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ABSTRACT 

The Wiener index of a graph, known as the “sum of distances” of a connected graph, 

is the first topological index used in chemistry to sum the distances between all 

unordered pairs of vertices of a graph. Wiener index, or sometimes called Wiener 

number, of a molecular graph correlates physical and chemical characteristics of 

graphs, and has been studied for various kinds of graphs. In this thesis, we derived 

mathematical formulas to compute Wiener index and hyper-Wiener index for body-

centered cubic grid and face-centered cubic grid. In the body-centered cubic graph, 

the lines of unit cells of the body-centered cubic grid are used. These graphs contain 

center points of the unit cells and other vertices, called border vertices. Closed 

formulas are obtained to calculate the sum of shortest distances between pairs of 

border vertices, between border vertices and centers and between pairs of centers. 

Based on these formulas, their sum, the Wiener index and hyper-Wiener index of 

body-centered cubic grid with unit cells connected in a row are computed. Some 

relationships between formulas and integer sequences are also presented. 

In face-centerd cubic grid, the graphs of lines of unit cells of the face-centered cubic 

grid are investigated. The face-centered cubic unit cell is a cube (all sides have the 

same length and all faces are perpendicular to each other) with an atom at each 

corner of the unit cell called border points and an atom situated in the middle of each 

face of the unit cell called face central points. Closed formulas are obtained to 

calculate the sum of shortest distances between pairs of border points, between 

border points and centrals and between pairs of centrals. Based on these formulas, 
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their sum, the Wiener index and hyper-Wiener index of face-centered cubic grid with 

unit cells connected in a row graph is computed. 

Keywords: Wiener index, body-centered cubic grid, face-centered cubic grid, hyper-

Wiener index, shortest paths, non-traditional grids, combinatorics. 
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ÖZ 

Bir grafın mesafeler toplamı olarak bilinen Wiener indeksi, kimdaya sırasız düğüm 

çiftleri arasındaki mesafeler toplamını hesaplamak için kullanılan ilk topolojik 

indekstir. Moleküler grafın bir çok graf türü için irdelenmiş olan ve Wiener sayısı 

olarak da bilinen Wiener indeksi grafın fiziksel ve kimyasal özelliklerini 

ilişkilendirir. Bu tezde gövde-merkezli grafın birim hücrelerinin kenarlarını 

kullanarak gövde-merkezli ve yüzey-merkezli kübik grafın Wiener indeksi ve hiper-

Wiener indeksinin hesaplanması için formül geliştirilmiştir. Bunun yanı sıra yüzey-

merkezli kübik şebekelerde birim hücre dizileri biçiminde olan graflar irdelenmiştir. 

Yüzey-merkezli kübik birim hücre, köşeleri sınır noktaları da denilen çekirdeklerden 

oluşan bir küpdür. Sözkonusu graflar birim hücreleri merkez düğümlerini ve sınır 

düğümlerini  içermektedir. Bu bağlamda önerilen formüller uygulanarak sınır 

düğümleri çiftleri, sinir ve merkez düğüm çiftleri ve merkez düğüm çiftleri 

arasındaki en kısa yollar toplamı hesaplanabilmektedir. Sözkonusu formüller ve 

tamsayı dizileri arasında bazı ilişkiler de bu tezde irdelenmiştir.  

Anahtar Kelimeler: Wiener endeksi, gövde-merkezli kübik grid, yüzey-merkezli 

kübik grid, hiper-Wiener endeksi, kısa yollar, Geleneksel olmayan grid, 

kombinatoriks. 
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Chapter 1  

INTRODUCTION 

1.1 Introduction 

Various crystals can be found in the nature; most of them are described by crystal 

systems (3D graphs). Graph theory is used in almost every field of science and it is 

also heavily used in practice for simulations and engineering solutions. Graph theory 

is now playing an important role not only in Mathematical researches, but in 

Electrical Engineering, Computer Programming, Networking, Geography, 

Crystallography, etc. The atoms/molecules/ions of most of the crystals use graphs 

with regular, periodic structures. Digital geometry deals with the description of these 

regular tessellations. Digital geometry has also close connection to image processing 

and computer graphics [18]. One of the main directions of research of digital 

geometry deals with descriptions and applications of non-traditional grids 

[23,31,32,33]. (Square and cubic grids are counted as traditional grids, since they are 

the most usual in mathematics and engineering.) Non-traditional 3D grids, for 

instance, body-centered cubic (bcc), face-centered cubic (fcc) and diamond cubic 

grids play an important role in physics and chemistry, as well, since various materials 

have these crystal structures, and the properties of the materials are closely related to 

their structures. 
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1.2 Motivation 

Graph theory is the study of graphs, and it is an important part of discrete 

mathematics. It is being directly used in fields such as communication networks, 

biochemistry (genomics), computer science such as algorithms and computation. One 

of the robust combinatorial ways found in graph theory has been used to prove basic 

results in other fields of pure mathematics. In particular, graph theory is the study of 

graphs containing nodes and edges. It involves the ways in which sets of points, 

called vertices, can be connected by lines or arcs, called edges. 

Topological index, sometimes also known as a graph-theoretic index, is a numerical 

invariant of a chemical graph [25]. Particular topological indices include but not 

limited to molecular topological index, the Balaban index, Harary index, and Wiener 

index. Topological indices are used as simple numerical descriptors in comparing 

physical, chemical or biological parameters of molecules in Quantitative Structure 

Property Relationships (QSPR) and in Quantitative Structure Activity Relationships 

(QSAR) [3]. There are different studies about topological indices, one of the most 

widely known topological descriptor is the Wiener Index (WI). In fact, it is being 

studied consequently for various graphs over the last decades after being introduced 

by chemist Harold Wiener about 70 years ago to illustrate relationship between 

physicochemical properties of organic compounds and the topological structure of 

their molecular graphs [37]. WI is a distance-based graph invariant, used as one of 

the structure descriptors for predicting physicochemical properties of organic 

compounds [30]. 
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WI is a graph invariant that belongs to the molecular structure descriptors, called 

topological indices. These indices are widely used by chemists to design molecules 

with desired properties. In the initial applications, the WI is employed to anticipate 

physical parameters such as boiling points of the paraffins [37]. Other measurable 

physical quantities, e.g., molar volumes, heats of vaporization and molar refractions 

of various molecules can be characterized in a similar manner. The first 

mathematical definition of WI is based on the concept of graph theoretical distance. 

Topological indices are designed and used to assign a number to each (given type) 

molecular graph by some measure [37]. WI is used to study the relation between 

molecular structure and physical and chemical properties of certain hydrocarbon 

compounds. Mathematically these systems are usually hexagonal systems [9]. The 

WI is, generally, defined as the sum of the shortest distances between every pair of 

vertices of G. For molecules, in general, WI measures how compact a molecule is for 

its given weight. The molecule is more compact if its WI value is less. Wiener, 

originally, presented the concept of path number of a graph as the sum of distances 

between any two carbon atoms in the molecules, in terms of carbon-carbon bonds 

[37]. However, the index named after him, the WI is defined as 

 ),(
2

1
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)(,

vudGWI
GVvu

G




 
(1.1)

i.e., the sum of shortest distances for each pair of vertices of the graph G: the sum 

runs over all ordered pairs of vertices, and dG(u,v) denote the length of a shortest path 

in G between vertices u and v [20]. WI measures how compact a molecule is for its 

given weight. The molecule is more compact if its WI value is less.  

Randic [26], proposed hyper-Wiener index (WW) for trees and this newer concept 

was extended to all connected graphs by Klein, Lukovits and Gutman in [17]. WW is 
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also used as a structure-descriptor for detecting physicochemical characteristics of 

organic compounds. It is one of the recent distance-based graph invariants, often 

used in different fields such as agriculture, pharmacology, environment-protection, 

etc. [5,16,38]. The formula below suggests that WW clearly encodes the 

“compactness” of a structure. Furthermore, the squared term gives relatively more 

weight to extended structures, and WW should therefore be a good predictor of 

effects that depend more than linearly on the physical size of a molecule. The hyper-

Wiener index of G is defined as: 

 ),(
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1
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(1.2)

where WI(G) is the Wiener index of the graph G. Actually, the WW is the average of 

the WI and the (unnormalized) second moment distance. 

1.3 Thesis Contribution 

In this thesis, we investigated, studied and calculated WI and WW for different types 

of molecular graphs. Theses graphs include body-centered cubic bcc grids and face-

centered cubic fcc grids. These grids are the most usual crystal structures. 

For the bcc grid graph, the lines of unit cells of the bcc grid are used. These graphs 

contain center points of the unit cells and other vertices, called border vertices. 

Closed formulas are obtained to calculate the sum of shortest distances between pairs 

of border vertices, between border vertices and centers and between pairs of centers. 

