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ABSTRACT 

Adaptive beamforming is a spatial filtering technique for uniform linear array of 

sensors that has application in numerous fields of signal processing such as wireless 

communications, radar, sonar, seismology and radio astronomy. Classically the 

minimum-variance-distortionless-response (MVDR) beamformer provides an 

acceptable solution to the problem of recovering the signal-of-interest (SOI) in the 

array input while minimizing the array output power. A number of problems exist in 

practice with the MVDR beamformer due to a number of non-ideal conditions such 

as mismatch in the direction of arrival (DOA) of the SOI, array calibration errors, 

local scattering of the incident signal and the finite sample approximation of the 

array covariance matrix. Several adaptive beamforming techniques, which have 

robustness against the problems cited above, have been developed to overcome these 

difficulties. However, these techniques have in general high computational 

complexity, as they depend on the eigenvalue decomposition (EVD) of the array 

covariance matrix. 

In this work we consider the application of the multiple signal classification 

(MUSIC) method to the solution of the beamforming problem. This involves the 

estimation of the unknown DOA of the SOI based on the MUSIC algorithm. The 

DOA of the SOI is estimated by minimizing a cost function in terms of the norm of 

an error vector, which is the difference between the presumed steering vector of the 

SOI, and the orthogonal projection of this vector on the signal subspace. Direct 

implementation of this approach, however, also comprises eigenvalue decomposition 

of the covariance matrix. We will investigate the possibility of performing the above-

mentioned minimization without EVD by expressing the cost function in terms of a 
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parameterized estimate of the signal steering vector. 

Keywords: Adaptive Beamforming, Minimum-Variance-Distortionless-Response, 

Mismatch, Direction Of Arrival, Signal Of Interest, Eigenvalue Decomposition 
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ÖZ 

Uyarlanır demet oluşturma işaret işlemenin, telsiz haberleşme, radar, sonar, deprem 

dalga analizi, ve radyo astronomisi gibi çeşitli alanlarında uygulama bulan bir 

uzamsal işaret işleme yöntemidir. Geleneksel olarak en-az-değişkenlik-bozunumsuz-

tepke (MVDR) demet oluşturucu, dizi girişinden, dizi çıkış gücünü en aza 

indirgeyerek istenen işaretin elde edilmesi sorununa kabul edilebilir bir çözüm 

sunmaktadır. Fakat uygulamada MVDR demet oluşturucunun, istenen işaretin geliş 

açısındaki uyumsuzluk, dizi ayar hataları, yerel dağılma ve dizi öz-ilinti matrisinin 

sınırlı örneklenmesi gibi ideal olmayan durumlardan kaynaklanan sorunları vardır. 

Sözkonusu sorunları gidermek için birtakım dayanıklı uyarlanır demet oluşturma 

yöntemleri geliştirilmiştir. Fakat bu yöntemler, öz-ilinti matrisinin özdeğer ayrışımını 

kullanmalarından kaynaklanan yüksek hesaplama karmaşıklıkları vardır. 

Bu çalışmada, MUSIC yönteminin demet oluşturma probleminin çözümü için 

uygulanması amaçlanmaktadır. Bu amaca ulaşmak için, istenen işaretin bilinmeyen 

geliş açısının MUSIC algoritması kullanılarak kestirimi hedeflenmektedir. İstenen 

işaretin geliş açısı, varsayılan dizi yönlendirme vektörü ile bu vektörün işaret 

altuzayına olan dik izdüşümü arasındaki farktan oluşan bir hata vektörünün 

büyüklüğünden oluşan bir maliyet işlevinin enazlanması yoluyla kestirilmektedir. Bu 

yaklaşımın doğrudan uygulanması öz-ilinti matrisinin özdeğer ayrışımını (EVD) 

gerektirir. Dolayısiyle, yukarıda bahsedilen enazlama EVD kullanılmadan ve maliyet 

işlevinin işaret yönlendirme vektörünün parametrik bir kestirimi cinsinden ifade 

edilmesi suretiyle yapılmaya çalışılmıştır.   

Anahtar Kelimeler: Uyarlanır Demet Oluşturmada, Tekdüze Doğrusal Dizge, 
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Uyumsuzluk, Karışım, İlinti Matrisi, Genelliştirilmiş Yükleme Matrisi 
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Chapter 1 

INTRODUCTION 

1.1  Statement of the Problem 

The topic of array processing is related to extraction of data from signals gathered 

using array of sensors. These signals spread spatially over a material, like air or 

water, and the outcome of the wavefront is sampled by the sensor array. The desired 

information in the signal might be either the content of the signal which is considered 

in communications or the particular situation of the source or reflection that generate 

the signal, like in radar and sonar applications. In all the cases, the sensor array 

information must be planned to draw out proper information. For linear arrays, the 

sensors are located in patterns and organized along a direct line. The data contained 

in a spatially broadcasting signal also gives the place of its origin or the amount of 

the signal itself. If we are interested in getting this data we commonly must face with 

the presence of other undesired signals. Much as a frequency selective filter 

emphasizes signals at a certain frequency, we can choose to focus on signals from a 

particular direction. Obviously this process can be performed by employing a single 

sensor, provided that it can spatially discriminate to pass transmitted signals from a 

specified direction and reject those from other directions. The array contains a series 

of elements placed on a straight line with identical inter-element distance. This kind 

of array is known as a uniform linear array (ULA).  

1.2 Literature Survey 

There are various approaches to establish robust adaptive beamformers. Plenty of 



 

2 

 

methods have been provided for the particular condition of signal look direction 

mismatches. Among such methods we can mention the linearly constrained 

minimum variance (LCMV) beamformer [1], signal blocking based algorithms [2], 

[3], and Bayesian beamformer [4]. Although all these approaches establish high 

robustness versus the signal look direction mismatch, they are not robust versus other 

types of mismatches caused by low array calibration, unknown sensor mutual 

coupling, near-far wave-front mismodeling, signal wave-front distortions, source 

spreading, and coherent/incoherent local steering, as well as other effects[5]. 

Some other methods are known to propose a modified robustness against more 

general types of mismatches, between which we can mention the methods that use 

the diagonal loading of the sample covariance matrix [6], [7], the eigenspace-based 

beamformer [8], [9], and the covariance matrix taper (CMT) approach [10], [11]. 

However a main problem of the diagonal loading approach is that there is no 

dependable way to determine the diagonal loading factor. If this factor is specified 

incorrectly, the robustness of the diagonal loading method may be inappropriate. 

The eigenspace-based beamforming technique is basically limited in its efficiency at 

low signal-to-noise ratio (SNRs) and when the dimension of the signal-plus-

interference subspace is high [12]. Moreover, this dimension must be known in the 

latter method [8]. The CMT method is used to establish a good robustness in cases 

with nonstationary interferers [8]. But its robustness against mismatches of desired 

signal array response is improper. 

 

Recently a suitable method has been provided that models an arbitrary mismatch in 

the desired signal array response and apply worst-case optimization implementation 

to modify the robustness of the minimum-variance-distortionless-response (MVDR) 
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beamformer [12] [13]. This method is based on a convex optimization formulation 

using second-order cone programming (SOCP). 

A main deficiency of the robust techniques cited above is that they have been 

generally provided for the point signal source model (we denote a point source as a 

source that contributes a rank-one component to the covariance matrix) and majority 

of them cannot be developed in a direct way to handle the scenario of a higher-than-

one rank of the signal model. Another approach is covariance matrix taper (CMT) 

which is known to provide excellent robustness when the interference is non-

stationary [14], but robustness against mismatches for desired signal array response 

is acceptable. Another method is robust adaptive beamforming using worst-case 

performance optimization [15]. The performance of this method is fairly close to the 

simple algorithm which is known as diagonal loading of the sample matrix inversion 

(LSMI) algorithm. The Generalized Sidelobe Canceller (GSC) [16] is a technique 

that modifies its blocking matrix in order to extend the sharp nulls [17].  

1.3 Thesis Objective 

Adaptive beamforming is a spatial filtering technique for uniform linear array of 

sensors that has application in numerous fields of signal processing such as wireless 

communications, radar, sonar, seismology and radio astronomy. Classically the 

minimum-variance-distortionless-response (MVDR) beamformer provides an 

acceptable solution to the problem of recovering the signal-of-interest (SOI) in the 

array input while minimizing the array output power. A number of problems exist in 

practice with the MVDR beamformer due to a number of non-ideal conditions such 

as mismatch in the direction of arrival (DOA) of the SOI, array calibration errors, 

local scattering of the incident signal and the finite sample approximation of the 
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array covariance matrix. Several adaptive beamforming techniques, which have 

robustness against the problems cited above, have been developed to overcome these 

difficulties. However, these techniques have in general high computational 

complexity, as they depend on the eigenvalue decomposition (EVD) of the array 

covariance matrix. 

In this work we consider the application of the multiple signal classification 

(MUSIC) method to the solution of the beamforming problem. This involves the 

estimation of the unknown DOA of the SOI based on the MUSIC algorithm. The 

DOA of the SOI is estimated by minimizing a cost function in terms of the norm of 

an error vector, which is the difference between the presumed steering vector of the 

SOI, and the orthogonal projection of this vector on the signal subspace. Direct 

implementation of this approach, however, also comprises eigenvalue decomposition 

of the covariance matrix. We will investigate the possibility of performing the above-

mentioned minimization without EVD by expressing the cost function in terms of a 

parameterized estimate of the signal steering vector. 

