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ABSTRACT 

This thesis introduces coupled K-Singular Value Decomposition (K-SVD) algorithm 

in wavelet domain for Single Image Super-Resolution (SISR). In the coupled K-SVD 

the best low-rank approximation given by the SVD is implemented to update the LR 

and HR dictionaries which in turn help to enforce the equality of the sparse 

representation coefficients at two resolution levels. Wavelet domain produces better 

results due to desirable properties such as persistence across scale, compactness, 

directionality and analysis in many levels with the addition of redundancy in the 

sparse representations. Using this approach, one can design multiple structured 

redundant dictionaries, which can potentially help reduce the number of dictionary 

atoms. Three pairs of coupled low and high resolution wavelet subband dictionaries 

are designed. Given the low resolution image one first estimates the sparse 

representation coefficients using the low resolution dictionary and then reconstructs 

the high resolution image using the calculated low resolution sparse coefficients and 

high resolution dictionary. This approach generates HR images that are competitive 

or even better when compared with the state of the art algorithms. Results are 

improved in terms of PSNR and SSIM in comparison. 

Keywords: Coupled K-SVD, Wavelets, Single Image Super-Resolution.  
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ÖZ 

Bu tez tek resimlerin çözünürlügünü artırmak için dalgacik bölgesinde birleştirilmiş 

K-SVD algoritmasını tanıtmaktadır. Birleştirilmiş K-SVD algoritmasında en iyi 

düşük kerte SVD yakınlaştırması kullanılarak hem alçak hem de yüksek 

çözünürlükteki sözlükler değiştirilmektedir. Böylece, alçak ve yüksek çözünürlükteki 

seyrek temsiliyet katsayılarının eşitliği zorlanmaktadir. Dalgacık uzayının kullanımı 

daha iyi sonuçlar vermektedir. Bunun sebebi dalgacıkların ölçeklemeye dayanaklı 

olması, üç temel yöne cevap verebilmesi ve ayrıtların (edge) değişik dalgacık 

seviyelerinde iz bırakabilmesidir. Ayrıca, dalgacık dönüşümü tasarlanan sözlüklerde 

artıklık yaratmaktadır. Sözlükler dalgacıkların yapılarını taşıyacakları için daha 

küçük olmaları mümkün kılınmaktadır. Böylece hesaplama karmaşıklıgınım da 

azaltılması sağlanacaktır. Her bir dalgacık bandı için bir çift ilintili sözlük 

tasarlanmıştır. Çiftler alçak ise yüksek çözünürelükteki sözlüklerden öluşmaktadir. 

Verilen bir alçak çözünürelükteki sözlüklerden öluşmaktadir. Verilen bir alçakç 

özünürelükteki resim önce yamalarına ayrılmakta ve her yama için alçak 

çözünürelükteki sözlük  kullanılarak seyrek temsiliyet katsayıları hesaplanır. Yüksek 

çözünürelükteki seyrek temsiliyet katsayılarının aynı olduğn varsayımı ile yüksek 

çözünürelükteki ilintili sözlük kullanılmak suretiyle yüksek çözünürlük yamaları 

hesaplanmaktadır. Yamalardan örtüştürerek toplama yöntemi ile yüksek çözünürlük 

resmini oluşturmaktadır. Bu yaklasım ile elde edilen sonuçlar literatürdeki en iyi 

algoritmalara kıyasla hem PSNR hem se SSIM ölçütlerı bağlamında önemli 

iyileştirmeler sağlamaktadır. 

Anahtar Kelimeler:Coupled K-SVD, Dalgacıklar, Tek Görüntü Süper Çözünürlük 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Single image super-resolution is a type of inverse problem that is ill-posed. Many 

authors in literature have tried to regularize this problem by enforcing the constraints 

on the priors for the restriction of the solution space such as [30], [31], [38]. In most 

recent approaches sparsity has been effectively used as a prior, and by using this 

method many have achieved state-of-the-art results both visually and quantitatively. 

The sparse representation of a signal 𝑥, over a dictionary 𝐷 have been clearly proven 

to be unique and reliable [28], [37], [26]. 

The signal-fitting property of sparse representation over learned dictionaries has been 

used extensively in sparsity based super-resolution approaches. This allows for 

reduced representation error. In the dictionary learning process one has a single 

feature space and the task is to design an over-complete dictionary. Yang et al. first 

gave the coupled dictionary learning model in [21] and improved it slightly in [11]. 

In this approach coupled dictionary training task is modeled as multi-variable 

optimization problem. In [21] a joint dictionary training method is proposed to train 

LR and HR patches by concatenating them to a single feature space. The dictionaries 

learned by this method are not actually for each feature space separately but they 

represent the concatenated feature space therefore during the testing phase reliable 

recovery is not guaranteed. The algorithm in [11] overcomes this problem in the 
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dictionary update by alternate optimization of the LR and HR dictionaries. Similarly 

in [10] coupled K-SVD algorithm is presented that further improves the coupling by 

using the best low-rank approximation given by the SVD. To get dictionaries with 

better representation power and improved coupling between LR and HR coefficients 

many authors have tried to improve the results of Yang's approach [40], [43], [42].  

1.2 Motivation 

The idea of designing multiple dictionaries instead of single one has already been 

proven useful for sparse representation of signals. In [44] Elad et al. has proposed a 

method to learn the multi-scale dictionaries using wavelets which helps better 

capture the intrinsic image features. Further in [41] the author has proposed the 

wavelet domain dictionary learning for single image super-resolution using K-SVD. 

It is noted that the directionality of wavelet subbands and the persistence of wavelet 

coefficients across scale [45], [46] are important attributes that can be utilized for 

dictionary learning and sparse representation. In the SISR framework the persistence 

property of wavelet coefficients [45] implies that similarity of sparse representation 

coefficients can be better exploited. However basic wavelet domain K-SVD based 

SR algorithm [41] cannot well take advantage of this property since it first learns the 

LR dictionary and then calculates the HR dictionary using the LR sparse 

representation coefficients and the HR training data via the pseudo inverse. The use 

of coupled K-SVD in the wavelet domain exploits the persistence property of the 

wavelet coefficients across different resolution levels, due to the dependency of the 

wavelet coefficients across different resolution levels using coupled K-SVD one can 

further enforce the similarity on the HR and LR subband sparse coefficients. 
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1.3 Thesis Contributions 

In this thesis a dictionary learning algorithm based on coupled K-SVD [10] in 

wavelet domain is proposed and it is applied to the problem of Single Image Super-

Resolution (SISR). Given the training image data set HR and LR patches are 

extracted for dictionary training. First a 2 level wavelet decomposition of the training 

images is performed to get the desired HR and LR wavelet coefficient subbands level 

1 subbands are the HR subbands and level 2 are the LR subbands. For each of the 

horizontal, vertical and diagonal wavelet subbands, LR and HR dictionary pairs are 

designed using the coupled K-SVD algorithm.  By using coupled K-SVD algorithm 

one can establish better coupling between the LR and HR feature spaces. This is 

achieved by enforcing that LR and HR sparse representations of the training data are 

similar. In coupled K-SVD this is done by updating dictionary pairs and 

corresponding sparse representation coefficients simultaneously. Given a set of HR 

and LR subbands for training, the LR subbands are interpolated such that they are the 

same size as the HR training images. Training patch pairs are prepared by extracting 

patches from the same spatial locations of the three wavelet subbands at two 

resolution levels. The patch pairs are then vectorized to form the training data for 

each wavelet subband. A dictionary size of 256 atoms and patch size of 6 × 6 with 

20 coupled K-SVD iterations are used to learn the coupled dictionaries. For 

reconstructing the HR image, we assume that the given LR image is the same as the 

low resolution wavelet subband image. In other words we assume that the blur filter 

is the scaling filter of the wavelet transform. In this setting the reconstruction of the 

HR image amounts to estimating the horizontal, vertical and diagonal subbands and 

performing 1 level inverse wavelet transform.  



