in theorem 3 enables us to indicate a coset by its syndrome and on this ground we 

can set up look-up tables which do not require us to search for the received word. 

Instead, we can compute the syndrome of the given word using the definition of syn- 

drome and look for the coset leader associated with that syndrome. After finding the 



proper coset the received corrupted word belongs to we are able to flip back the erred

bit in the word by adding it to the coset leader which is in fact the error pattern. Since

S(w) 2 Fn�k
2 , there are at most 2n�k distinguishable syndromes which is equal to the

number of distinct cosets. The example of the [7,4] Hamming code illustrates the pro-

cedure of syndrome decoding.

The family of Hamming codes developed by R. W. Hamming. For r � 2 a Hamming

code is a code of length n = 2r �1 and has a parity-check matrix H with its columns

being all nonzero words in Fr
2 . The distance of all Hamming codes is 3 and hence they

are all single-error correcting.

The parity-check matrix for the [7,4] Hamming code is given as

H =

0

BBBBBB@

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

1

CCCCCCA
(3.15)

With r = 3 this code transforms a word of length 4 to a codeword of length 7, so there

are 16 codewords in total. We can arrange the SDA of the code alongside its cosets in

a single look-up table.

C = {0000000,0001111,0010011,0011100,0100101,0101010,0110110,0111001

,1000110,1001001,1010101,1011010,1100011,1101100,1110000,1111111}

.(3.16)
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Using Table ?? we may compute the decontaminated codeword. Given that the re-

ceived word is 1101001 we compute it syndrome which is

S(1101001) = wH T = (1101001)

0

BBBBBBBBBBBBBBBBBBBBBB@

1 1 0

1 0 1

0 1 1

1 1 1

1 0 0

0 1 0

0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBB@

1

0

1

1

CCCCCCA

So the original codeword must be 1101001+0100000 = 1001001.

C[7,3] is the dual code of C but it is not a Hamming code since n 6= 2r �1 with r = 4,

however it is a linear code. C[7,4] and its dual C?[7,3] are the materials from which

we construct the most well-known member of the family of CSS codes, 7-qubit Steane

code.

I. Gachkov has developed a useful Mathematica package ”CodingTheory”. One can

use this package for encoding, decoding, finding the coset leaders, syndromes, etc. and

to regenerate the same results.
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Chapter 4

GENERAL SCHEME OF QUANTUM ERROR CORRECTION

Based on our knowledge of the main procedure of classical error correction, in this

section I will review the most important aspects of a general scheme of quantum error

correction. Prior to exploring these steps, first, I will look into the differences from

classical error that quantum errors feature, and secondly, conditions for quantum error

correction will be briefly discussed. The final discussion will scrutinize the causes of

errors in quantum systems and modeling them.

4.1 Error considerations in quantum error correction In

coding theory data repetition or copying is vastly used in order to encode a given bit

of information. One of the differences with classical error correcting codes one should

be aware of is the restriction which no-cloning theorem brings about. According to

the no-cloning (or non-cloning)theorem there is no such transformation (superoperator

or general quantum operation for the case of mixed states)that results in the following

mapping

|yi |fi ! |yi |yi (4.1)

where |fi is the ancilla. In other words, there is no perfect copying of a quantum state.

The theorem and a simple proof[35] are given below:
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Theorem 4 (No-cloning) .There is no quantum operation that takes a state |yi to

|yi⌦ |yi 8 |yi.

Proof,The proof is based on the fact that due to the linearity of quantum mechanics,

transformations must be linear while the cloning operation is not,

|yi ! |yi |yi (4.2)

|fi ! |yi |yi (4.3)

(|yi+ |fi)! (|yi+ |fi)(|yi+ |fi) (4.4)

The last mapping shows the cloning operation defying linearity.

Another important fact in which quantum error correcting codes differ from the classi-

cal ones is that the direct measurement of the encoded qubits destroys it since it leads

the quantum state to collapsing into one of its eigenstates. In other words, we cannot

collect any information about the coefficients a and b in |yi through direct measure-

ment. Instead, we can measure the syndrome of the encoded qubits. In addition to bit

flip which occurs in classical coding theory, qubits are also subject to phase flip. These

errors can be simply modeled using X and Z operators from the Pauli group.

X (a0 |0i+a1 |1i) = a0 |1i+a1 |0i (4.5)

Z (a0 |0i+a1 |1i) = a0 |0i�a1 |1i (4.6)

Furthermore, unlike the classical coding, errors influencing qubits have continuous

nature, i.e. bit flip and phase flip do not occur in their complete form, instead qubits

experience any arbitrary angular shift[40]. However we can show that the continuous

evolution of a single qubit coupled with the environment can be digitized which is
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a requirement for error correction. First, let us consider an abstract case where the

system and the environment are in |yi= a0 |0i+a1 |1i and |Ei, respectively. Suppose

the continuous evolution of the product state of the system-environment requires the

environment evolves into different states so

(a0 |0i+a1 |1i) |Ei !a0 |0i |E0
0i+a0 |1i |E1

0i+a1 |1i |E1
1i+a1 |0i |E0

1i

=
1
2
(a0 |0i+a1 |1i)(|E0

0i+ |E1
1i)

+
1
2
(a0 |0i�a1 |1i)(|E0

0i� |E1
1i)

+
1
2
(a0 |1i+a1 |0i)(|E1

0i+ |E0
1i)

+
1
2
(a0 |1i�a1 |0i)(|E1

0i� |E0
1i). (4.7)

Here, the sub- and super-scripts of the state into which environment evolves indicate

the initial state and the final state of the qubit, respectively. Now we can rewrite the

states of the qubit in terms of the Pauli matrices as follows.

a0 |0i+a1 |1i= I |yi (4.8)

a0 |1i+a1 |0i= X |yi (4.9)

a0 |0i�a1 |1i= Z |yi (4.10)

a0 |1i�a1 |0i= XZ |yi (4.11)
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Therefore the final state can be restated as

|yi |Ei !1
2

I |yi(|E0
0i+ |E1

1i)

+
1
2

X |yi(|E1
0i+ |E0

1i)

+
1
2

Z |yi(|E0
0i� |E1

1i)

+
1
2

XZ |yi(|E1
0i� |E0

1i) (4.12)

So while the errors are continuous in nature we can be sure when correcting errors

we are dealing with a finite set of discrete errors. If we are aware of a bit-flip error

having occurred in the qubit state, then we can simply deduce that |E0
0i = |E1

1i and

|E1
0i= |E0

1i which yields the final state of the system-environment to be

|yi |E0
0i+X |yi |E1

0i (4.13)

As an effect of bad control of the gates through which the qubit is passed it can un-

dergo an inaccurate rotation about the x axis of the Bloch sphere which may result in

|E0
0i = c |E1

0i for some constant c. Hence, the environment state can factored out and

the final state can be written as (cI +X) |yi⌦ |E1
0i in which case the error is called

coherent. The otherwise case where the environment cannot be pulled out is called

incoherent error. The discussion above is rather abstract regarding the continuous na-

ture of quantum noise. The following example can realize it. Assume that the error is

coherent and the environmental coupling runs the system into a dephasing (an arbitrary

rotation about the z axis of the Bloch sphere) of the qubit, i.e.

(a0 |0i+a1 |1i) |Ei ! a0 |0i+a1eiq |1i (4.14)
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Note that the arbitrary phase shift also influences |0i through another angle, say, eiq

but its phase change can be factored out resulting in an immeasurable global phase. We

can see what we mean by ”continuous” when we talk about quantum noise. Slightly

changing the angle q results in close erred states, although this can be treated as dis-

crete error as we discussed earlier.

a0 |0i+ eiq a1 |1i= (
1+ eiq

2
)(a0 |0i+a1 |1i) |Ei+(

1� eiq

2
)(a0 |0i�a1 |1i) |Ei

= (
1+ eiq

2
) |yi |Ei+(

1� eiq

2
)Z |yi |Ei

(4.15)

While we can digitize the continuous error, we can see that the probability amplitude

is continuous and it is totally different from the case that we have a complete phase-

flip error. It is worth noting that for a system of mixed states we can find the error

discretezation, however it should be stated in terms of operator-sum representation.

4.2 Quantum error correction criteria In

the following we will examine the necessary condition for an error correcting code to

exist regardless of the structure of the recovery quantum operation. So we will establish

our discussion on errors acting on qubit states. As for our discussions on represent-

ing quantum noise in the first chapter, we would use the operator-sum representation

in this chapter. So the errors are the operation elements or the Kraus operators intro-

duced in that section.In classical error correction, to correct two different errors we

must make sure that all codewords are different after being influenced by the erros. In

other words different errors map the codewords to disjoint subspaces of the codespace,

which means that we are allowed to consider an orthogonolity condition for these er-
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rors, that is zero for different errors and nonzero for the same error mappings. Now the

requirement for a quantum error correcting code to exist looks like the same, i.e. dif-

ferent error operators must meet the orthogonality condition as well as the qubit states

(or in fact the codewords consisting of qubits):

hl|E †
i E j|mi= 0 (4.16)

Where m and l are the codewords in some codespace (or as we call them encoded

qubits). In fact the above equation is a sufficient condition but not a necessary one. To

obtain the necessary condition for the existence of a quantum error correcting code we

will do an observation through an example. The example is the well-known nine-qubit

Shor code which we will explore it later in exclusive sections elaborately. Consider the

encoded qubits (codewords)

|0i ! |0Li = (|000i+ |111i)(|000i+ |111i)(|000i+ |111i) (4.17)

|1i ! |1Li = (|000i� |111i)(|000i� |111i)(|000i� |111i) (4.18)

where |0Li and |1Li are called logical 1 and logical 0, respectively. As for the classical

case, here we encode the original qubits to protect them using ancilla qubits (analogous

to check bits in classical coding theory). The Shor code can correct a bit flip and a

phase flip even if they have occurred on different qubits. The bit flip errors can be

corrected through the inner layer [35] of the code which is (as an example)

|100i+ |101i ! |000i+ |111i (4.19)
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Here the correction has been done using the majority vote of the qubits where we

need to measure the encoded qubit and therefore to disturb it. However, the original

correction procedure is done by measuring the syndrome (parity) introduced to some

ancilla so we do not observe the encoded qubits.

Regarding the phase flip errors, they are corrected using the outer layer of the code,

i.e. the majority of signs of each block of three qubits.