1.4 Organization 

Chapter 2 provides details about beamforming in uniform linear array. This is 

followed by an explanation of the beamforming methods, such as diagonal loading, 

robust Capon and Eigen-based beamformers, which take in to the part in chapter 3. 

Next in chapter 4, the proposed method is presented and then discussed in varied 

situations in chapter 5. Finally, chapter 6 makes some conclusions and purveys our 

future work. 
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Chapter 2 

2. BEAMFORMING IN UNIFORM LINEAR ARRAYS 

(ULA’s) 

2.1 Introduction 

In most of the applications, the proper information to be drawn out from an array of 

sensors is the content of a spatially broadcasting signal from a specific direction. The 

content may be a message contained in the signal, such as in communication 

applications, or just the being of the signal, as in radar and sonar. Because of this, we 

need to linearly combine outputs from all sensors in a way, that is with an 

appropriate weighting, so as to extract signals coming from a particular angle. This 

process is known as beamforming because the weighting operation confirms signal 

from a specific direction while decreasing those from other directions, and can be 

thought of as casting or forming a beam. 

The performance of an adaptive beamforming technique is known to decrease 

considerably if there are mismatches between the true and assumed array steering 

vector responses to the desired signal [2],[8],[18]. Such a case may often happen in 

different conditions like violation of fundamental assumption on the surrounding, 

look direction errors, sensor array or environment being non-stationary. Some cases 

of degradation can happen when the signal array response is known exactly but the 

training size is small [8],[19],[6],[20]. Accordingly, robust methods for adaptive 

beamforming emerge to be of main importance in these cases [2],[8],[7],[5]. 

Adaptive beamforming has applications in sonar, radar, seismology, microphone 
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array speech processing [21],[22] and even in wireless communications [23], [24].  

2.2 Uniform Linear Array 

Uniform linear array (ULA) is an antenna array including beam elements with 

uniform spacing between the elements and can be utilized to generate a directional 

radiation array. Antenna arrays may have different geometrical structures, the most 

common being linear arrays. Some antennas (such as diploes, loops and broad side) 

exhibit omnidirectional patterns. In radio communication, an omnidirectional 

antenna is a class of antenna which radiates radio wave power uniformly in all 

directions in one plane. In this work we intend to use this kind of antenna. Every 

single element antenna has beam-patterns that are wide and they have small 

directivity that is not suitable for high space communications. Arrays commonly 

employ identical antenna elements. The beam pattern of the array depends on the 

shape, the spacing between the sensors, the amplitude and phase excitation of the 

elements, and also the radiation pattern of every sensor. Figure 2.1 shows a 

beampattern. Associated with the pattern of an antenna is a parameter designated as 

beam width. 

 
Figure 2.1: Beam Pattern 
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The beam width of a pattern is defined as the angular separation between two 

identical points on opposite side of the pattern maximum. In antenna pattern, there 

are a number of beam width. In antenna’s radiation pattern, the mainlobe or main 

beam is the lobe containing the maximum power. This is the lobe that exhibits the 

greatest field strength. The other lobes are called sidelobes, and usually represent 

unwanted radiation in undesired directions. In antenna engineering sidelobes are the 

lobes of the far field radiation pattern that are not the mainlobe. In receiving antenna, 

sidelobes may pick up interfering signals and increase the noise level in the receiver, 

so we want to cancel the sidelobe. Figure 2.2 shows the ULA, where interelement 

spacing is defined by d and single propagating signal impinges on the ULA from 

angle 𝜙. 

 
Figure 2.2: Impinging Signal on Uniform Linear Array [25] 

For providing a model for a single spatial signal in interference and noise received by 

ULA, we presume a signal with angle ɸ which is discrete signal and contain the 

individual sensor signals 

𝒙(𝑛)  =  [𝑥1(𝑛) 𝑥2(𝑛) … 𝑥𝑁(𝑛)]𝑇 (2.1) 

where N is the total number of sensors. A signal measurement of this vector is 
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denoted as an array snapshot. With respect to (2.1) full array discrete time signal is 

configured for every signal of interest (SOI) which is attracted by individual sensors 

𝑥(𝑛)  =  𝜈(𝜙)𝑠(𝑛)  +  𝑤(𝑛) (2.2) 

where 𝑤(𝑛) is the thermal noise and  𝜈(. ɸ) is the array response vector and, 𝑠(𝑛)  =

 𝐻(𝐹𝑐) 𝑠0(𝑛)  is the impulse response of signal of interest (SOI) to 𝑛𝑡ℎ  sensor, 

since 𝐹𝑐 =  𝑐 ⁄ 𝜆. Where 𝐹𝑐 is the carrier frequency and 𝜆  is the wavelength of the 

propagating. Sometimes in spatial filtering is related to receive a signal arriving from 

a determined point ɸ , and presume the signal is narrowband, a common choice for 

beamformer weight is the array response vector model as  

𝜈(∅)  =  [1, 𝑒−𝑗2𝜋[(𝑑𝑠𝑖𝑛ɸ) 𝜆]⁄ , 𝑒−𝑗4[(𝑑𝑠𝑖𝑛𝜙) 𝜆⁄ ]  … , 𝑒−𝑗2𝜋[(𝑑𝑠𝑖𝑛ɸ 𝜆](𝑁−1)⁄ ]𝑇 

 

(2.3) 

Because all the sensors are uniformly spaced, the spatial signal has a difference in 

propagating distance between any two sequential sensors of d sin ɸ, that results in a 

time delay of 

𝜏 (𝜙)  =  
𝑑 𝑠𝑖𝑛 𝜙

𝑐
 (2.4) 

where c is the rate of propagation of the signal. Additionally, the delay to 𝑚𝑡ℎ sensor 

with respect to the first sensor in the array is 

𝜏𝑚(𝜙)  =  (𝑚 − 1) 
𝑑 𝑠𝑖𝑛 𝜙

𝑐
  (2.5) 

It should be considered that full possible range of unambiguous angle is – 900 ≤

 ϕ ≤  900  and the spacing for sensors must be  d ≤  
λ

2
 , to prevent spatial 

ambiguities. 

For drawing out the desirable data from array of sensors which contains a spatially 
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propagating signal from a particular direction, it is required to accomplish weighting 

that emphasizes signals from a specified angle, and attenuates other ones; this 

process is considered as forming a beam. Figure 3.1 shows the beam. 

 
Figure 2.3: Beam 

Beamforming is also arranged as data independent or statistically optimum, 

depending on how the weighs are selected. The weights in a data independent 

beamformer do not depend on the signal information and are selected to provide a 

determined response for all signal/interference scenarios. The weights in a 

statistically optimum beamformer are selected with respect to the statistics of the 

array information to optimize the array response. Commonly, the statistically 

optimum beamformer locates nulls in the direction of interfering sources in an effort 

to maximize the signal-to-interference-plus-noise ratio (SINR) at the beamformer 

output.[26] Figure 4.1 shows beamforming operation. An adaptive beamformer is a 

system that performs adaptive spatial signal processing with an array of transmitters 

or receivers. 

Commonly, a beamformer generates its output by forming a weighted combination 
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of signals (Data vector) from the N elements of sensor array 

Y(n) = 𝑤𝐻x(n) (2.6) 

where  

w =  [w1  w2  … wN]T (2.7) 

is the weight vector of the beamformer.  

 
Figure 2.4: Beamforming Operation 

A standard implement for analyzing the efficiency of a beamformer is the response 

for a given weight vector 𝑤 as a function of 𝜙, which is known as beam response. 

This angular response is denoted by applying the beamformer weight to a group of 

array response vectors from all conceivable angles, which is, 

−90 ≤  𝜙 ≤  −90 (2.8) 

and 

𝑊(𝜙)  =  𝑤𝐻  𝑣(𝜙) (2.9) 
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The weight vector can be computed by maximizing the signal-to-interference plus 

noise ratio (SINR) 

𝑆𝐼𝑁𝑅 =  
𝐸{|𝑤𝐻 𝑠(𝑛) 𝑣(𝑛)|

2
}

𝐸{|𝑤𝐻 𝑥𝑖+𝑛(𝑛)|
2
}

 =  
𝜎𝑠

2 |𝑤𝐻𝑣(𝜙)|
2

𝑤𝐻𝑅𝑖+𝑛𝑤
 (2.10) 

The optimal solution to (2.10) is computed by minimizing the cost function 

(𝑤𝐻𝑅𝑖+𝑛𝑤 ) while the beam response has unity gain (𝑤𝐻𝑣(𝜙) = 1) at the angle-of-

arrival of the SOI. Applying the Lagrange multiplier method we can write 

𝐽 =  𝑤𝐻𝑅𝑖+𝑛𝑤 + 𝜆(𝑤𝐻𝑣(𝜙) − 1) 

𝛿𝐽

𝛿𝑤
= 2𝑅𝑖+𝑛 +  𝜆𝑣(𝜙) = 0 ⇒ 𝑤 = − 

1

2
 𝜆 𝑅𝑖+𝑛

−1 𝑣(𝜙) 

𝑤𝐻𝑣(𝜙) = 𝑣𝐻(𝜙)𝑤 = 1 

⇒ 𝑣𝐻(𝜙)𝑤 = −
1

2
𝜆𝑣𝐻(𝜙)𝑅𝑖+𝑛

−1 𝑣(𝜙) = 1 

− 
1

2
𝜆 =

1

𝑣(𝜙)𝐻𝑅𝑖+𝑛
−1 𝑣(𝜙)

 

⇒ 𝑤𝑜𝑝𝑡 =
𝑅𝑖+𝑛

−1  𝑣(𝜙)

𝑣(𝜙)𝐻 𝑅𝑖+𝑛
−1  𝑣(𝜙)

 (2.11) 

where 𝑅𝑖+𝑛 is interference-plus-noise correlation matrix. 
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Chapter 3 

3. BEAMFORMING TECHNIQUES 

3.1 Introduction 

As we illustrated in prior chapters, an adaptive beamformer is an approach in which a 

spatial signal is adaptively processed by an array of sensors. The signals are gathered 

in a way which increases the strength of a signal in a pre-determined direction. 

