

Strategies to Fast Evaluation of Expression Trees

Raed Yousef Mohammed Basbous

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Applied Mathematics and Computer Science

Eastern Mediterranean University
June 2016

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Cem Tanova

Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor
of Philosophy in Applied Mathematics and Computer Science.

Prof. Dr. Nazım Mahmudov

Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Doctor of Philosophy in Applied
Mathematics and Computer Science.

Assoc. Prof. Dr. Benedek Nagy

Supervisor

 Examining Committee

1. Prof. Dr. Rahib H. Abiyev

2. Prof. Dr. Rza Bashirov

3. Prof. Dr. Robert Elsässer

4. Assoc. Prof. Dr. Cüneyt Bazlamaçcı

5. Assoc. Prof. Dr. Benedek Nagy

iii

ABSTRACT

Expression trees are well-known tools to visualize the syntactical structure of the

expressions. They are helpful also in evaluations, e.g., decision trees are widely used.

Games and game theory form an important field in Artificial Intelligence and it has

several connections to Business and Economy. Short circuit, short cut, or by other

name, lazy evaluations play important roles in various fields of computer science

including logic, hardware design, programming, decision making.

In this thesis, different types of trees are considered including extensions of game

trees using operations, e.g., multiplication, (constrained) addition and the usual

minimum and maximum, and three of the best known and used fuzzy logic systems,

(Gödel, Lukasiewicz, and product logics).

The evaluation of lots of formulae can be speeded up by various pruning techniques

by discovering which remaining part of the formulae has no influence on the final

result for various reasons. The presented techniques can be seen as generalizations of

short circuit evaluations in Boolean logic and also of alpha-beta pruning of game

trees. Simulation results show the efficiency of the presented techniques.

Keywords: expression trees, game trees, formula trees, fast evaluation, fuzzy logic,

many valued logic, pruning techniques, short circuit evaluation, lazy evaluations.

iv

ÖZ

İfade ağaçları, ifadelerin sözdizimsel yapılarını görselleştirmek için kullanılan

araçlardır. Onlar değerlendirmede oldukça yardımcıdırlar, örneğin, karar ağaçları

yaygın olarak kullanılanlardandır. Oyun ve oyun teorisi yapay zekada önemli bir alan

olup, işletme ve ekonomide çeşitli bağlantılara sahiptir. Kısa devre, kısa yol, ya da

diğer bir adıyla tembel değerlendirmeler mantık, donanım tasarımı, programlama,

karar verme gibi bilgisayar bilimlerinin çeşitli alanlarında önemli rol oynar.

Bu tezde, oyun ağaçlarının uzantıları dahil farklı ağaç modelleri düşünülmüştür.

Örneğin, çarpma, toplama(sınırlandırılmış) ve olağan minimum ve maksimum

işlemleri ile, en iyi bilinen ve en çok kullanılan bulanık mantık sistemlerinden üç

tanesi, çarpma mantığı işlenmiştir.

Anahtar kelimeler: ifade ağaçları, oyun ağaçları, formül ağaçları, hızlı

hesaplamalar, bulanık mantık, birçok değerli mantık, budama teknikleri, kısa devre

hesaplamaları, tembel hesaplamalar.

v

DEDICATION

To my wife, son, daughters, and parents

vi

ACKNOWLEDGMENT

I would like to thank my supervisor, Assoc. Prof. Dr. Benedek Nagy for his

encouragement and support all the time. He always guided me into the right

directions by his extensive knowledge and experience on the subject, encouraged,

motivated and trusted me while doing this research.

I am thankful to my director Dr. Marwan Darwish for his continuous help and

support that was always given to me always with a great politeness and smiling

faces.

My appreciations are also to the president of AlQuds Open University, Prof. Younes

Amro for his encouragement and support to complete my PhD study.

I am grateful to Mr. Tibor Tajti from Hungary for his help and collaboration in

programming the pseudo codes for the proposed pruning algorithms.

I owe too much to my wife Shireen for her endless support, understanding, patience,

and also for her great help and encouragement.

The last but not the least, I would like to thank my parents, my son Yousef, and my

lovely daughters Talah, Daniah and Sarah who instilled me the free thinking and the

joy of making researches.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF FIGURES ... x

1 INTRODUCTION... 1

1.1 Motivations .. 1

1.2 Contributions .. 3

1.3 Thesis Structure .. 3

2 LITERATURE REVIEW AND PRELIMINARIES .. 5

2.1 Statement of Problem ... 5

2.2 Literature Review ... 5

2.3 Preliminaries .. 7

2.3.1 Decision Trees ... 8

2.3.2 Game Theory ... 9

2.3.2.1 Minimax Algorithm .. 10

2.3.2.2 Alpha-Beta Pruning ... 12

2.3.3 Expression Trees ... 14

2.3.4 Boolean Logic ... 14

2.3.5 Short Circuit Evaluation in Boolean Logic ... 17

2.3.6 Gödel type Fuzzy Logic .. 19

2.3.7 Lukasiewicz type Fuzzy Logic .. 20

2.3.8 Product Logic .. 22

viii

3 STRATEGIES TO FAST EVALUATION OF BOOLEAN EXPRESSIONS AND

EXTENDED GAME TREES .. 25

3.1 Introduction .. 25

3.2 Modified Alpha-Beta Pruning Algorithm .. 26

3.3 Sum and Product Pruning Algorithm ... 28

3.4 Minimax-Product Pruning Algorithm .. 30

3.5 Minimax-Sum Pruning Algorithm ... 32

3.6 Reordering the Branches of the Trees .. 35

3.6.1 Reordering the branches of Boolean expressions ... 36

3.6.2 Reordering and Pruning Complex Trees ... 37

4 STRATEGIES TO FAST EVALUATION OF MANY-VALUED LOGIC

FORMULAE .. 42

4.1 Introduction .. 42

4.2 Strategies To Fast Evaluation Of Gödel Type Logic Formulae 42

4.2.1 Alpha-Beta Pruning ... 43

4.2.2 Implication Pruning .. 43

4.2.2.1 Conjunction-Disjunction Children Pruning .. 43

4.2.2.2 Disjunction-Conjunction Children Pruning .. 44

4.2.2.3 Negation Pruning .. 45

4.2.2.4 Implication with Negation Child Pruning. .. 47

4.2.3 Complex Examples ... 49

4.3 Strategies to Fast Evaluation of Lukasiewicz Type Logic Formulae 54

4.3.1 Conjunction and Disjunction Pruning ... 54

4.3.2 Implication Pruning ... 58

4.4 Strategies to Fast Evaluation of Product Logic Formulae 63

ix

4.4.1 Conjunction and Disjunction Pruning ... 64

4.4.2 Implication Pruning ... 65

4.4.3 Further Techniques .. 71

4.4.4 Comparisons to Similar Techniques Obtained for Gödel Logic 73

5 EXPERIMENTAL RESULTS AND DISCUSSION ... 76

5.1 Programing the Proposed Algorithms .. 76

5.2 Simulation Results for Gödel Logic Pruning Strategies .. 77

5.3 Simulation Results for Product Logic Pruning Strategies 80

6 CONCLUSION ... 83

REFERENCES ... 86

APPENDIX .. 90

Appendix A: The Python Program for Evaluating Formulae in Gödel Type Logic ...91

x

LIST OF FIGURES

Figure 1: An example of a decision tree. ... 8

Figure 2: A minimax tree. .. 11

Figure 3: A beta-pruning example. .. 14

Figure 4: An example of applying short circuit evaluation.. 18

Figure 5: A modified minimax alpha-beta pruning example. 26

Figure 6: A sum and product pruning example. ... 29

Figure 7: A minimax and product pruning example. ... 31

Figure 8: A minimax and sum pruning example. ... 33

Figure 9: An example of applying reordering and short circuit algorithm. 36

Figure 10: An expression tree with sum, multiplication, max, and min operators. ... 38

Figure 11: The expression tree of the example of Figure 10 is evaluated by the

proposed pruning techniques. .. 38

Figure 12: The expression tree of Figures 10 and 11 is evaluated by reordering and

pruning. .. 39

Figure 13: An expression tree with sum, multiplication, max, and min operators in

various order. ... 40

Figure 14: The example of Figure 13 is evaluated by applying the pruning algorithms

without reordering the branches. .. 40

Figure 15: The expression tree of Figures 13 and 14 is evaluated by applying both the

reordering and then the pruning algorithms. .. 41

Figure 16: An example of applying the pruning when evaluating an implication

node.. .. 44

Figure 17: An example of applying the pruning when evaluating an implication

node.. .. 45

xi

Figure 18: An example of applying the pruning for a negation node when all the

connected leaves are non zeros. ... 47

Figure 19: An example of implication pruning when we have an implication node

that has the successors disjunction as left child and negation as right child. 48

Figure 20: An example of implication pruning when we have an implication node

that has the successors conjunction as left child and negation as right child. 48

Figure 21: An example of applying the pruning when evaluating an implication node

with negation node connected to the left side. ... 49

Figure 22: An example of Gödel expression tree without pruning. 50

Figure 23: The example of Gödel expression tree in Figure 22 after applying the

proposed pruning techniques. .. 50

Figure 24: A complex Gödel expression tree. .. 52

Figure 25: A complex Gödel expression tree after applying the proposed pruning

techniques. .. 52

Figure 26: An example for a cut applied when a conjunction (&) vertex has a child

(to left or right) with a value equal to 0. .. 55

Figure 27: An example for pruning techniques applied at a disjunction vertex having

two disjunction children and their sum is greater or equal to 1. 57

Figure 28: An example for pruning techniques applied at a disjunction vertex having

an implication and disjunction nodes as its children and their sum is greater or equal

to 1. ... 57

Figure 29: An example for pruning techniques applied at a conjunction vertex having

two conjunction nodes as its children and their sum is less or equal to 1. 58

Figure 30: An implication pruning example with negation node as left child. 59

xii

Figure 31: An implication pruning example with negated disjunction (left child) and

disjunction (right child). ... 60

Figure 32: An implication pruning example with conjunction (left child) and negated

conjunction (right child). .. 61

Figure 33: An example of evaluating implication vertex with a special case of alpha-

beta pruning (the left child is a conjunction and the right one is a disjunction). 62

Figure 34: An example of evaluating implication vertex with a special case of alpha-

beta pruning (the left child is a disjunction and the right child is an implication). 63

Figure 35: An example for a cut applied when a conjunction (&) vertex has a child

(to left or right) with a value equal to 0. .. 64

Figure 36: An example for pruning techniques applied at a disjunction node having a

child with a value equal to 1. ... 65

Figure 37: An implication pruning example with negation node as left child. 66

Figure 38: An implication pruning example evaluating its right child first. 67

Figure 39: An implication pruning example with disjunction (right child) and negated

disjunction (left child). ... 69

Figure 40: An implication pruning example with a special case of alpha-cut. 70

Figure 41: An example of evaluating implication node with a special case of alpha-

beta pruning (the left child is a conjunction and the right child is an implication). ... 71

Figure 42: An example of applying the proposed cut techniques in a complex product

logic expression tree. .. 72

Figure 43: An example of applying the proposed cut techniques in a reordered tree

for the complex formulae displayed in Figure 42. ... 73

Figure 44: An example of cut applied in evaluating Gödel logic expression. 74

Figure 45: An example of cut applied in evaluating product logic expression. 74

xiii

Figure 46: The ratio of the number of pruned nodes with respect to the size of the

expression (total number of nodes). ... 78

Figure 47: The ratio of pruned nodes and pruned leaves with respect to the total

number of nodes and total number of leaves, respectively. 78

Figure 48: The running time with respect to the size of the expression (total number

of nodes). .. 79

Figure 49: The number of nodes left after pruning with respect to the size of the

expression. .. 79

Figure 50: The ratio of running time with respect to the size of the expression. 80

Figure 51: Ratio of pruned nodes for random formulae up to length 2500. 81

Figure 52: Runtime for evaluation with and without pruning strategies for random

formulae up to length 2500. ... 81

Figure 53: The number of not pruned nodes vs. the total number of nodes. 82

1

Chapter 1

INTRODUCTION

1.1 Motivations

The classical, also known as Boolean, logic is well known and can be found in

thousands of text books, including books on (discrete) mathematics, programming

technologies, software engineering, hardware design, mathematical and

philosophical logics, linguistics, etc., since it is known as a base of mathematics,

computer science and information technology, electrical engineering and other

theoretical, scientific and technical fields [1]. Apart from the Boolean logic there are

several other branches developed for various purposes. In first order logics

quantifiers allow more structured formulae. In modal and temporal logics new

operations (such as necessity, possibility and always, sometime in the future) are

introduced. Many valued and fuzzy logics are motivated by the fact that in the real

word usually there is no strict border of concepts. Good examples are the adjectives,

they do not have a ‘crisp’ meaning: what does it mean large? What if a mouse is

large, or a city is large? What if another one is larger? etc.. In these systems the set of

truth values is extended from the classical two values to a larger, even to an infinite

set. Various paradoxes of the classical logic can also be avoided by using many

valued or fuzzy logic [2]. A well-known, ancient example is the liar paradox [3]. The

sentence “This sentence is false” cannot be true and cannot be false, but in Boolean

logic there is no other possible truth value. A third, additional truth-value can solve

this paradox.

2

From the 20s of the last century various fuzzy logics were developed. The most

important such logical systems are the Gödel type logic, the Lukasiewicz type logic

and the product logic [2,4,5,6,7]. In Gödel logic the classical law of double negation

does not work as a logical law [4]. Gödel logic can be used in an optimist

environment, when partners are friends and they want to cooperate to gain maximal

profit. The product logic is perfect to model tolerant and realistic environments with

non-expert, independent partners. The Lukasiewicz type logic (especially, the

Lukasiewicz type conjunction and disjunction) refers to pessimistic, unfriendly

environment, where the aim of the partners is to have minimal loss in their

competition [2]. While both the Gödel and the Lukasiewicz logics work well with

any finite number of truth values (in case of 2 values they give back the classical

logic, with larger sets they are real many valued logics), the product logic has only

variants with infinitely many truth values, e.g., all rational numbers or all real

numbers of the unit interval [0,1] are truth values. There are various studies on the

product logic including its relation to other fuzzy logic systems [8,9], axiomatization

and proof systems [10,11,12]. We note also that fuzzy sets and fuzzy logics are also

used in several applications [13].

Evaluating a logical expression is an important task when one is working with logical

formulae. These expressions can be evaluated in a fast way based on the members of

a conjunctive and disjunctive formulae [14]. This is the case in various programming

languages at, e.g., conditional statements. Different pruning strategies to fast

evaluation of Gödel and product logics are presented in [16,28], they are closely

related to pruning techniques in game theory [17,18,19] and in generalized game

trees [20,21].

