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ABSTRACT

In this thesis, process of Riemann integral is tackled tligjiheorems and their proofs
of Proper Riemann integral are explained. After that, inperdRiemann integral with
the same proof techniques is handled. Riemann Steiltjegralt with examples and
theorems of continuous linear function in Riesz Represiemaheorem is explained.
Finally, Kurzweil-Henstock and Lebesgue integrals aredhesh with theorems and

proofs.

Keywords: Riemann Integral, Riemann Steiltjes Integral, Riesz Regmation Theo-

rem, Kurzweil-Henstock and Lebesgue Integral



0z

Bu tezde Riemann integralinin baslangicindan gelisigiinimize kadar olan sureci
islenmistir. Ik olarak teoremler ve ispatlariyla has Riemann integagliklanmistir.
Ayni ispat tekn@i ile sinirsiz alanda has olmayan Riemantegrali ele alinmistir.
Surekli linear fonksiyonlarin Riesz gosteriminden yardilarak Riemann Steiltjes in-
tegrali anlatilmigtir. Son olarak Kurzweil-Henstock vebesgue’nin uygulamariyla

tezde amaclanan hedefe ulasiimistir.

Anahtar kelimeler: Riemannintegral'i, Riemann Steiltjesntegral’i, Riesz Goster-

imi, Kurzweil-Henstock ve Lebesgurtegral'i
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Chapter 1

INTRODUCTION

The idea of integration arose in the works of ancient Greethemaaticians as a calcu-
lation of areas of dferent geometric figures. It was rediscovered by Europeah-mat
ematicians in the seventeenth century. A number of matheiauas contributed to
integration. They used fierent methods and completed theory of integration for func-
tions of a single variable. In this thesis integration ofdtions of single variable is

handled.

A descriptive approach was used by Newton to integralst’(iX) is a derivative of
the functionF(x), then we definedr(x) as an antiderivative of (x). This leads to the

familiar formula

F(X) = ff’(x)dx+ C.

Presently, this is a powerful method of calculation of progued improper integrals if
antiderivative is elementary function. This method dodswvark for functions such as

e, sin(x?), % etc. since the antiderivatives of them are not elementary.

The other two approaches to integral, developed by RiemadriLabesgue, respec-
tively, are constructive. They are based on partitioning iategral sums. Riemann’s
approach uses partitioning in the domain of an integrantitHeiLebesque approach

in the range. Both these approaches can be modified so thatdo all possible func-



tions of single variable which can be integrated.

The Lebesgue approach is more advance and generates snchdsaf mathematics
as measure theory, abstract integration, probabilityrhetc. Modern mathematical
analysis is based on Lebesque integration. At the same Rieejann integration is
relatively simple. In this thesis we overview Riemann imggpn, generalisation of
Riemann integration, leading to Riemann-Stieltjes andsktexk—Kurzweil integra-

tion.

The definition of the Riemann integral includes two majopstdn the first step, Rie-
mann integral is defined for integrands with bounded domadhrange. This is called
a proper or definite Riemann integral. In the second stepintegrands which have
a finite number of improperness are handled. An impropemegshave two forms:
unbounded domain from the left and write, and also an infiéleaviour of an inte-
grand about some point in the domain. After reviewing Riemiaitegral we consider
its generalisation in two directions, called Riemann-gie and Henstock—Kurzweil

integrals, respectively.



Chapter 2

PROPER RIEMANN INTEGRAL

2.1 Definition

In this section we define a proper Riemann integral of a foncti(x),that is bounded
in an interval g, b], assuming that o < a < b < 0. Shortly, a proper Riemann integral
will be called a Riemann integral or an integral. The colmtof all bounded functions

on [a,b] is denoted byB(a, b).

A patrtition of the interval § b] is a collection of numbergg, x1, ..., Xn, satisfying

a=Xg< X <--<Xp=h.

This partition is denoted by

P:{XO,Xl,---,Xn}-

The number

IPIl = max{Xs — Xo, . .., Xn — Xn-1}

is called a mesh or a norm of the partitiBnActually, P is a partition because it splits

the interval g, b] into subintervals

[X0, X1], [X1, X2], [X2, X3], - . ., [ Xn-1, Xn]

but we think abouP as a finite sequence of the end points of these subintervtis in

increasing order. A partitioQ is called a refinement of the partitidhif Q contains



all points ofP. This is written agQ 2 P. Clearly,Q = P1 U P> is a refinement of both

partitionsP; andP2 of [a,b]. For f € B(a,b) andP = {Xg, X1,..., Xn}, the sum

=]

S(f,P) = > F(@)(% - %-1), (2.1.1)

i=1

wherec; € [Xi—1,X] for i = 1,...,n, is said to be a Riemann sum &f The numbers

C1,Co,...,Cp are called the tag numbers or simply tags of the partion

A proper Riemann integral can be defined in thedent equivalent forms. The fol-

lowing definition is one of them.

Definition 2.1.1 A function f in Ra,b) is said to be integrable in the Riemann sense
or, briefly, integrable if there exists a number S such thattbe > 0 there exists a

partition P, of the intervala, b] such that
IS(f,P)-S|<e

for every®P 2 P, and for every selection of the tags. This number S is calleém&nn

integral or an integral of f and denoted by

f:f(x)dx

The function f is referred as an integrand. Conventionally,

faaf(x)dx:o and fbaf(x)dx:—fabf(x)dx

Proposition 2.1.2 The Riemann integral of ¢ B(a, b) is unique if it exists.



Proof. Assume the contrary th&; and S, are two distinct numbers, satisfying the
condition in Definition 2.1.1. Let =|S;—S»|/2 > 0. By Definition 2.1.1 there are

partitionsP, andQ, of [a,b] such that

IS(f,P)-S1| <& for P2 P,
and

IS(f,Q)— Szl <& for Q2 Q..

Then for the refinemerRR, U Q. of P, andQ,, we obtain the following contradiction:

1IS1-So|  IS(f,P.UQ:)—S1|+|S(f,P-UQ)—-Sy| e+¢
e=—o = 2 <3 T

This proves the propositiors

The collection of all bounded functions that are integrabléhe Riemann sense on
[a,b] is denoted byR(a,b). Clearly, R(a,b) € B(a,b). The following examples show

thatR(a,b) # @ andR(a, b) # B(a,b).

Example 2.1.3Let f be a constant function, that is(X) = c for everyl a< x < b. Take

any partition P= {Xo,..., Xy} of [a,b]. Then

S(f,P)= ) c(X—xX-1) =c(b-a).

M

i=1

Therefore|S(f,P) — c(b—a)| = 0 < ¢ for all partitions of[a,b] and for alle > 0, and



this is independent on the tags. Thus,

b
f cdx=c(b-a).

Example 2.1.4 (Dirichlet function) Define a function f oipa, b] by

1 if xis rational
f(X) =

0 if xisirrational.

This function is called Dirichlet function and it is not Riamm integrable. To prove,

observe that for all partition P dfa, b],

S(f.P)= 1-(x~%-1)=b-a
i=1

if the tags are rational, and

S(f.P)=,0-(x~%-1)=0
i=1

if they are irrational. Therefore, if = b;za, then there is no number S, satisfying

IS(f,P) -S| <&

for both rational tags and irrational tags. This proves thiag Dirichlet function be-

longs to Ra, b) but not to Ra, b).

These two examples demonstrate tRéh, b) is a nonempty and proper subset of

B(a, b).
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Figure 2.1. Upper and lower Darboux sums.

2.2 Existence
There are several theorems about existence of Riemanmahtdg this section these

theorems are discussed.

Let f € B(a,b) and letP = {Xxo,..., Xy} is a partition of p,b]. Sincef is bounded, for

i =1,...,n, we can define the following numbers:
M =sup f(X): xi—1 < x< X} and my =inf{f(x): X_1 < X< X}. (2.2.1)
Furthermore, using these numbers, we can define the sums
n n
S*(f,P) = > Mi(x - xi_1) andS.(f,P) = > m(x—X1),
i=1 i=1

which said to be the upper and lower Darboux sum$ &r the partitionP, respec-

tively. In Figure 2.1S*(f, P) andS..(f, P) are shown as the areas of the shaded regions.

Lemma 2.2.1 Let f € B(a,b), let P be a partition ofa,b] and let Q2 P. Then

S.(f,P) < S.(f,Q) < S*(f,Q) < S*(f,P).



Proof. The second inequality is trivial. The proof of the first and third inequalities

are similar. Therefore, we will prove just one of them, shg, first one.