4 
 

Thus given the LR image a 1 level wavelet transform is performed to obtain the LR 

wavelet subbands from which the HR wavelet subbands are estimated via sparse 

representation. For each wavelet subband, first the sparse representation coefficients 

of the LR patches are calculated using the LR dictionary, then the corresponding HR 

patch is reconstructed by using the HR dictionary and the calculated sparse 

representation coefficients. The proposed algorithm produces better results when 

compared to the leading super-resolution algorithms. Its performance is 

quantitatively evaluated, and shown to possess a Peak-Signal to-Noise Ratio (PSNR) 

raise of 1.19 dB over the algorithm of [41], as run over the Kodak set and benchmark 

images. The average improvement over [11] is 2.24 dB. Furthermore the average 

improvement over the spatial domain coupled K-SVD algorithm [10] is 2.41 dB. 

This improvement is due to the coupled K-SVD dictionary training of the LR and 

HR patches in wavelet domain which results in better approximation of the HR 

subbands in overall reconstruction. 

In this thesis we have developed a wavelet domain based Single Image Super-

resolution (SISR) algorithm using the coupled K-SVD dictionary learning. The use 

of wavelet for the dictionary learning combined with the coupled dictionary learning 

produces good results when compared with the state of the art algorithms [10], [11], 

[41]. The use of coupled K-SVD for dictionary learning in the wavelet domain 

exploits a very important property of the wavelets which is persistence across scale 

of the wavelet coefficients. Taking advantage of this property of the wavelets the 

dictionaries are designed by enforcing the sparse representation coefficients of the 

two feature spaces in the super-resolution problem to be same. Using this approach 

the weak link between sparse representation coefficients is strengthened and in the 
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reconstruction process the trained dictionaries produce better results both 

quantitatively and qualitatively. 

1.4 Thesis Outline 

The remainder of the thesis follows as in Chapter 2 the super-resolution problem is 

discussed in more detail with the solution of joint sparse coding and coupled 

dictionary learning. In chapter 3 the proposed algorithm is presented with all the 

necessary details. Chapter 4 includes the simulations and results, where the proposed 

algorithm is compared with the state of the art algorithms and comparisons are 

shown quantitatively and qualitatively. Lastly in Chapter 5 the thesis is concluded 

and some future work is discussed. After that comes references section. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Sparse Model 

The method of sparse representation over learned dictionaries has become more 

popular in recent years and has become the hot topic of research for the researchers 

of signal and image processing. Many new algorithms and techniques have been 

developed based on this approach which solves a variety of problem including in-

painting, de-noising, super-resolution, compression. 

The sparse representation problem is divided into two steps: in the first step there is a 

basis which is known as dictionary and the second step sparse coding algorithm 

which is used to point out those basis which are then called atoms and the sparse 

coefficients, jointly they make the approximation of the signal. Since the sparse 

coding algorithm uses only a fraction of the atoms from the dictionary to represent 

the input signal hence it is named the sparse representation. For the application of 

this sparse representation there is a requirement on our input signal to be 

compressible. Compressibility is the representation of the input signal as a product of 

basis dictionary and the sparse coefficients. 

2.1.1 Basic Idea 

For a given image patch 𝑥 ∈ 𝑅𝑛of size 𝑚 × 𝑚 according to the Sparseland model [1] 

a matrix of size 𝐷 ∈ 𝑅𝑛×𝑘  with (k>>n) which should be redundant. Now every 𝑥 can 

be represented sparsely by this matrix 𝐷 which is called the dictionary as, 
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  𝑎𝑟𝑔min𝛼 𝛼 0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷𝛼 ≈ 𝑥   (2.1) 

Where 𝛼 is the sparse coefficient vector. Writing more clearly by changing the 

constraint with a clear bounded representation as error, the sparse representation now 

can be found by 

𝑎𝑟𝑔min𝛼 𝐷𝛼 − 𝑥 2
2 + 𝜇 𝛼 0                                   (2.2) 

with penalty 

𝑎𝑟𝑔min𝛼 𝛼 0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐷𝛼 − 𝑥 2 ≤ ∈                           (2.3) 

Where  .  0 and  .  2 represent the zero and two norm and ∈ represents the desired 

error. 

Various attempts are made in literature to solve this NP-hard problem and many 

algorithms were developed such as Matching Pursuit and Basis Pursuit Algorithms 

and Relaxation method like L-1 norm minimization. Recent work suggests that these 

approximation techniques can be quite accurate if the solution is sparse enough to 

begin with. There are many other methods for the solution of this problem some of 

which are discussed here. 

2.2 Orthogonal Matching Pursuit (OMP) 

The OMP [2] is used to approximate the solution i.e.min𝛼 𝛼 0. Here we have a 

matrix D and a vector y and a threshold 𝜖. This is an iterative algorithm and its steps 

are; First we initialize the loop and the initial conditions as 𝛼0 = 0 
as the initial 

solution 𝑟0 = 𝑥 − 𝐷𝛼0 
as the initial residual and 𝑇0 =  𝑆𝑢𝑝𝑝𝑜𝑟𝑡{𝛼0} as the initial 

support.Then in the main loop for each iteration we select the best atom from 𝐷 with 

maximum projection on the residue and we keep it. Next is the update step where we 

find a minimizer for the desired threshold and update the support accordingly. After 

the updating of support we update the provisional solution according to the updated 
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support i.e. we compute the 𝛼𝑘   the minimizer of  𝐷𝛼 − 𝑥 2
2 subject the updated 

support, here we also update the residual by 𝑟𝑘  = 𝑥 − 𝐷𝛼𝑘 . Finally the stopping rule 

is set by the threshold if the updated threshold is less than the desired threshold then 

we stop otherwise repeat the algorithm until the desired conditions are met.  

