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ABSTRACT 

In this thesis, we study about perihelion precession in the solar system, one of the 

most interesting aspects of astrophysics that include both aspects of General 

Relativity and classical mechanics. The phenomenon, by which perihelion of 

elliptical orbital path of a planet appears to rotate around a central body (which our 

central body is the Sun) is known as the precession of the orbital path. The special 

situation of Mercury arises as it is the smallest and the closest to the Sun amongst 

eight planets in the solar system and since the precession of Mercury's orbital path is 

much greater than other planets so it has attracted much attention in comparison to 

others. This natural phenomenon was realized by astronomers many years ago where 

they could not explain many strange observatory data.  

This thesis deals with the derivation of the equation of motion and the corresponding 

approximate solution leading to the perihelion advance formula. Therefore, our 

preliminary aim is to find solutions for equations of motion and derive a general 

formula by considering the General Relativity concepts and Classical Mechanics.  

 Keywords: Perihelion, Advance of Perihelion, Aphelion, Perihelion precession  
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ÖZ 

Bu tez, Güneş Sistemi’nde perihelionun ilerlemesi ile ilgilidir. Araştırma konumuz  

hem genel görelilik, hem de klasik mekanik bakış açılarını içerdiğinden ötürü; 

astrofiziğin en ilginç konularından biri olarak tanımlanabilir. Bir gezegenin eliptik 

orbital yörüngesine ait prehelionunun merkezi cisim etrafında dönmesi, yol 

yörüngesinin presesyonu olarak bilinir. Merkür, Güneş Sistemi’ndeki sekiz 

gezegenin en küçüğü ve Güneş’e en yakın olanıdır ve diğer gezegenlere göre daha 

fazla dikkat çekmektedir. Bunun nedenlerinden biri, Merkür’ün yol yörüngesinin 

presesyonunun diğerlerine kıyasla daha büyük olmasıdır.  

Bu tez, hareket denkleminin derivasyonu ve perihelion ilerleyişi formulü ile 

sonuçlanan yaklaşık çözümler ile ilgilidir. Bu yüzden temel amacımız, genel 

görelilik ve klasik mekaniği hesaba katarak çözümler bulmak ve genel bir formül 

elde etmektir. 

Anahtar Kelimeler: Perihelion, Perihelion ilerlemesi, Aphelion, Perihelion 

ilerlemesi 
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Chapter 1 

 INTRODUCTION  

One of the first phenomenon which was elucidated by Einstein’s General Theory of 

Relativity was anomalous precession of the perihelion of Mercury. This theory 

became successful because Einstein provided a numerical value for perihelion 

precession of Mercury that it had an excellent similarity with observation value. He 

changed the apprehension of astronomers and physicist about the concept of space 

and time, and led to a different way of viewing the problems. 

 According to the meaning, precession is a change in the orientation of rotatioanl 

planet around the Sun or a central body as it illustrates in the Fig (1.1), the semi 

major axis rotate around the central body. The figure shows four elliptical orbits 

which they are shifting with respect to each others, this shifting or advance called the 

advance of planet’s perihelion or perihelion precession of planet. Furthermore the 

aphelion which is opposite point of perihelion and it is the farthest distance between 

planets and the Sun, it advances at the same angular rate as the perihelion is shown in 

the figure (1.1). 
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Figure 1.1:  Exaggerated view of the perihelion precession of a planet 

The perihelion precession for the first time was reported in 1859, by a French 

mathematician Urbain Jean Joseph Le Verrier (1811-1877), which motivated the 

astronomers and theorists to study about the solar system more and more. The 

unusual orbital motion of Mercury turned his attention to discern advance of 

perihelion of Mercury [8]. He intromted this phenomenon to an unknown planet 

which he named Vulcan and it was never found. He obtained his results by using 

Newtonian mechanics that his value of precession of the perihelion was 38 arcsecond 

per century. 

But there was something wrong with the value that was obtained by Verrier because 

advertently determined in 1895 by an Canadian–American astronomer and 

mathematithion Simon Newcomb (1835-1909) [10]. The theory of Newcomb 

confirmed the Varrier’s finding about the advance of Mercury’s perihelion. He also 
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followed the Newtonian method with just making some small changes in the 

planetary masses. He could obtain an amazing value for Mercury’s advance, it was 

42.95 arcseconds per century which was incredibly close to the real value. 

There is an important point which according to Newton’s law the planets (or at that 

time the Mercury ) can not have advance when one considers only the gravitational 

force between the planets and the Sun. On the other hand the 90% of the mass of the 

solar system belonged to the Sun, so it shows that the masses of other planets in 

comparison with Sun are negligible, and since the planets with small masses move in 

the static gravitational field of the Sun, also the planet’s static gravitational potential 

is neglegible.  