3

1.2 Contributions

In this study, various pruning techniques are presented to speed up the evaluations of

a special formula/expression trees that can be considered as a type of extension of the

usual game trees/logical expression trees, and the evaluations of logical formulae in

the Gödel type logic, the Lukasiewicz type logic and the product logic.

Experimental/simulation results are presented to show the efficiency of the proposed

techniques. Some of the proposed algorithms have been programmed on Python

language and hundreds thousands of tests on formulae with various sizes are

conducted.

1.3 Thesis Structure

The following chapters of this research can be mainly divided into 5 parts; namely,

literature review and preliminaries, the strategies to fast evaluation of Boolean

expressions and extended game trees, strategies to fast evaluation of many-valued

logic formulae, simulation results, and finally the conclusions.

The research is organized as follows:

In chapter two, some preliminaries are recalled, including the semantics of the game

theory, expression trees, Boolean logic, Gödel logic, Lukasiewicz logic, product

logic, well known short circuit evaluations techniques used in Boolean logic, and

pruning techniques in artificial intelligence and game theory.

Chapter three and four present various lazy evaluation techniques for the expressions

and logic trees mentioned in chapter two. Chapter five shows the simulation results

4

for the proposed pruning strategies. Finally, chapter six provides the conclusions for

this study.

5

Chapter 2

LITERATURE REVIEW AND PRELIMINARIES

2.1 Statement of Problem

Evaluating a logical expression is an important task when one is working with logical

formulae. The relation between the length of the expression and the size of the

required memory and the time of the computation is proportional. This issue can be

solved by applying the lazy evaluations.

Lazy evaluation techniques are used in several places in science, engineering and

technology. These techniques are used to reduce the size of a circuit connected to

“don’t care” values in hardware design. They could also reduce the working memory

and/or the time of the computation. It is based on the fact that sometimes the result

can be computed with 100% sure without knowing all the subresults or all parts of

the computation. These methods are used to reduce the size of a circuit, the working

memory and/or the time of the computation. Also, by these techniques one could

effectively reduce the size of the expression trees allowing a much faster method of

evaluation.

2.2 Literature Review

In [14] the author mentioned that logical expressions can be evaluated in a fast way

based on the following facts: if a member of a conjunctive formula is false, then the

whole formula is false; if a member of a disjunctive formula is true, then the whole

formula is true.

6

The shortcut evaluation technique is used in several programming languages to have

a fast evaluation of logical formulae, e.g., in conditions [22].

In [18] an idea is presented that is very similar to shortcut evaluation which is used in

game trees. At the most investigated zero-sum two-player games the minimax

algorithm gives the best strategies for the players and it also answers the question

who has a winning strategy. To compute the minimax algorithm every leaf of the tree

is computed and the whole tree is evaluated. However, in most of the cases, it can be

done with a much less effort, using alpha and beta pruning techniques [18,23].

Special extensions, as a mixture of decision and game-trees were already discussed

in [19].

Classical two-valued logic was formalized by Boole in the 19th century. It works

with algebraic technique: with only two values, 0 (false) and 1 (true) Boolean

algebra gives the symbolic framework. It is used in electronic switching circuits, and

thus, it gives the base of all our digital machines [1].

In [15] it is presented that the logic used in conditions is very close to the Boolean

logic even in some points it is not exactly the classical two-valued logic. Also, it is

presented that the lazy evaluation appears in logic in various forms.

The idea of considering intermediate truth values rather than only the classical set of

truth values {0,1} has been used extensively by Lukasiewicz and others since the

1920's. Various fuzzy logic were developed, e.g., Gödel type logic, Lukasiewicz

logics and the product logic [2,4,5,6].

7

From historical point of view we mention that Lukasiewicz made three-valued and

four-valued systems first. Later he extended the system to arbitrary-many (n ≥ 2)

truth-values up to infinitely many [5,6,9].

In [4] Gödel introduced his logic to obtain an intuitionistic logic. The most important

feature of these type of logics that the classical law of double negation does not work

in these systems as a logical law.

In [10] the authors described by explicit mathematical way one of the most popular

fuzzy logic systems: the product logic. The product logic is perfect to model tolerant

and realistic environment with non-expert, independent partners.

In [21] the authors considered simple network models, in which there are only finite

communication channels. The children nodes send their data/results to their parents

and thus, the whole process is finite and can be modeled by evaluation techniques.

They showed pruning strategies: techniques for expressions where sum, product,

minimum and maximum modeling various modalities in CogInfoCom networks.

These techniques could help in fast evaluations of various expressions (other types of

trees and networks).

2.3 Preliminaries

In this section we recall some concepts that are related to our study, specially

decision trees, game trees, expression trees, minimax algorithm, alpha-beta pruning,

and the syntax and semantics of the Lukasiewicz, Gödel and product logics. We start

this section by the well-known concept of decision trees.

8

2.3.1 Decision Trees

In this subsection we recall decision trees (see, e.g. in [19]); they can also be used to

evaluate games against the “Nature”. Let a person be given who has different

decision points, and different random events with known probabilities, also let us

consider a tree with decision nodes and chance nodes. At decision nodes the person

chooses a successor node. At chance nodes: the successor node is chosen randomly.

The leaves represent the payoff values. The aim of the person is to maximize the

payoff value and for this purpose he/she chooses the branch that leads to the highest

expected value at every decision node.

Assume that P(Node) denotes the probability of the event Node. Figure 1, shows an

example of a decision tree. It includes decision nodes, where the person chooses

among the successor, i.e. children nodes (represented by rectangles). At nodes

represented by ellipses random events will determine the successor node (the

numbers that are written on the edges represent the probabilities). A numeric value,

the expected outcome, is assigned to every node of the tree; it is shown under the

rectangle/ellipse.

Figure 1: An example of a decision tree.

9

The values in Figure 1 are computed using the expectimax algorithm which is

presented in [19], since the maximum of the expected values of the children

(successor nodes) are computed at decision points, while at chance nodes the

expected values of the children (successor nodes) are computed by finding the sum

of the assigned probabilities multiplied by the value of the given successors. These

values are computed by Algorithm 1 (it is from [19]).

Algorithm 1 (Decision)

1. function Dec(Node)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. let Node1, Node2, …, Nodem be the children of Node

8. if Node is a decision node then

9. return maximum of {Dec(Node1), Dec(Node2), …, Dec(Nodem)}

10. end if

11. if Node is a chance node then

12. return P(Node1)Dec(Node1)+ … + P(Nodem)Dec(Nodem)

13. end if

14. end else

15. end Dec

2.3.2 Game Theory

An important and widely investigated field of game theory is about deterministic,

strategic, two-player, zero-sum, finite games with perfect information. An instance

of a game begins with the first player’s choice from a set of specified alternatives,

called moves. After a move, a new state of the game is obtained; the other player is

to make the next move from the alternatives available to that player. In some state of

the game there is no move possible, the instance of the game has been finished. In

such states each player receives a payoff, such that their sum is zero, and therefore it

10

is enough to know the payoff of the first player. In some typical zero-sum games, the

value +1 assigned to the player in case of win, -1 in case of lose, and 0 in case of

draw.

Game trees can be used to represent games. The nodes represent the states of the

game, while the arcs represent the available moves. In the game tree two kinds of

nodes are used to represent the decision situations of the two players (A and B). At

the root node player A has decision. The leaves represent last states with their payoff

values (for player A).

In every two player, zero sum, deterministic game with perfect information there

exists a perfect strategy for each player that guarantees the at least result in every

instance of the game. The most fundamental result of game theory is the minimax

theorem and the minimax algorithm. The theorem says: If a minimax of one player

corresponds to a maximin of the other player, then that outcome is the optimal for

both players.

2.3.2.1 Minimax Algorithm

In minimax theorem players adopt strategies which maximize their gains, while

minimizing their losses. Therefore, the solution is the optimal for each player that

she/he can do for him/herself in the face of opposition of the other player. These

optimal strategies and the optimal payoff can be determined by the minimax

algorithm. It uses simple recursive functions to compute the minimax values of each

successor state [18]. Algorithm 2 represents the way that minimax algorithm works

(it is recalled from [18,19]), see also Figure 2 for an example.

11

Figure 2: A minimax tree.

Algorithm 2 (MINIMUM and MAXIMUM)

1. function MAXIValue(Node)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = -∞

8. for every child Nodei of Node do

9. set v= maximum{v, MINIValue(Nodei)}

10. end for

11. end else

12. return v

13. end MAXIValue

1. function MINIValue(Node)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = +∞

8. for every child Nodei of Node do

9. set v= minimum{v, MAXIValue(Nodei)}

10. end for

11. end else

12. return v

13. end MINIValue

12

2.3.2.2 Alpha-Beta Pruning

The minimax algorithm evaluates every possible instance of the game, and thus to

compute the value of the game, i.e. its optimal payoff, takes usually exponential time

on the length of the instances of the game. To overcome on this issue special cut

techniques can be used. The alpha-beta pruning helps find the optimal values without

looking at every node of the game tree. While using minimax, some situations may

arise when searching of a particular branch can safely be terminated. So, while doing

search, these techniques figure out those nodes that do not require to be expanded

[18,19].

The way that this algorithm works can be described as below.

 Max-player cuts off search when she/he knows that Min-player can force a

clear bad (for the first player, i.e. for Max-player) outcome.

 Min-player cuts off search when she/he knows that Max-player can force a

clear good (for Max-player) outcome.

 Applying alpha-pruning (beta-pruning) means the search of a branch is

stopped because a better opportunity for Max-player (Min-player) is already

known elsewhere. Applying both of them is called alpha-beta pruning

technique.

These algorithms, shown in Algorithm 3, are recalled from [18,19]. Figure 3 shows

an example of beta-pruning, when β becomes smaller than or equal to α, we can stop

expanding the children of N.

13

Algorithm 3 (MINIMUM and MAXIMUM PRUNING)

1. function ALPHAPrune(Node, α, β)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = -∞

8. for every child Nodei of Node do

9. set v= maximum{v, BETAPrune(Nodei, α, β)}

10. if v is greater or equal to β then return v

11. set α = maximum{α,v}

12. end for

13. end else

14. return v

15. end ALPHAPrune

1. function BETAPrune(Node, α, β)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. set v = +∞

8. for every child Nodei of Node do

9. set v= minimum{v, ALPHAPrune(Nodei, α, β)}

10. if v is less or equal to α then return v

11. set β = maximum{β,v}

12. end for

13. end else

14. return v

15. end BETAPrune

14

Figure 3: A beta-pruning example.

2.3.3 Expression Trees

In every field of mathematics, computer science and also in other sciences, various

formulae are used to describe (some phenomena of) the world. In these expressions,

usually, binary and unary operators are used. Mathematical, logical etc. expressions

are usually displayed by tree graphs. The structure of the expression can easily been

understood following the structure of the graph: The main operator is located at the

root of the tree (i.e. it is the topmost vertex of the tree graph). Nodes with unary

operators have exactly one child, while vertices representing binary operators have

exactly two children. To evaluate an expression, in a way learned in school, one

should start from the leaves of the tree using a bottom-up strategy. The values given

at the leaves are used to evaluate each subformula and, finally, the whole, original

formula gets its value. In some cases, e.g., based on associative property of some

operations, more than two children of a node are allowed.

2.3.4 Boolean Logic

The classical, two-valued logic is well known base of almost all sciences. It was

mathematically formalized by Boole in the end of the XIX century, thus the name

Boolean logic (and Boolean algebra) is used. There are two values (called truth-

15

values): true and false, sometimes interpreted as yes and no, denoted also by 1 and 0,

or by T and , respectively. This mathematical logic is applied in electronic

switching circuits, and therefore, it gives the base of all our digital machines

including electronic computers (due to a principle of J. von Neumann). Readers not

familiar to classical logic are referred to the textbook [1], or similar materials. Here

we mention only some parts briefly.

The syntax of Boolean logic is usually defined by an inductive way. The base of this

induction goes by the atomic formulae: There are infinitely many Boolean (also

called propositional) variables. Each of them is counted as an atomic formula. The

signs T and , as logic constants, are also belonging to this set. We prefer to use their

numerical value: 1 and 0, instead of them, since in this way, they could be more

easily to be generalized to fuzzy logic systems.

The inductive step is based on logical connectives. Usually, in Boolean logic the

operators conjunction, disjunction and negation are defined (this latter operator is

unary, all others are binary). Implication is also frequently defined and used, since it

has a strong relation to logical deduction. When A and B are two logical formulae,

then each of their conjunction (A B), disjunction (A B) and implication (A B)

is also a logical formulae. The formulae A and B are called the main subformulae of

the original formula. The negation A of a logical formula A is also a logical

formula.

Moreover, every logical formula can be obtained from atomic formulae by a finite

number of inductive steps.

16

We note that in engineering textbooks the multiplication operator stands for

conjunction (logical AND), and addition operator for disjunction (logical OR). The

former one already gives an idea how the operation can be extended by a larger class

of truth values at, e.g., the product logic.

Logical formula can be represented by its formula tree, building it according to the

iterative definition.

Having logical formula and the assigned truth-values to the appearing propositional

variables, one can evaluate the formula using the semantic rules of Boolean logic:

 A conjunctive formula (A B) is true if and only if both A and B are true.

 A disjunctive formula (A B) is true if and only if at least one of the

formulae A and B is true.

 An implication formula (A B) is true if and only if A is false or B is true.

 A negation formula A is true if and only if the formula A is false.

In each other case the formula evaluates to false. In Boolean logic there is no other

option. However, based on the listed semantic rules, there are cases, when knowing

only the values of one of the two main subformulae is enough to know the truth-

value of the original formula. This phenomenon leads to the short circuit evaluation

technique. In this way, often, we do not need a full evaluation, i.e., some of the

vertices of the formula tree may not need to be visited; their values may not have any

17

effect on the final value of the formula. These types of evaluation techniques are

highly used in programming languages helping the computation be (nearly) optimal.

In the next part we show the two basic forms of these, also called, short circuit

evaluations.

2.3.5 Short Circuit Evaluation in Boolean Logic

Fast evaluation based on short circuit technique can be used for time saving and, in

some cases; it is also used for safety reasons [15]. This technique of evaluation in

logic is closely connected to alpha-beta pruning techniques in game theory

[17,18,19,20]. In some programming languages the symbols && and || are used for

the logical operations AND and OR, respectively. To evaluate these operations short

circuit evaluations can be used as we detail below:

 At AND, if it is known that all the conditions/arguments must be true in order

to make it true, it is not necessary to check all the conditions if one of them is

already known to be false.

 At OR, if it is known that one condition is true, then there is no need to check

the value of the other conditions.