(|000i� |111i)(|000i+ |111i)(|000i� |111i) ! (|000i� |111i)(|000i� |111i)

(|000i� |111i) (4.20)

Now consider a phase flip error on the first qubit and the same error on the second qubit.

These two different error operations lead to the same erred codeword and therefore a

degeneracy is observed in the code. So the Shor code cannot tell us where the phase

flip error has occurred unlike the case of the bit flip error where the corrupted qubits

were determined by the code. Nevertheless, it can correct the corrupted codeword with

a single Z operation on either qubits, the first or the second one. This observation is

telling us that equation 4.16 is insufficient in establishing a solid basis for the existence

of a recovery operation (one that does not disturb the encoded qubit state as in the

approach based on the majority vote). We expect to have distinct codewords after the

error has occurred on two different codewords to meet the orthogonality condition

h0L|E †
i E j|1Li= 0 (4.21)

which agrees with equation 4.16. Moreover, if one consider the case where the initial

codewords are the same while the error operators are different then the condition below
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is not necessarily needed and it may not even be correct for all error operators.

h0L|E †
i E j|0Li= h1L|E †

i E j|1Li= 0 (4.22)

To continue our observation and to find out more we will compute the value of the

braket 4.16 for the logical zero given above in the remaining of this section. In fact,

values of 4.16 for different phase flip errors that act on different qubits of logical zero

form a matrix of the form below. The error operators are just the tensor product of Z

and I. Here are examples of error operators.

E1 = Z1 = Z ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I (4.23)

E2 = Z2 = I ⌦Z ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I (4.24)

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8 8 8

8 8 8

8 8 8

0 0

0

8 8 8

8 8 8

8 8 8

0

0 0

8 8 8

8 8 8

8 8 8

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Obviously, we can see that not all nondiagonal elements are zero which confirm our

expectation with several other cases of different error operations and nonzero valus of
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4.16. So one can write 4.16 more properly as

h0L|E †
i E j|0Li= h1L|E †

i E j|1Li (4.25)

This equation allows the mapping of two different errors into the same subspace of the

codespace which is not allowable in classical error correction since it makes indistin-

guishable states. One might ask whether these errors are correctable instead of being

distinct. In other words, we should ask if there is any invertible operation that can re-

cover the codeword and correct the error. So in quantum error correction orthogonality

is not the condition that has to be met in order to have an error correcting code correct

the errors but instead we can write

hl|E †
i E j|mi=Ci jdlm. (4.26)

To see a derivation of the sufficient and necessary condition (Knill-Laflamme criteria)

you can see [29]. A quantum error correcting code corrects the errors of an error

family E if and only if the condition in 4.26 is satisfied. Which means that if we

have some family of errors fulfilling this requirement we are able to find a recovery

operation R that can correct those errors. Equation 4.26 also implies that the relative

coefficients of different qubits undergone an error do not change which in fact means

that we do not face any more complication.For further discussion we can consider all

the errors of an error family E that fulfill the orthogonality condition. To find such error

operators we should notice that Ci j is a Hermitian matrix and therefore diagonalizable.

Diagonalizing it yields
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0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0

0 0 0

0 0 0

0 0

0

0 0 0

0 0 0

0 0 0

0

0 0

24 0 0

0 24 0

0 0 24

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Before considering writing the orthogonality condition, we should note that if a QECC

corrects two errors Ei and E j it also corrects any linear combination of the two errors

[35], i.e. maps the codewords to the same codespace. So redifing the quantum error

correction condition in terms of orthogonality raises the rescaling of the errors in such

a way that a condition like 4.26 becomes[3,8,9]

hl|F†
i Fj|mi= di jdlm (4.27)

in which case, Fs should be written as a linear combination of the basis errors Z,

For instance, F1 = Z1 + Z2 and F1 = Z1 � Z2. Choosing the new basis errors results

in nondiagonal elements of zero value but on the other hand we can see that not all

diagonal elements are nonzero. The selection of errors of the first type F1 gives rise

to the nonzero values in the diagonalized matrix while the second type results in the
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zero value diagonal elements. In fact, the errors of the first type create the orthogonal

states that satisfy 4.27 and can be inverted using a single Z† however the second type of

errors annihilate any codewords since they act like the zero operator. These operators

which annihilate the codewords cannot be inverted (corrected) and basically we do not

need to since the probability of them occurring is zero.

hl|F†
2 F2|mi= 0 (4.28)

The codes with Ci j that does not have the maximum ranks and therefore is singular

(since its determinant is zero) are called degenerate codes. So the nine-qubit Shor

code is a degenerate code.[35],[41]

4.3 General procedure of quantum error correction

4.3.1 Error models As

the first step in an error correction procedure[28], modeling errors helps us to treat them

in an error correction procedure as we have seen in the case of three-bit repetition code.

As we discussed earlier coupling with the environment is known as the source of noise

in quantum information processing systems which was explained in 2.3. The operator-

sum representation of this coupling helps us to formally describe a quantum channel

which is in fact the effects of the quantum errors (bit flip, phase flip or both)on the state

of the system represented by the density matrix of the system r . We use the density

matrix representation since we need to deal with an ensemble of states with different

probabilities.Suppose that the system is initially in the mixed state |yi and the eviron-

ment is initially in the state |Ei which may or may not be a pure state. Then the joint

state of the system-environment coupling is given as rsys�env = |yihy|⌦ |EihE| or
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equivalently |yi |EihE|hy|. Therefore the of the joint state of the system-environment

coupling, using the operator-sum representation, is

r fsys�env =Ue |yi |EihE|hy|U†
e (4.29)

where Ue is the error operator. If we want to find the final state of the error we can just

trace out the environment and here is what we get.

r f = trenv(Ue |yi |EihE|hy|U†
e ) = Â

k
EirE †

i (4.30)

with Ei being the Kraus operators in the operator-sum representation. In fact these

operators contain the information about the error model. For instance, suppose that a

qubit |yihy| has undergone a bit-flip channel represented by the Pauli matrix X , then

the probability with which the error has occurred is p while the probability of no error

is 1� p and the final state of the system is

r ! r f =
1

Â
i=0

Ei |yihy|E †
i = E0 |yihy|E †

0 +E1 |yihy|E †
1

= (1� p) |yihy|+ pX |yihy|X (4.31)

So the operation elements of this general quantum operation or superoperator are

p
1� pI and ppX .

4.3.2 Encoding procedure The

second step in an error correcting scheme is protecting information so that when trans-

mitted and some error occurs we can recover the original qubit. Doing so, we need to

add some ancillary qubits (or ancilla) to the original qubit and then encode the enlarged

qubit by a unitary transformation. The coding space is a subspace of the Hilbert space
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and the encoded qubit is a two-dimensional subspace. So the enlarged qubit has the

form |yi |00...0i and the encoded qubit, denoted by |yenci is

|yenci=Uenc |yi |00...0i (4.32)

where Uenc is denotes the encoding unitary transformation. The next stage is to find

some other transformation correcting the error that has occurred on the encoded qubit

whose existence depends on the quantum error correction condition discussed be-

fore.Due to the no-cloning theorem, applying the idea of a repetition code like that

of classical error correction is not allowed, However we would like to extend a similar

approach to the quantum regime. Since the advent of the quantum error correcting

codes several different codes with different number of ancilla qubits have been put for-

ward some of which are three-qubit code, nine-qubit Shor code, and the seven-qubit

Steane code. As a concluding example to this section suppose that a qubit is in a pure

state a0 |0i+a1 |1i and we are supposed to encode it using a three-qubit code where

it is encoded as below

(a0 |0i+a1 |1i) |00i encoding�! a0 |000i+a1 |111i (4.33)

Note that this is not a simple copying, if it were we would have (a0 |0i+a1 |1i)⌦3 and

therefore it is not the violation of no-cloning theorem.

4.3.3 Recovery operation Find-

ing a promising operation that can invert the effect of the error operators on an encoded

qubit (codeword) is the target of the final step in a quantum error correction scheme.

As with the other quantum operations that have been considered so far, a recovery
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operation is also a superoperator that transforms the the encoded qubits after being

influenced by an error and is the sum of recovery operators. Denoted by R, we ex-

pect that after decoding the qubit and applying R we obtain the initial encoded qubit.

However the final step is accomplished once we trace out the ancilla while it contains

the noise sifted out by the recovery operation. Equation below shows the steps of a

complete error correction procedure where U†
enc (applied after the error operator acts)

represents the decoding step[1].

r|yihy| = tranc(Â
j
Â

i
R jU†

encEiUenc |yi |00...0ih00...0|hy|U†
encE

†
i UencR

†
j ) (4.34)

where r|yihy| = |yihy|. Although this equation includes a decoding operation, we are

not really interested in such an intermediate step in our error correcting code since this

operation is prone to error itself. So omitting this operation from the stages of a QECC

gives way to a more robust technique and finally paves the road for a fault-tolerant

error correction which will be discussed in chapter 8. To clarify the recovery operation

we can conclude with the following explanation. Suppose that an arbitrary code has

encoded a qubit to |yenci and some errors have occurred. What we expect from our

recovery operation is to refine the final corrupted state and gives out the original initial

state of the qubit or in other words

Â
i

RU†
encEi |yencihyenc|E †

i UencR
† = |yihy|⌦ |fihf |. (4.35)

Here, |fihf | is denotes the ancilla which carry the noise pushed out by the recovery

operation R, tracing out the ancilla we obtain the initial state of the qubit. To sum

up, correcting a given set of correctable errors requires us to search for an encoding
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operator and an appropriate recovery operator.
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Chapter 5

THREE-QUBIT CODE AND NINE QUBIT SHOR CODE

Before exploring the codes which are able to correct both bit-flip and phase-flip errors,

we start with the three-qubit code which can be considered as a toy model in studying

the quantum error correcting codes. Here, we develop the code to separately correct

these two types of errors.

5.1 Bit-flip channel In

breaking the overall procedure of QEC we thought of three different steps through

which we could correct a single error. So we should see these steps in every code. In

the case of the bit-flip error we have already seen the model using the operator-sum

representation.