Based on these formulas, their sum, the WI and WW of bcc grid with unit cells 

connected in a row graph is computed. Some relationships between formulas and 

integer sequences are also presented. 
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For the fcc grid, the graphs of lines of unit cells of the fcc grid are investigated. Its 

graphs contain central points of the unit cells and other vertices, called border points. 

Closed formulas are obtained to calculate the sum of shortest distances between pairs 

of border points, between border points and centrals and between pairs of centrals. 

Based on these formulas, their sum, the WI and WW of fcc grid with unit cells 

connected in a row graph is computed. 

The work of this thesis is based on the following publications: 

  Mujahed, H., Nagy, B. (2015). Wiener index on Lines of Unit Cells of the 

body-centered cubic Grid. ISMM 2015: 12th International Symposium on 

Mathematical Morphology and Its Applications to Signal and Image 

Processing, LNCS 9082, 597–606. 

  Mujahed, H., Nagy, B. (2016). Wiener index on rows of unit cells of the face-

centred cubic lattice. Acta Cryst. A72, pp. 243–249. 

1.4 Thesis Outline 

This thesis is organized as follows: Chapter one gives and presents general 

introduction about graph theory, molecular graph WI and WW. A concise literature 

review about previous studies which involve algorithms and mathematical methods 

to compute WI is investigated in chapter two. Chapter three contains detailed 

description about bcc grid and mathematical formulas to calculate WI and WW for 

lines of unit cells of the bcc grid. Chapter four contains detailed description about fcc 

grids and mathematical formulas to calculate WI and WW on rows of unit cells of the 

face-centered cubic grid. Finally in chapter five the conclusions for this work are 

presented, and some possible future work are mentioned. 

 



6 

Chapter 2  

LITERATURE REVIEW AND PRELIMINARIES   

2.1 Introduction 

We will start this section by basic definitions and fundamental concepts about 

graphs: 

  A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of the 

set of unordered pairs of V. The set V is the set of vertices and E is the set of 

edges [4].  

  Often, we label the vertices with letters (for example: a, b, c, etc.; or v1, v2, v3, 

etc.) or numbers (for example 1, 2, 3, etc.) (See Figure 1). 

 

 
Figure 1: A visual representative of graph G 

  For a graph G, we denote by V(G) and E(G) its sets of vertices and edges, 

respectively. An edge (a, e) is said to join the vertices a and e and is denoted 

by ae. Thus ae and ea mean exactly the same edge, the vertices a and e are 

the end vertices of this edge. 
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  Two vertices b and c are adjacent if they are connected by an edge, in other 

words, (b, c) is an edge. 

  An edge of the form (a, a) is a loop. 

  The edges indicate a two-way relationship, in that each edge can be traversed in 

both directions. 

  A path in the graph is a sequence of distinct vertices v1,v2,v3,….,vn such that 

(vi,vi+1) is an edge for each i=1,…,n-1. 

  The length of a path P, denoted |P|, is the number of its edges [4]. 

  A graph G is connected if given any two vertices in this graph, there is a path 

from one vertex to another.  

  The distance between two vertices a and b denoted by dG(a, b), is the length of 

shortest path connected a and b. 

  Undirected graphs have edges that do not have a direction. (See Figure 1). 

  Simple graph, is an undirected graph containing no graph loops or multiple 

edges. 

In this thesis, all graphs are simple, undirected and connected without loops or 

multiple edges. 

A topological representation of a molecule is called molecular graphs. A molecular 

graph is a set of vertices representing the atoms in a molecule and a set of edges 

representing the covalent bonds between the atoms. To determine molecular graph of 

some chemical compound, the molecular graph invariants, called topological indices 

could be used too. The most important use of these topological indices are designed 

basically by transforming a molecular graph into a number. By these numbers some 
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of the measured properties of the molecules can be predicted [37]. Not only 

molecules can be represented by graphs: there are some elements that form atomic 

grid, e.g. carbon and silicon. In a similar manner, crystals formed by ions can be 

modelled and measured by graphs underlining their structure, see, e.g., [1]. 

Moreover, in other crystals, such as in metals, the atoms (cations) are placed 

according to a well-defined arrangement. The most usual arrangements for metals are 

the body-centered and the face-centered cubic grids. In body-centered cubic grid (bcc 

grid, in short) the atoms are located in a cubic structure and, additionally, there is an 

atom in the center of each unit cube. The face-centered cubic grid (fcc grid, in short) 

has unit cells that are cubes with an atom at each corner of the unit cells and an atom 

situated in the middle of each (square) face of the unit cells. 

2.2 General Review 

A topological index is a numeric quantity associated with chemical constitution and 

the correlation of chemical structure with various chemical and physical properties of 

a molecule. Topological indices are mathematically derived in various ways from the 

structural graph of a molecule. One of the most important topological index is WI. WI 

is employed to predict heats of vaporization, molar volumes, boiling points and 

molar refractions of alkanes. Alkanes are the simplest organic molecules. Alkanes 

are chemical compounds that include carbon (C) and hydrogen (H) atoms, so they 

are also called hydrocarbons. In chemistry concepts and theory, distance-based 

molecular structure descriptors are used for modeling pharmacologic, biological, 

physical, and other properties of chemical compounds. 

To our basic knowledge and investigation, there is no direct and unified technique to 

compute WI of graphs. The problem to find a general formula or a technique to 
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calculate WI for graphs is still open. Most of the work in the field of calculating WI 

depend on special types of graphs. In our work, we are also contributing the field 

with calculations on specific graphs. 

The concept of a WI which is introduced by Wiener in 1947 [37] open the doors for 

more research area in the field of topological indices. Many methods, mathematical 

equations and algorithms for computing the WI of a graph were proposed in the 

chemical, mathematical and related computational literature.  

In [7], the authors presented a linear time algorithm to compute WI of given 

benzenoid graph G. The main idea of the algorithm depends on an isometric 

embedding concept of graph G into the Cartesian product of three trees, combined 

with the notion of the WI of vertex-weighted graphs.  

In [17] the authors work in order to extend the definition of Randic for WW in two 

different fashions so as to be suitable and applicable for any connected structure. The 

formula provides an easy method to calculate the WW for any graph. 

In [5], the theoretical approach for computing WW discussed. The authors in this 

research consider three different methods for calculating the WW of molecular 

graphs: the cut method, the method of Hosoya polynomials and the interpolation 

method. The authors discussed drawbacks, advantages and get several new closed-

form expressions for the calculation of WW for infinite families of molecular graphs.  
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In [16], an algorithm to compute the WW of benzenoid hydrocarbons is described, 

based on the consideration of pairs of elementary cuts of the corresponding 

benzenoid graph G.  

In [1], the WI of chemical structures such as sodium chloride NaCl and benzenoid 

graph computed without using distance matrix. An efficient method of computing WI 

of chemical structures such as honeycomb, benzenoid and sodium chloride graph. 

In [13], a method for evaluating the sum of all distances, known as the WI, of the zig-

zag nanotubes and general square connected layers is presented. 

In [36], formula for the calculation of the WI of pericondensed benzenoid graphs 

made up from three rows of hexagons of various lengths is given. In order to verify 

the formula, a program, written in a Pascal-based pseudocode that calculates WI of a 

benzenoid system from its ring-matrix is used.  

In [6], an algorithm is presented for the generation of molecular graphs with a given 

value of the WI.  

In [12], the terminal Wiener index (TW) is a newer molecular-structure descriptor. 

And there is only a limited number of its mathematical properties were established so 

far. Results on terminal WI of thorn graphs are presented. 

In [19], the authors developed a method to calculate the WI of some kinds of 

molecular graphs. These graphs are three regular plane tessellations composed of the 
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same kind of regular polygons (triangular, square and hexagonal). The new technique 

in this paper could be used to compute WI for more chemical graphs. 

In [8], explicit formula for WI of hypercubes and their corresponding Euclidean 

graph is given. Also the method used to compute and express completely the explicit 

mathematical formulas for WI for hypercubes and Euclidean graph of n-dimensional 

hypercubes which has applications in mathematical chemistry. 

In [10], a modification of the WI which properly consider the symmetry of a graph is 

proposed. The explicit formula for the modified WI of special case (type) of graphs 

are founded and compared with their standard WI. 

In [11], the concept of line graph has various applications in physical chemistry. In 

that paper, the authors obtained the WI of line graphs and some other classes of 

graphs. 

In [34], MATLAB algorithm for finding the WI of the molecular graph was 

presented. MATLAB program is written to compute WI based on adjacency matrix 

as input. In this kind of MATLAB calculations, the only difficult thing is how to find 

the adjacency matrix easily for graph G. 