2.3 Iterative Reweighted Least Squares (IRLS) 

The IRLS [3] algorithm is used as a relaxation algorithm to solve the vector selection 

problem iteratively, it is used in FOcal Underdetermined System Solver (FOCUSS) 

algorithm [4] which is minimum norm algorithm, it solves the following 

optimization problem, 

1

2
 𝐷𝛼 − 𝑥 2

2 + 𝜇 𝛼 1                                             (2.4) 

This algorithm works iteratively but here the relaxation is applied to the one norm 

instead of the zero norm. This algorithm works iteratively so we first initialize the 

initial parameters i.e. 𝑎0 = 1 and weighted matrix 𝐴0 = 1 as our initial parameters. 

Next for each iteration we first find the approximate solution of the linear system 

 2𝜇𝐴𝑘−1
−1 + 𝐷𝑡𝐷 =  𝐷𝑡𝑥 iteratively to produce the result 𝑎𝑘 . Next we update the 

weight matrix by using the approximated value of 𝑎𝑘  as 𝐴𝑘 𝑗, 𝑗 =  𝐴𝑘(𝑗) + 𝜖. 

Finally the stopping condition is set based on the error term  𝑎𝑘 − 𝑎𝑘−1 2. 

2.4 Least Angle Regression Stage-wise (LARS) 

The LARS [5] algorithm was proposed by the LASSO [6] team at Stanford, this 

algorithm is also a relaxation algorithm which is quite similar to the OMP algorithm. 

Here  we solve the same L1- Norm minimization problem given by 

1

2
 𝐷𝛼 − 𝑥 2

2 + 𝜇 𝛼 1                                            (2.5) 

This algorithm works on a sub-gradient method to solve this minimization problem 
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𝜕𝑓 𝑎 =  𝐷𝑡 𝐷𝑎 − 𝑥 + 𝜇𝑧 ∀𝑧 =  

+1, 𝑎 𝑖 > 0
[−1, +1],  𝑎 𝑖 = 0

−1, 𝑎 𝑖 < 0

                  (2.6) 

The main goal of this algorithm is to seek the value of 𝑎 and 𝑧 so that 0 belongs to 

this sub-gradient. The main core of this algorithm is described below, 

1. First the sparsity regularizer is set 𝜇 > ∞ and we assume 𝑎𝜇 = 0 as our optimal 

solution and we can observe as 𝜇 approaches zero then our zero solution remains 

optimal. Using this and that zero should be in the sub-gradient we say that 

0 = −𝐷𝑡𝑥 + 𝜇𝑧𝜇  where 𝑧𝜇 =
𝐷𝑡𝑥

𝜇
. 

2. As 𝜇 is decreasing and getting to  𝐷𝑡𝑥 ∞ , avoiding to violate the sub-gradient 

condition and keeping the optimal solution intact we set 𝑧𝜇 = 𝑠𝑖𝑔𝑛 𝑎𝜇  𝑖   and 

we can get it by  

0 = 𝑎𝑖
𝑡 𝑎𝐴 − 𝑏 +  𝜇 𝑧𝜇  𝑖                                      (2.7) 

𝑎𝜇  𝑖 =
𝑎𝑖
𝑡𝑦 −  𝜇𝑧𝜇  𝑖 

𝑎𝑖
𝑡𝑎𝑖

 

𝑎𝜇  𝑖 =
𝑎𝑖
𝑡𝑦 −  𝜇 𝑠𝑖𝑔𝑛 𝑎𝜇  𝑖  

𝑎𝑖
𝑡𝑎𝑖

 

Now this solution is valid for sparsity regularizer and all values near to it. 

3. Next the solution goes smoothly and linearly by decreasing the value of sparsity 

regularizer and updating 𝑧𝜇  as 𝑧𝜇 =  
𝐷𝑡(𝑦−𝐷𝑎𝑘)

𝜇
 with some support of 𝑎 setting 𝜇 

fixed given by S, 𝑎𝜇
𝑆 is existing part of 𝑎𝜇  as non-zero. With the matrix set as to 

represent the data chosen called the sub-gradient matrix,  the solution is given by, 

𝑎𝜇
𝑆 =  𝐷𝑆

𝑡𝐷𝑆  (𝐷𝑆
𝑡𝑥 − 𝜇𝑧𝜇

𝑆)                                        (2.8) 

Where 𝑧𝜇
𝑆 =  𝑠𝑖𝑔𝑛 𝑎𝜇

𝑆 , the sparsity regularizer is decreases step by step  with 

calculating these equations togher with updating the support and solution 𝑎𝜇  and  𝑧𝜇 . 
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2.5 Dictionary Learning 

In the sparse representation we consider our signal of interests are assumed to be 

compressed. This is the basic idea when we represent the signals of interest sparsely. 

Compressibility is basically the use of the over-complete dictionaries also called the 

bases in some cases to represent the data, where a very small number of dictionary 

atoms are used in the data representation. In signal compression the main purpose is 

to represent the signal class using the specific dictionaries of interest, and in the 

literature various authors have attempted to design algorithms to train these 

dictionaries on a particular signal class of interest. The advantage of using the trained 

dictionaries instead of the fixed ones becomes evident when the trained dictionaries 

used give the low approximation error when compared with the fixed ones. The 

training signals can be represented sparsely as; 

𝐸 =  𝑋 − 𝐷𝐴 𝐹
2                                                (2.9) 

Let ||.||F denote the Frobenius norm and X is the data matrix and A is the sparse 

representation matrix. The coefficient matrix is calculated given the dictionary and 

the data by a vector selection algorithm such as OMP, LARS. The dictionary training 

methods are iterative and switch between two stages one is the vector selection 

problem which is more expensive and other is the dictionary update stage and for 

each iteration both these quantities are evaluated by keeping the other fixed. The 

main difference between these algorithms is the steps to find the sparse coefficients 

and the method for updating the dictionary.  

Olshausen and Field proposed a dictionary training algorithms [7]. In this method, 

maximum-likelihood estimation is used to find the optimal dictionary. They used the 

Gaussian or Laplace method for the sparse coefficient approximation and used the 
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concept of steepest descent to update the dictionary and the sparse coefficients 

matrix. 

2.5.1 Method of Optimal Direction Algorithm (MOD) 

This algorithm works iteratively alternating between two stages one is the sparse 

coding and other is the dictionary update stage. A dictionary D is trained on the data 

{yi} by approximating the sparse representation problem as described in the previous 

section. The algorithm is described in the following steps, 

1. First the initialization is carried by setting the initial parameters of the algorithm, 

a dictionary D is initialized randomly as 𝐷0 ∈ 𝑅𝑛×𝑚either by using random 

entries or by choosing the random samples from data, next it is normalized. 

2. Next for each iteration sparse coding is applied first by using one of the sparse 

coding algorithms described previously i.e. 

𝑎𝑟𝑔 min𝑎 𝑥𝑖 −𝐷𝑘−1𝑎 2
2   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑎 0 ≤ 𝑇0               (2.10) 

This constitutes 𝐴𝑘  matrix. 

