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ABSTRACT

In this work we are interested in the approximation of some type of operators called
Bernstein-type. For this purpose, the operator L, (f ,x)(f eC[O,oo)) called the
Bernstein-type approximation operator is considered. The aim is to use some
probabilistic properties to improve and sharp to operator defined above. Also, the rates

of convergence as well as the continuity of the operator are studied. Various methods

of approaching the problem are evaluated in this study.

Keywords: Bernstein type operator, probabilistic approach, binomial distribution,

rates of convergence.



0z

Bu ¢alismada Bernstein - tipi operatorlerin yaklasimlariyla ilgilenilimistir.Bunun igin

L, (f ,X)(f eC[O,oo))oIarak belirtilen Bernstein tipi yaklasim operatorii ele

almmistir. Yukarida verilen operatoér igin bazi olasiliksal metodlar kullanilarak
yaklagim Ozellikleri calisilmistir. Ayrica, yakinsama hizi yani sira operatoriin
stirekliligi incelenmis olup farkli yontemlerle yaklasim problemi de bu calismada

degerlendirilmistir.

Anahtar kelimeler: Bernstein tipi operatorler, olasiliksal yaklasim, binom dagilima,

yaklasim hiz1.
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Chapter 1

INTRODUCTION

This work is divided in three main chapters as well as the introductory part and the

conclusion. An overview of what is developed in each of the chapter is given here.

The idea in chapter 2 is the following. Considering C [O,oo) to be the space of
continuous functions on the half open interval [O,oo,),and given a function

¢ € C[0,0), Butzer, Hahn and Bleimann [1]introduced an approximation operator

called the Bernstein-type operator for approximation and defined it as follows:

L (w,t)=ﬁ(g¢(k _r:] +1B0nkt”, k eN. (1.1)

They later proved the convergence of L, (¢,t) —>¢(t) (ask — o) for each t €[0,).
The convergence of the function mentioned above is investigated by the estimation of

the quantity ‘Lk (p.t)—ot )‘ This investigation is actually possible provided that the

continuity of the function ¢ €C; [0,o0). The notation C, [0,) is set for the space of

all the functions which converge uniformly and are bounded on the half open interval

[O,oo). Some probabilistic arguments are used in what will follows to sharp, and add

accuracy to the results mentioned above. The first two module of the continuity are

used to establish the rates of convergence.



In the third chapter, the idea developed is the studies of two related approximation
problems of the Bernstein polynomials type Bkgo(t) if given continuous function ¢
on the closed interval [0,1]: The following two results are investigated. The first is

that there is no any Gibbs phenomenon at any jump type discontinuity points of ¢ and

second result is the convergence of the first derivative (Bkgo)' (t) of the initial

polynomial B, ¢(t) towards the first derivative ¢'(t). The well-known and classical

probabilistic arguments are used to prove the above results. The second result for
instance is obtained based on the computation of the expectation of a function of

random variables.

The fourth chapter which is the third main chapter of this work is centered on the
following idea. From the poineenring work of Bernstein, various research results have
proven that probabilistic arguments are suitable for any approximation problem which

is based on positive linear operators.

The problem is usually defined as follows, given I a real valued interval and given

R', R}, R,,..., I-valued random variables with their density depending on a parameter
t e 1. Letus consider two linear operators Y and Y, positively defined associated to
the random variable R* and R; respectively. By the mean of

Y (p.t)=Ep(R'), Y, (2.t)=Ep(R}), pCy(l), tel,
with E being the mathematical expectation of a random variable. C, (I ) is the space

of all real valued continuous functions which are bounded on the interval I.



Chapter 2

BERNSTEIN OPERATOR

2.1 Introduction

Consider the space C [O,oo) of real valued continuous functions defined on the half

open interval [0,:0). Let us consider also the function @eC][0,). The

approximation operator of the Bernstein type initially defined by Hahn, Butzer, and

Bleimann, is given by

L (ot)=

1 k [ n D i
Q c,t", _ 21
They proved that L, (¢t)—>e(t) (ask —>w) for any te[0,00), they also
established that the convergence rate can be investigated by estimating
‘Lk (pt)—o(t )‘ of a continuity function ¢ €C [0,%0). Some probabilistic arguments

are used in what will follows to sharp, and add accuracy to the results mentioned above.

The first two module of the continuity are used to establish the rates of convergence.
We prove the relation|L, (¢,t)—o(t )\£3u(¢),\/t_(l+t)2/k ) where v(p,a) stands

for the first modulus continuity of ¢. What follows is an improvement of the above

theorem (inequality)

K

t(1+t)” }rt (1+t)°

‘Lk (gp,t)—gp(t )‘ <2C |, [(p,



where v, (@,«) is the second modulus of continuity of ¢eC,[0,%), and

||¢||:supte[0’w]|¢(t)|. An approximation of the limit of L, is the so called Szasz

operator.

2.2 Evaluation of Convergence Rates

LetW, W, W,,... be independent random variables with some probability distribution
such that PW, =1)=p, PW, =0)=q,where p=t/(l+t) and q=1/(1+t),
t €[0,0). In order to avoid the case where t =0, assume that t > 0. The summation
S, =W, +...+W, follows a binomial distribution b(n,k, p) whose parameters are k

and p, and

PS,=m=()p"q"", n=012..k. (2.2)

Set T, =S, /(k =S, +1), k=1,2,..., it follows from (2.1) that L, (p,t)=Ee(T,),
with the character E being the expectation operator. The convergence of
T, — p/q =t inprobability as k — oo, implies that L, (¢,t) — ¢(t) as k — o by the
law of large numbers for ¢ €C [0,oo). To get an accurate result, we first calculate
ET, and ET,? and secondly, we estimate the quantity e, (t) =E (T, —t)°. Itisan easy
task to prove that