 Later on this natural phenomenon was eventually explained in 1915 by Albert 

Einstein’s General theory of Relativity that could give axceptable answers for some 

questions. 

Einstein published a paper in 25𝑡ℎ of November 1915 based on vacuum field 

equations Actually the derivation of him in this paper mathematically was interesting 

because he obtained the equation of motion from the vacuum field equation without 

considering Schwarzschild metrics. Einstein used an approximation to the spherically 

symmetric metric for finding the solution for vacuum field equation, he used this 

instead of Cartesian coordinate system and this approximate metric can he expressed 

in Polar coordinatea 

(𝑑𝜏)2 = (1 −
2𝑚

𝑟
) (𝑑𝑡)2 − (1 +

2𝑚

𝑟
) (𝑑𝑟)2 − 𝑟2(𝑑𝜃)2 − 𝑟2𝑠𝑖𝑛(𝜃)2(𝑑𝜑)2         (1.1) 
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where m is mass of the central body and r is distnce between planet ant the Sun. The 

relation between Einstein’s approximation for coefficient of (𝑑𝑟)2and the real one 

which expressed very soon by Schwarzchild is 

                                                         (𝑔𝑟𝑟)𝐸 = 𝑥(𝑔𝑟𝑟)𝑆                                                  (1.2) 

 Which 

𝑥 = 1 − (
2𝑚

𝑟
)2.                                               (1.3) 

                                                            

Einstein by estimating of Christoffel symbol and on the other hand by using his 

approximate metric for spherical symmetry, defined the geodesic equations of 

motion as 

𝑥(
𝑑𝑢

𝑑𝜑
)2 =

2𝐴

𝐵2
+

𝛼

𝐵2
𝑢 − 𝑢2 + α𝑢3                               (1.4) 

where 𝑢 = 1/𝑟 , 𝜑 is the angular coordinate in the orbital plane,  and A and B are the 

constants of integration such that A is proportional angular momentum and B is 

related to energy. The exact value of 𝑥 according to Schwarzschild metric is 1, but 

according to Einstein’s approximation it is (1 − 𝛼2𝑢2).and after some calculation 

finally he realized that it must be one. By integrating from Eq. (1.4), the angular 

difference ∆𝜑,was obtained. He calculated the angular differece by just accurate and 

necessary values and considered two points as limitation, from aphelion point to 

perihelion point. 

 After solving the polynomial, which is exactly Eq. (1.4), he found the arc length 

from the perihelion to aphelion and equivalently from aphelion to the next perihelion. 

So for finding the total ∆𝜑 for one orbit from one perihelion to the next, this value 
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will be twice and for finding precession per orbit this amount should be subtracted by 

2𝜋. So the result was obtained as  

                                                  2∆𝜑 − 2𝜋 =
6𝜋𝑚

𝐿
                                  (1.5) 

Where L is semi-latus rectom of the elliptical orbit (for Mercury is 55.4430 million 

km) and m is the Sun’s mass in geometrical units (1.475 km). By substituting the 

amounts in Eq. (1.5) the result will give 0.1034 arc seconds per revolution.and 

Mercury has 414.9378 revolutions per century so we have 42.9195 arc seconds per 

century, which was close to the observed amount. Furthermore Einstein’s result 

applies to any eccentricity, not just for circular orbit. 

In 1907 he started to work on his gravitational theory that he hoped to lead him for 

finding perihelion precession of the Mercury. After eight years finally he could 

obtain it. 

After some month (in 22 December) that Einstein published his paper, a German 

Physicist and astronomer Karl Schwarzschild (1873-1916), could obtaine the exact 

solution for the Einstain’s field equation of General Relativity for non-rotating 

gravitational fields. At first he changed the first order approximation of Einstein and 

found an exact solution for it. Next he introduced only one line element which 

satisfied four conditions of Einstein. On the other hand Schwarzschild considered a 

spherical symmetry , with considering a body exactly in the origin of the coordinate 

by assuming the isotropy of space and a static solution, (a static solution means there 

is no dependence on time) then we can say there is spherical symmetry around the 

center. So his line element showed the spherical coordinate in the best way as 
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(𝑑𝑠)2 = (1 −
𝛽

𝑅
) 𝑑𝑡2 − (1 −

𝛽

𝑅
)

−1

𝑑𝑟2 − 𝑅2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)                   (1.6) 

where 𝛽 = 2𝐺𝑀/𝑐2, (𝑐2 = 1) and 𝐺 is Newton’s gravitational constant. But the 

equation of orbit of Schwarzschild remained same as Einstein’s equation.                                 

Unfortunately he died in the following year (in 11 may 1916) during the First world 

war and the Astroied 837 Schwarzchilda was named in his honor. 

Actually Mercury is not the only planet in the solar system that has precession and it 

can be seen even for the nearly circular orbit or small eccentricity as the Earth or 

Venus, at first it seems difficult to find the precession of this kinds of orbits with 

small eccentricity but modern measurement techniques and computerized analysis of 

the values make it possible and more accurate. 