In [27], the result on WW of amalgamation of complete graph with common vertex 

and Amalgamation of cyclic graph with common edge is proved. This paper also 

investigated the three methods for calculation of the WW of molecular graphs which 

include cut method, distance formula and the method of Hosaya polynomials.  
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In [14], WW of the Cartesian product, composition, join and disjunction of graphs are 

calculated. These results are used to compute the WW of C4 nanotubes and some 

other graphs.  

In [28], the authors proved some general results on WW of thorny-complete graphs. 

 In [35], WI for some molecular graph is being calculated in two different ways: the 

first way based on a new method using Super Edge-magic Sequence (SEMS) and the 

second way based on different approach for existing method, using minimal 

spanning tree at each vertex. This approach will help to change the chemical formula 

into sequence. 

2.3 Preliminaries 

In previous sections, we have already provided the concepts of graphs. Now we 

recall those grid graphs we are working on. 

2.3.1 Body-Centered Cubic Grid 

By adding a grid point in the center of each cube with vertices on grid points in a 

cubic grid, a body-centered cubic (bcc) is obtained. The bcc unit cell is a cube (all 

sides are of the same length and all faces sharing a corner are perpendicular to each 

other) with an atom at each corner of the unit cell and an atom in the center of the 

unit cell [15, 31, 32]. Each of the corner atoms is the corner of another cube, thus 

atoms in the corner are shared among eight unit cells. It is said that bcc unit cell has a 

coordination number of 8 and a bcc unit cell consists of a net total of two atoms; one 

in the center and eight eighths from corner atoms. Some of the materials that have a 

bcc grid structure include lithium, sodium, potassium, chromium, barium, vanadium, 

alpha-iron and tungsten. Metals which have a bcc grid structure are usually harder 
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and less malleable than close-packed (e.g., fcc grid structured) metals such as gold. 

When the metal is distorted, the planes of atoms must slip over each other, and this 

process is harder in the bcc unit cell structure [15]. In Figure 2 a bcc unit cell is 

shown, moreover, the closest atoms are connected to each other. Cesium chloride and 

some other salts use also the same structure in their crystals having one type of atoms 

in the corners of a unit cell and the other type in the center. Thus, the neighbour 

relation in these salts contains only atoms (i.e., ions) of different kinds: an anion 

(e.g., Cl) and a cation (e.g., Cs+). In salts, actually, the ionic bonds can be 

represented by connecting the neighbour ions. Connecting the closest atoms in a bcc 

grid, its usual graph-representation is obtained. 

 

 

 

 
Figure 2: A unit cell of body-centered cubic grid showing the neighbour relation of 

the atoms 
 

2.3.2 Face-Centered Cubic Grid 

Face-centered cubic (fcc) grid consists of unit cells with an atom at each corner of 

cube and an atom in the center of each face of the cube. The fcc unit cell structure is 

shown in Figure 3. In this structure atoms are arranged at the eight corners and at the 

centers of the six faces of a cube.  
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The fcc unit cell is a repeating unit in a cubic closest-packed structure. In fact, Figure 

3 (b) explains why the structure is known as cubic closest-packed. Metals with the 

fcc unit cell structure include: aluminium, copper, nickel, gold and silver. Due to 

their structure it is relatively easy to work with these metals (comparing to other 

metals with bcc grid structure). 

 

 

 
 
 

Figure 3: A unit cell of face-centered cubic (fcc) grid showing the neighbour relation 
of the atoms (solid lines) (a), and fcc grid close-packing with spheres (b) 

 

 

(a) (b) 
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Chapter 3  

WIENER INDEX AND HYPER-WIENER INDEX ON 
LINES OF UNIT CELLS OF THE BODY-CENTERED 

CUBIC GRID  

3.1 Wiener Index for a Row of bcc Unit Cells 

In this thesis, we are using graphs that represent a row of unit cells of the bcc grid 

(i.e., the dimension of our space is n×1×1 unit cells). We use the terms center points 

and border points/vertices for the points located on a center of a unit cell and on the 

corner of a cell, respectively. 

In this sections we present our results. In the next subsections some subsums are 

computed that are needed later on. We start with a straightforward result: 

Lemma 3.1. Let n be the number of bcc unit cells connected in a row, the number of 

vertices V in this graph is given as follows (the first term gives the number of border 

vertices, the second term is the number of center vertices): 

   nnV  44 . (3.1) 

The WI is computed as the sum of the distances of all unordered pairs of vertices. In 

our graphs we have two types of vertices. Thus, in our graphs, WI can be computed 

as the sum of the following three subsums: 

  sum of the distances between unordered pairs of centers, 

  sum of the distances between pairs of centers and border vertices, and 

  sum of the distances between unordered pairs of border vertices. 
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In the next three subsections these subsums are considered. 

3.1.1 Sum of Distances between Center Points 

Lemma 3.2. Let k bcc unit cells be connected in a row and, a new unit cell is 

connected to the end of the row to form a graph that represents k+1 unit cells in a 

row. Then the sum of all distances between the new center and all old centers is 

 )1( kk . (3.2) 

Proof: The distances of the new center CN to the old centers are: 

2),( 1 ccd NG , 4),( 2 ccd NG ,…, kccd kNG 2),(  , therefore the sum of the even 

numbers from 2 to 2k is needed, and it gives the result shown in (3.2). (See also 

Figure 4.)                                                      �   

Figure 4: k bcc unit cells connected in a row with a new unit cell attached the end of 
the row 

Lemma 3.3. Let n bcc unit cells be connected in a row. Then the sum of all distances 

between center vertices in this bcc grid graph is given by 

 

3

3 nn 
 (3.3)

Proof: The proof goes by induction on the number of unit cells.  
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The base of the induction is the case n = 1. In this case, there is only 1 center, and 

thus there is no distance to sum up, consequently the sum has value 0, and the 

formula holds. Now, let us assume that the formula is satisfied if n = k. 

Let us prove that it also holds for the value n =k+1. By Lemma 3.2, we know the sum 

of the distances obtained by the new center and old centers. Applying this, with the 

induction hypothesis we get 

3

)1()1(

3

33
)1(

3

3233 





 kkkkkk
kk

kk
. 

The proof of the induction is complete. By the induction, it follows that formula (3.3) 

is true for all (non-negative integer value of) n.                                                                                                          �         

3.1.2 Sum of Distances between Centers and Border Vertices 

Lemma 3.4. Let k bcc unit cells be connected in a row and let a new bcc unit cell be 

connected to the end of this row. Then the sum of the distances between old centers 

and new border vertices plus the sum of the distances between the new center and old 

border vertices is 

 2)1(8 k . (3.4) 

Proof: Observe that the 4 new border vertices (see also Figure 4, they are on the 

right) are connected to the new center and some of the old border vertices are also 

connected to the new center. We need to count the sum of the distances between the 

4 new border vertices and the new and old centers, and between the old border 

vertices and the new center. The sum of these distances can be written in the form 


    
)(

)12(4...74543414

)(

)12(4...74543414

centernewtoverticesold

k

centersalltoverticesnew

k

2)1(8))12(...7531(8))12(4...74543414(2  kkk .         � 
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Lemma 3.5. Let n bcc unit cells be connected in a row. Then the sum of all distances 

between center vertices and border vertices in this bcc grid graph is given by 

 






 
3

22
2

n
. (3.5) 

Proof: The proof goes by induction on n.  

The base of the induction is the case n = 1. In this case, there is only 1 center, and it 

is connected to every of the 8 corners (border points) of the unit cell having unit 

distances. The sum is 8, and also, formula (3.5) gives this value. 

Let us assume that the formula satisfies if n =k. Let us prove that it also satisfies if  

n =k+1. By Lemma 3.4, we know the sum of the new distances obtained between old 

centers and new border vertices (of the (k+1)st unit cell), between the (k+1)st center 

and border vertices (of the previous k unit cells), and between the new (k+1)st center 

and the new border vertices (of the (k+ 1)st unit cell), see Figure 4. Applying this, 

with the induction hypothesis gives the following statement that is needed to be 

proven: 








 








 








 
3

42
2

3

2)1(2
2)1(8

3

22
2 2 kk

k
k

. 

By using the definition of the Binomial coefficients and applying mathematical 

simplifications, we get 

)!3)2(2(3

))!2(2(
)1(8

)!3)1(2(3

))!1(2( 2








k

k
k

k

k
.

 

Further, multiplying both sides by 3, 

)!12(

)!42(
)1(24

)!12(

)!22( 2








k

k
k

k

k
. 
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Now, our aim is to prove that the left hand side (LHS) equals to the right hand side 

(RHS) 

)!12(

)!12)(22)(32)(42(
)1(24

)!12(

)!12)(2)(12)(22( 2








k

kkkk
k

k

kkkk
. 

Then, we have 

24523682452368 2323  kkkkkk . � 

 

Observe that equation (3.5) can also be written in the form
3

4128 23 nnn  . 

