
	 	

	

Development of Topological Mappings for
Autonomous Agricultural Vehicles

Moein Mehrolhassani

Submitted to the

Institute of Graduate Studies and Research
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Eastern Mediterranean University

September 2016
Gazimağusa, North Cyprus

	 	

	

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Mustafa Tümer

Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor
of Philosophy in Computer Engineering.

Prof. Dr. H. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Doctor of Philosophy in Computer
Engineering.

Asst. Prof. Dr. Mehmet Bodur

Supervisor

 Examining Committee

1. Prof. Dr. Atilla Elçi _______________________________

2. Prof. Dr. Kemal Leblebicioğlu _______________________________

3. Asst. Prof. Dr. Adnan Acan _______________________________

4.	Asst. Prof. Dr. Mehmet Bodur _______________________________

5. Asst. Prof. Dr. Ahmet Ünveren _______________________________

	 	

iii
	

ABSTRACT

Automation system of agricultural crop plantation requires many subsystems such as

low level tracking, path planning, obstacle detection, manoeuvres at the path

terminations, etc. This study proposes semantic annotation for the information flow

between the automation subsystems, filling the gap between the planning and

implementation of crop production by developing two missing subunits:

determination of obstacles that may threaten agricultural vehicles using the satellite

images of target field, and determination of proper path for the agricultural vehicles

to process rows of crops. For the attributes of obstacles, semantic annotation on the

map of target field is preferred using Resource Description Framework/Extensible

Mark-up Language (RDF/XML) in order to be exchangeable and reusable with other

stages, systems, devices and applications. Developed Matlab code determines the

target field by a GPS coordinate inside the field. An interactive initialization stage

provides download of the satellite images from Google Maps API for determination

of the field boundaries. The code for detection and positioning of the circular shaped

obstacles are using Prewitt, Sobel, Roberts, and Canny edge detection, and Hough

transformation algorithms. The developed method is tested on 51 target fields. It

provides 45% improvement in detection error rate compared to raw application of the

algorithms.

Keywords: Image processing, Obstacle detection, Path planning, Semantic

annotation, RDF/XML mapping.

	 	

iv
	

ÖZ

Tarımsal tahıl üretimi otomasyon sistemlerinde alt düzey iz takibi, yol planlaması,

engel tayini, yol sonunda manevra gibi birçok alt sistem gerekir. Bu çalışma, tarımsal

otomasyonu gerçekleştirmede gereken tarım aracına tehdit olabilecek engelleri uydu

görüntüsünden tanıma ve araçların ürün sıralarını işlemesine uygun yol planlama alt

sistemleri arasındaki bilgi akışının semantik işaretleme yoluyla çözülmesi

önerilmektedir. Engellerin özellikleri hedef tarlanın haritasına RDF/XML kullanarak

semantik işaretleme yöntemiyle kaydedilmekte, böylece birimler arasında verimli

bilgi akışı sağlanmaktadır. Bilginin başka sistem, araç, ve uygulamalar için

dönüştürülebilir ve tekrar kullanılabilirliği için semantik işaretlemede RDF/XML

tercih edilmiştir. Geliştirilen Matlab kodu tarlayı içindeki her hangi bir GPS

koordinatından belirlemektedir. Google Maps API kullanarak indirilen uydu

görüntüsünde tarla sınırları etkileşimli giriş aşamasıyla belirlenmektedir. Çembersi

biçimleri bulmak ve yerini belirlemek üzere Prewitt, Sobel, Roberts, ve Canny kenar

belirleme ile Hough dönüşümü kullanılmaktadır. Geliştirilen yöntem 51 hedef tarla

üzerinde sınanmıştır. Geliştirilen yöntem, kenar bulma ve Hough dönüşümlerinin

ham kullanımına göre engel bulma hatasını %45 düşürmüştür.

Anahtar Sözcükler: Görüntü işleme, Engel bulma, Yol planlama, Semantik

işaretleme, RDF/XML haritalama.

	 	

v
		

ACKNOWLEDGMENT

Foremost, I would like to express my sincere gratitude to my supervisor Asst. Prof.

Dr. Mehmet Bodur for supporting me during this study. His patience, motivation,

passion, and immense knowledge always encouraged me to always keep going. His

supervision helped me in all the time of study and writing of this thesis.

I would like to thank my thesis committee members Asst. Prof. Dr. Adnan Acan,

and, Asst. Prof. Dr. Ahmet Ünveren for their insightful comments and

encouragement, but also for the hard question, which motivated me to widen my

research from various perspectives.

My sincere thanks also goes to Prof. Dr. Atilla Elçi who I had the honour to be his

student during my master degree. I would also like to thank Prof. Dr. Kemal

Leblebicioğlu for his valuable comments in my PhD thesis defence.

Last but not the least important, I owe more than thanks to my family members

including my parents, brother, sister and also my wife for their financial and

emotional supports and encouragements through my study.

	 	

vi
	

TABLE OF CONTENTS

ABSTRACT .. iii	

ÖZ ... iv	

ACKNOWLEDGMENT .. v	

LIST OF FIGURES .. ix	

LIST OF TABLES .. xi	

LIST OF ABBREVIATIONS .. xii	

1 INTRODUCTION .. 1	

1.1 Automation of Crop Plantation in Agricultural Industry 1	

1.2 Agricultural Path Planning and Image Processing .. 2	

1.3 Industrial Automation of Crop Plantation Systems .. 6	

1.4 Path Planning Using Satellite Images ... 8	

1.4 Access to Google Satellite Images .. 9	

1.5 Coordinate Systems of Google Satellite Images ... 10	

1.6 Image Processing Tools for Detection and Locating Obstacles. 12	

1.6.1 Image Filtering and Processing .. 13	

1.7 Annotation of Information into Map Images .. 14	

1.8 Focus of the Thesis, and the Problem Definition .. 14	

1.9 Contents of Further Chapters .. 17	

2 DESCRIPTION OF PROPOSED SYSTEM .. 18	

2.1 System Architecture .. 18	

2.2 Initialization .. 19	

2.3 Segmentation and Extraction of Target Field ... 19	

2.4 Detection of Obstacles on the Field .. 21	

	 	

vii
	

2.4.1 Detection Algorithm ... 21	

2.4.2 Calculation of Positions ... 23	

2.4.3 Semantic Annotation .. 28	

2.4.4 Improved Detection Algorithm .. 30	

2.4.4.1 T-range .. 31	

2.4.4.2 Max-of-All .. 32	

2.4.4.3 Double Layered Check (DLC) .. 32	

2.4.5 Accuracy and Error Evaluation .. 33	

2.5 Trajectory Points ... 34	

2.5.1 Generation of Trajectories .. 34	

2.5.2 Annotation of Trajectory Points ... 38	

2.5.3 Semantic Annotation .. 40	

3 RESULTS ... 42	

3.1 Extraction and Detection ... 42	

3.1.1 Canny ... 43	

3.1.2 Prewitt .. 44	

3.1.3 Roberts ... 44	

3.1.4 Sobel ... 45	

3.1.5 Detection Improvement Results ... 46	

3.1.5.1 T-Range Results .. 46	

3.1.5.2 Max of All Results .. 47	

3.1.5.3 DLC Results .. 49	

3.1.6 FPE and FNE Reduction .. 50	

3.1.7 Locating Accuracy Check .. 52	

3.2 Trajectory Points Generation .. 54	

	 	

viii
	

3.3 Semantic Annotation ... 58	

4 DISCUSSION ... 63	

4.1 Effect of Zoom Level and Noise Reduction Algorithm 63	

4.2 Effect of Edge Detection Algorithms .. 65	

4.3 Discussion on Path Planning Methods and Semantic Annotation 71	

5 CONCLUSION ... 74	

REFERENCES .. 77	

APPENDICES ... 86	

Appendix A: Segmentation and Extraction Source Code 87	

Appendix B: Obstacle Detection Source Code ... 91	

Appendix C: Duplicity Check Source Code ... 93	

Appendix D: Code for Geographical Positioning of Obstacles 94	

Appendix E: Code for Semantic Annotation of Obstacles 95	

Appendix F: Code for DLC Algorithm ... 98	

Appendix G: Code for Detection and Verification using Grey-Level Intensity

Threshold ... 101	

Appendix H: Obstacle and Error Counts by Default Threshold 104	

Appendix I: Obstacle and Error Counts for DLC .. 106	

	

	 	

ix
	

LIST OF FIGURES

Figure 1: Sample of Google-Maps API to access a satellite image 10	

Figure 2: Google’s method of tiling the Mercator projection of the Earth 12	

Figure 3: Inverted outputs of edge detection methods ... 14	

Figure 4: Four stages of the developed system .. 18	

Figure 5: Progress of image processes to extract the field and obstacles. 21	

Figure 6: Images while morphological reconstruction to filter noise, 22	

Figure 7. GPS coordinates of a location. ... 23	

Figure 8. Trimming image size for the target field .. 28	

Figure 9: RDF/XML data graph of detected tree ... 29	

Figure 10: Semantic annotation structure of obstacles in RDF/XML file 30	

Figure 11: Detection results using threshold range on Sobel. 31	

Figure 12: Production reference and trajectory points, a- overview, b- details 37	

Figure 13: An obstacle on a track-line appears in the form of a gap 40	

Figure 14: RDF/XML data graph representing a trajectory point 40	

Figure 15: Semantic annotation structure of the trajectory points 41	

Figure 16: Examples of cropped images with varius size, shape and complexity 43	

Figure 17: Canny edge and obstacle detection results ... 43	

Figure 18: Canny edge and obstacle detection results ... 44	

Figure 19: Robert edge and obstacle detection results ... 45	

Figure 20: Samples results of Sobel's edge and obstacle detection 46	

Figure 21: T-Range outcomes on Sobel comparing to default threshold 47	

Figure 22: Max-of-All method comparing to Sobel with default parameter sets 48	

Figure 23: Comparison between T-Range and Max-of-All 48	

	 	

x
		

Figure 24: DLC detection results comparing to Sobel with default paameter-sets ... 49	

Figure 25: Classes of correct and incorrect detections .. 50	

Figure 26: FNE improvements using DLC .. 51	

Figure 27: Suppressed FNE using DLC... 52	

Figure 28: Developed system’s obstacle positioning accuracy 53	

Figure 29: Detected obstacle dimensions calculated by the developed method

compared with google and its actual size (from left to right) 54	

Figure 30: An example of parallel path planning in an agricultural field 55	

Figure 31: Trajectory reference points plotted on the field`s image 55	

Figure 32: Demonstrating the longest straight edge of the field 56	

Figure 33: Graphical and semantic annotation of obstacles, 59	

Figure 34:Section of the annotation file in RDF/XML syntax format 62	

Figure 35: Correlation between zoom level on the map and the image quality 64	

Figure 36: No. of detections using the entire range threshold on Sobel in all fields . 66	

Figure 37: Maximum detection of obstacle-candidates for edge detection methods

using dynamic threshold .. 69	

Figure 38: Proof of produced trajectory points being in a straight line in pixels 72	

Figure 39: Proof of produced trajectory points being in a straight line in GPS

coordinates ... 72	

Figure 40: Sample output of a path planning algorithm .. 73	

	 	

xi
	

LIST OF TABLES

Table 1: Trajectory points of each track in pixel and GPS pairs 39	

Table 2: Statistics of the trajectory path presented in Figure 28 56	

Table 3: Track and segment details of the example in Figure 28 57	

Table 4: Computation time and details for various row distances 58	

Table 5: Obstacle detection and positioning data included in semantic annotation .. 60	

Table 6: Array of trajectory points in pairs of x, y and lat, long. 61	

Table 7: Initial comparison of edge detection methods ... 65	

Table 8: Detection improvements from Sobel with static threshold value to Sobel

with dynamic threshold .. 67	

Table 9: Correct detections by Sobel with default-threshold and Max-of-All methods

.. 68	

Table 10: DLC vs. Sobel with default threshold in detection 70	

	

	 	

xii
	

LIST OF ABBREVIATIONS

ACC Adaptive Combination of Classifiers

API Application Program Interface

BBP Bounding-box’s start point of crop

CCP Corrected center point

DLC Double Layered Check

FNE False negative error, detected obstacle actually does not exist

FPE False positive error the missed obstacle in the detection

GIS Geographic information system

GPS Global Positioning System,

OCP Original center pixel

SEGON Dual multiScalE Graylevel mOrphological open and close
.recoNstructions

SHT Standard Hough Transform

XML Extensible Mark-up Language

Ai ith anchor point

cr/d Constant, p/180

d(p1,p2) distance from point-1 to point-2

dms Crop row spacing in meters; distance between crop tracks in meters.

dps Crop row spacing in pixels; distance between crop tracks in pixels.

EDm Line segment of the longest edge of the target field.	EDm =
{pEDm,1=(xEDm,1, .yEDm,1), pEDm,2= (xEDm,2, yEDm,2)}

G Gap on reference trajectory representing the area occupied by an
.obstacle. G = {(xG,1,yG,1), (xG,2,yG,2)}

LE Circumference of Earth along Equator line.

	 	

xiii
	

latC The angular latitude in degrees of centre point C

lngC The angular longitude in degrees of centre point C

mEDm Slope of longest edge of the target field.

mEDmp Slope of the perpendicular line to EDm.

NG,I Number of gaps on ith track-line

NR Number of track-lines, number of anchor points that generates valid
.reference trajectories.

NS,I Number of reference trajectory segments on ith track-line.

NS Total number of reference trajectory segments.

Nx Width of image in x-direction.

Nz Number of pixels in x-direction covering circumference of the Earth,
Nz=2Z+8.

Ni pixel colour value (2.3)

pOCP original centre pixel coordinate pOCP = (xOCP, yOCP)

pBBP bounding-box start pixel coordinate pBBP = (xBBP, yBBP)

pCCP correction offset in pixels pCCP = (xCCP, yCCP)

pT,i pixel coordinates of objects pT,i = (xT,i , yT,i)

pi pixel coordinates of point-I pi = (xi, yi).

pEDmp midpoint of line segment EDm, pEDmp= (xEDmp, yEDmp).

pixel(x,y) coordinate of location in pixels

Ri segmented regions (2.3)

ℛ𝛼#$% minimum obstacle radius

ℛ𝛼#&' maximum obstacle radius.

tile(x,y) coordinate of tile numbers in tile matrix of a zoom level.

rE average radius of Earth sea level at Equator line

(xR,i,k , yR,i,k) pixel coordinate of reference trajectory points.

	 	

xiv
	

Z Google-Maps service zoom level.

DC Earth resolution at centre point C of tile; distance on Earth per pixel
.on a tile of map.

DE length on Equator in meters per pixel of Google-Map image along x-
.direction.

DG GPS resolution of image; angular degrees of latitude per pixel.

θe constant, 360o, angular distance of one revolution around Earth.

	 	

1	
	

Chapter 1

INTRODUCTION

1.1 Automation of Crop Plantation in Agricultural Industry

Developments of modern agricultural machinery and genetically improved seed

technology opened a new perspective in agricultural production that allows very high

efficiency per labour through the mechanization of plantation and harvest of

agricultural crop production, which is a part of agricultural industrialization. Parallel

to the mechanization of the agricultural processes such as ploughing, seeding, and

harvesting the crops, in the recent decades, the rapid developments of the artificial

intelligence and robotics provided new kind of automation tools that combines the

intelligence of image and sensory signal processing to the mechanized production

tools of the agricultural industry to satisfy the demands of market for high volume

production at better quality than the traditional manual agriculture. V. Blanco

reported that increasing volume and quality together with the production efficiency

depends largely on increased accuracy and efficiency of ploughing, seeding,

harvesting, fertilization methods [1]. In most of the agricultural production systems,

including the traditional plantation methods, planting crops in regular rows at

homogenous crop density is critical point to increase the production efficiency.

Efficient application of various kinds of agricultural vehicles in agricultural

processes such as for ploughing, seeding, fertilizing and harvesting requires tracking

regular lines of plantation in the fields.

	 	

2	
	

Many methods for the automation of these agricultural vehicles have been proposed

by researchers based on the trajectory tracking techniques, which is a common

concept of robotics and automation. The term “control of autonomous agricultural

vehicles” describes the systems developed to keep a tractor on a pre-planned desired

trajectory with minimum lateral error along the trajectory. The lateral error

corresponds to perpendicular distance to the desired trajectory. Lateral error is one of

the key optimization variables in control of autonomous agricultural vehicles, and it

has been studied by many researches. J. Gomez-Gil proposed inexpensive GPS

measurement system together with a Kalman-filter which provides less than 6 mm

lateral error [2]. Even at low speeds, the lateral control of the tractor is relatively

hard problem compared to the moderate speed highway vehicle because considerable

side slip of the tires makes the system unstable, almost comparable to driving on

loose or slippery ground. Adaptive and/or predictive control laws that adapts on the

parameters which produce the side slip provide sufficiently low lateral error in

tracking the linear trajectories [3]. But, adaptive nature of control develops

unexpectedly high lateral errors especially at the curvatures of the trajectories.

Double Look-Ahead Reference Point (LARP) approach reduces the maximum lateral

errors at the curvatures down to 3 or 4 mm [4]. Further automation of the process

requires planning of the optimum paths which may be converted to a convenient

trajectory during the operation of the agricultural vehicle for most common

agricultural processes in the fields.

1.2 Agricultural Path Planning and Image Processing

Path planning for the agricultural machinery has attracted considerable attendance of

the researchers. It has its own characteristic constraints that is not exhibited by

ordinary off-road path planning algorithms [5]. Timo Oksanen and his co-author

	 	

3	
	

proposed top down and bottom up algorithms to split a field systematically into

subfields and merge these trapezoidal areas to larger blocks to search optimum or

valid routes in straight lines [6]. Zhang proposed a path search algorithm with

dynamic model of a tractor to guide the manoeuvre of the tractors at the end of the

fields using real time kinematic global positioning system with less than 3 cm

positional error [7]. Ant colony optimization methods have been introduced for

optimal route planning to accomplish optimization criteria such as B-patterns to

minimize the operational time, non-working travelled distance, and fuel consumption

at 2011 [8].

Some agricultural forestry lands may contain obstacles on the already specified

desired paths, which shall be detected and reconsidered for modification of the

desired trajectory. For the unplanned obstacles on the trajectories, probabilistically

robust path planning algorithms have been proposed using rapidly exploring random

trees which provides efficient identification and execution of paths in real-time [9].

Similar to the agricultural cases, a path-planning algorithm is proposed to generate

dynamic paths to cover an area completely, using a neural network to solve the

obstacle avoidance problem of a cleaning robot [10]. Any problem related to

multiple tractors in the same field may be solved using the algorithms developed for

multiple semi-autonomous vehicles in the traffic, where, the optimization of real

time path planning was accomplished by a 4-layer path-planning algorithm to ensure

the paths without collision [11].