There have been several studies in this issue for finding more accurate value, and we 

are interested to explore more in this thesis, we are aiming to provide an exact 

solution for the second and higher order corrections with all steps explained in 

Chapter 2. 

This will start by the geodesic equations obtained from the Schwarzschild 

gravitational metric. We assume that the motion of the planets is a time-like geodesic 

in Schwarzschild metric rotating around the Sun. According to the computations for 

finding the equation for perihelion precession we follow all the steps by considering 

both important aspects of physics, the General Relativity theory and classical 

mechanics.  
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At the end of the second chapter, according to some data and the perihelion 

preccesion equation we prepere a table that represents the results for eight planets in 

the solar system (Mercury,Venus, Earth, Mars, Jupiter, Saturn, Uranuse and 

Neptune). There is a conversion in our table that gives us two different values for 

advance of perihelion that we express one of them as (𝑟𝑎𝑑/𝑜𝑟𝑏𝑖𝑡) and the other one 

as (𝑠𝑒𝑐/𝑐𝑒𝑛𝑡𝑢𝑟𝑦), the relation between these two conversion is represented by 

       (∆𝛿)𝑠
𝑐

= (
100 𝑦𝑟

𝑠𝑖𝑑𝑒𝑟𝑒𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 𝑦𝑒𝑎𝑟𝑠
) (

360 × 60 × 60

2𝜋
) (∆𝛿)𝑟

𝑜
             (1.7) 

The sidereal period is the orbital period of each planet in a year, for example for the 

Mercury the orbital period is 87.969 day and each year has 365 days, 5 hours, 48 

minutes and 46 seconds, the division of these two numbers will give us the values of 

sidereal period per year. for the Mercury. If we follow the same rule we will obtain 

for each planet as in Table (1.1). 

Table 1.1:  Sidereal Period of The Planets in The Solar System 

     

Planet 

 

Mercurt 

   

Venus 

 

Earth 

     

Mars 

 

Jupiter 

 

Saturn 

     

Uranus 

 

Nepton 

Sidereal 

period 

(year) 

  

0.2408 

 

0.6152 

  

1.00 

 

1.8809 

 

11.865 

 

11.865 

 

83.744 

 

165.95 
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                                         Chapter 2 

 EQUATION OF MOTION OF THE PLANETS IN THE 

SOLAR SYSTEM 

Sun is almost spherically symmetric and compared to the position of the planets, its 

radius is very small. Hence, one may consider the spacetime around the Sun to be in 

form of the solution of the vacuum Einstein's equations which is very well known to 

be the Schwarzschild spacetime with the line element  

𝑑𝑠2 = − (1 −
2𝑀ʘ

𝑟
) 𝑑𝑡2 +

𝑑𝑟2

(1 −
2𝑀ʘ

𝑟 )
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)          (2.1) 

in which 𝑀⨀ is the mass of  Sun, 𝑐 is the speed of light and 𝐺 = 1 is the Newton's 

gravitational constant. For motion of the planets in the Solar System, we assume that 

the effect of the planets on the spacetime, individually, is negligible and therefore 

each planet moves as  a test particle. Thus, the following Lagrangian 

              ℒ =
1

2
 m𝘨𝛼𝛽�̇�𝛼�̇�𝛽          (2.2) 

can be used for the motion of each planet with its mass m. Let us note that 

  𝘨𝛼𝛽 = 𝑑𝑖𝑎𝑔 [− (1 −
2𝑀⨀

𝑟
) ,

1

(1 −
2𝑀⨀

𝑟 )
, 𝑟², 𝑟²𝑠𝑖𝑛²𝜃]          (2.3) 

is the metric tensor for the Schwarzschild spacetime. 
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 Applying the metric tensor in the Lagrangian, one finds 

ℒ =
𝑚

2
(− (1 −

2𝑀⨀

𝑟
) �̇�2 +

�̇�2

(1 −
2𝑀⨀

𝑟 )
+ 𝑟2(�̇�2 + 𝑠𝑖𝑛²𝜃�̇�2)  )     (2.4) 

 

where dot stands for taking derivative with respect to the proper time 𝜏 measured by 

an observer located on the particle.and consequently the Euler-Lagrange equations 

              
𝑑

𝑑𝜏
(

𝜕ℒ

𝜕�̇�𝛼
) −

𝜕ℒ

𝜕𝑥𝛼
= 0     (2.5) 

give the basic equations of motion. Before we give the explicit form of the equations, 

we note that the spacetime is spherically symmetric and as a result, the angular 

momentum of the test particle in a preferable direction (say ɀ) remains constant. 