See also Figure 4, where examples are shown for both of these cut techniques (values

of the leaves are given, by associativity more than two children are allowed, in this

way shortening the formula tree).

18

Figure 4: An example of applying short circuit evaluation.

As shown in this example, when evaluating the AND nodes, if a zero value (0)

returned back from one of the children nodes, then we cut the next connected nodes

and leaves and there is no need to evaluate them since their value will not affect the

final result. The same technique is applied in evaluating the OR nodes, the idea here

is to cut-off when the value one (1) returned back from a connected node or leaf. The

final result of evaluating that node will be one (1) regardless the value of the

remaining connected children nodes. See also Algorithm 4 below which describes

how the idea of the short circuit evaluation is used. We allow not only binary

conjunctions and disjunctions and thus, we may assume that they are alternating by

levels.

Algorithm 4 (OR and AND PRUNING)

1. function ORPrune (Node)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = 0

8. for every child Nodei of Node do

9. while v not equal to 1 do

19

10. set v= v + ANDPrune(Nodei)

11. end while

12. end for

13. end else

14. return v

15. end ORPrune

1. function ANDPrune (Node)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = 1

8. for every child Nodei of Node do

9. while v not equal to 0 do

10. set v = v · ORPrune(Nodei)

11. end while

12. end for

13. end else

14. return v

15. end ANDPrune

2.3.6 Gödel type Fuzzy Logic

This system has been introduced by Kurt Gödel in 1932 [4]. The possible truth

values are real numbers from the closed unit interval [0,1], i.e., numbers 0 x 1.

The designated value, that is the value that is counted as true, is usually only the

value 1. Gödel defined four main connectives for this system (implication, negation,

disjunction and conjunction denoted to by the symbols → , ¬, ,and , respectively).

Their syntax is the same as in Boolean logic, and their semantics are defined in the

following way [5,9]:

 |A → B| = 1, if |A| ≤ |B|; (2.1a)

 |A → B| = |B|, otherwise (2.1b)

20

 |¬A| = 1, if |A|=0; (2.2a)

 |¬A| = 0, otherwise (2.2b)

 |A B| = max {|A|, |B|} (2.3)

 |A B| = min {|A|, |B|} (2.4)

Note that, for simplicity, we use letters A, B for the variables and, also, for their

values, without causing any misunderstanding. The system is infinitely many valued,

and it fulfills the axioms of intuitionistic logic with one additional law, namely, the

law of chain: The formula ((A → B) (B → A)) has value 1 independently of the

values of subformulae A and B.

Expressions and so, expression trees in Gödel logic are very similar to Boolean

expressions. The difference is that here the values at leaves (i.e., the truth values of

variables) is not restricted to the Boolean set {0,1}, but any real number between 0

and 1 (inclusively) can be used.

2.3.7 Lukasiewicz type Fuzzy Logic

The idea of considering intermediate truth values rather than only the classical set of

truth values {0,1} has been used extensively by Lukasiewicz and others since the

1920's. From historical point of view we mention that Lukasiewicz made three-

valued and four-valued systems first. Later he extended the system to arbitrary-many

(n ≥ 2) truth-values up to infinitely many [7,11,13]. Among the various many-valued

logics, the Lukasiewicz logic with infinitely many truth-values is one of the most

attractive candidates of fuzzy logic [24]. In this system all real numbers of the closed

interval [0,1] are allowed to be truth-value. The language has two primitive logical

connectives, i.e., {, }, where "" is the Lukasiewicz implication and "" is the

21

usual negation operation. Based on those two operations the other connectives, the

Lukasiewicz type conjunction (&) and disjunction (+) were also defined.

The syntax of this logic is entirely the same as the syntax of Boolean logic: the

negation is unary, the implication (), the conjunction (&) and the disjunction (+)

are binary operators. Formula trees are also defined and used accordingly.

The semantics of Lukasiewicz logic is defined in the following way. Generally, the

variables and the constants may have any values from the interval [0,1] including the

classical two values. The truth-values of formulae with connectives can be computed

from the value of their main subformulae [6,9,24].

 |A | = 1 −| A | (2.5)

 |A B | = min(1 − | A | + | B |, 1) (2.6)

 |A & B | = max (| A | + | B | – 1,0) (2.7)

 |A + B | = min (|A | + | B |,1) (2.8)

Lukasiewicz logic with the same semantics can also be used having a finite number

of truth values. In these systems the values are (for each integer k > 2): 0 = 0/(k – 1),

1/(k – 1), ..., (k – 1)/(k – 1) = 1. In the special case k = 2, one get back the classical

Boolean connectives working on the classical truth values. The Lukasiewicz-type

conjunction and disjunction have the names “bounded product” and “bounded sum”,

respectively.

22

2.3.8 Product Logic

One of the most popular fuzzy logic systems is the product logic. It was described by

explicit mathematical way in [10]. It is a logic with a natural many-valued semantics

interpreting conjunction as multiplication on the real unit interval [0, 1]. By

restricting the values to the traditional binary set {0,1}, the product, actually, the

same as the usual conjunction. This logic is considered, along with the other two

most significant fuzzy logics, the Lukasiewicz and the Gödel logics, to be one of the

fundamental t-norm based fuzzy logics due to the fact that every continuous t-norm

is locally isomorphic to either the Product, Gödel or Lukasiewicz t-norm.

In product logic all real numbers of the closed interval [0,1] are allowed to be a truth-

value.

The syntax of this logic is entirely the same as the syntax of Boolean logic: the

negation is unary, the implication, the conjunction and the disjunction are binary

operators. Formula trees are also defined and used in a similar manner.

The semantics of product logic is defined in the following way. Generally, the

variables and the constants may have any values from the interval [0,1] including the

classical two values. The truth-values of formulae with connectives can be computed

from the value of their main subformulae [9,10].

 |A | = 1 − | A | (2.9)

 |A B | = 1, if |A| ≤ |B|; (2.10a)

 |A B | = |B| / |A|, otherwise (2.10b)

23

 |A ˄ B | = | A | · | B | (2.11)

 |A ˅ B | = | A | + | B | - | A | · | B | (2.12)

One can easily prove that both conjunction and disjunction are associative in this

logic, therefore, to make our work more efficient, we allow multiple (more than two)

children of conjunction and disjunction nodes in the expression trees, similarly to the

case of Boolean logic and Gödel type logic.

In the product logic system, the conjunction is the product of the values of the

arguments, and the name of disjunction is “algebraic sum”. This type of conjunction

and disjunction look more like operations of a probabilistic system [9]. Assuming

that the values A and B are independent we get the result of their common

occurrence.

P(|A| and |B|) = P(|A|) P(|B|)

P(|A| or |B|) =1– P(|¬A| and |¬B|) =1– P(|¬A|)P(|¬B|)

 =1– (1 –P(|A|)) (1 –P(|B|)) =P(|A|) + P(|B|) – P(|A|)P(|B|)

The value of A→B is the maximal probability of B if A is true.

For the many-valued logic systems that are defined in the previous subsections, and

in a given (fixed) evaluation, the formula and its leaves are fixed, the leaves have

labels from the interval [0,1]. Then, the task is to compute the (truth) value of the

whole formula. This can be done with a bottom-up strategy. However, as in the case

24

of Boolean logic, we may not need to compute the value of each subformula to know

the final result. In chapter four we show pruning techniques that can be used in fast

evaluations of these formula trees.

25

Chapter 3

STRATEGIES TO FAST EVALUATION OF BOOLEAN
EXPRESSIONS AND EXTENDED GAME TREES

3.1 Introduction

In this chapter, we consider special formula/expression trees that can be considered

as a type of extensions of the game trees. Special extensions, as a mixture of decision

and game-trees were discussed in [19]. Here, by a further step, such extensions of

game-trees are investigated in which some operations may not be directly connected

to games, but with usual (mathematical or logical) expressions. We use a bounded set

of payoff values 0 and ±1 at the leaves of the trees. In some cases, it is not necessary

to know the value of every descendant to evaluate a node of the tree, these cases

leads to various pruning techniques that simplify the evaluation of the tree.

In the following subsections, various algorithms are proposed to speed up the

evaluation of these special trees in which there are specific operations used. Apart

from the usual min and max operations (that can be seen as AND and OR by

restricting the values to the Boolean set, i.e. to {0,1}) we use the operations

multiplication (that can also be seen as AND on the Boolean set) and sum (that

usually can be seen as binary addition, i.e. OR on the Boolean set), as well. We keep

only the sign of the sum to have the result inside the domain {-1, 0, +1}. The

proposed modified minimax, sum and product pruning, minimax with sum, and

minimax with product algorithms are described in the following sections in detail. As

26

an enhancement for the proposed algorithms, we also show that reordering the

branches of the tree may lead to an even faster exact evaluation.

3.2 Modified Alpha-Beta Pruning Algorithm

We start with an obvious modification of Algorithm 3. Since the set of payoff values

is bounded, we can modify the alpha-beta pruning algorithm to do a cut when the

maximum (+1) or the minimum (-1) value of the set is already found in

ALPHAPrune and BETAPrune, respectively, as shown in Algorithm 5. Line 9 of

Algorithm 3 is modified in both ALPHAPrune and BETAPrune functions to test if

the values +1 and -1 (the possible maximum and minimum, respectively) have been

found in the evaluated node, thus there is no need to visit the remaining successors

for that node: a cut can be done. Figure 5 shows an example for the usage of the

modified pruning algorithm.

Figure 5: A modified minimax alpha-beta pruning example. Only four leaves out of

eight are explored to evaluate the tree.

27

Algorithm 5 (Modified MINIMUM and MAXIMUM PRUNING)

1. function MAXIPrune(Node, α, β)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = -2

8. for every child Nodei of Node do

9. while v is less than +1 do

10. set v= maximum{v, MINIPrune(Nodei, α, β)}

11. if v is greater than or equal to β then return v

12. end if

13. set α = maximum{α,v}

14. end while

15. end for

16. end else

17. return v

18. end MAXIPrune

1. function MINIPrune(Node, α, β)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = +2

8. for every child Nodei of Node do

9. while v is greater than -1 do

10. set v= minimum{v, MAXIPrune(Nodei, α, β)}

11. if v is less than or equal toα then return v

12. end if

13. set β = maximum{β,v}

14. end while

15. end for

16. end else

17. return v

18. end MINIPrune

28

3.3 Sum and Product Pruning Algorithm

Now let us consider a new type of expression in which product operations follow the

additions and vice versa, e.g., expressions of the form abc+de+fghi and also more

complex expressions with these two operations appearing in the expression tree.

Remember that both the possible values of the variables (leaves) and of the

expressions (other nodes) are restricted to the set {-1, 0, +1} and thus both the sum

and product functions can have these three output values.

Using the fact that both addition and multiplication operations are associative, any

positive number of operands are allowed, i.e, any positive number of children of

these nodes, including only 1 child. Ideas similar to the short circuit evaluation can

be used to cut during the evaluations of sum and product (multiplication) functions as

they are described in Algorithm 6, see also, e.g. Figure 6 for examples.

The possible cuts that are applied here are the following: For the sum function, if the

absolute value of the actual value is greater than the remaining successors to visit,

then pruning is applied since there is no need to evaluate the remaining nodes: the

result is already known: the return value is 1 if the sum value greater than zero, and

-1 if the sum value is less than zero. This can be done using the while loop in line 9

in the function SUMPrune. At the product operator a zero-cut is done, since 0 is the

zero element of the multiplication, as it is written in the function MULPrune.

29

Figure 6: A sum and product pruning example. Only three vertices and four leaves

(total 7) out of four vertices and eight leaves (total 12) are explored and evaluated to
get the final result at the root.

Algorithm 6 (MUL and SUM PRUNING)

1. function SUMPrune (Node)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = 0

8. for every child Nodei of Node do

9. while |v| is less or equal to (the number of remaining nodes to visit do)

10. set v= v + MULPrune(Nodei)

11. end while

12. end for

13. end else

14. if v is greater than 0 then

15. return 1

16. end if

17. if v is less than 0 then

18. return -1

19. end if

20. else

21. return 0

22. end else

23. end SUMPrune

30

1. function MULPrune (Node)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = 1

8. for every child Nodei of Node do

9. while v is not equal to 0 do

10. set v = v * SUMPrune(Nodei)

11. end while

12. end for

13. end else

14. return v

15. end MULPrune

3.4 Minimax-Product Pruning Algorithm

In minimax-product case, the evaluation of the tree can be speed uped by applying

the zero-cut at product layer when a node with zero value is returned from one of the

connected successors. In addition to this, similarly to the usual alpha-beta pruning,

pruning can be applied in max and min layers. Example for these kinds of pruning

are shown in Figure 7 where two cuts are applied. The first one is a zero-cut when

the value zero is found in a leaf connected to product node in the product layer. The

second one is applied in the second node in min layer when a zero value (β) is

returned back from the product layer, which is less or equal to the maximum value

(α) that is found in the first node.

31

Figure 7: A minimax and product pruning example. Only six vertices and six leaves

(total 12) out of eight vertices and twelve leaves (total 20) are explored and
evaluated to get the final result at the root.

The proposed process for pruning is shown in Algorithm 7. The same MULPrune

function that proposed previously in Algorithm 6 is used here with MAXIPrune and

MINIPrune functions. (They can easily be modified having other order of layers in

the expression tree.)

Algorithm 7 (MUL, MININIMUM and MAXIMUM PRUNING)

1. function MAXIPrune(Node, α, β)

2. begin

3. if Node is leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = -2

8. for every child Nodei of Node do

9. while v is less than +1 do

10. set v= maximum{v, MINIPrune(Nodei, α, β)}

11. end while

12. set α = maximum{α,v}

13. end for

14. end else

15. return v

16. end MAXIPrune

32

1. function MINIPrune(Node, α, β)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = +2

8. for every child Nodei of Node do

9. while v is greater than -1 do

10. set v= minimum{v, MULPrune(Nodei, α, β)}

11. end while

12. if v is less than or equal α then

13. return v

14. end if

15. set β = maximum{β,v}

16. end for

17. end else

18. return v

19. end MINIPrune

1. function MULPrune(Node, α, β)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = 1

8. for every child Nodei of Node do

9. while v is not equal 0 do

10. set v = v * MAXIPrune(Nodei, α, β)

11. end while

12. end for

13. end else

14. return v

15. end MULPrune

3.5 Minimax-Sum Pruning Algorithm

In expression trees with three layers (max, min and sum), we use the idea of sum

short circuit evaluation initiated in subsection 3.3.

33

As mentioned before, the sum function has three output values (-1, 0, +1). When the

absolute value of the sum of the visited successors is greater than the number of

remaining successors, then the cut can be done and if the sum is positive, then +1 is

returned; if the sum is negative, then -1 is returned.