ET, =t—tp“ >t ,as k > . (2.3)

It follows from T, and (2.2) that

2

k
ET2=>—" 5 =n
k Z&(k—n+1)2p(k )



k 2 k! n.k-n
0 20 n+1)(k—n+1)(k—n)!n!p |

2
kl n~k-n

HZ:;‘ k—n +1)(k -n+1)(k =n)!In(n-1)!

k k1 .
nZI k—n +1)(n ~D)1(k —n+1)(k —n)!p q

k k! N~ k-—n
2 —n+1)(n—1)!(k B TLe

Letting n=m +1

S (m +1) k1! pm+1
m:o(k —m _1+1)(m +1—1)| (k -m +1_1)| ql+m+k

k-1 (m+l) k1 pm+l
e O(k m)ml(k m)| 1+m+k

_k—l m kl pm+l Kk -1 k' pmﬂ
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S m k! pm+1 k-1 k1 pm+l
=0
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m+1 k -1 k | pm+1

RS m k! p™
_;(k —m)m (m-1)I(k —m)tg*m* r;(k —m)m!(k —m)tgm

k-1 k | pm+l K -1 k ' pm+1
:m:l( _m)(m 1) (k m) q1+m+k +r§(k —m)m!(k _m)!q1+m+k

_kil k' m+1y k-m-1 k' 0+1 k —0-1
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k —
m+1, k-m-1

+mzk mm'(k m)p a

qu*1 k-1 k! m+1y k-m-1
ki (k=m)(m -1k —m)!




+§ k' m+ly k-m-1
m:1(k—m)m!(k—m)!lo g '

( t ]( 1 )k ( 1 )
k-1 |
= L+ L+t 1+t + k! pm+1qk—m-1

k 1 ( )(k m)

+§ kl m+1 k-m-1
(k —=m)m!(k —m)!p q

m=1

t 1 1 k-1 K1
= 1+t R m+1 k -m-1
(L”)@+U b = (k —m)(m QKk—mﬁp a
k-1 I
+Z pm+lqk—m—1

m=1 k m m'(k m)

-k m+l k-1
) e k!
k q1+m+k m=l(k —m)(m —1)|(k —m)l

prt G k!

I (kM mik —m)i

Letting n=m -1 and exploiting the binomial distribution condition p=1-q =
t / (L+t) it follows that

K=2 n+1+1
ET2 _+ k! k-n p
k (1+t n:O k —n —l)!(n +1—l)!(k -n _1) k —n qn—k+1+1

k-

l\)

k1 kK —n pn+1+1
k n-— 1) (n +1)!(k -n _]_) k —n qnfk+1+1

—+

i

n+2

+k2 k—n p
TR YT T

n+2

k-2 K n 5
n:O k—n- 1)([’] +l)(k_n)!(n)!qn—k+2

—+
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-2 n+2

v k-n p"" n
Tk +nZ;(”)(k—n 1)q" “JrZ;( ) (k —=n- 1)(n+1)qF”)‘k+2

_tast)* G p™ [ k-n afell
= " +§(n) n—k +2 _(k_n_1)+(n+1)(k_n_1):|

:t(1+t)’k +'§(k) p"*2 _(k—n)(n+1)+(k—n)}

"g"? | (k—=n-1)(n+1)

=t(1+t)‘k +§(k) p"*? _(k -n)[(n +1)+1]}

"Tq" | (k =n-1)(n +1)

@)™ Zoy p"? (n+2)(k -n)
- +Z§(”)q”"*2 (n+1)(k —n-1)’

Since

(n+2)(k —n) _(n+2-1+1)(k —n)
(n+k -n-1)  (k-n-1)(n+1)

:((n+1)+1)(k—n)_ (n+1)(k —n) (k —n)

n+l)(k-n-1) (n+1)(k —n-1) (n+1)(k —n—1)

—

C(n+1)((k —n-1)+1) (k —n)

" (n)(k-n-1)  (n+1)(k —n-1)

(n+1)(k _n_1)+ (n+1) . (k —n)
(n+1)(k =n-1) (n+1)(k —-n-1) (n+1)(k —n-1)

1, (k-n)-141
(k-n-1) (n+1)(k —n-1)

1 (k-n-1)41
(k=n-1) (n+1)(k —n-1)

1 N 1 N 1
(k-n-1) (n+1) (n+1)(k —n-1)




1 (n+1)+1

D) T Kon ) n )

1 (n+2)-1+1

o) ek

1 (n+1) 1

- (n+1) ' (n+1)(k —n-1) ' (n+1)(k —n-1)

(k=n-1)+(n+1)+1 +(k -n-1+n+1+1)
(n+1)(k —n-1) B (n+1)(k —n-1)

=1+

(k -n)(n+2) (k +1)

(n+1)(k—n-1) ~ (n+1)(k —n—1)

then we have,

t < n+ —n- K3 k +1k ! N4 o
ETKZ: — () 2k 2, ( ) D 2qk 2
k@+t)" s Sk —n)Inl(n+1)(k —n-1)
k-2 k-2 |
_ t —+ ( ) n+2 k-n-2 (k +1)! pn+2qk—n72
@y & 2 )ik —n 1)

_ t +i(k)pn+2qk—n—2_(t )pk—1+2qk—k+1—2_(t)pk+2qk—k—2
k n =

S (k +1)I n+2. k-n-2
K Cmn ek —np”