Once the geographical map of the agricultural land is known, various search

techniques may be employed to increase the performance of agricultural machines by

searching an optimal path of operation. A path planning algorithm has been proposed

	 	

4	
	

to minimize a cost function minimization for the complete coverage of a farm field

by a trajectory using a greedy search and a heuristic algorithm that determine the

minimum of a cost function for the best Hamiltonian solution in the graph [12].

Another study proposed a depth-first search algorithm by dividing the field to several

sub regions and covering all sub regions along their length with the trajectories to

reduce the number of turns [13]. An algorithm to determine the turning areas has

been proposed for complete coverage of a field minimizing the overlap of processed

paths [14]. An approach has been proposed to solve path planning problem in a field

considering the kinematic constraints of the agricultural machines, and their short

and long term dynamic accuracy, which raises problems especially when there are

various kinds of obstacles in the fields [1].

Locating the position and orientation of an agricultural machine in the land exerts an

important problem in the automation and control of the machinery. There are local

methods based on optical sensors with cameras, and infrared or laser beams, which

has important drawbacks due to extreme dusty operating conditions of the

agricultural machines. Methods using GPS to ensure the lateral stability of a vehicle

has been proposed with considerable low lateral measurement errors down to 6 cm in

[15], [16]. An algorithm that use Kalman-filtered laser scanner measurements has

been developed to detect obstacles on a field to accomplish real time autonomous

operation of a tractor, reducing the error of estimated position down to 2.7 cm [17].

Combining several sources of information to obtain a more detailed and accurate

environment model is another important topic in agricultural industrialization as well

as in many other fields such as land exploratory robots. In a study, a hybrid method

has been developed to merge two or more semantic cartographic maps of obstacles in

	 	

5	
	

a single annotated map by generating and processing cartographic information

layers. This method is promising to develop more detailed semantic map and objects

of agricultural fields starting from satellite images [18].

At the image processing and object recognition side, the problem is considered at

much larger perspectives rather than processing the image for only agricultural

purposes. The global features of the images, which is called “gist of scene”, has been

included to object detection algorithm to reduce the ambiguity in local features of the

image to improve the speed of local detector systems that can be applied to obstacle

detection systems [19]. The recognition performance for objects were enhanced by

using discriminative image patches instead of the complete image of the object by

image patch histograms classification and modelling [20].

An important development in the semantic annotation field was development of dual

multi-scale grey level morphological reconstructions, shortly SEGON, which

segments the objects in an image to improve image retrieval performance [21].

SEGON can classify patches of large images in semantic concepts by learning to

distinguish objects based on the latent Dirichlet allocation model [22]. Filtering a

noisy image is necessary in many cases to prepare an image for object recognition

tasks. A median filtering method was developed for noisy compound images of text

and objects to reduce salt and pepper noise before further processing. Finally, a

framework for detecting objects in static images by trained log-linear models of

image patches was proposed to recognize given set of objects, using an Adaptive

Combination of Classifiers (ACC) [23]

	 	

6	
	

1.3 Industrial Automation of Crop Plantation Systems

An ideal automated agricultural plantation requires a complex system architecture

made of several levels of subsystems, such as collection of data about the target

piece of land, recognition and planning of agricultural areas, detection of possible

obstacles in and at the border of the land, determination of optimum paths and

trajectories for the target agricultural applications on plantation area, scheduling,

determination of tractor location and direction, and tracking the trajectories along

the pre-determined paths, manoeuvre at the path terminations, keeping logbook for

records of successful and problematic tasks during the process, etc. Implementation

of each of these subsystems requires an application layer that needs considerable

information exchange to accomplish a successful and efficient operation of the

overall system.

Many subsystems of this ideal architecture have been covered in literature as

explained shortly in the previous subsections. Modern differential GPS based

location and direction system employs ordinary GPS and a Kalman-filter to

determine tractor location with less than 6 cm tolerance while the tractor goes on a

linear trajectory at a speed of 5 m/s [2]. A typical lateral deviation less than 5 cm is

achieved by predictive and adaptive predictive control methods considering the side-

slip motion of the tractors on the linear trajectories [3]. The considerably high lateral

error of predictive control methods at the curvatures of the trajectory is reduced to

less than 0.5 cm by using LARP method [4]. There are path planning systems

available in literature that determines the optimum paths once a geographic map is

available.

	 	

7	
	

Industrialized crop plantation is always carried by seeding the crop in rows like the

traditional agriculture. The rows of crops were a result of a sequence of traditional

agricultural phases of ploughing, seeding, and harvesting. For an efficient farming of

crops, several types of implants carry out the necessary tasks on appropriate number

of rows per pass. Some of these tasks require higher precision than the others. In

general, a precision of about 10 cm is necessary for efficient ploughing and

harvesting. Improving the accuracy better down to 2 cm reported to provide higher

efficiency for seeding, fertilization, pesticide application, thus improves overall

efficiency of agricultural production.

Path planning for the tractors is a typical problem of agricultural robotics, where the

vehicles shall operate in the field to process rows of plants. Naturally, the automation

of industrialized agriculture was first started in cultivation of crops, maize and

potatoes at very large lands, in US, Canada, and Spain, where a human operator sets

the tractors to track a pre-specified trajectory which and the lateral controller on the

tractor manages to track a pre-specified trajectory to complete the assigned task. In

the semi-automated application, some parts of the tasks are fully automatic and an

operator is required to be on the board continuously to check the performance of

automated process. In practice, the application of semi-automatic tractors is

economically feasible to only for processing very large lands which are already

refined from obstacles, since an unplanned action introduce considerable interruption

of operational time. As a result, the technology of industrialized agriculture is at a

stage of change to full-automation of the processes, which means, agricultural

machinery once prepared and set for operation in a field shall carry the task

	 	

8	
	

uninterruptedly for all expected and unexpected cases without depending on an

operator during the operative part of the process.

1.4 Path Planning Using Satellite Images

A real-time agricultural obstacle detection and path planning system for fields of

crops obviously requires real-time observations. Such real time observations may be

obtained by optical methods such as video image analysis of mobile or stationary

cameras, radar or laser beam scanning, along with commercial professional real-time

geographical satellite images. However, the status of the obstacles in an agricultural

field mostly shows very slow changes even in a couple of years, and drastic changes

can be easy to detect before starting the automatic process on the field. Therefore,

this thesis was conducted using the freely accessible geographical satellite images

rather than using images from a commercial real-time satellite image provider. Real

time path planning that considers even the short term changes in the environment is a

necessity especially when the agricultural automation targets whole system to run

without human labour, relying on the high level automation algorithms that searches

the optimum path when the obstacle is stationary, and adjusts its speed when the

obstacle is a moving object such as another tractor, a human, or an animal.

In this thesis, the source of observations for agricultural path planning system is the

satellite image of the field at the geographical map server of Google-Maps. This data

base is developed and managed by a division of US Company Google, which is

called Google-Maps. It provides satellite images of land along with street maps of

cities. Google-Maps provides many services along with the geographic images, such

as, car, train, bus, bike or walking route planning, travel scheduling, describing local

	 	

9	
	

public transportation systems, and search of local public transportation options in

most of the metropolitan areas.

Google has a group of geographic moderators who approves public labels suggested

by users on the map as described on “wikihow” web page. Google-Maps service

provides a search tool to start a text search for a public label. It is possible to zoom in

and out for 23 zoom levels, and pan on the map to up, right, down or left directions.

Each geographic map can be precisely accessed by the zoom level and the

geographic coordinates of the map centre.

1.4 Access to Google Satellite Images

Google Company manages two commercial satellite image interface systems,

Google-Earth, and Google-Maps, by user friendly graphical interface applications.

The update rate of the images is 1 to 3 years. Compared to the other free access web

mapping services, the satellite images provided by Google are both better updated,

and higher in accuracy. These two factors made Google preferable over the other free

satellite image services like Yahoo or Terrafly for many application fields. Images of

many areas are as old as five years, but at urban areas, they are refreshed almost

monthly. Google declares on their web pages that their applications Google-Maps

and Google-Earth use the same satellite data bank. The web page

developers.google.com explains how to access to google map service to get a static

map by an application program interface through the web on an example for a

600x300 pixel satellite image of New York city at zoom level 13 is shown in Figure

1. The image received in return to this code may be mapped to world geographical

coordinate system which links the pixels of the images to the GPS coordinates on the

earth accurately by the 3rd version of adjusted API.

	 	

10	
	

Figure 1: Sample of Google-Maps API to access a satellite image

1.5 Coordinate Systems of Google Satellite Images

A region on the spherical shaped globe is mapped to Google-Maps satellite images

by method of Mercator cylindrical projection standardized at 1984 with the name

World Geodetic System 1984, shortly WGS84. Mercator projection is a geodesic

projection system to map the points on the earth on a plane, invented by cartographer

Gerardus Mercator in 1569. It is basically the surface of sphere projected on a

cylinder wrapped to the sphere around the equator. Although it distorts the map more

and more while approaching the poles, it is still in common use since most urban

land is around eclipses, far away from the poles. And in this region, deformation of

shape for small lands such a single country is below detectable limits of human eye.

It is also the simplest projection to map the points of GPS coordinates to a planar

surface in shortest time with minimum computational effort.

Two Example HTML Codes to get an image from Google-Maps Satellite Image Database

Centre Point: EMU, CMPE Department, Cyprus, Zoom Level: Z=18

https://www.google.com/maps/@35.
1462487,33.9081493,18z/
opens a javascript map which allows you
to get satellite, or hybrid (satellite with
map overlay) images.
Specified GPS coordinate points to EMU,
CMPE department building.

Centre Point: New York City Centre, NY, Zoom Level: Z=13

http://maps.googleapis.com/maps/
api/staticmap?center=New+York,NY
&zoom=13&size=600x300

opens a controlled web image which
allows you to get map or satellite (Earth)
images.

	 	

11	
	

Google map database uses three kinds of coordinate systems because it keeps the

details of the map at 23 zoom levels, Z=0, …, 22, in 256 by 256 pixel tiles. Zoom

level Z=0 is a single tile that represents Mercator projection of the satellite image of

Earth as an 256 by 256 pixel image as demonstrated in Figure 2. Pixels in each tile

are addressed by the pixel coordinate, with pixel(0,0), pixel(0,255) and pixel

(255,255) indicating the top-left, top-right, and bottom-right corner pixels of the tile

respectively. Zoom level Z partitions the first zoom-level tile into 2Z by 2Z tiles. Each

tile is addressed by a coordinate such as tile(0,0), tile(0, 2Z– 1), and tile(2Z –1, 0) are

coordinates of the top-left, top-right, and bottom-left corners respectively.

Google-Maps server addresses the points on the Earth using the old Navstar

coordinate system, which is now named the Global Positioning System, or shortly

GPS coordinate system. It is common coordinate system of standard GPS modules

using WGS84 standard coordinate system to address any point on Earth precisely

using decimal latitude and longitude angles in degrees. Intersection of Greenwich

longitude and Equatorial line is the origin, (0,0) of GPS coordinates. But, WGS84

uses multiple reference datum points to correct errors developed by several reasons

such as ellipsoid shape of the Earth.

The main advantage of Mercator projection is in preserving the x- and y-direction

scale ratio of distances locally for any location of Earth surface. That means for

larger zoom levels, the distance scales of tiles are scaled by cosine of latitude in both

x- and y- direction equally. Consequently the deformation in the maps of cities, or

small countries is at negligible level, although the Earth distance per pixel of map

image changes by cosine of latitude of pixel(0,0) of that tile.

	 	

12	
	

As an example, the GPS coordinates for Eastern Mediterranean University,

Computer Engineering Department Parking entrance is (lat=35.1462487,

long=33.9081493) as used in Figure 1, to access the map around CMPE building at

zoom level 18.

Figure 2: Google’s method of tiling the Mercator projection of the Earth

1.6 Image Processing Tools for Detection and Locating Obstacles.

Detection of obstacles on a satellite image requires a series of image processing

methods to be applied on the image to filter noises, and clear out the externals of the

target land. Another set of image processing algorithms are necessary to isolate the

obstacles to the agricultural vehicles for the determination of the location and size of

the obstacles. This thesis targeted to use well defined and standardized image

processing methods which are available in Matlab Image Processing Toolbox,

mainly to simplify the reproducibility of the results.

Z=1, 1/4 of level 0 tile

Tile (0,0)

Tile (1,0)

Tile (1,1)

Z=3, 1/(22*3) of level 0 tile

Tile (0,0)

Tile (7,0)

Tile (0,7)

Map	image	of	Earth	at	zoom	Level	Z=n	is	made	of	2n	x	2n	tiles,		
each	having	256x256	pixels.	

Mercator projection WGS84 maps a point on spherical Earth to a point
on the cylindrically wrapped plane surface at exactly rE =6378137 meters
radius, which is Google’s official radius of Earth in projecting maps.

Z=0, level 0 tile is entire Earth

Pixel (0,0)

 Pixel(255,0)

 Pixel(255,255)

	 	

13	
	

1.6.1 Image Filtering and Processing

Although Google-Maps satellite images were pre-processed for best noise and

contrast conditions to have best images for human eye, the images are quite noisy for

detection of large objects such as a tree on the field. Any small and undesired objects

and marks which appear on the image is removed or filtered by median filtering to

reduce a false or misdetection. Median filtering is a well-known method which

appears in image processing textbooks, where the target pixel value of resulting

image is replaced by the median of the values of the pixels in a neighbourhood of the

target pixel in the input image. It is mostly applied for a neighbourhood of 3x3 or

5x5 matrix. It removes sharp singular marks, and noisy spots preserving the edges of

the large objects [24]. Keeping the edges of the field, and large obstacles are

essential to perform obstacle detection and field extraction, therefore this method is

preferred to other noise reduction methods in this study.

1.6.2 Edge and Shape Detection Algorithms

Detection of objects in the field is possible by many methods including template

matching as well as searching and classifying the objects after edge detection and

segmentation techniques. In general, template matching is a method with

computation complexity higher than order-2 with respect to the number of pixels in

the image, while most of the edge detection algorithms has computational

complexity order-1. This fact is one of the significant reasons to prefer edge

detection rather than template matching in determination of the attributes and

location of the obstacles in this study. As seen in Figure 3, the edge detection

methods considered in this study are Roberts, Prewitt, Sobel and Canny, all available

in the Image Processing Toolbox of Matlab [25] [26] [27] .

	 	

14	
	

(a) (b) (c) (d)

Figure 3: Inverted outputs of edge detection methods

Once the edges of a region are determined, detection of the shape of that region is

possible by Hough transformation. Originally, the Hough transformation is

developed and patented by Paul Hough to detect the continuity of two line segments

in 1962. Later, the method is adapted for circular and elliptic shapes [28]. Today, the

generalized version of this method is available as a standard image processing tool in

Textbooks, and in the Image Processing Toolbox of Matlab.

1.7 Annotation of Information into Map Images

The image processing methods provide critical information for the location and size

of the obstacles in the field, which is critical information of path planning algorithm

to determine the obstacle free trajectories. The critical information obtained from the

image processing of the satellite image is transferred to the image using semantic

annotation in Resource Description Framework/Extended Markup Language

(RDF/XML) [29].

1.8 Focus of the Thesis, and the Problem Definition

The previous subsections described the developments of the agricultural industry for

automation of the crop plantation, and states the availability of key technologies to

develop fully automated agricultural machineries. Although the proposed methods in

the literature provide some solutions for several levels of an agricultural automation

system, none of them provided a practically applicable precise global positioning

based path planning environment for annotation methods starting with a satellite

	 	

15	
	

image of an agricultural field. In the existing literature, most authors considered the

obstacles to be processed manually, and therefore they considered each subsystem as

an individual system with its own particular geographic map, list of restricted areas,

and trajectory to cover the entire field completely. This type of isolation of

subsystems from each other reduces the possibilities of information-exchange

between the consecutive subsystems.

This gap in the automation of the agricultural machines directed this study to develop

a system for planning the motion of the agricultural machines in the fields of crops.

The availability of the satellite images with sufficient resolution shaped one bounds

of the study, while so many published trajectory tracking studies determined the

other bound at the planning of the trajectories, rather than developing low level

control to track a trajectory [30].

Consequently, this study focus on detection of the location of typical obstacles for

agricultural machines in a field by processing the Google-Maps Satellite image of the

field, and annotate their position, type, and properties on the map of the field, which

is proposed to support the information-exchange between the subsystems of an

automated agricultural plantation system. Even though this thesis is carried on the

images supplied by the free services of Google-Maps, the methods proposed in this

thesis are expected to be directly applicable on higher-resolution images supplied by

other commercial non-free satellite services for obstacle detection and trajectory

generation purposes.

The principal contribution of the thesis is to propose a methodology of precise

geographical mapping for agricultural lands starting from a satellite image of the

	 	

16	
	

target land. It targets to fill the gap of preparation of a suitable geographic map for

the path planning steps of the agricultural automation, which requires typical data for

types of soil, slope of land, boundaries of the field, locations and types of the

obstacles, etc. Along with this principal contribution, this thesis aims to contribute in

image processing area to develop methods of obstacle detection, and to determine the

best edge detection algorithm among the four well known and widely used methods:

Sobel, Prewitt, Roberts, and Canny, together with the Circular Hughes

Transformation, for the purpose of recognition of the obstacles.

One of the aims of this study is to generate precise trackable trajectory points for

specific tasks to be performed by autonomous agricultural vehicles. At the

implementation, the preferred path planning algorithm simply generates the crop

lines parallel to the longest edge of the target field with a constant crop-row distance,

because this study does not aim to develop a new path planning algorithm. Rather, it

targets to introduce a convenient semantic annotation to implant available path

planning algorithms which may generate trajectory points to satisfy the concern of

agricultural policies. Considering agricultural efficiency, the type of the plantation

crop, the soil properties and condition of the field, available tools, and surrounding

environment may affect the crop-row direction, distance, and depth. Higher level

crop policy algorithms shall be implemented in future to determine the crop-lane

directions, crop-row distance, and depth depending on many factors other than the

satellite image.

Along with automatic obstacle recognition and crop-row determination, this thesis

implemented standard semantic annotation system to describe several properties of

the agricultural land, obstacles, and designed crop-row paths for agricultural

	 	

17	
	

machinery and tasks. The implemented subsystems provide simple, but robustly

efficient examples of using the proposed semantic annotated map to fulfil a frontier

role in filling the gap of information flow from a geographical map image to vehicle

trajectories with semantic annotation.

1.9 Contents of Further Chapters

In the remaining chapters of this dissertation the architecture of the proposed system

and the preliminaries of this architecture are introduced in Chapter 2, where the

detailed information about each stage of the implementation is explained together

with the initialization process of the application for a target field, giving examples of

operations at each stage on a set of field samples. Experimental results are presented

in Chapter 3 for a set of almost 50 target fields, and interpretations of results are

discussed in Chapter 4. Finally, Chapter 5 states the conclusion for the overall thesis.