3. After the sparse representation coefficients have been approximated using an 

initial guess dictionary and the given data, the next step is the dictionary update 

stage. In the MOD algorithm the dictionary atoms are updated by a simple 

formula given as 

𝑎𝑟𝑔 min𝐴 𝑋 − 𝐷𝐴𝑘 𝐹
2 = 𝑋𝐴𝑘

𝑡 (𝐴𝑘𝐴𝑘
𝑡 )−1                      (2.11) 

Finally the stopping criteria is set based on the error term  𝑋 − 𝐷𝑘𝐴𝑘 𝐹
2 , if the error 

term is small enough we stop the algorithm otherwise iterate until convergence. At 

the end the desired output is obtained. 

2.5.2 K-SVD Algorithm 

 This algorithm was given by Aharon et al [9],  here again the task is same we have 

to train a dictionary based on the data and sparse represent the data by approximating 
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the solution of the NP-hard problem. The algorithm works in similar way iteratively 

we chose the initial dictionary, normalize it and for each iteration we first find the 

sparse solution of the optimization problem using OMP algorithm which gives the 

sparse representation coefficients. Using the sparse representation coefficients, we 

have to update the dictionary atoms in the next step. For that first we find the group 

of samples from the data that use the specific atoms in the dictionary as; 

Ω𝑗0 = {𝑖|1 ≤ 𝑖 ≤ 𝑀 ,𝐴𝑘[𝑗0, 𝑖] ≠ 0}                               (2.12) 

Then we compute the residual matrix as; 

𝐸𝑗0 = 𝑋 −  𝑑𝑗𝑎𝑗
𝑡

𝑗≠𝑗𝑜                                                (2.13) 

The next step is to restrict the residual matrix according the index matrix created to 

track the samples using the atoms of the dictionary. After that apply SVD 

decomposition on the restricted residual matrix as 𝐸𝑗0
𝑅 = 𝑈∆𝑉𝑇, then set update of 

atom and sparse representation as 𝑑𝑗0 = 𝑢1 and 𝑎𝑗0
𝑅 = ∆ 1,1 . 𝑣1. 𝑢1represents the 

first column of the orthogonal matrix 𝑈 from SVD and 𝑣1 represents the first column 

of the orthogonal matrix 𝑉 from the SVD. We stop the algorithm by detecting the 

change in the error term  𝑋 − 𝐷𝑘𝐴𝑘 𝐹
2  if it is negligible we stop otherwise perform 

another iteration. We keep iterating until we get the desired output. 

2.6 Applications 

There are a many applications which use this approach of dictionary learning using 

sparse representations; we describe a few of them here. 

2.6.1 Inpainting 

The use of inpainting in signal processing is extensive and wide. In this application 

we estimate the missing pixels from a given image. Its use is mostly in the data 

transmission where for the channel codes a replacement is provided [12], [13] and 
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also it is used to remove the superimposed text in the image manipulation, sign-

boards and highways or marketing banners [14]. 

Suppose we have a patch from the image defined as [𝑥𝑇𝑥𝑘
𝑇]𝑇  in which 𝑥 is the 

available data and 𝑥𝑘  is the missing data which will be estimated using the image 

inpainting technique. In [15] author has proposed a method of estimating it, in which 

a concatenation of orthonormal basis is employed by some compressibility method. 

In compressibility a vector can be estimated from a dictionary and some sparse 

representation vector. The method to recover the missing data is defined by the 

following equation where they set the diagonal matrices ∆𝑛 , ∆𝑎 , ∆𝑚which define the 

non-zero entries of the sparse representation matrix, the existing data in the image 

and last one is the missing data from the image as follows; 

𝑥 𝑖 =  
𝑥𝑎

𝑥 𝑚
𝑖  = ∆𝑎𝑥 

𝑖−1 + ∆𝑚(𝐷∆𝑛𝐷
𝑇)𝑥 𝑖−1

                                      (2.14) 

2.6.2 Denoising 

One of the most useful applications of sparse representation is denoising on images 

and videos [15], [16]. Considering a sparse prior on data the image denoising is 

basically the MAP estimation of data. In the MAP estimation the sparse 

representation of images is probably in blocks and overlapped is computed, then the 

MAP solution is estimated and the result is given by averaging of the all blocks of 

images. 

The problem of image denoising using sparse representation is very simple; given a 

noisy image we first extract patches from the image in an overlapping manner then 

applying dictionary learning on it using K-SVD or any other method and finding the 

sparsely coded matrix by OMP or some other vector selection method. In this 
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process the best dictionary atom represents the useful part of the image and the noisy 

parts gets rejected, lastly the patches are converted to the 2 − 𝐷 patches by 

overlapping and the reshape and merge operation is applied to get the denoised 

image. 

2.6.3 Image Compression 

Sparse representation for image compression can be employed more efficiently 

because of the process of learned dictionaries which can be used to represent a signal 

class very efficiently. An example of this technique can be considered as the work 

done by [17] based on the dictionary learning. Here they learn the dictionaries on the 

class of face templates which are non-overlapping using the K-SVD approach and 

the results are much improved in comparison with the existing JPEG2000[18] 

algorithm with the added disadvantage of increase in the storage size of the data. 

2.6.4 Image Superresolution 

Image superresolution is a very important and active area of research because of its 

demand in many applications. To recover the loss of high frequency information 

from an image encountered during data acquisition, transmission or storage is known 

as superresolution. Generally superresolution is employed by using several low 

resolution images however if the available images are limited then these methods 

become impractical, here comes the concept of Single Image Superresolution (SISR). 

Previously many authors have attempted to solve this problem, but the state of the art 

became Yang et al [19] and Zeyde et al [20]. In the Yang’s method of SISR [19], 

[21] the image patches are extracted from a pre-defined data set of images and 

classified as Low Resolution (LR) and High Resolution (HR) images, then separate 

dictionaries are learned on these images. The superresolution is achieved by 
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assuming the sparse coefficients of LR and HR patches to be the same and the HR 

patches are recovered by applying the HR dictionaries on the sparse coefficients of 

the LR patches. 
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Chapter 3 

SUPER-RESOLUTION  

3.1 Introduction 

In most basic case we want a high resolution image from a low resolution image. The 

low resolution image is most probably the one which have lost its high energy 

components during some processing. In the super-resolution approach two main 

constraints are observed, one is the reconstruction constraint and other is the sparsity 

prior. In the reconstruction constraint the reconstructed HR image must be in 

agreement with the LR image based on the observation model and in the sparsity 

prior constraint the HR image which is easily represented sparsely over dictionary 

and it can be reconstructed from the LR image. 