Therefore, from the beginning we know that the motion happens to be in a 2-

dimensional plane which by setting the proper system of coordinates one can choose 

𝜃 =
𝜋

2
 at which the equatorial plane is. Based on this fact, the three Euler–Lagrange 

equations are given by  

                  
𝑑

𝑑𝜏
[(1 −

2𝑀⨀

𝑟
) �̇�] = 0          (2.6) 

                  
𝑑

𝑑𝜏
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝑟
= 0            (2.7) 

and  

                
𝑑

𝑑𝜏
(𝑟2�̇�) = 0.          (2.8) 

The first and the third equations imply  
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                                   (1 −
2𝑀ʘ

𝑟
) �̇� = 𝐸                    (2.9) 

and 

                             𝑟2�̇� = ℓ             (2.10) 

in which 𝐸 and ℓ denote two integration constants related to the energy and angular 

momentum of the test particle. As the planets are moving on a timelike worldline, 

their four-velocity must satisfy  

                                   𝑈𝜇𝑈𝜇 = −1             (2.11) 

in which 𝑈𝜇 =
𝜕𝑥𝜇

𝜕𝜏
. Explicitly, Eq. (2.11) reads 

                                − (1 −
2𝑀⨀

𝑟
) �̇�2 +

�̇�2

(1 −
2𝑀⨀

𝑟 )
+ 𝑟2�̇�2 = −1               (2.12) 

where we set 𝜃 =
𝜋

2
 .From Eq. (2.9) and Eq. (2.10) one finds �̇� and �̇� which upon a 

substitution in Eq. (2.12) we find the proper equation for the radial coordinate i.e 

                        �̇�2 + (1 −
2𝑀⨀

𝑟
) (1 +

ℓ2

𝑟2
) = 𝐸2.             (2.13) 

To proceed further, we use the chain rule to find a differential equation for r with 

respect to 𝜑. Therefore, the latter equation becomes 

                          (
𝑑𝑟

𝑑𝜑
�̇�)

2

+ (1 −
2𝑀⨀

𝑟
) (1 +

ℓ2

𝑟2
) = 𝐸2               (2.14) 
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or in more convenient form it reads 

                (
𝑑𝑟

𝑑𝜑
)

2 ℓ2

𝑟4
+ (1 −

2𝑀⨀

𝑟
) (1 +

ℓ2

𝑟2
) = 𝐸2.               (2.15) 

As in the Kepler problem, we introduce a new variable  𝑢 =
1

𝑟
 and rewrite the last 

differential equation given by             

             (
𝑑𝑢

𝑑𝜑
)

2

+ (1 − 2𝑀ʘ𝑢) (
1

ℓ2
+ 𝑢2) =

𝐸2

𝑙2
 .               (2.16) 

This is the master first order differential equation to be solved for 𝑢(𝜑). To get closer 

to this differential equation, let us take its derivative with respect to 𝜑 which after a 

rearrangement yields 

                           
𝑑²𝑢

𝑑𝜑²
+ 𝑢 =

𝑀ʘ

ℓ2
+ 3𝑀ʘ𝑢2.             (2.17) 

A comparison with the Newtonian equation of motion of planets reveals that 3𝑀ʘ𝑢2 

is the additional term to the Classical Mechanics due to General Relativity (GR). The 

solution without GR correction is very straight forward and is given by 

                        𝑢 =
1

𝑟
=

𝑀ʘ

ℓ2
(1 + 𝑒𝑐𝑜𝑠(𝜑 − 𝜑0))                  (2.18) 

in which 𝜑0 is an arbitrary phase and 𝑒 stands for the eccentricity of the elliptic orbit 

of the planet. The initial phase 𝜑0 is an arbitrary constant which can be set to zero 

without loss of generality, as we are allowed to rotate our system of coordinate about 

the symmetry axis. Unfortunately, the master Eq.(2.16) with the GR correction 

cannot be solved analytically. However, the nature of the additional term suggests 

that it is a very small correction to the classical motion. Therefore, an appropriate 
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approximation method may give results being significantly acceptable. Hence, we 

shall consider the GR term as a small perturbation to the classical path of the planets. 

To do so, we consider 
3𝑀²ʘ

ℓ2 = 𝜆 ≪ 1 and hence we expand the orbit of the planets in 

terms of 𝜆,i.e., 

                               𝑢 = ∑ 𝜆𝑛

∞

𝑛=0

𝑢𝑛                 (2.19) 

and  

                                𝑢˝ = ∑ 𝜆𝑛

∞

𝑛=0

𝑢˝𝑛                     (2.20) 

and the prime stands for taking derivative with respect to 𝜑, in which 𝑢0 is the orbit 

without the GR correction, i.e., 

                                                     𝑢0 =
𝑀⨀

ℓ2
(1 + 𝑒𝑐𝑜𝑠𝜑),                                 (2.21) 