Additionally, the purpose of this technique (beamforming) is to maximize the Signal- 

Interference-plus-Noise-Ratio (SINR) and diminish the effect of mismatches. In this 

Chapter, we will introduce some of the well-known methods such as diagonally 

Loaded Sample Matrix Inversion Beamformer (LSMI), Robust Capon Beamformer 

(RCB), Eigenspace-based beamformer, and the general-rank signal beamformer.  

3.2 Loaded Sample Matrix Inversion Beamformer (LSMI) 

Obviously, without appropriate sample size of the estimated covariance in the sample 

matrix inversion (SMI) adaptive beamformer, favorable sidelobe level and 

distortionless mainlobe of adaptive arrays will not be obtained. Additionally, in many 

applications a finite number of training information are at hand, so to attain this aim, 

in many cases it can be beneficial to consider the optimum beamformer with respect 

to the eigenvalues ( 𝜆𝑚 ) and eigenvectors ( 𝑞𝑚 ) of the interference-plus-noise 

correlation matrix . 

𝑅𝑖+𝑛= ∑ 𝜆𝑚

𝑁

𝑚=1

𝑞𝑚𝑞𝑚
𝐻  (3.1) 

where the eigenvalues are 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁 and the rank of interference is P. we 
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substitute (3.1) into the optimum beamformer weights 

𝑤0 = 𝛼𝑅𝑖+𝑛
−1 𝜈(𝜙𝑠) (3.2) 

where 

𝑅𝑖+𝑛 
−1 = ∑

1

𝜆𝑚

𝑁

𝑚=1

𝑞𝑚𝑞𝑚
𝐻  

and 

𝛼 =  [𝜈𝐻(𝜙𝑠)𝑅𝑖+𝑛 
−1 𝜈(𝜙𝑠)] 

Then we have 

𝑤0(ϕ) =
𝛼

𝜎𝑤
2

{𝑤𝑞(ϕ) − ∑
𝜆𝑚 −  𝜎𝑤

2

𝜆𝑚

𝑁

𝑚=1

[𝑞𝑚
𝐻 ν(𝜙𝑠)𝑄𝑚(ϕ)]} (3.3) 

where 𝑤𝑞(𝜙)  = 𝜈𝐻(𝜙𝑠)𝜈(𝜙) is the quiescent response of the optimum beamformer 

and 𝑄𝑚(𝜙) = 𝑞𝑚
𝐻 𝜈(𝜙) is the beam response of the eigenvector (eigenbeam). This 

equation is existed when the optimum conditions are described and rank of 

interference is less than the number of sensors, and the smallest eigenvalues of 𝑅𝑖+𝑛 

are eigenvalues which are equal to the thermal noise power 𝜆𝑚 = 𝜎𝑤
2 . If we consider 

(3.3) for the SMI adaptive beamformer, it will be 

𝑤𝑠𝑚𝑖(𝜙) =
𝛼

𝜆̂𝑚𝑖𝑛

{𝑤𝑞(𝜙) − ∑
𝜆̂𝑚 − 𝜆̂𝑚𝑖𝑛

𝜆̂𝑚

𝑁

𝑚=1

[𝑞̂𝑚
𝐻 𝜈(𝜙)]𝑄̂𝑚(𝜙)} (3.4) 

where 𝜆̂𝑚  is the eigenvalue and 𝑞̂𝑚  is the eigenvector of  𝑅̂𝑖+𝑛 , and, 𝑤𝑞(𝜙)  and 

𝑄̂𝑚(𝜙) are the beampatterns of the quiescent weight vector and the 𝑚𝑡ℎ eigenvector 

eigenbeam for SMI beamformer respectively. The summation part is weighted 

eigenbeams which locate nulls at angles of interferers. The weights for eigenbeams 

are characterized by the term 
(𝜆̂𝑚−𝜆̂𝑚𝑖𝑛)

𝜆̂𝑚
 and the noise eigenvectors are chosen to fill 

the residue of the interference-plus-noise space that is not spanned by the 

interference. In the desired case, the noise eigenvectors should not affect the beam 
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response since the eigenvalue for the true correlation matrix is 𝜆𝑚 = 𝜆𝑚𝑖𝑛 = 𝜎𝑤
2 . 

But, this expression does not consider for the SMI, because by adding the samples 

the noise power eigenvalues will have alteration. So, the eigenbeams have influence 

on the response by the deflection with the noise power. So because the eigenvalues 

are random variables that change according to the number of samples, response of 

the beam suffers from the increasing of casually weighted eigenbeams and as a result 

sidelobe level will be higher in the adaptive beampattern. Therefore, to decrease the 

variation of the eigenvalues, a weighted identity matrix is added to the sample 

correlation matrix [27]. 

𝑅̂𝑑𝑙=  𝑅̂𝑖+𝑛 + 𝜁𝐼 𝑎𝑛𝑑 𝜁 = 𝜎𝑤
2  (3.5) 

where the 𝜁 is loading factor. This method is named as diagonal loading. This 

approach adds the loading level to all eigenvalues of correlation matrix which 

generate a bias in eigenvalues toward reducing their alteration. The diagonally 

loaded SMI adaptive beamformer is given by 

𝑤𝐿𝑆𝑀𝐼 =
𝑅̂𝑑𝑙

−1 𝑣(𝜙𝑠)

𝑣𝐻(𝜙𝑠)𝑅̂𝑑𝑙 
−1𝑣(𝜙𝑠)

 (3.6) 

It is obvious that the diagonal loading method increments variance of the white noise 

by parameter 𝜁  and it can make better the performance of the SMI adaptive 

beamformer with random signal array response mismatch [28]. Convergence for 

LSMI beamformer will be more quick even while the number of snapshots is 2 times 

more than the number of sensors (2N) [17]. However, a major drawback of this 

approach is that there is no reliable way to choose a suitable quantity for the loading 

factor, because the optimal choice depends on the unknown signal and interference 

factors [29]. To solve the major disadvantage of the diagonal loading technique, in 
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[30] a method has been offered which attempts to resolve the problem by developing 

the General Linear Combination based (GLC) beamformer. 

Actually, when the number of sample size N is small, the sample covariance matrix 

𝑅̂ is not an appropriate approximation of the true covariance matrix 𝑅. To attenuate 

this problem, in the GLC-based covariance matrix estimation, which is a shrinkage 

method [31], we consider a GLC of the sample covariance matrix 𝑅 ̂and the identity 

matrix I to acquire a more precise R instead of 𝑅̂ : 

𝑅̃ = 𝛼𝐼 + 𝛽𝑅̂ 𝑤ℎ𝑖𝑐ℎ 𝑅̂ ≥ 0 (3.7) 

where 𝑅̃ is the improved estimation of 𝑅, 𝛼 and 𝛽 are the shrinkage parameters. To 

find the parameters, 𝑅̃ is minimized with respect to the 𝑀𝑆𝐸(𝑅̃) = 𝐸{||𝑅̃ − R||2} as 

proposed in [32]. Note that 𝛼 ≥ 0 and ≥ 0 , because these assure that 𝑅̃ ≥ 0. By 

minimization of MSE for GLC the shrinkage parameters for M dimension (number 

of sensors) of array are computed as: 

𝑀𝑆𝐸(𝑅̃) = 𝛼2𝑀 − 2𝛼(1 − 𝛽)𝑡𝑟(𝑅)(1 − 𝛽)2||𝑅||2 + 𝛽2𝐸{||𝑅̃ − 𝑅||2} (3.8) 

So, the optimal value for 𝛽 and 𝛼 can be found as 

𝛽0 =  
𝛾

𝜌 + 𝛾
 𝑤ℎ𝑒𝑟𝑒  𝛾 = ||𝑣𝐼 − 𝑅||2 (3.9) 

𝛼0=𝜈(1 − 𝛽0) = 𝜈 
𝜌

𝜌 + 𝛾
 𝑤ℎ𝑒𝑟𝑒 𝜌 ≜ 𝐸{||𝑅̃ − 𝑅||2}, 𝜈 = 𝑡𝑟(𝑅)/𝑀 (3.10) 