_ t [ pn+2 k' pk+l
T k@+t) +n§§(“ q"* " (k -k -1){(k -1)! q

k' n+2 k-2 (k +1)| pn+2
B - 2+ “k+2
(k—k)!k' Sk —n)(n+1)i(k —-n-1q"**

ot K p"?  k(k-1)! .., ., k! p"?
_k(l—i-t)k +§(n qn—k+2 1l(k _1)| Olkl q2

k-2 (k +1)| pn+2
+HZ:; (k —n)!(n+1)i(k —n 1) q"***



k
n+2 k-n-2 k+2-2 k+1,
k(1+t) +§() —p**%g? —kp g

o (k +1)I n+2.k-n-2
20 “ay(n+ik —n-n°

k +1 -1 oo
—k (t_j (ij + (k +1)| pn+2qk—n—2
1+t 1+t = (k-n)!(n+1)i(k —n-1)

t t? 2 titk 2
= et () = (1-1)
kK@+t)"  (1+t) (1+t)" (1+1)
tt K3 (k +1)| n+2~ k-n-2
Kk ———(1+t)+
PSS AR (T CEr L
k k
=t—k+t2—t2(t—j —kt(t—j R, (2.4)
k (1+t) 1+t 1+t
where
R :ka (k +1)I pn+2qk—n—2.

=k —n)!(n+1)k —n-1)

Let us now analyze the term R.Letting n+1=m we obtain

_k—l (k +1 |pm+1qk -m-1 k-1 ™ m+1y k-m-1

R =2 e m )ik =) ml(m)p(k(jm) '
_ 4 (k-m+2) 1 a(k—m+2)
Since (k —m) :(k—m+2)(k—m):(k_m+2) (k=m)




2

<(k —m +2)1(1+k - +1)=3/(k -m+2),

(k —m)flSS/(k —-m +2),

(k >2), we obtain

k — - pm+lqk -m-1 k-1 - perlqk -m-1-1+1 Kk + - pmqk+1m
RS?’E('“ )(k m +2) 3m1( ) (k —=m+2) S Z( )k m+2)

O 3(t/1+t) K

— k+1 m ~ k +1-m k—m+2 —11
(]/1+t)2 m—o(m )p | ( )

k+1
with Db (m;k +1,p)=1, considering the binomial distribution b (k , p)

m=0

R<3

(1+t)(1+t)2 E(k —m+2)71.

R <3 (1+t)E (k —m +1+1)71:3t(1+t)E (§+1)71, where W follows binomial
distribution b (k +1,p), and £ =k +1-W with b(k +1,q), g =1—p. Hence aresult

of Chao and Strawderman [2, p. 430] gives

<3t(1+t)(1—pk+2)
 (k+2)q

3 (L) (1-(t/1+1) )
(k +2)(1/1+1)

3 (L+t)(1-(1) 7 /(2 +t))
(k +2)/(1+t)

l—|—t k+2 k+2 (1+t)

"*2 (k +2)
(
t)"(

) (1+t )P t?) a((at) )

2

14t) (k+2)  (1+t) (k+2)

10



k +2 k +2

~347 3 (L+t) 3k

(1+t )k (k+2)  (1+t )k (k+2) (1+t )k (k +2)

3 (1+t

3 (1+t) 3?3ty
C(k+2) (@et) (k+2) (k+2)
Rsaaﬂf

(k +2) (25)

Letting e, (t)=E (T, —t)° it follows from (2.3), (2.4), and (2.5) that
e, (t)=E (T, -t) =E (T -2T, +t?)

e (t)=ET2—2ET, +t

t s of Y t ) Y L2
t)= t°—t°| — | —kt| — R-2t(t-t t
“ Oy (1+tj (mj R

k k
e (t)= ! - +t2—t2(t—j —kt[t—j +R—2tz+2tz(t—j+t2
) 1 1 1

+t +t +t

t t ) t )
e (t)= k+t2( j —kt(—j +R
k(1+t) 1+t 1+t

k k 2
e (t)< LI ¥ +t2(t ] +3t(1+k)

k (1+t )k (1+t 1+t k +2

_t—kztk“Hz[t jk+ k 3t(1+t)’
1+t k+2 k

Since (t/(l+t))k <(1+t)/k, we have

t2(1+t)+3t(1+t)2
k k

t
t)<—
e (t) k+

11



k k Kk

e, ()= =" (2.6)

Consider the space C, [O, oo) of continuous function which is bounded on the half open
interval [O,oo). It is clear that the space,C, [0,oo) defined previously. To produce our
first  result, let  us consider pe C;[0,0) and set
U((p,a)=sup{‘(p(t)—(p(w )t -w|<ea, tw e[0,00)}, a>0. The convergence rate

is obtained in terms of the first modulus of continuity u((p,a), as defined in the
following theorem.

Theorem 1. Consider L, (¢,t) be defined by (2.1) and ¢ €C;[0,20). Then

L, (pt)-p(t) gsu((p,,/t (1+1) K ) k>1. (2.7)

Proof. Let @>0 and x=[[T, —t|/ar], [a] stands for the greatest integer <a.

Obviously,
| o(T)-o(t) <v(p,a)(l+x) , and

L (@t)=o(t)[=[Eo(T)-e(t) <v(p.a)(1+Ex).

12



The inequality E x < VE &2 S\jek (t)/a* addto (2.6) lead to

L (pt)=p(t) v(pa)(1+e (t)/a’ ),

and (2.7) is obtained by setting & = (1+t)\/t/k .

L, (pt)-o(t )|5”(¢’“)(1+(1it(§%/{\/7]

L (%) -0(t) <0(p.)1+2)

L (pt)—o(t) <3v(p.2)

L, (o) -0t )|£3U(go,«/t (1+1) )

The second modulus of continuity can also be exploited to obtain Theorem 1. (cf. [1]).

Let || =sup, ., |#(t)], where ¢C,[0,), with

Alp=p(t+2y)-2p(t+y)+o(t) ((peCB [0,00)).