Figure 8: A minimax and sum pruning example. Only three vertices and three leaves
(total 6) out of seven vertices and eleven leaves (total 18) are explored and evaluated

to get the final result at the root.

Furthermore, similar alpha and beta pruning for min and max functions can be done

as in the previous algorithms to cut and speed up the evaluation of the tree (see

Algorithm 8). In Figure 8, in the minimum layer a pruning is applied when the

minimum value (-1) has been found, and after that in maximum layer again, when

the maximum value (+1) has been found. The sum short circuit is applied too; since

the absolute value of the sum function (+2) is greater than the remaining nodes to

evaluate (we have one node remain to evaluate, which is less than 2).

Algorithm 8 (ADD, MINIMUM and MAXIMUM PRUNING)

1. function MAXIPrune(Node, α, β)

2. begin

3. if Node is leaf then

34

4. return the value of Node

5. end if

6. else

7. initiate v = -2

8. for every child Nodei of Node do

9. while v is less than +1 do

10. set v= maximum{v, MINIPrune(Nodei, α, β)}

11. end while

12. set α = maximum{α,v}

13. end for

14. end else

15. return v

16. end MAXIPrune

1. function MINIPrune(Node, α, β)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = +2

8. for every child Nodei of Node do

9. while v is greater than -1 do

10. set v= minimum{v, ADDPrune(Nodei, α, β)}

11. end while

12. if v is less than or equal α then return v

13. end if

14. set β = maximum{β,v}

15. end for

16. end else

17. return v

18. end MINIPrune

1. function ADDPrune(Node, α, β)

2. begin

3. if Node is a leaf then

4. return the value of Node

5. end if

6. else

7. initiate v = 0

35

8. for every successor Nodei of Node do

9. while |v| is less than or equal (the number of remaining nodes to visit do)

10. set v= v + MAXIPrune(Nodei, α, β)

11. end while

12. end for

13. end else

14. if v is greater than 0 then

15. return 1

16. end if

17. if v is less than 0 then

18. return -1

19. end if

20. else

21. return 0

22. end else

23. end ADDPrune

3.6 Reordering the Branches of the Trees

Notice that each of the used operations is commutative, and thus, the result of the

operand does not depend on the order of the children branches. Therefore, in addition

to the above proposed algorithms to speed up the evaluation of the Boolean

expression trees with the presented logical and mathematical operations, a reordering

technique can be applied on these kinds of trees before starting the evaluation.

The intuitive idea behind the reordering is that shorter branches can be computed

faster. Therefore, the aim is to move the node that is the root of a subtree having least

depth to the left side to be evaluated first. The process of reordering must be started

from the lowest layers and goes up to the root. Then, after the reordering is done, the

evaluation process can be started where the previously mentioned pruning techniques

can be applied to speed up the evaluation.

36

3.6.1 Reordering the branches of Boolean expressions

In this subsection we show how the evaluation of a Boolean expression tree with two

operations can be done in a more efficient way. Figure 9 shows how the evaluation

of the tree in Figure 4 is done after reordering its branches. After applying the

reordering process, only two vertices (operators) out of six are evaluated to get the

final result in the root. While only two of the leaves are also used instead of a total of

eight during the evaluation process using the operators AND and OR. The process of

reordering the tree branches is described in Algorithm 9. The same idea can be

applied if we have different types of operators (e.g., sum).

Figure 9: An example of applying reordering and short circuit algorithm. Only two
vertices and two leaves (total 4) out of six vertices and eight leaves (total 14) are

explored and evaluated after the reordering and pruning process.

Algorithm 9 (AND, and OR Tree Reordering)

1. function ORReorder(Node)

2. begin

3. if Node is leaf then

4. move Node to the left side

5. end if

6. else

7. for every child Nodei of Node do

8. ANDReorder(Nodei)

9. count the number of connected leaves and nodes

37

10. move the node Nodei with less leaves and nodes to the left side

11. end for

12. end else

13. end ORReorder

1. function ANDReorder(Node)

2. begin

3. if Node is leaf then

4. move Node to the left side

5. end if

6. else

7. for every child Nodei of Node do

8. ORReorder(Nodei)

9. count the number of connected leaves and nodes

10. move the node Nodei with less leaves and nodes to the left side

11. end for

12. end else

13. end ANDReorder

3.6.2 Reordering and Pruning Complex Trees

In this subsection we use the reordering technique for expression trees with more

than two operators and show that it can be used very efficiently in these cases as

well.

In the first example of this subsection an expression tree is shown (see Figure 10

below). This tree includes four different operators (sum, multiplication, max, and

min) in such a way that in the same level only the same operator is used. Since, in

this case, the order of the operators are fixed (as at game trees), the evaluation

functions call each other in a predefined order. To evaluate the tree of that example,

without applying the reordering technique and pruning algorithms mentioned and

detailed in the previous subsections, 22 vertices and 25 leaves must be explored and

evaluated.

38

Figure 10: An expression tree with sum, multiplication, max, and min operators. The

tree contains twenty two vertices and twenty five leaves (total 47).

Figure 11 shows the same tree evaluated after applying the proposed pruning

algorithms without reordering the branches. The same result of evaluation is returned

back to the root, but this was by exploring and evaluating only 19 vertices and 17

leaves (total 36) out of 22 vertices and 25 leaves (total 47).

Figure 11: The expression tree of the example of Figure 10 is evaluated by the
proposed pruning techniques. After applying the pruning algorithms without

reordering the branches, nineteen vertices and seventeen leaves remained (total 36)
out of twenty two vertices and twenty five leaves (total 47).

Figure 12 shows the same tree evaluated after reordering the branches and then

applying the proposed pruning algorithms. The same result of evaluation is returned

back to the root, but this was by exploring and evaluating only 12 vertices and 7

39

leaves (total 19) out of 22 vertices and 25 leaves (total 47). This result shows how

fast the evaluation process can be after applying the proposed technique to evaluate

an expression tree that includes various logical and mathematical operators with

some order.

Figure 12: The expression tree of Figures 10 and 11 is evaluated by reordering and
pruning. After applying the reordering and then the pruning algorithms, only nine

vertices and seven leaves remained (total 16) out of twenty two vertices and twenty
five leaves (total 47).

In our other example, shown in Figure 13, the operators have no fixed order in the

expression, which maybe much closer to real word applications in some cases. Also,

leaves can be found in various levels (i.e., various depths) of the tree. To evaluate the

tree without applying the reordering technique and pruning algorithms mentioned

above, 11 vertices and 13 leaves must be explored and evaluated (total 24). Using

various pruning strategies the number of vertices that must be evaluated is 9, while

the number of leaves that must be explored is 7 (total 16 vertices, see Figure 14). The

proposed reordering technique together with the pruning algorithms evaluates the

expression tree of this example by exploring and evaluating only 5 vertices and 5

leaves (total 9 vertices are visited for the evaluation) as it can be seen in Figure 15.

40

Figure 13: An expression tree with sum, multiplication, max, and min operators in

various order. The tree contains eleven vertices and thirteen leaves (total 24).

Figure 14: The example of Figure 13 is evaluated by applying the pruning algorithms

without reordering the branches: nine vertices and seven leaves evaluated and
explored (total 16) out of eleven vertices and thirteen leaves (total 24).

41

Figure 15: The expression tree of Figures 13 and 14 is evaluated by applying both the

reordering and then the pruning algorithms: only five vertices and five leaves
remained (total 9) out of eleven vertices and thirteen leaves (total 24).

42

Chapter 4

STRATEGIES TO FAST EVALUATION OF MANY-
VALUED LOGIC FORMULAE

4.1 Introduction

In the following sections, we show various lazy evaluation techniques to evaluate the

expressions in the most known fuzzy logic systems; Gödel, Lukasiewicz, and product

logics. By these cut techniques one could effectively reduce the size of the

expression trees allowing a much faster method of evaluation. We are dealing with

trees with bounded set of truth (or payoff) values: the real numbers of the closed

interval [0,1] can be used.

We start this chapter by showing some strategies to fast evaluate the expression trees

in Gödel logic system.

4.2 Strategies to Fast Evaluation of Gödel Type Logic Formulae

In this section, various algorithms are proposed to speed up the evaluation of Gödel

logical connectives previously defined in section 2.3.6. The conjunction and

disjunction operations can be seen as AND and OR operators by restricting the

values to the Boolean set, i.e., to {0, 1}. In our expression trees, in a similar manner

to the Boolean expressions (actually, the syntax of expressions of Gödel logic is the

same as the syntax of Boolean expressions), since both AND and OR are associative,

without loss of generality we allow multiple children of nodes of these types. Nodes

43

with negation must have exactly one child, while nodes with implications must have

exactly two children, called left child and right child, respectively.

The proposed algorithms to speed up the evaluation of this kind of trees are

described below in details in the next subsections.

4.2.1 Alpha-Beta Pruning

A form of the classical short circuit evaluation for Gödel logic is exactly the usual

alpha-beta pruning. When OR and AND operators are used alternately by levels of

the expression tree, alpha-beta pruning can be applied and, actually, by knowing the

possible minimal and maximal values, these information can also be used (reaching

these values some neighbor branches can be cut without effecting the computed

value).

4.2.2 Implication Pruning

Evaluating the implication nodes can be speed uped using various techniques. These

techniques are based on the possible left and right children of the implication node,

and they are described below in details.

 4.2.2.1 Conjunction-Disjunction Children Pruning

We start with the case when the left child node is a conjunction and the right child

node is a disjunction. The first idea to speed up this evaluation is to evaluate the

branches connected to its successors one by one in parallel that is, evaluating the first

child of the conjunction node and then the first child of the disjunction node, then the

second child of the conjunction node, etc. This technique is very useful in case if

conjunction and disjunction nodes are connected to implication node. Figure 16

shows an example of such case.

44

As shown in Figure 16, conjunction (left child) and disjunction (right child)

successors evaluated in parallel (one by one, after each other). After evaluating the

second successor of disjunction and conjunction nodes, we have that conjunction is

less or equal to 0.3 and disjunction is greater or equal to 0.7 which means that we can

cut the other successors and return back the value 1 for implication node. More

generally, if it is known that the value of the right child (disjunction in this case) is at

least as many as the value of the left child (conjunction in this case), we can

eliminate the evaluation of the other brothers and sisters, the implication node has a

value 1.

Figure 16: An example of applying the pruning when evaluating an implication node.
Two children are connected; a conjunction node to left side and disjunction node to
right side. Only four children (out of 10) are explored to get the final result at the

root.

4.2.2.2 Disjunction-Conjunction Children Pruning

The second pruning technique is applied when the successors of an implication node

are disjunction at left child and conjunction at right child. Figure 17 shows an

example of this case.

45

As shown in Figure 17, the evaluation of the disjunction and conjunction nodes

successors starts in parallel (one by one in turns). After evaluating the second

successor of disjunction and conjunction nodes we have that disjunction will be

always greater or equal to 0.6, while conjunction node will be less or equal to 0.4.

Since the value of left child will be less than right child, we can cut all the

subsequent children of disjunction node and evaluate only the conjunction node and

return back its value to implication node.

Figure 17: An example of applying the pruning when evaluating an implication node.
Two children are connected; a conjunction node to left side and disjunction node to
right side. Only six children (out of 9) are explored to get the final result at the root.

4.2.2.3 Negation Pruning

As previously mentioned in section 2.3.6, equations (2.2a,2.2b) show that a negation

node in Gödel expression has only two possible resulted values (0 and 1). The idea

here is to check all the connected leaves in the lower layers of negation node before

evaluating the connected nodes. If all the connected leaves has non-zero values and

there is no more negation nodes connected, then cut-off can be applied, the subtree

rooted at this negation node can be cut and 0 can be returned back the value to its

parent node. Observe that with non-zero values using only conjunction, disjunction

and implication the value cannot be zero. Thus, by a simple pattern matching on the

46

subexpression it can be checked whether it contains other negation or a 0 value in a

leaf.

This idea is described in Algorithm 10, see also, e.g., Figure 18 for examples. The

Check_Leaves function exploring all the leaves of the subtree rooted at the negation

node. If all the connected leaves are non zeros and there is no other negation node in

the subtree, then it returns the initiated flag value 1 meaning that the pruning can be

done and the negated subexpression has a 0 value.

Algorithm 10 (Negation Prune)

1. function Check_Leaves(Node)

2. begin

3. initiate Flag=1

4. if Node is leaf then

5. if Node = 0 then

6. Flag=0 %"If at least one leaf equals to zero or"

7. return Flag

8. else

9. if Node type is NEG then %"if a NEG node is found,"

10. set Flag=0 %"then cut the search, "

11. return Flag

12. end if

13. end else %"we cannot prune. "

14. else

15. for every child Nodei of Node do

16. if Check_Leaves(Nodei) = 0 then

17. Flag=0

18. return Flag

19. end if

20. end for

21. end else

22. return Flag

23. end Check_Leaves

47

Figure 18: An example of applying the pruning for a negation node when all the

connected leaves are non zeros.

4.2.2.4 Implication with Negation Child Pruning.

In addition to the above mentioned pruning technique for negation, more pruning

techniques can be done for the cases when an implication node has a child with

negation and disjunction or conjunction at the other child. The strategy here is to try

first a pruning at the negation node.

Figure 19 shows an example where we have an implication node which has the

successors disjunction as left child and negation as right child. First, we can apply

the negation pruning algorithm since all the connected leaves are non-zeros and the

value 0 is returned back to the negation node. Then, we evaluate the successors of the

disjunction node. After evaluating the second successor of disjunction node we have

that its value will be always greater than 0.5, while it is greater than the value of

negation node (the right successor). A cut can be applied here, and there is no need to

explore and evaluate the remaining successors of the disjunction node for the exact

evaluation of the implication node. A zero value will returned back as a value of the

implication node.

48

Figure 19: An example of implication pruning when we have an implication node

that has the successors disjunction as left child and negation as right child. Only six
children (out of 9) are explored to get the final result at the root.

Figure 20 shows an example where we have an implication node which has the

successors conjunction as left child and negation as right child. First, as in the

previous example, we can apply the negation prune since all the connected leaves are

non zeros. Then, we evaluate the conjunction node successors. After evaluating the

second successor of conjunction node we have that its value is equal to 0 which is the

minimum. The cut can be applied here, and no need to explore and evaluate the

remaining successors of conjunction node to evaluate the implication node. The

value of the left and right successors are equal, so the value 1 will returned back as a

value of the implication node.

Figure 20: An example of implication pruning when we have an implication node

that has the successors conjunction as left child and negation as right child. Only five
children (out of 8) are explored to get the final result at the root.

49

Figure 21 shows an example in which the left child of the implication is a negation.