It should be considered that 𝛽0𝜖[0,1] and 𝛼0 ≥ 0. However 𝛼0 and 𝛽0 are completely 

dependent on the unknown covariance matrix 𝑅. Therefore these parameters should 

be estimated by approximating  



 

16 

 

𝜌̂ =  
1

𝑁2
∑ ||𝑋(𝑛)||4

𝑁

𝑛=1

−
1

𝑁
||𝑅̂||2 (3.11) 

As a result, the estimated 𝛼0 and 𝛽0 are obtained which guarantee that the estimate of 

𝛽0 is not negative [32]: 

𝛼̂0 = 𝑚𝑖𝑛[𝜈̂
𝜌̂

||𝑅̂ − 𝜈̂𝐼||
2

, 𝜈̂] 𝑤ℎ𝑒𝑟𝑒 𝜈̂ = 𝑡𝑟(𝑅̂)/𝑀 (3.12) 

 

𝛽̂0 = 1 −
𝛼̂0

𝜈
 (3.13) 

 

 

  

Now, diagonally loaded estimate of covariance matrix can be denoted as 

𝑅̂𝐺𝐿𝐶 = 𝛼̂0 + 𝛽̂0𝑅̂ (3.14) 

 

Using the above relation instead of R in the standard Capon Beamformer, the GLC 

based robust adaptive beamformer will be achieved  

𝑤𝐺𝐿𝐶

𝑅̂𝐺𝐿𝐶
−1

 𝑣(𝜙𝑠)

𝑣𝐻(𝜙𝑠) 𝑅̂𝐺𝐿𝐶 
−1

𝑣(𝜙𝑠)
 (3.15) 

By rewriting (3.15) for enhanced GLC based weight vector becomes 

𝑤̂𝐺𝐿𝐶 =

[
𝛼̂0

𝛽̂0

 𝐼 + 𝑅]̂−1 𝑣(𝜙𝑠)

𝑣𝐻(𝜙𝑠) [ 
𝛼̂0

𝛽̂0

 𝐼 + 𝑅 ]̂−1 𝑣(𝜙𝑠)
 (3.16) 

It is obvious that the GLC based robust adaptive beamformer is a type of Diagonal 

Loading approach with loading factor ( 
𝛼̂0

𝛽̂0
 ) which is automatically obtained from 
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the data samples {𝑋(𝑛)}𝑛=1
𝑁 . 

3.3 Robust Capon beamformer 

3.3.1 Introduction 

The Capon beamformer has superior resolution and much better interference 

rejection ability in comparison with the standard (data-independent) beamformer, 

provided that the array steering vector corresponding to the signal of interest (SOI) is 

accurately known. 

But whenever the information of the SOI steering vector is ambiguous (most of the 

time this case happens in practice), the efficiency of the Capon beamformer may go 

worse when compared with the standard beamformer. Diagonal loading (including its 

extended versions) has been a common method to modify the robustness of the 

Capon beamformer. The standard Capon beamformer (SCB) [30] can be an optimal 

spatial filter if both the exact covariance matrix and the array steering vector are 

known. In this case, the array signal-to-interference-plus-noise ratio (SINR) output is 

maximized and interferences are better rejected. Nevertheless, usually the covariance 

matrix can be wrongly approximated due to the limited number of data samples, and 

the knowledge for array steering vector can be imprecise because of view direction 

mismatch or differences between assumed signal incoming angle and the actual 

arrival angle [33]. Whenever these mismatches exist there is performance 

degradation of SCB. This degradation becomes more pronounced if the signal-of-

interest (SOI) is present in the estimated covariance matrix. Therefore adaptive 

beamforming encounters small sample size problems and array steering vector errors. 

Also, if the information of signal-of-interest is ambiguous, the efficiency for the 

Capon beamformer will be worse than the standard Capon beamformer. 
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3.3.2 Extension of the Capon Beamformer 

Now we discuss the development of the Capon Beamformer when the steering 

vectors are uncertain [31]. Consider an array including M sensors, and let the 

covariance matrix of the array output vector be R. We consider R that has the 

following form: 

𝑅 = 𝜎𝑠
2𝑣(𝜙)𝑣𝐻(𝜙𝑠) + ∑ 𝜎𝑝

2

𝑝

𝑝=1

𝑣(𝜙𝑝)𝑣𝐻(𝜙𝑝) + 𝑄 (3.17) 

where 𝜎𝑠
2 and 𝜎𝑝

2 are powers of signals impinging on the array; 𝜙𝑠  and 𝜙𝑝  are the 

parameters for the positions of sources which emit the signals. 𝜈(. ) is the array 

steering vector and 𝑄  is the noise covariance matrix given by 𝑄 = 𝜎2 I (the 

covariance matrix has full rank despite the rest of the terms, each of which having 

rank one). With respect to this description, the first term of R is related to the SOI 

and remaining terms correspond to the 𝑃  interferences. To simplify notation, 

let 𝜈(𝜙𝑠) =  𝜈𝑠. 

This method is aimed to extend the Capon Beamformer to specify the power of 

signal-of-interest even when just uncertain knowledge of its steering vector 𝜈𝑠  is 

available. Specifically, consider that only knowledge about  𝜈𝑠  is available which 

belongs to the uncertainty ellipsoid: 

[𝑣𝑠 − 𝑣]̅𝐻𝑐−1[𝑣𝑠 − 𝑣̅] ≤ 1 (3.18) 

where 𝑣̅ is given. When the general formulation for beamforming is utilized for the 

SCB, it is going to determine the weight vector 𝑤0(M×1) by the linearly constrained 

quadratic problem: 

𝑀𝑖𝑛 𝑤𝐻𝑅𝑤  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝐻𝑣𝑠 = 1 (3.19) 

It gives the solution as 
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𝑤0 =
𝑅−1𝑣𝑠

𝑣𝑠
𝐻𝑅−1𝑣𝑠

 (3.20) 

And estimation of 𝜎𝑠
2 by 𝑤0

𝐻𝑅𝑤0 gives 

𝜎̃𝑠
2 =

1

𝑣𝑠
𝐻𝑅−1𝑣𝑠

 (3.21) 

The latest RCB methods in [15] when there is uncertainty in 𝑣𝑠, the constraint on 

𝑤𝐻𝑣𝑠  In (3.19 ) is replaced by any vector ν in the uncertainty set. Then acquired w is 

utilized in 𝑤𝐻𝑅𝑤 to estimate the 𝜎𝑠
2of SCB. However, in the new method, the Capon 

beamformer problem in [31] is formulated in a simple form when the uncertainty set 

is included. By continuing in this manner, a robust estimation of 𝜎𝑠
2  is acquired 

without any prior computation for weight vector 𝑤 [31]. 

In [31] it is proved that 𝜎̃𝑠
2 = 𝜎̂𝑠

2 with respect to the problem 

𝑀𝑖𝑛𝑤𝐻𝑅−1𝑤 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 [𝑣𝑠 −  𝑣]̅𝐻𝐶−1[𝑣𝑠 − 𝑣̅] ≤ 1 (3.22) 

Now if the matrix C is decomposed (𝐶 ≻ 0) and put in (3.22), it will change to a 

quadratic problem with a quadratic equality constraint [27]: 

𝑀𝑖𝑛 𝑤𝐻𝑅−1𝑤 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝑣 − 𝑣̅||2 = 𝜀 (3.23) 

where ε is defined as the uncertainty level. The solution to the RCB formulation in 

(3.23) can be acquired by the Lagrange multiplier method: 

𝑓 = 𝑣𝐻𝑅−1𝜈 + (||𝜈 − 𝑣||̅̅ ̅̅ 2– 𝜀) (3.24) 

By solving this optimization problem, 𝑣𝑠 is obtained as  

𝑣𝑠 = 𝑣– (𝐼 + 𝜆𝑅)−1𝑣̅ (3.25) 

The Lagrange multiplier λ  is obtained by solving the equation g(λ) = ||(𝐼 +
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𝜆𝑅)−1𝑣̅||2=ε and then lower and upper bounds of 𝜆 are imposed.  

To sum up, ˆ
sv  is determined by using (3.25), and 

2ˆ
s  is computed by using (3.21) 

where sv  is replaced with ˆ
sv . Therefore, the main computational complexity of the 

RCB method arises from the Hermitian matrix eigen-decomposition. So, the 

computational complexity of RCB is acceptable compared with the SCB [29]. Once 

there is estimation for signal-of-interest steering vector, the estimated weight vector 

can be attained 

𝑤̂0 =
𝑅̂

−1
 𝑣̂𝑠

𝑣̂𝑠
𝐻𝑅̂

−1
 𝑣̂𝑠

=
(𝑅 +

1
𝜆

𝐼)
−1

𝑣̅

𝑣̅𝐻(𝑅 +
1
𝜆

𝐼)
−1

𝑅(𝑅 +
1
𝜆

𝐼)
−1

𝑣̅

 (3.26) 

Obviously, robust Capon beamformer weight vector is in the form of diagonal 

loading.  

Robust Capon Beamformer will not support some problems where the uncertainty set 

of desired array steering vector applied to achieve robustness against steering vector 

mismatches. Specifically, when large steering vector mismatches are present, the 

uncertainty set must expand to account for the increased error of the desired array 

steering vector. This decreases the output signal-to-interference-plus-noise ratio 

(SINRs) of these beamformers since their interference-plus-noise suppression 

capabilities are attenuated. 