	 	

18	
	

Chapter 2

DESCRIPTION OF PROPOSED SYSTEM

2.1 System Architecture

The proposed system requires completing some stages before presenting adequate

semantic annotations. The process starts with capturing the top-view image of the

target field. Also, obstacles are to be recognized and trajectory points to be produced

before forming the exchangeable data. As demonstrated in Figure 4 the developed

system consists of four main stages. The first stage, “Initialization,” is used to locate

the field and receive the satellite image. In the second stage, "Field Extraction," the

target agricultural area is extracted from the obtained image. “Obstacle Detection,”

the third stage, is used to detect, recognize, and annotate obstacles and store the

results. The trajectory reference points are generated and annotated in the final stage.

Figure 4: Four stages of the developed system

Start

In
iti

al
iz

at
io

n

Lat. & Long

Import Image
using Google

API

Extract the field

Fi
el

d
ex

tra
ct

io
n

Calculate offset
of center points

O
bs

ta
cl

e
ex

tra
ct

io
n

Search for
obstacles

Semantic
Annotation of

obstacles

Found

Yes

No

Yes

No
New

Locate GPS
Coordinates

Store
obstacles

Tr
aj

ec
to

ry
 G

en
er

at
io

n

Get annotated
obstacle data

User
Intervention

Generate
Trajectory

Points

Pixel/GPS
coordinate
conversion

Semantic
annotation of

trajectories and
store results

Process
Completed

Yes
No

End

	 	

19	
	

	
	

2.2 Initialization

At the initialization step, the system requires the GPS coordinate GPSF=(latF, longF),

of any point F in the target field to describe the field location, and get the satellite

image of that location. The developed system uses Google-Maps service API for

locating and importing the satellite image containing the target field using an API

code. As mentioned in the previous chapter, Google-Maps service provides various

zoom levels, from one to twenty-two. At zero zoom level, which is the minimum

possible zoom, the entire earth fits in the picture, and each higher zoom level doubles

the detail of map, doubling pixel per distance both in x and y axis. The boundaries of

the desired field are determined using the highest possible zoom level (largest Z) that

allows the entire field to fit into the image frame. Depending on the size of the target

field, proper value of Z is determined manually before initialization of automatic

image processing, because this step relies on the user’s information for the

boundaries of the field.

During the image processing phase, median filtering is applied to the image to reduce

and remove noise (also referred to as salt and pepper noise). The median filtering

uses a 3x3 neighbourhood matrix [31].

2.3 Segmentation and Extraction of Target Field

The second stage of the process converts the received satellite image into grayscale

for extraction of the target field purpose, by reducing the hue and saturation while

maintaining the luminance. This conversion is performed by using weighted sum of

Red, Green and Blue components of the coloured image in (0.298 Red + 0.587 Green

+ 0.114 Blue). Representing the image in the grayscale format by this weighted

	 	

20	
	

colour composition improves the opportunity of detecting the regions in addition to

detecting the edges more precisely. Additionally, application of 3x3 median filtering

on the grey scaled image minimizes the effect of noises in detecting the regions. The

target area is extracted from the original satellite image by using the segmentation

and sectioning methods developed in [32], [33].

Figure 5b shows the image of the target field in binary format after the noise

reduction. In the filtered grey scale image, adjacent pixels of the same colour value

(ni) are connected to form regions (Ri). The regions are numbered and sorted based

on the number of connected pixels as illustrated in Figure 5c. The target field is

detected as the region with the highest number of connected pixels which contains

the centre pixel of the image. Also, the centre pixel of the image is mapped to mark

the location of the GPS point supplied by the user at the initialization stage. This

mark is necessary to save the pixel coordinate of the GPS point for the further

positioning calculations [34].

The bounding box information of the extracted field is used to remove all

unnecessary parts of the image by cropping the bounded region tightly. Cropping

results in a smaller image, which contains the target field with much less irrelevant

areas as shown in Figure 5d and Figure 5e. The effect of cropping the image on

reducing the error in obstacle detection is small but positive. Appendix A presents

corresponding Matlab codes for segmentation and extraction.

	 	

21	
	

Figure 5: Progress of image processes to extract the field and obstacles. a- Raw
image input, b- binary conversion (inverted), c- segmented image, d- cropped picture

to fit the field in frame, e- the field in original colours

2.4 Detection of Obstacles on the Field

The next stage of the process is to find obstacles on the obtained satellite image. The

following sections describe the three sub-stages related to the obstacle detection

stage: detection, positioning and semantic annotation of obstacles.

2.4.1 Detection Algorithm

After the image is tightly cropped to the bounds of the field, the image is processed

to detect objects inside the field boundaries (Appendix B). But any spurious noise in

the image, some of them outside the boundaries of the field, is expected to appear

because of the grey-scale conversion operation. Removal of this noise is necessary

even if they appear outside of the boundaries since noise creates problems, and

increases error rate in detection of obstacles.

Figure 6a shows some examples of these spurious noises inside and outside of the

field boundaries. This noise is eliminated by reconstructing the image from the

largest stored region, and filling the outside of this region on the image of target

field. Figure 6b shows the reconstructed and filled image that eliminates the noise

outside the field boundaries.

(a) (b) (c)

(d)

(e)

	 	

22	
	

	 	 	
a	 b	 c	

Figure 6: Images while morphological reconstruction to filter noise, a- Undesired
segments on a binary image, b- undesired segment are removed from outside, c-

desired field free off undesired objects

Noises which are at the regions out of boundaries of the field are removed and

filtered by applying morphological image reconstruction [35]. Removal of some

objects is necessary because they are too small to be counted as an obstacle such as

large thorns. The output of this procedure is a more precise and clear image, and,

after the inversion, white regions denote obstacles while dark region represents the

field as shown in Figure 6c. The pixel values of inverted binary image are used in

obstacle detection phase through segmentation method.

As stated earlier, each zoom level of Google tiles covers different surface areas.

Consequently, the same object may have different radius value in pixels when

processed at different zoom levels. Based on our observations, at zoom level Z =18,

a typical obstacle on the field may have radius in the range of 4 to 18 pixels.

Therefore, in the obstacle detection stage zoom level is set to 18 in all experiments to

provide consistency in calculating efficiency and comparing the results.

Usually top-view graphical appearance of trees on satellite images is elliptic or

circular shaped. This kind of round objects can be easily recognized by Circular

Hough Transform. In the application, the object polarity for the Hough transform is

noise outside
	

noise inside

	 	

23	
	

set to "bright", and the value of edge gradient threshold is set to 0.27, default value of

sensitivity factor = 0.85 is preferred, and computation method is set to "Phase Code".

During detection phase, any recognized obstacle is validated by a duplicity check

algorithm and is accepted as a new entry if the detected obstacle passes the test as

seen in Appendix C. The duplicity check works by comparing the centre pixel value

of the detected obstacle with the centre pixel values of validated obstacles in the list,

and if no duplicated values are found will pass the test. Upon validation, the obstacle

including its centre pixel value and the radius is saved to the list of identified

obstacles for later determination of its diameter in the metric system.

2.4.2 Calculation of Positions

Google Maps works on GPS coordinates and Mercator projection, which provides

equal scaling of x- and y-direction at any location of the Earth for sufficiently small

parts on globe [36]. GPS coordinates of a location A, GPSA, is a vector with two

components, the first component is the latitude angle in degrees, and the second

component is the angle of longitude of the target location, as shown in Figure 7.

Figure 7. GPS coordinates of a location.

Equator

Greenwich

GPS(0,0)

Earth
Centre

latitude j longitude l GPSA = (latA, longA)

	 	

24	
	

Image resolution of each tile in the map is 256x256 pixels, and first zoom level tile

covers the whole Earth exactly in a single tile. Google-Maps service provides the

GPS coordinates of any point in the image, but the coordinates are not embedded

into the picture. Therefore, while processing the images, any associated GPS

coordinate is expected to shift depending on image operations. The well-known

method to convert the GPS coordinates to distances is the Haversine formulas.

However, this thesis is concentrated on the distances corresponding to the Google-

Maps tile pixels, and therefore the following paragraphs develop pixel based distance

calculations on Google-Maps images.

Mercator projection delivers vertical and horizontal direction of the map always

equally scaled at any location of the projection, but the scaling factor gets smaller

while the location gets closer to the Poles, because scaling factor changes by cosine

of longitude. Appendix D presents the developed geographical positioning code.

Google officially assumes the Earth a sphere with radius exactly rE = 6378137

meters. Accordingly, one complete tour of 𝜃)=360 degrees along the circumference

(i.e., equator line) of the Earth is approximately LE= 40,075,017 meters. Increasing

Google-Map zoom level Z one step increases the details of the map twice in

horizontal and twice in vertical direction. At any zoom level Z, the distance LE, or

complete revolution around Earth, 𝜃)=360o, is covered by 2Z tiles. Each tile has 256

pixels, giving total Nz = 256´2Z = 2Z+8 pixels around Equator. Consequently, at zoom

level Z the angular displacement corresponding to each pixel is

∆+=
𝜃)
2./0 																																																						(1)

	 	

25	
	

where, DG denotes degrees of latitude per pixel in x-axis direction, or equivalently

degrees of longitude per pixel in y-axis direction on a tile if Z is sufficiently large to

ignore projection distortions in the tile. For example, at Z =18, one pixel movement

in north or east direction corresponds to DG = 5.36441803 x 10-6 degrees change in

GPS longitude or latitude. If the location is on the equatorial line, the Earth

resolution at this tile is calculated by using the circumference of the Earth along

Equator

 DE = LE/NZ , (2)

where, ∆5 denotes the distance on Earth per pixel on any tile centred at latitude = 0.

Equation (2) provides also the distance along Equator in meters per pixel of image.

For example according to (2), at zoom level 18, each pixel at the equator corresponds

to 0.5971645 meters.

If the pixel on the image is not on Equator line, the distance equivalent of the pixel in

x-direction requires a correction for the spherical shape of the Earth. For a point C on

the Earth closer to the poles, the round trip distance along a parallel is shorter

compared to equatorial round trip LE. This round trip distance decrements by the

cosine of latitude of the GPS coordinate. Consequently the Earth resolution around a

centre point C gets smaller

/cos()C E r d Cc latD = D , (3)

where, latC is the angular latitude of C in degrees; cr/d = p/180 is the conversion

factor from degrees to radian; and DC is the distance on Earth in meters per Google-

Maps pixel, which depends on latC of the centre point and mostly called as Earth

	 	

26	
	

resolution of image at tile centre. The target field is identified by the GPS coordinate

of a location inside the field. But, most of the operations are carried on the tile image

using pixel coordinates, and the objects are decided using their sizes in meters.

Therefore, determination of the distance in meters is of particular interest. The GPS

resolution of a zoom level, that is the angular displacement of longitude per pixel of

a Google map is constant, DG=360/Nz . But the Earth resolution DC, that is, the

distance on Earth in meters per pixel of image, depends on latitude, and requires a

correction.

The pixels of an image is conventionally addressed using (0,0) for top-left corner.

But, on the satellite image received from the Google service, the specified centre

GPS address, GPSC, is located always at the centre of the original image. Therefore

the pixel coordinate of original centre pixel, pOCP = (xOCP, yOCP), is required for

further pixel coordinate calculations. The original centre pixel, pOCP, becomes shifted

by the coordinate of bounding box start pixel, pBBP = (xBBP, yBBP) while cropping the

image at the field extraction stage. Coordinate calculations need offset correction for

this shift of centre pixel. An example of cropping is demonstrated in Figure 8, where

a bounding box with pBBP = (163.19, 173.11) is applied on original image to get the

cropped image with the origin shifted 163 pixel along x, and 173 pixel along y

direction. The offset of pixel(0,0) of the cropped image in the original image is

necessary to transfer the pixel coordinates on the cropped and original images back

and forth. The correction offset in pixels, pCCP = (xCCP, yCCP) for the cropped image

is

 xCCP = xOCP – xBBP ; and yCCP = yOCP – yBBP . (4)

	 	

27	
	

Pivot GPS coordinates of the target field F is given by the pairs of latitude, latF, and

longitude, longF, in degrees with decimal fractions. For example, latitude and

longitude of the centre pixel o C f the sample field shown in Figure 8.a are at latC =

35.075373 and longC = 33.531142. The centre pixel is the pivot point for all further

coordinate calculations. Its exact pixel location in the image is maintained by OCP

coordinate and the offset of cropping in pixels is specified by CCP.

The corrected centre pixel coordinate in cropped image correspond to pivot GPS

coordinate of the target field, (latC, longC). Calculation of original pixel coordinate of

an object i is possible by using CCP and the pixel coordinates of each object pT,i =

(xT,i , yT,i). At the end of determination of obstacles, procedure is completed by

calculating GPS coordinate GPST,i = (latT,i, longT,i) of the obstacle's centre from its

pixel coordinate (xT,i , yT,i) by equations (5) and (6).

, , /()cos()T i C G CCP T i r d Clat lat x y c lat= +D - 	 	 	 (5)

, ,()T i C G CCP T ilng lng y x= -D - 		 	 	 	 (6)

where DG =360o/NZ is the GPS resolution of the images. After validating that the

obstacle is not a duplicate, the properties of the obstacle is stored including its index,

position, pixel coordinates, radius, latitude and longitude; and its position is

graphically marked by a red circle as described in next section.

	 	

28	
	

	 	
a	 b	

Figure 8. Trimming image size for the target field a- Mapping of field's latitude and
longitude coordinated to the center pixel of original image, b- Offset calculation of

center point

2.4.3 Semantic Annotation

Identified obstacles are stored and presented in a descriptive format readable by both

humans and machines. Detected obstacles are semantically annotated and graphically

marked to represent them both in text format, and by marking them on the image.

Documenting data with proper standardized titles and formats to remove any

ontological ambiguity is accomplished by semantic annotation [37].

In the semantic annotation of the detected obstacles RDF/XML which is defined by

W3C [45]. RDF/XML uses triples of Subject, Predicate, and Object to define an

entity. The proposed RDF data graph to semantically annotated and represent

detected obstacles is shown in Figure 9.

yOCP

xOCP xBBP

yBBP

OCP

BEP

BBP

	 	

29	
	

Figure 9: RDF/XML data graph of detected tree

To define the detected obstacle’s type which in our case is a tree, we have imported

the Plant Onology (PO) [46]. The namespace defined by PO http://purl.

obolibrary.org/obo/PO_0000003/hasNarrowSynonym/Tree narrows down the whole

plant anatomy to a “Tree”. Using this namespace, we have semantically represented

the detected obstacles “type” as a tree. To have a semantic representation of the tree,

its calculated GPS coordinates are expressed by importing W3C Geospatial

Ontologies (OGC) [47]. This ontology defines latitude and longitude coordinates

with http://www.w3.org/2003/01/geo/wgs84_pos/lat and http://www.w3.org/2003/01

-/geo/wgs84_pos/long accordingly. In addition, to define the pixel coordinates of the

tree Scalable Vector Graphics (SVG) is imported. This ontology defines the tree with

its center points x,y pixel coordinates and its radius as “svg:cx”, “svg:cy”, and

“svg:r” attributes on the obtained image. The item number of the tree “obt:no” define

as an integer in accordance with XML schema. Figure 10. shows the structure of

semantic annotation for a detected and validated obstacle in RDF/XML format.

	 	

30	
	

Figure 10: Semantic annotation structure of obstacles in RDF/XML file

2.4.4 Improved Detection Algorithm

In the preceding stages of this study, out of four nominated edge detection methods

(Canny, Prewitt, Sobel, and Roberts), Sobel was selected as the main edge detection

method. This selection took place based on Sobel's overall performance which was

higher than the others. However, during the study, we realized that Sobel does not

provide the best result as expected in some cases. This lack of performance led us to

investigate deeper for possible enhancements in the edge detection algorithm. As a

result, three methods including "T-range", "Max of All" and "Double Layered Check

(DLC)" are introduced and explained in the following sections.

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:obt="http://www.DLC.org/Obstacle#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:gn="http://www.geonames.org/ontology#"
xmlns:wgs84_pos="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:item="http://purl.obolibrary.org/obo/PO_0000003/hasNarrowSynonym
#"
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#">
<rdf:Description rdf:about="http://www.DLC.org/Obstacle#"/>
<item:tree>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/>
 <obt:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
Number of the tree </obt:no>
 <wgs84_pos:lat> latitude of tree </wgs84_pos:lat>
 <wgs84_pos:long> longitude of tree </wgs84_pos:long>
 <svg:cx> x coordinate of tree in the image </svg:cx>
 <svg:cy> y coordinate of tree in the image </svg:cy>
 <svg:r> radius of the tree</svg:r>
</item:tree>
</rdf:RDF>

	 	

31	
	

2.4.4.1 T-range

Initially, Sobel was used with its default threshold value (0.27) in Matlab. However,

we have decided to consider the complete threshold range for Sobel. Outputs are

analysed to find the best possible threshold value in which Sobel reaches its

maximum number of detection. Figure 11 shows the results on ten test fields. As

presented in this figure, for each field Sobel reaches its detection's peak with a

various threshold value. Having such a variety of the threshold values indicates that

size, type, and obstacles within the field have a direct impact on choosing the best

threshold value. Therefore, Sobel's performance can be improved by selecting the

right threshold value for each field.

Figure 11: Detection results using threshold range on Sobel.

	 	

32	
	

2.4.4.2 Max-of-All

In this method, outcomes of all four nominated edge detection algorithms on each

field are taken into account. As indicated before, in some fields Sobel was not

functioning as expected and had much lower performance comparing to the other

three methods (Canny, Roberts, and Prewitt). We found higher detection potentials

by investigating the results from other edge detection methods (especially Canny) in

the fields which Sobel failed. Therefore, a dynamic selection method (Max-of-All) is

introduced to determine the best edge detection algorithm on each field individually.

The Max-of-All determines which edge detection method finds highest number

obstacles (trees) in individual agricultural fields. For example, Canny might find

higher number of obstacles in a particular field in comparison to Sobel, Prewitt, and

Roberts, therefore, Canny would be the nominated edge detection method for that

particular field. However, it does not mean that Canny have reached the highest

number of “correct detections”. It simply implies that Canny found higher number of

obstacle-candidates which includes correct detections, incorrect detection or both.

The decision on which of the detections are correct is made after applying gray-level

intensity threshold, which classifies the detections into two categories of correct and

incorrect detections. Then we can decide which detection is valid and which one is

invalid. This evaluation is done in section 2.4.5 (Accuracy and Error Evaluation).

2.4.4.3 Double Layered Check (DLC)

In the previous section "Max-of-All" method improved T-range's results overlay.

However, there were still some cases in which T-range performed better than the

Max-of-All regarding obstacle detection. The inconsistency in achieving the best

result by either of these two methods (T-range and Max-of-All) led use to investigate

even further more to achieve the best result. To overcome this issue, a new algorithm

	 	

33	
	

called Double Layered Check (DLC) is introduced which merges T-range and Max-

of-All as coded in Appendix F. DLC applies both threshold range and the maximum

number of obstacle detection on each edge detection algorithm (Canny, Roberts,

Sobel, and Prewitt) for each field individually.