Let us define the second modulus of continuity by

v, (@)= sup AzgoH, a>0.

y:ly|ga

Setting g =T, —t, it follows from (2.3) that

13



[Eg[=[ET. ],
with  ET, =t-tp* >t as k - o

[Egl=ft-tp*
[Egl=t—t (t/(2+1)) |
[Eg|=|- (t/(1+0))|
[Eg|<t (t/(L+t))

|Eg|st(t—jk <t (1:). (2.8)

1+t

An improved version of a result established by Bleimann, Butzer, and Hahn is given

below by dropping the condition k >N (t)=24(1+t) in Theorem 2 of [1]. Let us

consider the following trivial result. Consider h eC [0,.0) h" and h” eC, [0, ).

With g =T, —t we note that

h(T,)=h(t)=["h'(t+y)dy
u=h'(t+y) du=h"(t+y)dy
dv =1 vV=y

h(T, )_h(t):jog h'(t+y)dy =gh'(t +g)_jog yh'(t +y )dy

h(Tk)—h(t)=gh’(t+g)—y?2h”(t +y)g

0

h(T,)=h(t)=gh'(t +g)—%gzh”(t +q).

14



Taking expectation and using (2.6) and (2.8) it is easy to see that

! 1 "
L (ht)=h(t) <[EglIn]+>Eg* ||

L, (ht)=h(t)< (1k+t)||h’||+%E (t, —t)’

where e, (t)=E(t, —-t)’

L ()]l 2e, @) +]p] &)
w0, (=200
L ()~ ) < D LA oy
It follows that
L (00)-n 0 <25 o, (29)

Using (2.9) the following stronger version of the theorem is obtained.

Theorem 2. Consider p €C; [0,0), te[0,20). Then for k =1, 2, ...,

L (o) -o(t) <0 Hco = t)z}t“*” ||<o||}

where C is a constant, with the saturation condition given by

L (pt)-0(t)=0 (k™).

SUPR; 5o

15



The saturation properties depend on ¢" and ¢", it is not an improvement of Theorem

2.

2.3 Limitation Property of L,

Consider the function ¢ €C, [O,oo) and define the Szasz operator by

s, (gp,t):e_jtigo(gjﬂ, t >0, (2.10)

n=0 J n '
with j being a positive and fixed integer. S, (@,t) is a suitable limit function of L,

is an interesting consequence. The limiting property established is proved via the

following lemma.
Lemma. Let O, (jk.t)=(})(t/k)" (1+t/k)™, n=01, .., jk, and
7. (it)=exp(=jt)(jt)"/nl,  n=0,1 2, .. Then
(i) 7 (it)exp(-n(n-1)/(jk —n+1)) <0, (jk.t)

<y. (jt)exp(jtz/(n +t)),

(i) Yo, (ik.t)=7(it)) >0 as k —>eo,
n=0
(iii) max 0, (jk,t)=7,(jt)| >0 as k >,

Proof. Since e >1-y (0<y <1), it follows that

0, (Jk.t)=(¥)

16



. . t k Y"( k
O (jk,t)=(*
o (Jk.1) (”) K +t k+tj (k+tj
(¥) t k +t -t )jk‘"
"k +t kK +t
(%) t K+t t j‘“
"Lk +t K+t Kk +t
. ot t )" t )"
0.k~ ) (i) ()
o (ko (FY ) [kttt K
o (] ’)_(") K +t K +t K+t

o, (1) -(1) St Y

0, (jk,t)

0, (jk.t)

(k+t)” k" Tk o+t
ilc )1 n Jk
0O, (jk,t):_(JL)'t—(l—t—j
(jk —n)ntk" k +t

since (jk)!/(jk —n)'<(jk)", we have

n! k"

o, () s B L (o L)l ()

0, (jk,t)s(l—t—ij 10

k +t nt
where ;/n(jt)ze‘“ﬂ, n=0,12..
n!
()" _ e
=7 (it)e’

Since e >1-y (0<y <1), it follows that

17



0, (ik,t) <y, (it)exp(it)exp(=(t) ik /(k +t))
=, (it)exp(jt — jkt/(k +t))
=7 (it)exp((jt (k +t)~ ikt)/(k +1))
= 7, (it)exp((jkt + jt2 — jkt)/(k +1))

0, (jk.t)<y, (jt)exp(jt?/(k +t)).

Since (1-8) = exp(-p/(1-B)) (0<B<1), it follows that

on(jk,t)z(r{k)[tﬁj” (Hlt(_j-jk

0, (jk t)= (k) (ki:_tjjk

(Jk—n)!n!k_n

0, (jk.t)=4-t (jk)! (k+t—t]jk

nt (jk-n)jk"

o, (k)UK (k+t_ t jik

nt(jk —n)i(jk )" Lk +t k o+t

On(jk,t):(jt)n (ik)(ik =1)..(jk —n+1)(jk _n)!Ll t jjk

" (Jk —n )ik )" TRt

on(jk,t):(jt)“(jk)(jk —l)...(jk—n+1)(1_ . J,-k

n' (jk)n kK +t

onuk,t):“t)"(“’k)“k—1>...ik—<n—1>J(1 .

(i) (i) jk kot

18



Since yn(jt)zexp(—jt)(jt)"/n!, n being a positive integer,
Thus,

(it)

nl!

=7, (it)exp(jt)-

n-1 t )"

On(jk,t)zyn(jt)exp(jt)(l—j—kjn(1—mj .
Since  (1—B)=exp(-B/(1-B)). for 0< g <1,

T e

0.2 (1o 11 [ 150%)

eXp(_IEtRk / (kk+t D

0, (Jk ,t)27n (jt)exp(jt)exp£_(nj—l)n (Jk) j

19



0, (jk.,t)>y, (jt)exp(jt)exp[

0, (jk.,t)=7, (jt)exp(-n(n-1)/(jk —n+1)).