To overcome this problem, a technique has been offered by [32] which uses a small 

uncertainty sphere to look iteratively for the desired array steering vector. In this 

method, the ability of the beamformer in interference-plus-noise suppression can be 

kept by maintaining its degrees of freedom (DOFs) also by using the modified 
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desired array steering vector. The Iterative Robust Minimum Variance Beamformer 

(IRMVB) method yields greater output for SINR. By employing a stopping criterion 

the steering vector computed by the IRMVB method is not allowed to converge to 

the steering vectors of the interferences [32]. 

The concept of the IRMVB (with spherical uncertainty set) is shown in Figure (3.1), 

when there is a mismatch in steering direction, where the desired array steering 

vector 𝑠0 (corresponding to the desired signal direction 𝜃0) and the assumed array 

steering vector 𝑠̅0 (corresponding to the assumed desired signal direction 𝜃0
̅̅ ̅ ) do not 

coincide. If the errors are big then the size of the uncertainty sphere 𝜀1, used in (3.23) 

has to be bigger [27]. Hence, the ability of the beamformer to suppress the 

interference will be weakened due to the increasing of the DOFs. To solve this 

problem, the IRMVB uses a small uncertainty sphere which is smaller than 𝜀1(𝜀2 ≤

𝜀1) to regulate the steering vector form 𝑠̅0 to approach 𝑠0. 
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Figure 3.1: Concept of the IRMVB Method [31] 

It can be done by using the constraint (3.23) (with 𝜀2 in place of 𝜀1) centered at the 

assumed desired array steering vector 𝑠̅0. At the first iteration ||𝑠0 −  𝑠̅0||2 =  𝜀2 and 

the RCB is solved for the modified desired array steering vector. After every 

iteration, the computed steering vector by IRMVB approach is scaled. Again, the 

spherical constraint is exerted centered at the calculated steering vector of the prior 

iteration of IRMVB to solve for the following steering vector. This process is 

continued until the desired array steering vector is obtained. This can be attained by 

using a stopping criteria. Then, IRMVB weight vector can be calculated by using the 

converged steering vector by (3.20). 

Recently, in some reports [32] for the RCB, it has been mentioned that whenever 

large steering vector mismatch arises, degradation exists in signal-to-interference-

plus-noise ratio (SINR). The reason is that the ability to suppress the interference is 

sacrificed whenever the radius for the uncertainty sphere is increased (for instance in 

IRMVB) to have sufficient uncertainty level. So, the degradation of SINR becomes 
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considerable when the interferences are dominant. Therefore, having a robust 

adaptive beamformer method, a sphere is desirable which can maintain its 

interference suppression capability in the large mismatch case without increasing the 

radius of the uncertainty. 

The authors in [32] refer to the Iterative RCB with a small fixed uncertainty level as 

the Fixed Uncertainty Iterative Robust Capon Beamformer (FU-IRCB). Let 2  be the 

representative of the small fixed uncertainty. This technique calculates v̂  by solving 

the RCB optimization iteratively in (3.23) when   is replaced by 2  . The vector v̂  is 

a function of   with respect to 2 which is obtained by solving 2( )g    . At each 

iteration, v  is updated from v̂  of the pervious iteration. The iteration continues until 

  reaches a suitable small value. The convergence rate of the FU-IRCB depends on 

how fast   converges to a small value. Since   is dependent on the solution of

2( )g   , so it is directly related to the value of 2  . Therefore, a larger value of 2  

will make its value to reduce at a faster rate. On the other hand, with large 2 , the 

interference suppression capability is sacrificed. The other defect of the FU-IRCB is 

that a severe stopping criterion is needed in order to avoid the convergence of the 

iteration to one of the strong interference steering vectors. This can be illustrated by 

the objective function of the RCB optimization in (3.23). 

An approach has been offered by [34] which belongs to the iterative RCB family 

with adaptive uncertainty. At every iteration, the uncertainty level is readjusted and 

then the approximated steering vector is updated for the new uncertainty level. When 

the uncertainty level approximately becomes zero the iteration is converged. The 

new technique is based on the geometric estimated vector for the mismatch. The 
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estimation is according to the concept that the mismatch vector can be decomposed 

into two types of subspaces, which are the signal-plus-interference subspace and the 

subspace for noise. The signal component is computed like a function of the 

projection of the assumed steering vector on signal subspace, while the noise 

component is calculated from its orthogonal projection. 

3.4 Eigenspace Based Beamformer 

One of the approaches for robust adaptive beamforming is the Eigenspace Based 

Beamformer. In this method the weight vector is computed by employing the 

subspace component for signal-plus-interference of the sample correlation matrix, 

which can alleviate the disturbed noise subspace. One common property of this 

method (ESB) for adaptive beamforming usually is the eigen-decomposition of the 

steering vector space into subspaces associated with the signal and the noise 

components. Moreover, the optimal weight vector with respect to the precise steering 

lies in the signal subspace. This beamformer needs to have previous knowledge 

about signal subspace component and the number of sources [35] that can be 

approximated by the method provided in [36]. If N samples are available, the 

covariance is obtained by applying  

𝑅̂ =
1

𝑁
∑ 𝑥(𝑛) 𝑥𝐻

𝑁

𝑛=1

(n) (3.27) 

The presumed desired signal steering vector is defined as v  , v  denotes the true 

steering vector of the desired signal and the estimated steering vector of the desired 

signal is defined as v̂ . In the eigenspace projection based robust adaptive 

beamforming, by using the presumed steering vector of desired signal, this method 

computes the projection of v onto the signal-plus-interference subspace, giving a 
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modified estimation of the true desired signal steering vector. So eigendecomposition 

of 𝑅̂ can be expressed as 

ˆ H H

s s s n n nE E E E   R  (3.28) 

where the ( 1)N P   matrix sE  contains the signal-plus-interference subspace 

eigenvectors and ( 1)N N P    matrix nE  contains the noise subspace for R̂ . Also, 

the ( 1) ( 1)P P    matrix s  includes the eigenvalues corresponding to sE  and n  

contains the eigenvalues for nE  respectively. P is the number of interfering signals. 

The approximated true desired signal steering vector is defined by 

ˆ H

s sv E E v  (3.29) 

where 
H

s sE E  is the projection matrix to the subspace of desired signal-plus-

interference and the eigenspace based weight vector is given by  

1 1 1ˆ ˆˆ H H

ESB s s s sw v E E v E E v     R R  (3.30) 

Recently, application of the eigen-subspace idea has been expanded to deal with 

adaptive array beamforming where observation mismatch occurs [33], [37]. In the 

case of unsuitable observation, the optimal weight vector utilized by the eigen-

subspace technique contains an undesired component existing on the noise subspace. 

For instance, degradation in efficiency of the array is frequently generated by this 

undesired component. To solve this problem, a robust technique is devised in [33] by 

taking the projection of the presumed steering vector onto the steering signal 

subspace to eliminate the undesired noise component. The technique is provided in 

[38] which adopts a linear combination of the eigenvectors of the signal subspace to 
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resolve the undesired noise component. In a similar way, in the robust technique of 

[36] it is employed to find the orthogonal component of the correct steering vector to 

the noise subspace. Another robust approach for Eigenspace based adaptive 

beamforming presented in [39] aims to remove the undesired component by 

minimizing the power of array output in the signal subspace. 

Nevertheless, there are major disadvantages to apply the ESB techniques for adaptive 

beamforming when steering errors are presented. It needs more complex 

computations to accomplish the eigendecomposition for determining the signal 

subspace. The second one is that, this technique is only appropriate for the point 

signal source case, so it is suitable to solve the small pointing errors. The third one is 

that the efficiency of this method is low when the signal-to-noise ratio (SNR) is low. 
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Chapter 4 

4. THE APPROXIMATE PROJECTION – BASED 

BEAMFORMER 

 4.1 Introduction 

Under ideal conditions, adaptive beamforming establishes a betterment in array 

output signal-to-interference-plus-noise ratio (SINR) in comparison with 

conventional beamforming [40]. This superiority may be widely decreased, although, 

if the steering vector characteristics does not match the actual signal environment, 

especially when the input signal level is high [41]. Mismatch between the presumed 

steering vector and its real fundamental value happens either as a result of calibration 

error (containing ambiguous information of the element locations) or because the 

true arrival angle differs from that presumed by the processor (pointing error). 

Steering vector mismatch because of both problems is considered as “the 

perturbation problem”. Past work on the effects of perturbation error has contained 

pointing error [42], the more common problem of small phase errors at each sensor 

[43], and the influence of concurrent gain and phase errors [44]. In all the recent 

work, the method chosen to protect the beamformer from error was to use linearly-

constrained beamforming with additional constraints. Here another approach is 

employed to dominate the disordered effects of error due to perturbation. This 

method is suggested that employ adaptive modification of presumed steering vector. 

In this approach which is known as the projection method, the presumed steering 

vector is easily replaced by its projection onto the signal-plus-interference subspace. 
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4.2 Mathematical Development 

The M × M autocorrelation matrix for 𝑥(𝑛) is a sum of an autocorrelation matrix due 

to desired signal, 𝑅𝑠, the noise, 𝑅𝑛, and the interference, 𝑅𝑖. 