Consider a LR image Y which we get by down sampling and blurring a HR image X, 

now we assume that the HR patches can be represented sparsely by an over-complete 

dictionary as 𝑥 = 𝐷𝑕𝛼0 where 𝛼0𝜖𝑅
𝑘  is the sparse representation vector which has 

very less number of non-zeros (<<k). Now we can develop a relation between a HR 

and LR patch as, 

𝑌 = 𝑆𝐵𝑥 = 𝐿𝑥 = 𝐿𝐷𝑕𝛼0                                                (3.1) 

Where S is the down sampling operator, 𝐵 is the blurring operator and 𝐿 is their 

combined effect. Assuming that this 𝐷𝑙 = 𝐿𝐷𝑕  we can get 

𝑦 = 𝐿𝐷𝑕𝛼0 = 𝐷𝑙𝛼0                                                    (3.2) 
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The above equation suggests the similarity between the LR and HR sparse 

representation coefficients. Now the HR patch reconstruction becomes very simple. 

Given the LR patch we can obtain its sparse coefficients and using the similarity 

principle we can get the HR patch as 

𝑥 = 𝐷𝑕𝛼 0                                                         (3.3) 

The sparse representation is the vector selection problem which is NP-Hard and not 

easily solvable and it is computationally expensive. It is an optimization problem and 

can be given as; 

min𝛼0
 𝑦 − 𝐷𝑙𝛼0 2𝑠. 𝑡 𝛼0 0 < 𝑇0                                (3.4) 

Where 𝑇0 is the sparsity parameter and  .  2 and   .  0 represent the two norm and 

zero norm. 

For the representation of our signal we need a suitable dictionary and a sparse matrix. 

This problem basically a two-step problem, in the first step we represent the sparse 

coefficient matrix from an initial guessed dictionary which can be achieved by any 

vector selection algorithm, the other step is the update of the dictionary using the 

sparse representation and given data which can be done by any dictionary learning 

algorithm. 

3.2 Joint Sparse Coding 

This involves learning the two coupled dictionaries for the coupled feature spaces 

which Yang et al [11] described as latent space and the observation space. He also 

proposed a method to solve this as; 

min𝐷𝑥𝐷𝑦  𝑎𝑖   𝑥𝑖 − 𝐷𝑥𝑎𝑖 2
2𝑁

𝑖=1 +  𝑦𝑖 − 𝐷𝑦𝑎𝑖 2 
2                        (3.5) 

𝑠. 𝑡  𝑎𝑖 0 ≤ 𝑇0,  𝑑𝑟
𝑥 2 ≤ 1,  𝑑𝑟

𝑦
 

2
≤ 1 

𝑖 = 1,2,···,𝑁, 𝑟 = 1,2,···,𝑛 
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This formulation suggests that the obtained sparse representation should be able to 

recover both 𝑥𝑖  and 𝑦𝑖very well. What is done here that is the latent and observation 

spaces are joined together to form a concatenated space and the error terms are 

represented as; 

𝑥 𝑖 =  
𝑥𝑖
𝑦𝑖
  

𝐷 =  
𝐷𝑥
𝐷𝑦
  

Now this becomes a standard sparse coding problem and can be represented as; 

min𝐷 ,{𝛼𝑖}𝑖=1
𝑁

  𝑥 𝑖 − 𝐷 𝛼𝑖 2

2
+ 𝜇 𝛼𝑖 1

𝑁
𝑖=1

𝑠. 𝑡  𝐷 (: ,𝑘) 
2
≤ 1

                                   (3.6) 

The above optimization problem more looks like an optimization for the joint feature 

space not the single feature space, therefore one cannot assume such solution to be 

optimal for each feature space separately. 

3.3 Coupled Dictionary Learning 

As proposed by the Yang et al [11] consider two feature spaces one is called latent  

and other is the observation space and both are coupled together and denoted as 

𝑋 ∈ 𝑅𝑑1 and 𝑌 ∈ 𝑅𝑑2. The signals are assumed to be sparse over certain sparse 

representations over the learned dictionaries. Thus one can infer the elements of X 

for the elements of Y which are the observations. 

There dwells a mapping function between these two spaces which is not known and 

it is not linear, which maps a signal element from the latent space to the observation 

space as; 𝐹:𝑋 → 𝑌 𝑎𝑛𝑑 𝑌 = 𝐹(𝑥), for the inference to be possible from 𝑦 to 𝑥 this 

mapping function is assumed to be nearly injective. The main problem here is to find 

a pair of dictionary for each space i.e. Latent and Observation space such that we can 
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estimate the signal in the latent space from the observation space. The signal in the 

latent space is represented in terms of the dictionary 𝐷𝑥  and in the observation space 

it can be represented in terms of the dictionary 𝐷𝑦 . 

For a coupled signal [𝑦𝑖 , 𝑥𝑖] the learned joined dictionaries 𝐷𝑥  and  𝐷𝑦  must obey; 

𝑧𝑖 = 𝑎𝑟𝑔 min𝛼𝑖 𝑦𝑖 − 𝐷𝑦𝛼𝑖 2

2
+ 𝜇 𝛼𝑖 1    ∀𝑖 = 1,2, ···,𝑁                (3.7) 

𝑧𝑖 = 𝑎𝑟𝑔 min
𝛼𝑖
 𝑥𝑖 − 𝐷𝑥𝛼𝑖 2

2 ∀𝑖 = 1,2,··· ,𝑁 

Here we impose the similarity constraint of sparse coefficients of the two spaces 

where {𝑥𝑖}𝑖=1
𝑁  are the samples from the latent space and {𝑦𝑖}𝑖=1

𝑁  are the samples from 

the observation space and {𝑧𝑖}𝑖=1
𝑁 are the sparse representation matrices. This problem 

is similar to the compressed sensing problem [22]. In compressed sensing case the 

mapping is a linear random projection function. The dictionaries chosen for the 𝐷𝑥  

are the defined basis such as wavelets and we compute the 𝐷𝑦  directly from 𝐷𝑥  with 

this linear mapping. However one cannot apply the compressed sensing theory if the 

linearity of the mapping functions is unknown, therefore as an alternate solution one 

can use machine learning to train the data to obtain the dictionaries in coupled 

manner. 

In this joint dictionary process the goal is to find the latent signal 𝑥 from the 

observation 𝑦, here the main motive of this process is to minimize the error of 

recovery of estimated signal, 

𝐿 𝐷𝑥 ,𝐷𝑥 , 𝑥,𝑦 =
1

2
 𝐷𝑥𝑧 − 𝑥 2

2                                    (3.8) 

Hence we minimize this as 

min
𝐷𝑥𝐷𝑦

1

𝑁
 𝐿 𝐷𝑥 ,𝐷𝑥 , 𝑥𝑖 ,𝑦𝑖 

𝑁

𝑖=1
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𝑠. 𝑡  𝑧𝑖 = 𝑎𝑟𝑔 min𝛼 𝑦𝑖 − 𝐷𝑦𝛼 2

2
+ 𝜇 𝛼 1    ∀𝑖 = 1,2, ···,𝑁             (3.9) 

 𝐷𝑥(: ,𝑘) 2 ≤ 1,  𝐷𝑦 : ,𝑘  
2
≤ 1   ∀𝑘 = 1,2,···,𝐾 

Now this is a highly nonlinear and non-convex problem so we minimize it alternately 

keeping one fixed and minimizing the other. The minimization of 𝐷𝑥  is given as, 

min
𝐷𝑥

 
1

2
 𝐷𝑥𝑧𝑖 − 𝑥𝑖 2

2

𝑁

𝑖=1

 

𝑠. 𝑡  𝑧𝑖 = 𝑎𝑟𝑔 min𝛼 𝑦𝑖 − 𝐷𝑦𝛼 2

2
+ 𝜇 𝛼 1    ∀𝑖 = 1,2,···,𝑁          (3.10) 

 𝐷𝑥 : ,𝑘  2 ≤ 1   ∀𝑘 = 1,2,···,𝐾 

One can solve this by the conjugate gradient descent [23].Now minimizing 𝐷𝑦  

keeping the 𝐷𝑥  fixed is a highly non-convex bi-level programming problem [24]. It 

can be minimized by the gradient descent method developed in the [25]. 