-n(n-1)

jk—-n+1

jexp(—jt)

To prove (ii ) letu, =0, (jk,t)—7, (jt), &, :7n(jt)(exp<jt2/(k +t))—l), and

. =7, (jt )(l—exp(—n (n-1)/(jk -n +1))).

Since —n, <u, <& from (i), and |u,| <&, +7,, we have

It is obvious that

& =7, (it)(ex(it*/(k +t))-1)

56, -3 (el /()3
$2 ~(om(it*/tk <)), (1)
$6 (ewp(30(k )4 S ool ) i
Zf = (exp(it*/(k +t))-1)exp(~ik ):Z:;(jt )" /nt

:Z:;é‘n S(exp(jt2/(k +t))—1)exp(—jk )g(jt)n/n!’

o0

where Z_;(jt)”/n!:exp(jt)

:Zi;éﬂ s(exp(jtz/(k +t))—1)exp(—jk )exp(jt)

20
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ifn S(exp(jtz/(k +t))—1)—>0 as k — oo

=7, (jt)[l_exp(ﬁn

jiﬂn =i7n (Jt){l—exp((_”(ﬁﬁ,

jk —n+1)

since exp(—v)=>1-min(Lv) (v=>0), it follows that

im < i}/m (it )(1—{1— min [1M]B

jk —n+1

_3. (it )(1—1+ min(l, _r;((n 1) D

jk—-n+1

"jk —n+1

iﬂn Siyn (jt)min[l n(n-1) j

n<~/jk+1
we have
ik Jia n(n-1)
<0
Z;Un + 2 Vo ( )jk—n+1
i gt n(n-1) & n(n-1)
<0+ L(Jt)- + ()=
n=077 nz:; 7] )Jk—n+1 JJK—;J/ (i )Jk—n+1

21
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jk Jik+t _ o AN B
>, <0+ ;/n(jt)_n(n Y, 3 exp(—jk)(Jt) n(n-1)
prt e jk —n+1 St nt jk-n+1

where P(U =n)= exp(—jt)%

jk

[{F] _
> < Z 7, (it) n(n-Y) +P(U >4/jk+1),

pr jk—n+1

with U being the Poisson random variable with mean jt. One can easily check the

following relation

e ()
£ = (jk +1-jk +1)

(i) results from (2.11), (2.12), and (2.13),and (ii ) implies (iii ).

+P(U > jk+1)—>0,as k — o0, (2.13)

Theorem 3. Consider L, and S, defined by (2.1) and (2.10) respectively for

peC, [O, oo). It follows that for each t [O,oo) and for any fixed integer |,

kt t

Proof. From (2.1) and (2.10) we have
(e b B )
(i) Sl () ()
o () Sl e B

BB (3




and

Thus

o 15 ) s o)l -0, (10 -R, ()

o £ ) i enlla -0 GORIR G0k (219

The function ¢ is bounded, thus the following relation holds

M S 7 (jt)>0 as k o (216)

n=jk +1

-[> (P[ jyn (it)

n=jk +1

Furthermore,

‘Gk(j’t)_Qk(j’t)‘:

S0 20 Jou k) Soof B (1)

n=0

23



7. (Jt).

co(“f ilj_(p(%j

Since the function ¢ is uniformly continuous on the interval [0,0), it follows that,

for a given & >0 there exists an integer N, such that for any integer k >N,
n
jk +1) J

Thus for k >N, we have

ik

2|0

n=0

7, (jt)<e.

0, (jk.t)=7, (it)+e.

o (§:8)-Qu (J.t)]<

n=0

We obtain by the previous Lemma that

24



oy (5.1)-Q, (j.t)) >0 as koo, (2.17)

and (2.14) follows from (2.15), (2.16), and (2.17).
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Chapter 3

APPROXIMATION PROPERTIES OF BERNSTEIN
POLYNOMIALS VIA PROBABLISTIC TOOLS

3.1 Introduction
Consider a real valued function ¢, defined on the closed interval [0,1]. Consider S,
to be a Binomial random variable whose parameters are k and t, and let E [T ]being

the expectation value of the random operator T . In the previous chapter we proved
the derivative of the convergence rate of the Bernstein polynomial from the large

deviation theory as follows:

i( Jt(@-t)" qo(%j:qu(sli‘j. (3.1)

i=0

The optimal convergence rates of Lipshitz function is k 2. For a Hélder continuous

-7
function with exponent » for some 0< y <1, the convergence rate is k 2.

The following two questions come to mind when comparing the given approximation

of ¢. The first is the behavior of Bk(p( ) when a jump discontinuity appears at a

given point t,. Secondly does the Gibbs phenomenon appear also?

The probabilistic tools are still used in this chapter for the approximation properties of

B.¢(t) when the function ¢ is not continuous. We showed approximating smooth
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function defined piecewise with left and right derivative, by Bernstein polynomials

there is no appearance of the Gibbs phenomenon. Let us consider a jump function and
let us prove that Bk(p(to)—)%(go(to+0)+(p(t0—0)) as k — oo, with a monotone
convergence on both left and right sides of the discontinuity. We also prove that for a

given bounded function ¢, the derivative function (Bk(p)' (t) converges to ¢'(t)

wherever ¢'(t) is defined.

Consider ¢, which approximate ¢ in a piecewise form and which possesses left and

right derivatives at every point. For the general case, the Gibbs phenomenon is

described as follows:

(i) If t, is adiscontinuity point of ¢, then

lim o, (t):¢(t+0)+(p(t—0).

k —o0 2

(i ) On any closed sub interval [t,,t,] on which the function is continuous, the

function is uniformly convergent:

o, (t)—p(t) =0.

lim max
kTo t<tst,

(iii ) On any subinterval containing a single discontinuity t, of the function, we

have Gibbs phenomenon: for small a >0

im ( max g, (1) min g, (t) | =Qlo(t, +0)~¢(t,~0)|

where
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2 c=( sint
P — — |dt ~1.18.
Q-2 (o]

In what follows we will prove that the Bernstein Polynomial approximant satisfies the

conditions (i) and (ii ) above also that (iii ) holds under the condition Q =1

whenever ¢ is a finite sum of jump functions. Finally we write (B, (p), (t) inthe form
of the expectation of a function of a binomial variable and then we investigate its’ rate

of convergence to ¢'(t).