(1� p) |yihy|+ pX |yihy|X (5.1)

In the three-qubit code we encode a single qubit using two ancilla bits initialized to |0i

and using a sequence of CNOT gates the information of the original qubit is copied to

the ancilla. However, the copying process does not violate the effect of the no-cloning

theorem as discussed before (sec. section 4.3.2). The logical qubits or the codewords

of this code are |0Li= |000i and |1Li= |111i.

a0 |0i+a1 |1i! a0 |000i+a1 |100i! a0 |000i+a1 |111i= a0 |0Li+a1 |1Li (5.2)
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The reason why this code can correct only one error and fails for more than one error

of course lies in its correctable set of errors which are distinguishable. However we can

explain the number of errors corrected by the three-qubit code using the code distance

(Hamming distance). The encoding operation actually limits the number of possible

codewords from 8 codewords forming the codespace to 2 (|0Li and |1Li). The number

of bit flips needed to reach one of these logical qubits from the other is 3 and therefore

the binary distance between them is d = 3. Using t = (d�1)
2 from section 3.1, the

maximal number of errors, t, is obtained t = 1.

As with the classical three-bit repetition code, the syndrome (parity) measurement is

done using two additional ancilla introduced to the circuit. Then, the results of the

parity measurement will be obtained by adding the first and the second qubits as well

as the first and the third qubits where the addition operation is done modulo two. In

this way the location of the error is spotted and the error will be corrected by inverting

the flipped qubit. The following table shows the errors, the error operators and the

results of the parity check when the input qubit is a0 |000i+a1 |111i.

Flipped qubit Error operator Qubit state Syndrome 1 Syndrome 2

no error I ⌦ I ⌦ I a0 |000i+a1 |111i 0 0

first qubit X ⌦ I ⌦ I a0 |100i+a1 |011i 1 1

second qubit I ⌦X ⌦ I a0 |010i+a1 |101i 1 0

third qubit I ⌦ I ⌦X a0 |001i+a1 |110i 0 1

Table 5.1: The syndrome look-up table of the three-qubit repetition code

53



In this code the distinguishable syndromes leads us to the qubit where the error has

occurred. As before the syndrome measurement is carried out using CNOT gates.

However, the remaining task is to use the result of this measurement. Looking at the

table, we can conclude that when both parities are equal to 1 the first qubit needs to

be flipped. This implies that applying a Toffoli gate (controlled-controlled NOT gate)

can correct the error on the first qubit. For the other two qubits one of the control

wires must be conditioned to zero, i.e. when the value on the wires disagree the second

or the third qubit need to be flipped, according to the table. The following are the

circuit diagrams for encoding process in the three-qubit code and the recovery circuit

correcting a single bit flip using Toffoli gate. In figure 5.3, the recovery operation is

a0 |0i+a1 |1i • •
|0i X .

)
a0 |000i+a1 |111i

|0i X
Figure 5.1: The circuit encoding three qubits for the repetition code

shown using three Toffoli gates taking the results of the syndrome measurements as the

value of the control qubits. The double lines connecting the measurement operators and

the CCNOT gates indicate that controlling over the NOT gates (X) is done classically

instead of being done quantumly. This means that we can use the classical output of

the measurements, or in fact the classical bits, to control the NOT gates. But why are

we able to place these measurement operators right after the syndrome measurement

circuit? The reason is based on the fact that the measurement operators, which are
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Toffoli gates
Syndrome Measurements

bit f lip(X)

• • X

a0 |000i+a1 |111i • X a0 |000i+a1 |111i

• X

|0i • •

|0i • •

Figure 5.2: The circuit diagram of the three-qubit code

basically placed at the end of the circuit, commute with the controlled gates in the

recovery circuit. To see this we can simply show that the result of the commutator

of a projective measurement M = Âi={0,1}mi |iihi| and a controlled gate such as Uc is

zero. In advance of computing this commutator we should note that we can write a

controlled gate Uc consisting of two 1-qubit gates, A and B in the following way

Uc = |0ih0|⌦A+ |1ih1|⌦B (5.3)

This equation shows the mechanism through which a controlled gate acts. When the

control qubit is condition to be zero it allows the action of the 1-qubit gate A and in the

otherwise case the gate gives way to the action of B [27]. The following diagram clari-

fies this fact. |ci and |ti are used to show the control and the target qubits, respectively.
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Uc

|ci •

|ti U ⌘

• •

A B ⌘

• •

A B

Figure 5.3: Commutation of measurement and controlled gate

Now we need to show that [Uc,M] = 0. Using equation 5.3 we have

[Uc,M] |cti= (UcM�MUc) |cti

=
h⇥
|0ih0|⌦A+ |1ih1|⌦B

⇤
M�M

⇥
|0ih0|⌦A+ |1ih1|⌦B

⇤i
|cti

= |0ih0|M |ci⌦A |ti+ |1ih1|M |ci⌦B |ti�
⇥
M |0ih0|⌦A+M |1ih1|⌦B

⇤
|cti

= m0 |0ih0|⌦A |cti+m1 |1ih1|⌦B |cti�m0 |0ih0|⌦A |cti�m1 |1ih1|⌦B |cti

= 0 (5.4)

So we can switch the places of the measurement operation and the recovery operation

consisting of Toffoli gates provided that the control qubits are measured. This fact is

also of fundamental use in stabilizer formalism of QEC which we will explore later.

5.2 Phase-flip channel To

tackle a single phase-flip error the approach is similar to that of the bit-flip error under-

lining the difference lies in the basis in which the operations are carried out. Specif-

ically, the basis we pick is the Hadamard basis instead of the computational basis. In

other words, by changing the basis from computational to Hadamrad the phase-flip

error behaves in the same way as the bit-flip error does. It is easy to show this equiva-

lence. Using the X, Z, and H gates given in section 2.2.3 and that the Hadamard gate

56



is unitary we have

HZH =
1
2
(X +Z)Z(X +Z)

=
1
2
(XZX +XZ2 +Z2X +Z3)

=
1
2
(�Z +2X +Z) = X (5.5)

where XZX = |1ih1|� |0ih0|=�Z and Z2 = I. This means that to approach a phase-

flip error we may Hadamard the ancilla-added input qubit and then subject it to a

phase flip and Hadamard it again so that we can treat as a bit flip. As a matter of

fact, the first Hadamard transformation is the final part of the encoding circuit and the

second one is part of the syndrome measurement. What we need to construct the circuit

diagram of this code is a few slight changes to that of the 3-qubit code correcting a

single bit-flip error. The effect of the encoding operation (including the first Hadamard

encoding syndrome measurement
a0 |0i+a1 |1i • • H Z H • • X

|0i X H Z H • X

|0i X H Z H • X

|0i • •

|0i • •

Figure 5.4: Three-qubit code correcting a single phase-flip error

transformation) can be realized in the following way.

a0 |000i+a1 |100i ! a0 |000i+a1 |111i ! a0 |+++i+a1 |���i (5.6)
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where |±i = 1p
2
(|0i± |1i), the Hadamard bases. Thus, we see that using Hadamard

gate to transform the computational basis we can turn an error with no classical analo-

gous to one with classical counterpart to solve it using the known techniques in classi-

cal coding.

5.3 On fidelity of the three-qubit code What

is the probability of success of the three-qubit code? The aim of this section is to show

how close is the final state of the qubit to its initial state after a simple error correc-

tion scheme has been applied. In other words, we need to analyze it using the notion

of fidelity. However this will be a simplistic approach it will be still extendable to

other codes. What we need to do is simply comparing the fidelities of an unencoded

state and an encoded state. In a more realistic view we should relax the assumption

of occurrence of a single error, for example, the first and the third qubit both may be

subject to error. However we keep the assumption saying that full bit-flip or phase-flip

errors happen while we know that the errors in a quantum system have a continuous

nature (see section 4.1). We can choose either bit-flip or phase-flip errors and the error

operator will be

E =
�
(1� p)I + pX

�⌦3

= (1� p)3I ⌦ I ⌦ I + p(1� p)2X ⌦ I ⌦ I

+ p(1� p)2I ⌦X ⌦ I + p(1� p)2I ⌦ I ⌦X

+ p2(1� p)X ⌦X ⌦ I + p2(1� p)X ⌦ I ⌦X

+ p2(1� p)I ⌦X ⌦X + p3X ⌦X ⌦X (5.7)
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Where p is the probability of occurrence of a single error. After the syndrome mea-

surement block is applied in the circuit, the full quantum state of the system is obtained

by coupling the syndrome measurement ancilla.

E |yLi= (1� p)3I ⌦ I ⌦ I |yLi |00i

+ p(1� p)2X ⌦ I ⌦ I |yLi |11i

+ p(1� p)2I ⌦X ⌦ I |yLi |10i

+ p(1� p)2I ⌦ I ⌦X |yLi |01i

+ p2(1� p)X ⌦X ⌦ I |yLi |01i

+ p2(1� p)X ⌦ I ⌦X |yLi |10i

+ p2(1� p)I ⌦X ⌦X |yLi |11i

+ p3X ⌦X ⌦X |yLi |00i (5.8)

where |yLi = a0 |0Li+a1 |1Li is the logical qubit state. When applying a cycle of

error correction the state of the system collapses into one of the superposition states

depending on the syndrome measurement represented by the ancilla. The following

table shows such states. So the final state after a round of quantum error correction

is a superposition of the treated clean qubit state and an erred state. In fact, no error

correcting code is able to thoroughly correct a qubit. This is essentially because the

uncorrectable set of errors, for which the code fails to correct, occur alongside the

correctable set (erred states with an error on a single qubit). Given that the fidelity[28]

is

F =
p
hy|r |yi (5.9)
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Ancilla Superposition state

00 (1� p)3 |yLi+ p3X ⌦X ⌦X |yLi

01 p(1� p)2 |yLi+ p2(1� p)X ⌦X ⌦X |yLi

10 p(1� p)2 |yLi+ p2(1� p)X ⌦X ⌦X |yLi

11 p(1� p)2 |yLi+ p2(1� p)X ⌦X ⌦X |yLi

Table 5.2: Ancilla states and the superposition states

It is the minimized value of
p

hy|r |yi over all encoded qubits to have a high fidelity.

In general it is a measure to show how two density matrices are close. So we need to

establish the density matrix for the final state of the encoded qubit coupled with the

syndrome ancilla and then trace over the ancilla to have a refined encoded qubit.

⇥
(1� p)3 +3p(1� p)2⇤ |yLihyL|+

⇥
p3 +3p2(1� p)

⇤
E 0 |yLihyL|E 0 (5.10)

where |yLihyL| is the density matrix for the logical encoded qubit and E 0 is a short

notation for X ⌦X ⌦X , noticing that E 0 = E 0†. Getting back to fidelity, the fidelity of

an unencoded qubit with the density matrix (1� p) |yihy|+ pX |yihy|X is

Funencoded =


hy|

�
(1� p) |yihy|+ pX |yihy|X

�
|yi

� 1
2
=


(1� p)+ phy|X |yi2

� 1
2

(5.11)

To have this minimized and have a high fidelity we may consider the case where

hy|X |yi= 0 and therefore,

Funencoded =
p

1� p. (5.12)
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On the other hand, the fidelity of the encoded qubit is found as below.