3.1.3 Sum of Distances of Border Vertices 

Lemma 3.6. Let k bcc unit cells be connected in a row. If a new bcc unit cell is 

connected to the previous k cells forming a row with k+1 cells, then the sum of all 

distances between new and old border vertices is 

 12)2)(1(16  kk . (3.6)

Proof: Observe that the sum of distances between all pairs of the 4 new vertices is 

12. (See Figure 4, for instance, for the distance between vN1
 and vN2

: that is 2, i.e.,  

dG (vN1
, vN2

) = 2. Moreover there are 6
2

4








  pairs).  

Now, let us compute the distance between one of the new border vertices (e.g., vN1
) 

and all old border vertices: 

)2)(1(44)12(...464442  kkk . 

This result is multiplied by 4 since we have 4 new vertices (vN1
, vN2

, vN3
, vN4

). Thus we 

have: 

)2)(1(16  kk . 
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Finally, the total sum of distances between all new and old border vertices is given 

by the sum of the previous two values: 

12)2)(1(16  kk . 

Thus, formula (3.6) is obtained.                                                                                                               � 

 
Lemma 3.7. Let n bcc unit cells be connected in a row. Then the sum of all distances 

between pairs of border vertices is given by 

 
3

)1(20)1(16 3  nn
.                         (3.7) 

Proof: The proof goes by induction on n. 

The base of the induction is the case n = 1. In this case, there are 8 corners (border 

points) of the unit cell. Each pair of them has a distance 2 (by connecting them 

through the center), therefore the sum of distances between all pairs of border 

vertices is 56, and also, formula (3.7) gives this value. 

Now, let us assume that the formula satisfies if n =k. Let us prove that it also satisfies 

if n =k+1. By Lemma 3.6, we know the sum of the distances obtained by the old and 

new border vertices. Applying this, with the induction hypothesis gives the statement 

that is needed to be proven 

3

)2(20)2(16
)12)2)(1(16(

3

)1(20)1(16 33 


 kk
kk

kk
. 

The result can be proven by the following mathematical 

simplifications/modifications starting from the LHS. It equals to 







3

36))2(4820)(1()12(16

3

36)2)(1(48)1(20)1(16 33 kkkkkkk

 





3

36))2(4820)(1()1)2(3)2(3)2((16 23 kkkkk
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



3

36)2)(1(48)1(2016)2(48)2(48)2(16 23 kkkkkk  





3

20)1(20)484848)2(48)(2()2(16 3 kkkkk

 

3

)2(20)2(16

3

)1)1((20)2(16 33 





kkkk
. 

This is exactly the formula on the RHS.                                                                                                    � 

3.1.4 Sum of All Distances: The Main Formula 

Based on the results proven in the previous three subsections, we are able to state our 

first main result. 

 
Theorem 3.1. Let n be the number of bcc unit cells that are connected in a row. Then 

the formula to find WI for this graph is: 

 
3

36716025
)(

23 


nnn
nWI . (3.8) 

Proof: The formula is the sum of equations (3.3), (3.5) and (3.7). All possible 

distances are considered in exactly one of the lemmas 3.3, 3.5 and 3.7, and then, by 

simple calculation the sum of those formulas, 

33

22
2

3

)1(20)1(16 33 nnnnn 









 


 , 

Can be written in the form of equation (3.8).                                                                                                                � 

 
Using formula (3.8) one can calculate WI for graph of bcc unit cells connected in a 

row, as we will present some examples later in this chapter.  

3.2 Hyper-Wiener Index for bcc Grid connected in a Line  

WI, WW and other indices are introduced to reflect certain structural properties of 

organic molecules. There are several studies contributed to determine the distance-

based index of special molecular graphs. The WW of acyclic graphs was introduced 

by Milan Randic in 1993 [26]. Then Klein, Lukovits and Gutman [17], generalized 
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Randic’s definition for all connected graphs, as a generalization of the WI. We recall 

equation (1.2) in chapter one, and make small transformation on the formula 

computing WW:  


















 



),(
2

1
),(

2

1

2

1
),(

2

1
)(

2

1
)(

)(,

2

)(,)(,

2 vudvudvudGWIGWW
GVvu

G
GVvu

G
GVvu

G
, and thus 

  



)(,

2 ),(),(
4

1
)(

GVvu
GG vudvudGWW , (3.9) 

Where dG(u,v) is the distance between the two vertices in the graph, and WI(G) is the 

normal WI proposed by Wiener in 1947. In (3.9), to compute WW the distance and 

second moment distance of the pairs of nodes are summed up. In the following three 

subsections we will compute the sums between various types of vertices. Actually, to 

compute WW the value  ),(),( 2 vudvud GG   is needed for each unordered pair of vertices 

u and v. For simplifying our notions, we refer for sums of values  ),(),( 2 vudvud GG   as 

sums of combined distances. 

3.2.1 Sum of Combined Distances between Pairs of Centers 

Let us start by the sum of combined distances between center points. 

Lemma 3.8. Let k bcc unit cells be connected in a row, and now, a new unit cell is 

connected to the end of the row to form a graph that represents k+1 unit cells in a 

row. Then the sum of combined distances between the new center and all old centers 

is 

 

3

594 23 kkk 
. (3.10) 

 

Proof: The distances of the new center CN to the old centers are: 

2),( 1 ccd NG , 4),( 2 ccd NG ,…, kccd kNG 2),(  , therefore the sum of the even numbers 

from 2 to 2k is needed plus the sum of their squares: (2)2, (4)2 up to (2k)2 is needed 
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also in order to have the result shown in (3.10). (See also Figure 4.)Thus, to explain 

in detail, we have 

)1(2642  kkk  

6

)12)((4
)2(642

2
2222 


kkk
k  

The sum of two previous equations is: .
3

594

6

)12)((4
)1(

232 kkkkkk
kk







 

Thus the proof of the lemma is finished.                                                                                                                                                                                                                                                                                                                                                                □
 

Lemma 3.9. Let n bcc unit cells be connected in a row. Then the sum of combined 

distances between center vertices in this bcc grid graph is 

 

3

234 nnnn 
. (3.11) 

Proof: The proof goes by induction. 

The base of the induction is the case n = 1. In this case, there is only 1 center, and 

thus there is no distance to sum up, consequently the sum has value 0, and the 

formula holds. Now, let us assume that the formula holds up to a value k. Let us 

prove that it also holds for the value k+1. By Lemma 3.8, we know the combined 

distance obtained by the new center and old centers. Applying this, with the 

induction hypothesis gives 

3

)1()1()1()1(

3

594

3

23423234 





 kkkkkkkkkkk
. 

3

112)1)(12()12)(12(

3

485 2222234 


 kkkkkkkkkkkkkk

 

.
3

485

3

485 734734 kkkkkkkk 



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We have proved that the LHS equals to the RHS, thus the proof of the lemma is 

finished□ 

3.2.2 Sum of Combined Distances between Pairs of Center and Border Vertices 

Lemma 3.10. Let k bcc unit cells be connected in a row and another new bcc cell is 

connected to the end of this row. Then the sum of combined distances between old 

centers and new border vertices plus the sum of combined distances between the new 

center and old border vertices is 

 

3

4813612032 23  kkk
. (3.12) 

 

Proof: Observe on Figure 4 (on the right) how the 4 new border vertices are 

connected to the new center and old centers, and the old border vertices are 

connected to the new center. The sum of these distances can be written in the 

following form (see also the proof of Lemma 3.4). 

     
) (

)12(4...)74()54()34()14(

) (

)12(4...)74()54()34()14(

centernewtoverticesborderold

k

centersalltoverticesbordernew

k

2)1(8))12(...7531(8))12(4...74543414(2  kkk . 

The second moment part of the combined distances is given by the sum of the 

squares of the same values: 

 ))12(...)7()5()3()1((8))12(4...)7(4)5(4)3(4)1(4(2 2222222222 kk  

.
3

24889632

3

))32)(12)(1((8 23 


 kkkkkk  

By adding two equations, we have: 





3

24889632
)1(8

23
2 kkk

k
 

.
3

4813612032

3

24889632

3

244824
23232 





 kkkkkkkk
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Thus the proof of the lemma is finished.                                                                                                                                                                                                                                                                                                                                                                                          □ 

Lemma 3.11. Let n bcc unit cells be connected in a row. Then the sum of combined 

distances between center vertices and border vertices in this bcc grid graph is given 

by 

 

3

16248 234 nnn 
. (3.13) 

Proof: The proof goes by induction.  

The base of the induction is the case n = 1. In this case, there is only 1 center, and it 

is connected to every of the 8 corners (border points) of the unit cell having unit 

distances. The sum of these distances and their squares is 16, and also, formula 

(3.13) gives this value. Now let us assume that the formula holds up to a value k. Let 

us prove that it also holds for the value k+1. By Lemma 3.10, we know the combined 

distance obtained by the centers (old and new) and border vertices (old and new). 