Let P = {Xo,...,Xn}. ThenQ is the union of partitions of the intervalg;[1, X],

i =1,...,n. Therefore,
Q=1{X1,0-- s XLky>X2,05 - - - s X2 ks -+ - » Xn,05 - - - » X ke )
where
Xi—1=X0<--<Xk=Xi=1..n
Letting
Mij=sudf(X): X j-1<x<xj}i=1..,n j=1..Kk,

and assuming tha#l;, i = 1,...,n, are defined in (2.2.1), we obtain

n n ki
S*(f,P)= Z Mi(Xi — Xi-1) = ZZ Mi (%, j — Xi,j-1)
i—1

i=1 j=1
ki
> ) Mg =) = S°(1,Q)

n
i=1 j=1

This proves the first inequality in the lemma.

Lemma 2.2.2 Let f € B(a,b). For every two partitions P and Q ¢&,b], the following

inequality holds:

S.(f,P) < S*(f,Q).



Proof. Consider the refinemeiitu Q of P andQ, by Lemma 2.2.1,
S.(f,P)<S.(f,PUQ) < S*(f,PUQ) < S*(f,Q).

This proves the lemman

By Lemma 2.2.2, the upper Darboux sumsfaf B(a,b) are bounded below and the

lower Darboux sums of are bounded above. Therefore, we can define
S*(f) = il’Fl)f S*(f,P) and S.(f) = supS.(f,P),
P

where infimum and supremum are taken over all possible jegitof [a,b]. S*(f)
andS.(f) are called the upper and lower Riemann integrals ©B(a, b), respectively.

Clearly,

S.(f) <S*(f).

Theorem 2.2.3 (Darboux) A function fe B(a,b) is integrable in the Riemann sense

and its Riemann integral equalsto S if and only i{ § = S.(f) = S.

Proof. Assume that the Riemann integral béquals tdS. We will prove thatS*(f) =
S. Then in a similar way it can be proved that(f) = S. This will resultS*(f) =

S.(f) =S, proving the necessity part of the theorem.

To proveS*(f) = S, assume the contrary, that &;(f) # S. Denote

3 0.



SinceS.(f) = sup S.(f, P), there exists a partitio, of [a,b], satisfying
0<S*(f,Q.)-S*(f) <e.
There exists also a partitidP, of [a, b] with
IS(f,P)-S| <&

for everyP 2 P, and every tags dP. Particularly, this inequality holds for the refine-

mentP, U Q. of P,. By Lemma 2.2.1, we also have
0<S*(f,P,UQ,)—S*(f) < S*(f,Q.)-S"(f) <e.
Furthermore, assuming, U Q. = {Xo, ..., Xn}, Selectc; € [x_1, X;], satisfying
Mi— (&) < b—fa i=1...n,

whereM;, i =1,...,n, are defined by (2.2.1). Considg(f, P, U Q,) corresponding to

the tagscy, ..., Ch. Thisimplies

n
* 8 . A p—
0< S*(f,P,UQ.) - S(f,P.UQ,) < m;(x.—m_l)-s.

10



Therefore,

IS*(f) - SI<IS*(f) - S*(f,P: U Q)|
+ |S*(f’ PEU QS) _S(f’ PEU Q8)|
+|S(f, PSUQS)_S|

< 3e.

This contradicts to the definition efand proves the necessity.

Conversely, assunt&’(f) = S.(f) = S. Take arbitraryg > 0. Then there exist partitions

P, andQ, of [a,b] with

S*(f,P.) < S*(f) +¢

and

S.(f,Qg) > S.(f)—e.

ConsiderP, U Q.. Then everyP 2 P, U Q; is a refinement oP, andQ,. By Lemma

2.2.1,

S*(f,P) < S*(f,P.) < S*(f) +=

and

S*(f,P) = S.(f,Q;) > S.(f) -«

11



Therefore,
S-e<S.(f,P)<S(f,P)<S*(f.P)<S+e
or
IS(f,P)-S| <&

for everyP 2 P, U Q. and every selection of the tags. Thusis Riemann inferable

and its integral equals t8. The suficiency is proved.m

Theorem 2.2.4 (Riemann)A function fe B(a,b) is integrable in the Riemann sense

iff for everye > 0 there exists a partition Pof [a, b] with S*(f,P,) — S.(f,P,) < &.

Proof. Assumef € R(a,b). By Theorem 2.2.35*(f) = S.(f). Take arbitrarye > 0.

Then there are partitior3, andP,/ of [a, b] with
&
S*(f,Py) < S*(f)+§
and
&
S.(f,P)>S.(f)- >
DenoteP, = P,UP,. SinceP, is a refinement oP, andP,, by Lemma 2.2.1,
S*(f,Ps) — S.(f,P:) < S*(f,P,) — S«(f,P)

; £ g
<S (f)+2 S*(f)+2—e.

12
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Figure 2.2. The dierence of upper and lower Darboux sums.

Thus the necessity part of the theorem is proved.

Conversely, assume that for alb 0 there exists a partitioB, of [a, b] satisfying
S*(f,P.) - S.(f,P,) < &.
This implies
0< S*(f)—S.(f) <S*(f,P:) - S.(f,P:) <e.

Thus from the arbitrariness ef> 0, we receiveS*(f) = S.(f). Then by Theorem

2.2.3, we obtairf e R(a,b). m

Geometrically, the dierence

S*(F,P)=S.(f,P) = > (Mi -m)(% - %-1)
i=1

for P ={Xo,...,Xn} is illustrated by the shaded region in Figure 2.2.

Theorem 2.2.5 A continuous function ofs, b] is integrable in the Riemann sense on

the interval[a, b], that is, Ga, b) € R(a,b).

13



Proof. At first note that a continuous function on the intenall] is bounded. So,
C(a,b) € B(a,b). Takef € C(a,b). Lete > 0. Sincef is continuous on the interval

[a,b] it is uniformly continuous. This means that ther&is 0 with

=0 < 5=

for everyx,y € [a, b] satisfying|x—y| < §. Consider a partitio®, = {Xp, ..., Xn} Of [a,b]
with the mesh|P,|| < 6. Since a continuous function takes its maximum and minimum

on compact set,

Mi = max f(x) = f(c)) and m = min_f(x) = f(c")
[%i-1.x]

[Xi—1.Xi]

for somec|, ¢’ € [X-1,X]. Sincelc/ —¢’| <4, we obtain
Mi—m < ¢g/(b-a).
This implies
n £ n
SR =S.(1Pe) = ) (M=) —x-2) < =2 ) (6% =

Hence, by Theorem 2.2.4,c R(a,b). m

A function f : [a,b] — R is said to be increasing if(x1) < f(x2) wheneverx; < xo.
Similarly, f : [a,b] — R is said to be decreasing i{x;) > f(x2) wheneverx; < Xz. A

function is said to be monotone if it is either increasing ecreéasing.

Theorem 2.2.6 A monotone function ofg,b] is integrable in the Riemann sense on

the interval[a, b].

14



Proof. We can assume thdt: [a,b] — R is increasing. Therf(a) < f(b). If f(a) =
f(b), thenf is a constant function and it is integrable in the Riemanisedéy Example

2.1.3. Letf(a) < f(b). Takee > 0 and let

£

"= to)-f@

Take a partitiorP, = {Xo,..., Xs} of [a,b] with ||P.|| < 6. If M; andm; are defined by

(2.2.1), then
Mj—my < ()~ f(Xi-1).
Therefore,

S*(£,P) = Su(f,Pe) = > (M —m)(xi = %-1)
i=1

” o(f (b) - f(a))
<6 ) (F06) = F(6-1)) = = =&
le YT i) - (@

Hence, by Theorem 2.2.4,is integrable in the Riemann sense arb]. = A condi-

tion, completely describing the integrable in the Riemagmsg functions, belongs to
Lebesgue. According to this condition, the Riemann intelgréunctions are contin-
uous everywhere except a "negligible number" of points.elHarset of a "negligible

number" of elements is a set of measure zero.

A setE C Ris said to be of measure zero if for every 0, there is a countable number
of closed intervalsdn,bn], N=1,2,..., such that c U ;[an, bn] and 377 ; (bn—an) <

E.

Example 2.2.7 A countable set A {x1, X2,...} C R is of measure zero. Indeed, for any

15



&> 0, include the point xin to interval[an, bp] with b, —a, < £/2". Then

(o) (o) (o) 1
Ac| Jlanbi] and > (bn-a) <& 5 =€
n=1 n=1 n=1

There are uncountable sets of measure zero as well. For deampamous Cantor

ternary set is uncountable set of measure zero.

Theorem 2.2.8 (Lebesgue)A function fe B(a,b) is Riemann integrable if and only if

it is continuous orja, b] except the points that form a set of measure zero.