Fencoded =


hyL|

�
(1� p)3 +3p(1� p)2 |yLihyL|+

�
p3 +3p2(1� p)

�
E 0 |yLihyL|E 0� |yLi

� 1
2

=


(1� p)3 +3p(1� p)2 +

�
p3 +3p2(1� p)

�
hyL|E 0 |yLi2

� 1
2

(5.13)

Minimizing this yields

Fencoded =
q

(1� p)3 +3p(1� p)2 (5.14)

Comparing the two fidelities for p < 1
2 shows a higher value for the encoded qubit and

this means that the three-qubit code is able to suppress the error with this probability.

As was discussed before nor the three-qubit code neither other codes are able to output

a full clean corrected state. The following graph compares the fidelity of no error

correction and applying a single error correcting three-qubit repetition code.

Figure 5.5: Fidelity vs. the probability
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5.4 Nine-qubit Shor code The

Shor nine-qubit code[26] is the first of a list of full quantum error correcting codes cor-

recting both bit-flip and phase-flip errors. It is vastly based on the three-qubit code we

have just reviewed.

To encode a qubit |yi first we start with the approach we took when correcting a

phase-flip error, meaning that

|0i ! |+++i , |1i ! |���i (5.15)

where |±i = 1p
2
(|0i± |1i). Then each |+i and |�i should be re-encoded in exactly

the same way we did for the bit-flip three-qubit repetition code.

|+i ! 1p
2
(|000i+ |111i)

|�i! 1p
2
(|000i� |111i) (5.16)

So the logical qubits of the encoding operation will be

|0Li=
1

2
p

2
(|000i+ |111i)(|000i+ |111i)(|000i+ |111i)

|1Li=
1

2
p

2
(|000i� |111i)(|000i� |111i)(|000i� |111i) (5.17)

The circuit diagram of this code helps us understand the mechanism of its error cor-

rection.

As it can be observed from the above diagram the three inner blocks (located between

the two H gates)correct a single bit-flip error on any of the nine qubits. This correction

takes place inside each triplet of (|000i± |111i). The task of the outer block is to
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correct a single phase-flip error. In other words, the outer block of the circuit checks

for any changes in the signs in a0 |+++i+a1 |���i and then treats it as if it were

a bit-flip error since Z acts like a bit flip in the Hadamard basis. What this code is not

able to precisely detect is where the phase-flip error is located within each inner block.

This should not be considered as a drawback of the Shor code. The reason why this

code works despite the lack of information about the exact qubit where the phase flip

occurs is based on the fact that the Z error affects the relative phase of |000i and |111i

by a factor of eip . This phase shift leads to a change of sign of |111i while leaves |000i

unaffected in their superposition |000i± |111i and hence, inverting this can be done

by changing any other qubit within the block. Here is the example.

|000i+ |111i phase flip�! |000i� |111i recovery�! |000i+ |111i (5.18)

This code is called a degenerate code since there are more than one error that map the

codewords to the same erred qubit. The shor code is also able to correct a single Y

error since it is only a product of X and Z (ignoring the global phase i). Even though it

can correct up to three bit-flip errors each occurring in a different block but it is not a

multiple error correcting code since if multiple errors happen within a certain block it

fails to correct them.
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Chapter 6

CALDERBANK-SHOR-STEANE CODES (CSS CODES)

So far we have seen the Shor code which is very limited in the number of errors it

can correct. However it corrects both bit-flip and phase-flip errors, it is still a single-

error correcting code since both errors should occur on a single qubit. The family of

Calderbank-Shore-Steane codes or CSS codes[31] are able to correct up to t errors

depending on the code distance d(C). It is note-worthy that the Shor code itself is a

member of CSS family.

CSS codes, benefit from two linear codes, C1 and C2, where C2 is a subcode of C1, i.e.

C2 ⇢C1. C1 and C2 possess the (n� k1)⇥n parity-check matrix H1 and (n� k2)⇥n

parity-check matrix H2, respectively. Using the notation to denote a code’s parameter

in classical coding theory, we show these linear codes as [n,k1,d1] and [n,k2,d2]. Yet,

there is another condition to be met by a CSS code; C1 and C?
2 must be capable of

correcting the same number of errors t, i.e. they have to have the same code distance.

So the distance of the CSS code will be d = d1 = d?
2 . Although this condition is useful

to determine the distance of the CSS code it does not stem from a necessity since the

two code’s distances, (C1,C?
2 ), can be different and we are still able to determine the

distance of the CSS code, which is

d(C) = min(d1,d?
2 ) (6.1)
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k1 and k2 are the number of bits to be encoded by C1 and C2, respectively, and k2 < k1.

The number of qubits that can be encoded by a CSS code over these two linear codes

is given by k = k1 � k2.

Notation To be able to distinguish the CSS codes from the linear codes on which

they are established, we denote them by [[n,k,d]].

Construction of the qubit states in a CSS code is highly dependent on the notion of

cosets of a linear code and its properties we studied in section 3.4. Suppose w 2 C1

and v2C2, then a qubit state in the CSS code over C1 and C2 is a uniform superposition

of all the elements in coset w+C2. We write

|w̃i= |w+C2i=
1p
2k2

Â
v2C2

|w+ vi (6.2)

By theorem 2(v) in section 3.4 the number of distinct cosets of a code is given by 2n�k

with the word u which determines the coset is in Fn
2 and the number of codewords in

code C is 2k. However the number of cosets used to create the logical states of a CSS

code is determined by 2k1�k2 since the codeword w which specifies a certain coset over

C2 is in Fk1
2 which is the codespace of C1. By the same theorem part iv these coset

are either identical or disjoint and therefore orthogonal. Summarizing, we have 2k1�k2

normalized, mutually orthogonal qubit states. As we know, the components of a qubit

can only take values from the two logical qubits |0Li and |1Li. This implies that the

total number of distinguishable cosets that we need must be exactly 2, i.e. k1 �k2 = 1.
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In the following we prove two important results required to understand the procedure

of syndrome measurement and the recovery operation of a CSS code. The first one is

an identity that relates a code C to its dual C?.

Â
v2C

(�1)v.u =

8
>>><

>>>:

2k u 2C?

0 u 62C?

(6.3)

v and u are both bit strings where v takes the value of the codewords in C. When u2C?

the result is straightforward since C? is the orthogonal complement of C and |C|= 2k.

However the second result where u 62C? is not so trivial. It basically follows from

Â
x2{0,1}k

(�1)x.y = 0 ; y 6= 0 (6.4)

The above equation states that no matter what y is (must be of the same length as x) as

long as it is not equal to a zero word the above summation yields 0. That is because the

inner product of the two words x.y results in 0 and 1 equally for the words x 2 {0,1}k.

On the other hand v is, in fact, obtained by encoding a word m of length k using the

generator matrix of C, i.e. v = mG . So

Â
v2C

(�1)v.u = Â
m2{0,1}k

(�1)mG .u = Â
m2{0,1}k

(�1)m.G u = 0 ; G u 6= 0 (6.5)

Since G u 6= 0 we can conclude that u 62C? when the sum is zero.

The second important thing arises when we recover the phase-flip errors and we need

to Hadamard the qubit so as to transform the Z error into an X error as we did before.
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Saying that the qubit is given by equation 6.2 we apply a bitwise Hadamard gate to it.

That is,

H⌦n |w+C2i=
1p
2n Â

u

1p
2k2

Â
v2C2

(�1)v.u(�1)w.u |ui

=
1p

2n�k2
Â

u2C?
2

(�1)w.u |ui (6.6)

The last expression uses the result from equation 6.3. Regarding the error models, we

can think of error operators whose effect is determined by an error string e, meaning

that the bit-flip (X) or the phase-flip (Z) operators act only when there is a 1 at position

i of the error string. For example, if the error string is 0110000 the error operators only

act at positions 2 and 3 and do nothing where the bit values are 0. We can model the

effect of these error operators in the following way.

Eb f : |w̃i ! |w̃+ ei (6.7)

Ep f : |w̃i ! (�1)w̃.e |w̃i (6.8)

Here, the subscripts b f and p f stand for the bit-flip and phase-flip, respectively. The

syndrome measurement of a bit-flip error is done by adding some ancilla to the erred

qubit, applying the parity-check matrix of C1 to the ancilla, and finally measuring the

state of the ancilla.

|w̃i⌦ |0i ! |w̃i⌦ |H1w̃i (6.9)

The phase-flip error is also treated as a bit flip after being transformed using a bit-wise

Hadamard. To measure the syndrome when this error occurs we can simply apply the
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generator matrix of C2 which is also the parity-check matrix of C?
2 . The use of G2 is

validated when we look at equation 6.6.

|w̃i⌦ |0i ! |w̃i⌦ |G2w̃i (6.10)

Applying the X gate on the gubits where the syndrome shows an error has occurred,

we can recover the corrupted information. In the case of a phase flip we need to re-

Hadamard the final state to get back to the initial basis.Obviously, the number of errors

coming out of a syndrome measurement should not exceed the number of correctable

errors of the CSS code. The Steane code elaborates the error correcting procedure of

the CSS codes. This code uses the notion of a self-orthogonal code when C2 =C?
1 .