Applying this, with the induction hypothesis gives the following statement that is 

needed to be proven: 

3

)1(16)1(24)1(8

3

4813612032

3

16248 23423234 





 kkkkkkkkk . 

After mathematical simplification, we have the following: 

3

48136136568

3

48136136568 234234 


 kkkkkkkk
. 

Now, we proved that LHS equals to the RHS. 

Thus the proof of the lemma is finished.                                                                                                                                                                                                                                                                                                                                                                                 □ 
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3.2.3 Sum of Distances between Pairs of Border Vertices  

Lemma 3.12. Let k bcc unit cells be connected in a row. If a new bcc unit cell is 

connected to the previous k cells forming a row with k+1 cells, then the sum of 

combined distances between new and old border vertices is 

 

3

39656033664 23  kkk
. (3.14) 

 

Proof: First of all, the sum of distances between any pair of the 4 new vertices is 12. 

(See the proof of Lemma 3.6). 

Now, let us take the distance between one of the new border vertices (e.g., vN1
) and 

all old border vertices: 

)2)(1(44)1(2...)46()44()42(  kkk . 

We multiply it by 4 since we have 4 new vertices (vN1
, vN2

, vN3
, vN4

). Thus we have: 

)2)(1(16  kk . 

Finally, the total sum of distances between all new and old border vertices is given 

by the sum of the previous two values is: 

12)2)(1(16  kk . 

Now, we have to compute the sum of the square of the distances. First of all, the total 

sum of the square of the distance between each pair of new border vertices is 

 622 = 24. Next, we have 

3

19241628864

3

)32)(2)(12(16
))1(2...642(16

23
2222 





kkkkkk

k

 

Finally, the total sum is:  



27 

.
3

39656033664
12)2)(1(1624

3

19241628864 2323 


 kkk
kk

kkk

 

Thus, the proof is finished.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            □ 
 

Lemma 3.13. Let n bcc unit cells be connected in a row. Then the sum of combined 

distances between pairs of border vertices is given by 

 

3

1081721288016 234  nnnn
. (3.15) 

Proof: The proof goes by induction. 

The base of the induction is the case n = 1. In this case, there is only 1 center, and it 

is connected to every of the 8 corners (border points) of the unit cell having unit 

distances. The sum of combined distances between all pairs of border vertices is 168, 

and also, formula (3.15) gives this value. Now, let us assume that the formula holds 

up to a value k. Let us prove that it also holds for the value k+1. By Lemma 3.12, we 

know the combined distances obtained by the old and new border vertices. Applying 

this, with the induction hypothesis gives the statement that is needed to be proven. In 

this proof, we have to prove that the LHS equals to the RHS. 

.
3

108)1(172)1(128)1(80)1(16

3

39656033664

3

1081721288016

234

23234










kkkk

kkkkkkk

 

The simplification process for the RHS is: 

3

108172172)12(128)133(80)1464(16 223234  kkkkkkkkkk  

3

10817217212825612880240240801664966416 223234  kkkkkkkkkk  
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The result can be proven based on basic mathematical simplifications/modifications 

to prove that the LHS equals to the RHS: 

3

50473246414416

3

50473246414416 234234 


 kkkkkkkk
.
 

The proof of the lemma is finished.                                                                                                                                                                                                                                                                                                                                                                                                                         □ 

3.2.4 Formula for hyper-Wiener Index  

Based on the previous lemmas, we are ready to state our second main result. 

Theorem 3.2: Let n be the number of bcc unit cells that are connected in a row. Then 

the formula to find WW for grid of bcc unit cells connected in row,  

 

6

10817114310525
)(

234 


nnnn
GWW . (3.16) 

Proof: The final formula to calculate WW, see equation (3.9), is, actually, the sum of 

equations (3.11), (3.13) and (3.15). All possible distances are considered in exactly 

once in the Lemmas 3.9, 3.11 and 3.13, and then, by simple calculation the sum of 

those formulas 













 







3

1081721288016

3

16248

32

1 234234234 nnnnnnnnnnn  

.
6

10817121433105425 


nnnn
                                                                                                                                                                                                                              □ 

So we have general formula to find hyper-Wiener index WW for bcc unit cells that 

are connected in a row. 

3.3 Connection to Integer Sequences 

In order to have the ability to compute WI and WW for bcc grid graphs, three 

different subsums are used in both cases. In this section we show some interesting 

connections between the subsums presented in equations (3.3), (3.5) and (3.7) and 
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well-known sequences given in the famous library of integer sequences by Sloane 

[29]. 

Equation (3.7), the subsum for border vertices, 
3

)1(20)1(16 3  nn  is identified in [29], 

as A001386. In [24] this sequence is described as a coordination sequence (giving 

the number of vertices that are located from a given distance from a chosen vertex of 

a lattice/grid) for 4-dimensional I-centered tetragonal orthogonal lattice (to obtain 

our sequence the first two elements of A001386 should be deleted).  

The sequence defined by equation (3.3),
3

3 nn 
 can also be found in Sloane’s. It is 

A007290 and the values are, actually, the doubles of values of the binomials 







3

n . 

This sequence appear in various places in physics, mathematics, and specially, in 

graph theory, as well. Moreover, this sequence also gives the reverse WI of the path 

graph with n vertices [3]. 

The integer sequences defined by equation (3.5), (3.8), (3.11), (3.13), (3.15) and 
(3.16) are not found in [29]. 

 

Table 1 shows some of the first elements of the sequences we are working with, i.e., 

the values computed by equations (3.3), (3.5), (3.7), (3.8), (3.11), (3.13), (3.15) and 

(3.16) for some small values of n. The WI and WW values are shown in the table. 
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Table 1: Some values of the subsums and WI and WW for few bcc unit cells in a row. 
Number of bcc  
unit cells (n) 

1 2 3 4 5 6 7 

Equation (3.3) 0 2 8 20 40 70 112 

Equation (3.5) 8 40 112 240 440 728 1120 

Equation (3.7) 56 164 368 700 1192 1876 2784 

Wiener index WI 64 206 488 960 1672 2674 4016 

Equation (3.11) 0 6 32 100 240 490 896 

Equation (3.13) 16 128 480 1280 2800 5376 9408 

Equation (3.15) 
16
8 

620 1744 4020 8056 14588 24480 

Hyper-Wiener index WW 92 377 1128 2700 5548 10277 17392 
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Chapter 4 

WIENER INDEX AND HYPER-WIENER INDEX ON 
ROWS OF UNIT CELLS OF THE FACE-CENTERED 

CUBIC LATTICE 

4.1 Wiener Index for a Row of fcc Unit Cells 

In this section we present our results about WI in the fcc grid. In the next subsections 

some subsums are computed that are needed later on. We start from a straightforward 

result: 

Lemma 4.1. Let n be the number of fcc unit cells connected in a row, the number of 

all vertices allV  (border points and central points) in this graph is given by 

  59  nallV . (4.1) 

  
 

The number of border points bV  for n fcc unit cells connected in a row is calculated 

using the formula 

  44  nbV . 
(4.2) 

The number of central points cV  row is calculated using the formula  

  15  ncV . 
(4.3) 

4.1.1 Sum of Distances between Central Points 

In our work, we will use the following terminology for central points: we 

differentiate side center points and shared center points. By side centers we mean the 

centers that are located in the center of each face of a unit cell that is not being 

shared when we add a new unit cells to the end of the row (e.g., C2, C5 in Figure 5). 
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Shared centers are the center points that are common and shared between two fcc 

unit cells connected in a row (e.g., C3 in Figure 5). 

Figure 5: k fcc unit cells connected in a row with a new unit cell attached the end of 
the row 

Lemma 4.2. Let k fcc unit cells be connected in a row. Now, a new unit cell is 

connected to the end of the row to form a graph that represents k+1 unit cells in a 

row. Then the sum of all distances between the pairs of new central points (shared 

and side central points) and between new central points and old central points (shared 

and side central points) is 

 183525 2  kk . (4.4) 

 
Proof: 

In our proof, we will calculate the sum of total distance as follows: 

  First of all, and according to Figure 5, the sum of total distance between the 

pairs built up from the new five center points equals to 

12),(
2

1
5

1

5

1


 i j

NNG ji
CCd . 

  Next, we will calculate the distance between the new shared center (
4NC ) and 

old shared centers (including C1). We have 
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2
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))1(321(21)1(2161412






kkkk
kk

kk

 

  Next, we will calculate the distance between new side centers and old shared 

centers. So we have 2)1()12(531   kk . Then we multiply it by 4 

since we have 4 new side centers to get the formula 2)1(4 k .  