𝑅𝑥 = 𝑅𝑠 + 𝑅𝑛 +  𝑅𝑖 (4.1) 

The theoretical covariance matrix of the received signal is given by 

R = 𝜎𝑛
2I + 𝜎𝑠

2𝑎0𝑎0
𝐻 + ∑ 𝜎𝑖𝐿 

2

𝐿

𝑙=1

𝑎𝑖𝐿𝑎𝑖𝐿
𝐻  (4.2) 

where 𝜎𝑛
2 is the broadband noise power. It is assumed that there are L interfering 

signals incident from directions with corresponding steering vectors 𝑎𝑖𝐿, with powers 

𝜎𝑖𝐿 
2 , Ɩ = 1,…,L , and that the SOI and the interfering signals are not incoherently 

scattered. It is further assumed that the interference steering vectors are linearly 

independent. Equation (4.2) can also be written in the form 

R = 𝜎𝑛
2I + 𝜎𝑠

2𝑎0𝑎0
𝐻 + 𝐴𝑖∑𝑖𝐴𝑖 (4.3) 

where 

𝐴𝑖 = [𝑎𝑖1𝑎𝑖2 … 𝑎𝑖𝐿] 

and  

∑𝑖 = diag{𝜎𝑖1
2 , 𝜎𝑖2

2 , … , 𝜎𝑖𝐿 
2 } 

The covariance matrix of the received signal vector in practice is calculated using the 

finite sample approximation 

𝑅̂ =
1

𝑀
∑ 𝑥(𝑘)𝑥𝐻

𝑀

𝑘=1

(k) (4.4) 

Let the eigenvalue decomposition (EVD) of 𝑅̂ be 
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𝑅̂ = ∑ 𝑞̂𝑗

𝑁

𝑗=1

𝑒̂𝑗𝑒̂𝑗
𝐻 = 𝐸̂𝑄̂𝐸̂𝐻 (4.5) 

Where 𝑞̂𝑗 and 𝑒̂𝑗, j = 1, … , N are the eigenvalues and eigenvectors of 𝑅̂, respectively, 

𝐸̂ = [𝑒̂1 … 𝑒̂𝑁]  and 𝑄̂ = diag{𝑞̂1, … , 𝑞̂𝑁} . Let’s assume that the first J  eigenvalues 

correspond only to the white noise in the received signal, and the rest correspond to 

the SOI and the interference signals. It is further assumed that following orthogonal 

projection of the presumed signal steering vector 𝑎̅ on the signal subspace as the 

estimate of the true steering vector 

𝑐𝑝 = ∑ (𝑒̂𝑙
𝐻

𝑁

𝑙=𝐽+1

𝑎̅)𝑒̂Ɩ (4.6) 

Assuming that the desired and interference signal steering vectors are linearly 

independent, then the orthogonal projection can also be written as 

𝑐𝑝 = 𝛼0𝑎0 + ∑ 𝛼𝑙

𝐿

Ɩ𝑙=1

𝑎𝑖𝐿 = 𝐴𝑠α (4.7) 

where 

𝐴𝑠 = [𝑎0 𝐴𝑖] And  𝐴𝑖 = [𝑎𝑖1 … 𝑎𝑖𝐿] 

Are the desired signal and interference steering vectors. 

Then, 𝑐𝑝 can be written as 

𝑐𝑝 = 𝐴𝑠( 𝐴𝑠
𝐻 𝐴𝑠 )−1𝐴𝑠

𝐻𝑎̅ (4.8) 

It can be shown that (see Appendix A) 

𝐴𝑠( 𝐴𝑠
𝐻 𝐴𝑠 )−1𝐴𝑠

𝐻 = 𝑃𝑖 +
1

𝑎0
𝐻(𝐼 − 𝑃𝑖)𝑎0

(I −  𝑃𝑖)𝑎0𝑎0
𝐻 (I − 𝑃𝑖) (4.9) 

where 

𝑃𝑖 = 𝐴𝑖( 𝐴𝑖
𝐻 𝐴𝑖)−1𝐴𝑖

𝐻 
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Using (4.8), (4.9) can be written as 

𝑐𝑝 =  𝑃𝑖𝑎̅ +
𝑎0

𝐻(𝐼 − 𝑃)𝑎̅

𝑎0
𝐻(𝐼 − 𝑃)𝑎0

(I − 𝑃𝑖)𝑎0 = 𝜂0𝑎0 + 𝑃𝑖(𝑎̅ − 𝜂0𝑎0) (4.10) 

where 

𝜂0 =
𝑎0

𝐻(𝐼 − 𝑃𝑖)𝑎̅

𝑎0
𝐻(𝐼 − 𝑃𝑖)𝑎0

 

Note that in (4.10) as 𝑎̅ → 𝑎0, 𝑐𝑝 → 𝑎0. The question at this stage is whether an SOI 

steering vector estimate can be found that may approximate (4.10), and can be 

computed using available data. For this, we consider the following estimate of the 

SOI steering vector obtained in [27] 

c(λ)  = 𝑎̅– (𝐼 + 𝜆𝑅)−1𝑎̅ (4.11) 

Substituting (4.3) in (4.11), it can be shown that the estimate c(𝜆) can be written as 

(see Appendix B) 

c(λ) =
1

1 + 𝜆𝜎𝑛
2

[P𝑎̅ + λ𝜎𝑛
2𝑎̅ + η(λ)(I − P)𝑎0] (4.12) 

where 

η(λ) =
𝑎0

𝐻 (𝐼 − 𝑃)𝑎̅

𝜇(𝜆) + 𝑎0
𝐻(𝐼 − 𝑃)𝑎0

 (4.13) 

and 

μ(λ) =
1 +  𝜆𝜎𝑁

2

𝜆 𝜎𝑠
2

 

The estimate (4.12) can be modified so that it is in the same form as the projection-

based estimate (4.9) as follows 
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𝑐̂(λ) = c(λ) −
𝜆 𝜎𝑛

2

1 + 𝜆𝜎𝑛
2

𝑎̅ =
1

1 + 𝜆𝜎𝑛
2

[P𝑎̅ + η(λ)(I − P)𝑎0]

=
1

1 + 𝜆𝜎𝑛
2

[η(λ)𝑎0 + P(𝑎̅ − η(λ)𝑎0)] 

(4.14) 

When (4.14) is compared with (4.10), it seems possible to make 𝑐̂(𝜆) approximate 𝑐𝑝 

(except for the scalar term) by making 𝜂(λ) as close to 𝜂0 as possible. This can be 

achieved by maximizing the numerator of η(λ)  and minimizing μ(λ)  in its 

denominator. The first requires that the direction-of-arrival of the SOI is estimated 

with sufficient accuracy such that 𝑎̅(𝜃0) becomes a good estimate of the desired 

signal steering vector. The second is possible by choosing 𝜆 such that λ𝜎𝑛
2 ≫ 1, in 

which case we also have  

𝑐(̂𝜆) ≅ 𝑐(𝜆) − 𝑎̅ (4.15) 

In the MUSIC method for the estimation of the DOAs of coherent signals impinging 

on a ULA, the following cost function is minimized with respect to the angle θ, 

𝐽𝑀𝑈𝑆𝐼𝐶(𝜃) = ||𝑎(𝜃) −  ∑(𝑠𝑛
𝐻𝑎(𝜃))𝑠𝑛||

𝑘

𝑛=1

2

= 𝑎𝐻(𝜃)𝐺𝐺𝐻𝑎(𝜃) (4.16) 

Where 𝑎(𝜃) is given by [27] , 1{ }K

n ns , are the signal subspace eigenvectors (k is the 

number of coherent signals), and 𝐺𝐺𝐻 = 𝐼 − 𝑆𝑆𝐻  where S is the matrix with 

columns which are the signal subspace eigenvectors. A similar approach can be 

applied to estimate the DOA of the SOI by minimizing the following cost function in 

the vicinity of the presumed DOA, 

𝐽(𝜃) = ||𝑎̅(𝜃) − 𝑐𝑝(𝜃)||2 (4.17) 

Where 𝑐𝑝(𝜃) is the orthogonal projection of 𝑎̅(𝜃) onto the signal –plus-interference 

subspace. In the preceding section, it was shown that this projection can be 
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approximated by the vector (1 + 𝜆𝜎𝑛
2)𝑐̂(𝜆). 

Hence, using this vector instead of 𝑐𝑝(𝜃) in (4.17) we get 

𝐽(𝜃) = ||𝑎̅(𝜃) − (1 + 𝜆𝜎𝑛
2)𝑐̂(𝜆)||2 = (1 + 𝜆𝜎𝑛

2)2||𝑎̅(𝜃) − 𝑐(𝜆, 𝜃)||2 (4.18) 

Where the desired signal steering vector estimate of (4.11) is parameterized in the 

DOA θ as 

c(λ, Ɵ) = 𝑎̅(Ɵ)– (𝐼 + 𝜆𝑅)−1𝑎̅(Ɵ) (4.19) 

Therefore, the DOA of the desired signal can be estimated by minimizing 

J(Ɵ) = ||𝛥||
2

= ||𝑎̅(𝜃) − 𝑐(𝜆, 𝜃)||2 (4.20) 

With respect to Ɵ where || • || is the Euclidean norm, as proved in the following 

proposition:  

Proposition 1: The cost 𝐽( ) is approximately convex in the angle error 𝛥𝜃 = 𝜃 −

𝜃0, where 𝜃0is the true DOA of the SOI. 