Plugging this into the master Eq. (2.16), one finds 

                         ∑ 𝜆𝑛𝑢˝𝑛

∞

𝑛=0

+ ∑ 𝜆𝑛

∞

𝑛=0

𝑢𝑛 =
𝑀⨀

ℓ2
+

ℓ2

𝑀ʘ
𝜆 (∑ 𝜆𝑛𝑢𝑛

∞

𝑛=0

)

2

.                (2.22) 

In the zeroth order, one evaluate the Newtonian equation of motion given by 

                                                                𝑢0
˶ + 𝑢0 =

𝑀⨀

ℓ2
                                        (2.23) 
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whose solution has already been given in Eq. (2.21). In general, the 𝑛𝑡ℎ order 

equation (with 𝑛 ≥ 1) is obtained to be 

                                       𝑢𝑛
˶ + 𝑢𝑛 =

ℓ2

𝑀ʘ
∑ 𝑢𝑖𝑢𝑛−1−𝑖.

𝑛−1

𝑖=0

                    (2.24) 

For instance the first order equation becomes 

                                  𝑢1
˶ + 𝑢1 =

ℓ2

𝑀ʘ
𝑢2

0                  (2.25) 

which is another second order differential equation and it is worthwhile to mention 

that it is nonhomogeneous due to the presence of 𝑢²0 at the right hand side. Some of 

the higher order corrections which can be extracted from the master Eq.  (2.16) s are 

as follows. For 𝑛 = 2,3 and 4  Eq. (2.24) admits 

                                𝑢2
˶ + 𝑢2 =

ℓ2

𝑀ʘ
(2𝑢0𝑢1)                   (2.26) 

                                 𝑢3
˶ + 𝑢3 =

ℓ2

𝑀ʘ
 (2𝑢0𝑢2 + 𝑢2

1)                  (2.27) 

and 

                             𝑢4
˶ + 𝑢4 =

ℓ2

𝑀ʘ
 (2 𝑢0𝑢3 + 2𝑢1𝑢2)                 (2.28) 

respectively. 

Our next step is to solve the equation of the first order correction which explicitly 

reads 
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𝑑2𝑢1

𝑑𝜑2
 + 𝑢1 =

𝑀ʘ

ℓ2
(1 + 𝑒𝑐𝑜𝑠𝜑)2                  (2.29) 

This is a nonhomogeneous ordinary differential equation of second order with a 

constant coefficient whose solution involves two distinct parts. The first part is the 

solution to its homogenous form, whereas the second part is the particular solution. 

Both solutions will be discussed in the sequel. 

First the homogenous equation which is given by 

                         
𝑑²𝑢1

𝑑𝜑²
+ 𝑢1 = 0                   (2.30) 

and its solution simply  

                       𝑢1ℎ = 𝐴1𝑠𝑖𝑛𝜑 + 𝐵1𝑐𝑜𝑠𝜑                     (2.31) 

in which both 𝐴1 and 𝐵1are integration constants. The particular solution of Eq. 

(2.29) can be estimated by an expantion of the right-hand-side as 

                 
𝑑2𝑢1

𝑑𝜑2
+ 𝑢1 = µ (1 +

𝑒2

2
+ 2𝑒𝑐𝑜𝑠𝜑 +

𝑒2

2
𝑐𝑜𝑠2𝜑)                   (2.32) 

in which we set µ =
𝑀ʘ

ℓ2
 and 𝑐𝑜𝑠²𝜑 = (1 + 𝑐𝑜𝑠2𝜑)/2 . Using the standard method of 

solving the nonhomogeneous second order differential equation with constant 

coefficients, one considers the ansatz 

           𝑢1𝑝 = 𝐴 + (𝐵𝑠𝑖𝑛𝜑 + 𝐶𝑐𝑜𝑠𝜑)𝜑 + 𝐷𝑠𝑖𝑛2𝜑 + 𝐸𝑐𝑜𝑠2𝜑                    (2.33) 

in which all constants will be found by matching the left and the right side of Eq. 

(2.32). We apply this ansatz in Eq. (2.30) to get 
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𝐴 + 2𝐵𝑐𝑜𝑠𝜑 − 2𝐶𝑠𝑖𝑛𝜑 − 3𝐷𝑠𝑖𝑛2𝜑 − 3𝐸𝑐𝑜𝑠2𝜑                                              

                                                                   = µ (1 +
𝑒2

2
+ 2𝑒𝑐𝑜𝑠𝜑 +

𝑒2

2
𝑐𝑜𝑠2𝜑) 

 

          

(2.34) 

    

which after matching the two sides we find 𝐴 = µ(1 +
𝑒2

2
), 𝐵 = µ𝑒, 𝐶 = 0, 𝐷 = 0 

and 𝐸 = −µ
𝑒2

6
 . Consequently, the particular solution becomes 

                 𝑢1𝑝 = [1 +
𝑒2

2
+ 𝑒𝜑𝑠𝑖𝑛𝜑 −

𝑒2

6
 𝑐𝑜𝑠2𝜑].                (2.35) 