The proof of this theorem can be found in books on measure ratedration. The
following is an immediate consequence of Theorem 2.2.8 aetuilifor proving prop-

erties of Riemann integral.

Corollary 2.2.9 If f € R(a,b), g€ R(c,d) and c< f(X) < d for all x € [a,b], then(go

f) € R(a,b), where(go f)(x) = g(f (X)) for xe [a,b].

Proof. This follows from the fact that the discontinuity pointsfondgo f are same.
By Theorem 2.2.8, the set of discontinuity pointsfdbrm a set of measure zero. Then

the same holds fogle f) as well. Thus,do f) e R(a,b). =

2.3 Properties

Theorem 2.3.11f f € R(a,b) and ce R, then cfe R(a,b) and

fabcf(x)dx:cfabf(x)dx

16



Proof. If ¢ =0 then the theorem is trivial. Assunge: 0. The proof is based on
S(cf,P) = cS(f,P),
if the same tags are used in the Riemann sums in this equagity.

S:f:f(x)dx

Takee > 0. Consider the patrtitioR, of [a, b] with

POP, = |S(f,P)—S|<%

for all selections of the tags. Then

S(cf,P)—cS| < |dIS(f,P) - S| < % .

for all selections of the tags. Henad, € R(a, b) and the equality in the theorem holds.

Theorem 2.3.21f f,ge R(a,b), then f+ge R(a,b) and

b b b
f(f(x)+g(x))dx:fa f(x)dx+fa g(x)dx

Proof. The theorem is based on

S(f+9,P) =S(f,P)+S(g,P),

17



if the same tags are used in the Riemann sums in this equagity.
b b
Sy = f f(X)dx and S, = f g(x)dx
a a
Takee > 0. Consider the partitionB, andQ, of [a, b] with
E

P2P, = |S(f,P)-Si|< >
and

P2Q, = IS(.P)-Sal <3
for all selections of the tags. Thého P, U Q. implies

S(f+9.P)~S1- Sl <IS(f.P) - Sul +1S(Q.P) - Sal < 5 + 5 =&

for all selections of the tags. Hencé;+ g € R(a,b) and the equality in the theorem

holds. m
Theorem 2.3.31f f,g e R(a,b), then fge R(a,b).

Proof. By Corollary 2.2.9,f2 € R(a,b). Then from

fg:(f+g)2;(f—g|)2’

we conclude thatge R(a,b). =

18



For f e R(a,b) anda < c < d < b, we denote

d b
[ f09ax= [ fleatax

wheref|ic 4] denotes the restriction dfto the interval §,d].

Theorem 2.3.4Let a<c<b. Then fe R(a,b) iff fljaq € R(a,c) and flic € R(C,b).

Furthermore,

Lbf(x)dx:facf(x)dx+fcbf(x)dx (2.3.1)

Proof. A subset of a set of measure zero is again a set of measureTtenefore, by
Theorem 2.2.8f € R(a,b) implies f|ja¢ € R(a,c) and f|icp € R(c,b). Conversely, the
union of two sets of measure zero is again a set of measure Zben by the same

thorem, f|[aq € R(a,c) and f|icp € R(c,b) imply f € R(a, b).

To prove the equality (2.3.1), let

c d
Slzf f(X)dx and 52=f f(X)dx
a C

Take anye > 0. Then there exists partitioms. andQ, of [a,c] and [c,b], respectively,

such that

E
Po2P, = [S(fllag.P)—S1|< 5

19



and
&
P2Q. = |S(f|[c,b],|3)—sz|<E

for all selections of the tags. Thd?. U Q. is a partition of p,b]. Moreover, if P 2

P.UQg, thenPN[ac] 2 P, andPN[c,b] 2 Q.. Hence, for every? 2 P, U Q,,
IS(f,P)—S1-Sa| <|S(fljag. PNla.cl) - S1|+[S(flich, PNIc.b]) - So| <&
for all selections of the tags. This proves the equality.(@.3m

Theorem 2.3.51f f € R(a,b) and f(x) > 0for alla < x<b, then

b
f f(x)dx= 0.

Proof. This follows from S*(f,P) > S.(f,P) > 0 for everyl partitionsP of [a,b].

Hence S*(f) =S.(f)>0. m

Corollary 2.3.6 If f,ge R(a,b) and f(x) < g(x) for alla < x< b, then

fabf(x)dxs fabg(x)dx

Proof. This follows from the application of Theorem 2.3.5 to thedtiong—f =

Corollary 2.3.7 If f € R(a,b), then|f| € R(a,b) and

f:f(x)dx1 Sfablf(x)ldx

20




Proof. By Corollary 2.2.9, we have| € R(a,b). Then use
—1f( < £(X) <[f(X)

and apply Corollary 2.3.6m

Theorem 2.3.8 (Mean-value theorem for integrals)If f € C(a,b), then there exists

a<c<bsuchthat

b
f f(x)dx= f(c)(b—a).

Proof. Let
M=maxXf(x):a<x<b} and m=min{f(x):a<x<b},
which exist becauseé is continuous ond, b]. By Corollary 2.3.6,
b
m(b-a) sf f(x)dx< M(b-a),
a

or

1

b
m< mfa f(x)dx< M.

Then by intermediate value theorem, there exastsc < b such that
1 b
f(c)=— f
©=575 ] f09ex
This proves the theoremm

21



For f € R(a,b), by Theorem 2.3.4, we can define the function
X
F(X) = f f(t)dt, a<x<h. (2.3.2)
a
This function has the following properties.

Theorem 2.3.9 (First fundamental theorem of calculus)For f € R(a, b) define F by
(2.3.2) If f is continuous at the point€[a,b], then F is djferentiable at the point ¢

and F(c) = f(c).
Proof. Take anye > 0. Sincef is continuous at, there exist$ > 0 such that
f(o)—e<f(X) < f(c)+&
wheneveltx—c| < § andx € [a,b]. Takeh with |h| < 6 andc+h e [a,b]. Then
c+h c+h c+h
f (f(c)—e)dxsf f(x)dxsf (f(c)+&)dt.

Cc C c

This implies
(f(c)—e)h<F(c+h)—F(c) < (f(c) +&)h.

Therefore,

F(c+h)-F(c)

- —f(o)| <.

This means thdk is differentiable at andF’(c) = f(c). m

Theorem 2.3.10 (Second fundamental theorem of calculudj f : [a,b] — R is dif-
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ferentiable and f<€ R(a,b), then

fb f(x)dx= f(b)— f(a). (2.3.3)

Proof. Consider any partitio® = {Xop,..., Xy} of [a,b]. By mean-value theorem of

differentiation, there exists € (Xi—1, %) such that

f(x) = f(xi-1) = F/(G)(X% —%-1), i=1,....n.

Therefore,

Z‘ F(c)(xi —xi-1) = iZn;‘(f(xi) - f(xi-1)) = f(b) - f(a).
Then from
S.(f',P) < an f7(ci)(% —xi—1) < S*(f', P),
i=1
we obtain
S.(f",P) < f(b)-f(a) < S*(f',P),
implying

S.(f) < f(b) - f(a) < S*(f).

Sincef’ € R(a,b), we haveS*(f’) = S.(f’). This implies (2.3.3).m

Theorem 2.3.11 (Integration by parts) If f and g are djferentiable on[a,b] and
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f’,d € R(a,b), then

b b
fa (99’ () dx= f(b)a(b) - f(a)g(@) - f #()g(¥ dx

Proof. The proof is based on the product rulegf’ = f’g+ fg’ of differentiation.

Applying Theorem 2.3.10, we obtain

b b b
fa #()g(¥) dx+ f F(0g (x) dx= f (fgY () dx= f(bg(b) - f(@)a(a).

This proves the theoremm

Theorem 2.3.12 (Change of variable)lf g is differentiable or{a,b], g’ € C(a,b) and

f € C(R(9)), where Rg) is the range of g, then

g(b) b
f (X dx= f fa)g () dt.
a(a a

Proof. Define

t
G(t) = f f(@(X))g (Xdx a<t<h,

and

F(u) = ’ f(X)dx, ue R(g).
9(a)

By Theorem 2.3.9,

G'(t) = fg)g'(V), a<t<h,

24



1

/s

0 Ys Y 1

Figure 2.3. Function$, from Example 2.4.1.

and
F’(u) = f(u), ue R(g).