In this gradient descent method a stochastic gradient procedure is employed for the 

optimization of the 𝐷𝑦 . Because of the fact that this optimization is highly non-

convex bi-level, this method will only find a local minimum of the solution which is 

sufficient in practice. 

3.4 The Coupled K-SVD Algorithm 

The coupled K-SVD algorithm proposed by Xu et al [10] modifies the dictionary 

training given by the Yang et al [11] which is as follows; 

min
𝐷𝑥𝐷𝑦  𝑎𝑖 

  𝑥𝑖 − 𝐷𝑥𝑎𝑖 2
2

𝑁

𝑖=1

+  𝑦𝑖 − 𝐷𝑦𝑎𝑖 2 
2  

𝑠. 𝑡  𝑎𝑖 0 ≤ 𝑇0,  𝑑𝑟
𝑥 2 ≤ 1,  𝑑𝑟

𝑦
 

2
≤ 1                             (3.11) 

𝑖 = 1,2,···,𝑁, 𝑟 = 1,2,···,𝑛 
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where 𝑑𝑟  is the 𝑟𝑡𝑕  atom of the dictionary and 𝑟𝑖  is the sparse representation matrix, 

in the coupled K-SVD dictionary learning algorithm one first proposes a pair of 

dictionaries by randomly selecting the patches from the data and start the iteration. 

The sparse representation coefficients are approximated at the beginning of iterations 

for the both the dictionaries separately and alternately. Then the calculated sparse 

coefficients are used as the initial common sparse representation for the dictionary 

update stage. Next each atom of the coupled dictionary pair is updated.  

In the dictionary update stage first a common sparse representation matrix is set for 

the coupled data, then according to the K-SVD algorithm the samples from the data 

that use the corresponding atoms of the dictionaries are located, next the coupled 

data according to that indices matrix containing location information of atoms is 

restricted. Now the residual matrices for the coupled data are set as done in the K-

SVD and update the dictionary and the representation by applying the SVD to the 

residual matrices for each iteration. In this algorithm, at the beginning of each 

iteration the sparse representation matrix is calculated for the high resolution data 

and low resolution data alternately so that their individual features can be exploited 

in the overall learning process. 
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Chapter 4 

THE PROPOSED SUPER-RESOLUTION METHOD 

4.1 Single Image Super-Resolution 

The main idea in sparse representation based SISR is that a HR patch 𝑥𝐻  and a LR 

patch 𝑥𝐿 can be sparsely coded over a HR dictionary 𝐷𝐻  and a LR dictionary 𝐷𝐿 as 

𝑥𝐻 ≈ 𝐷𝐻𝛼𝐻                                                        (4.1) 

𝑥𝐿 ≈ 𝐷𝐿𝛼𝐿                                                         (4.2) 

where𝛼𝐻 and 𝛼𝐿 are the representation coefficient vectors of 𝑥𝐻  and 𝑥𝐿 respectively. 

The relationship between the HR and LR images can be characterized by the blurring 

and down-sampling operator 𝜓, as  

𝑥𝐿 =  𝜓𝑥𝐻 ≈ 𝜓𝐷𝐻𝛼𝐻 ≈ 𝐷𝐻𝛼𝐻                                              (4.3) 

Incorporating this assumption in (1) and comparing to (3), yields 

𝑥𝐻 ≈ 𝐷𝐻𝛼𝐻 ≈ 𝐷𝐻𝛼𝐻                                                       (4.4) 

This means that the sparse representation of the HR patch over its dictionary is 

approximately equal to that of corresponding LR patch over a LR dictionary. The 

approaches used in [11] and [10] design two dictionaries by coupled dictionary 

training of LR and HR patches. Then, each patch of the LR image is sparsely coded 

over the LR dictionary. The HR patch reconstruction is thus straight forward; each 

HR patch is reconstructed by the sparse representation coefficients of the 

corresponding LR patch, and the HR dictionary, As 

𝑥𝐻 ≈ 𝐷𝐻𝛼𝐻 ≈ 𝐷𝐻𝛼𝐿                                                  (4.5) 
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In the prior work by [36] the super-resolution problem was approached by learning a 

separate LR dictionary for each LR subband in the wavelet domain using [9] and 

assuming the sparse coefficients of LR and HR patches to be the same and estimating 

the HR dictionaries by the pseudo inverse of HR patches and the LR sparse 

coefficients. This approach serves a weak coupling between the LR and HR 

coefficients is weak. This can be overcome by coupled dictionary learning of the LR 

and HR patches as in [11] and [10]. In this work K-SVD based coupled dictionary 

training [10] in the wavelet domain is employed. 

4.2 Proposed SR Approach 

Designing of multiple dictionaries instead of one has been proved to be effective by 

[29]. Moreover, use of clustering and classification [27], [34] to categorize the 

training data into several sets has been used effectively. These data sets are then used 

for designing of the dictionaries. Discrete Wavelet Transform (DWT) can split image 

information into horizontal, vertical and diagonal features. Coupled K-SVD 

algorithm is used in the wavelet domain for SISR. The coupled K-SVD algorithm 

achieves better coupling of the LR and HR sparse coefficients by enforcing the LR 

and HR dictionary atom pairs to have the similar indices also it uses a single sparse 

representation to update the LR and HR dictionary pair atoms. It does this in an 

iterative manner by alternatively selecting the LR and HR sparse coefficients and 

using them for the single sparse representation of both. The coupled K-SVD better 

exploits the persistence property of the wavelet coefficients at different resolution 

levels. A strong dependency is present in the wavelet coefficients across different 

levels. The use of coupled K-SVD for training on the wavelet subband images at the 

2 levels produces better coupling in their sparse representation coefficients.  
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4.2.1 The Proposed Dictionary Learning Algorithm 

For the training of the coupled dictionaries, we first extract a large number of HR/LR 

image patch pairs from some predefined database containing clean images. For each 

HR image two-level DWT decomposition is performed to generate the training detail 

subbands. These are referred to as 𝐼𝐿
𝑦

 and 𝐼𝐻
𝑦

 where the subscript H(L) stands for 

HR(LR) and the subscript 𝑦 =  {𝑕, 𝑣,𝑑} refers to the specific wavelet subband. 𝑕, 𝑣, 

𝑑 represent horizontal, vertical and diagonal subbands respectively. The level-one 

(level-two) subbands are assumed to be the HR (LR) training data. LR subbands are 

then interpolated by wavelet interpolation to increase their size and match with the 

size of the HR image as done in many approaches [20], [11] and [10]. This image is 

referred to as the Mid Resolution (MR) image and is denoted by 𝐼𝑀
𝑦

. 