Finally, the full solution is the sum of the homogenous and particular solutions which 

reads 

      𝑢1 = 𝐴1𝑠𝑖𝑛𝜑 + 𝐵1𝑐𝑜𝑠𝜑 + (
𝑀ʘ

ℓ2
) [1 +

𝑒2

2
+ 𝑒𝜑𝑠𝑖𝑛𝜑 −

𝑒2

6
𝑐𝑜𝑠2𝜑].        (2.36) 

We note that the homogeneous solution can be written as  

                    𝑢1ℎ = 𝒜𝑐𝑜𝑠(𝜑 − 𝜑0)           (2.37) 

and for the same reason as for 𝑢0, one can set the initial phase 𝜑0 to be zero. 

Up to the first order correction, the orbit of a planet around the Sun is expressed by 

𝑢 = µ (1 + 𝑒𝑐𝑜𝑠𝜑 + 𝜆 (1 +
𝑒2

2
+ 𝑒𝜑𝑠𝑖𝑛𝜑 −

𝑒2

6
𝑐𝑜𝑠2𝜑))       (2.38) 

where we have absorbed the 𝒜𝑐𝑜𝑠𝜑 term into the other similar term in 𝑢0. In other 

words, the homogeneous solution is not the solution we are really looking for but 
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instead, the particular solution is the correction to be taken into account. Hence, for 

our next step, we consider 

                           𝑢0 = µ(1 + 𝑒𝑐𝑜𝑠𝜑)                  (2.39) 

and 

                                           𝑢1 = µ(1 +
2𝑒2

3
+ 𝑒𝜑𝑠𝑖𝑛𝜑 −

𝑒2

3
𝑐𝑜𝑠2𝜑)                   (2.40) 

For the second order correction, we have to solve the particular solution of  Eq. 

(2.26). After we plug in the explicit forms of 𝑢0 and 𝑢1 , Eq. (2.26) reads 

  𝑢2 ̋ + 𝑢2 = µ(1 + 𝑒𝑐𝑜𝑠𝜑) (1 +
2𝑒2

3
+ 𝑒𝜑𝑠𝑖𝑛𝜑 −

𝑒2

3
𝑐𝑜𝑠2𝜑).             (2.41) 

Using the standard method of solving the particular solution of second order 

nonhomogeneous differential equation, we obtain  

𝑢2 = µ {−
1

2
𝑒𝜑2𝑐𝑜𝑠𝜑 −

1

12
𝑒𝜑(−5𝑒2 + 8𝑒𝑐𝑜𝑠𝜑 − 18)𝑠𝑖𝑛𝜑

+
1

12
𝑒2𝑐𝑜𝑠2𝜑(𝑒𝑐𝑜𝑠𝜑  − 8) + 2 +

4𝑒2

3
}. 

               

 

       (2.42)  

Since we are interested in the second and third order corrections, in the next step we 

find the particular solution for 𝑛 = 3 equation which is given by Eq. (2.27). Without 

going through the details of the procedure, we give the final solution as 
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𝑢3 = µ {−
1

6
𝑒𝜑3𝑠𝑖𝑛𝜑 +

1

12
𝑒𝜑2(8𝑒𝑐𝑜𝑠2𝜑 − 4𝑒 − (5𝑒2 + 18)𝑐𝑜𝑠𝜑)

+
1

36
𝑒𝜑𝑠𝑖𝑛𝜑((9𝑒𝑐𝑜𝑠𝜑 − 84 − 10𝑒2)𝑒𝑐𝑜𝑠𝜑 + 126 + 45𝑒2)

−
1

54
𝑒3𝑐𝑜𝑠3𝜑(𝑒𝑐𝑜𝑠𝜑 − 18) −

2

27
(4𝑒2 + 27)𝑒2𝑐𝑜𝑠2𝜑 + 5

+
𝑒2(13𝑒2 + 108)

27
}.                                                                            (2.43) 

This can be continued to any order of corrections in principle, but in the case of the 

Solar System, one may not need to go more than the first order. 