6.1 Seven-qubit Steane code As

an example of the CSS codes we explore the mechanism through which the 7-qubit

Steane code[34], [14], [15],[16], [? ] corrects errors. This code is based on the 7-bit

Hamming code C[7,4] and its dual C?[7,3]. Note that C? ⇢C is a requirement for the

Steane code to be a CSS code which is fulfilled by C[7,4] and its dual. The qubit states

of the Steane code is obtained by superposing the elements of the cosets of C[7,4] over

its dual C?[7,3]. The look up table on the next page shows these cosets. As we can

see there are only two distinct cosets and therefore we have two qubit states, one for

|0Li and the other one for |1Li. This is no surprise at all since the number of distinct

cosets is given by 2k2�k1 where k1 = 4 and k2 = 3 according to theorem 2(v). Equation

6.2 which gives the qubit states of a CSS code expands in the following form for the

Steane code.
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|0Li=
1p
8


|0000000i+ |0111001i+ |1011010i+ |1100011i

+ |1101100i+ |1010101i+ |0110110i+ |0001111i
�

(6.11)

|1Li=
1p
8


|1111111i+ |1000110i+ |0100101i+ |0011100i

+ |0010011i+ |0101010i+ |1001001i+ |1110000i
�

(6.12)

To measure the error syndrome for each type of the errors we must add some ancilla

so as to measure the effect of the parity-check matrix on the codeword using those

ancilla. Here, in the case of the Steane code and for the bit-flip error type the we

use the parity-check matirx of the Hamming [7,4] code. For measuring the syndrome

of the phase-flip error type, according to equation 6.6 the parity-check matrix of the

dual of [7,3] code must be used since we do bit-wise Hadamard transformation. Since

C1 = C and C2 = C? the dual of the [7,3] code is the Hamming [7,4] code itself and

therefore we use the same parity-check matrix as for the case of the bit flip to measure

the phase-flip error syndrome. The circuit diagrams in figures 6.1 and 6.2 illustrate the

syndrome measurement procedure provided that the Hamming parity-check matrix is

given as

H =

0

BBBBBB@

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

1

CCCCCCA
(6.13)

Since the distances of the [7,4] Hamming code and its dual are 3 and the Steane code

encodes one qubit to seven qubits, this is a CSS [[7,1,3]] code and is able to correct a

single error.
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•

Recovery

•
•

•
•

•
•

|0i

|0i

|0i

Figure 6.1: Syndrome measurement of the bit-flip error in Steane code

H • H

Recovery

H • H

H • H

H • H

H • H

H • H

H • H

|0i

|0i

|0i

Figure 6.2: Syndrome measurement of the phase-flip error in Steane code

70



Chapter 7

STABILIZER FORMALISM

In this section we will explore the structure of a larger family of codes [41], the way

to construct them, and a few examples to instance this structure and construction. The

use of stabilizer codes is realized when we measure the error syndrome. In previous

cases where we have to perform a syndrome measurement we measure the effect of

the error operators on the codewords, however in stabilizer formalism what needs to

be measured is the effect of these operators on some other operators, called the gen-

erators of the stabilizer group. This effect, as we will see, is the commutation or the

anti-commutation of the error operators and the newly introduced operators, stabilizer

generators. The insight into the subject will be developed through using the following

equivalence. To prove this equivalence we need to consider these operators in Dirac

•
X ⌘

Z

H • H
Figure 7.1: The equivalence of a CNOT gate and a Hadamard-conjugated Z gate

notation. The CNOT gate on the left is

CNOT or I ⌦X ⌘ |0ih0|⌦ |0ih1|+ |0ih0|⌦ |1ih0|+ |1ih1|⌦ |0ih1|+ |1ih1|⌦ |1ih0|

(7.1)
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The equivalent operation can be written as

(I ⌦H)(Z ⌦ I)(I ⌦H) = |0i |0ih0|h1|+ |0i |1ih0|h0|+ |1i |0ih1|h1|+ |1i |1ih1|h0|

= |0ih0|⌦ |0ih1|+ |0ih0|⌦ |1ih0|+ |1ih1|⌦ |0ih1|+ |1ih1|⌦ |1ih0|

= I ⌦X (7.2)

where

I ⌦H =
1p
2

✓
|0i |0ih0|h0|+ |0i |1ih0|h0|+ |0i |0ih0|h1|� |0i |1ih0|h1|

+ |1i |0ih1|h0|+ |1i |1ih1|h0|+ |1i |0ih1|h1|� |1i |1ih1|h1|
◆

(7.3)

and

Z ⌦ I = |0i |0ih0|h0|+ |0i |1ih0|h1|� |1i |0ih1|h0|� |1i |1ih1|h1|. (7.4)

Measuring the second qubit in the computational basis in the CNOT gate is equivalent

to measuring the observable Z in the circuit given on the right. So the circuit diagram

for recovering the bit-flip error using the three-qubit repetition code turns into the

following circuit. Now, measuring the syndromes has been turned into measuring

bit f lip(X)

Z Z X

Z X

Z X

|0i H • • H • •

|0i H • • H • •

Figure 7.2: Three-qubit code using the mentioned equivalence
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these observables

Z ⌦Z ⌦ I (7.5)

Z ⌦ I ⌦Z (7.6)

These are consisted of the operators of the Pauli group and therefore the codewords

a0 |000i+a1 |111i are eigenstates of these operators with eigenvalue +1. The error

operators are also the tensor product of the Puali operators, X and I, and the code-

words afflicted by the error operators are still eigenstates of the operators 7.5 but this

time with eigenvalues either +1 or �1. The following table shows the 1-1 corre-

spondence between the two mappings using the eigenvalues of the syndrome operators

(Z⌦Z⌦ I,Z⌦ I⌦Z) when the codewords have undergone the single or no error oper-

ators. This unique correspondence helps us to find the location of the error provided

Z ⌦Z ⌦ I Z ⌦ I ⌦Z

I ⌦ I ⌦ I +1 +1

X ⌦ I ⌦ I �1 �1

I ⌦X ⌦ I �1 +1

I ⌦ I ⌦X +1 �1

Table 7.1: The syndrome look-up table for the three-qubit bit flip code

that a single error or no error has occurred. The correspondences can also be obtained

by computing the commutators of the syndrome operators and the error operators as

73



long as the errors are formed by the tensor product of the Pauli operators, just like

the syndrome operators. For instance, the bit flip on the second qubit associated with

I ⌦X ⌦ I commutes with Z ⌦ I ⌦ Z whereas anti-commutes with the other operator

Z ⌦Z ⌦ I. This property forms the cornerstone of the stabilizer codes. The syndrome

operators like 7.5 define a subspace of codewords where the codewords are the eigen-

states of the syndrome operators with +1 eigenvalue. These operators generate a group

called stabilizer and the operators themselves are called the generators of the stabilizer

group. Measuring the generators or in other words the effect of them on the erred states

gives the syndrome.

For the phase-flip error the controlled Z operator can be replaced by a combination

of the Hadamard and CNOT gates similar to that in figure 7.2. So the generators of the

stabilizer group will be

X ⌦X ⌦ I (7.7)

X ⌦ I ⌦X (7.8)

7.1 Structure and construction The

family of stabilizer codes form a larger group of codes which contains the CSS codes

as well. The group theoretic notions and in particular the operators that anticommute

with each other are the cornerstone of the structure of these codes [29].

Suppose that a set of states |yii satisfy this equation

S |yii= |yii (7.9)
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where S is an operator. This equation defines an eigenspace of S with eigenvalue +1.

Now consider another operator E that anticommutes with S, i.e. SE =�ES therefore

S(E |yii) =�ES |yii=�E |yii (7.10)

Starting out in +1 eigenspace of S the error operator takes us to -1 eigenspace of S. Hav-

ing two or more of the operators like S limits the eigenspace of question and therefore

gives a more unique subspace which enables us to spot the location of error provided

the error operator takes us to that restricted subspace and there is no other error that

takes the state to that eigenspace.

In general, the QEC criterion requires that

hl|E †
i E j |mi=Ci jdlm (7.11)

Suppose that S = {sk} where sk |yi= |yi, i.e. This equation defines the +1 eigenspace

of S. There is at least one sk such that it anticommutes with E †
i E j, therefore

hl|E †
i E j |mi= hl|E †

i E jsk |mi=�hl|skE
†
i E j |mi=�hl|E †

i E j |mi (7.12)

So hl|E †
i E j |mi= 0. This means that if we choose proper operators (and thus the proper

eigenspace) that anticommute with the error operators the code with the eigenstates of

the chosen operators corrects the errors. The operators with which the Pauli error

operators either commute or anticommute is the Pauli group itself. Before looking at

the properties of stabilizer group it is worth reviewing a few properties of the Pauli
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group. The Pauli group P consists of the following elements

ik{I,X ,Y,Z} ; k = {0,1,2,3} (7.13)

The representation of the Pauli group that we use in quantum computation is an n fold

tensor product of these operators where each element is in the from

ik(P1 ⌦P2 ⌦ ...⌦Pn) ; k = {0,1,2,3} (7.14)

The properties of the Pauli group for elements P and Q are

• The elements of the Pauli group square to ±I. P2 =±I

• The elements of the Pauli group either commute or anticommute. PQ = QP or

PQ =�QP

• The elements of the Pauli group are all unitary. PP† = I

A stabilizer group S is a subgroup of P where all elements commute and it does

not contain the element -I. e.g. a choice of stabilizers for the three-qubit code can be

{III,ZZI,ZIZ, IZZ} (We may use this notation III instead of I ⌦ I ⌦ I). Among these

stabilizers there are elements upon which other elements of the group can be formed.

For example, III = (ZZI)2 and IZZ = (ZZI)(ZIZ). Generators of a stabilizer group

is a minimal set of independent elements of the stabilizer that we can derive other

elements of the stabilizer by multiplying them. So the generators of the three-qubit

stabilizer group are ZZI and ZIZ which we denote it as S =< ZZI, IZZ >. We do

not need all the elements of the stabilizer group the only elements that we need are the

generators.
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When considering the QEC requirement in equation 7.11, two cases arise provided

that the error operators are in the Pauli group. Suppose that |i l and|mi are in +1 sub-

space of the stabilizer. Then the first case is when P is not in the stabilizer group. That

is

hl|P |mi= hl|Psk |mi=�hl|skP |mi=�hl|P |mi (7.15)

So we have hl|P |mi = 0. P can be a product of the error operators like E †
i E j. The

second case occurs where P is the stabilizer group, P 2 S in which case

hl|E †
i E j |mi= hl|sk |mi= hl|mi= dlm (7.16)

So the Pauli error operators also fulfil this condition so long as the stabilizer group pro-

vides operators that anticommute with these errors. As an example we can look at the

three-qubit code again with given generators as before. We know that the correctable

set of errors only consist of error operators that causes no error or at last one error on

one of the qubits, {III,XII, IXI, IIX}. The set comprised of the products of these error

operators is {III,XII, IXI, IIX ,XXI,XIX , IXX ,XXX}. Having a look at this set, III is

in the stabilizer so the first case appears and the rest of the set anticommute with the

given generators ZZI and ZIZ.

To check whether two Pauli group elements P1 ⌦P2 ⌦ ...⌦Pn and Q1 ⌦Q2 ⌦ ...⌦Qn

commute or anticommute we need to check for the locations in which P and Q are

different. In case of an even number of different locations in P and Q they commute
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otherwise they anticommute.