Therefore,G'(t) = (Fog)'(t), a<t <b. ThenG(t) - F(g(t)) = const, a<t <b. For
t = a, we haveG(a) — F(g(a)) = 0. This impliesG(t) - F(g(t)) =0,a<t<b. Then

G(b) - F(g(b)) = 0. Theorem is proveds

2.4 Dependence on Parameter
Is it possible to interchange the limit and integral, in otverds, if{ f,} is a sequence
of functions inR(a, b) converging pointwise to a functioh: [a,b] — R asn — oo for

everya< x < b, can we assert that

Amofabfn(x)dx:fabf(x)dﬁ

The following example demonstrates that we cannot.
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Example 2.4.1 Define

2nx if0<x<1/2n,

fa(X) =1 2n-2m?x if1/2n<x<1/n,

0 if1/n<x<1.

The graphs of f, f, and & are given. The function,fincreases o0, 1/2n] linearly,
gets a peak at x 1/2n, decreases ofiL/2n,1/n] linearly and vanishes ofil/n,1].

The graph of f and x-axis form a triangle, that has the area toh®@. Therefore,

1
1
fo fa(X)dx= >

On the other handlimp_, fo(X) = f(X) = 0 for all 0 < x < 1 becausel/n — 0 and

f.(0) = 0. Thus,

1 1 1
Iimf fn(x)dx:—;&O:f f(xX)dx
n—co Jo 2 0

Therefore, an additional condition is required for the irtfeange of the limit and inte-

gral. This condition is a uniform convergence.

Definition 2.4.2 A sequence of functiong f[a,b] — R is said to be uniformly con-
vergent to f: [a,b] — R if for everye > 0, there exists a positive integer N such that

foralln> N and for all a< x< b, [fa(X) — f(X)| < &.

Theorem 2.4.3 (Interchange of limit and integral) If a sequencéf,} of functions in

R(a, b) converges uniformly to f ofa,b] as n— oo, then fe R(a,b) and

r!i_r)rgoLbfn(x)dx:Lbf(x)dx
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Proof. Take anye > 0. Sincef, converges td uniformly, there isN such that for all

n> N,
fi(X)—e< f(X) < fa(X) +¢, foralla< x<b.
Therefore,f € B(a,b) and
b b
f (fa(X) —e)dx< S, (f) < S*(f) sf (fa(¥) +€)dx (2.4.1)

a a

This implies
0< S*(f)-S.(f) < 2¢(b-a).

Sincee > 0 is an arbitrary positive number, we conclude t8a¢f) = S.(f), i.e., f €

R(a,b). Moreover, from (2.4.1), for eveny> N, we have

fab fn(x)dx—fabf(x)dx1 <eg(b-a).

Hence the limit in the theorem holda

Theorem 2.4.4 (Continuity under the integral) Let f € C([a,b] x[c,d]). Define

b
F) :f F(xy)dx c<y<d.
a

Then Fe C(c,d), that is, for all y € [c,d],

b b b
lim f(x,y)dx:f lim f(x,y)dx:f f(x,yo)dx
a Y™Yo a

Y—=Yo a
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Proof. The continuity off on [a,b] x [c,d] implies its uniform continuity. Therefore,

for everye > 0, there existg > 0 such that

E
(X y) - f(X0. o)l < b3
for all pairs k,y) € [a,b] x[c, d] satisfying
(X=X0)% + (Y- Y0)* < &°.
This holds ifx = xg and|y —yo| < § as well. Therefore,

b
IF(y) - F(Yo)l sfa 1f(xY) - f(X Yyo)dX< &.

This means thaft is continuous at arbitraryy. HenceF € C(c,d). m

Theorem 2.4.5 (Interchange of diferentiation and integration) Assume thata func-
tion f :[a,b] x[c,d] is so that {-,y) € R(a,b) for ally € [c,d] and { € C([a,b] x[c,d]).

Then the function

b
Fy) :f f(xy)dx c<y<d.
a

is differentiable or{c,d] and

b
F0)= [ fxydxcsy<d
a
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Proof. Take anyyp € [c,d] andy € [c,d] \ {yo}. By mean value theorem offterentia-

tion, we have

F) —F(vo) _ fb f(xy) - f(x yo)

b
dx:f fo(x,2)dx
Y—Yo Y—=Yo a y( )

for some number betweeny andyy. Here,z — yp wheny — yo. Therefore. by
continuity of fj on [a,b] x[c,d], we can apply Theorem 2.4.4 to the last integral and

complete the proofm

Theorem 2.4.6 (Interchange the order of integration)Let f € C([a,b] x [c,d]) and

define

b
F(y) =f f(xy)dx c<y<d,
a

and

d
G(x):f f(xy)dy, a<x<h.
Cc

Then Fe R(c,d) and Ge R(a,b) and

fch(y)dy:fabe(x)dx

Respectively,

f:(fcdf(x,y)dy)dx: fcd(fabf(X,y)dx)dy,
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Proof. According to Theorem 2.4.4, we have

F € C(c,d) C R(c,d)
and

G e C(a,b) c R(a,b).
Define functions= : [a,b] — R andG : [a,b] — R by

F(h = f t( f d f(xy)dy)dx

and
_ d, pt
6m= [ ([ focyaday
c a
By Theorems 2.4.5 and 2.38,andG are diferentiable and

d
F4(t) = Gy(t) = f f(Ly)dy.

Hence,F(t) = G(t) for all a< t < b sinceF(a) = G(a). This impliesF(b) = G(b). This

proves the theorenmm

30



Chapter 3

Improper Riemann Integral

3.1 First Kind Improper Integrals
Proper Riemann integral can be extended to unbounded amegion unbounded in-

tervals in the following way.

Definition 3.1.1 (First kind improper integral) Let | be an interval of one the form
[a,) or (—o0,b] and let f be a function on the interval | such that f is properly

integrable in the Riemann sense on every compact subintarvaDenote

(o) b
fa f(x)dx:t!mfa f(x)dx if | =[a o),

and

fb f(x)dx:aﬂ)@oofbf(x)dx if | =(—o0,b].

These are called first kind improper integrals of f on I. If thepective limit exists,then
the improper integral is said to be convergent. Otherwisis said to be divergent. In

the convergent cases f is said to be improperly Riemannraidégon |.

First kind Improper integrals are continuous analogs desefTherefore, many theo-

rems about series valid for them as well.

Theorem 3.1.2 (Comparison test for improper integrals) Assume that either# [a, )
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or | =(—o0,b], f and g are functions on the interval | that are properly Ré&m on

every compact subinterval of |, and
0<If(¥I<g(x), xel,

If the improper integral of g on | is convergent, then the ioger integral of f on |
is also convergent. If the improper integral|df on | is divergent, then the improper

integral of g on | is also divergent.

Proof. Consider the case= [a, ). Denote

X Y
F(y):fa |f(x)|o|xanole(y):fa g)dx y= a

Here, F and G are increasing functions witk(y) < G(y) and limy_,.. G(y) exists.
ThereforeF is an increasing and bounded function arcp). By monotone bounded

convergence theorem, lim., F(y) exists. Thus,

f If(X)|dx= lim F(y)
a y—o0
is convergent. Define

f(x) if f(x)>0, —-f(x) if f(x)<0O,
fr(x) = and f7(x) =

0 iff(x<0 0 if £(x) >0

The following relations are obvious:

fX)=f"(X)-f(x), 0<f*(X)<|f(X)], 0< f~(X) <|f(X).
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Thus

f: f*(x)dx and f: f7(X)dx

are convergent. This implies that

00 y y
f f(X)dx= Iimf fH(X)dx— Iimf f7(x)dx
a y—o0 a y—o0 a

is also convergent. The cabe (c0,b] can be proved similarlym

Theorem 3.1.3 (Integral test) Let f: [1,00) — R be a positive decreasing function.

Then the improper integral

floof(x)dx

converges if and only if the serig¥; ; f(n) converges.

Proof. Introduce the functiong andh by
g(x) = f(n)andh(x) = f(n+1)ifn<x<n+1, n=12,....
Then
O0<h(x) < f(x)<g(x), x> 1.

Therefore, it remains to apply Theorem 3.1.2 to completgtbef. m
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Example 3.1.41t is known that the series
o
n=1 nP
converges if and only if p 1. Therefore, by Theorem 3.1.3, the improper integral

° dx
1 XP

converges if and only if p 1.

3.2 Second Kind Improper Integrals
Definition 3.2.1 (2nd kind improper integralLet | be an interval of one the form
[a,b) or (a,b] and let f be a function on the interval | such that f is unbowhde |

but properly Riemann integrable on every compact subialest/l. Denote
b C
f f(X)dx= lim f f(x)dx if I =[a,b),
a c—b-Ja
and
b . b -
fa f(x)dx:cll)n;rfC f(x)dx if I =(ab].