In our solar system, 𝜆 is very small and for a good approximation one can use 

only the first order approximation i.e., 

             𝑢 ≃ µ (1 + 𝑒𝑐𝑜𝑠𝜑 + 𝜆 (1 +
𝑒2

2
+ 𝑒𝜑𝑠𝑖𝑛𝜑 −

𝑒2

6
𝑐𝑜𝑠2𝜑))               (2.44) 

although 𝜆 ≪ 1, the term including 𝑒𝜑𝑠𝑖𝑛𝜑 with large 𝜑 becomes significant and as 

a consequence, we can simplify this expression even further as 

                          𝑢 ≃ µ(1 + 𝑒(𝑐𝑜𝑠𝜑 + 𝜆𝜑𝑠𝑖𝑛𝜑)).               (2.45) 

Let us note that while 𝜑 is increasing, we may still consider 𝜆 ≪ 𝜆𝜑 ≪ 1 which 

implies 𝜆𝜑 ≃ 𝑠𝑖𝑛(𝜆𝜑) and 𝑐𝑜𝑠(𝜆𝜑) ≃ 1. Applying these into Eq. (2.45), one obtains 

  𝑢 ≃ µ(1 + 𝑒(𝑐𝑜𝑠(𝜆𝜑)𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛(𝜆𝜑)𝑠𝑖𝑛𝜑)).           (2.46) 

After using 𝑐𝑜𝑠(𝑎)𝑐𝑜𝑠(𝑏) + 𝑠𝑖𝑛(𝑎)𝑠𝑖𝑛(𝑏) = 𝑐𝑜𝑠(𝑎 − 𝑏), the latter becomes  
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                            𝑢 ≃ µ(1 + 𝑒𝑐𝑜𝑠((1 − 𝜆)𝜑)).                   (2.47) 

This relation clearly suggests that the period of the motion is not 2𝝅 any more and 

instead it is given by 

                      (1 − 𝜆)𝛥 ≃ 2𝜋               (2.48) 

in which 𝛥 is the period of the motion. This, results  

                             𝛥 ≃
2𝜋

1 − 𝜆
               (2.49) 

and since  𝜆 ≪ 1, one may apply 
1

1−𝜆
= ∑ 𝜆𝑘∞

𝑘=0  which in first order it yields 

                                                             𝛥 ≃ 2𝜋(1 + 𝜆)                                        (2.50) 

This expression shows a perihelion precession per orbit for the planet under study 

due to the GR term equal to 𝛿∆= ∆ − ∆0≃ 2𝜋𝜆 in which ∆0= 2𝜋 is the period of the 

planet’s orbit predicted by Newton’s gravity. As 𝜆 in natural units was given by 

𝜆 =
3𝑀ʘ

2

ℓ2  where both 𝑀ʘ and ℓ are in natural units one has to convert 𝜆 into 

geometrized units which is given as 

          𝜆 = (
3𝑀ʘ

2

ℓ2
)

𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑢𝑛𝑖𝑡𝑠

= (
3𝑀ʘ

2 𝐺2

ℓ2𝑐2
)

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑧𝑒𝑑 𝑢𝑛𝑖𝑡𝑠

.            (2.51) 

Let us add that to convert mass and angular momentum per unit mass from natural 

units into geometrized units, we must use the proper coefficients. In this case 

(𝑀ʘ)𝑁𝑈 =
𝐺

𝑐2
(𝑀ʘ)𝐺𝑈 and (𝐿)𝑁𝑈 =

𝐺

𝑐3
(𝐿)𝐺𝑈 which amounts to (ℓ)𝑁𝑈 =

1

𝑐
(ℓ)𝐺𝑈. 

Finally, in SI units we find 
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              𝛿∆≃
6𝜋𝑀ʘ

2 𝐺2

ℓ2𝑐2
.             (2.52) 

Herein, 𝑀ʘ is the mass of sun in kg, 𝐺 is the Newton’s gravitational constant, c is the 

speed of light in m/s and ℓ =
𝐿

𝑚
 in which 𝐿 is the angular momentum of the planet 

and m is the mass of the planet. Therefore, more precisely one finds 

                    𝛿∆≃
6𝜋𝑀ʘ

2 𝑚2𝐺2

𝐿2𝑐2
.              (2.53) 

Next, we go back to the classical Newtonian  gravity and the well-known Kepler’s 

law. First law states that the planets orbit the Sun on an ellipse with the semi-major 

and semi- minor; 𝑎 and 𝑏 respectively and we must keep in mind that Sun is located 

on one of the foci of the ellipse. Second  law states that a line from the Sun to the 

planets sweeps out an equal area in equal time. Finally, the third law implies that the 

square of the period of the planet is proportional to the cube of the semi-major axis. 

According to the second and the third laws 

                           𝑇2 =
4𝜋2(1 − 𝑒2)𝑎4

ℓ2
             (2.54) 

And 

                                                          𝑇2 =
4𝜋2𝑎3

𝐺(𝑀ʘ + 𝑚)
                                       (2.55) 

in which in our Solar System for all planets 𝑚 ≪ 𝑀ʘ it can be approximated as  

                     𝑇2 ≃
4𝜋2𝑎3

𝐺𝑀ʘ
.           (2.56) 
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From Eq. (2.54) we find ℓ2 =
4𝜋2(1−𝑒2)𝑎4

𝑇2  and from Eq. (2.56) we find 𝐺𝑀ʘ =
4𝜋2𝑎3

𝑇2  

which after substitution into Eq. (2.53) one finds   

                           𝛿∆=
24𝜋3𝑎2

𝑇2(1 − 𝑒2)𝑐2
           (2.57) 

In  Table 1, we provide perihelion precession 𝛿∆ for all planets in our solar system. 