In this case, independently of the type of the right child, if the pruning of the

negation can be applied and gives a value 0 for the negation node, then the right child

of the implication can be cut off, independently of its value, the implication gets its

value 1.

Figure 21: An example of applying the pruning when evaluating an implication node

with negation node connected to the left side. Only five children (out of 10) are
explored to get the final result at the root

In the next subsection some complex examples are displayed.

4.2.3 Complex Examples

In this subsection we show two complex Gödel expression tree examples, and how

the proposed pruning techniques can be used to evaluate these trees very efficiently.

First, the expression trees are shown (see Figure 22 and Figure 24, respectively).

These trees include the four predefined operators (negation, implication, conjunction

and disjunction). The order of the operators is various in these expressions, and also,

leaves can be found in various levels (i.e., various depths) of the tree.

50

Figure 22: An example of Gödel expression tree without pruning. Nine vertices and
twelve leaves (total 21) must be explored and evaluated to get the final result at the

root.

To evaluate the tree of the example in Figure 22, without applying our pruning

algorithms, 9 vertices and 12 leaves must be explored and evaluated. Figure 23

shows the same tree evaluated after applying the proposed pruning algorithms. The

same result of evaluation is provided at the root but by exploring and evaluating only

5 vertices and 7 leaves (total 12) out of 9 vertices and 12 leaves (total 21).

Figure 23: The example of Gödel expression tree in Figure 22 after applying the
proposed pruning techniques. Only five vertices and seven leaves explored and

evaluated (total 12) out of eight vertices and eleven leaves (total 21) to get the final
result at the root.

51

As shown in Figure 23, the evaluation by applying the proposed pruning techniques

has been done as follows:

 The evaluating process is started in parallel to evaluate the conjunction and

disjunction nodes (the two children of the implication at the root).

 While evaluating the first successor (negation node) of disjunction node, a

negation prune has been applied for the reason that all the connected leaves

are non zeros.

 After evaluating the second successor of disjunction and conjunction, the

value of disjunction node (right branch) will be always greater than 0.6 and

the value of conjunction node (left branch) is less than 0.3. A pruning can be

applied here by cutting exploring and evaluating the remaining leaves and

nodes (the third branch of disjunction and conjunction nodes) and return back

the value 1 to the root (implication node).

In our other example, shown in Figure 24, to evaluate the tree without applying the

pruning algorithms mentioned above, 18 vertices and 19 leaves must be explored and

evaluated (total 37). By using various pruning strategies the number of vertices that

must be evaluated is 11, while the number of leaves that must be explored is 11 (total

22, see Figure 25).

52

Figure 24: A complex Gödel expression tree. Eighteen vertices and nineteen leaves

(total 37) must be explored and evaluated to get the final result at the root.

Figure 25: A complex Gödel expression tree after applying the proposed pruning

techniques. Only eleven vertices and eleven leaves explored and evaluated (total 22)
out of eighteen vertices and nineteen leaves (total 37) to get the final result at the

root.

Figure 25 shows how the proposed pruning techniques used to evaluate the

expression tree in Figure 24. These techniques have been applied in the following

way:

53

 The evaluating process is started in parallel to evaluate the disjunction and

conjunction nodes.

 While evaluating the first successor (implication node) of disjunction node,

we have that it's right branch is greater than 0.7 while the left one is less than

0.5. The proposed algorithm cuts the left branch and returns back the value of

the node at the right side.

 In the evaluation process of the first successor connected to the conjunction

node (which is the right child of the root), a cut-off can be applied to evaluate

the connected Implication node since its left branch is a zero leaf and the

value 1 is returned back.

 After evaluating the second successor of both the main disjunction and

conjunction nodes in the expression, we have that disjunction is greater than

0.4 and conjunction is less than 0.3. The proposed algorithm cut-off all the

left branch of the root and continue to evaluate the right branch only.

Furthermore, a cut-off has been applied while evaluating the second

successor of the main disjunction node. The value of this node is less than 0.3

while the current value of the main disjunction node is greater than 0.4; there

is no need to explore the remaining leaves to evaluate it.

 A negation prune can be applied for the third successor of the main

conjunction node. This is for the reason that all the connected leaves are non

zeros.

54

 Finally, the value 0 is returned back to the root as the final value of the

expression.

These results show how fast the evaluation process can be after applying the

proposed technique to evaluate an expression trees.

4.3 Strategies to Fast Evaluation of Lukasiewicz Type Logic

Formulae

In this section, various techniques are proposed to speed up the evaluation of formula

trees in Lukasiewicz logic based on the logical connectives previously defined in

section 2.3.7. As in Gödel expression trees, we are dealing with trees with bounded

set of truth values: the real numbers of the closed interval [0,1] can be used at the

leaves of the tree. At the beginning of the evaluation they are given at the leaves of

the tree, and the task is to compute the value at the root. About the forms of these

trees we have the restriction: negation vertices must have exactly one child, while the

other vertices (operators) must have exactly two children, called left child and right

child, respectively.

The proposed pruning techniques to speed up the evaluation of this kind of trees are

described in details in the next subsections.

4.3.1 Conjunction and Disjunction Pruning

Evaluation of the disjunction (&) and conjunction (+) nodes can be speeded up using

various techniques. These techniques are based on the possible left and right children

of these nodes. For a vertex associated to a conjunction, cut can be applied if we

have a child (maybe a leaf) with value zero which make the result of equation (2.7)

equal to zero (the minimum value) whatever the value of the vertex that is connected

55

to the other side of the given conjunction vertex. To do the evaluation in a faster

way, the process of evaluating this kind of nodes can be started by getting the value

of the connected leaf if it exists. Figure 26 shows an example for such case.

Figure 26: An example for a cut applied when a conjunction (&) vertex has a child

(to left or right) with a value equal to 0. Only three vertices with connectives and two
leaves (total 5) out of five vertices with connectives and five leaves (total 10) are

explored and evaluated to get the final result at the root.

When the root (of the subtree we are working with) is a disjunction vertex, the cut

can be applied if we have a child (maybe a leaf) with value 1 which makes the result

of (2.8) equal to one (the possible maximum value) whatever the value of the child

that connected to the other side of the disjunction node. To speed up the evaluation,

the same process can be applied here as at the conjunction vertices.

In addition to the previous techniques that are operating when the minimal/maximal

value is reached, another technique can also be applied at conjunction and

disjunction vertices. This technique is based on equations (2.6), (2.7) and (2.8)

depending on the operators at the children. It is clear that the result of the expression

in equation (2.6) is always greater or equal to the negation of A which is equal to 1 –

56

|A|. Moreover, the minimum value of the expression in equation (2.7) is when the

sum of the values of the two connected successors (A and B) is less than 1, and the

value of the expression is always less or equal to |A|. In equation (2.8) we can see

that its maximum value is equal to 1, and the expression has a final value which is

always greater or equal to |A|. This can happen when the sum of the values of the

connected successors (A and B) is greater or equal to 1.

The idea of the proposed cuts is the following. Firstly, suppose that the root (of the

subtree) is a disjunction vertex, and each of the connected successors (i.e., children)

is one of the following types:

 negation vertex with a conjunction child;

 implication vertex; or

 disjunction vertex.

In this case the evaluation of the connected vertices can be started in parallel (e.g., by

the left child of both of these vertices), starting by getting the value of the connected

leaf if such child exists. After evaluating or getting the value of the first successor of

the both connected vertices and as mentioned above, if the sum of both evaluated

successors (in case of disjunctions or negated conjunctions vertices are connected),

or the sum of the negated successors (1 - |A|’s in case of an implication vertex is

connected) is greater or equal to 1, then we can make a cut and return back the value

1 to the root and there is no need to evaluate and explore the remaining connected

nodes or leaves (e.g., the right side of these branches). To make it more clear we

57

provide an example of Figure 27 having disjunction at both children and Figure 28

having an implication and a disjunction child.

Figure 27: An example for pruning techniques applied at a disjunction vertex having

two disjunction children and their sum is greater or equal to 1. Only four vertices
with connectives and three leaves (total 7) out of six vertices with connectives and

six leaves (total 12) are explored and evaluated to get the final result at the root.

Figure 28: An example for pruning techniques applied at a disjunction vertex having
an implication and disjunction nodes as its children and their sum is greater or equal

to 1. Only five vertices with connectives and three leaves (total 8) out of seven
vertices with connectives and six leaves (total 13) are explored and evaluated to get

the final result at the root.

58

Secondly, suppose that the root is a conjunction vertex, and the connected successors

(children) are both either a negated disjunction vertex (i.e., a negation with

disjunction child), or conjunction vertex. Similar technique can be applied here to the

previously described one. The difference is that the cut is applied when the sum of

the values of the two successors (A and B) is less than or equal to 1. The value 0

returned back to the root then. Figure 29 shows an example.

Figure 29: An example for pruning techniques applied at a conjunction vertex having

two conjunction nodes as its children and their sum is less or equal to 1. Only five
vertices with connectives and three leaves (total 8) out of seven vertices with

connectives and six leaves (total 13) are explored and evaluated to get the final result
at the root.

4.3.2 Implication Pruning

Now let us consider that the root (of the subtree under evaluation) is an implication

node. Various cuts can also be applied at these vertices. One can apply a lazy

evaluation if the left child of the implication is a node (maybe a leaf) with value

equal to zero (the minimum value that it can be). Directly we can cut the right child

and return back the value 1 to the implication (root) node. Whatever the value of the

right child, it will be greater or equal to the value of the left child. Figure 30 shows

an example of this case. It is shown that after evaluating the negation node at the left

59

child of the implication node, it has the value 0; this means that the right child will be

greater or equal to this value. The whole right child can be cut out; the value 1 is

returned back to the implication (root) node without evaluating that cut branch.

Figure 30: An implication pruning example with negation node as left child. Only
four vertices with connectives and three leaves (total 7) out of eight vertices with
connectives and seven leaves (total 15) are explored and evaluated to get the final

result at the root.

The next possible cut technique that can be applied at evaluation of an implication

vertex is the following. The condition for this pruning is that the left child of the

implication vertex is either a negated disjunction (i.e., a vertex with negation that’s

child is a disjunction vertex) or a conjunction; and its right child is either a

disjunction or a negated conjunction (that is a negation having its child a conjunction

vertex). We can consider the conjunction node as a kind of MINIMUM node, and the

disjunction vertex as a kind of MAXIMUM node, while the opposite is true for them

in the negated case. Thus, our implication vertex has a left MINIMUM and a right

MAXIMUM children. Suppose that A and B are the children of the MINIMUM (e.g.,

conjunction) node, while C and D are the children of the MAXIMUM node. Then,

the evaluation starts in parallel for the children, i.e., for A and for C, then for B and

60

for D. As a result of the equations (2.7) and (2.8), the value of these two nodes

(conjunction or negated disjunction to left and disjunction or negated conjunction to

right) is always less or equal to the value of A and greater or equal to the value of C,

respectively. This allows us to make a cut in some cases, as we illustrate them by

examples.

Figure 31 shows an example of an implication node that has a negated disjunction as

the left child and a disjunction vertex as its right child. While evaluating the

successors of both the disjunction vertices in parallel, and as explained above, we

already know that the negated disjunction (at the negation node) connected to left is

less or equal to 0.4, while the disjunction node connected to right is greater or equal

to 0.7. This means that right child is greater than left child, already. There is no need

to explore and evaluate the right children of any of these disjunction nodes. A cut can

be applied and the value 1 is given at the implication (root) node.

Figure 31: An implication pruning example with negated disjunction (left child) and
disjunction (right child). Only eight vertices with connectives and three leaves (total
7) out of eight vertices with connectives and seven leaves (total 15) are explored and

evaluated to get the final result at the root.

61

Figure 32: An implication pruning example with conjunction (left child) and negated
conjunction (right child). Only five vertices with connectives and three leaves (total
8) out of eight vertices with connectives and seven leaves (total 15) are explored and

evaluated to get the final result at the root.

For an example of an implication pruning in case that the left child is a conjunction

and the right child is a negated conjunction, see Figure 32. These techniques can be

considered as a special case of alpha-beta cut which is widely used in artificial

intelligence, and specially, in game theory.

The last proposed example is showing the case when the implication node has

conjunction node as a left child and disjunction node as a right child. It represents a

special case of alpha-beta pruning, as well. When the value of the disjunction node

becomes greater or equal to the value of the conjunction node, a cut is applied and

the value 1 is returned back to the implication node (root). See Figure 33 for an

example of applying the proposed pruning strategy.

62

Figure 33: An example of evaluating implication vertex with a special case of alpha-
beta pruning (the left child is a conjunction and the right one is a disjunction). Only
seven vertices with connectives and four leaves (total 11) out of eleven vertices with

connectives and nine leaves (total 20) are explored and evaluated to get the final
result at the root.

The last pruning technique that we show is based on the fact that evaluating the

implication expression defined in equation (2.6), it has always an output which is

greater than or equal to the value 1 – |A|. According to this a pruning can be done

when the root of the subtree (implication node) has a right child of the kind

(disjunction, negated conjunction, or implication) and a left child of the kind

(conjunction, negated disjunction, or negated implication). While evaluating the first

successors of the left and right children, and when we have that right child has a

greater or equal value to the left child, we can make a cut: we can stop evaluating

and exploring the remaining nodes and leaves and return back 1 to the root node. See

Figure 34 for an example.

63

Figure 34: An example of evaluating implication vertex with a special case of alpha-

beta pruning (the left child is a disjunction and the right child is an implication).
Only seven vertices with connectives and four leaves (total 11) out of eleven vertices
with connectives and nine leaves (total 20) are explored and evaluated to get the final

result at the root.

4.4 Strategies to Fast Evaluation of Product Logic Formulae

In this section, the product fuzzy logic is considered. Various techniques are

proposed to speed up the evaluation of formula trees in product logic based on the

logical connectives previously defined in section 2.3.8. Similarly to the cases of

Gödel and Lukasiewicz fuzzy logic systems shown in previous subsections, we are

dealing with trees with bounded set of truth values: the real numbers of the closed

interval [0,1] can be used at the vertices of the tree. At the beginning of the

evaluation they are given at the leaves of the tree, and the task is to compute the

value at the root. About the forms of these trees we have the restriction: nodes

assigned to negation must have exactly one child, nodes with implication must have

exactly two children (called left and right children), while the other nodes with

assigned conjunction and disjunction have at least two children.

64

The proposed pruning techniques to speed up the evaluation of this kind of trees are

described below in details in the next subsections.