2.4.5 Accuracy and Error Evaluation

Two types of error and a location mapping test are used to evaluate the developed

system. All the error evaluation tests are applied to the individual edge detection

methods before and after improvements to compare and observe the enhancement

level. The first error type is FPE (False Positive Error), which refers to the missed

obstacle in the detection. If there exists an obstacle within the field and the detection

method fails to capture the obstacle, it would be counted as an FPE.

In order to reduce the FPE error the proposed system takes advantage of grey-level

intensity threshold to differentiate correct and incorrect candidates as coded in

Appendix G. During the evaluation process grey-level intensity value of each

detected candidate is compared to a specified threshold value. If the grey-level is

below the threshold value, the obstacle-candidate is considered as a correct detection

and is processed accordingly. Otherwise the obstacle-candidate is considered as a

wrong detection and discarded.

The second type of error represents wrong detections in which an obstacle has been

detected and captured; however, such an obstacle does not exist. This kind of error

could happen due to the noise and inaccurate parameter sets for example threshold.

This type of error is called FNE (False Negative Error).

	 	

34	
	

As discussed before the proposed system works with a single GPS coordinate of the

target agricultural. This point is provided during the initialization stage, and all

further positioning procedures rely on that single point. A comparison test is

performed to evaluate the accuracy of the system in mapping that single GPS

coordinate to pixels and locating obstacles. This test inserts the calculated location of

an obstacle in Google Maps and checks if it points to the right object.

2.5 Trajectory Points

One of the primary goals of the implemented system is to generate trajectory

reference points which autonomous agricultural vehicles could follow. These

traceable points will form a sequence of GPS coordinates. The list of path points

consists of tracking paths and sectors, and it is produced after computing all

necessary information about the field area and the obstacles within. The developed

system is capable of integrating the generated trajectory points into any path

planning algorithm. The produced trajectory points may need further processing to

determine the direction along these trajectories, and the depth of the crop rows to be

executed by agricultural vehicles. In the implemented coding, the route planning

algorithm creates paths parallel to the longest edge of the field. The path planning

unit is purposely coded in simplest form since this thesis aims only to validate the

integration of a path planning unit to the obstacle mapping unit, and in practice path

planning unit may be replaced by codes of already available better crop-row

trajectory planning algorithms.

2.5.1 Generation of Trajectories

In the trajectory point generation phase, we have to make sure that no collision

occurs while vehicles are following the reference points. To have a collision free

path we have to avoid placing any trajectory point on the detected obstacles. In the

	 	

35	
	

binary image, the area with white pixels represents the main field. As mentioned

before, the path planning algorithm proposed in this study creates paths parallel to

the longest edge of the field. This longest edge is detected using Standard Hough

Transform (SHT). The angle between the origin to the closest point (𝜃6) is set to

90	≤ 𝜃6 < 89 in the algorithm. Also, the distance is set to 0.5 between the line (𝜌6)

and the origin correspondingly. The length of each edge in the field can be calculated

by Pythagorean Theorem using equation (7), since both the pixel coordinate axes and

also Earth coordinate axes are perpendicular. Let the coordinate of the first and

second points be denoted by p1 = (x1, y1) and p2 = (x2, y2). Pythagorean equation finds

the Euclidian distance between these points, d(p1,p2), which is also the length of the

line from point p1 to point p2.

d(𝑝<, 𝑝>) = 	 𝑥> − 𝑥< > + 𝑦> − 𝑦< > (7)

Among the distances between the consecutive corner points, the highest distance and

its corner points are saved as EDm={pEDm,1=(xEDm,1, yEDm,1), pEDm,2= (xEDm,2, yEDm,2)},

the longest side of the field. The slope of this edge is

𝑚5D# 	= 	
EFGEH
'FG'H

	 , (8)

The bolded and highlighted blue line shows 𝐸𝐷#	in Figure 10a. The crop rows are

generated parallel to EDm, with dms, the user set crop row spacing. The distance

between the rows, dms, is entered in meters. But for pixel domain calculations, it is

converted to pixels and denoted by dps.

	 	

36	
	

𝒹LM 	= 𝑑#M/∆P (9)

The crop rows are generated on the image with constant spacing 𝒹LM which is

entered by the user by setting dms in meters. As shown in Figure 12.b, anchor dots in

red (temporary points) are placed as reference points to mark spacing of each row on

the perpendicular line starting from the midpoint of EDm towards the centre of field

C. Drawing lines through these anchor points results in equally spaced rows with a

distance dps. For the anchor points, the midpoint pEDmp and the slope of the anchor

line are calculated by

𝑝5D#L = 	
	'QRS,H/'QRS,F

>
, 	EQRS,H/EQRS,F

>
 , (10)

𝑚5D#L 	= 	 atan 	(𝑚5D#) ,

where mEDmp is the slope of the perpendicular line to the edge EDm. Crop row

anchor points, Ai, are inserted on the image with a constant increment dpx and dpy to

have equal distance from each other using the equations until generated point lies

outside the field boundaries using (11) and (12).

𝑥W,$ 	= 		 𝑥5D#L 	+ 	𝑖	𝑑L'	sin 𝑚5D#L	 (11)

𝑦W,$ = 		 𝑦5D#L 	+ 	𝑖	𝑑LE		cos 𝑚5D#L		 (12)

After this step, a sequence of the trajectory reference points is generated in a straight

line using y = m x + y0 for parametric values of x starting from 1, ending at Nx, the

width of image in pixel coordinates. As a result, pR,i,k = (xR,i,k , yR,i,k) pixel

	 	

37	
	

coordinates are generated to form trajectory points for the crop row, or track-line

parallel to the longest edge by the expressions

 for k = 1 … Nx , { x^,$,_ 	= 		𝑘	; y^,$,_ 	= 		𝑚5D#		 𝑥bc,$,_ 	− 	𝑥W,$ + 		yW,$ }. (14)

The generated track line points, (xR,i,k, yR,i,k), k=1 … Nx are tested for the collision

condition to an object or to the boundaries of the field to prevent any overlap of the

produced trajectory points with the detected obstacles. The obstacle avoidance

algorithm works by mapping the coordinate of each trajectory point in pixel

coordinates (x, y) to the binary image of the target field and obstacles. If the colour of

corresponding pixel is 0, the trajectory point is discarded, since colour 0 indicates

that the point is in an area of an obstacle, or it is outside of the field. If the colour of

the trajectory point pixel is 1, the point is accepted to be on the crop row. If the test is

positive, trajectory points are marked on the image of the field to form a sequence of

red dots that appears as a straight line as presented in Figure 12.a.

Figure 12: Production reference and trajectory points, a- overview, b- details

	 	

38	
	

2.5.2 Annotation of Trajectory Points

The trajectory points are produced for automation of agricultural vehicles which

shall process the field along the crop rows by tracking these trajectories. The

agricultural vehicles, which are installed with GPS tracking devices, shall follow

reference points in GPS coordinates rather than pixel coordinates. Therefore, it is

necessary to re-map the produced trajectory points from pixel format into GPS

coordinate format. As mentioned before, the distance on Earth is not proportional to

the angular GPS distance. Accordingly, the precise length of a single degree of

longitude per pixel (LDPP) needs to be calculated to have high accuracy in

positioning. The Pixel-to-GPS coordinate mapping operation converts the crop-row

points from pixel coordinates to GPS coordinates, and stores them in m×4NR format

2D-array, where the points on each track are represented on a row of four columns,

{(xR,i,k, yR,i,k), (latR,i,k, longR,i,k)}, as presented partially in Table 1, where the first two

columns are pixel, and the last two are GPS coordinates of the points on the path. A

path may contain several gaps, corresponding to obstacles marked on image. Data in

Table 1 shows a part of the first track, and the complete path table contains 4n

columns for total NR reference trajectory paths (or tracks), so that columns 1-4

represents the first track, 5-8 represents the second, and so on. The pixel coordinates

of each trajectory point in pixel Ri,k = (xR,i,k , yR,i,k) are presented in the first pair of

columns, and the same point’s GPS coordinates (latR,i,k , longR,i,k) are shown in the

second pair of columns.

	 	

39	
	

Table 1: Trajectory points of each track in pixel and GPS pairs

k xR,1,k yR,1,k latR,1,k longR,1,k

23 63 12.391… 35.07558507 33.53089255
24 64 12.836… 35.07558409 33.53089524
25 65 13.281… 35.07558311 33.53089792
26 66 13.725… 35.07558214 33.53090060
27 67 14.170… 35.07558116 33.53090328
28 77 18.619… 35.07557139 33.53093011
29 78 19.064… 35.07557042 33.53093279
30 79 19.509… 35.07556944 33.53093547

If a crop row passes through an area occupied by an obstacle, it results in a gap on

the crop row, by breaking the line into two line segments and a gap segment which is

specified by its terminal points. A gap G={(xG,1,yG,1), (xG,2,yG,2)} on the crop row

represents the location of an obstacle. For a solid example, in Table 1 and Figure 13,

xR,1,k jumps from 67 to 77 indicating the occupied location by an obstacle, where the

gap segment is specified by pixel coordinates G={(67, 14.17), (77, 18.619)}. This

gap also indicates the end point of one path segment and the start point of the next

one. Total number of tracks, NR, is determined by counting the anchor points that

generates any valid reference path in the field. As a result, the columns of matrix

enlarges to m = 4NR. Number of gaps on a track-line, NG,i, is counted by testing

sequence of the first column for each track, segments of each track, NS,i, is obtained

by checking first column and counting the gaps on each crop row. The total number

of segments in the entire path NS, are calculated using following equations

respectively.

 NR = m / 4 (15)

 NS,i = NG,i +1 (16)

 NS = ,0
RN

S ii
N

=å (17)

	 	

40	
	

Figure 13: An obstacle on a track-line appears in the form of a gap

2.5.3 Semantic Annotation

Detected obstacles and generated trajectory points are semantically annotated and

stored in RDF/XML format. These annotations make the computed data

exchangeable between other sub-systems or ontologies that work on arable lands.

Figure 14 shows the RDF data graph of a generated trajectory point.

Figure 14: RDF/XML data graph representing a trajectory point

Ontologies are imported to describe a set of terms to represent the generated

trajectory points semantically. Each trajectory point is identified as an “item” in the

semantic annotation process. Dublin Core metadata ontology is used to describe that

the knowledge provided in this study belongs to an image file type [49]. An ontology

of Open Geospatial Consortium (OGC) is imported to define the GPS coordinates of

	 	

41	
	

the generated trajectory points. OGC provides spatial metadata to be used by other

ontologies. The namespace defined to use OGC is xmlns:item="http://www.

opengis.net/gml/". OGC defines any GPS coordinates by latitude (item:lat) and

longitude (item:long). Data type of the trajectory point’s number (trj:no) and the

track which it belongs to (trj:track) are defined as integer based on SML schema.

Scalable Vector Graphics (SVG) ontology is imported to semantically annotate the

pixel coordinates of each trajectory point. Each x-pixel coordinate and y-pixel

coordinate is presented by “svg:cx” and “svg:cy” respectively [48]. Figure 15 shows

the RDF/XML structure to describe and annotate trajectory points.

Figure 15: Semantic annotation structure of the trajectory points

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:trj="http://www.DLC.org/trajectory#"
xmlns:item="http://www.opengis.net/gml/"
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#">
<rdf:Description rdf:about="http://www.DLC.org/Trajectory#"/>
<item:point>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/>
 <item:pos>	GPS Coordinate </item:pos>
 <item:lat>Point Latitude</item:lat>
 <item:long>Point longitude</item:long>
 <trj:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

Point Number</trj:no>
 <trj:track rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

Track Number</trj:track>
 <svg:cx>Pixel-X Coordinate</svg:cx>
 <svg:cy>Pixel-Y Coordinate </svg:cy>
</item:point>
</rdf:RDF>

	 	

42	
	

Chapter 3

RESULTS

3.1 Extraction and Detection

The method proposed in this research is developed and tested using the technical

programming language platform developed by MathWorks Inc, called MATLAB.

The hardware platform used for experiments is an Apple (MacBook Pro) running on

Mac OSX Yosemite (10.10.3), 8 GB of RAM and Intel i7 2.8 GHz CPU. Satellite

images used in this study are accessed using an API suggested by Google. These

images are received with the maximum resolution of 640 x 640 dpi.

Top-view satellite image of 51 agricultural fields are used in this experiment to

evaluate the developed system. These areas have various shapes, sizes, environments

and number of obstacles. The zoom level is set to 18 in all the experiments to

maintain consistency of the comparisons. The radius range used in this study is in

between ℛ𝛼#$% = 4 and ℛ𝛼#&'= 18 corresponding to ∆𝓏 = 18 for obstacle detection

purposes. The obtained image is cropped to fit the field's area in the picture to

improve accuracy. Figure 16 shows some examples of the cropped images. The total

number of obstacles in these 51 test fields is equal to 1602. Appendix H lists counts

of initial obstacle detection and their error counts for default sensitivity-threshold

value.

	 	

43	
	

Figure 16: Examples of cropped images with various size, shape and complexity

3.1.1 Canny

Initial results of the experiment show that Canny with default parameter sets detected

1565 obstacles out of 1602. 1282 obstacles identified correctly (80.02%), and 323

obstacles missed which represents an FPE (false positive error) of 25.16% inside the

fields. The FNE (false negative error) result for Canny is approximately 18.07%

which indicates 283 wrong obstacle detections on the fields. Ten sample fields are

presented in Figure 17 to demonstrate the correct detections, FPE and FNE of the

Canny. Figure 17-a.1 to 14-j.1 shows binary images of Canny’s edge detection

results and Figure 17-a.2 to 14-j.2 shows final detection's graphical annotations on

the actual image of the field.

Figure 17: Canny edge and obstacle detection results

	 	

44	
	

3.1.2 Prewitt

Prewitt identified 1616 obstacles in total with the default parameter sets. Out of 1602

obstacles in all the fields, 1333 obstacles (83.2%) were detected correctly. FNE

result of Prewitt is 16.8% which denotes 283 missed obstacles inside the fields. The

number of wrong detections is equal to 155 which represent an FPE of 9.67%. Figure

18-a1 to 15j1 shows the detected edges of the obstacles on the binary images of the

fields. Figure 18-a2 to 15-j2 shows final detection's graphical annotations on the

actual image of the fields.

Figure 18: Canny edge and obstacle detection results

3.1.3 Roberts

Results show that Roberts with default parameter set identified 1044 correct

obstacles out of 1602, which is equal to 65.16% accuracy in detection. The FPE

result for Roberts is 34.76% which indicates 557 missed obstacles. With the total of

105 wrong obstacle detections, Roberts FNE is 9.13%. Figure 19-a1 to 16-j1 shows

	 	

45	
	

binary images of Robert’s edge detection results and Figure 19-a2 to 16-j2 shows

final graphical annotations on the image of the field.

Figure 19: Robert edge and obstacle detection results

3.1.4 Sobel

Sobel with default parameter sets identified 1350 correct obstacles in total, which is

equal to 84.26% accuracy in detection. Sobel's PFE result is 15.73% which denotes

252 missed obstacles on the fields. 106 obstacles incorrectly detected by Sobel that

results in an FNE of 7.88%. Figure 20-a1 to 17j1 represents the detected edges and

obstacles on the binary images of the fields. Figure 20-a2 to 17-j2 shows the final

graphical annotation of obstacles on the actual image of the field.

	 	

46	
	

Figure 20: Samples results of Sobel's edge and obstacle detection

3.1.5 Detection Improvement Results

In the second phase of the obstacle detection process, a great potential was

discovered to improve the obstacle detection. This discovery led us to develop three

experimental methods. Up to this point, Sobel was the nominated edge detection

method due to its higher performance in detection comparing to Canny, Roberts, and

Prewitt. This decision was made using the default parameter sets of the edge

detection techniques, however, with customized parameters better results achieved as

demonstrated in the following sections.

3.1.5.1 T-Range Results

As stated before, Sobel could perform better in detecting the obstacles after tuning

threshold finely. After employing the T-Range algorithm, we achieved an

improvement of 21.43% in detection rates by Sobel. Figure 21 illustrates the

detection improvements using Sobel with T-Ranged technique. The chart clearly

shows enhanced detections (green line) on most of the fields comparing to the initial

	 	

47	
	

detection results (blue line). However, in some cases like field 4 or 32, the primary

method still performs better which led us to examine for further improvements.

Figure 21: T-Range outcomes on Sobel comparing to default threshold

3.1.5.2 Max of All Results

The second method proposed to improve the obstacle detection is Max-of-All. Using

this method, we achieved 16.67% increase in the obstacle detection in overall. The x-

axis in Figure 22 indicates the preferred method to Sobel in the case of improvement.

These methods which include Canny, Prewitt, Roberts, and Sobel, are abbreviated to

C, P, R and S accordingly. As expected in many cases Canny and Prewitt are

preferred to Sobel. The red line in Figure 22 represents the Max-of-All method's

results in comparison the initial detections of Sobel with default parameter sets.

Although less overall improvement achieved (16.67%) comparing to the results of T-

Range (21.43%), but we have noticed that in some cases like in field 29 and 39

(Figure 20) Max-of-All method still performs better. This inconsistency in achieving

the highest detection result in all fields led us to develop the DLC approach.

	 	

48	
	

Figure 22: Max-of-All method comparing to Sobel with default parameter sets

Figure 23: Comparison between T-Range and Max-of-All

	 	

49	
	

3.1.5.3 DLC Results

Double Layered Check (DLC) approach works with merging T-Range and Max-of-

All methods. DLC applies both methods at the same time on each field, compares the

results and chooses the best among them. By using DLC, either of the T-Range or

Max-of-All methods can act as a complementary method to cover each other.

Consequently, the obstacle detection rate improved up to 45.5% in overall comparing

to the Sobel detection with default parameter sets. Results in Figure 24 indicate that

the detection has either improved or remained unchanged in most of the fields.

However, in the previous methods, we had many cases with reduced percentage in

detection. Appendix I lists counts of detected obstacles and error counts after using

DLC method.

Figure 24: DLC detection results comparing to Sobel with default parameter-sets

	 	

50	
	

3.1.6 FPE and FNE Reduction

DLC increased the number of obstacle detections which could include the actual

obstacles and the wrong detection at the same time. Using DLC we have maximized

the number of the hits on the field to detect obstacles. Having more hits on the field's

area increases the chance of detecting any real obstacle. This would result in less

FPE percentage comparing to the other methods. However, by increasing the number

of detections, we potentially increase FNE or wrong detections. To increase the

detection precision, FNE must be minimized, same as FPE. To do so, we have

developed a classification algorithm to differentiate correct and incorrect detection

using the grey-level intensity threshold value of 127.37. In Figure 25 correct

detections are presented with yellow dots and wrong detections are shown with red

dots.