Table 2.1:Perihelion precession of the solar system due to the effect of general 

relativity. 

Planets 𝑎(𝑚) × 1011 𝑇(𝑑) 𝑒 𝛿∆(
𝑟𝑎𝑑

𝑜𝑟𝑏𝑖𝑡
) × 10−6 𝛿∆(

𝑠𝑒𝑐

𝑐𝑒𝑛𝑡𝑢𝑟𝑦
) 

Mercury 0.579091757 87.969 0.20563069 0.5018545204 42.980 

Venus 1.082089255 224.701 0.00677323 0.2571130671 8.6247 

Earth 1.495978871 365.256 0.01671022 0.1859498484 3.8374 

Mars 2.279366372 686.98 0.09341233 0.1230815591 1.3504 

Jupiter 7.784120267 4332.589 0.04839266 0.03581036194 0.0623 

Saturn 14.26725413 10759.22 0.0541506 0.01954946842 0.0136 

Uranus 28.7097222 30685.4 0.04716771 0.00982264895 0.0024 

Neptune 44.9825291 60189 0.00858587 0.00618284201 0.0008 
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Chapter 3 

CONCLUSION 

In this thesis we have studied “Perihelion Precession In the Solar System”. In the 

chapter one (introduction) we had a review from the first spark of this subject to the 

last correction that was done on the equations for finding the best amounts. We 

explained that it was born by the Newtonian’s law at the first time and some 

astronomers and mathematicians tried to render methods which had the closest result 

with the observed value. After propounding General Rilativity theory by Albert 

Einstein, he could change the traditional physics worldview and one of the 

phenomenon that was solved by this theory was perihelion precession. 

In the second chapter we have started with Schwarzschild spacetime equation and we 

assumed that each planet moves as a test particle for the motion of the planets in 

solar system The best way for derivation of the equation for the perihelion precession 

of orbits in general relativity theory involves the solution of the Euler-Lagrangian 

equations where the line element is given in Schwarzschild coordinates. For finding 

the basic equation of motion from the Eular-Lagrange equations and by choosing 

𝜃 =
𝜋

2
, the result obtained were three Eular-Lagrange equations which we obtained 

the two conserved quantities energy and angular momentum of the test particle. To 

proceed further, we used the chain rule to find a differential equation for 𝑟 with 

respect to 𝜑, where through a change of variables we substituded 𝑢 =
1

𝑟
, and rewrited 

the last differential equation that named it as the master equation of first order. 
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 These reduce to one equation is similar to the classical Kepler problem with an 

additional and small term which is 3𝑀ʘ𝑢2, due to the general relativity. For finding 

the solution by considering 
3𝑀ʘ

2

ℓ2 = 𝜆 ≪ 1 and expanding the orbit of planets in terms 

of 𝜆. In this way the zeroth order obtained without the GR correction. For finding the 

higher order we obtained a general solution as Eq. (2.24). After considering the first 

solution we used the standard method of solving the particular solution of 

nonhomogeneous differential equation. 

As regards 𝜆 ≪ 1 and using other simplifications and mathematical methods the 

perihelion precession due to thr GR was obtained. Since the 𝜆 depends on mass and  

angular momentum that both of them are in natural units according to Eq. (2.50) 

were converted to geometrized units  

We compared the classical Kepler orbit with an orbit in Schwarzschild space, related 

by the invariance of Kepler’s second law which states that a line that is from sun to 

the planet swept out the equal area in the equal time and the third law states the 

square of the period of planets is proportional to the qcube of semi major axis (a), we 

found the period as 𝑇. After using some mathematical method we obtained the 

perihelion precession. This treatment more clearly demonstrates the action of the 

effect of perturbation in spacetime due to the presence of a gravitating body. Contary 

that the Eq. (2.57) was shown, may this thought comes in our mind that this 

approximation is influenced by the eccentricity, but the eccentricity appears in this 

equation just for changing the semi-latus rectum L, (as we show it in Einstein’s 

result) of the ellipse to the semi-major axis, which in our equation we  know it as ‘a’. 

The geometrical relation between these two concept is 𝐿 = 𝑎(1 − 𝑒2). 
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According to data’s table of the planets in the solar system [14] the table (2.1) was 

prepared with respect to Eq. (2.57) we calculated the perihelion precession in 

(𝑟𝑎𝑑/𝑜𝑟𝑏𝑖𝑡) and in  (𝑠𝑒𝑐/𝑐𝑒𝑛𝑡𝑢𝑟𝑦) by considering Table (1.1). 
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