These are called second kind improper integral of f on I. éf tbspective limit exists,
the improper integral is said to be convergent. Otherwises said to be divergent. In

the convergent cases f is said to be improperly Riemannraiég on |.

An analog of Theorem 3.1.2 is valid for second kind impropéggrals as well in

the form
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Theorem 3.2.2 (Comparison test for improper integrals) Assume that either= [a, b)
or | =(a,b], f and g are functions on | that are properly Riemann on evermgact

subinterval of |, and
0<|f(XI<9g(x), xel,

If the improper integral of g on | is convergent, then the ioger integral of f on |
is also convergent. If the improper integral|déf on | is divergent, then the improper

integral of g on | is also divergent.
Proof. This is similar to the Theorem 3.1.2
Example 3.2.3 Consider the second kind improper integral

fldx
o XP’

noticing that forp< Ot is a proper integral and has a finite value. If1, then

Tdx . Lax . 1 :
— = lim — = lim InX; = - lim Iny = co.
o X y—0* y X y—0* y—0*

Therefore, the given improper integral diverges fot ft. Let p> 0and p# 0. Then

1dx_l. fldx i x1P 1 i 1-ylp
y

— = lim — = lim ——| = lim .
o XP  y-or XP ys0rl-ply ys0t 1-p

This limit equals tdl/(1-p) if 0< p< 1 and towo if p > 1. Thus the given integral

convergesff p< 1.
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In case if a function has a finite number of improperness diitsieor second kind, then
the intervall is devided into finite number of subintervals so that the giftenction

has a single improperness on each subinterval. If the ingprioypegrals of the given
function on all these subintervals are convergent, thetotiaéimproper integral is said
to be convergent. If at least one of them is divergent, therdtal improper integral is

said to be divergent.

Example 3.2.4 The improper integral

™ dx
o XxP
is divergent for all values of p. Indeed it has two impropessiand can be divided into

two improper integrals with single improperness:

f""dx fldx °°dx
0 0 1

By Example 3.1.4, the second improper integral in the rigie $s divergent if p< 1,
and, by Example 3.2.3, the first improper integral in the tigide is divergent if p 1.

Anyway, the total improper integral is divergent.

3.3 Absolute and Conditional Convergence
According to Theorems 3.1.2 and 3.2.2, the convergenceeofittst or second kinds
improper integrals gff | implies the convergence of the respective improper intégra

f. But the converse is not always true. Respectively, we digddllowing definition.

Definition 3.3.1 A first or second kind improper integral of the function f isdsto

be absolutely convergent if the respective improper iratiegf |f| converges. If the
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improper integral of f converges while the respective inpgirantegral of| f| diverges,

then the improper integral of f is said to be conditionallyngergent.

Example 3.3.2 A convergent improper integral of a positive function is iolngly ab-
solutely convergent since in this case={f|. A conditionally convergent improper
integral can be constructed by use of relationship betwegmaper integrals and se-

ries.

Take, for example, the conditionally convergent numeseaies

i(—l)”/ n.
n=1

Consider the improper integral

floof(x)dx,

where the function f[1,00) — R is defined by

_1\n
f(x):( i) if xe[nn+1),n=1212,...
Then
= o (1)
f(xX)dx=
fl x>
and

o o 1
fl |f(x)|dx:nzz‘iﬁ.
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Therefore, given improper integral is conditionally corgent.
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Chapter 4

The Riemann-Stieltjes Integral

4.1 Definition
Assume that-oo < a < b < co. The definition of the Riemann-Stieltjes integrafelis
from the definition of Riemann integral by replacement oflthear functionu(x) = x,

a < x < b, with a general function on [a, b].

Let f,ue B(a,b) and consider a partitioR = {Xp, ..., Xn} Of [a,b]. Define the Riemann—

Stieltjes sum similar to Riemann sums by

n

S(f,u,P)= > f(6)(u) - u(xi-),

i=1

wherec,...,Cy are the tags of the partitidn.

Definition 4.1.1 A function fe B(a,b) is said to be integrable in the Riemann-Stieltjes
sense with respect toaiB(a, b) or, briefly, integrable if there is a number S such that

for all £ > O there is a partition R of [a, b] with
IS(f,u,P)-Sl<e

for every P2 P, and for every selection of tags. This number S is called a &em

Stieltjes integral of f with respect to u and denoted by

b
f f(X) du(x).
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The functions f and u are referred as integrand and integra&spectively. Conven-

tionally,

a b
jl;f(x)du(x):—fa f(X)du(x),

Comparing the definitions of Riemann and Riemann-Stieltjgsgrals, it is easily
seen that the integral df in the Riemann sense dfis the Riemann-Stieltjes sense
with respect to the function(x) = x, a < x < b. Notice that unlike the integral in the

Riemann sense,

a
f f(X)du(x) # 0
a
sinceu may have a discontinuity at

The collection of all pairs f, u) of functions f,u € B(a,b), for which the Riemann—
Stieltjes integral off with respect tou exists, is denoted bRS(a,b). For every
f € B(a,b) and for a constant function on [a,b], we have {,u) € RS(a,b) because
S(f,u,P) = 0 for every partitionP of [a,b] and for all tags. At the same timef,() ¢
RS(a,b) if fis Dirichlet function from Example 2.1.4 anx) = x. ThereforeRS(a, b)
is not a rectangle (a set of the forvx B) in B(a,b) x B(a,b). Therefore, it is important

to find a sifficiently large rectanglé x B in B(a, b) x B(a, b) such thatAx B € RS(a, b).

4.2 Properties
Properties of the integrals in the Riemann-Stieltjes seansemparison to properties

ofintegral in the Riemann sense can be devided into thregogrou
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(&) Those which are same as the respective property of Riemégagral.
(b) Those which essentially generalize the respectivegtpf Riemann integral.

(c) Those which have not an analog in Riemenn integration.
The next three theorems are same as in Riemann integration.
Theorem 4.2.11f (f,u) e RS(a,b) and ce R, then(cf,u) e R§(a,b) and

b b
f cf(X)du(x) = cf f(X) du(x).
a a
Theorem 4.2.21f (f,u),(g,u) e RY(a,b), then(f + g,u) € RS(a,b) and

b b b
fa (%) + 9(9) du(x) = f F() du(x) + f 909 du(x).

Theorem 4.2.3Let a< c < b. Then(f,u) € RS(a,b) if and only if (f|jac,Ul[aq) €

RS(a,c) and(f|jc . Ulcp)) € R(C,b). Furthermore,

fbf(x)du(x):fcf(x)du(x)+fbf(x)du(x).

Theorems 4.2.1 and 4.2.2 are valid with regards & well which have no analog in

Riemann integration.

Theorem 4.2.41f (f,u) e RS(a,b) and ce R, then(f,cu) e RS(a,b) and

b b
fa f(x)d(cu(x)) = fa f(X)du(x).
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Theorem 4.2.51f (f,u),(f,v) e RS(a,b), then(f,u+v) e RS(a,b) and

fbf(x)d(u(x)+v(x)) = fbf(x)du(x)+fbf(x)dv(x).

The nexttheorem is regarded as the integration by partsularfar the Riemann—
Stieltjes integrals and it is an essential generalizatféhevintegration by parts formula

for the Riemann integral.

Theorem 4.2.6If (f,u) e RS(a,b), then(u, f) e RS(a,b) and

b b
f f(X) du(x) + f u(x)d f(x) = f(b)u(b) — f(a)u(a).

Proof. Take arbitrarye > 0. LetP, = {Xo,...,Xa} be a partition of § b] with P 2 P,

implies
‘S(f,u,?)—fbf(x)du(x)‘ <s.

Consider arbitrary tags,,...,cy of P. Then

5
>

S(u, f,P) = > u(@)f(x) - Y, u(e)f(xi-1)

i=1 i=1

and

5
5

FOIUOIR = > U0 - D F(x-1)u-1).

i=1 i=1
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Therefore,

n n
FOIUE-S(u. f.P) = > F(x)(Ux) - u(@)) + > F(x-1)(u(G) - u(%-1)).
1 i=1
One can see that the right side is the Riemann-Stieltjesdim, Q.) for the partition
QS = {XO’ Cl’ le CZ’ ey Cn, Xn},
if the tags are selected ag, x1, X1,..., Xn—1, Xn—1, Xn. HereQ, 2 P 2 P.. Therefore,
b b
FIUOIR - S(w. 1.P) - [ 109du| =[S(f.u. Q) [ F(9dug)| <.
a a

proving the theoremm

The next theorem is a reduction formula of the Riemann-tf&seintegral to the Rie-

mann integral and has no analog in Riemann integration.