Figure 25: Classes of correct and incorrect detections

	 	

51	
	

As the chart in Figure 26 illustrates, DLC improved the FNE by 80% on overall. This

improvement resulted in a higher accuracy in the detection by eliminating the

majority of the wrong detections.

Figure 26: FNE improvements using DLC

Figure 27 shows some sample results of the FNE improvements. The blue circles on

these images represent correct detections, and the red circles show suppressed FNEs.

Red circles were counted as correct detections before implementation of the DLC.

However, the wrong detections (red circles) eliminated by using DLC, which results

in improvements on FNE.

	 	

52	
	

Figure 27: Suppressed FNE using DLC

3.1.7 Locating Accuracy Check

The proposed method provides significant precision for detection and locating of

obstacle and producing trajectory points within agricultural fields. This precision,

however, highly depends on Google Maps' accuracy in mapping GPS coordinates to

pixels in the images. To evaluate the accuracy of positioning obstacles, the location

of a detected obstacle is compared with Google Map’s search result as shown in

Figure 28. Following detection of an obstacle, the centre pixel's coordinates of the

obstacle maps to GPS coordinates (right image in Figure 28). Then the calculated

GPS coordinates are searched by Google Maps, and the result is shown in the left

image of Figure 28. The search result indicates that Google’s pin (on the left picture)

points exactly to the centre of the obstacle detected by the proposed system.

	 	

53	
	

Figure 28: Developed system’s obstacle positioning accuracy checked against

Google Maps at Lat: 35.218108 and Long: 33.572233

Another advantage of the proposed method is the ability to calculate each detected

obstacle’s dimensions with significant accuracy. This is important as obstacles

appear in different sizes on the field and their dimensions are required to avoid any

collision. To demonstrate this, we have considered a sample tree and had its diameter

measured in three different ways.

First using the proposed method, and the result is 10.14 meter which is equal to

20.74 pixels on the image as shown in Figure 29a. Second is using Google Maps’

scale bar which is almost equal to 10 meters as shown in Figure 29b. The last one

was by measuring at the spot which was 11.1 meters (Figure 29c).

Comparing the proposed method’s result with Google Maps' scale bar we can see

that the difference is as small as 14 cm which denotes a very low percentage of error.

However, there is a significant difference between our result and the measured

diameter in the spot. The reason is that images provided by Google are usually two to

three years old hence not being up to date and the tree's growth not being captured.

	 	

54	
	

Figure 29: Detected obstacle dimensions calculated by the developed method

compared with google and its actual size (from left to right)

3.2 Trajectory Points Generation

As stated before the intention of this study is to produce GPS trajectory points to be

followed by GPS-enabled agricultural vehicles. To demonstrate the functionality and

compatibility of the proposed system with any path planning algorithm, we have

integrated the system into a path planning algorithm. A simple path planning

algorithm which produces parallel paths in agricultural fields is selected, and an

example of this kind is presented in Figure 30.

Unlike most of the path planning algorithms which draw lines on the image, the

developed system produces sequences of points. These points are initially generated

based on the pixels in the picture. These points must not overlap any obstacles and

must be in the field area.

This results in a sequence of points with some gaps in between as shown in Figure

31. These gaps divide each track into segments and are either due to an obstacle or

un-straight borders of the field. The selected path planning algorithm produces

tracking paths parallel to the longest straight edge of the field.

	 	

55	
	

Figure 30: An example of parallel path planning in an agricultural field

Figure 31: Trajectory reference points plotted on the field`s image

This edge is detected using Standards Hough Transform on the binary image and

presented with a bold line in Figure 32. The rests of the tracks on the field are

parallel to this line. Generated sequence of trajectory points in pixel coordinates are

later mapped into GPS coordinates using the Pixel-to-GPS conversion algorithm.

	 	

56	
	

The produced path which includes tracks, segments and points saved to be used by

tracking devices.

Figure 32: Demonstrating the longest straight edge of the field

Table 2 represent some statistic details of the path in Figure 31. As we can see from

the table, the generated path contains 2428 points which are all mapped into GPS

points. It also shows that this particular path contains 28 tracks which are formed of

35 segments. The total number of the obstacle detected in the field is 2, and the

length of the path is 5698.46 meters excluding required turns.

Table 2: Statistics of the trajectory path presented in Figure 28
Total GPS Points 2428

Total Tracks 28
Total Segments 35
No of Obstacle 1

Total Path Distance (m) 5698.465393

Table 3 presents details of each track. As shown the table track one is divided into

two segments. This track is the leftmost track on Figure 31 and split into two due to

	 	

57	
	

an un-straight edge of the field. Moreover, the total number of points in this track is

35. Tracks 16, 17 and 18 also divided into two segments due to the same obstacle in

the field.

Table 3: Track and segment details of the example in Figure 28
Track 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Segments 2 2 1 1 1 1 1 1 1 1 1 1 1 1
 Points 35 84 93 92 93 93 94 94 93 93 94 94 94 94
 Track 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total

Segments 1 2 2 2 1 1 1 1 1 1 1 2 1 2 35
Points 94 92 90 91 93 94 94 94 93 93 92 78 61 29 2428

Depending on the agricultural product on a field, farming might require different row

spacing. For example, one type product may require 1m distance between rows and

another one may require 3m distance in between each row. Row spacing (dms) is an

input parameter of the proposed system in generating trajectory points.

Demonstration of the trajectory generation algorithm is tested for the effect of row

spacing with three different row distances, (𝒹#M = {2, 4, 6} meters), applied on the

same set of fields. The results presented in Table 4 shows that the computational

time is in the range of 2.04 to 25.95 seconds for the row distance of 2m, 1.35 to

14.47 seconds for the row distance of 4m and 1.15 to 10.7 seconds for 6m row

distance.

	 	

58	
	

Table 4: Computation time and details for various row distances

Fi
el

d

Points per path

2m 4m 6m

T
im

e

N
um

be
r

of

T
ra

ck
.

N
um

be
r

of

Se
gm

en
ts

T
ot

al
 R

ef
.

po
in

ts

T
im

e

N
um

be
r

of

T
ra

ck
.

N
um

be
r

of

Se
gm

en
ts

T
ot

al
 R

ef
.

po
in

ts

T
im

e

N
um

be
r

of

T
ra

ck
.

N
um

be
r

of

Se
gm

en
ts

T
ot

al
 R

ef
.

po
in

ts

1 2.04 28 35 2428 1.35 14 16 1213 1.15 10 13 808

2 2.22 64 72 2601 1.58 32 37 1325 1.34 22 26 877

3 23.04 106 128 37553 13.54 53 40 18776 10.3 36 29 12480

4 25.95 107 130 46027 14.47 54 69 23085 10.7 36 47 15436

5 4.13 20 62 5576 2.96 10 39 2684 2.29 7 15 1930

6 5.51 33 93 8422 3.55 17 49 4226 2.86 11 35 2807

7 12.19 64 531 21140 7.29 32 286 9648 5.66 22 193 6438

3.3 Semantic Annotation

Following the detection and positioning of the obstacles, results are semantically

annotated. The annotation is done in two different ways, graphical and textual. After

computing location on the image and the radius for any detected obstacle, it is

graphically annotated on the picture with circles.Figure 33 shows an example of the

graphical annotation. Also, all the detections are semantically annotated and captured

in RDF/XML format. This figure also represents a portion of an RDF/XML file

generated during the semantic annotation phase of the field. This annotation refers to

the obstacle pointed with a white arrow in the figure. As shown, it is the first

detected obstacle on the field with X, Y coordinates of 72.441 and 16.951 on the

image. Its radius is 2.52 meters and geographically located on a point with the

latitude of 35.0755749 and the longitude of 33.5309169 degrees.

	 	

59	
	

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:obt="http://www.DLC.org/Obstacle#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:gn="http://www.geonames.org/ontology#"
xmlns:wgs84_pos="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:item="http://purl.obolibrary.org/obo/PO_0000003/hasNarrowSynonym#"
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#">
<rdf:Description rdf:about="http://www.DLC.org/Obstacle#"/>
<item:tree>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/>
 <obt:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 1 </obt:no>
 <wgs84_pos:lat>35.07557</wgs84_pos:lat>
 <wgs84_pos:long>33.53091</wgs84_pos:long>
 <svg:cx>72.4411204</svg:cx>
 <svg:cy>16.9516487</svg:cy>
 <svg:r>2.5275816</svg:r>
</item:tree>
</rdf:RDF>

Figure 33: Graphical and semantic annotation of obstacles,

Table 5 represents the details of the first detected obstacle on the target field which is

shown in Figure 33. The first column in the table represents the number of the

obstacle. This numbering is based on the order of the detection, for example, number

1 means the first detected obstacle. Columns two and three shows pixel coordinates

of the obstacle’s center. Columns four and five shows obstacle`s radius in pixels on

the image and meters on the ground. The last two columns represent the mapping of

the obstacle`s pixel location to latitude and longitude coordinates. Presented data are

used to annotate obstacles semantically and generate the RDF/XML file.

	 	

60	
	

Table 5: Obstacle detection and positioning data included in semantic annotation
Obstacle

No.
X coord.

(pix)
Y coord.

(pix)
Radius
(pix)

Radius
(meters)

Lat
(degrees)

Long
(degrees)

1 72.44112 16.951649 4.23264 2.52758 35.075575 33.530917
2 137.15192 118.71556 5.56901 3.32561 35.075351 33.531091
3 105.87311 105.21672 6.53522 3.9026 35.075382 33.531008
4 43.966544 77.133502 6.13732 3.66499 35.075443 33.530842
5 75.269715 91.760577 5.4431 3.25042 35.07541 33.530925
6 59.345833 128.49931 5.6869 3.39602 35.075331 33.530882
7 29.058078 113.67778 5.90732 3.52764 35.075362 33.530801
8 123.36508 77.755344 4.55023 2.71724 35.075441 33.531053
9 214.81828 116.68807 4.99847 2.98491 35.075355 33.5313

10 91.965574 143.67425 5.96041 3.55935 35.075296 33.53097
11 154.61818 170.45598 6.11502 3.65167 35.075239 33.531139
12 123.00124 157.28777 6.76373 4.03906 35.075268 33.531053
13 169.02055 132.87294 5.24449 3.13182 35.07532 33.531177
14 185.39867 185.43027 6.17136 3.68532 35.075206 33.53122
15 231.4479 161.99766 5.33967 3.18866 35.075257 33.531343
16 199.4047 146.87946 5.58356 3.3343 35.07529 33.531257
17 263.72562 175.68854 6.53168 3.90048 35.075226 33.531432
18 247.3087 128.95209 4.53204 2.70637 35.075329 33.531386
19 294.86756 189.76737 5.3989 3.22403 35.075195 33.531515
20 310.64187 155.64186 5.26233 3.14248 35.07527 33.531558
21 280.90302 143.26558 4.89839 2.92514 35.075298 33.531477
22 218.10521 199.43954 5.79499 3.46056 35.075175 33.531308
23 251.76515 213.31047 5.34811 3.1937 35.075145 33.531399
24 282.55477 227.76111 5.57833 3.33118 35.075112 33.531483
25 328.28792 203.63418 5.69524 3.40099 35.075164 33.531603
26 316.49374 242.74324 5.81192 3.47067 35.075079 33.531571

In addition to the annotation of obstacles, generated trajectory points are

semantically annotated and captured in RDF/XML format. During the generation and

positioning of the trajectory reference points, the results are saved into an array.

Rows in the array indicate the sequence number of the points in each track and

columns represents the location of the points. These points are presented with two

pairs of values. The first pair is the pixel location of the point on the image and the

second pair represents latitude and longitude of the point on the ground. Part of the

	 	

61	
	

results array is shown in Table 6, and zero values in the rows indicate the end of the

track.

Table 6: Array of trajectory points in pairs of x, y and lat, long.
Trajectory

point
Track 1 Track 2

x y lat long x y lat long

1 24 2.0414 35.16743 33.51162 16 11.555 35.16739 33.51158
2 25 2.1113 35.16743 33.51163 17 11.624 35.16739 33.51158
3 26 2.1812 35.16743 33.51163 124 19.099 35.16735 33.51216
4 27 2.251 35.16743 33.51164 125 19.169 35.16735 33.51216
5 28 2.3209 35.16743 33.51164 126 19.238 35.16735 33.51217
6 29 2.3907 35.16743 33.51165 127 19.308 35.16735 33.51217
7 30 2.4606 35.16743 33.51165 128 19.378 35.16735 33.51218
8 31 2.5304 35.16743 33.51166 139 20.147 35.16735 33.51224
9 32 2.6003 35.16743 33.51166 140 20.216 35.16735 33.51224

10 33 2.6701 35.16743 33.51167 141 20.286 35.16735 33.51225
11 34 2.74 35.16742 33.51167 142 20.356 35.16735 33.51225
12 0 0 0 0 143 20.426 35.16735 33.51226
13 0 0 0 0 144 20.496 35.16735 33.51226
14 0 0 0 0 156 21.334 35.16734 33.51233
15 0 0 0 0 157 21.404 35.16734 33.51233
16 0 0 0 0 158 21.474 35.16734 33.51234

The data presented in Table 6 are used to annotate trajectory points using the data

structure explained earlier. The "Path" is marked up as the root, and the "Track" as a

child node. Each child node consists of two elements, "Number" and “gpsPoint”, and

each would have their attributes. A section of the generated RDF/XML file shown in

Figure 34 includes the Path and Track number 1. The first trajectory point of the

track is located at latitude 35.075595 and longitude 33.530909 coordinates on the

ground. The same point on the image is located on pixel coordinates of X=69 and

Y=7.7293.

	 	

62	
	

Figure 34:Section of the annotation file in RDF/XML syntax format

	

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:trj="http://www.DLC.org/trajectory#"
xmlns:item="http://www.opengis.net/gml/"
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#">
<rdf:Description rdf:about="http://www.DLC.org/Trajectory#"/>
<item:point>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/>
 <item:pos>	35.075595, 33.530909</item:pos>
 <item:lat>35.075595</item:lat>
 <item:long>33.530909</item:long>
 <trj:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

1</trj:no>
 <trj:track rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

1</trj:track>
 <svg:cx>69</svg:cx>
 <svg:cy>7.7293</svg:cy>
</item:point>
<item:point>
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/>
 <item:pos>	35.075593,33.530914</item:pos>
 <item:lat>35.075593</item:lat>
 <item:long>33.530914</item:long>
 <trj:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

1</trj:no>
 <trj:track rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

1</trj:track>
 <svg:cx>71</svg:cx>
 <svg:cy>8.61913</svg:cy>
</item:point>
</rdf:RDF>

	 	

63	
	

Chapter 4

DISCUSSION

The proposed method requires only a GPS point inside the target field for

initialization, and provides the least complexity for the end user. The developed

system is capable of detecting obstacles and generating trajectory points. Also, this

system can be used by any path planning algorithm. The output is a path consisting

of points sequences in the form of GPS points, making the path traceable with any

GPS-enabled autonomous vehicle. Google Map's free API used in this study which

provides low-quality images. However, experimental results show that the developed

system provides significant precision in detecting and positioning of obstacles and in

generating trajectory points.

4.1 Effect of Zoom Level and Noise Reduction Algorithm

Zoom level plays a major role in the detection phase since higher accuracy could

achieve at higher zoom levels. The free API provides images with dimensions of 640

by 640 pixels. These dimensions limit us to choose the highest zoom level (Z = 18)

to fit the entire field. Consequently, low-quality images are captured. However, using

the Business API provided by Google the image quality can improve significantly.

The Business API provides images with dimensions of 2048x2048 pixels which can

fit the same fields with higher zoom level (Z= 20). This improves the picture quality

by four which would result in considerable improvements in the detection of

obstacles. As shown in Figure 35 the same field with Z= 19 has twice visibility and

	 	

64	
	

quality comparing to the same field with Z = 18 and this visibility and quality

increases to four times with Z = 20.

The developed system shows sufficient performance to detect and extract the target

field, however, under some circumstances; it struggles to find the target field and

fails to detect boundaries because the edges of the field are not clearly visible for the

detection methods which are used to identify the field. The issue arises when the

target field is in the same contrast and brightness of the surrounding areas.

Figure 35: Correlation between zoom level on the map and the image quality

Using noise reduction algorithms removes some existing obstacles in the field like

rocks, bushes, old boughs on the ground and etc. which may cause dangerous and

harmful operation of vehicles. Although noise reduction algorithms remove these

objects from obstacle detection image, they are still visible on the annotation image

to the human eyes. Therefore, it is possible to process them during a user

𝑍=18	 𝑍=19	
𝑍=20	

Longitude

La
tit

ud
e

	 	

65	
	

intervention step before the path planning, and rely on user intervention to clear them

from the list of obstacles.

4.2 Effect of Edge Detection Algorithms

Initially, Sobel was selected as the primary edge detection method for obstacle

detection due to its higher performance. Table 7 represents the comparison results

between Sobel, Canny, Prewitt and Roberts. This comparison was made using the

default parameter sets in the beginning. Table 7 shows that Sobel had better results in

correct detection and false negative error (wrong detection).

In regards to the false positive error, although Roberts scored better result comparing

to Sobel, the difference is not significant enough to consider. All initial experiments

with Sobel and other edge detection methods were conducted using default threshold

value of 0.27. However, referring to Figure 11, our observations indicated that Sobel

behaves differently with various threshold values while detecting obstacles.

Table 7: Initial comparison of edge detection methods
 Detection

Method Correct FPE FNE %

Canny 1282 283 323 80.02

Prewitt 1044 155 283 65.17
Roberts 1333 105 557 83.21

Sobel 1350 106 253 84.27

Figure 36 shows results of applying the entire threshold range from zero to one on

Sobel. This figure only shows a portion of the results as the number of detections

seeks to zero while reaching large threshold values. The chart indicates that Sobel

	 	

66	
	

reaches the maximum number of detections with a threshold value of 0.059 on

average.

Figure 36: No. of detections using the entire range threshold on Sobel in all fields

Our experiments results show that T-range method improved correct detections up to

21.43% in overall. The improvement of detections is due to the fact that by applying

the complete sensitivity-threshold range on Sobel we have increased the possibility

of detecting the correct obstacle. The reason is that using T-range and finding the

best threshold value will result in the algorithm to find more edges which are like

obstacles.

However, these detections may include correct and incorrect obstacles. The

verification of correct and incorrect detections is done using another algorithm. This

algorithm uses gray-level intensity threshold to differentiate correct detections from

the incorrect ones and discard wrong detections. Also, false positive error improved

by 20.83% which means fewer obstacles missed during the detection phase.

	 	

67	
	

Table 8: Detection improvements from Sobel with static threshold value to Sobel
with dynamic threshold

Field
Sobel

(Default
Thr.)