  Next, we need to calculate the distance between new side centers i.e., 

5321
,,, NNNN CCCC  and old side centers. For any of the new side centers we 

have  

.441
2

)1(
88)4321(8

83224168)42()44()42(

2 kk
kk

k

1i

ik

kk






























 

Then we multiply it by 4 since we have 4 new side centers to get the formula 

.1616 2 kk   

  Finally, we will calculate the distance between the new shared center, i.e., 
4NC  

and all old side centers: )1)1((4))12(753(4 2   kk  the formula is 

given by kk 84 2  . 

The final formula to calculate the sum of total distance between new central points 

and between new central points and old central points, when we add a new fcc unit 

cell to the k fcc unit cells connected in a row, is given by: 

183525841616)1(42312 22222  kkkkkkkkk .                                                                                               � 

Lemma 4.3. Let n fcc unit cells be connected in a row. Then the sum of all distances 

between central points (side and shared points) in this (segment of the) fcc grid graph 

is given by 

 

3

141525 23 nnn 
. (4.5) 
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Proof: The proof goes by induction on the number of unit cells.  

The base of the induction is the case n = 1. In this case, there is only 6 centers (side 

and shared center points), and the sum of distances between these central points 

equals to 18 (there are 12 pairs of neighbour centers and 3 pairs such that they are 

opposite to each other, and thus, their distance is 2), and the formula (4.5) holds. 

Now, let us assume that the formula is satisfied if n = k. 

Let us prove that it also holds for the value n = k + 1. By Lemma 4.2, we know the 

sum of the distances obtained by the new central points and old centrals. Applying 

this, with the induction hypothesis, we must prove that the LHS equals to the RHS, 

so we have: 

3

)1(14)1(15)1(25
)183525(

3

141525 23
2

23 


 kkk
kk

kkk
. 

3

)1(14)1(15)1(25

3

5410575

3

141525 23223 





 kkkkkkkk

3

2914301525757525

3

541199025 22323 


 kkkkkkkkk

 

.
3

541199025

3

541199025 2323 


 kkkkkk

 

So the LHS equals to the RHS and the proof of the induction is complete. By the 

induction, it follows that formula (4.5) is true for all (non-negative integer value of) 

n� 

4.1.2 Sum of distances between Central Points and Border Points 

In these subsections we compute the distances between (side and shared) central 

points and border points. 

Lemma 4.4. Let k fcc unit cells be connected in a row and let a new fcc unit cell be 

connected to the end of this row. Then the sum of the distances between old central 



35 

points and new border points plus the sum of the distances between the new central 

points and old border points is 

 688840 2  kk . (4.6) 

Proof: 

In this proof we have to calculate the sum of total distance in the following ways: 

  The sum of the distance between one of the new border points (e.g. vN1
) and 

all shared centers, we have 

.23)2)(1(
2

)2)(1(2

))1(321(2)1(2642

2 




kkkk
kk

kk

 

We have to multiply it by 4 since we have 4 new border points and the 

formula is 

.8124 2  kk  

  The sum of the distance between one of new border points and all side 

centers: kkkk 84)1)1((4))12(753(4 22  ; 

It needs to be multiplied by 4, since we have 4 new border points: the 

formula for this sum will be 

.3216 2 kk   

  The total sum of the distances between new border points and new side 

centers is 24. The total sum of the distances between new border points and 

new shared centers (i.e., CN4
) is 4

4

1

)
4

,( 



i

NC
iNV  . The total sum of new 

border points and new centers is 28),(
4

1

5

1


 i j

jNC
iNVGd . (For each of the four 

border points it is 2213  ) 

  The sum of distances between old border points and the new shared center 

(CN4) is: 
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.8124)2)(1(4))1(2642(4 2  kkkkk  

  The sum of the distance between old border points and new side center 

points is given by  

  )6)1)1((4(4)6))12(753(4(4 2kk .243216 2  kk  

Finally, the final formula to calculate the total sum of the distances between old 

central points and new borders points plus the sum of the distances between the new 

central points and old border points plus the sum of distances between new border 

and center points is the sum of all previous distances, i.e.,: 

.688840243216812442432168124 22222  kkkkkkkkkk                                                                                          � 

Lemma 4.5. Let n fcc unit cells be connected in a row. Then the sum of all distances 

between central points and border points in this fcc grid graph is given by 

 

3

12927240 23  nnn
. (4.7) 

Proof: The proof goes by induction on n.  

The base of the induction is the case n = 1. In this case, there is only 6 centers, and it 

is connected to every of the 8 corners (border points) of the unit cell as follows: Each 

center has 4 neighbour border points and 4 other border points with distance 2. In 

this way, the sum is ,726)244(   and also, formula (4.7) gives this value. 

Let us assume that the formula satisfies if n = k. Let us prove that it also satisfies if  

n = k + 1. By Lemma 4.4, we know the sum of the new distances obtained between 

old central points and new border points (of the (k + 1)st unit cell), between the 

centers of the new, (k + 1)st unit cell and border points (of the previous k unit cells), 

and between the new central and the new border points (of the (k + 1)st unit cell). 
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Applying this, with the induction hypothesis gives the following statement that is 

needed to be proven: 

We have to prove that the LHS equals to the RHS: 

3

12)1(92)1(72)1(40
)688840(

3

12927240 23
2

23 


 kkk
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3

176236724012012040

3

216356192340 2232 
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 kkkkkkkk

 

3

21635619240

3

21635619240 2323 


 kkkkkk
. 

Now, we proved that the LHS equals to the RHS.                                                                                                                                                                                                                                                                                              � 

4.1.3 Sum of Distances of Border Points 

Lemma 4.6. Let k fcc unit cells be connected in a row. If a new fcc unit cell is 

connected to the previous k cells forming a row with k + 1 cells, then the sum of all 

distances between new and old border points is 

 
484816 2  kk . (4.8)

 

Proof: Observe that the sum of distances between all pairs of the 4 new vertices is 12. 

(See Figure 5, for instance, for the distance between vN1
 and vN2

: that is 2, i.e.,  

dG (vN1
,vN2

) = 2. Moreover there are 6
2

4








  such pairs).  

Now, let us compute the sum of distances between one of the new border points (e.g., 

vN1
) and all old border points: 

1)2)(1(414)1(2464442  kkk . 

This result is multiplied by 4 since we have 4 new border vertices (vN1
, vN2

, vN3
, vN4

). 

Thus we have: 
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4)2)(1(16)1)2)(1(4(4  kkkk  

Finally, the total sum of distances between all new and old border points is given by 

the sum of the previous two values: 

484816124)2)(1(16 2  kkkk . 

Thus, formula (4.8) is obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     � 

Lemma 4.7. Let n fcc unit cells be connected in a row. Then the sum of all distances 

between pairs of border points is given by 

 

3

36804816 23  nnn
. (4.9) 

Proof: The proof goes by induction on n. 

The base of the induction is the case n = 1. In this case, there are 8 corners (border 

points) of the unit cell. Each pair of them has a distance 2, but pairs of opposite 

corners that have distance 3, therefore the sum of distances between all pairs of 

border vertices is: .6034224   As one can easily check, formula (4.9) gives the 

same value for n = 1. 

Now, let us assume that the formula satisfies if n = k. Let us prove that it also 

satisfies if n = k + 1. By Lemma 4.6, we know the sum of the distances obtained by 

the old and new border points. Applying this, with the induction hypothesis gives the 

statement that is needed to be proven 
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 kkkkkkkk

3
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3

1802249616 2223 


 kkkkkkkk
 

3

1802249616

3

1802249616 2323 


 kkkkkk
. 

So the LHS equals to the RHS.                                                                                                                                                                                                                                                                                                                                                                                                                                                           � 

4.1.4 Sum of All Distances: The Main Formula 

Based on the results proven in the previous three subsections, we are able to state our 

first main result about fcc grid graph. 

Theorem 4.1. Let n be the number of fcc unit cells that are connected in a row. Then 

the formula to find WI for this graph is: 

 16624527)( 23  nnnnWI . (4.10) 

Proof: The formula is the sum of equations (4.5), (4.7) and (4.9). All possible 

distances are considered in exactly one of the Lemmas 4.3, 4.5 and 4.7, and then, we 

will prove it using direct proof by finding the sum of equations (4.5), (4.7) and (4.9). 

So we have 

3

36804816

3

12927240

3

141525 232323 





  nnnnnnnnn , and thus, 

16624527)( 23  nnnnWI . 

Our theorem, the formula of equation (4.10), is proven.                                                                                                                                                                                                                                � 

 
Using formula (4.10) one can calculate WI for graph of fcc unit cells connected in a 

row, as we will present some examples in the next table.  
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Table 2. Shows some of the first elements of the sequences we are working with, i.e., 

the values computed by equations (4.5), (4.7), (4.9) and (4.10) for some small values 

of n. The WI values are shown in the last row of the table. 