Theorem 4.2.7 Assume that £ R(a,b) and u is diferentiable on[a,b] with U €

R(a,b). Then(f,u) e RS(a,b) and

fbf(t)du(x) = fbf(x)u’(x)dx

Proof. Take any partitior® = {Xo, ..., X} 0f [a,b]. By mean value theorem offdieren-

tiation,

) -us) = [ " (dx
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Therefore,

n

S(f,u,P):Zn:f(ci)f):i u’(x)dx:Z]leXi f(c)u'(X)dx

i-1

i=1 i=1

for the arbitrary tags;,...,c, of P. This implies

b n i
sct.up)- [ rovmad <. [ it 1o iax
a i=1 X

i—1

If M =sup,, Iu'(x)], then

'S(f,u,P)—Lbf(x)u’(x)dx4 <M :1 ij_(illf(ci)—f(x)ldx

< M(S*(f,P) - S.(f,P)),
Now take any > 0 and choose partitioR, of [a,b], satisfying
S*(f,P.) = Su(f,P,) < —.
M
Then for everyP 2 P, we have

}S(f,u, P)—fbf(x)u'(x)dx1 < M(S*(f,P)—S.(f,P))

< M(S*(f,Pg) = Su(f,Pe)) < &.

This proves the theoremn

Finally, we present mean value theorems for Riemann—fgsetitegrals.

Theorem 4.2.81If f € C(a,b) and u is an increasing function dm,b], then there is
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c € [a,b] such that

b
fa f(X)du(x) = f(c)(u(b) —u(a)).

Proof. . The theorem is trivial ifu is a constant function. Therefore we assume

u(b) > u(a). Sincef € C(a,b), we can let

M=sudf(x):a<x<b}
and

m=inf{f(X):a<x<b}.
Then fromm< f(X) < M we obtain

b
m(u(b) —u(a)) < f f(X)du(x) < M(u(b) — u(a)).
a

This implies

1 b
m< mfa f(X)du(x) < M.

Therefore, by intermediate value theorem, theredga, b] such that

1 b
f(C) = mL f(X)dU(X)

This proves the theoremm

Theorem 4.2.91f f is an increasing function ofia,b] and ue C(a,b), then there is
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c € [a,b] with

b
fa fF(x)du(¥) = f(a)(u(c) - u(@)) + f(b)(u(b) - u(c)).

Proof. By Theorem 4.2.6,

b b
f f(X)du(x) = f(b)u(b) — f(a)u(a) — f u(x)d f(x).

By Theorem 4.2.8, there exists O [a,b] such that

b
f u(x)d f(x) = u(c)(f (b) - f(a)).

a

Combining, we obtaion

b
f f(x)du(x) = f(b)u(b) - f(a)u(a) —u(c)(f (b) - f(a))

= f(@)(u(c) - u(@) + f(b)(u(b) — u(c)).

This proves the theoremm

4.3 Existence

Assume that is an increasing function oraJb] and f € B(a,b). Consider a partition

Mi=sudf(X): Xi_.1 < x<x}, i=1..., n,
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and
my=inf{f(X): x_1<x<x},i=1...,n
Define the upper and lower Darboux sums by

S*(f,u,P) = > Mi(u(x) - u(X-1))
i=1

and
n
Su(f,u,P) = > m(u(x) - u(x-1)).
i—1
Let
S*(f,u) = il;f S*(f,u,P)
and

S.(f,u) = supS.(f,u,P).
P

Here infimum and supremum are over all partitiéhsf [a,b]. Theorems similar to

Theorems 2.2.3 and 2.2.4 can be proved for Riemann—Ssigttiegral as well.

Theorem 4.3.1 (Darboux) Assume that u is an increasing function [@nb] and f
B(a,b). Then(f,u) e RS(a,b) and its Riemann-Stieltjes integral equals to S if and only

if S*(f)=S.(f)=S.

Theorem 4.3.2 (Riemann)Let u be an increasing function da,b] and f € B(a,b).
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Then(f,u) e RS(a,b) if and only if for everye > 0 there exists a partition Pof [a,b]

such that 3(f,P,) — S.(f,P;) < e&.

The proof of these theorems are similar to the proofs of Témsr2.2.3 and 2.2.4. An
analog of Theorems 2.2.5 can also be proved for Riemannt&iemtegral. For this

we need in the following.

Definition 4.3.3 A function u: [a,b] — R is said to have a bounded variation if it can
be shown as a gerence of two increasing functions ¢ab]. The collection of all

functions of bounded variation da, b] is denoted by BY4,b).
Theorem 4.3.4C(a,b) x BV(a,b) € RS(a,b) and B\Ma, b) x C(a,b) € RS(a, b).

Proof. By Theorem 4.2.6, it dftices to prove onl\C(a,b) x BV(a,b) € RS(a,b) and
by Definition 4.3.3 and Theorems 4.2.4 and 4.2.5 ftisas to prove that if € C(a,b)
andu is increasing, thenf(u) € RS(a,b). The proof in this case is similar to the proof

of Theotrem 2.2.5m

Remark 4.3.5 While everything in Riemann-Stieltjes integration is goparallel to
Riemann integration, there are issues in Riemann—Steitjegration which do not
arise in Riemann integration. One of them is the followinige Ppoints of discontinuity

of f and u must be consistent in order the Riemann—Stiettjegiial

b
f f(X)du(x)

to be existent. More specifically, if u is an increasing fimtbn[a, b] and f € B(a,b)

so that f and u have a right discontinuity at the same numtegjach), that is, f(c) #
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f(c+) and yc) # u(c+), then the Riemann—Stieltyes integral of f with respect to u
does not exist. The same happens if f and u have a left discigtiat the same
number ¢ (a,b], that is, f(c) # f(c—) and Uc) # u(c-). This problem does not arise

in Riemann integration since in this casgu=t is a continuous function.

4.4 Riesz Representation
One of important applications of Riemann—Stieltyes iraéign is a representation of
continuous linear functionals in the spacé,b). More specifically, we give the fol-

lowing.

Definition 4.4.1 A function F from a Banach space ERais said to be additive func-

tional if

F(x+y) =F(xX)+F(y) forevery xyeE,

homogenous functional if

F(ax) = aF(x) forevery xc E and acR,

and a linear functional if it is additive and homogenous.

A linear functional may be continuous or not. A simple neaegsnd sfficient con-
dition for continuity of the linear functiondf : E — R is the existence of > 0 such

that

IF(X)| < clIx|| forall xeE.
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To prove that a given functional is linear and continuous isufficient to prove the
above mentioned inequality and the additivity because tiradgeneity is a conse-

guence from them.

Example 4.4.2 Fix y = (y1,...,Yk) € R¥. The function
k
FO)= > %y, X= (X1, %) € RK, (4.4.1)
i=1

is a continuous linear functional oRK. The linearity can be verified easily. The

continuity follows from the Cauchy—Schwarz inequality

k k k
}inyi,} < JZX?JZ%,
i=1 i=1 i=1

where

k

X = [1(X1, ..., %)l = inz

i=1

is the Euclidean norm iik.

It turns out that every linear continuous functional Bfcan be described in the form
(4.4.1) for some ¥ (y1,...,yk) € RX. For this, let G be any linear functional aRX.

Denote
e1=(1,0,...,0), &=(0,1,...,0), ..., & =(0,0,...,1).
Define
y1=G(e1),y2 = G(e2),.... Yk = G(&).
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Then for every x (x4, ..., %) € RK,

k k k
G0 =G( ) &)= Y xG(@) = Y xy.
i=1 i=1

i=1

This proves the representation (4.4.1) for G. Moreoves fihoves that every linear

functional onRX is continuous.

Following this example remind that the Riemann—Stieltjgegral

b
f f(X)du(x)

is linear functional inf € C(a,b) for fixed u € BV(a,b), and inu € BV(a,b) for fixed

f € C(a,b). Note thatC(a, b) is a Banach space with the norm
IIfllc =maxf(x):a<x<b}.
Also, foru e BV(a,b) we can define its variation om,b] by
n
V(f;ab)=sup) (u(x) - u(x-1).
i=1

where supremum is taken over all partitidds: {xo, ..., Xn} of [a,b]. ThenBV(a,v) is

a Banach space with the norm
lullv = lu(@)+ V(f;a,b).
Lemma 4.4.3 For every(f,u) € C(a,b) x BV(a,b), the following inequality holds:

b
f f(X)du(x)

51

<|fliclulav- (4.4.2)




Proof. For the partitiorP = {Xo,..., Xy} of [a,b], we have

IS(f,u,P)| < ||f||cZ u(x) — u(xi-1)| < I fllcV(u; &, b).

i=1

Therefore this inequality holds for the limit as well, prathg (4.4.2).m

Example 4.4.4Fix u e BV(a,b). Then the function

b
F(f):f f(x)du(x), f € C(a,b), (4.4.3)

is a continuous linear functional on(@ b). The linearity was mentioned previously.