 

Proof: From(4.12), Δ can be written as 

𝛥 =
1

1 + 𝜆𝜎𝑛
2

 (𝐼 − 𝑃)[𝑎̅(𝜃) − 𝜂(𝜆, 𝜃)𝑎0] (4.21) 

where 

𝜂(𝜆, 𝜃) =
𝑎0

𝐻(𝐼 − 𝑃)𝑎̅(𝜃)

𝜇(𝜆) + 𝑎0
𝐻(𝐼 − 𝑃)𝑎0

 (4.22) 

 

Defining𝛿(𝜃) ≜ 𝑎̅(𝜃) − 𝜂(𝜆, 𝜃)𝑎0, the cost can be expressed as 

||𝛥||2 =
1

(1 + 𝜆𝜎𝑛
2)2

||(𝐼 − 𝑃)𝛿(𝜃)||2 (4.23) 
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Provided that the vector 𝛿(𝜽) is not in the subspace spanned by interference steering 

vectors, we can write 

||𝛥||2 ≤
1

(1 + 𝜆𝜎𝑛
2)2

||𝛿(𝜃)||2 (4.24) 

 

Letting 

𝑎̅(𝜃) = [1 𝑒−𝑗𝜃 … 𝑒−𝑗(𝑁−1)𝜃]𝑇 

And 𝑎0 = 𝑎̅(𝜃0), then 𝑎̅(θ) can be decomposed 

𝑎̅(𝜃) = 𝑟𝑎0 + 𝑎̅⊥ (4.25) 

Where 𝑎̅⊥is the component of 𝑎̅(𝜃) orthogonal to 𝑎0 and r is given by 

𝑟 =
𝑎0

𝐻𝑎̅(𝜃)

||𝑎0||2
=

𝑎0
𝐻𝑎̅(𝜃)

𝑁
 (4.26) 

Letting 𝛥𝜃 = 𝜃 - 𝜃0  and 𝜙  be the angle between the vectors 𝑎̅(𝜃)  and 𝑎0 , the 

following can be easily verified 

𝑟 =
1

𝑁
𝑒𝑗(𝑁−1)𝛥𝜃

2⁄
sin (𝑁𝛥𝜃

2⁄ )

sin (𝛥𝜃
2⁄ )

 

|𝑟|2 = 𝑐𝑜𝑠2(𝜙) = (1 −
1

24
𝑁(𝛥𝜃)2)

2

 

||𝑎̅⊥||2 = 𝑁𝑠𝑖𝑛2(𝜙) =
1

2
𝑁2(𝛥𝜃)2 

With the definition 𝑝0 = 𝑎0
𝐻(𝐼 − 𝑃)𝑎0, (4.18) and (4.25) yield 

𝜂(𝜆, 𝜃) =
𝑟𝑝0 − 𝑎0

𝐻𝑃𝑎̅⊥

𝜇(𝜆) + 𝑝0
 (4.27) 
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The error vector 𝛿(𝜃) can be written as 

𝛿(𝜃) = (
𝑟𝑝0 + 𝑎0

𝐻𝑃𝑎̅⊥

𝜇 + 𝑝0
)𝑎0 + 𝑎̅⊥ (4.28) 

Where 𝜆-dependencies have been dropped for simplicity of notation. Let 

𝑎0
𝐻𝑃𝑎̅⊥ = |𝑎0

𝐻𝑃𝑎̅⊥|𝑒𝑗𝑎 = ||𝑃𝑎0||. ||𝑎̅⊥||𝑐𝑜𝑠(Ψ)𝑒𝑗𝑎 (4.29) 

Where Ψis the angle between the vectors P𝑎0 and 𝑎̅⊥. Then, the norm of δ(θ) can be 

evaluated to yield 

||𝛿(𝜃)||2 ≃
𝑁

(𝜇 + 𝑝0)2
{𝜇2

1

12
𝑁[(2𝜇 + 𝑝0)𝑝0+𝑁||𝑃𝑎0||

2
𝑐𝑜𝑠2(Ψ)](𝛥𝜃)2

+
1

√3
𝑁[𝜇||𝑃𝑎0|| cos(Ψ) cos (𝛼 −

1

2
(𝑁 − 1)𝛥𝜃)]𝛥𝜃} 

(4.30) 

The Δθ-dependencies of the cosine terms within the square brackets would yield 

higher-order terms in Δθ, hence can be neglected. Therefore, the cost is a convex 

function of the angle error around the minimum of ||𝛿(𝜃)||2, which occurs at  

(𝛥𝜃)𝑚𝑖𝑛 ≃ −
2√3𝜇||𝑃𝑎0|| cos(Ψ) cos (𝛼)

(2𝜇 + 𝑝0)𝑝0 + 𝑁||𝑃𝑎0||
2

𝑐𝑜𝑠2(Ψ)
 (4.31) 

Equation (4.31) implies that there is an inherent error in the estimation of the DOA, 

which depends on the relationship of the SOI steering vector 𝑎0to the interference 

steering vectors. Equation (4.31) can further be simplified by noting that 

||𝑃𝑎0||2 = 𝑎0
𝐻𝑃2𝑎0 = 𝑎0

𝐻𝑃𝑎0 = ||𝑎0||2 − 𝑎0
𝐻(𝐼 − 𝑃)𝑎0 = 𝑁 − 𝑃0 (4.32) 

Substitution of (4.32) in (4.31) yields 
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(𝛥𝜃)𝑚𝑖𝑛 ≃ −
2√3√𝑁 − 𝑃0 cos(Ψ) cos (𝛼)

(2𝜇 + 𝑃0)𝑃0 + 𝑁(𝑁 − 𝑃0)𝑐𝑜𝑠2(Ψ)
 (4.33) 

The best case occurs when 𝑎0 is orthogonal to the subspace spanned by the 

interference steering vectors, in which case 𝑝0 = 𝑁 ⟹  (𝛥𝜃)𝑚𝑖𝑛 = 0. On the other 

hand, as the orthogonal projection of 𝑎0on the interference subspace increases, 𝑃0 

decreases. In this case, however, the angle Ψ tends to /2 and hence 

𝑐𝑜𝑠(Ψ) approaches zero. Without an explicit knowledge of the interference steering 

vectors, it is impossible to estimate the worst case error in the estimation of the 

DOA. However, the DOA of the SOI and those of the interference signals are 

generally sufficiently separated so that 𝑃0 remains close to N. 

  



 

36 

 

4.3 Discussions 

Several adaptive beamforming techniques, which have robustness against the  

problems such as mismatch in the direction-of-arrival of the signal-of-interest, array 

calibration errors, local scattering of the incident signal and finite sample 

approximation have been developed to overcome these difficulties but these 

techniques have in general high computational complexity, as they depend on the 

eigenvalue decomposition (EVD) of the array covariance matrix. 

Performance of adaptive beamformers is known to degrade due to calibration and 

other perturbation errors as well as under conditions in which the data covariance 

estimate is in error. One technique based on the use of the presumed steering vector 

in to the signal-plus-interference subspace has been proposed. In this work we 

investigated the possibility of performing the minimization without EVD by 

expressing the cost function in terms of a parameterized estimate of signal steering 

vector. 
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Chapter 5 

5. SIMULATIONS AND DISCUSSIONS  

5.1 Introduction 

In this part with considering the experiential methodology we presume three methods 

(SMI, RCB, and IRMVB) for computing output SINR versus the number of 

snapshots, output SINR versus the different SNR, and normalized magnitude 

response versus the directional arrival. Finally the method will be compared with 

these approaches and results by applying Tables and Figures. 

5.2 Simulation Approach 

In simulation part we appraise our technique by applying Monte Carlo simulations. 

In all cases, we consider a uniform linear array (ULA) with 10N   Omni-directional 

sensors separated by half-wavelength. For every result, to achieve each simulated 

point, the middle of 100 simulation runs is utilized. In the all scenarios, we presume 

that there is one desired and two interfering sources. The desired signal is always 

existent in the training data samples, and the interference-to-noise ratio (INR) is 

assumed to be 30 dB for all conditions. The diagonal loading parameter is selected to 

be 80   for the LSMI method in all conditions, but the IRMVB  method which is 

chosen to be 0  . The efficiency of the all approaches is compared with respect to 

the output SINR. We have to mention that all of simulations have been performed 

under the same conditions. The desired signal and interferers are plane waves which 

impinge on the sensors from 5˚, 20o and 30o , whereas whiles the path of assumed 

signal is 0o .So we have a 5˚ look direction mismatch. 
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5.3 Simulations 

The approaches that have been appraised in all simulations are 1) benchmark SMI 

algorithm 2) RCB algorithm 3) IRMVB (Li’s) method 4) proposed method, DRS 

algorithm. 

First table is measure of the efficiency of the method versus training data samples 

(snapshots) 20:500M  . 