Sobel
(dynamic

Thr.)
Field

Sobel
(Default

Thr.)

Sobel
(Dynamic

Thr.)
1 1 2 27 33 33
2 5 29 28 27 32
3 12 7 29 40 30
4 53 45 30 15 22
5 17 25 31 32 37
6 10 22 32 47 22
7 18 16 33 4 13
8 14 17 34 65 67
9 14 16 35 18 27

10 18 26 36 9 16
11 31 44 37 19 14
12 2 7 38 11 16
13 5 27 39 22 14
14 11 14 40 11 14
15 27 53 41 5 3
16 1 11 42 38 40
17 9 15 43 17 14
18 22 100 44 13 32
19 11 54 45 45 86
20 3 9 46 56 50
21 37 33 47 56 67
22 33 31 48 30 30
23 8 9 49 3 2
24 5 8 50 54 65
25 9 9 51 14 21
26 12 13

After considering Sobel with the dynamic threshold (T-range), we have applied the

Max-of-All method on all fields and compared the counts of obstacle-candidate

detections in Table 9. Values in bold on each row shows improvements made by the

Max-of-All method. By comparing the results in Table 8 and Table 9, we can see

that the Max-of-All made less enhancement (values marked by a) (16.67%) compared

to the T-range (21.43%), however, its enhancement is independent of Max-of-All

since it provides enhancement on a different set of images as seen in Table 9.

	 	

68	
	

Table 9: Correct detections by Sobel with default-threshold and Max-of-All methods

Field Default Thr. Max-of-All Field Default Thr. Max-of All

1 1 2 27 33 34
2 5 27 28 27 27
3 12 13 a 29 40 40
4 53 59 a 30 15 17
5 17 27 31 32 32
6 10 18 32 47 48 a

7 18 18 33 4 7
8 14 15 34 65 65
9 14 15 35 18 18

10 18 25 36 9 12
11 31 42 37 19 19
12 2 4 38 11 17
13 5 19 39 22 22
14 11 11 40 11 23
15 27 54 41 5 5
16 1 7 42 38 38
17 9 13 43 17 17
18 22 106 44 13 22
19 11 46 45 45 83
20 3 7 46 56 57 a

21 37 54 a 47 56 70
22 33 33 48 30 40
23 8 8 49 3 5 a

24 5 5 50 54 61
25 9 9 51 14 19
26 12 14

The Max-of-All method was successful in improving the detection process in some

of the fields which T-range failed to improve. These fields are marked by a in Table

9. The T-range method applies over complete threshold range only on Sobel.

However, DLC applies the entire threshold range on all four edge detection methods.

Instead of using T-range, application of DLC combines the partial improvements

together with other edge detection algorithms. Only the meaningful parts of the

results are presented in Figure 34 because from the threshold value 0.14 onward the

number of detections seeks to zero. From the chart, we can immediately notice that

	 	

69	
	

Roberts and Prewitt reach their highest number of detections with almost the same

threshold value of Sobel. However, Canny reaches its maximum number of

detections with a higher threshold value.

Figure 37: Maximum detection of obstacle-candidates for edge detection methods

using dynamic threshold

After applying the entire threshold range on all four edge detection methods, the one

with the best performance is selected for each field. DLC results are presented in

Table 10 which indicates detection improvements on all the fields but two (marked

by a). Correct detections are improved up to 45% in overall using DLC. The false

positive error improved by 33.3% and the false negative error minimized to almost

one-fifth comparing to the initial results gained using Sobel with default parameter

sets.

	 	

70	
	

Table 10: DLC vs. Sobel with default threshold in detection

Field
Sobel

(Default
Thr.)

DLC Field
Sobel

(Default
Thr.)

DLC

1 1 6 27 33 40
2 5 34 28 27 35
3 12 8 a 29 40 40
4 53 54 30 15 22
5 17 27 31 32 37
6 10 23 32 47 50
7 18 20 33 4 14
8 14 20 34 65 69
9 14 18 35 18 28

10 18 29 36 9 19
11 31 51 37 19 19
12 2 8 38 11 28
13 5 27 39 22 20 a

14 11 16 40 11 23
15 27 57 41 5 10
16 1 16 42 38 50
17 9 18 43 17 17
18 22 108 44 13 34
19 11 54 45 45 87
20 3 9 46 56 61
21 37 51 47 56 74
22 33 34 48 30 37
23 8 9 49 3 3
24 5 8 50 54 72
25 9 9 51 14 21
26 12 14

Grey-level intensity threshold has a significant impact on minimizing wrong

detections by classifying correct and incorrect detections. As shown in Figure 25,

grey-level intensity threshold value 127.37 was used to classify results and remove

the wrong detections. Although this assisted the system to minimize wrong

detections, yet, there exist cases which could be improved. Results in Figure 25

indicate that there are overlapping correct and incorrect detections in the areas close

to the preferred grey-level intensity threshold value. The overlapped values introduce

additional complexity to the elimination of wrong detections.

	 	

71	
	

4.3 Discussion on Path Planning Methods and Semantic Annotation

The policy to generate trajectory points depends on the selected path planning

algorithm. A path planning algorithm might more suitable depending on the decision

of the type of the crop, properties of the soil, geometry and slope of the field. Some

crops may require deeper crop rows with more distance in between and some may

require shallow rows with less distance from each other. The crop selection policy

may be influenced by the cultural conventions, regional climate, geographical

location of the field, slope and shape of the field and some many other factors, which

are beyond the scope of this thesis.

The developed system was tested using a simple path planning algorithm to

demonstrate its capability of integration with any path planning algorithm, and to

focus on development of obstacle recognition and semantic annotation. Having

parallel and straight lines are the main features of the selected path planning

algorithm. Crop-lanes are planned parallel to the longest edge of the field, with a

constant crop-row distance which is entered at the start of the application. A line

equation according to the baseline with fixed increments and various Y-intercepts

used to make sure these paths are correctly created. A sample of the generated

trajectory points in pixel coordinates and their conversion to GPS coordinates are

presented in Figure 38 and Figure 39 accordingly. Results of the linear equation with

no exponents higher that one on both figures guarantees the straightness of both

tracks.

	 	

72	
	

Figure 38: Proof of produced trajectory points being in a straight line in pixels

Figure 39: Proof of produced trajectory points being in a straight line in GPS

coordinates

Figure 40 provides an example for further explanation the developed system and its

integration into other path planning algorithms. As illustrated in the image, this

particular path planning algorithm has different rules in creating the path, especially

when it comes to the turns at the end of each track. Although the tracks are parallel to

each other, it does not mean that the tractor should follow one after the other. In this

path, the tractor might need to go from track 1 to 3 due its limitations in manoeuvre

at the end of some tracks. Current capability of the GPS installed automatic vehicles

safely provides sufficient tracking accuracy to process all crop-rows with a precision

less than two cm. Now, when the proposed system integrates into this particular path

planning algorithm, we would get a different sort of trajectory points regarding the

sequence. For example, while the path is in a straight line we will have the same

	 	

73	
	

output structure including the track, the segments, and the points. However, when it

comes to the turns, we might have different sort of point sequence representing a

semi-circle path to cover the turns. Now, all the autonomous vehicle must do is to

follow the generated trajectory points to have a successful turn and back on the next

track. Consequently, the annotation of the track would differ too. For example, when

it comes to the turns, additional children, sub-children, and elements would be

generated during the annotation and creation of the RDF/XML file. However, the

annotation of obstacles would not alter by different planning algorithms as obstacles

are entirely different entities than the trajectory points.

Figure 40: Sample output of a path planning algorithm

	 	

74	
	

Chapter 5

CONCLUSION

In this study, we have proposed a state-of-the-art method to fill the information flow

gap between planning and automation in agricultural environment. The system

introduced a method to semantically annotate and generate traceable trajectory points

in agricultural realm. The trajectory points are produced in the form of GPS

coordinates for autonomous agricultural vehicles to trace. Also, we have proposed a

new method to recognize, locate and annotate obstacles within the field. This study

focused on detecting trees which are considered obstacles in many path planning

strategies. In the interest of simplicity and ease of use, a single GPS coordinate of the

field's area is required to initiate the process. This GPS point is crucial to the system

as all the global positioning computations depend on it. These computations include

extracting the target field, locating the obstacles and converting pixel coordinates to

GPS coordinates. Furthermore, detected obstacles and generated trajectory points are

semantically annotated for data exchange purposes between different sub-systems

and ontologies of the agricultural domain.

Various edge detection methods including Canny, Prewitt, Roberts and Sobel are

used for detection purposes on top-view satellite images. These images are obtained

using the free Google Map API, which provides images with maximum resolution of

640 by 640 dpi. On all the experiments the zoom level is set to ∆g=18 for consistency

and comparison purposes. The success rates of the edge detection methods are

	 	

75	
	

compared to select the most feasible method. On the early stages of the study, Sobel

was chosen as the primary method with default parameter sets. However, by fine-

tuning the sensitivity threshold and introducing T-range, Max-of-All, and DLC

algorithms, we have achieved higher precision in the detection phase. The Max-of-

All algorithm provided fewer detection improvements (16.6%) comparing to the T-

range (21.43%), however, managed to enhance the detection on some of the fields

which T-range failed. The DLC algorithm improved the detections up to 45.4% by

merging the Max-of-All and the T-range. Also, using the DLC method, false positive

error (FPE) reduced by 33% and by using the grey-level-intensity threshold false

negative errors (FNE) reduced by 80% on average.

With the assumption of accurate mappings between the satellite images and GPS

coordinates by Google Map, the proposed method provides significant precision in

locating and identifying obstacles. Minimum initialization requirements (one GPS

point) and considerable low processing time (1.15–25.95 seconds) are some

advantages of the system. Also, generating reliable and traceable trajectory points in

the form of GPS coordinates makes this method feasible for further consideration

and utilization for any path planning algorithm in agricultural automation.

The main intention of this study was to produce traceable trajectory points for

autonomous agricultural vehicles rather than developing a new path planning

algorithm. The developed system integrated into a path planning algorithm for

evaluation purposes. Results indicate that this method is capable of generating

trajectory points with significant accuracy while merged into a path planning

algorithm. Detected obstacles and generated trajectories graphically annotated on the

image and also semantically annotated and captured in RDF/XML format. The

	 	

76	
	

annotation makes the outputs of the system exchangeable between related

applications, ontologies or subsystems of agricultural automation. And, an emerging

publication is expected on this issue as a fruit of this dissertation.

In the field extraction process morphological reconstruction was used to remove

noises on the obtained image. However, in the future studies, it may be beneficial to

use nonlinear diffusion filter rather than morphological reconstruction to reduce

missed obstacle recognition rate. Nonlinear diffusion can remove both high and low

frequency noises selectively while morphological reconstruction works very

effectively for the removal of high frequency noises. Another future study may

consider other detection methods to overcome the brightness and contrast issue to

improve the field extraction phase. Consequently, more variety of fields will be

identified even if the field is at the same grey-intensity level as the surrounding area.

Furthermore, in addition to the threshold value, other parameters like object-polarity,

computation method, and sensitivity factor could be considered to enhance the object

detection phase even more. Instantaneous adaptability is another feature we would

like to study on to integrated the proposed method with real-time systems which

requires having access to live satellite images. Extending the semantic annotation

section is another future possibility to support Web Ontology Language (OWL),

which can describe the semantics of classes and properties used beyond the

semantics of RDF schema in a formal methodology. Another future improvement

effort shall be considered for user intervention to validate detections, reduce errors

and to reduce harmful possibilities.

	

	 	

77	
	

REFERENCES

[1] V. Blanco, L. Carpente, Y. Hinojosa and J. Puerto. (2010). Planning for

Agricultural Forage Harvesters and Trucks: Model, Heuristics, and Case

Study. Networks and Spatial Economics, vol. 10, no. 3, pp. 321-343.

[2] J. Gomez-Gil, R. Ruiz-Gonzalez, S. Alonso-Garcia and F. J. Gomez-Gil.

(2013). A Kalman Filter Implementation for Precision Improvement in Low-

Cost GPS Positioning of Tractors. Sensors (Basel), vol. 13, no. 1424-8220, 8

Nov.

[3] R. Lenain, B. Thuilot, C. Cariou and P. Martinet. (2006). High Accuracy Path

Tracking for Vehicles in Presence of Sliding: Application to Farm Vehicle

Automatic Guidance for Agricultural Tasks. Autonomous Robots , vol. 21, no.

1, pp. 79-97, 08 2006.

[4] M. Bodur, E. Kiani and H. Hacisevki. (2012). Double Look-Ahead Reference

Point Control for Autonomous Agricultural Vehicles. Biosystems Engineering,

vol. 113, no. 2, pp. 173-186.

[5] B. Xu, D. J. Stilwell and A. J. Kurdila. (2013). Fast Path Re-Planning Based on

Fast Marching and Level Sets. Journal of Intelligent & Robotic Systems, vol.

71, no. 3, pp. 303-317.

	 	

78	
	

[6] T. Oksanen and A. Visala, (2007). Path Planning Algorithms for Agricultural

Machines. Commission of Agricultural Engineering (CIGR, Commission

Internationale du Genie Rural), vol. 9.

[7] Q. Zhang and H. Qui. (2004). A Dynamic Path Search Algorithm for Tractor

Automatic Navigation. Transactions of the ASAE, vol. 47, no. 2, pp. 639-646.

[8] A. A. Bakhtiari, J. Mehri, D. Bochtis and H. Navid. (2011). Optimal Route

Planning of Agricultural Field Operations using Ant Colony Optimization.

Agricultural Engineering International: CIGR Journal, vol. 13, no. 2.

[9] M. Kothari and I. Postlethwaite. (2013). A Probabilistically Robust Path

Planning Algorithm for UAVs using Rapidly-Exploring Random Trees.

Journal of Intelligent & Robotic Systems, vol. 71, no. 2, pp. 231-253.

[10] Y. S. X. and L. C. (2004). A Neural Network Approach to Complete Coverage

Path Planning. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 34, no. 1, pp. 718 - 724, Feb.

[11] R. Kala and K. Warwick. (2013). Multi-Level Planning for Semi-Autonomous

Vehicles in Traffic Scenarios based on Separation Maximization. Journal of

Intelligent & Robotic Systems, vol. 72, no. 3-4, pp. 559-590, 12.

[12] S. Fabre, P. Soukrest, M. Tai’xt and L. Cordesses. (2001). Framework Path

Planning for Field Coverage with Minimum Overlapping. International

	 	

79	
	

Conference on Emerging Technologies and Factory Automation, Proceedings.

[13] G. Zuo, P. Zhang and J. Qiao. (2010). Path Planning Algorithm Based on Sub-

Region for Agricultural Robot. Informatics in Control, Automation and

Robotics (CAR), 2nd International Asia Conference, Wuhan.

[14] M. Taïx, P. Souères, H. Frayssinet and L. Cordesses. (2006). Path Planning for

Complete Coverage with Agricultural Machines. Field and Service Robotics,

vol. 24, pp. 549-558.

[15] R. Daily and D. M. Bevly. (2004). The use of GPS for Vehicle Stability

Control Systems. IEEE Transactions on Industrial Electronics, vol. 51, no. 2,

pp. 270-277, April.

[16] R. Lenain, B. Thuilot, C. Cariou and P. Martinet. (2007). Adaptive and

Predictive Path Tracking Control for Off-Road Mobile Robots. European

Journal of Control , vol. 13, no. 4, pp. 419-439, 07.

[17] M. Kise, N. Noguchi, K. Ishii and H. Terao. (2005). Laser Scanner-based

Obstacle Detection System for Autonomous Tractor: Movement and Shape

Detection Targeting at Agricultural Vehicle. Journal of the Japanese Society of

Agricultural Machinery, vol. 66, no. 2, pp. 97-104.

[18] D. Bratasanu, I. Nedelcu and M. Datcu. (2011). Bridging the Semantic Gap for

Satellite Image Annotation and Automatic Mapping Applications. IEEE

	 	

80	
	

Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

vol. 4, no. 1, pp. 193-204, March.

[19] K. Murphy, A. Torralba, D. Eaton and W. Freeman. (2006). Object Detection

and Localization using Local and Global Features. Toward Category-Level

Object Recognition, vol. 4170, Springer Berlin Heidelberg, pp. 382-400.

[20] T. Deselaers, D. Keysers and H. Ney. (2005). Discriminative Training for

Object Recognition using Image Patches. IEEE Computer Society Conference:

Computer Vision and Pattern Recognition, vol. 2.

[21] J.-J. Chen, C.-R. Su, W. E. L. Grimson, J.-L. Liu and D.-H. Shiue. (2012).

Object Segmentation of Database Images by Dual Multiscale Morphological

Reconstructions and Retrieval Applications. IEEE Transactions on Image

Processing, vol. 21, no. 2, pp. 828-843, 1.

[22] M. Lienou, H. Maitre and M. Datcu. (2010). Semantic Annotation of Satellite

Images using Latent Dirichlet Allocation. IEEE Geoscience and Remote

Sensing Letters, vol. 7, no. 1, pp. 28-32, 1.

[23] A. Mohan, C. Papageorgiou and T. Poggio. (2001). Example-Based Object

Detection in Images by Components. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 23, no. 4, pp. 349-361, 4.

[24] Google, "Google Map API," (23 Dec 2015). Retrieved from https://developers.

	 	

81	
	

google.com/maps/documentation.

[25] M. Juneja and P. S. Sandhu. (2009). "Performance Evaluation of Edge

Detection Techniques for Images in Spatial Domain," International Journal of

Computer Theory and Engineering, vol. 1, no. 2, pp. 614-621.

[26] G. Shrivakshan and C. Chandrasekar. (2010). A Comparison of various Edge

Detection Techniques used in Image Processing. IJCSI International Journal

of Computer Science , vol. 9, no. 5, pp. 269-276, Sep.

[27] M. Bodur, M. Mehrolhassani, and Anas Q. Mahdi. (2014). Comparison of the

Edge Detection Methods in Detecting Agricultural Obstacles. in ICAFS-2014,

Eleventh International Conference on Application of Fuzzy Systems and Soft

Computing, Proceedings, pp.93-103, September 2-3, (Paris, France)

[28] M. Bodur, and M. Mehrolhassani. (2013). Textual Annotation, Detection and

Positioning of Obstacles in Agricultural Fields using Satellite Images.

ICSCCW-2013 Seventh International Conference on Soft Computing,

Computing with Words and Perceptions in System Analysis, Decision and

Control , September 2-3. Izmir, Turkey.

[29] M.Bodur, and M. Mehrolhassani. (2015). Satellite Images-based Obstacle

Recognition and Trajectory Generation for Agricultural Vehicles. International

Journal of Advanced Robotic Systems, ISSN 1729-8806, DOI:10.5772/62069,

	 	

82	
	

December 22.