Table 2: Some values of the subsums and WI for few fcc unit cells in a row 
Number of fcc 
unit cells in a row (n) 

1 2 3 4 5 6 

Equation (4.9) 60 172 380 716 1212 1900 

Equation (4.7) 72 268 672 1364 2424 3932 

Equation (4.5) 18 96 284 632 1190 2008 

Wiener index WI 150 536 1336 2712 4826 7840 

 

4.2 Computing the hyper-Wiener Index for fcc Unit Cells connected 

in a Row 

The general formula to compute WW for a graph is given in (4.11):  

  



)(,

2 ),(),(
4

1
)(

GVvu
GG vudvudGWW ,       (4.11) 

We are computing WW again by summing up combined distance as we did in section 

3.2 and 3.2.4 for bcc grid. In fcc grid we have to compute the distance between: 

  unordered pairs of face centers, 

  pairs of face centers and cube vertices, and 

  unordered pairs of cube vertices. 

Our proofs use mathematical induction: we compute the subsums for a unit cell, and 

provide formula for graph containing exactly k unit cells in a row. Then it will be 

shown that same formula works for a graph containing k+1 unit cells in a row. In 

proofs we refer to Figure 5.  
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To make our computation more readable and more easily understandable we 

differentiate two subtypes of face centers:  

  the side centers (or side center points) are located on the side (i.e., on the 

bottom, top, in front or at back side, i.e., on one of the rectangular side of the 

square column build by unit cells), e.g., C2 and C5 in Figure 5; and  

  the shared centers (or shared center points) are the face centers on the squares, 

either on the two ends or somewhere inside the body, e.g., C1 and C3 in 

Figure 5. 

4.2.1 Sum of combined Distances between Pairs of Face Centers 

Let us start by computing how much the sum of combined distances among face 

centers increases when a new unit cell is attached to the end of the row (Figure 5). 

Lemma 4.8. Let k fcc unit cells be connected in a row, and now, a new unit cell is 

connected to the end of the row to form a graph that represents k+1 unit cells in a 

row. Then the sum of combined distances between pairs of new face centers and 

between pairs of a new and an old face center is 

 

3

126251285100 23  kkk
 (4.12)

Proof: 

In our proof, we will calculate the sum of combined distance as follows: 

  First of all, and according to Figure 5, the sum of distances between the pairs 

built up from the new five center points equals to 

12221414),(
2

1 5

1

5

1


 i j

NNG ji
CCd  (the distance of the new shared 

center CN4
 is 1 from the new side centers, e.g. CN1

; there are 4 pairs of 
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neighbour side centers, e.g., CN1
 and CN2

; and finally, there are 2 pairs of non-

neighbour side centers, e.g., CN1
 and CN3

, such that their distances are 2). 

Consequently, the squares of the distances between the pairs built up from the 

new five side center points equals to 16. This is summed up as 12 + 16 = 28. 

  Next, we will calculate the distance between the new shared center (CN4
) and 

old shared centers (including, e.g., C
1
). These distances are the even numbers, 

and thus, their sum 

))1(321(21)1(2161412  kk  

.23)2)(1(
2

)2)(1(2 2 


kkkk
kk

 

The sum of their squares, 

))1(321(41))1(2(161412 22222222  kk  
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6

)32)(2)(1(4 23 
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The sum of two previous equations: 

3

1835214
23

3

1226184 23
2
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 kkk
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  Next, we will calculate the distance between new side centers and old shared 

centers. So we have 2)1()12(531  kk . Then we multiply it by 4 

since we have 4 new side centers to get the formula .)1(4 2k  

The sum of two previous equations:  

3

24686016
)1(4

3

12444816 23
2

23 


 kkk
k

kkk . 
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  Next, we need to calculate the distance between new side centers i.e., CN1, CN2, 

CN3
 CN5

 and old side centers. For any of the new side centers we have  

.441
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kk
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
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




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Then we multiply it by 4 since we have 4 new side centers to get the 

formula .1616 2 kk   the sum of the squares of these distances can be computed as 

)436164(4)2(4)4(4)2(4 2222 kk   . 

Then we multiply this value also by 4, and we get the formula 

3

329664 23 kkk 
. 

The sum of two previous formulas: 

 
3

8014464
1616

3

329664 23
2

23 kkk
kk

kkk 



. 

  Finally, we will calculate the sum of the distances between the new shared 

center, i.e., CN4 and all old side centers:  

)1)1((4))12(753(4 2  kk , 

That is,  

.84 2 kk   

The sum of their squares: 

3

444816
))12(753(4

23
2222 kkk

k


 
 

The sum of two previously computed values: 

 
3

686016
84

3

444816 23
2

23 kkk
kk

kkk 


 . 
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The final formula to calculate the sum of total distance between new central points 

and between new central points and old central points, when we add a new fcc unit 

cell to the k fcc unit cells connected in a row, is given by: 














3

686016

3

8014464

3

24686016

3

1835214
28

23232323 kkkkkkkkkkkk
 

3

126251285100 23 


kkk
. 

Thus the proof of lemma is finished.                                                                                                                                                                                                                                                                                                                                                                                                □ 

Lemma 4.9. Let n fcc unit cells be connected in a row. Then the sum of combined 

distances between center vertices in this fcc grid graph is 

 

3

4884525 234 nnnn  . (4.13)

Proof: The proof goes by induction on the number of unit cells.  

The base of the induction is the case n = 1. In this case, there is only 6 face centers 

(both side and shared center points are counted), and the sum of combined distances 

between these central points equals to 42 (there are 12 pairs of neighbour centers and 

3 pairs such that they are opposite to each other, and thus, their distance is 2), and the 

formula (4.13) holds. 

Now, let us assume that the formula is satisfied if n = k. 

Let us prove that it also holds for the value n = k + 1. By Lemma 4.8, we know the 

sum of the combined distances obtained by the new central points and old centrals. 

Applying this, with the induction hypothesis, we must prove that the LHS equals to 

the RHS, so we have: 
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3

)1(48)1(8)1(45)1(25

3
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3

4884525 23423234 

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

 kkkkkkkkkkk

3

12629929314525

3

12629929314525 234234 


 kkkkkkkk
 
 

So the LHS equals to the RHS and the proof of the induction is complete. By the 

induction, it follows that formula (4.13) is true for all (non-negative integer value of) 

n□ 

4.2.2 Sum of combined Distances between pairs of Face Centers and Cube 

Vertices 

Lemma 4.10. Let k fcc unit cells be connected in a row and another, new, fcc unit 

cell is connected to the end of this row. Then the sum of combined distances between 

old face centers and new cube vertices plus the sum of combined distances between 

pairs formed by a new face center and an old cube vertex is 

 
.

3

552824648160 23  kkk
 (4.14) 

Proof: In this proof we have to calculate the sum of total distance in the following 

ways: 

  The sum of the distance between one of the new border points (e.g. vN1
) and all 

old shared centers, we have  

.23)2)(1(
2

)2)(1(2

))1(321(2)1(2642

2 




kkkk
kk

kk

 

We have to multiply it by 4 since we have 4 new border points and the 

formula is .8124 2  kk then, the sum of the squares of these distances is  

  
3

481047216 23
222222 1...116)))1(2(642(4




kkk
kk  

The sum of two previous formulas are:  
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3

721408416

3

481047216
8124

2323
2 





kkkkkk

kk
. 

  The sum of the distance between one of the new cube points and all side 

centers is: 

kkkk 84)1)1((4))12(753(4 22  ; 

It needs to be multiplied it by 4, since we have 4 new border points: the 

formula for this sum will be 

.3216 2 kk   

The sum of the second moment is: 

3

17619264
))12(...53(16

23
222 kkk

k


 . 

 By summing up the two formulas, we have: 

3

27224064

3

17619264
3216

2323
2 kkkkkk

kk






 

  The total sum of the distances between new cube vertices and new side centers 

is 24 (8 times 1, when the cube vertex is of the corner of the same square as the 

face center is lying, e.g., VN1
 and CN3

; plus 8 times 2, for other pairs, e.g., VN1
 

and CN5
) and the square of the distances between new cube points and new side 

centers is 8·12+8·22=40. Further, the total sum of the distances between new 

cube vertices and the new shared center (i.e., CN4
) is 4

4

1

)
4

,( 



i

N
C

Ni
V  (all the 4 

new cube points are neighbours of the new shared center). Moreover, the sum of 

the squares of the distances between the new cube points and the new shared 

center is also 4. (The total sum of distances between new cube points and new 

face centers is, then 28424),(
4

1

5

1


 i j jNC

iNVGd , actually, for each of the new 
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four cube points it is ( 2213  ). The total combined distance between these 

vertices is .72444024    

  The sum of distances between old cube points and the new shared center, CN4
, 

is 

.8124)2)(1(4))1(2642(4 2  kkkkk  

The sum of the squares is: 

.
3

481047216
))1(941(16))1(4642(4

23
22222 


kkk
kk   

The sum of two previous formulas are:  
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
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kkkkkk

kk . 