For each subband denoted by 𝑦 =  {𝑕, 𝑣,𝑑}, we sample pairs of HR/LR patches, and 

vectorize to form the training data matrices 𝑊𝐻
𝑦

 and 𝑊𝑀
𝑦

. It is pointed out that in our 

approach there is no need to use the feature extraction filters. Patches with small 

variances are eliminated. Then the LR and HR dictionaries 𝐷𝐿
𝑦

 and 𝐷𝐻
𝑦

 are jointly 

trained with the MR and HR subband training data matrices 𝑊𝐻
𝑦

and 𝑊𝑀
𝑦

. The 

dictionaries and the sparse representation coefficients are obtained by solving the 

following optimization problem.  

min𝐷𝐿
𝑦

,𝐷𝐻
𝑦

,𝛼(𝑖)
  𝑊𝑀

𝑦
(𝑖) − 𝐷𝐿

𝑦
𝛼(𝑖) 

2

2𝑁
𝑖=1 +  𝑊𝐻

𝑦
(𝑖) − 𝐷𝐻

𝑦
𝛼(𝑖) 

2

2
                  (4.6) 

𝑠. 𝑡  𝛼(𝑖) 0 ≤ 𝑇0,  𝐷𝐿
𝑦

(𝑘) 
2
≤ 1,  𝐷𝐻

𝑦
(𝑘) 

2
≤ 1 

𝑖 = 1,2,···,𝑁, 𝑘 = 1,2,···,𝐾, 

where𝐾 is the dictionary size, 𝐷𝐻
𝑦

(𝑘) and 𝐷𝐿
𝑦

(𝑘) are the 𝑘𝑡𝑕  atom and 𝑊𝑀
𝑦

(𝑖) and 

𝑊𝐻
𝑦

(𝑖) are the 𝑖𝑡𝑕  training vector of the HR and LR dictionaries respectively and 𝑇0 
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is the level of sparsity. The coupled K-SVD algorithm [10] is used to learn the 

dictionaries. 

 The horizontal and vertical and diagonal subbands are directly fed to the coupled K-

SVD algorithm to generate the LR and HR horizontal, vertical and diagonal subband 

dictionaries. This process is summarized in Figure 4.2. 

 

 

 

 

Figure 4.1: HR Dictionaries learned using coupled K-SVD 

(a) Diagonal Structured (b) Horizontal Structured (c) Vertical Structured 

 

Figure 4.1.shows some atoms from the designed HR subband dictionaries. It can be 

clearly observed that the designed dictionaries exhibit the horizontal, verical and 

diagonal structure as they were trained on the corresponding horizontal, vertical and 

diagonal wavelet subbands from the training data.   
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Figure 4.2: Proposed Dictionary Learning Algorithm 
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4.2.2 The Training Image Dataset 

For the training of dictionaries in the wavelet domain we have used the training 

image data set given by the [21] which is also used by the Elad et al. [20] This set 

consists of a set of natural images rich in high frequency contents and are small in 

dimensions. This standard training set used by most of the researchers for the 

dictionary learning process. In our proposed algorithm for dictionary learning in the 

wavelet domain first we do the 2 level wavelet decomposition on these images and 

then we sample the patches for each of the DWT subband i.e. horizontal, vertical and 

diagonal for both the feature spaces HR and LR. Some of the images used for the 

training are shown in the Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: Samples of images used in dictionary learning [21] 
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4.2.3 The Proposed Image Reconstruction Algorithm 

The purpose of this algorithm is to reconstruct the original HR image by estimating 

its detail wavelet subbands. Here the LR image is assumed to be the low resolution 

(approximation) subband of the wavelet transform of the HR image. In essence this 

assumption is equivalent to assuming that the blurring operator is the low pass 

scaling filter of the wavelet transform, one can design an orthogonal or even a 

biorthogonal wavelet filter bank where the low pass scaling filter approximately 

matches the blurring operator. Here we used symlets [39] wavelets for DWT analysis 

and synthesis. In this setting one needs to estimate the wavelet subbands of the LR 

image and employ a 1 level inverse DWT to reconstruct the HR image. Thus in line 

with the dictionary learning algorithm a 1 level forward DWT of the LR image is 

taken. Then a wavelet based interpolation is performed to each wavelet subband to 

make them have the same size as the (unknown) wavelet subbands of the HR image 

to be reconstructed. The sparse representation coefficients of the patches extracted 

from each subband is calculated by solving the following optimization problem. 

𝑎𝑟𝑔min𝑎𝐿
𝑦 𝑊𝑀

𝑦
− 𝐷𝐿

𝑦
𝑎𝐿
𝑦
 

2
 𝑠. 𝑡.  𝑎𝐿

𝑦
 

0
< 𝑇0                       (4.7) 

This is a vector selection process and one can solve it using the greedy algorithms 

such as Orthogonal Matching Pursuit (OMP) [2]. Then using the calculated sparse 

representation coefficients and the corresponding HR dictionaries the wavelet 

subbands of the HR image are estimated as,  

𝑊𝐻
𝑦

= 𝐷𝐻
𝑦
𝑎𝐻
𝑦
≈ 𝐷𝐿

𝑦
𝑎𝐿
𝑦

                                          (4.8) 

First reconstructed vector signals 𝑊𝐻
𝑦

 are reconstituted as the 2 −𝐷 patches and then 

the merge method of [11] is used to constitute the full wavelet subband images. This 

process is summarized in Figure 4.4. 
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Figure 4.4: The Proposed Image Reconstruction Algorithm 
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Chapter 5 

SIMULATION AND RESULTS 

5.1 Introduction 

The proposed wavelet domain coupled K-SVD algorithm is compared with three 

algorithms, the algorithm by Yang et al.[11], the algorithm by Xu et al.[10], the 

algorithm by Nazzal et al.[41] and the bicubic technique. Table 1 shows the PSNR 

and SSIM [46] results for the compared algorithms. The proposed algorithm uses a 

patch size of 6 × 6 with 256 dictionary atoms for each wavelet subband dictionary. 

The baseline algorithm of Yang et al.[11] and the algorithm by Xu et al.[10] use a 

patch size of 6 × 6 with 1000 dictionary atoms for single spatial domain dictionary. 