The continuity follows from the inequality (4.4.2).

Example 4.4.5Fix f € C(a,b). Then the function
b
F(u) :f f(X)du(x), ue BV(a,b), (4.4.4)
a

is a continuous linear functional on B¥,b). The linearity was mentioned previously.

The continuity follows from the inequality (4.4.2).

The following theorem stating the form of linear continudwsctionals inC(a, b) due

to Riesz is spectacular.

Theorem 4.4.6 (Riesz)Every continuous linear functional F on the Banach space
C(a,b) has a representation in the form of Riemann—Stieltjes raté€g.4.3) for some

ue BV(a,b).
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Remark 4.4.7 It should be noticed that while every continuous linear fior@l on
C(a,b) can be represented in the form (4.4.3) as a Riemann—Ssidttiegral, the same

does not hold about representation (4.4.4) on(&Ys).
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Chapter 5

Kurzweil-Henstock Integral

5.1 Definition

Riemann integral was defined in two steps for the proper apiddper cases. Making
a change in the definition of the Riemann integral, we cantfeése cases into one and,
additionally, cover all the functions that can be integeaibl general. To present this
extension let us start from the easy case of bounded infeNglfor —co <a<b < o

and consider the following condition for the proper Riemartagrability.

Theorem 5.1.1 A function fe B(a, b) is integrable in the Riemann sense[ab] and
its Riemann integral equals to S if and only if for every O, there exist®$ > 0 such

that for every partition P ofa, b] with ||P|| < 6,
n
S(.P)= > f(e)(i~%-1) (5.1.1)
i=1

holds independently on the tags.

Proof. We first prove the dticiency part of the theorem. Take- 0 and lets > 0 be so
that (5.1.1) holds for every partitid®= {xo, ..., Xy} of [a, b] with ||P|| < § independently
on the tags. Denote b, one of such partitions. TheR 2 P, implies ||P|| < 6.
Therefore, (5.1.1) holds for eveB2 P, independently on the tags. Then by Definition

2.1.1,f e R(a,b) and its Riemann integral equals$o
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Now consider the necessity part. Lie€ R(a,b) and

S:f:f(x)dx

Then S*(f) = S.(f) = S, reminding thatS*(f) and S.(f) are the upper and lower
Riemann integrals of on [a, b], respectively. Take arbitrary> 0 and select- > 0 in

the following way. Denote the change bby
d = supf —inf f.
[ab]  [aD]
Since

S =S'(f) = inf S(f,P),

we can find a partition

of [a,b] such that
s%tpg<5+§.

Let

&

" omd+1)

(o
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Now consider any partitioR = {X, ..., X} Of [a,b] with ||P]| < 0. Let
Q=PUP;={x5,.... X }.
SinceQ 2 P,, we have

S*(f,Q) < S*(f,P.) < S+ g

Furthermore, denote
Mi = sud f(X) : Xj—1 < X< X}
and

M’ =sup f(x) : X{_; <x< X[}

If we eliminate the equal terms &(f, P) andS*(f, Q), the diference

k
M 0 =)
=1

S*(1.P)-S"(£,Q) = ) Mi(% —Xi-1) -
i=1

J

equals to the sum of no more that- 1 terms and each term is smaller theth Hence,

we have

(m-21ed &

S*(f,P)—S*(f,Q) < (m—l)O'd = m < E

This implies

S*(f,P)-S = S*(f,P)-S*(f,Q) + S*(f,Q) < S +&.
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Similarly, we can findr’ > 0 such that for all partitiof® of [a, b] satisfying||P|| < ¢,
S—e<S.(f,P).
Lettingé = min{o, o}, we arrive to
S—-e<S.(f,P)<S(f,P)<S*(f,P) <S+e,

thatis, (5.1.1) holds for all partitioR of [a, b] with ||P|| < 6 independently on the tags.

This completes the proofs

By Theorem 5.1.1, we can write

b
fa f(dx= lim S(f.P). (5.1.2)

But this limit is complicated since the Riemann s@&¢f, P) depends the tags as well.
Therefore, under (5.1.2), we mean that that this limit ijmehdent on the tags. More
precisely, for alle > 0, there is5 > 0 such that for every partitior® with ||P|| < 6 and

for all possible tags, the inequality (5.1.1) holds.

In Kurzweil-Henstock integratiod is selected dependently on the tags. This allows
for essential enlargement of the cld&s,b). In definition of the Kurzweil-Henstock

integral the concepts of gauge and tagged partition playaaeole.

Definition 5.1.2 Any functions : [a,b] — (0, ) is said to be a gauge on the interval

[a,b]. A partition P= {Xop,..., X} is called a tagged partition if it employs one fixed
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choice of tags ..., C,. The symbol

A

P={X0,...,%n;C1,...,Cn}

is used for the tagged partition £ {Xo, ..., Xy} together with the fixed tags c..,cn.
The tagged partiti0|13 ={X0,...,Xn;C1,...,Cn} is said to bes-fine if ¥ — x;_1 < 6(c;) for

alli=1,...,n.

The first question toward Kurzweil-Henstock integral is tiee as-fine tagged parti-

tion exits for a given gaug& The following positively answers to this question.

Theorem 5.1.3 Given a gauge on|a,b], there is as-fine tagged partition ofa, b].

Proof. Take any gaugé on [a,b]. Define by A a set of allx € (a,b] such that a

dl[a,x-fine tagged partition ofd, X] exists. Then for

X1 = min{b,a+ 6(a)},

the tagged partitiorﬁ’ = {a,X1;a} on [a, x1] is d|[ax,1-fine. This impliesx; € A, that is,
A # @. Furthermoreb is clearly an upper bound &. Thereforec = supA exists. We

assert that = b.

To prove this assertion assume the contrary, that4sh. Denote by

A

Q={aXi,...,%n;C1,...,Cn}
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adl[ax,-fine tagged partition ofd, x,] assuming that

Xn = max{xy,c—4(c)/2}.

The existence of such a tagged partition follows franE A. Then

R: {a’xl,---,Xn,Xn+1;Cl,---,Cn,C}

IS adl[ax,,,]-fine tagged partition ofd, Xn+1], assuming that

Xn+1 = Min{b,c+6(c)/2}.

Therefore x,.1 € A and this contradicts to< Xn.1. This proves that = b. In a similar
manner it can be proved that A. Thus, there exists@&fine tagged partition ofd, b].

Based on this theorem the Kurzweil-Henstock integral isx@efin the following way.

Definition 5.1.4 A bounded or unbounded function: fa,b] — R is said to be inte-
grable in the Kurzweil-Henstock sense and its Kurzweil-dttark integral is equal to
S if for everye > O there exists a gauge: [a, b] — (0, ) such that for alb-fine tagged

partitionP of [a, b],

IS(f,P)-S| <e.

The set of all Kurzweil-Henstock integrable functionga] is denoted by Kli, b).
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Similar to the case of Riemann integral, it can be provedithia¢ Kurzweil-Henstock
integral of f on [a,b] exists, then it is unique. To prove, assume the contrarenTh

there are numbeiS; andS, with S; # Sy, satisfying. Let

. IS1 -S|
2

Then there are two gaugésandds, with
~ &
f,P)— —
IS(f,P)—S4| < 5
whenevelP is §;-fine, and
~ &
f,P)— —
|S(f,P)-S2| < 5
whenevelP is §,-fine. Denote
6(X) = min{61(X),62(X)}.

Take arbitrary-fine tagged partitiod?. Obviously,P is §1- andd,-fine. This implies

the following contradiction:

_ISl—Szl<|S(f,|5)—51|+|5(f,|5)—52| ete
&€= > = > < > =&.

Assuming that the gauggis a constant function, lefP|| < 6. Therefore, all tagged
partitionsP, constricted oveP is §-fine. Hence, by Theorem 5.1.1, all properly Rie-
mann integrable functions are Kurzweil-Henstock intelralm other wordsR(a, b)

KH(a,b), and the Riemann and Kurzweil-Henstock integrals of themequal. There-
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fore, there is no ambiguity in using the same notation

f:f(x)dx

for Kurzweil-Henstock integral of. Similar to Riemann integration, we also conven-

tionally let

faaf(x)dx:o and fbaf(x)dx:—faaf(x)dx

The following examples give some ideas about widene&dHgh, b) in comparison to

R(a,b).