  The sum of the distance between old cube vertices and new side center points 

is given by  

.243216)2211)1)1((4(4)6))12(753(4(4 22  kkkk  

The sum of the squared distance is: 

3
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The sum of two previous formulas are:  
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
kkkkkk

kk
 

Finally, the formula to calculate the total sum of the combined distances between old 

face center points and new cube points, plus the sum of the combined distances 

between the new face center points and old cube points, plus the sum of combined 
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distances between new cube points and new face centers, i.e., it is the sum of all 

previous combined distances listed by cases, i.e.,: 













3

19227224064

3

721408416
72

3

27224064

3

721408416 23232323 kkkkkkkkkkkk

3

552824648160 23 


kkk
 

Thus the proof of the lemma is finished.                                                                                                                                                                                                                                                                                                                                                                                                 □ 

Lemma 4.11. Let n fcc unit cells be connected in a row. Then the sum of combined 

distances between center vertices and border vertices in this fcc grid graph is given 

by 

 
.

3

2424812813640 234  nnnn
 (4.15)

Proof: The proof goes by induction on n.  

The base of the induction is the case n = 1. In this case, there are only 6 face centers, 

and 8 cube points. Each face center has 4 neighbour cube vertices, and 4 other at 

distance 2. In this way, the combined distance between face centers and cube vertices 

is 6(4+4·2+4·12+4·22) = 192 and also, formula (4.15) gives this value. 

Let us assume that the formula satisfies if n = k. Let us prove that it also satisfies if  

n = k + 1. By Lemma 4.10, we know the sum of the new combined distances 

obtained between old central points and new border points (of the (k + 1)st unit cell), 

between the centers of the new, (k + 1)st unit cell and border points (of the previous k 

unit cells), and between the new central and the new border points (of the (k + 1)st 

unit cell). Applying this, with the induction hypothesis, we have to prove that the 

LHS equals to the RHS: 
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3
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576107277629640
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576107277629640 234234 
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Now, we proved that the LHS equals to the RHS.                                                                                                                                                                                                                                                                   □ 

4.2.3 Sum of Combined Distances between Pairs of Cube Vertices  

Lemma 4.12. Let k fcc unit cells be connected in a row. If a new fcc unit cell is 

connected to the previous k cells forming a row with k+1 cells, then the sum of 

combined distances between new and old cube vertices is 

 
.

3

46856033664 23  kkk
 (4.16) 

Proof: In this proof we have to calculate the sum of total distance in the following 

ways: 

  Observe that the sum of distances between all pairs of the 4 new cube vertices 

is summed up to 12. (See Figure 5, for instance, for the distance between VN1
 

and VN2
: that is 2, i.e., dG (VN1

, VN2
) = 2. Moreover, there are 6

2

4








  such pairs 

of vertices). Now, we have to compute the sum of the squares of the 

distances: the total sum of the square of the distance between each pair of 

new border vertices is 622 = 24. Thus, the combined distance between new 

cube vertices is summed up to 12 + 24 = 36.  

  Now, let us compute the sum of distances between one of the new cube 

vertices (e.g., VN1
) and all old cube points: 

1)2)(1(414)1(2464442  kkk  
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This result is multiplied it by 4 since we have 4 new cube vertices (VN1
, VN2

, 

VN3
, and VN4

). Thus, the sum of distances is 

 )1)2)(1(4(4 kk 3248164)2)(1(16 2  kkkk . 

Next, by computing the sum of the second moment distance, we have: 
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Finally, the total combined sum is: 

3

46856033664

3

25241628864
364)2)(1(16

2323 





 kkkkkk
kk
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Thus, formula (4.16) is obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                         □     

             Lemma 4.13. Let n fcc unit cells be connected in a row. Then the sum of combined 

distances between pairs of cube vertices is given by 

 
.

3

1082441288016 234  nnnn
 (4.17) 

Proof: The proof goes by induction on n. 

The base of the induction is the case n = 1. In this case, there are 8 corners (cube 

points) of the unit cell. Each pair of them has a distance 2, but pairs of opposite 

corners that have distance 3. The sum of distances between all pairs of these cube 

vertices is: .6034224   The sum of squares of these distances is 24·22+4·32 = 132. 

Therefore, the sum of combined distances between all pairs of border vertices is 192, 

and also, formula (4.17) gives this value for n = 1. 
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Now, let us assume that the formula satisfies if n = k. Let us prove that it also 

satisfies if n = k + 1. By Lemma 4.12, we know the sum of the combined distances 

obtained by the old and new border points. Applying this, with the induction 

hypothesis gives the statement that is needed to be proven 

3
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3
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For the right hand part, we have the following mathematical simplifications: 

3

108244244)12(128)133(80)1464(16 223234 


kkkkkkkkkk  

3

10824424412825612880240240801664966416 223234  kkkkkkkkkk

3

57680446414416 234  kkkk  

After that we have 

3
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3
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

 kkkkkkkk

 

Thus, the LHS equals to the RHS.                                                                                                                                                                                                                                                                                                                                                                                                                                      □ 

4.2.4 The Hyper-Wiener Index  

Based on the results proven in the previous subsections, we are able to state our next 

main result. 

Theorem 4.2: Let n be the number of fcc unit cells that are connected in a row. Then 

the formula to find WW for grid of fcc unit cells connected in row,  

 
.

6

13254026426181 234  nnnn
 (4.18)
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Proof: 

The final formula to calculate WW (see eq. 3.9) is the half sum of equations (4.13), 

(4.15) and (4.17). All possible distances are considered in exactly one of the lemmas 

4.9, 4.11 and 4.13, and then, by simple calculation the sum of those formulas 


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 
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 .

3
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2

1 234 nnnn  
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6
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So we have the general formula to find WW for graphs of fcc unit cells that are 

connected in a row. 

Table 3 shows some of first elements of our sequences, i.e., the values computed by 

equations (4.13), (4.15), (4.17) and (4.18) for some small value of n.  

Table 3: Some values of the subsums, and WW for few fcc unit cells in a row. 
Number of fcc  
unit cells (n) 

1 2 3 4 5 

Equation (4.13) 42 296 1152 3200 7230 

Equation (4.15) 192 920 2944 7336 15488 

Equation (4.17) 192 668 1816 4116 8176 

Hyper-Wiener index WW 213 942 2956 7326 15477 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

Grids, and specially, non-traditional three-dimensional grids are lying in the 

intersection of digital and discrete geometry, graph and lattice theory, 

crystallography and other applied fields in physics and chemistry. One of the most 

important topological/geometrical indices of graph structure is the WI. WI is a graph 

invariant that belongs to the molecular structure descriptors, called topological 

indices. These indices are widely used by chemists to design molecules with desired 

properties. After the success of WI, several other important topological/geometrical 

indices are defined for various graph structures; one of those is the WW. WW is also 

used as a structure-descriptor for detecting physicochemical characteristics of 

organic compounds. It is one of the recent distance-based graph invariants, often 

used for agriculture, pharmacology, environment-protection, etc. 

In this thesis, the bcc grid is investigated in which a finite number of unit cells are 

placed next to each other at a line. We have formulated and proved the computation 

of WI and WW for these graphs. The fcc lattice is analysed also in this thesis, 

especially, when a finite number of unit cells are placed next to each other at a line. 

We have presented and proved formulas for the computation of WI and WW for fcc 

grid graphs.  
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5.2 Future Work 

There are several ways to continue the line of the research that we have just 

started here: 

  One can compute other topological indices, e.g., Szeged index for these graphs. 

The Szeged index of a graph G is computed as follows: for each edge eu,v of the 

graph G, let nu(e) be the number of vertices w of G that has smaller distance 

dG(u,w) from vertex u than from vertex v. Then the sum 
 )(,

)()(
GEe

vu

vu

enen  gives the 

Szeged index of G. See, for instance, [19], for some calculations of Szeged index 

of some two-dimensional regular grid graphs. 

  One can extend the results to two and three dimensional rectangles and blocks 

of unit cells both for fcc grids and bcc grids. 

  Moreover, other non-traditional grids, e.g., n×1×1 diamond cubic grid can also 

be involved to similar studies. 

  Moreover, other non-traditional grids, e.g., n×n×1 fcc grid can also be involved 

to similar studies. 

  Finally, having results on various crystal structures, the results could be 

compared to various physical and chemical properties of the crystals belonging 

to these classes. We believe that these indices are related to some of these 

properties and thus these indices can have direct applications. 
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