3.2 Investigation of No Gibbs Phenomenon of Bernstein Polynomials

Consider a simple jump function

o(t)= {C s (3.2)

d(>c) t>t,

The Bernstein polynomial is given by

S S S
Bk(p(t)=CP( ;t <t0j+dP( ;t 2t0j=c +(d —c)P( ;t Ztoj,
and the following boundedness condition holds:

c=B,p(0)<B,p(t)<B,p(1)=d. (3.3)

The function B, ¢ increases because of that if t <w for 0<n <k we have

(S, 2n) =X (U @t =X (G w) T =P (s, 2n).  (34)

Left and right sides of (3.4) are all equal to 1 for n =0.
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A great technigue to obtain (3.4) is to choose many copies of the bivariate 0 — 1-

valued independent variables (Tjo ) 1< j <k, with joint distribution defined by
the following probabilites P (T, =W, =1)=t, P(T; =1, W, =0)=0 and
P (T, =W, =0)=1-w. If we consider Z andW to be respectively Z :Zt:lTj and
Y =ZE:1\NJ., it follows that the distribution of Z and W are respectively those of,

S, and S, ,, one can therefore construct {Z >n}<{Y >n}, such that

kw?

P(S,,=n)=P(Z=n)<P(Y 2n)=P(S,, =n).

w

Let us now focus on the uniform convergence on the interval [t,,t,] <[0,1]—{t,}. Let

us first consider t, <t,. It follows by Chebyschev's inequality that
k¢

Sei S
P T’Zto <P " >t, -t

t(1-t) 1
K(t,—t)" 4k (t,—t,)"

IN

(35)

implying that B,¢p(t)—>c =¢(t), uniformly on the interval [t,t,]. The same
argument holds when we choose t €[t,,t,] such a way that t, <t,.

On the other side, if t =t, then

S
B o(t,)=c+(d —c)P[ lk("" Ztol.

If we now consider T,;,1<j<k, as a sequence of independent Bernoulli random

variables with parameter t, it follows:

29



Kk

P(Siy /K 2t,)=P [Z(Tj —to)zoJ: P

i=1

Zl;:l(Ti _to)

>0 —>1 as k — oo,
kto(l_to) 2

using the Central Limit Theorem (CLT), and the relation

p[ St >t, i
k 2

this means that Bkgo(to) is convergent to the average left and right limits of the

c+d

Bk¢(to)—T=|C—d| —0 as k>,

function ¢ at t,.

The computations above verify the conditions (i) and (ii ) for a jump function as

described in (2).

To check whether (iii ) holds with the value Q =1, i.e., we consider the relation

max B, ¢(t)— min B, ¢(t) =B, ¢(t,+a)-B,o(t,—a),

fto—t|<a fto—t|<a

if n=co then from (ii ) on t,—« and t, +« it follows that

Iim[max B, o(t)— min B, ot )j:i(p(tom)-(p(to-a)i

k Too \ Jto—t|<ar fto—t|<a

= ‘qo(to +0)-o(t, —0)‘.

Comments After all the investigation done so far, the conclusion is that the

approximation by Bernstein polynomials has no Gibbs phenomenon.

If t, is a discontinuity of ¢ then

lim Iim(max B, (t)— min Bkgo(t)j:‘(p(to+0)—(o(t0—0)‘.

a—0k -\ to-t|<a to—t|<ar
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The equation above lead to the following situation (problem) that seems to have no
answer: lis there a special type of sequence which cause overshoot phenomenon when
we are approximating a jump? Is the approximation by orthogonal polynomial cause a
jump? If the answer to second question is yes, let us not forget that Bernstein
polynomial does not cause a jump. Is it because such polynomials are smooth? From
the questions stated above, one can conclude that there is no general formula to
approximate the solution. Nevertheless, Gibbs phenomenon may occur when the

approximation is at an arbitrary order. The approximation by Bernstein polynomials
holds only up to order k *, though it is smooth polynomial.

We did not focus in our previous chapter on the convergence speed. That is one of our

purpose of interest in this section.

Lemma. For a binomial variable S, , with ¢ >0 chosen arbitrarily, we have

2c?

P (IS —kt|>c)<2 *. (3.6)

It follows for instance that the convergence bound N (ki] givenin (ii) computed by

Chebyschev’s inequality in (3.5) can be increased up to the exponential bound

2e 2" Similarly, the condition (iii ) can be checked and it can be proved that the

convergence speed limit is exponential.
3.3 The Convergences Speed of (B, ¢)(t) towards ¢'(t)

We previously showed that the function increases B, ¢ is as the jump type function

@ increases using the binomial distribution. A general result is that when ¢(t)
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increases (respectively. decreases), then the derivative (Bk(p)' (t) of (By@)(t) is

positive (respectively. negative), thus B, ¢ also increases (respectively. decreasing).

Proposition 1. The following is the Bernstein polynomial B, ¢ can be expressed

derivative

(Boo) (t)=E HS—“J G (k,go)(t)], (37)

where

Proof. Deriving (1.1) with respect to t we obtain

(B, ) (t):i(‘; )jgou;jti—l(l_t)kj —i(? )(k =] )go(%ju (1-t),

i=0 i=0

with j =S,

(B,9) (t)=t(1_t)E (Sii ~tS,, —kt +tSk’t)¢(Skﬁ]j|

(0f =gy |50 )
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L
| (Se Kt (@(Se /K )-o(t)
(Bup) (1)=E t(1-t) ( K (S, /k—t)
(s —kt) ((S,, /K )-o(t)

(Byo) (t)= {kt(lt)( (Sk,t/k)_t H

33



As assumed.