Example 5.1.5By Example 2.1.4, the Dirichlet’s function: fa,b] — R, defined by

1 if xis rational
f(x) =

0 if xisirrational.

is not integrable in the Riemann sense. But it is integrablthe Kurzweil-Henstock
sense and its Kurzweil-Henstock integral equals to 0. Toymtake any > 0. Denote
by Q the system of rational numbers. Sirjagb] N Q is a countably infinite set, we can

write

[a,b]NQ = {ag,a,...}.

Define the gauge

1 if x € [a,b] \ Q,
6(X) =

g/2k 1 if x = ay.
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Let

be aé-fine tagged partition ofa, b]. Then

n

Z f(c)(x — xi_l)‘ < Z (Xi —Xi-1)

i=1 cie[a,b]nQ

(o)
<35
= = E.
- k+1
k:12 2

This means that & KH(a,b) while f ¢ R(a,b). Thus Ra,b) is a proper subset of

KH(a,b).

Example 5.1.6 Define the function f by

1/VX if0<x<1,
f(x) =

0 if x=0.

From

ldx . Tdx .
; TX—JE&L o am@-2va =2

this function is improperly Riemann integrable (3 1] and its improper integral on

(0,1] equals to 2.

Let us prove that £ KH(a,b) and its Kurzweil-Henstock integral 4@, 1] equals to
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2. For this, take any > 0 and define the gauge

£2/64 if x =0,
o(X) =

min{x/2,ex+/x/8} if0<x<1.

Take as-fine tagged partitionﬁ ={X0,...,%n;C1,...,Cn} ON[0,1]. If ¢; # O, then we have

that
IX—ci| <d(ci)
implies
C.
X>¢—6(g) > EI
Therefore,
‘i_i‘_ x-al _dc) _25@) e
VG VXl (VR E) T XVG GG A

Then x—x;_1 < 6(c;) implies

1 e 12 1 1
VG 4T VKT VR T VRTD T VG4
This implies
(@06~ x-1) - 2(v% - Vi) < KRl (e

for ¢ # 0. Additionally, for @ = 0, we have x < §(0) = £2/64, producing
|f(c1) (X1 — X0) — 2(VX1 — VX0)| = 2 /X1 < Z < g
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The last two inequalities yield

n

D@ -X-1) -2 < ) IF(@)(x - %-2) - 2(V& - VKDl <
i=1

i=1

This means that € KH(0, 1), that is, the Kurzweil-Henstock integral of the improperly

Riemann integrable function f exists and equals to 2.

All 2nd kind improperly Riemann integrable functions areriKweil-Henstock inte-

grable. This is a consequence of the following theorem .

Theorem 5.1.7 (Hake) The following statements hold:

(a) f e KH(a,b) if and only if fljcp € KH(c,b) for every a< ¢ < b, and

exists.

(b) f e KH(a,b) if and only if flj5q € KH(a,c) for every a< c < b, and

exists.

In both these cases

b C b
c"l2+fc f(x)dx:cll_>ng_£ f(x)olx:fa f(x)dx
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By this theorem, the limits, producing the 2nd kind impropgemann integrals, do
not provide further extension dH(a,b). This means that all 2nd kind improperly
Riemann integrable functions on the intervad and [a, b) belong toKH(a,b). Just
these functions should be considered aib] and for this an arbitrary value should be

assigned ad or b to these functions.

By operation with the gauges on the extended rea@ﬁ:e{—oo, o], Kurzweil-Henstock
integral can be allowed to the 1st kind improperly Riemartegrable functions as

well.

Now a functions : R — (0,0) will be called a gauge. Instead of tagged partition,
now we will consider tagged subpartition Rf that iSP = {Xg,..., % CL,...,Cq} With
—00 < Xg < -+ < Xp<ooandg € [x-1,%] fori=1,...,n. Atagged subpartitionﬁ’ =
{X0,...,Xn;C1,...,Cn} Of Ris &-fine if x; — x;_1 < &(c;) for everyi =1,...,nand

< —L and —— < x
e TS R Al

Now assume that equals to one of the intervalg,p], [a, o), (—o0,b] and oo, ).
Let f : 1 - R be given. Extend to R by making it vanish outside df. Thenf is
said Kurzweil-Henstock integrable drand its Kurzweil-Henstock integral equals to

S if for every ¢ > 0 there is a gaugé& on R such that for alb-fine tagged subpartition

A

P={Xo,...,%Xn;C1,...,Cn} OF R,

n

2 @) —%-1)-S|<e

i=1

By modification of the Hake’s theorem to infinite intervalsisi seen that this defini-

tion covers all properly as well as 1st and 2nd kind improp&iemann integrable
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functions. This general Kurzweil-Henstock integrallas still denoted by
f f(xX)dx
|

5.2 Properties
The following three properties of Kurzweil-Henstock intaigare similar to Riemann

integral.

Theorem 5.2.1Let | be a closed subinterval @&. If f € KH(l) and ce R, then

cf e KH(l) and

flcf(x)dx:cflf(x)dx

Theorem 5.2.2 Let | be a closed subinterval & If f,ge KH(l), then(f +g) e KH(I)

and

fl(f(x)+g(x))dx:flf(x)dx+flg(x)dx

Theorem 5.2.3 Let | be a closed subinterval & and let ¢ be an interior point of I.
Denote | = N(-c0,c] and b =1nN][c,o0). Then fe KH(l) ifand only if f|;, e KH(l1)

and f|;, € KH(I2). Moreover,

flf(x)dx:fllf(x)dx+ I2f(x)dx

For the fundamental theorem of calculus for the Kurzweilrgteck integral, we will

consider the case of finite interval p]. Itis said that the propert(x), which depends
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on x € [a,b], holds almost everywhere (shortly a.e.) @] if £(x) holds for allx e
[a,b] \ E, whereE C [a,b] is a set of measure zero. In particuléiis a.e. diferentiable

on [a,b] if itis di fferentiable at every e [a, b] except the set of points of measure zero.

Theorem 5.2.4 (First fundamental theorem of calculus)if f € (C(a,b) is differen-

tiable on[a, b] except a countable set of points, there iKH(a, b) and
b
f f'(x)dx= f(b)- f(a).
a
Theorem 5.2.5 (Second fundamental theorem of calculud)et f € KH(a,b) and

F(x):faxf(x)dx

Then Fe C(a,b), F is a.e. diferentiable oria,b] and F(x) = f(X) at every point x of

continuity of f.
5.3 Lebesgue Integral

Lebesgue integral can be obtained as a particular Kurziteitstock integral. For

this, we first consider the following example.
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Example 5.3.1 Consider the function f defined ¢&, 1] by

2 ifl/2<x<1,
-3 if1/3<x<1/2,
4 if1/4<x<1/3,

f(x) =
-5 if1/5<x<1/4,

0 ifx=0.

We have

f/n Z( 1)|+1(|+1)(__m) nZ:( 1)+1

i=1

This is a partial sum of alternating harmonic series and it@wvergent. Therefore,

f e KH(0,1) and

f f(x)dx_ )n+1

On the other hand,

2 if1l/2<x<1,
3 if1/3<x<1/2,
4 ifl/4<x<1/3

1f ()1 =
5 if1/5<x<1/4,

0 ifx=0,
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and, therefore, similarly to above calculations we have

[y ro0m= 352
f(X)dx= ) = =o0.
0 n:ln

Thus unlike Riemann integral, we obtain tha¢ KH(0, 1) while |f| ¢ KH(0,1). This

example suggests the following definition.

Definition 5.3.2 If f e KH(a,b) and also|f| € KH(a,b), then f is said to be Lebesgue
integrable and the Kurzweil-Henstock integral of f is alsdled the its Lebesgue
integral. The collection of all Lebesgue integrable fuantion[a,b] is denoted by

L(a,b).

The relations between the sets of functions integrableerRiemann, Lebesgue

and Kurzweil-Henstock senses can be given by
R(a,b) c L(a,b) c KH(a,b),

noticing thatR(a,b) is a proper subset df(a,b) and L(a,b) is also a proper subset
of KH(a,b). L(a,b) is an important class of functions betweRfa, b) andKH(a, b).

It is possible to define a powerful norm I(a,b), making it a Banach space, while
there is no an féicient norm inR(a,b) and KH(a,b). The Lebesgue integration is
indeed another kind of developments in integration leatrguch important topics in
mathematics as measure theory , probability theory etcsé babjects are out of the

scope of this thesis.
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