The algorithm by Nazzal et al.[41] uses a patch size of 6 × 6 with 216 dictionary 

atoms for each of the wavelet subband dictionary. There is a patch overlap of 5 

pixels for all the algorithms. Images in all the compared algorithms are super-

resolved with scale up parameter 2. Simulation is carried out for all the algorithms by 

setting all other parameters same to avoid any unfair advantage. For the 

implementation of the bicubic technique we have used Matlab's (imresize) function. 

The proposed algorithm produces better results when compared with [11], due to the 

wavelet domain dictionary learning. Wavelet domain dictionaries exhibit properties 

of wavelets such as compactness and directionality and are small sized. The proposed 

algorithm gives an average PSNR raise of 2.24 dB over the state of the algorithm of 

[11] with SSIM improvement of 0.1006 tested on some Kodak data set and 
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benchmark images. This algorithm also outperforms the spatial domain coupled K-

SVD algorithm of [10] with PSNR raise of 2.41 dB and SSIM improvement of 

0.1028. This justifies the fact that wavelet domain dictionaries better recover some of 

the high frequency components of the LR image with low cost. 

 

The comparison with the algorithm of Nazzal et al.[41] is made because it uses 

wavelet domain dictionary learning with K-SVD (no coupling). Simulation results 

show an average PSNR improvement of 1.19 dB and a slight increase in average 

SSIM of 0.0074. This shows that the coupling in dictionary learning can better 

exploit the persistence property [45] of the wavelets. The results are improved 

significantly due to better coupling of HR and LR sparse representation coefficients 

in wavelet domain by coupled K-SVD. The PSNR and SSIM improvement over the 

bicubic technique are 4.01 dB and 0.0986.      

5.2 Quantitative Result 

Table 5.1 lists the PSNR values of the Kodak data set and other benchmark images 

(gray level versions) reconstructed with bicubic interpolation,[11],[10] Algorithm, 

[41] and the Proposed algorithm, respectively. According to simulations, a patch size 

of 6 × 6, and a dictionary size of 256 is used. Results are obtained by 20 K-SVD 

iterations. The training set includes natural and artificially-generated images. It is 

made sure that the image to be super-resolved is not included in the training set. 
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Table 5.1: The PSNR (up) and SSIM (down) value comparison of the proposed 

algorithm with the Bicubic, Yang et al, Xu et al, Nazzal et al algorithms 

Images Bicubic Yang et al Xu et al Nazzal et al Proposed 

Kodak01 26.58 27.88 27.63 30.1 31.59 

  0.7429 0.8283 0.8222 0.9726 0.9750 

Kodak02 33.17 34.1 34.02 36.59 37.01 

  0.8617 0.9039 0.902 0.9834 0.9864 

Kodak03 33.95 35.37 35.1 36.92 37.56 

  0.9115 0.9446 0.9419 0.9818 0.9914 

Kodak05 26.98 29.09 28.67 30.31 32.07 

  0.8343 0.9055 0.8973 0.9869 0.9899 

Kodak09 32.61 34.6 34.18 35.07 36.28 

  0.9028 0.9375 0.935 0.9836 0.9874 

Kodak10 32.46 34.34 33.83 36.11 36.48 

  0.8996 0.9387 0.9339 0.9901 0.9936 

Kodak11 29.69 31.02 30.79 32.26 34.26 

  0.826 0.8836 0.8791 0.9804 0.9819 

Kodak12 33.08 34.76 34.52 37.09 38.23 

  0.8812 0.9204 0.9183 0.9835 0.9876 

Kodak14 29.47 30.95 30.72 33.26 33.68 

  0.8324 0.8928 0.8893 0.9879 0.9889 

Kodak18 28.72 29.96 29.84 31.23 33.63 

  0.8325 0.8931 0.8911 0.9816 0.9850 

Kodak23 34.72 36.39 36.25 39.04 39.34 

  0.9467 0.9643 0.9638 0.9857 0.9959 

Baboon 22.98 25.71 25.67 24.61 26.64 

  0.933 0.7926 0.7912 0.9796 0.9798 

Barbara 25.27 25.82 25.8 25.73 26.31 

  0.9117 0.8446 0.8437 0.968 0.9799 

Boat  29.93 33.95 33.74 33.76 34.99 

  0.9276 0.9326 0.93 0.9741 0.9872 

Elaine  31.06 31.33 31.33 31.45 33.97 

  0.9088 0.7128 0.7135 0.9687 0.9906 

Fingerprint 31.95 34.28 34.49 34.98 35.88 

  0.9911 0.9717 0.9731 0.9974 0.9978 

Lena 34.7 36.96 36.84 36.8 37.34 

  0.9566 0.946 0.9456 0.9902 0.9946 

Peppers 30.28 34.15 34.02 34.52 36.81 

  0.9505 0.9179 0.9165 0.9831 0.9905 

Zone Plate 11.4 12 12 12.72 13.12 

  0.6923 0.5744 0.5755 0.7978 0.8375 

Average 29.42 31.19 31.02 32.24 33.43 

  0.8812 0.8792 0.877 0.9724 0.9798 
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5.3 Qualitative Result 

Visual comparison is shown in figure 5.1 and 5.2. Reconstructed images obtained 

with the proposed,[11],[10],[41]and bicubic interpolation for the image number 1 in 

the Kodak set and Boat image. They are shown in sub-figures respectively. Also the 

accompanying insets compare an example comparative scene (best viewed on a 

computer screen). In line with the PSNR values, the proposed algorithm's 

reconstruction is improved than [10] and [11].  

 
 
 
 
  
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Original Proposed Bicubic 

 Yang et al Xu et al Nazzal et al 
Figure 5.1: Visual Comparison of the Image 1 from the Kodak data set with the  

Bicubic, Yang et al, Xu et al and Nazzal et al algorithms 
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Figure 5.2: Visual Comparison of the Boat Image with the  Bicubic, Yang et al,  

Xu et al and Nazzal et al algorithms 
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Chapter 6 

CONCLUSION 

6.1 Conclusion 

In this thesis, single image super-resolution algorithm is proposed. Coupled K-SVD 

dictionary algorithm is used to design structured dictionaries in the wavelet domain 

which are compact and effectively directional, since they inherit the structural and 

directional properties of the respective wavelet subbands. The coupled K-SVD 

method improves the image reconstruction by enforcing the equality on the sparse 

representation coefficients of the LR and HR patches. Coupled K-SVD better 

exploits the persistence property of the wavelet coefficients and improves the 

coupling of the sparse representation coefficients of the HR and LR subbands. The 

proposed algorithm is experimentally tested both on the some Kodak set image and 

other benchmark images. The results indicate that proposed algorithm performs well 

in terms of PSNR and SSIM when compared with the state of art super resolution 

algorithms. 

6.2 Future Task 

In this thesis we have used the coupled K-SVD algorithm for SISR in wavelet 

domain. We have used the DWT for the analysis and synthesis of the signal. DWT 

takes into account the horizontal, vertical and diagonal details of the image, as an 

extension to this work we can also take more directional features into account for the 

dictionary learning and super-resolution such as anti-diagonal features. 
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