4.4.1 Conjunction and Disjunction Pruning

Evaluation of the disjunction (AND) and conjunction (OR) nodes can be speed uped

using various techniques. These techniques are based on the values of already visited

children of these nodes. As an immediate pruning, for a vertex associated to a

conjunction, cut can be applied if we have a child (maybe a leaf) with value zero

which make the result of equation (2.11) equal to zero (the possible minimum value)

whatever the value of the other nodes connected to the given conjunction vertex. To

do the evaluation in a faster way, the process of evaluating this kind of nodes can be

started from a child which is leaf, if such a child exists. Figure 35 shows an example

for such case.

Figure 35: An example for a cut applied when a conjunction (&) vertex has a child
(to left or right) with a value equal to 0. Only three vertices with connectives and

three leaves (total 6) out of seven vertices with connectives and seven leaves (total
14) are explored and evaluated to get the final result in the root.

When the root (of the subtree we are working with) is a disjunction node, the cut can

be applied if we have a child (maybe a leaf) with value 1 which makes the result of

equation (2.12) equal to one (the possible maximum value) whatever the value of the

65

other children of the disjunction node. To speed up the evaluation, a similar cut can

be applied here as at the conjunction nodes. For an example, see Figure 36.

Figure 36: An example for pruning techniques applied at a disjunction node having a
child with a value equal to 1. Only three vertices with connectives and three leaves

(total 6) out of eight vertices with connectives and seven leaves (total 15) are
explored and evaluated to get the final result at the root.

4.4.2 Implication Pruning

Now let us consider that the root (of the subtree under evaluation) is an implication

node. Implication nodes have exactly two children. In similar way as shown in

sections about Gödel and Lukasiewicz, an immediate pruning can be applied if the

left child of the implication has a value equals to zero (the minimum value that it can

be). Directly we can cut the right child and assign the value 1 to the implication

(root) node, since whatever the value of the right child is, it will be greater or equal

to the value of the left child. Figure 37 shows an example: After evaluating the

negation node at the left child of the implication node, it has the value 0; this means

that the right child will be greater or equal to this value. The right child and the

whole subtree rooted there can be cut out, the value 1 is guaranteed at the implication

(root) node without evaluating the cut branch of the subtree.

66

Figure 37: An implication pruning example with negation node as left child. Only

five vertices with connectives and three leaves (total 8) out of ten vertices with
connectives and eight leaves (total 18) are explored and evaluated to get the final

result at the root.

We note here that a kind of dual of the previous technique also exists. In case the

right child is evaluated first, (e.g., it could be efficient, if it is a leaf) and its value

equals to one (the maximum value that can be), a pruning can be applied: the left

child can be directly cut out and the value 1 can be assigned to the implication (root)

node. Figure 38 shows an example; the possible cuts are the following ones: if the

evaluation starts for the negation node (right child), then while evaluating the

connected conjunction node a leaf with value zero has been found. As mentioned in

the previous subsection, we can cut the second child in this case without evaluating it

giving value 0 to the node with conjunction. In this case the implication node has the

value zero. Now, the node with negation will get the value 1 that is greater or equal

to the left child of the root (implication node). This will make equation (2.10a) equal

to 1, independently of the value of the left child of implication node.

67

Figure 38: An implication pruning example evaluating its right child first. Only four

vertices with connectives and two leaves (total 6) out of nine vertices with
connectives and eight leaves (total 17) are explored and evaluated to get the final

result at the root.

The next possible cut technique is more applicable than the previously described

ones, in the sense that it does not require to have a value 0 or 1 at a node. It can be

applied at evaluation of an implication node with the following properties. Its left

child is either conjunction or a negated disjunction (i.e., a node with negation that’s

child is a node with disjunction), while its right child is either a disjunction or a

negated conjunction (that is a negation having its child a node with conjunction). We

can consider the conjunction and disjunction nodes in somewhat similar roles, as

minimum and maximum nodes, respectively (in game theory, or at Gödel logic). In

this way, at these nodes, depending on the number of already evaluated children, a

value is computed that gives an upper, or a lower bound, respectively, for the real

value of the node. (At negated nodes this value x is changes to 1 – x, and its bound

changes to the opposite bound.) Thus, the value of the implication node is already

bounded by an upper bound (computed at its left child) and a lower bound (computed

at its right child).

68

As mentioned and explained previously in section 4.3.2 (implication pruning), the

same can be applied here. Suppose that A and B are the children of the left branch of

the implication, i.e., children of the conjunction or a negated disjunction as a left

child, while C and D are the children of the right branch of the implication, i.e.,

children of the disjunction or a negated conjunction as the right child. Then, the

evaluation starts in parallel for the children, i.e., in the following order: starts for A

and for C, then for B and for D. (Having more than two children the evaluation

should follows alternating for the children, one from the left and one from the right

branch.) As a result of (2.11) and (2.12), the value of these two nodes (conjunction or

negated disjunction on the left and disjunction or negated conjunction on the right) is

always has at most the value of A and at least the value of C, respectively. This

allows us to make a cut in some cases, as we illustrate them by examples.

Figure 39 shows an example of an implication node that has a negated disjunction as

the left child and a disjunction node as its right child. While evaluating the

successors of both the disjunction nodes in parallel, and as explained above, we

already know that the negated disjunction (at the negation node) connected to left is

less or equal to 0.5, while the disjunction node connected to right is greater or equal

to 0.6. This means that right child is greater than left child, already. There is no need

to explore and evaluate the left children of any of these disjunction nodes. A cut can

be applied and the value 1 is given at the implication (root) node.

Similar examples of an implication pruning can be shown in the other cases, e.g.,

when the left child is a conjunction and the right child is a negated conjunction.

69

Figure 39: An implication pruning example with disjunction (right child) and negated
disjunction (left child). Only seven vertices with connectives and three leaves (total
10) out of ten vertices with connectives and eight leaves (total 18) are explored and

evaluated to get the final result at the root.

Figure 40 shows an example where some of the previously described evaluation

strategies are applied (when disjunction node has one successor with the value 1 and

when an alpha-cut has been applied in the right bottom node of the expression tree).

While evaluating the successors of both the disjunction nodes in parallel, and as

mentioned in the above subsection, a cut can be applied in disjunction (left child) of

implication. The value 1 returned back to disjunction (the maximum). This makes the

result of implication expression which is defined in equation (2.10b) equal to the

value of the right child. Then, we continue evaluating and exploring the connected

nodes and leaves to the right child (conjunction node).

70

Figure 40: An implication pruning example with a special case of alpha-cut. Only
nine vertices with connectives and six leaves (total 15) out of twelve vertices with

connectives and ten leaves (total 22) are explored and evaluated to get the final result
at the root.

These techniques can be more efficient (could lead to pruning with a higher

probability) when there are more than two children of the corresponding

conjunction/disjunction nodes. In these cases by the parallel (i.e., alternate)

evaluation of the children of both sides, the upper and lower bound is adjusted

dynamically. Actually, a bound does not change after evaluating a child if and only if

this child has a value 1. An example for such pruning will be shown later in Figure

45.

The next pruning technique we show is based on the fact that evaluating the

implication expression in equation (2.10b), it has always an output which is greater

than or equal to the value |B|. This technique would require to evaluate the right child

of an implication first, and, therefore, it could not be applied automatically, it is a

kind of theoretical pruning. According to the condition that the value of the

implication is never less than the value of its right child, a pruning could be done

when the root of the subtree (implication node) has a right child that one of the

71

following kinds: disjunction, negated conjunction, or implication; and a left child is

one of the following kinds: conjunction, negated disjunction, or negated implication.

While evaluating the first successors of the left and right children, and when we have

that right child has a greater or equal value to the left child already, we can make a

cut: we can stop evaluating and exploring the remaining nodes, the value of the

implication node at the root is surely 1. See Figure 41 for an example. Actually, in

this example one may observe this pruning technique at the implication at the root.

Figure 41: An example of evaluating implication node with a special case of alpha-
beta pruning (the left child is a conjunction and the right child is an implication).

Only seven vertices with connectives and four leaves (total 11) out of twelve vertices
with connectives and ten leaves (total 22) are explored and evaluated to get the final

result at the root.

4.4.3 Further Techniques

Further enhancement and development can be applied on the previously proposed

techniques to make the evaluation faster. This can be done in a similar way that was

earlier proposed to speed up the evaluation of Boolean expressions. This

enhancement is to reorder the children of conjunction and disjunction nodes in

72

ascending order by the depth of these subtrees, from left to right. In this way, leaves

will automatically be the first children, if there are any of them.

Figure 42: An example of applying the proposed cut techniques in a complex product
logic expression tree. Only sixteen vertices with connectives and twelve leaves (total

27) out of twenty five vertices with connectives and twenty leaves (total 45) are
explored and evaluated to get the final result at the root.

Using this technique we will have all the nodes with shortest paths to the left and,

thus, they will be evaluated earlier than larger subtrees rooted in other children. This

technique helps to have cuts earlier, in the average. See, for example, Figure 42 and

Figure 43.

Figure 42 shows an example of applying the proposed cut techniques before

reordering the branches. The cut is applied after evaluating two branches when the

value of disjunction node becomes greater than the value of the conjunction node. In

Figure 43, the cut is applied after evaluating one branch only of the both conjunction

and disjunction nodes.

73

Also, one can apply this proposed technique to speed up the evaluation of Gödel and

Lukasiewicz expression trees.

Figure 43: An example of applying the proposed cut techniques in a reordered tree

for the complex formula displayed in Figure 42. Only seven vertices with
connectives and four leaves (total 11) out of twenty five vertices with connectives
and twenty leaves (total 45) are explored and evaluated to get the final result at the

root.

4.4.4 Comparisons to Similar Techniques Obtained for Gödel Logic

We are closing this chapter by showing some comparisons to similar techniques

obtained for Gödel-type logic. Let us consider a pruning at an implication, especially

with left child as a conjunction and right child as a disjunction, allowing both of

them to have several children.

In Gödel logic, the disjunction and conjunction nodes considered as maximum and

minimum nodes, respectively. While in the proposed pruning algorithms for the

product logic, we consider the left child has at most value and the right child has at

least value. While evaluating more and more children in both sides, the proposed

pruning algorithm for the product logic dynamically sharpens the values faster, than

74

in usual minimax, or Gödel logic. An example to show this difference is follows.

Figure 44 shows an example of applying the proposed pruning algorithm in section

4.2, which is actually, very similar to alpha-beta cut at a minimax tree (conjunction

and disjunction in Gödel logic is computed as minimum and maximum value of the

children, respectively).

Figure 44: An example of cut applied in evaluating Gödel logic expression. Only six

leaves out of ten are explored to get the final result at the root.

Figure 45: An example of cut applied in evaluating product logic expression. Only

four leaves out of ten are explored to get the final result at the root.

Figure 45 shows the same expression tree, but the evaluation goes in product logic:

after applying the proposed algorithms to fast evaluation of product logic

expressions, it is clear that the cut in product logic happened earlier than in Gödel

logic. In Gödel logic the cut is applied after exploring three children for both

75

conjunction and disjunction (total 6) out of five children for each one of them (total

10), while in product logic, it is applied after exploring two children only for both

conjunction and disjunction nodes (total 4).

76

Chapter 5

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Programing the Proposed Algorithms

In this chapter we present some experimental results about the efficiency of the

proposed techniques. The proposed algorithms have been programmed on Python

language and there were 500 000 tests on formulae with various sizes. Since the tests

were run on a normal computer with a non real-time operating system, the

measurements for different node counts were run many times in mixed order to

eliminate the effect of randomness caused by other software running on the same

computer.

The test formulae were generated randomly. A parameter is used that has determined

the size of the resulted formula. The four operators were used with equal chance at

an operator node (25% each). At conjunction and disjunction nodes the chances to

have two, three or four children were also the same. (In the experiment we used only

formulae in which each conjunction and disjunction node has two, three or four

children.)

At leaves the values 0, 0.05, 0.1, 0,15, ..., 0.9, 0.95 and 1 were assigned with equal

chance. In an average test case, the number of leaves was slightly higher than the

number of operators. The test formulae were generated randomly. A parameter is

used that has determined the size of the resulted formula. The four operators were

77

used with equal chance at an operator node (25% each). At conjunction and

disjunction nodes the chances to have two, three or four children were also the same.

(In the experiment we used only formulae in which each conjunction and disjunction

node has two, three or four children.)

At leaves the values 0, 0.05, 0.1, 0,15, ..., 0.9, 0.95 and 1 were assigned with equal

chance. In an average test case, the number of leaves was slightly higher than the

number of operators.

The following sections show the simulation results for the proposed techniques to

speed up the evaluation of Gödel and product logic described in sections 4.2 and 4.4.

We will start with the results obtained for Gödel type logic. In appendix A, we show

the source code of the Python program for evaluating formulae in Gödel type logic.

5.2 Simulation Results for Gödel Logic Pruning Strategies

It is clear that the execution time of the simple evaluation algorithm of the expression

trees for Gödel logic is linear to the number of nodes of the expression tree, because

each node must be counted exactly once. The pruning algorithm we proposed is more

complex, therefore in case of small expressions it requires more time to evaluate.

However, when it is applied on large expression trees, its performance will be

(much) better, because as the tree grows bigger, bigger part of the tree can be pruned

in average.

Figure 46 shows the ratio of pruned nodes. The ratio of pruned leaf nodes to the

number of leaf nodes has a pretty similar measure (Figure 47 shows some details).

78

For very small expressions it can happen that nothing or very minor part of the tree

can be pruned. As the number of nodes increases the pruned ratio increases as well.

Figure 46: The ratio of the number of pruned nodes with respect to the size of the

expression (total number of nodes).

Figure 47: The ratio of pruned nodes and pruned leaves with respect to the total

number of nodes and total number of leaves, respectively.

For graphs with thousands of nodes very large portion of nodes of the graph can be

pruned in average and even in the worst cases more than 80 or 90 % of nodes will be

pruned. It means that the evaluation time in the pruned algorithm is not linear, but

much better. Figure 48 shows the execution time (in seconds) of the two algorithms

on the same examples. There we can see the difference we sentenced before. It looks

as the execution time of the pruning algorithm is more like constant instead of linear

to the number of nodes. This is because the number of evaluated nodes that are left

79

after the pruning is not linear to the number of all nodes. In fact in average the

number of these nodes tends to be constant. This is shown in Figure 49.

Figure 48: The running time in seconds with respect to the size of the expression

(total number of nodes).

Figure 49: The number of nodes left after pruning with respect to the size of the

expression.

Figure 50 shows what is the ratio of the execution times of the pruning and the

simple evaluation algorithms (the time of simple evaluation is used as unit). With

smaller trees the execution time of the pruning algorithm is still above the execution

time of the simple evaluation. Above about 200 nodes the pruning algorithm is faster

and it stays so, because the simple evaluation completes in linear time and the

pruning algorithm finishes in nearly constant time (in average). The standard

80

deviation is relatively large on the running time since the amount of the pruned nodes

could vary drastically. Also the difference between the measured minimum and

maximum values are large. Fortunately the minimum measured pruned ratio values

are also very good, with increasing the number of nodes also the minimum tends

towards 100%, in fact the measured minimum pruned ratio values are around 90% if

the number of nodes is about 5000.