Finding the dimension of the stabilizer subspace is worthwhile since it tells us about

the number of the generators we need to define a codespace. First, we need to consider

two important points. Since the stabilizer group does not include the element -I they

square to +I and have eigenvalues ±1. The other point is that all the Pauli group ele-

ments of which the stabilizer elements are comprised have trace 0 except I which has

trace 2. So among the generators of a given stabilizer s1,s2, ...,sr if we choose the first

one Tr(s1) = 0. Note that the element I is not a generator but is in the stabilizer and -I

is excluded at all. Since s1 squares to +I it has eigenvalues ±1 and since its trace is zero

we can say that half of the eigenstates of s1 has eigenvalue +1 and the other half are

with eigenvalue -1. So the equation s1 |yi= |yi split the eigenspace of s1 into halves.

In a stabilizer code the +1 eigenspace is where we should start out. The codespace

is 2n-dimensional. Thus the dimensions of the +1 eigenspace of s1 is 1
2(2

n) = 2n�1.

The second generator s2 with the same properties restricts the eigenspace of s1 to the

eigenstates that satisfy s2 |yi = |yi. To see the share of +1 eigenspace of s2 in +1

eigenspace of s1 we may use the following operator since it projects to +1 eigenspace

of s1.

1
2
(I + s1) (7.17)

Since Tr(1
2(I + s1)s2) = 0 and there are two eigenvalues ±1, we again conclude that

half of the eigenspace of the 2n�1-dimensional +1 eigenspace of s1 has +1 eigenstates

of s2. So it has 2n�2 dimensions. By induction, the dimensions of the stabilizer sub-

space with r generators is 2n�r. For instance, for the three-qubit stabilizer code with
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generators ZZI and ZIZ, the dimension of the stabilizer subspace is 23�2 = 2 as we

expect since there are only two codewords that span the codespace, |000i and |111i.

In brief, the r generators that characterize the stabilizer code limit the codespace to

an eigenspace so that when a certain error from the set of correctable errors occur the

code would be able to spot the error location. In other words, it gives us a unique syn-

drome for every correctable error operator provided that the elements of the stabilizer

all commute and does not contain the element -I.

In exploring the structure of the stabilizer codes, it is worthwhile to take a look at

those operators which represent the action of a bit flip and phase flip on an n-qubit log-

ical codeword. These operators which are not in the stabilizer but has a relation with

the stabilizer and are n fold operators in the Pauli group. We need to see the following

definitions.

Definition 1 The centralizer of the stabilizer group S in Pn is the set of operators

p 2 Pn that satisfy ps = sp 8 s 2 S . So it is the set of Pauli operators that commute

with every s in the stabilizer.

Definition 2 The normalizer N of S in Pn is the set of operators p 2 Pn such that

psp† 2 S 8 s 2 S .

Since the stabilizer group does not contain the element -I, its centralizer and nor-

malizer coincide. The stabilizer itself is in the normalizer since if p is a stabilizer

psp† = spp† = s 2 S . We used the fact that the stabilizers are unitary. So S ⇢ N .
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The logical X and Z operators of a stabilizer code, denoted by X̄ and Z̄, respectively,

are also called the encoded operations. These operators are not in the stabilizer group

but are in the rest of the normalizer set of the stabilizer group. So they are in N �S .

For the aforementioned example of the three-qubit code, the operators which are in

N �S are given as below with |0Li= |000i and |1Li= |111i.

ik{XXX ,YY X ,Y XY,XYY,ZII, IZI, IIZ,ZZZ,YYY,XXY,XY X ,Y XX} (7.18)

The encoded bit-flip operation is

X̄ = XXX which acts as a bit flip X̄ |0Li= |1Li and X̄ |1Li= |0Li (7.19)

and the encoded phase-flip operation is

Z̄ = ZZZ which acts as a phase flip Z̄ |0Li= |0Li and Z̄ |1Li=� |1Li

(7.20)

The following theorem determines if a set of errors is correctable using a given stabi-

lizer code or not.

Theorem 5 Suppose S is a stabilizer with normalizer N . Let Ei denote a set of Pauli

error operators. If E †
i E j 62 N �S , then Ei is a set of correctable errors.

Proof, Two cases arise here. The first case is when E †
i E j is in S . then

hl|E †
i E j |mi= hl|s |mi= dlm

The second case occurs when E †
i E j is neither in S nor in N . Since for the stabilizer

group S the normalizer and the centralizer are the same the only possibility is that the

product of the error operators E †
i E j anticommutes with the stabilizer operator E †

i E js=
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�sE †
i E j. The same reasoning as for 7.16 applies and therefore hl|E †

i E j |mi= 0. Thus

if the set of errors is not in N �S that is a correctable set of errors.

The set of correctable errors for the three-qubit code is the set of single errors {III,XII, IXI, IIX}

and is not contained in N �S , 7.18, for S =< ZZI,ZIZ >. A useful tool in repre-

senting the generators of a stabilizer group is the check matrix which is the counterpart

of the parity-check matrix in classical coding theory. Suppose the stabilizer has r=n-k

(n being the number of qubits and k the number of qubits to be encoded) generators,

S =< s1,s2, ...,sr >. The check matrix is a r⇥2n matrix in which each row represent

a generator. The rules to form the check matrix of a stabilizer S is given as follows.

• The left-hand side of the matrix is reserved for the generators which only include

I and X.

• The right-hand side of the matrix is reserved for the generators which only in-

clude I and Z.

• If there are 1s on both sides of the matrix, then there exists Y or the product of

X and Z in the generator.

• In the ith row of the matrix if si contains an I on the jth qubit (column), then the

jth and the jth+n column in that row are 0.

• In the ith row of the matrix if si contains an X on the jth qubit, then the jth

column in that row is 1 and the jth+n column in the ith row is 0.

• In the ith row of the matrix if si contains a Z on the jth qubit, then the jth column

in the ith row is 0 and the jth+n column in that row is 1.
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Below is the check matrix of the seven-qubit Steane code.

0

BBBBBBBBBBBBBBBBBB@

0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 1 0 1 0 1

1

CCCCCCCCCCCCCCCCCCA

(7.21)

To check whether the generators (roughly, the rows of the check matrix) commute or

in other words to see if a given check matrix represents a stabilizer we can define a

2n⇥2n matrix, L

L =

0

BB@
0 In⇥n

In⇥n 0

1

CCA (7.22)

using which s and s0 commute if and only if the following condition is met.

r(s)Lr(s0)T = 0 (7.23)

where r(s) is the 2n-dimensional row vector that contains the generator s. The reason

why this twisted inner product implies the commutation of the generators is that the

rows contain 0 and 1 and the addition is done modulo 2. If two generators commute

the number of locations where X and Z differ in those generators must be even. This

implies an even number of 1s in the addition operation of the product so that 1 annihi-

lates while adding them modulo 2. So the odd number of these additions implies that
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the two generators anticommute which is not desired in a stabilizer group. As a special

case, we explore the check matrix of the CSS codes, CSS(C1,C2) since CSS codes are

a special case of the stabilizer codes. Each generator of these codes only contain I and

X or I and Z and not both.

Suppose that C1 and C2 are [n,k1] and [n,k2] codes where C2 is a subcode of C1, C2 ⇢C1

and C1 and C?
2 are both t-error correcting codes. The check matrix of the CSS stabilizer

code is 0

BB@
H (C?

2 ) 0

0 H (C1)

1

CCA (7.24)

To see if this check matrix represent a stabilizer we the following commutativity con-

dition based on 7.23.

H (C?
2 )H (C1)

T = 0 (7.25)

It turns out that this condition is met by the CSS codes since

H (C?
2 )H (C1)

T = (H (C1)G (C2))
T = 0 (7.26)

Here, we used the fact that C2 ⇢C1 and therefore the rows of G(C2) are all contained

in G(C1) and since G(C1) is orthogonal to G(C2) we have the condition above.

7.2 Examples of stabilizer codes

7.2.1 Steane code One

of the instances of the stabilizer codes is the seven-qubit Steane code. As we know the

Steane code [34] is a CSS code whose generators possess either X or Z and not both.
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Using the check matrix given in 7.24 and the fact that in the Steane code C?
2 =C1, the

parity-check matrices nested in the check matrix of a CSS code are the same and equal

to the parity-check matrix of the [7,4] code. If we take the parity-check matrix of the

[7,4] code to be (the choice of the parity-check matrix is not unique)

H =

0

BBBBBB@

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1

CCCCCCA
(7.27)

the check matrix of the Steane code will be the one given in 7.21. According to this

check matrix the generators of the Steane code must be of the following form. Since

the stabilizer subspace of this code is a 2-dimensional space (there are only two states

which span the stabilizer space, the logical qubits) the number of the generators re-

quired is n�1 = r and r = 6. The encoded operations (logical X and Z) of the Steane

code are

X̄ = XXXXXXX (7.28)

Z̄ = ZZZZZZZ (7.29)

These logical operations are in N �S and direct operations of them on the logical

qubits |0Li and |1Li in 6.11 give the bit flip and phase flip operations. Of course the

correctable set of errors of the Steane code are not in N �S . The syndrome look-up

table which demonstrates the correspondence between the syndrome measured (gen-

erator measured) and the error operator (location of the error) is given for the bit-flip
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generator operator

s1 IIIXXXX

s2 IXXIIXX

s3 XIXIXIX

s4 IIIZZZZ

s5 IZZIIZZ

s6 ZIZIZIZ

Table 7.2: The generators of the Steane code

errors. The unique correspondences that guide us to the location of the error can be

easily seen from the table above. If we start out in +1 eigenspace of the stabilizer

codespace si |yi= |yi and if |yi undergoes a bit-flip error like XIIIIII the final state

is still an eigenstate of all the generators of the stabilizer code this time with eigenval-

ues ±1 depending on the generator. In fact the generators specify the eigenspace in

which the error has occurred and so looking for that specific eigenspace would be an

easy job.