[30] M. Smereka and I. Dulęba. (2008). Circular Object Detection using a Modified

Hough Transform. International Journal of Applied Mathematics and

Computer Science - Applied Image Processing, vol. 18, no. 1, pp. 85-91.

[31] D. Maheswari and V. Radha. (2010). Noise Removal in Compound Image

using Median Filter. International Journal of Advanced Trends in Computer

Science and Engineering, vol. 2, no. 4, pp. 1359-1362.

[32] M. R. Khokher, A. Ghafoor and A. M. Siddiqui. (2013). Image Segmentation

using Multilevel Graph Cuts and Graph Development using Fuzzy Rule-Based

System. IET Image Processing, pp. 201-211, June.

[33] H.-C. Wang, T.-H. Huang and C.-T. Liu. (2011). Automatic Summarization

based on Automatically Induced Ontology. Intelligent Automation and Soft

Computing, vol. 17, no. 4, pp. 447-463.

[34] Y.-W. Tai, J. Jia and C.-K. Tang. (2007). Soft Color Segmentation and its

Applications. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 9, pp. 1520 - 1537, Sep.

[35] V. Luc. (2007). Morphological Grayscale Reconstruction in Image Analysis:

Applications and Efficient Algorithms. IEEE Transactions on Image

	 	

83	
	

Processing , vol. 2, no. 2, pp. 176-201.

[36] M. Gavrica, M. Martinovb, S. Bojicb, D. Djatkovb and M. Pavlovic. (2011).

Short-and Long-Term Dynamic Accuracies Determination of Satellite-Based

Positioning Devices using a Specially Designed Testing Facility. Computers

and Electronics in Agriculture, vol. 76, no. 2, pp. 297-305.

[37] K. Petridis, S. Bloehdorn, C. Saathoff, N. Simou, S. Dasiopoulou, V.

Tzouvaras, S. Handschuh, Y. Avrithis, Y. Kompatsiaris and S. Staab. (2006).

Knowledge Representation and Semantic Annotation of Multimedia Content.

IEE Proceedings - Vision, Image and Signal Processing, vol. 153, no. 3, pp.

255 - 262, June.

[38] M. Nørremark, G. H.W, N. J. and S. H.T. (2008). The Development and

Assessment of the Accuracy of an Autonomous GPS-Based System for Intra-

Row Mechanical Weed Control in Row Crops. Biosystems Engineering, vol.

101, no. 4, pp. 396-410.

[39] A. Sgorbissa and R. Zaccaria. (2013). Integrated Obstacle Avoidance and Path

Following through a Feedback Control Law. Journal of Intelligent & Robotic

Systems, vol. 72, no. 3-4, pp. 409-428, 12.

[40] E. Cuevas, N. Ortega-Sánchez, D. Zaldiva and M. Pérez-Cisneros. (2012).

Circle Detection by Harmony Search Optimization. Journal of Intelligent &

	 	

84	
	

Robotic Systems, vol. 66, no. 3, pp. 356-376, 5.

[41] J. Kopecký, T. Vitvar, C. Bournez and J. Farrell. (2007). SAWSDL: Semantic

Annotations for WSDL and XML Schema. IEEE Internet Computing, vol. 11,

no. 6, pp. 60-67, Dec.

[42] Waing and N. Aye. (2013). On the Automatic Detection System of Stop Line

Violation for Myanmar Vehicles (Car). International Journal of Computer &

Communication Engineering Research (IJCCER), vol. 1, no. 4.

[43] C. Wanga, T. Ruan Wanb and I. J. Palmerb. (2012). Automatic Reconstruction

of 3D Environment using Real Terrain Data and Satellite Images. Intelligent

Automation & Soft Computing, vol. 18, no. 1, pp. 49-63.

[44] K. Mahalingama and M. N. Huhnsa. (2000). Ontology Tools for Semantic

Reconciliation in Distributed Heterogeneous Information Environments.

Intelligent Automation & Soft Computing, vol. 6, no. 3, pp. 185-192.

[45] World Wide Web (W3C) Consortium, "W3C Standards," (07 Sep 2016).

Retrieved from http://www.w3.org.

[46] Plant Ontology Database Project, "Plant Ontology (PO)," (07 Sep 2016).

Retrieved from http://www.plantontology.org.

[47] OGC Working Group, "Open Geospatial Consortium (OGC)," (07 Sep 2016).

	 	

85	
	

Retrieved from http://www.w3.org/2003/01/geo.

[48] SVG Working Group, "Scalable Vector Graphics (SVG)," (07 Sep 2016).

Retrieved from http://www.w3.org/TR/SVG/Overview.html.

[49] Dublin Core Metadata Initiative (DCMI), "The Dublin Core Ontology (DC),"

(07 Sep 2016). Retrieved from http://www.dublincore.org.

	 	

	 	

86	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

APPENDICES

	 	

87	
	

Appendix A: Segmentation and Extraction Source Code

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

% Segmentation and Extraction of Target Field (Automatic)
if strcmp(Choice2,'a')

[imWidth,imHeight]=size(BW);
msk=[0 0 0 0 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 0 0 0 0;];
% Smoothing image to reduce the number of connected components
B=conv2(double(BW),double(msk));
L = bwlabeln(B,8);% Calculating connected components
mx=max(max(L));
ConnectedC = bwconncomp(B); % Find connected components in

binary image
 % %%%%% this section will label all the objects based on
'bwconncomp'

% Calculate centroids for connected components in the image
using regionprops
segSel = regionprops (ConnectedC, 'Centroid');

 bwh1 = figure, imshow(BW); % show image
 hold on

for k = 1:numel(s)
c = segSel (k).Centroid;
text(c(1), c(2), sprintf('%d', k), ...
 'HorizontalAlignment', 'center', ...
 'VerticalAlignment', 'middle',...
 'BackgroundColor','green',...
 'FontSize',16);
end

hold off
saveas (gca,'bwl2.png'); % save image
figure, imshow(BW); % show image
AxesL = gca; % Not the GCF
figLabeled = getframe(AxesL);
imwrite(figLabeled.cdata, 'bwLabeled.png');
imshow('bwLabeled.png', 'Parent', handles.small_axes2);
maxObj = CC.NumObjects; % Find total number of objects
 % %%%this part will select the biggest section and displays
numPixels = cellfun(@numel,CC.PixelIdxList); % counts number of
pixels in each object

	 	

88	
	

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

[biggest,idx] = max(numPixels); % finds the biggest object based on
pixel numbers

for i=1:maxObj % set all pixels in the image to 0 to remove all
objects
BW(CC.PixelIdxList{i}) = 0;
end

BW(CC.PixelIdxList{idx}) = 1; % set pixels in idx to 1 to show only
the biggest object
% display the largest field with label
BW1 = BW;
figure, imshow(BW),title('biggest part');

%%%%%%%%%% this section will label the largest object
cenSeg = segSel (idx).Centroid;
text(cenSeg (1), cenSeg (2), sprintf('%d', idx), ...
'HorizontalAlignment', 'center', ...
'VerticalAlignment', 'top',...
'BackgroundColor','green',...
'FontSize',16);
figure, imshow(BW),title('before crop');
saveas(gca,'bwl3.png')
AxesL1 = gca; % Not the GCF
figLabeled1 = getframe(AxesL1);
imwrite(figLabeled1.cdata, 'bwLabeled1.png');
imshow('bwLabeled1.png', 'Parent', handles.small_axes3);

%% measuring bounding box of the image
 selReg = regionprops(BW, 'BoundingBox');
 I6 = imcrop(BW1, selReg.BoundingBox);
imshow(I6),title('after crop');
AxesL2 = gca; % Not the GCF
Labeled2 = getframe(AxesL2);
imwrite(I6, 'Labeled2.png');
hold on
I3 = imread('temp.jpg');
I2 = imcrop(I3, selReg.BoundingBox); %cropping the image
I4 = im2bw(I2,graythresh(I2));
imshow(I2, 'Parent', handles.main_axes);%display cropped image into
main axes GUI
imwrite(I2,'ask_out.png'); % write the result in an image file
imwrite(I4,'ask_out1.png'); % write the result in an image file

% save bounding box info to pass to other procedures

	 	

89	
	

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.

handles.BoundingBox1 = selReg.BoundingBox(1);
handles.BoundingBox2 = selReg.BoundingBox(2);
guidata(hObject, handles)

elseif strcmp(Choice2,'m') % manual segment selection
[imWidth,imHeight]=size(BW);
msk=[0 0 0 0 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 0 0 0 0;];
% Smoothing image to reduce the number of connected components
B=conv2(double(BW),double(msk));
L = bwlabeln(B,8);% Calculating connected components
mx=max(max(L));
 %%%%%%%%% this section will label all the objects based on
'bwconncomp'
segSel = regionprops(L, 'Centroid');
bwh1 = figure, imshow(BW); % show image
BW1 = BW;
figure, imshow(BW),title('biggest part');
hold on

for k = 1:numel(s)
 c = segSel (k).Centroid;
 text(segSel (1), segSel (2), sprintf('%d', k), ...
 'HorizontalAlignment', 'center', ...
 'VerticalAlignment', 'middle',...
 'BackgroundColor','green',...
 'FontSize',16);
end

hold off
% save current fig and display in axes
saveas(gca,'bwl2.png')
AxesL = gca; % Not the GCF
figLabeled = getframe(AxesL);
imwrite(figLabeled.cdata, 'bwLabeled.png');
imshow('bwLabeled.png', 'Parent', handles.small_axes2);
figure, BW2 = bwselect(L),title('All segments-Select desired one'); %
allows you to select segment from the screen
axes(handles.main_axes);
selReg = regionprops(BW2, 'BoundingBox'); % find bounding box of
result
I3 = imread('temp.jpg');
I2 = imcrop(I3, selReg.BoundingBox); % crop the image according to
the bounding box

	 	

90	
	

129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.

imshow(I2, 'Parent', handles.main_axes); %display croped image into
main axes GUI
I6 = imcrop(BW1, selReg.BoundingBox);
imshow(I6),title('after crop');
AxesL2 = gca; % Not the GCF
Labeled2 = getframe(AxesL2);
imwrite(I6, 'Labeled2.png');
imwrite(I2,'ask_out.png'); % write the result in an image file

% save bounding box info to pass to other procedures
handles.BoundingBox1 = selReg.BoundingBox(1);
handles.BoundingBox2 = selReg.BoundingBox(2) ;
guidata(hObject, handles)

end

	 	

91	
	

Appendix B: Obstacle Detection Source Code

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

switch objType
case 'tree'
% (Z=17,Rmin=2) (Z=18,Rmin=4) Min radius suitable for different zooms in
google to find %"tree" or circular shape obstacles
Rmin = 4;
% Max radius suitable for zoom=18 in google to find "tree" or circular shape
obstacles
Rmax = 18;
% finding dark circles
[centersDark, radiiDark] = imfindcircles(outputImage,[Rmin
Rmax],'ObjectPolarity','dark');
save('centersDark.mat', 'centersDark')
save('radiiDark.mat', 'radiiDark')
regionNumber=handles.region;
regionChoice=str2double(regionNumber);
% choosing region to search for obstacles
ext_SegmentSelection % Call "ext_SegmentSelection.m" to select desired
region
k=1;
numOfCircles=size(centersDark,1);

if length(centersDark)==0 % search for existing obstacles
disp(' no tree');

end
% loop into all detected obstacles check and if the detected obstacle is in the
right area
for i=1:numOfCircles

if (centersDark(i,1)>=xMin && centersDark(i,1)<=xMax) &&
(centersDark(i,2)>=yMin && centersDark(i,2)<=yMax) ...
&& (outputBW1(round(centersDark(i,2)),round(centersDark(i,1))) == 0)
centerPoint(k,1)=centersDark(i,1);
centerPoint(k,2)=centersDark(i,2);
radiiPoint(k,1)=radiiDark(i,1);
k=k+1;
viscircles(centerPoint, radiiPoint,'LineStyle','-'); % labelling circles
%Save found and inbound obstacle into variables
load('centerP1.mat', 'centerP1')
load('radiiP1.mat', 'radiiP1')
centerP1 = [centerP1; centerPoint]
radiiP1 = [radiiP1; radiiPoint]
save('centerP1.mat', 'centerP1')

	 	

92	
	

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

save('radiiP1.mat', 'radiiP1')

ex_SetTreeGpsCoord % get GPS coordinates of the found tree in the
cropped image
%% Semantic annotation preparation for detected obstacles
treeRaius = radiiDark(i);
centersDark(i,1);
centersDark(i,2);
findX = num2str(centersDark(i,1));
findY = num2str(centersDark(i,2));
findtTree = '';
xDoc = xmlread('output.xml');
allListitems = xDoc.getElementsByTagName('PixelCoordinates');

if (allListitems.getLength) == 0 % check if XML file is empty
%######## INSERT into XML file for tree for first time #######
ext_XmlWriteTree; %Call xmlWriteTree.m to add a tree to XML file
else
% Duplicity check
end

end

	

	 	

93	
	

Appendix C: Duplicity Check Source Code

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

%%% Duplicity check
for L = 0:allListitems.getLength-1 % check if tree exists in XML file
thisListitem = allListitems.item(L);
% Get the label element. In this file, each
% list item contains only one label.
xList = thisListitem.getElementsByTagName('X');
xElement = xList.item(0);
xmlX=str2double(xElement.getFirstChild.getData);
xmlX_string=num2str(xmlX);
yList = thisListitem.getElementsByTagName('Y');
yElement = yList.item(0);
xmlY=str2double(yElement.getFirstChild.getData);
xmlY_string=num2str(xmlY);
% Check whether this is the label you want.
% The text is in the first child node.

if strcmp(xmlX_string, findX) && strcmp(xmlY_string, findY)
treeFound = 1; % tree found will set to 1 if the tree exists in XML
file
break;

else
treeFound = 0;

end
end

if treeFound == 0
%######## update XML file for new tree if "treeFound=0" #######
ext_XmlWriteTree %Call xmlWriteTree.m to add a tree to XML file
end

end
end

	 	

	 	

94	
	

Appendix D: Code for Geographical Positioning of Obstacles

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

%% calculate GPS coordinates of detected obstacles
hold on
% calculating target field’s reference point in pixel coordinate

OrgCenPixelX = imWidth/2;
OrgCenPixelY = imHeight/2;

% mapping target field’s reference point in GPS coordinate
OrgCenPixelLong = str2double(longCoord);
OrgCenPixelLat = str2double(latCoord);
disp(OrgCenPixelX);
disp(OrgCenPixelY);
disp(OrgCenPixelLong);
disp(OrgCenPixelLat);

% calculating reference point’s offset in pixel coordinate after crop using
bounding box info.

CropCenPixelX = round(OrgCenPixelX-(handles.BoundingBox1));
CropCenPixelY = round(OrgCenPixelY-(handles.BoundingBox2));

% mapping the reference GPS coordinate to its new pixel after crop
CropCenPixelLong = str2double(longCoord);
CropCenPixelLat = str2double(latCoord);
disp(CropCenPixelX);
disp(CropCenPixelY);
disp(CropCenPixelLong);
disp(CropCenPixelLat);

%set zoom level
disp(zoom);

% Gps points per pixel
gpsPP = 360/(((2^(str2double(zoom)))*256));
disp(gpsPP);

% calculating gps point per latitude and longitude degree
gpsPpLat = (((cos(CropCenPixelLat*(pi/180)) *
111.321)/111.321))*(gpsPP);
gpsPpLong = 1*(gpsPP);
disp(gpsPpLat);
disp(gpsPpLong);

% calculating obstacles GPS coordinate
treeGpsLat =(CropCenPixelLat+((CropCenPixelY-
round(centersDark(i,2)))*gpsPpLat));
treeGpsLong =(CropCenPixelLong-((CropCenPixelX-
round(centersDark(i,1)))*gpsPpLong));
disp(treeGpsLat);
disp(treeGpsLong);

	

	

	 	

	 	

95	
	

Appendix E: Code for Semantic Annotation of Obstacles

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

if strcmp(handles.procNo,'0')
%creating the root element "Obstacles"
docNode = com.mathworks.xml.XMLUtils.createDocument...
('Obstacles');
handles.docNode = docNode;
obstacleRootNode = docNode.getDocumentElement;
% creating child element "treeElement" for parent element "Obstacles"
treeElement = docNode.createElement('Tree');
obstacleRootNode.appendChild(treeElement);
handles.treeElement = treeElement;
xmlwrite('output.xml',docNode);
guidata(hObject, handles);

end
hold on
% fetching detected obstacles information
treeRaius = radiiDark(i);
tPX = centersDark(i,1);
tPY = centersDark(i,2);
zoom = handles.zoom; % setting zoom level
% Calculating obstacle’s dimensions
NGPPP = 40075017/(((2^(str2double(zoom)))*256));
treeDiameter_meter = (2*treeRaius)*NGPPP
% Add tagged tree to variable
Tree_Tagged_temp = [centersDark(i,1),
centersDark(i,2),treeRaius,treeDiameter_meter,treeGpsLat,treeGpsLong]
Tree_Tagged = [Tree_Tagged ; Tree_Tagged_temp]

% creating child element "Item" for parent element "Tree"
treeItem = handles.docNode.createElement('Item');
handles.treeElement.appendChild(treeItem);

% creating child element "Number" for parent element "Item"
treeNumber = handles.docNode.createElement('Number');
treeItem.appendChild(treeNumber);

% setting property of the child element "Number"
treeNumber.appendChild(handles.docNode.createTextNo
de(sprintf('%i',i)));
treeItem.appendChild(treeNumber);

% creating child element "Position" for parent element "Item"
treePosition = handles.docNode.createElement('Position');
treeItem.appendChild(treePosition);

	 	

96	
	

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

% setting property of the child element "Number"
treePosition.appendChild(handles.docNode.createTextNo
de(sprintf('%s',char(regionNumber))));
treeItem.appendChild(treePosition);

% creating child element " PixelCoordinates" for parent element
"Item"
treePixelCoordinates =
handles.docNode.createElement('PixelCoordinates');
treeItem.appendChild(treePixelCoordinates);

% creating child element "X" for parent element "
PixelCoordinates "
xCoord = handles.docNode.createElement('X');
treePixelCoordinates.appendChild(xCoord);

% setting property of the child element "X"
xCoord.appendChild(handles.docNode.createText
Node(sprintf('%f',tPX)));
treePixelCoordinates.appendChild(xCoord);

 % creating child element "X" for parent element "
PixelCoordinates "
yCoord = handles.docNode.createElement('Y');
treePixelCoordinates.appendChild(yCoord);

% setting property of the child element "Y"
yCoord.appendChild(handles.docNode.createText
Node(sprintf('%f',tPY)));
treePixelCoordinates.appendChild(yCoord);

% creating child element "'Radius" for parent element "Item"
treeRadius = handles.docNode.createElement('Radius');
treeItem.appendChild(treeRadius);