It is therefore obvious that (B, ¢) (t) is positive (negative) whenG (k,¢)(t) is
positive (negative), and also that this exists only if ¢ increases (decreases).
Moreover, if the first derivative is defined at a given point t G (k,¢)(t)—>¢'(t) as
k —oo, and also if the squared part of the integral (3.7), from limit theory it is

convergent to the square of the standard normal random variable. It will follow that

(Bkgo)' (t)=~¢'(t) when k is choose to be large. The probabilistic proof is used for

rigor.

Proposition 2. Consider sup, @(t)=M <oo. it follows for any t such that ¢'(t)

is defined that

im (B, ) (1)=¢/(t).

k —o0

Proof. Define H (k,@)(t)=G (k,¢)(t)—¢'(t). We have




(Bk(p)'(t)(p’(t)+EHSkvt—m)] H (k,gp)(t)], (3.8)

2
: Sy —kt
since E| ———=| =1.
kt (1-t)

Because ¢'(t) is defined for £ >0, thereis & >0 such that if

Sk,l

—t
K

<a,then

‘H (k,o)(t )‘ < ¢. We show that the absolute value in (3.8) goes to zero if we split

and bound it as follows:

S, —kt |
+E Hm} [H (k. o)t )‘l{si‘-‘ J (39)

where 1,, is the indicator function of the set H. The first summand in (3.9) can be

ce|[ Skt 21
kt(1-t) ) {3

2
S, . —kt
since E{"‘—)J =var(Z) as k —0,bythe Central Limit Theorem.

kt (1t
]

bounded by

}]<§, (3.10)

2" summand can be evaluated as follows:

S, —kt |
EHWJ [H (k,(/’)(t)\l{k

Skt —t
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where

S
Kt _¢
K

S
S glsg oK Lypl[2
k t(l-t)a k

() wor(fefe
St(lk_t)(z%+¢)'(t )jP[i—t > aJ, (3.11)

.S
where the last inequality uses the fact that the square of the distance of the points %

and t in the interval [0,1] is less than 1. Now (3.11) can be bounded, using (3.6) by
k 2M 2
< = ’ t 2 —2a
t(l—t)( a o )j :

:t(lk——t)(%—i_(or(t ))eZ%

the relation above tends to zero as k — .
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Chapter 4

LIMITING PROPERTIES OF SOME BERNSTEIN-TYPE
OPERATORS

4.1 Introduction

From its establishment by Bernstein, probabilistic methods have been widely used for

the approximation purpose.

To prepare our mind for understanding, let us consider I to be a real valued interval

and let us consider R', R}, R},..., l-valued random variables with probability
distribution depending upon the parameter t 1. Assume that Y and Y, are two

positive operators which are linear and associated with R* and R| respectively using

Y (p.t)=Ep(R"), Y, (ot)=Ep(R}), pCB(l), tel.

We now state the following theorem.

Theorem 1. V t el the following statements are equivalent:
(a) R; Converges in distributionto R* (k — o).
(b) Yi(e,t) » Y(p,t)(k - ) forallp belonging to the space of all
continuous and bounded functions on I.

(c) The space in the assertion (b) changed by real valued uniform, bounded and

continuous function on the interval I.
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Modes of convergence of probability theory are enough to approach the problems of

approximation.

On the other hand, to determine the rate of convergence, we can estimate

| Y, (@.t)-Y (@.t)|, the probabilistic technique work also for this purpose. The

following are the operators and notations involved in the mentioned result above.

Forany k € N, t >0, and ¢ € C,[0,00) define

L (o) =00 T 0 e,

n=0
which is the operator introduction by Bleimann, Butzer, and Hahn.

Similarly

Sy ((p,t):e‘ktg(p(n/k)%

is the Szasz operator.

The Baskakov operator is defined by

* AN k+n-1 t_ "
B, (p.t)=(1+t) nZ:;go (n/k)(* )(1+tj :

and
t™" ® .
h/k Yh*%e"dh, ft>0
G, ((D’t): (k _1)!'[0 (0( / ) |
¢(0), if t=0

is the well known Gamma operator.

Finally, for k € N, 0<t <1, ¢<CJ[0,1], B, (o.t) define by
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k

(o) =Zg0 n/k () 1- t)

n=0
is called the Bernstein operator.
4.2 Limiting Properties
Theorem 2. Let us choose | to be an integer and let us consider the function ¢ to be

real valued, bounded and continuous function on [0,+oo). The following statements

hold foreacht >0 as k —oo.
(@) Ly (o(kn/1+0).t/k ) S, (o),
(b) By (o(kn) t/k) S, (p1).
(©) B} (w(kN).t/k) =S, (1),
(d) B (p(h/K).kt) G (1),

Proof. To prove (a) first observe that

L, ((p[llih )t/kj ((j +k-1)‘1u;)
and

S;(pt)=Ep(i"R"),
where U, is a binomial distribution random variable with parameters jk and
p=p(k)=t(k+t )’1, and R" is a Poisson distribution random variable having the
mean jt. Since jkp(k)—> jt (as k —o0) it follows that U is converges in law to
Z' which implies that (j +k’1)_lU§ converges in law to j'R'. We can then

conclude using Theorem 1.