Figure 50: The ratio of running time with respect to the size of the expression.

5.3 Simulation Results for Product Logic Pruning Strategies

In the experimental results for product logic, we have run several tests to measure the

performance gain of the pruning techniques described in section 4.4. At first we have

examined how much ratio of the nodes can be pruned. Figure 51 shows that with the

increasing number of the nodes in the expression tree the ratio of the nodes which

can be pruned is growing. Actually, in the average it is close to 100% for expressions

with, let us say, 1500 nodes (actually the number of nodes of the expression tree

including the leaves is exactly the length of the analyzed formula).

81

Figure 51: Ratio of pruned nodes for random formulae up to length 2500.

Also, the execution time of the simple evaluation algorithm which does not use any

pruning techniques and the execution time for evaluations of the same expressions

using the pruning techniques described above has been measured. Figure 52 shows

that the execution time of the simple algorithm has a growing tendency with the

increasing number of nodes. Contrary, the execution time of the algorithm using

pruning strategies seems to be like constant in the average.

Figure 52: Runtime (in seconds) for evaluation with and without pruning strategies

for random formulae up to length 2500.

This could happen because, by pruning algorithms, the number of the nodes in the

tree is not equal to the number of the nodes which must be evaluated. If the pruning

82

algorithm is efficient, then we can hope that only a minor part of the nodes must be

evaluated to get the final result of the expression. Figure 53 displays that the number

of nodes which cannot be pruned is not growing linearly with the length of the

expression, i.e., the total number of nodes in the expression tree. The count of the not

pruned nodes is near constant in the average even if the size of the formulae is

growing. This explains the near constant execution time of our pruning algorithm.

Figure 53: The number of not pruned nodes vs. the total number of nodes.

83

Chapter 6

CONCLUSION

Various logic systems are applied in various fields, e.g., in programming, hardware

design, fuzzy technology. There are well-known techniques to speed up the

evaluation of Boolean logic expression trees and similar techniques are used at game

trees in alpha-beta pruning algorithms.

In this research we considered a kind of extended game trees, Boolean, and three of

the most known fuzzy logics (Gödel, Lukasiewicz, and product logics) expression

trees. Various pruning techniques have been shown to speed up the evaluation of

these expression trees. These techniques can be used to evaluate expressions where

sum and product operations can also be found. Similar optimization techniques could

help in fast evaluations of various expressions (other types of trees).

Finite expression trees have been considered. In these trees children nodes send their

data to their parents and thus, the whole process is finite and can be modeled by

evaluation techniques.

Considering a kind of parallel approach in which various processors can work

together on the evaluation, these types of techniques can easily reduce the number of

required processors and also to reduce their costs. Therefore, the presented

algorithms can reduce algorithmic costs (time, space, number of agents/processors)

in decision making systems and in various extensions of two-player zero-sum games.

84

Artificial cognitive systems, CogInfoCom systems [27] and other systems based on

artificial/computational intelligence can also be used in a more efficient way.

It is shown that reordering the tree branches, by evaluating first, the shorter ones,

may also help a lot to save time and energy, especially, when the evaluation costs of

the leaves (or other nodes) consumes a large amount of energy or other limited

source.

Since some of the considered many-valued logics (e.g., product logic) are closely

related to a system working with probabilities, we believe that our techniques can be

used not only in various applications of fuzzy logics and fuzzy systems, but also in

decision making and in other disciplines working with probabilities, to make the

decisions faster, and to compute results with less efforts. As one could see depending

on the length of the formula its evaluation can be done very efficiently, in average.

The experimental results show the efficiency of our proposed techniques. The

execution time of the simple algorithm has a growing tendency with the increasing

number of nodes. Contrary, the execution time of the algorithm using pruning

strategies seems to be like constant in the average. We noticed that the number of

nodes which can be pruned is growing linearly with the length of the expression, i.e.,

the total number of nodes in the expression tree, while the remaining nodes to

evaluate is near constant in the average even the size of the formulae is growing.

This explains the near constant execution time of our pruning algorithm.

 In [9,25] fuzzy logic systems are generalized by using interval-values. It is one of

the plans for future work to deal with evaluations in this more general interval-valued

85

logic. It is also an interesting task to deal with some kinds of generalizations of

games, e.g., [19,20,21,26] where various generalizations of decisions and games are

studied and work on various evaluation techniques.

86

REFERENCES

[1] Bell, J., & Machover, M. (1977). A Course In Mathematical Logic, North-

Holland, Amsterdam.

[2] Hájek, P. (1998). Metamathematics of fuzzy logic. Trends in Logic, 4, Kluwer

Academic Publishers, Dordrech.

[3] Barwise, J., & Etchemendy, J. (1987). The liar: An Essay on Truth and

Circularity. Oxford, Oxford University Press, New York.

[4] Gödel, K. (1932). Zum intuitioonischen aussagenkalkül. Anzeigner Akademie

der Wissenschaften im Wien, Mathematish-Naturwissenschaftliche Klasse, 69,

65-66; On the Intuitionistic Propositional Calculus, reprinted in Kurt Gödel,

Collected Works (1986), 1, Oxford University Press, New York.

[5] Gottwald, S. (2015, March 5). Many-valued logic. The Stanford Encyclopedia

of Philosophy (Spring 2015 Edition), Edward N. Zalta (ed.), Retrieved from

http://plato.stanford.edu/entries/logic-manyvalued/, (First published Tue Apr

25, 2000; substantive revision Thu Mar 5, 2015).

[6] Lukasiewicz, J. (1970). Selected Works Studies in Logic and The Foundations

of Mathematics. North-Holland, Amsterdam.

87

[7] Gottwald, S. (2015). Many-valued and fuzzy logics. Kacprzyk, Janusz,

Pedrycz, Witold (Eds.), Springer Handbook of Computational Intelligence, 7-

29.

[8] Baaz, M., Hajek, P., Krajck, J., & Svejda, D. (1998). Embedding logics into

product logic. Studia Logica, 61, 35–47.

[9] Nagy, B. (2005). A general fuzzy logic using intervals. Proc of. 6th

International Symposium of Hungarian Researchers on Computational

Intelligence, Budapest, Hungary, pp. 613-624.

[10] Hájek, P., Godo, L., & Esteva, F. (1996). A complete many-valued logic with

product-conjunction. Archive for Mathematical Logic, 35, 191-208.

[11] Metcalfe, G., N. Olivetti, N., & Gabbay, D. (2004). Analytic calculi for product

logics. Archive for Mathematical Logic, 43, 859-889.

[12] Adillon, R., & Verdu, V. (1998). On product logic. Soft Computing, 2(3), 141-

146.

[13] Zadeh, L. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers

by Lotfi A. Zadeh. (G. J. Klir and B. Yuan, Eds.,) Advances in Fuzzy Systems –

Applications and Theory, 6, World Scientific, River Edge, NJ, USA.

[14] Shoenfield, J. (2001). Mathematical Logic. (2nd ed.), A K Peters.

88

[15] Nagy, B. (2005). Many-valued logics and the logic of the C programming

language. Proc. of ITI 2005: 27th International Conference on Information

Technology Interfaces (IEEE), Cavtat, Croatia, pp. 657-662.

[16] Basbous, R., Nagy, B., & Tajti, T. (2015), Short circuit evaluations in Gödel

type logic. Proc. of FANCCO 2015: 5th International Conference on Fuzzy and

Neuro Computing, Advances in Intelligent Systems and Computing 415

(Springer), Hyderabad, India, pp.119-138, doi:10.1007/978-3-319-27212-2_10.

[17] Rich, E., & Knight, K. (1991). Artificial Intelligence. McGraw-Hill Inc., New

York.

[18] Russell, S., & Norvig, P. (2003). Artificial Intelligence, a Modern Approach.

Prentice-Hall, New Jersey.

[19] Melkó, E., & Nagy, B. (2007). Optimal strategy in games with chance nodes.

Acta Cybernetica, 18, 171-192.

[20] Basbous, R., & Nagy, B. (2014). Generalized game trees and their evaluation.

Proc. of CogInfoCom 2014: 5th IEEE International Conference on Cognitive

Infocommunications, Vietri sul Mare, Italy, pp. 55-60.

[21] Basbous, R., & Nagy, B. (2015). Strategies to fast evaluation of tree networks.

Acta Polytechnica Hungarica, 12(6), 127-148, doi:

10.12700/APH.12.6.2015.6.8.

89

[22] Kernighan, B.W., & Ritchie, D.M. (1988). The C Programming Language.

(2nd ed.), Prentice Hall, Englewood Cliffs, NJ.

[23] Knuth, D.E., & Moore, R.W. (1975). An analysis of alpha-beta pruning,

Artificial Intelligence, 6, 293-326.

[24] Kundu, S., & Chen, J. (1998). Fuzzy logic or Lukasiewicz logic: a

clarification. Fuzzy Sets and Systems, 95, 369-379.

[25] Nagy, B.(2006). Reasoning by intervals. Proc. of Diagrams 2006: Fourth

International Conference on the Theory and Application of Diagrams, Stanford,

CA, USA, LNCS-LNAI 4045, pp. 145-147.

[26] Lakatos, G., & Nagy, B. (2004). Games with few players. Proc. of ICAI'2004:

6th International Conference on Applied Informatics, Eger, Hungary, pp. 187-

196.

[27] Baranyi, P., & Csapo, A. (2010). Cognitive infocommunications: CogInfoCom.

Proc. of 11th CINTI: IEEE International Symposium on Computational

Intelligence and Informatics, Budapest, Hungary, pp. 141-146.

[28] Basbous, R., Tajti, T. & Nagy, B. (2016), Fast evaluations in product logic.

The 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE

2016), Vancouver, Canada. (Accepted)

90

APPENDIX

91

Appendix A: The Python Program for Evaluating Formulae in

Gödel Type Logic

def getNode(nodes, N1):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 return nodes[N1][:3]

def NodeType(nodes, N1):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 return nodes[N1][0]

def NodeVal(nodes, N1):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 return nodes[N1][1]

def NodeSucc(nodes, N1):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 return nodes[N1][2]

def getChild(nodes, N1, n):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 nt, nv, nc, _ = nodes[N1]
 if n < len(nc):
 return nc[n]

def getChildNode(nodes, N1, n):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 nt, nv, nc, _ = nodes[N1]
 if n < len(nc):
 return nodes[nc[n]][:3]

def getSuccessors(nodes, N1, n):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 nt, nv, nc, _ = nodes[N1]
 if n < len(nc):
 return nc[n]
 else:
 return None

def isLeaf(nodes, N1, n):
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1

92

 return NodeType(nodes, getChild(nodes, N1, n)) == NODE_TYPE_LEAF

def Check_Leaves(nodes, N1): # "A function to check of all the connected leaves
have non zero values or there no more NEG nodes connected in the successors"
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = nt, nv, nc, na+1
 Flag = 1
 N1Type, N1Val, N1Successors, _ = nodes[N1]

 if NodeType(nodes, N1) == NODE_TYPE_LEAF:
 if N1Val == 0:
 Flag = 0 #"flag = zero means that there is at least one leaf equal zero"
 else:
 if N1Type == NODE_TYPE_NEG: #"if extra more negation node found in the
lower levels:
 #cut the search and set the flag to zero"
 Flag = 0
 return Flag
 else:
 for N1i in N1Successors:
 if not Check_Leaves(nodes, N1i) == 1:
 Flag = 0
 return Flag

 return Flag
#end Check_Leaves

def IMPPrune(nodes, N1, alfa, beta): #The general function to evaluate IMP nodes"
 if isLeaf(nodes, N1, 0) and isLeaf(nodes, N1, 1): #if we have the case left and
right branches are leaves "
 N1LeftVal = NodeVal(nodes, getChild(nodes, N1,0))
 N1RightVal = NodeVal(nodes, getChild(nodes, N1,1))
 if N1LeftVal <= N1RightVal: # tt
 v = 1
 else:
 v = N1RightVal
 elif isLeaf(nodes, N1, 0) or isLeaf(nodes, N1, 1): # "to evaluate IMP node if
one of its successors is a leaf "
 v = IMPLeaf(nodes, N1, alfa, beta)
 else:
 N1leftType = NodeType(nodes, getChild(nodes, N1,0))
 N1rightType = NodeType(nodes, getChild(nodes, N1,1))
 #"to evaluate IMP node if its two successors are nodes"
 if N1leftType == NODE_TYPE_MIN:
 if N1rightType == NODE_TYPE_MAX:
 v = IMPMinMax(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_MIN:
 v = IMPMinMin(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_NEG:
 v = IMPMinNeg(nodes, N1, alfa, beta)

93

 else: # if N1rightType == NODE_TYPE_IMP:
 v = IMPMinIMP(nodes, N1, alfa, beta)

 elif N1leftType == NODE_TYPE_MAX:
 if N1rightType == NODE_TYPE_MAX:
 v = IMPMaxMax(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_MIN:
 v = IMPMaxMin(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_NEG:
 v = IMPMaxNeg(nodes, N1, alfa, beta)
 else: #if N1rightType == NODE_TYPE_IMP:
 v = IMPMaxIMP(nodes, N1, alfa, beta)

 elif N1leftType == NODE_TYPE_IMP:
 if N1rightType == NODE_TYPE_MAX:
 v = IMPIMPMax(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_MIN:
 v = IMPIMPMin(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_NEG:
 v = IMPIMPNeg(nodes, N1, alfa, beta)
 else: #if N1rightType == NODE_TYPE_IMP:
 v = IMPIMPIMP(nodes, N1, alfa, beta)

 else: # if N1leftType == NODE_TYPE_NEG:
 N1left = getChild(nodes, N1,0)
 non_zero_leaves = Check_Leaves(nodes, N1left)
 if non_zero_leaves == 1:
 #cut and
 v = 1 #"since the right side will be ≥ 0 always"
 elif N1rightType == NODE_TYPE_MAX:
 v = IMPNegMax(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_MIN:
 v = IMPNegMin(nodes, N1, alfa, beta)
 elif N1rightType == NODE_TYPE_NEG:
 v = IMPNegNeg(nodes, N1, alfa, beta)
 else: #if N1rightType == NODE_TYPE_IMP:
 v = IMPNegIMP(nodes, N1, alfa, beta)

 nt, nv, nc, na = nodes[N1]
 nodes[N1] = (nt, float(v), nc, na)

 return float(v)
#end IMPPrune

def IMPLeaf(nodes, N1, alfa, beta): #" A function to evaluate IMP node if one of its
successors is a leaf"
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, N1rightSuccessors = getChildNode(nodes, N1,1)
 #N1rightType, N1right, = getChild(N1,1)