We can also construct the circuit diagram which outputs the syndromes which are in

essence the generators measured. To perform the generator measurements we may use

the following equivalence. When measuring a the output of a Hermitian and unitary

gate U (UU† = I and U2 = I)we may think of this operator either as a quantum gate
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IIIXXXX IXXIIXX XIXIXIX IIIZZZZ IZZIIZZ ZIZIZIZ

IIIIIII +1 +1 +1 +1 +1 +1

XIIIIII +1 +1 +1 +1 +1 -1

IXIIIII +1 +1 +1 +1 -1 +1

IIXIIII +1 +1 +1 +1 -1 -1

IIIXIII +1 +1 +1 -1 +1 +1

IIIIXII +1 +1 +1 -1 +1 -1

IIIIIXI +1 +1 +1 -1 -1 +1

IIIIIIX +1 +1 +1 -1 -1 -1

Table 7.3: The syndrome look-up table of the Steane code

acting on the input qubit or as an observable. We can devise a circuit that gives out the

state of the output qubit after being passed through U. Now if want to measure U as an

observable what we are looking for is actually its eigenvalues and since it squares to I

it has two eigenvalues ±1. Instead of destructively measuring the output state of the

|0i H • H

|yini U |youti
Figure 7.3: The circuit used to measure an observable

qubit we may measure the control qubit conjugated by Hadamard gates. The reason

why we can alternatively measure the control qubit is given in the following calcula-

86



tions. Using the Dirac notation we may write the effect of this circuit, knowing that

U |yini= |youti.

(H ⌦ I)(|0ih0|⌦ I + |1ih1|⌦U)(H ⌦ I) |0i |yini=

1p
2
(H ⌦ I)(|0ih0|⌦ I + |1ih1|⌦U)(|0i+ |1i)⌦ |yini=

1p
2
(H ⌦ I)


|0i |yini+ |1i |youti

�
=

1p
2


|+i |yini+ |�i |youti

�
(7.30)

The two eigenvalues of the observable U can be associated to each of the Hadamard

bases appeared in the first qubit out of the circuit and therefore measuring the first

qubit necessarily gives the result of the measurement of the observable. Using the

above equivalence we can now construct the circuit diagram used for the syndrome

measurement in the Steane code. In this circuit the first six qubits started at |0i are the

ancilla to measure the syndromes and the seven registers at the bottom are the input

qubits.
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|0i H • H

|0i H • H

|0i H • H

|0i H • H

|0i H • H

|0i H • H

X Z

X Z

X X Z Z

X Z

X X Z Z

X X Z Z

X X X Z Z Z

Figure 7.4: The circuit diagram for measuring the generators of the Steane code
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7.2.2 Shor code An-

other well-known CSS code is the nine-qubit Shor code[26]. Finding the generators

of this code is more of an intuitive approach rather than forming the check matrix and

translate into operator language, however, I would give its check matrix alongside the

more straightforward way we conclude the generators. The shor code is in fact form by

concatenation of two three-qubit code, the three-qubit bit-flip code and the three-qubit

phase-flip code. The Shor code has eight generators. Knowing the generators of each

code and considering the circuit diagram of the Shor code leads us to pick these gen-

erators for this code. The following operators are shown to be the logical operators in

generator operator

s1 ZZIIIIIII

s2 ZIZIIIIII

s3 IIIZZIIII

s4 IIIZIZIII

s5 IIIIIIZZI

s6 IIIIIIZIZ

s7 XXXXXXIII

s8 XXXIIIXXX

Table 7.4: The generators of the Shor code
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the Shor code by direct application of them on the logical qubits 5.17.

X̄ = XXXXXXXXX (7.31)

Z̄ = ZZZZZZZZZ (7.32)

We can also form the check matrix of the Shor code.

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.33)

The circuit diagram for the Shor code generator measurement is given on the next page.
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|0i H • H

|0i H • H

|0i H • H

|0i H • H

|0i H • H

|0i H • H

|0i H • H

|0i H • H

Z Z X X

Z X X

Z X X

Z Z X

Z X

Z X

Z Z X

Z X

Z X

Figure 7.5: The circuit diagram for measuring the generators of the Shor code
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7.2.3 Five-qubit code So

far we have only seen the CSS stabilizer codes. An example for the non-CSS codes is

the five-qubit code [42] whose generators do not solely include X or Z. On the contrary

to the CSS codes, the five-qubit code do not possess separate generators consisting of

only X or only Z. Five qubits is the minimum number of qubits for quantum error cor-

rection so that the code can detect and correct a single error. The four generators of

this code are As it can be seen from the table the each generator is the cyclic permuta-

generator operator

s1 XZZXI

s2 IXZZX

s3 XIXZZ

s4 ZXIXZ

Table 7.5: The generators of the five-qubit code

tion of the previous one and thus we can derive all other generators from s1. The fifth

permutation is not a generator since it is not independent of the others. Besides the
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number of generators is only four. The logical qubits are

|0Li = 1
4


|00000i+ |10010i+ |01001i+ |10100i

+ |01010i� |11011i� |00110i� |11000i

� |11101i� |00011i� |11110i� |01111i

� |10001i� |01100i� |10111i+ |00101i
�

(7.34)

and

|1Li = 1
4


|11111i+ |01101i+ |10110i+ |01011i

+ |10101i� |00100i� |11001i� |00111i

� |00010i� |11100i� |00001i� |10000i

� |01110i� |10011i� |01000i+ |11010i
�

(7.35)

The logical X and Z of this code are given as below.

X̄ = XXXXX (7.36)

Z̄ = ZZZZZ (7.37)

7.3 State preparation To

give a complete picture of the stabilizer codes one should be aware of all the capabil-

ities of the stabilizers. The encoding procedure [40] or the logical state preparation

in a stabilizer code is the procedure through which the logical qubits |0Li and |1Li

are constructed. These codewords are +1 eigenstates of the generators of the stabilizer

code since we should start out in +1 eigenspace of the stabilizer. The idea of producing
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the logical states in the stabilizer codes is based on the fact that we start with an n fold

input state and check whether it is a +1 eigenstate of the generators and if it is not using

a proper operator we force it to be in such eigenspace. Since the stabilizers are in Pauli

group and hence Hermitian and unitary they square to I and have ±1 eigenvalues. The

following schematic circuit diagram shows the measurement procedure of such opera-

tor. It is similar to that we already used in measuring the generators, figure. Tracking

|0i H • H

U|yini |youti

Figure 7.6: The encoding circuit diagram for the stabilizer codes

the steps of this circuit we will find out in what final state the composite system is. The

final state is

|youti=
1
2

✓
|yini+U |yini

◆
|0i+ 1

2

✓
|yini�U |yini

◆
|1i (7.38)

If the ancilla (the upper |0i) is measured to be in the state |0i then the state of the input

qubits is

|youti= |yini+U |yini (7.39)

Since U is Hermitian and unitary and by applying it to the equation above we get

U |youti = |youti. So if the ancilla is in |0i the final state is a +1 eigenstate of U.
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The other case occurs when the ancilla is measured |1i in which case the final state of

the n fold qubit is a -1 eigenstate of U. In practice, we have a number of generators

which all together determine whether the input state which is going to be encoded is in

simultaneous +1 or -1 eigenspace of all of them. A proper operator can take the state

to +1 eigenspace if it is in the opposite one.
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Chapter 8

FAULT-TOLERANT QUANTUM COMPUATION

Prior to introducing any issue regarding the fault-tolerant quantum computing it is

noteworthy that the errors with which we are concerned in this chapter are incoherent

errors. Coherent errors are those which lead to a factorizable state of the environment

when speaking about the state of the system coupled with the environment’s state.

Back to section 4.1, if the coupled state of the system-environment is |yi it can be

written as

|yi= (a0 |0i+a1 |1i)sys ⌦ |Eienv . (8.1)

So the otherwise case is referred to as the incoherent error. The difference which our

assumption of having incoherent errors makes in fault-tolerant quantum computation

is in the probability of being at least one error in the output. If we assume that the

probability of introducing one error to the qubits being processed in a quantum circuit

due to the failure of each gate is p, then the probability of introducing at least one error

in the output of a circuit with S gates is Sp provided that the errors are all incoherent.

We may show that in case of having all errors coherent this probability increases to

S2 p. To show that we consider a partial rotation of the qubit about the x-axis (There

is no preferred choice of axis, so it can be any of the x,y, or z axes.) In section 4.1 we

argued that a partial rotation of the qubit about an axis leads to a coherent error. Now
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we assume that we have such a unitary rotation [40]

e�idX = (cosd )I � i(sind )X (8.2)

Applying this to the qubit state

e�idX |yi= cosd |yi� isindX |yi (8.3)

Equation 8.3 implies that the probability of occurring no error to the qubit is

p(|yi) = cos2d ⇡ 1�d 2 (8.4)

and the probability of having an X error is

p(X |yi) = sin2d ⇡ d 2 (8.5)

The coherent error usually occurs due to the bad control of the quantum gates[28] so

the probability of having an error in the output qubit of a gate being d 2 is in fact the

probability of the failure of the gate. Now for S gates in the circuit with p being the

probability of failure of one gate, the unitary rotational transformation is

e�iSdX = cos(Sd )I � isin(Sd )X (8.6)

and the probability of having at least one error in the output qubit is

p(X |yi) = sin2(Sd )⇡ S2d 2 = S2 p (8.7)

Fault-tolerant computation enables us to do computation using faulty gates. In fact

the fault-tolerant (FT) circuits are robust enough so that the computation performed

by them does not result in an unrecoverable set of errors provided that the probabil-
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ity p of failure of each gate in the circuit is below a constant threshold. Instead, they

introduce an improvement to the probability of such in the output. To do so we re-

place each qubit with an encoded block of qubits using a certain error-correcting code

such as the Steane code and each gate with an encoded gate as explained below and

finally we periodically apply a QEC method after the state preparation (encoding the

qubits) and after each gate. The QEC method also needs to be done fault-tolerantly.