Similarly we can prove (b) At this point let us consider k >t and the fact that
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B, (o(kn) /K )=Ep(i V),
with V' having a binomial distribution with parameters jk ; p =t/k. We now deal
with (c); (d). It easy follow that

B, (p(kn).t/k)=Ep( W)
and

B; (@(h/k).kt)=Egp(j k¥,
withW,' having a negative binomial distribution of parameter jk ; p =k (k +t)_1 and
Y. having a negative binomial distribution of parameter j; p =(1+kt )’1. The

characteristic functions of W and k ™ Y | are defined respectively by

o (y)=(1k 't (1-e”)) "

and
v (¥)=(1+ke (1-e"*))”
@, (y)—>exp(jt (e” —1))
and

v (v)—>(1-ity)”
(as k — ), the continuity of Levy theorem is used to conclude thatw ' (k * Y ) is
convergent to a Poisson random variable with mean jt (a gamma random variable of

parameters 1/t; j,if t >0, or that the distribution will degenerate at 0 if the time

t =0).
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4.3 Convergence Rates

Theorem 3. Let us consider j to be an integer and let us consider ¢ to be a real

valued continuous and bounded function on the interval [O,+oo). Then we have:

(a) v k >t >0,

B, (o(kh) t/k )=S, (gp,t)‘glt(—Z” dmin(2, jt).

(b) For t >0and k =1, 2, ...

L ((x)(%ji/k}—sj (o)

with ||| being the sup norm of the function ¢ and v (¢, ) being the first modulus

<200t/ 1)+ (t(1+) )23l 0+ 210)e”

of continuity of the function ¢.
Proof. The notations are the same with those used in Theorem 2 to prove the relation
(a) we first observe that, for any k >t >0,

jk-n

‘Bjk (‘P(kh)’t/k )_Sj ((P't)‘

Sl 25wy (-1

%)

ISP, (k)|

B, ((p(kh),t/k)—Sj(go,t)‘sg P, (k)-7,

n

where, for n is an positive integer

Pn(k)ZP(th :n):(rj]k)(t/k )n (1_:;_jjk—n
and
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where

<C,(x)p :It(—Zmin(Z,zc)

By (o(kn) t/k) =S, (p)] <12l min(2. it)

whence the result.

To prove (b) observe that, for t >0 and k =1, 2, ..., itis possible to write

L (gp[%),t/kj—sj (p.t)

=‘E¢((j +k1)lu;)—E(p(j1Rt)

SE‘ ¢((j +k—1)1uﬁ)—¢(j‘1Ui)

+Ep(iU})-Ep(i 'R")

. (4.1)

We first estimate the right hand side of the term in (4.1) separately. Let us consider

a >0 and define

(j+k ) Ul -

K= [a‘l

=i ik +1)7Uy |,

|
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It follows obviously that

o{(i k) Ut )-e(iU})

<v(pa)(l+x)

thus
| o((i +k ) UL )-p(i 0} <Eo(pa)(t+x)
<v(p,)(1+Ex)
<o(pa)(1+E [a ] (Jk +1)U1 )
<o(p.a)(L+ai ™ (jk +1) BV} ),
where

(j+k 1)Ul >R
E(j+k) Ul >E R

jk +1

EU, —
jk

ER',

with R' being a Poisson distribution random variable with a mean jt.

cut o UKD 5
EU! :(Jkk+l)t

<o(pa)(l+a?(jk +1) BV} )

SU((o,a)(l+alj 1(jk +1)7 (jkk”)tJ

< U((o,a)(1+t (jk )_1 a’l).
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On taking « =t/ jk we obtain

E| (i +k) vt )i 0})

<2v(pt/jk). (4.2)

Let us now estimate the second term on the right of (4.1) similar to (a).

Eo(iUL)-Eo(i "R )| <ol X [P (k) -] (4.3)
n=0
With, for n =0, 1, 2, ...,
» t n k jk-n
' _ t _ (1] - N
p!(k)=P (UL =n)=(! )(MJ(MJ .
It follows that
i P/(k)-7, §(2+4jkt (k +t)’l)eﬁQ (k,t), (4.4)
n=0

with
Q(k,t):sup{‘[jky]t(k +t)_l—jty‘: 0<y Sl},
since, forany 0<y <1
[iky Tt (i )" =ty | =[[iky Tt (k +8) " = iyt (k +t)(k +t)"
=[[iky Tt (i +2)™ = iyt (k )™ =yt (k +t)
=[[iky Jt = jkyt — iyt?|(k +t)"
:‘jkyt — jkyt —jytz‘(k +t)”
<(jyt?+t)(k +t)"

<j(tP+t)k
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we have
Q(k,t)<jt(1+t)k ™, (4.5)

and so the result (b) comes from the inequalities (4.1)—(4.5).

L (QJ(%j,t/kj—sj (@)

<2v(pt/jk)+(t (1+t)/k)2] o (1+2jt )e*".

A consequence of Theorem 3 is given by the following corollary.

Corollary.
(a) Considering any real valued bounded and continuous function ¢ on [0, +oo) the

convergence of
B (gp(kh),t/k ) —S, (p.t) (k > o)
is a uniform convergence on each bounded subinterval [O,a].
(b) For any real valued uniform, bounded and continuous function ¢ on the interval

[0,+o) the convergence

kh

L, (gp(m),t/kJ—ﬁj (ot) (k>

is uniform on bounded subinterval [O,a]. Moreover, the convergence rates come from

Theorem 3.
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Chapter 5

CONCLUSION

The aim of our work was to study the properties of Bernstein-type operators. The

following results are observed.

We considered and evaluated two similar problems based on the approximation using

Bernstein polynomials qu)(t) of a given continuous function ¢ on the interval [0,1].
We also proved that this method leads to an absence of the Gibbs phenomenon even
at a jump point, due to the smoothness of the Bernstein polynomials. We established
the convergence rate of (Bk(p)l (t) towards ¢'(t). All the results mentioned above

were also obtained using probabilistic assumption and computing expected value of a

function of some special random variable.
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