94

 if N1leftType is NODE_TYPE_LEAF: #"we have left side a leaf"
 if N1leftVal == 0:
 #cut and
 return 1.0 #"since right side will be greater or equal zero"
 else:
 #if left_child = N1left
 left_child = N1leftVal
 if N1rightType == NODE_TYPE_MAX:
 right_child = -2
 for N1righti in N1rightSuccessors:
 right_child = max(right_child, Prune(nodes, N1righti, alfa, beta))
 if right_child >= left_child:
 #cut and
 return 1.0 #"since right side will be greater or equal left child
IMP=1"

 elif N1rightType == NODE_TYPE_MIN:
 right_child = +2
 for N1righti in N1rightSuccessors:
 right_child = min(right_child, Prune(nodes, N1righti, alfa, beta))

 elif N1rightType == NODE_TYPE_IMP:
 right_child = IMPPrune(nodes, N1right, alfa, beta)

 elif N1rightType == NODE_TYPE_NEG:
 non_zero_leaves = Check_Leaves(nodes, N1right)
 if non_zero_leaves == 1:
 right_child = 0.0 #" 1 means that all the connected successors
are non zeros"
 else:
 right_child = NEGPrune(nodes, N1right, alfa, beta)

 else: #"we have right side as a leaf"
 if N1rightVal == 1:
 #cut and
 return 1.0 #"since left side will be less or equal one"
 else:
 N1rightType, N1rightVal, N1rightSuccessors = getChildNode(nodes, N1, 1)
 right_child = N1rightVal
 if N1leftType == NODE_TYPE_MAX:
 left_child = -2
 left_child = max(left_child, MAXPrune(nodes, N1left, alfa, beta))
 elif N1leftType == NODE_TYPE_MIN:
 left_child = +2
 left_child = min(left_child, MINPrune(nodes, N1left, alfa, beta))
 elif N1leftType == NODE_TYPE_IMP:
 left_child = IMPPrune(nodes, N1left, alfa, beta)
 elif N1leftType == NODE_TYPE_NEG:
 non_zero_leaves = Check_Leaves(nodes, N1left)

95

 if non_zero_leaves == 1: #" 1 means that all the connected successors
are non zeros"
 #cut and
 return 1 #"since right side will be greater or equal zero"
 else:
 left_child = NEGPrune(nodes, N1left, alfa, beta)

 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPLeaf

def IMPMinMax(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it
has Min at left and Max at right"
 left_child = +2
 right_child = -2
 #"by evaluating the IMP node left and right successors one by one (in Parallel), if
we got max (right side) ≥ min (left side) or if zero found in min (left side) : cut, IMP
=1"
 N1leftType, N1leftVal, N1leftChildren = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, N1rightChildren = getChildNode(nodes, N1, 1)
 N1lefti = 0
 N1righti = 0

 while N1lefti < len(N1leftChildren) or N1righti < len(N1rightChildren):
 if N1lefti < len(N1leftChildren):
 left_child = min (left_child, Prune(nodes, N1leftChildren[N1lefti], alfa, beta))
 N1lefti += 1
 if left_child == 0:
 #cut and
 return 1

 if N1righti < len(N1rightChildren):
 right_child = max(right_child, Prune(nodes, N1rightChildren[N1righti], alfa,
beta))
 N1righti += 1
 if left_child <= right_child:
 #cut and
 return 1
 if left_child <= right_child:
 return 1
 else:
 return right_child #"at this point we have right child < left child"
#end IMPMinMax

def IMPMinMin(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Min at left and Min at right"
 left_child = +2
 right_child = +2

96

 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = min(left_child, Prune(nodes, N1lefti, alfa, beta))
 if left_child == 0: #"when evaluating left child, if we got min = zero: cut, IMP
=1"
 #cut and
 return 1
 for N1righti in NodeSucc(nodes, N1right):
 right_child = min(right_child, Prune(nodes, N1righti, alfa, beta))

 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPMinMin

def IMPMinNeg(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Min at left and Neg at right"
 left_child = +2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 non_zero_leaves = Check_Leaves(nodes, N1right)
 if non_zero_leaves == 1: #" all connected leaves are non zeros: NEG =0"
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = min(left_child, Prune(nodes, N1lefti, alfa, beta))
 if left_child == 0: #"at this point we check the value of each successor
(MIN) node if zero value found"
 #cut and
 return 1
 else:
 #cut and
 return 0 #"since right side is equal zero and at this point, the left child is
>0"
 else :
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = min(left_child, Prune(nodes, N1lefti, alfa, beta))
 right_child = NEGPrune(nodes, N1right, alfa, beta)
 nt, nv, nc, na = nodes[N1left]
 nodes[N1left] = (nt, left_child, nc, na+1)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPMinNeg

def IMPMinIMP(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Min at left and Max at right"

97

 left_child = +2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = min(left_child, Prune(nodes, N1lefti, alfa, beta))
 if left_child == 0: #"when evaluating left child, if we got min = zero: cut,
IMP =1"
 #cut and
 return 1
 nt, nv, nc, na = nodes[N1left]
 nodes[N1left] = (nt, left_child, nc, na+1)
 right_child = IMPPrune(nodes, N1right, alfa, beta)

 if left_child <= right_child:
 return 1
 else:
 return right_child

#end IMPMinIMP

def IMPMaxMax(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Max at left and Max at right"
 left_child = -2
 right_child = -2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1, 1)
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = max(left_child, Prune(nodes, N1lefti, alfa, beta))
 for N1righti in NodeSucc(nodes, N1right):
 right_child = max(right_child, Prune(nodes, N1righti, alfa, beta))
 if right_child == 1:
 #cut and
 return 1 #"Max is found: right ≥ left and no need to evaluate the left side"
 if left_child <= right_child:
 return 1
 return right_child # TT reorg

#end IMPMaxMax

def IMPMaxMin(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Max at left and Min at right"
 left_child = -2
 right_child = +2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1, 1)
 for N1righti in NodeSucc(nodes, N1right):

98

 right_child = min(right_child, Prune(nodes, N1righti, alfa, beta))
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = max(left_child, Prune(nodes, N1lefti, alfa, beta))
 if left_child > right_child: #"when we got left ≥ right: IMP = right side"
 #cut all the left_child and return the value of right_child
 return right_child

 return 1 #"Since at this point left side is less than the right side"

#end IMPMaxMin

def IMPMaxNeg(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Max at left and Neg at right"
 left_child = -2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1, 1)
 non_zero_leaves = Check_Leaves(nodes, N1right)
 if non_zero_leaves == 1:
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = max(left_child, Prune(nodes, N1lefti, alfa, beta))
 if left_child > 0:
 #cut and
 return 0 #"since left side will be always greater than 0 (right side"
 else: #"for the case if we have some zero values or more NEG nodes connected"
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = max(left_child, Prune(nodes, N1lefti, alfa, beta))
 right_child = NEGPrune(nodes, N1right, alfa, beta)

 if left_child <= right_child:
 return 1
 else:
 return right_child

#end IMPMaxNeg
def IMPMaxIMP(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Max at left and IMP at right"
 left_child = -2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 for N1lefti in NodeSucc(nodes, N1left):
 left_child = max(left_child, Prune(nodes, N1lefti, alfa, beta))
 right_child = IMPPrune(nodes, N1right, alfa, beta)

 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPMaxIMP

99

def IMPIMPMax(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
IMP at left and Max at right"
 right_child = -2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 for N1righti in NodeSucc(nodes, N1right):
 right_child = max(right_child, Prune(nodes, N1righti, alfa, beta))
 if right_child == 1:
 #cut and
 return 1
 left_child = IMPPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPIMPMax

def IMPIMPMin(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
IMP at left and Min at right"
 right_child = +2.0
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1, 1)
 for N1righti in NodeSucc(nodes, N1right):
 right_child = min(right_child, Prune(nodes, N1righti, alfa, beta))
 if right_child == 0: #"to evaluate right side while min not found"
 break # TT removed potential endless loop !!!!
 left_child = IMPPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPIMPMin

def IMPIMPNeg(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
IMP at left and NEG at right"
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1, 1)
 non_zero_leaves = Check_Leaves(nodes, N1right)
 if non_zero_leaves == 1: #"In case all the connected leaves have non zero
values: NEG = 0"
 right_child = 0
 else:
 right_child = NEGPrune(nodes, N1right, alfa, beta)
 left_child = IMPPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1

100

 else:
 return right_child
#end IMPIMPNeg

def IMPIMPIMP(nodes, N1, alfa, beta): #" A function to evaluate IMP node with
two connected IMP nodes"
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 right_child = IMPPrune(nodes, N1right, alfa, beta)
 left_child = IMPPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPIMPIMP

def IMPNegMax(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Neg at left and Max at right"
 right_child = -2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 for N1righti in NodeSucc(nodes, N1right):
 right_child = max(right_child, Prune(nodes, N1righti, alfa, beta))
 if right_child == 1:
 #cut and
 return 1 #"Max is found: right ≥ left and no need to evaluate the left side"
 left_child = NEGPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPNEGMax

def IMPNegMin(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Neg at left and Min at right"
 right_child = +2
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 for N1righti in NodeSucc(nodes, N1right):
 right_child = min(right_child, Prune(nodes, N1righti, alfa, beta))
 left_child = NEGPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPNEGMin

101

def IMPNegNeg(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Neg at left and Neg at right"
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1, 0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1, 1)
 non_zero_leaves = Check_Leaves(nodes, N1right)
 if non_zero_leaves == 1: #"In case all the connected leaves have non zero
values: NEG = 0"
 right_child = 0
 else:
 right_child = NEGPrune(nodes, N1right, alfa, beta)
 left_child = NEGPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPNEGNeg

def IMPNegIMP(nodes, N1, alfa, beta): #" A function to evaluate IMP node if it has
Neg at left and Neg at right"
 N1left, N1right = getChild(nodes, N1,0), getChild(nodes, N1,1)
 N1leftType, N1leftVal, _ = getChildNode(nodes, N1,0)
 N1rightType, N1rightVal, _ = getChildNode(nodes, N1,1)
 right_child = IMPPrune(nodes, N1right, alfa, beta)
 left_child = NEGPrune(nodes, N1left, alfa, beta)
 if left_child <= right_child:
 return 1
 else:
 return right_child
#end IMPNEGIMP

def MAXPrune(nodes, N1, alfa, beta): #"A function to evaluate Max nodes"
 if NodeType(nodes, N1) == NODE_TYPE_LEAF:
 return NodeVal(nodes, N1)
 else:
 v = -2.0
 for N1i in NodeSucc(nodes, N1):
 next_op_type = NodeType(nodes, N1i)
 if next_op_type == NODE_TYPE_MAX:
 v = max(v, MAXPrune(nodes, N1i, alfa, beta))
 elif next_op_type == NODE_TYPE_MIN:
 v = max(v, MINPrune(nodes, N1i , alfa, beta))
 elif next_op_type == NODE_TYPE_IMP:
 v = max(v, IMPPrune(nodes, N1i, alfa, beta))
 elif next_op_type == NODE_TYPE_NEG:
 non_zero_leaves = Check_Leaves(nodes, N1i)
 if non_zero_leaves == 1:
 v = 0
 else:
 v = max(v, NEGPrune(nodes, N1i, alfa, beta))

102

 else: # if bextop == NODE_TYPE_LEAVE
 v = max(v, NodeVal(nodes, N1i))
 if v == 1.0 or v >= beta:
 break
 alfa = min(alfa, v)
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = (nt, v, nc, na+1)
 return v
#end MAXPrune

def MINPrune(nodes, N1, alfa, beta): #"A function to evaluate Min nodes"
 if NodeType(nodes, N1) == NODE_TYPE_LEAF:
 return NodeVal(nodes, N1)
 else:
 v = +2.0
 for N1i in NodeSucc(nodes, N1):
 next_op = NodeType(nodes, N1i)
 if next_op == NODE_TYPE_MAX:
 v = min(v, MAXPrune(nodes, N1i, alfa, beta))
 elif next_op == NODE_TYPE_MIN:
 v = min(v, MINPrune(nodes, N1i, alfa, beta))
 elif next_op == NODE_TYPE_IMP:
 v = min(v, IMPPrune(nodes, N1i, alfa, beta))
 elif next_op == NODE_TYPE_NEG:
 non_zero_leaves = Check_Leaves(nodes, N1i)
 if non_zero_leaves == 1:
 v = 0
 else:
 v = min(v, NEGPrune(nodes, N1i, alfa, beta))
 else: # if bextop == NODE_TYPE_LEAVE
 v = min(v, NodeVal(nodes, N1i))
 if v == 0.0 or v <= alfa:
 break
 beta = max(beta, v)
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = (nt, v, nc, na+1)
 return v
#end MINPrune

def NEGPrune(nodes, N1, alfa, beta): #"A function to evaluate Neg nodes"
 Child = NodeSucc(nodes, N1)[0]
 ChildType = NodeType(nodes, Child)

 leav = Check_Leaves(nodes, Child)

 if leav == 1:
 v = 0.0
 else:
 if ChildType == NODE_TYPE_LEAF:
 v = 0.0

103

 elif ChildType == NODE_TYPE_MAX:
 v = MAXPrune(nodes, Child, alfa, beta)
 elif ChildType == NODE_TYPE_MIN:
 v = MINPrune(nodes, Child, alfa, beta)
 elif ChildType == NODE_TYPE_IMP:
 v = IMPPrune(nodes, Child, alfa, beta)
 else: # if ChildType == NODE_TYPE_NEG: by TT
 v = NEGPrune(nodes, Child, alfa, beta)
 if v == 0:
 v = 1.0
 else:
 v = 0.0

 nt, nv, nc, na = nodes[N1]
 nodes[N1] = (nt, v, nc, na+1)
 return v
#end NEGPrune

def Prune(nodes, N1, alfa, beta):
 nt, nv, nc = getNode(nodes, N1)
 if nt == NODE_TYPE_NEG:
 v = NEGPrune(nodes, N1, alfa, beta)

 elif nt == NODE_TYPE_MIN:
 v = MINPrune(nodes, N1, alfa, beta)

 elif nt == NODE_TYPE_MAX:
 v = MAXPrune(nodes, N1, alfa, beta)

 elif nt == NODE_TYPE_IMP:
 v = IMPPrune(nodes, N1, alfa, beta)

 else: # NODE_TYPE_LEAF
 v = NodeVal(nodes, N1)
 nt, nv, nc, na = nodes[N1]
 nodes[N1] = (nt, v, nc, na+1)
 return v
end Prune