With this interleaved application of QEC the FT quantum computation prevents error

accumulation as the input qubit undergoes various stages of the circuit. Without the

idea of fault-tolerance we expect to have an probability O(p) in the output, however

carrying out the same quantum computation fault-tolerantly results in an improvement

of O(p2). Figure 8.1 displays a circuit consists of only a Hadamard gate and an CNOT

gate and instances the scheme of a FT circuit [27]. The idea of encoding the input

|0i⌦7 FT prepare |0Li FT error correct FT H FT error correct
FT CNOT

FT error correct FT measure
|0i⌦7 FT prepare |0Li FT error correct FT error correct FT error correct FT measure

Figure 8.1: Example of a fault-tolerant circuit

qubits using QEC methods lies on the fact that if any one of the qubits is subject to

error the output data is still recoverable but apart from the components of a FT circuit

which are error prone, error can propagate through the circuit from one component to

another. The error itself may occur as a pre-existing error introduced in the input or

due to the failure of the components. Thus the idea of fault tolerance by itself cannot

fulfil the bid to have robust recoverable data and the circuits must be constructed in

such a way that they prevent error propagation or be tolerant to this problem, hence
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we should include combating this problem in the notion of fault-tolerance. Figures

8.2 and 8.3 and the calculation that follows illustrate an example of error propagation

in and encoding the CNOT gate using the three-qubit code [28]. If an error occurs

|0i •
|0i •
|0i •

|0i X

|0i X

|0i X
Figure 8.2: Fault-tolerant encoded CNOT gate

in the first qubit of the first encoded block it only affects the first qubit of the second

block of encoded qubits. Figure 8.3 shows how such an error propagates throughout

the second block if the circuit is not implemented fault-tolerantly. Through proving

|0i • • •
|0i
|0i

|0i X

|0i X

|0i X
Figure 8.3: Encoded CNOT gate

an equivalence we show that an error on the control wire can propagate to the target

qubit in a CNOT gate and the result can be extended to the FT encoded CNOT gate.

The equivalence implies that a bit-flip error on the first qubit before the CNOT gate

afflicts the output as if one bit-flip error has occurred to each of the control and target
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qubits after the CNOT gate has been carried out. Figure 8.4 shows this equivalence.

Figure 8.4: Propagation of error through a CNOT gate

Having CNOT ⌘U = |0ih0|⌦ I2 + |1ih1|⌦X2 we write

UX1 =U(X1 ⌦ I2) =U(X1 ⌦ I2)U†U =U(X1 ⌦ I2)


|0ih0|⌦ I2 + |1ih1|⌦X2

�†
U

=


|0ih0|⌦ I2 + |1ih1|⌦X2

�
|1ih0|⌦ I2 + |0ih1|⌦X2

�
U

=


|0ih1|⌦X2 + |1ih0|⌦X2

�
U

= (X1 ⌦ I2)(I1 ⌦X2)U (8.8)

This trick is also used throughout the calculations of FT quantum computation. In the

following we employ the example of the CNOT gate to shed light on the condition of

having a fault-tolerant circuit which is threshold condition on the probability of failure

of a gate in the circuit.
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First we construct a FT CNOT gate by replacing each qubit with a block of encoded

qubits using e.g. Steane code and then replace the unencoded CNOT gate with its en-

coded version. The rest is applying error correction using the Steane code while the

whole procedure must be done fault-tolerantly. Figure 8.5 illustrates this construction[27].

We want to show that the probability of introducing two or more errors to the out-

Figure 8.5: Fault-tolerant CNOT gate with implemented QEC

put from the fist block of encoded qubits is O(p2) which is an improvement over the

probability of the same event when fault-tolerance is not implemented. In addition, we

find a threshold for the probability p of failure of each component in the FT circuit.

To do so we explore all the possible ways that lead to two or more errors in the output

of the first block. Furthermore we do this analysis at four stages of the circuit, before

the CNOT gate, after the CNOT gate, after the syndrome measurement, and after the

recovery operation [see figure 8.5]. The possibilities are as below[27].

1. A pre-existing error may be introduced to each block from the state preparation

or the error correction unit (syndrome measurement or recovery) after that. The

error on the second block can propagate to the first block through the CNOT
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gate whose probability is c0 p. This is the probability of failure of each of the

components before the CNOT gate and c0 is the number of locations at which a

failure may occur. For convenience we assume that the probability of a single

pre-existing error entering the second block is c0 p. Since these events are in-

dependent the probability of having two or more errors in the output of the first

block is c2
0 p2. For the certain example of the Steane code we may have an es-

timate of the number of points of failure. The syndrome measurement includes

measuring six generators each of which has approximately 10 components prone

to failure. The recovery operation needs 7 components that add up to c0 ⇡ 70

locations.

2. There may be a single pre-existing error in either the first or the second block

of qubits and that the CNOT gate fails to work correctly. The probability of

having two or more error in the output of the first block is c1 p where c1 is the

number of pairs of points at which a single failure may occur. Our estimate

for the syndrome measurement and recovery operation in the stages prior to the

CNOT gate also apply here however the number of points of failure increases to

2⇥70 = 140 due to the possible contribution of either of the blocks. There are

also 7 components in the encoded CNOT gate that add up the total number of

pairs of the failure points to c1 = 7⇥140 ⇡ 103.

3. Two failures may independently occur in the CNOT gate with probability c2 p2

where c2 is the total number of pairs of points of failure. For the case of the
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Steane code c2 ⇡ 102.

4. There may be a failure in the CNOT and one in the syndrome measurement that

comes afterwards with probability c3 p2 where c3 p2 ⇡ 102 for the Steane code.

5. Two or more failures may occur during syndrome measurement on each block

independently with the probability c4 p2 where c4 is the total number of pairs

of points of failure in the syndrome measurement circuit. For the Steane code

example c4 = 70⇥70 ⇡ 5⇥103.

6. There may exist independent failures in the syndrome measurement and the

recovery operations after the CNOT gate with probability c5 p2 where for the

Steane code c5 = 70⇥7 ⇡ 5⇥102.

7. There may exist two or more failures in the recovery operations of each block

independently with probability c6 p2 where for the case of the Steane code c6 =

72 ⇡ 50.

So the total number of places at which a single failure may occur is c = c2
0 + c1 + c2 +

c3 + c4 + c5 + c6 ⇡ 104 for the Steane code. The probability of having two or more

errors in the output from the first block of encoded qubits is cp2 and the probability

of success of such a FT procedure is 1� cp2 provided that the probability of failure

of each component of the FT circuit is p < 1
c = 10�4 for the Steane code. In general,

fault-tolerant quantum computation suppresses the errors due to the failure of the com-

ponents from propagating to a large number of qubits and therefore the output data is
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recoverable.

However the fault-tolerant quantum computations provides an improved error rate, yet

there is another way to mitigate the effect of failure in the components of a FT circuit.

Concatenation of codes is also used to improve the success probability of a FT com-

putation. The idea of concatenated codes is encoding an input qubit at the first level of

encoding and then encoding each qubit at the second level and doing it iteratively till

the highest level. So if the probability of having unrecoverable error at the first level of

encoding is cp2 at the second level it will be c(cp2)2 = c3 p4 and so on. At the highest

level of encoding this probability is (cp)2k

c provided that the failure probability of each

component is p < 1
c . Figure 8.6 shows the scheme of concatenation[28]. We must

Figure 8.6: Levels of encoding in in a concatenated code
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find a bound on the number of physical gates required to implement each FT gate for

k levels of concatenations in such a way that the error rate decreases faster than the

size of the circuit. Assume that the number of such gates is dk with d being a constant.

Concatenating a circuit of S gates for k levels we wish to have an overall error proba-

bility of e . So the error rate of the fault-tolerant implementation of each gate is e
S . So

we wish to have

(cp)2k

c
 e

S
(8.9)

Taking logarithm of equation 8.9

2k 
log( S

ce )

log( 1
cp)

(8.10)

and using 2 = d
1

log2 d yields

dk 
✓

log( S
ce )

log( 1
cp)

◆log
2

d
(8.11)

The right-hand side of the inequality 8.11 is of the order O
✓

logm(S
e )

◆
for a positive

constant m � 1. So the size of the circuit (the number of gates) is bounded by

Sdk = O
✓

S
✓

logm(
S
e
)

◆◆
(8.12)

The threshold theorem[20] summarizes the implementation of fault-tolerant circuits

using concatenation.

Theorem 6 A quantum circuit containing S gates may be simulated with a probability

of error at most e using

O
✓

S
✓

logm(
S
e
)

◆◆
(8.13)

gates on hardware whose components introduce errors with probability p, provided p
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is below some constant threshold, p < pth.

As already mentioned fault tolerance not only applies to the gates in a circuit but also

it includes other components such as the logical state preparation, measurement, trans-

forming the qubits through the quantum wires, storing data in quantum memories, etc.

In this chapter the basic ideas of implementing fault-tolerant circuits emphasising on

the performance of gates were studied.
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Chapter 9

CONCLUSION

In this survey a full review the early-stage quantum error correction has been done. It

turns out that the CSS codes which are based on the idea of coding theory is contained

in the larger family of the stabilizer codes. In fact, what distinguishes the subgroup

of the CSS stabilizers from within the group of more general stabilizers is the form

of their generators which is separated by their dependence on X or Z. Also, the stabi-

lizer formalism has an edge over the framework of the CSS codes which is eventually

needed to measure the error syndrome which is in essence touching the erred code-

word. Instead the stabilizer formalism looks for the generators and measures them as

observable which does not have any analogous in QEC. In this sense, measuring the

generators of the CSS codes which are separated by X or Z is done more efficient than

the non-CSS codes such as the five-qubit code.

Since the advent of the quantum error correcting codes in mid 90’s several other codes

have been proposed. Not all these codes are useful from a practical point of view while

there are only a few proposals among these advancements which seem promising for

the practical uses and in particular the implementation of quantum computers. This

study with its extensive analysis of quantum error correction methods paves the way

for further studies of the progresses in quantum error correction. One of these advance-

ments is the surface code with a high threshold condition and therefore offers a more
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robust code when subject to error. However one should note that the threshold analy-

sis is architecture dependent and that different types of noise can be introduced to the

qubits by different implementations of quantum computers and this affects the result of

the threshold analysis substantially. Table 9.1 compares different architectures leading

to different threshold conditions[40].

Code Threshold Architecture

Aharanov, Ben-Or [19] Steane code O(10�6) None

Gottesman [41] Steane code O(10�4 �10�6) None

Knill, Laflamme, Zurek [24] Steane code O(10�6) None

Metodiev et al. [47] Steane code O(10�4) Specific to Ion-Traps

Stephens, Fowler, Hollenberg [48] Steane code O(10�6) Kane P:Si system [49]

Szkopek et al. [50] Steane code O(10�7) General Nearest Neighbour Systems

Svore, DiVincenzo, Terhal [51] Steane code O(10�5) General Nearest Neighbour Systems

Fowler et al. [52] Steane code O(10�6) Superconducting qubits

Balesiefer, Kregor-Stickles, Oskin [53] Steane code O(10�9) Ion-Traps

Wang et al. [54] Surface code O(10�2 �10�3) Quantum Dots, Diamond [55],[56]

Table 9.1: Different thresholds from different architectures
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