% setting property of the child element "'Radius"
treeRadius.appendChild(handles.docNode.createTextNod
e(sprintf('%f',treeRaius)));
treeItem.appendChild(treeRadius);

% creating child element "' Latitude" for parent element "Item"
treeLatitude = handles.docNode.createElement('Latitude');
treeItem.appendChild(treeLatitude);

% setting property of the child element "Latitude"
treeLatitude.appendChild(handles.docNode.createTextNo
de(sprintf('%f',treeGpsLat)));
treeItem.appendChild(treeLatitude);

% creating child element "' Longitude" for parent element "Item"
treeLongitude = handles.docNode.createElement('Longitude');
treeItem.appendChild(treeLongitude);

% setting property of the child element "Longitude "
treeLongitude.appendChild(handles.docNode.createTextN

	 	

97	
	

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

ode(sprintf('%f',treeGpsLong)));
treeItem.appendChild(treeLongitude);

 % creating child element " GpsPositions " for parent element
"Item"
treeGpsPositions =
handles.docNode.createElement('GpsPositions');
treeItem.appendChild(treeGpsPositions);

% setting property of the child element " GpsPositions "
treeGpsPositions.appendChild(handles.docNode.createTe
xtNode(sprintf('%f,%f',treeGpsLat,treeGpsLong)));
treeItem.appendChild(treeGpsPositions);

 xmlwrite('output.xml',docNode); % write XML file for detected obstacles

	 	

	 	

98	
	

Appendix F: Code for DLC Algorithm

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

%%%%% DLC algorithm (using ranged threshold) for each field
%%%%% including Canny, Sobel, Prewitt and Roberts with/without noise
reduction

clc;
clear all;
warning('off','all');
%% Load image
im=imread('img1/croped/2.jpg');
im1=rgb2gray(im); %Convert colour image to grayscale
radius_min = 4;
radius_max = 18;
%% ###### LOOP TO FIND BEST Threshold value for Sobel ######
cnt=1;
Sobel_Best_Result = 0;
 for Sen_thresh = 0.0:0.001:0.3; %Sensitivity threshold range
 tic % start timer
 close all
 disp (Sen_thresh); %display the current threshold
 %% ########### Sobel threshold range without noise reduction and
smoothing
 [BW,thresh] = edge(im1,'sobel',Sen_thresh); %finding edges
 %%%% finds circles in the image which are trees with radios range from 4 to
18 pixels which is best for zoom=18 for google images
 [centers, radii, metric] = imfindcircles(BW,[radius_min radius_max]);
 disp ('Detection'); % display 'Detection' note on screen
 toc % stop timer for detection only and display on screen
 Sobel_total_detections = size(centers,1);
 Sobel_Best_Result(cnt,1) = Sobel_total_detections;
 Sobel_Best_Result(cnt,2) = Sen_thresh
 %%%Display Images of Sobel without noise reduction for each threshold
value
 %%%figure,imshow(BW),title('Sobel Without Smoothing and Noise
Reduction');
 centersStrong5 = centers(1:size(centers,1),:);
 radiiStrong5 = radii(1:size(centers,1));
 metricStrong5 = metric(1:size(centers,1));
 %%%viscircles(centersStrong5, radiiStrong5,'EdgeColor','b');
 figure,imshow(im),title('Sobel Without Smoothing and Noise Reduction');
 viscircles(centersStrong5, radiiStrong5,'EdgeColor','b');

	 	

99	
	

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

 %%% show total number of detections
 total_detections = size(centers,1);
 disp ('Tolal detections:');
 disp (total_detections);
 disp (thresh);
 Best_Result_Nr(cnt,1) = total_detections;
 Best_Result_Nr(cnt,2) = Sen_thresh;
 % ############ Sobel threshold range with noise reduction and smoothing
 [BW_SmNoise,thresh] = edge(im1,'sobel',Sen_thresh); %finding edges
 [imx,imy]=size(BW_SmNoise); % preparing for noise reduction
 msk=[0 0 0 0 0; % apply mask for noise reduction using the following matrix
 0 1 1 1 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 0 0 0 0;];
 B_SmNoise = conv2(double(BW_SmNoise),double(msk));
%%Smoothing image to reduce the number of connected components
 [centers_SmNoise, radii_SmNoise, metric_SmNoise] =
imfindcircles(B_SmNoise,[4 16]);
 disp ('Detection');
 toc % stop timer
 %%%%%% Display Images of Sobel with noise reduction
 %%%figure,imshow(B_SmNoise),title('Sobel With Smoothing and Noise
Reduction');
 centersStrong5_SmNoise = centers_SmNoise(1:size(centers_SmNoise,1),:);
 radiiStrong5_SmNoise = radii_SmNoise(1:size(centers_SmNoise,1));
 metricStrong5_SmNoise = metric_SmNoise(1:size(centers_SmNoise,1));
 %%%viscircles(centersStrong5_SmNoise,
radiiStrong5_SmNoise,'EdgeColor','b');
 disp ('Tolal');
 toc % stop timer
 figure,imshow(im),title('Sobel With Smoothing and Noise Reduction');
 viscircles(centersStrong5_SmNoise, radiiStrong5_SmNoise,'EdgeColor','b');
 %%%%% show total number of detections
 total_detections = size(centers_SmNoise,1);
 disp ('Tolal detections:');
 disp (total_detections);
 disp (thresh);
 Best_Result_Nr(cnt,1) = total_detections;
 Best_Result_Nr(cnt,2) = Sen_thresh;
 cnt = cnt+1;
 pause (0.25); %pause matlab for 1(second) to display result
end
save('Sobel_Best_Result.mat', 'Sobel_Best_Result') % Save pixel coordinates of

	 	

100	
	

85.
86.

trees
% save('radii_Sobel_SNr.mat', 'radii') % save radius of trees

	

	 	

101	
	

Appendix G: Code for Detection and Verification using Grey-Level

Intensity Threshold

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

%%% Minimizing FPE using grey-level intensity threshold
clc;
clear all;
drawnow
warning('off','all');
%% Load image
im=imread('../img1/croped/2.jpg');
im1=rgb2gray(im); %Convert colour image to grayscale
im1Vector = im1(:); %converting im1 to vector
%% Canny technique Without Smoothing and Noise Reduction
tic % start timer
[BW,thresh] = edge(im1,'sobel',0.054); %finding edges
[centers, radii, metric] = imfindcircles(BW,[4 18]);
disp ('Detection');
toc % stop timer
disp (thresh);
%subplot(2,2,1)
imshow(im1),title('Canny Without Smoothing');
centersStrong5 = centers(1:size(centers,1),:);
radiiStrong5 = radii(1:size(centers,1));
metricStrong5 = metric(1:size(centers,1));
viscircles(centersStrong5, radiiStrong5,'EdgeColor','r','LineWidth',2)
%subplot(2,2,2)
imshow(im),title('All detections');
viscircles(centersStrong5, radiiStrong5,'EdgeColor','b','LineWidth',2);
total_detections = size(centers,1);
disp (['Tolal detections:',num2str(total_detections)])
save('centers_Canny.mat', 'centers') % Save pixel coordinates of trees
save('radii_Canny.mat', 'radii') % save radius of trees
% Create a logical image of a circle with specified
% diameter, center, and image size.
% First create the image.
[imageSizeY,imageSizeX] = size(im1);
[columnsInImage,rowsInImage] = meshgrid(1:imageSizeX, 1:imageSizeY);
grayThresh = 127.37; %set Gray brightness level to distinguish between tree
and non-tree objects, Smaller=Darker
IsTreeCount = 1;
NotTreeCount = 1;

	 	

102	
	

39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

% plotting PEs (possible eleminations)
%subplot(2,2,3)
imshow(im),title(['PE (possible eliminations),
','grayLevel=',num2str(grayThresh)]);
viscircles(centersStrong5, radiiStrong5,'EdgeColor','b','LineWidth',1);
indexGray = 0;
for Circle = 1:total_detections % choose the circle variable number
 indexGray = 0;
 % Next create the circle in the image.
 centerX = centers(Circle,1);
 centerY = centers(Circle,2);
 radius = radii(Circle,1);
 circlePixels = (rowsInImage - centerY).^2 ...
 + (columnsInImage - centerX).^2 < radius.^2;
 % circlePixels is a 2D "logical" array.
 circlePixelsVector = circlePixels(:);
 cnt = 0;
 for i = 1:size(circlePixelsVector)
 if circlePixelsVector(i) == 1
 cnt = cnt+1;
 indexGray(cnt,1) = i;
 indexGray(cnt,2) = im1Vector(i);
 end
 end
 % calculate gray mean of a circle
 centers(Circle,3) = mean(im1Vector(indexGray(:,1)));
 centers(Circle,4) = radii(Circle,1); % insert radius of the tree in pixels in the
fourth
 column of the "centers" variable
 viscircles([centerX,centerY], radius,'EdgeColor','y','LineWidth',2);
 drawnow % update the image when an wrong detection found
 pause(0.6);
 %checks if gray mean is > gray-threshold then prints a green circle
 %indicating not tree
 if centers(Circle,3) > grayThresh
 viscircles([centerX,centerY], radius,'EdgeColor','r','LineWidth',2);
 drawnow % update the image when an wrong detection found
 centers(Circle,3) % current obstacle's gray-threshold value
 % k = waitforbuttonpress ; %wait for keyboard or mouse click to continue
 else
 viscircles([centerX,centerY], radius,'EdgeColor','g','LineWidth',2);
 drawnow % update the image when an wrong detectio found
 centers(Circle,3) % current obstacle's gray-threshold value
 end

	 	

103	
	

83.
84.

end
toc % stop timer
saveas(gcf,'F51.png') % Save current figure to png

	

	 	

104	
	

Appendix H: Obstacle and Error Counts by Default Threshold

Table continues on the next page.

	

 Canny Sobel Prewitt Roberts
Fi

el
d

To
ta

l N
um

. o
f

O
bs

ta
cl

es

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

1 39 2 37 12 14 1 38 2 3 0 39 4 4 0 39 0 0
2 36 27 9 7 34 5 31 1 6 2 34 2 4 0 36 2 2
3 17 5 12 15 20 12 5 2 14 13 4 2 15 1 16 4 5
4 74 51 23 41 92 53 21 26 79 59 15 12 71 56 18 12 68
5 27 27 0 9 36 17 10 1 18 16 11 2 18 1 26 3 4
6 24 18 6 9 27 10 14 4 14 9 15 3 12 1 23 2 3
7 22 18 4 9 27 18 4 3 21 18 4 2 20 13 9 3 16
8 26 15 11 5 20 14 12 6 20 13 13 5 18 9 17 3 12
9 20 13 7 6 19 14 6 6 20 15 5 5 20 2 18 3 5

10 35 25 10 8 33 18 17 7 25 18 17 8 26 15 20 2 17
11 64 42 22 10 52 31 33 6 37 34 30 4 38 4 60 2 6
12 12 4 8 10 14 2 10 4 6 2 10 3 5 0 12 1 1
13 35 19 16 5 24 5 30 1 6 5 30 1 6 0 35 2 2
14 18 6 12 10 16 11 7 3 14 10 8 5 15 6 12 3 9
15 75 54 21 10 64 27 48 6 33 26 49 6 32 0 75 3 3
16 106 7 99 5 12 1 105 5 6 2 104 6 8 0 106 3 3
17 18 13 5 8 21 9 9 2 11 7 11 3 10 0 18 3 3
18 128 106 22 8 114 22 106 4 26 15 113 2 17 0 128 0 0
19 66 46 20 10 56 11 55 6 17 11 55 6 17 0 66 5 5
20 90 7 83 8 15 3 87 10 13 2 88 11 13 1 89 7 8
21 56 54 2 2 56 37 19 4 41 36 20 3 39 12 44 5 17
22 45 25 20 78 103 33 12 15 48 33 12 19 52 29 16 8 37
23 9 8 1 9 17 8 1 6 14 8 1 5 13 8 1 3 11
24 67 1 66 4 5 5 62 4 9 4 63 4 8 1 66 2 3
25 9 6 3 7 13 9 0 2 11 8 1 0 8 6 3 5 11
26 16 12 4 3 15 12 4 1 13 14 2 1 15 9 7 5 14
27 68 30 38 8 38 33 35 6 39 34 34 6 40 18 50 9 27
28 42 21 21 10 31 27 15 1 28 26 16 1 27 19 23 1 20
29 45 23 22 16 39 40 5 7 47 40 5 11 51 37 8 6 43
30 36 6 30 15 21 15 21 4 19 17 19 4 21 11 25 4 15

	 	

105	
	

Table continued from the previous page.

	 	

 Canny Sobel Prewitt Roberts
Fi

el
d

To
ta

l N
um

. o
f

O
bs

ta
cl

es

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

C
or

re
ct

D

et
ec

tio
n

FP
E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

31 56 32 24 4 36 32 24 2 34 29 27 2 31 8 48 0 8
32 52 33 19 24 57 47 5 11 58 48 4 6 54 28 24 7 35
33 39 7 32 8 15 4 35 4 8 2 37 4 6 1 38 5 6
34 145 44 101 19 63 65 80 2 67 53 92 7 60 28 117 9 37
35 76 15 61 13 28 18 58 8 26 16 60 7 23 7 69 7 14
36 26 12 14 18 30 9 17 6 15 9 17 7 16 1 25 2 3
37 19 14 5 12 26 19 0 1 20 19 0 2 21 19 0 1 20
38 40 17 23 8 25 11 29 6 17 12 28 4 16 7 33 3 10
39 24 16 8 17 33 22 2 11 33 21 3 13 34 21 3 10 31
40 34 23 11 59 82 11 23 27 38 14 20 25 39 1 33 9 10
41 23 5 18 24 29 5 18 5 10 3 20 6 9 0 23 3 3
42 79 26 53 58 84 38 41 6 44 33 46 9 42 1 78 7 8
43 17 17 0 11 28 17 0 4 21 17 0 5 22 13 4 5 18
44 36 22 14 19 41 13 23 7 20 13 23 6 19 2 34 4 6
45 96 83 13 31 114 45 51 26 71 48 48 28 76 22 74 19 41
46 65 57 8 22 79 56 9 6 62 56 9 5 61 28 37 7 35
47 76 70 6 36 106 56 20 4 60 57 19 4 61 10 66 5 15
48 48 40 8 53 93 30 18 24 54 30 18 25 55 21 27 19 40
49 26 4 22 41 45 3 23 18 21 5 21 17 22 0 26 6 6
50 85 61 24 9 70 54 31 1 55 55 30 2 57 8 77 3 11
51 24 19 5 12 31 14 10 6 20 15 9 4 19 0 24 5 5

	 	

106	
	

Appendix I: Obstacle and Error Counts for DLC

 After applying Threshold and Max method (DLC)

Fi
el

d
N

um
be

r

Ed
ge

D

et
ec

tio
n

M
et

ho
d

C
or

re
ct

D

et
ec

tio
ns

FP

E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

B
es

t
Th

re
sh

ol
d

W
ro

ng

D
et

ec
tio

ns

El
im

in
at

ed

A
fte

r U
si

ng

Th
re

sh
ol

d
FP

E
af

te
r

Th
re

sh
ol

d
FN

E
af

te
r

Th
re

sh
ol

d

1 Roberts 6 33 7 13 0.031 7 2 0
2 Roberts 34 2 3 37 0.06 1 1 2
3 Roberts 8 9 34 42 0.043 29 1 5
4 Canny 54 20 71 125 0.14 63 3 8
5 Canny 27 0 10 37 0.176 9 0 1
6 Prewitt 23 1 7 30 0.094 7 0 0
7 Roberts 20 2 8 28 0.047 7 0 1
8 Roberts 20 6 4 24 0.046 4 1 0
9 Canny 18 2 4 22 0.516 3 1 1

10 Prewitt 29 6 8 37 0.087 2 2 6
11 Roberts 51 13 3 54 0.071 3 1 0
12 Canny 8 4 10 18 0.138 8 1 2
13 Sobel 27 8 4 31 0.169 4 0 0
14 Canny 16 2 10 26 0.328 8 1 2
15 Canny 57 18 7 64 0.285 5 1 2
16 Canny 16 90 5 21 0.528 4 1 1
17 Prewitt 18 0 5 23 0.075 3 0 2
18 Canny 108 20 6 114 0.325 2 1 4
19 Sobel 54 12 4 58 0.073 1 3 3
20 Sobel 9 79 15 24 0.175 5 2 10
21 Canny 51 4 5 55 0.417 3 0 2
22 Canny 34 11 94 128 0.15 91 2 3
23 Sobel 9 0 7 16 0.106 6 1 1
24 Sobel 8 59 5 13 0.203 4 1 1
25 Sobel 9 0 2 11 0.152 2 0 0
26 Prewitt 14 2 4 18 0.1 3 2 1
27 Roberts 40 28 8 48 0.099 7 2 1
28 Prewitt 35 7 5 40 0.121 3 3 2
29 Roberts 40 5 11 51 0.089 10 3 1
30 Roberts 22 14 16 38 0.074 11 2 5

Table continues on the next page.

	 	

107	
	

Table continued from the previous page.

 After applying Threshold and Max method (DLC)

Fi
el

d
N

um
be

r

Ed
ge

D

et
ec

tio
n

M
et

ho
d

C
or

re
ct

D

et
ec

tio
ns

FP

E

FN
E

To
ta

l N
um

. o
f

D
et

ec
tio

ns

B
es

t
Th

re
sh

ol
d

W
ro

ng

D
et

ec
tio

ns

El
im

in
at

ed

af
te

r U
si

ng

Th
re

sh
ol

d
FP

E
af

te
r

Th
re

sh
ol

d
FN

E
af

te
r

Th
re

sh
ol

d

31 Roberts 37 19 4 41 0.117 3 1 1
32 Canny 50 2 3 53 0.32 2 1 1
33 Canny 14 25 4 18 0.497 4 1 0
34 Canny 69 76 15 84 0.462 10 5 5
35 Canny 28 48 10 38 0.496 7 3 3
36 Canny 19 7 10 29 0.185 9 3 1
37 Canny 19 0 40 59 0.122 33 7 7
38 Canny 28 12 2 30 0.756 2 3 0
39 Canny 20 4 71 91 0.139 69 1 2
40 Canny 23 11 125 148 0.197 97 11 28
41 Canny 10 13 65 74 0.244 45 5 20
42 Canny 50 29 69 119 0.281 47 7 22
43 Prewitt 17 0 15 32 0.088 13 2 2
44 Prewitt 34 2 14 46 0.099 12 3 2
45 Canny 87 9 28 115 0.414 15 5 13
46 Roberts 61 4 15 76 0.057 12 4 3
47 Canny 74 2 39 113 0.238 27 6 12
48 Canny 37 11 100 137 0.163 68 11 32
49 Canny 3 23 94 97 0.192 45 21 49
50 Roberts 72 13 9 81 0.031 7 3 2
51 Canny 21 3 12 32 0.197 9 1 3

	