Table 5.1: efficiency of methods by different training data samples 

Number of 

Snapshots 
20 60 100 140 180 220 260 300 340 380 420 460 500 

LSMI 4.39 5.35 5.57 5.67 5.69 5.74 5.76 5.79 5.8 5.81 5.83 5.84 5.85 

RCB 4.10 5.26 5.4 5.56 5.58 5.62 5.66 5.67 5.68 5.71 5.72 5.73 5.73 

IRMVB(Li's) 5.8 7.86 8.4 8.69 8.77 8.88 8.96 8.97 8.98 9.03 9.04 9.05 9.05 

Proposed 

Method 
7 8.63 9.03 9.20 9.25 9.39 9.43 9.51 9.54 9.56 9.59 9.60 9.62 

optimal 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.79 9.79 

The efficiency of the methods versus the SNR for training data samples taking the 

values 100,200,300,400 are displayed in Figure 5.2 up to 5.6. 
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Figure 5.1: Output SINR versus SNR with Training Data Sample=100 

 

 
Figure 5.2: Output SINR versus SNR with Training Data Sample=200 
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Figure 5.3: Output SINR versus SNR with Training Data Sample=300 

 

 
Figure 5.4: Output SINR versus SNR with Training Data Sample=400 
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Figure 5.5: Output SINR versus the number of snapshots 

 
Figure 5.6: Output magnitude response of proposed method and SMI Beamformer 
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Figure 5.7: Output magnitude response of proposed method and RCB Beamformer 

 
Figure 5.8: Output magnitude response of proposed method and IRMVB(LI) 

Beamformer 
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5.4 Discussion 

Figures 5-1 to 5-8 obviously demonstrate that in all cases, the proposed approach 

gives superior efficiency among the compared methods. The SINR values for the 

offered method are close to the optimal values in a wide range of N, SNR and 

mismatches for direction of arrival (DOA).  

To appraise the convergence of the proposed method, power of SOI is constant at 1 

dB and simulation is replicated up to 400. The amount of convergence of presented 

approach is shown by calculating the average output SINR at every repeat. Fig. 5.1 

displays the output SINR versus the number of snapshots (data training samples) 

=400. Expressly it is observed that the output SINR of the Proj beamformer is 

considerably better than the proposed techniques whiles the IRMVB (Li’s) 

beamformer keeps its level to be modified. However, the LSMI technique nears to 

the proposed beamformer slightly for all N snapshots. 

The purpose of the simulations in (Fig 5.1 - 5.4) is to compare the efficiency of 

output SINR versus the input SNR diverse from −20dB to 20dB. The resulting 

output SINR for every input SNR is averaged over 100 perception. It can be noticed 

that the proposed method performs better than the other compared approaches at all 

SNRs. It can be considered that, although, by increasing the SNR, all presented 

beamformers go to to optimal value of SINR but, our technique‘s result is better than 

the others, whiles, the IRMVB beamformer is acceptable just for SNR>0. 
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Chapter 6 

6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this work, we offered a modified method to robust adaptive beamforming based 

on estimating signal steering vector not depend on the eigenvalue decomposition 

(EVD) of the array covariance matrix. This approach shows the capability of our 

method in the presence of direction-of-arrival (DOA) mismatches of desired signal 

by forming the directional response of the adaptive ULA. 

The performance of presented beamformer is shown to decrease errors between the 

real and assumed array steering vectors of the desired signal. To achieve this goal the 

DOA of the SOI is estimated by minimizing a cost function in terms of the norm of 

an error vector, which is the difference between the presumed steering vector of the 

SOI, and the orthogonal projection of this vector onto the signal subspace. 

Additionally, effective implementations of our technique for the processing condition 

have been expanded. Moreover, numerical examples in terms of SINR and data 

training illustrate that the presented method is robust to sample covariance matrix 

errors. Also, to appraise the approaches the various simulations are run in terms of 

SINR and normalized magnitude response. It shows that by forming the directional 

response, our beamformer can improve the mismatches in array steering vector for 

desired signal. 

The performance of this approach is illuminated when desired signal are attended by 
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noise and interferences. The algorithm repress the interferences with deeper nulls in 

the directional of interferences by forming the directional response of desired signal. 

Furthermore, the simulation SINR against the SNR displays that the presented 

beamformer holds its convergence with respect to the number of snapshots to most 

favorable and it is qualified to eliminate the noises with less noise level (low SNR). 

At the end, in conditions with various types of desired signal errors, our method is 

displayed to stably profit a considerably improved efficiency and quicker 

convergence rate in compared with proposed adaptive beamforming techniques. 

6.2 Future Work 

Extensive simulation studies have indicated that the proposed beamforming method 

performs better or as good as the existing methods in various scenarios. Theoretical 

analysis of the proposed beamformer should be performed to verify the results 

achieved from simulation. Such an analysis will enable the choice of the parameters 

used in the algorithm. 
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Appendix A: Substantiation of Equation (4.9) 

The following inverse of a partitioned matrix can be used to evaluate the inverse on 

the left-hand-side of (4.9) 

 

 

[
𝐴 𝐶
𝐷 𝐵

]
−1

= (
0

𝐼
) 𝐵−1(0 𝐼) + (

𝐼

−𝐵−1𝐷
) (𝐴 − 𝐶𝐵−1𝐷)−1[𝐼 − 𝐶𝐵−1]  

(Apx-1-Eq 1) 

Where A∈ ℂ𝑚×𝑚, B∈ ℂ𝑚×𝑚, C∈ ℂ𝑚×𝑚, D∈ ℂ𝑚×𝑚. The matrix to be inverted is 

(𝐴𝑠
𝐻𝐴𝑠)−1 = [

||𝑎0||2 𝑎0
𝐻𝐴𝑖

𝐴𝑖
𝐻𝑎0 𝐴𝑖

𝐻𝐴𝑖

] 
(Apx-1-Eq 2) 

 

With the appropriate associations, on the obtains 

(𝐴𝑠
𝐻𝐴𝑠)−1 = (

0

𝐼
) (𝐴𝑖

𝐻𝐴𝑖)
−1[0 𝐼] 

+
1

||𝑎0||
2

− 𝑎0
𝐻𝐴𝑖(𝐴𝑖

𝐻𝐴𝑖)−1𝐴𝑖
𝐻𝑎0

(
1

−(𝐴𝑖
𝐻𝐴𝑖)−1𝐴𝑖

𝐻𝑎0
) 

[1 −𝑎0
𝐻𝐴𝑖(𝐴𝑖

𝐻𝐴𝑖)−1] 

(Apx-1-Eq 3) 

 

Multiplying (4.36) by 𝐴𝑠 from the left, by 𝐴𝑠
𝐻  from the right and rearranging gives 

(4.8). 
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Appendix B: Substantiation of Equation (4.12) 

Using (4.2) the matrix (I+𝜆R) can be written as 

𝐼 + 𝜆𝑅 = (1 + 𝜆𝜎𝑛
2)𝐼 + 𝜆𝜎𝑠

2𝑎0𝑎0
𝐻 + 𝜆𝐴𝑖∑𝑖𝐴𝑖

𝐻 = 𝑅𝑛𝜆 + 𝜆𝜎𝑠
2𝑎0𝑎0

𝐻  

(Apx-2-Eq 1) 

Where  𝑅𝑛𝜆 = (1 + 𝜆𝜎𝑛
2)𝐼 + 𝜆𝐴𝑖∑𝑖𝐴𝑖

𝐻 . Using the well-known matrix inversion 

lemma, the inverse becomes 

(𝑅𝑛𝜆 + 𝜆𝜎𝑠
2𝑎0𝑎0

𝐻)−1 = 𝑅𝑛𝜆
−1 − 𝑅𝑛𝜆

−1(
𝜆𝜎𝑠

2𝑎0𝑎0
𝐻

1 + 𝜆𝜎𝑠
2𝑎0

𝐻𝑅𝑛𝜆
−1𝑎0

)𝑅𝑛𝜆
−1  

(Apx-2-Eq 2) 

Using the same lemma the inverse of 𝑅𝑛𝜆 can be written as, 

𝑅𝑛𝜆
−1 =

1

1 + 𝜆𝜎𝑛
2

[𝐼 − 𝐴𝑖((𝜆𝑑 + 𝜎𝑛
2)∑𝑖

−1 + 𝐴𝑖
𝐻𝐴𝑖) −1𝐴𝑖

𝐻) =
1

1 + 𝜆𝜎𝑛
2

(𝐼 − 𝑃)  

(Apx-2-Eq 3) 

Where P is the second term within the square brackets and𝜆𝑑 =
1

𝜆
. Substituting (4.39) 

in (4.38) and simplifying gives, 

(𝐼 + 𝜆𝑅)−1 =
1

1 + 𝜆𝜎𝑛
2

[(𝐼 − 𝑃) −
1

𝛽(𝜆)
(𝐼 − 𝑃)𝑎0𝑎0

𝐻(𝐼 − 𝑃)]  

(Apx-2-Eq 4) 

Where 

𝛽(𝜆) = 𝜇(𝜆) + 𝑎0
𝐻(𝐼 − 𝑃)𝑎0 

Substitution of (4.40) in (4.11) results in(4.12). Note that P becomes approximately 

equal to 𝑃𝑖  for sufficiently large 𝜆 and noise power much less than the interference 

signal powers.  

 


