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ABSTRACT

Probability Collectives (PC) employ multiple agents to distribute sampling moves

through using probability distributions over a solution space. This multi-agent

systems  (MAS)  affords  the  advantage  of  parallel  and  distributed  load  to  intelligent

agents coordinated by PC for optimal search. This thesis addresses single and multi-

objective hybrid learning algorithms based on probability collectives, which solve

single and multi-objective global optimization problems. In the first hybrid learning

model, search guided by adaptive heuristic method of Differential Evolution (DE)

algorithm based on the modified PC is implemented to tackle large-scale continuous

optimization problems consisting of classical and intractable single-objective

functions. DE/rand/1 classical scheme maintains appropriate search directions and

improve MAS’s performance by adaptive vector mutation for different search

regions. Two well-known benchmark problem sets, 23 classical benchmark problems

and CEC2005 contest instances, were used and experimental results reveal that the

presented approach is capable of integrating the collective learning methodology

effectively and competitively in the proposed agent-based model.

In the second proposed approach, a PC-based multi-objective optimization algorithm

is implemented using various efficient techniques and naturally promoted search

operators to find the set of solutions of MOPs that achieve the best compromise with

regard to the whole set of objectives. This method uses weighted aggregation

technique to decompose multi-objective solutions into a single objective and created

population evolves by evolutionary operators based on PC, with which the objectives

are optimized in a collaborative manner. Multi-objective Evolutionary Algorithm
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Based on Decomposition (MOEA/D) learns and samples probabilistic distribution

from PC stochastic engine. In terms of the employment of useful information from

neighbors, decomposition mechanism adopted in multi-objective optimization lumps

various problems into single objective concept. PC approach is then provided with

initial local search for enhancing the performance of MOEA/D framework.

Additionally, a combined mutation operator of the framework is also proposed as the

global optimizer to approximate the Pareto optimal set. This algorithm effectively

explores the feasible search space and enhances the convergence for the true Pareto-

optimal region. To validate the hybrid algorithm, the experimental study is conducted

on the set of multi-objective unconstrained benchmark problems provided for

CEC2009 contest, and its performance is compared with some state-of-the-art

metaheuristic algorithms. In addition, the simulation results demonstrated that the

proposed approach performs competitively with state-of-the-art multi-objective

algorithms.

Keywords: Probability Collectives, Multi-agent systems, Differential Evolution,

Single-objective Problem, Multi-objective Problem, MOEA/D.
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ÖZ

Olas k Kolektifleri (OK) çözüm uzay  üzerinde olas k da mlar  kullanarak

örnek hareket için birden fazla ajan kullan r. Çoklu-ajan sistemleri (ÇAS) eniyi

arama için OK taraf ndan koordine edilen ak ll  ajanlar  kullanmaktad r. Bu tez, tek

ve çok amaçl  genel eniyileme problemleri için OK’ye dayal  iki hibrid algoritmas

içermektedir. lk hibrid ö renme modelinde, modifiye edilmi  OK tabanl  adaptif

bulu sal yöntem olan Diferansiyel Evrim (DE) algoritmas  taraf ndan yönlendirilen

arama, klasik ve inatç  tek amaçl  fonksiyonlardan olu an büyük ölçekli sürekli en

iyileme problemlerini çözmek için kullan ld . DE/rand/1 klasik yöntemi uygun arama

yönlerini belirliyerek farkl  arama bölgeleri için ÇAS’ n performans  adaptif vektör

mütasyonu ile art rmaktad r. Önerilen ilk yöntem iyi bilinen 23 klasik problem ve

CEC2005’de kullan lan problemler ile test edilmi  ve deneysel sonuçlar önerilen

yöntemin mevcut yöntemler ile k yaslanabilecek seviyede oldu unu göstermi tir.

kinci önerilen yöntem, PC tabanl  çok amaçl  eniyileme algoritmas  olup çe itli

etkili teknikler ve arama operatörleri yard yle çok amaçl  eniyileme problemleri

için çözüm setleri bulmaktad r. Bu yöntem, a rl kl  toplama tekni ini kullanarak çok

amaçl  çözümleri tek amaçl  çözüm haline getirip elde edilen nüfusu OK tabanl

evrimsel operatörler yard yle geli tirir ve ortak bir ekilde eniyilenmi  olur. Çok

amaçl  ayr rmaya dayal  Evrimsel Algoritma  (MOEA/D) OK’dan olas k

da  ö renir ve örnekler. Kom ulardan yararl  bilgilerin elde edilmesi amac yle

çok amaçl  en iyileme içine uyarlanan ayr ma mekanizmas  baz  problemleri tek

amaçl  sistemde toplar. PC, MOEA/D için yerel bir algoritma olarak çal r ve ilk

sonuçlar  olu turur. Ayr ca birle tirilmi  mutasyon operatörü MOEA/D’nin genel

eniyi sonuçlara ula mas nda yard mc  olur. Bu algoritma etkili bir ekilde
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uygulanabilir arama alan  ara r ve gerçek en iyi bölge için yak nsamay  art r.

Önerilen metot, CEC2009 için verilen k ts z çok amaçl  problemler ile test edildi ve

sonuçlar iyi bilinen metasezgisel algoritmalar ile kar la ld . Elde edilen sonuçlar

mevcut sonuçlar ile rekabet edebilecek seviyede oldu u gösterilmi tir.

Anahtar Kelimeler: Olas k Kollektifleri, Çoklu-ajan sistemleri, Diferansiyel

Evrim, Tek amaçl  Problemler, Çok amaçl  Problemler, MOEA/D.
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Chapter 1

INTRODUCTION

A large number of real-world engineering problems in operations research and

engineering field are defined as optimization problems. Multi-agent systems (MAS)

involve  a  number  of  agents  and  their  environment  in  which  the  agents  are  used  to

perform potential tasks for achieving the possible goals and satisfying inter-agent

constraints. Any action by an agent may affect the further decisions by other agents

and so on.

MAS  and  the  Evolutionary  algorithms  (EAs)  [1]  are  two  independent,  well-known

problem-solving paradigms with different characteristics that are usually applied to

slightly different problem domains. Recently, these two paradigms have been

combined, resulting in agent-based evolutionary algorithms (AEA) that have

improved problem-solving in both domains. Evolutionary algorithms such as

Differential Evolution (DE) [2], and Genetic Algorithms (GA) [3], are successful

stochastic optimziation methods for the solution of global optimization problems in

faster, reliable and easier way. The aim of these algorithms is to locate a superior

solution, which explores the minimum/maximum value of a single objective problem

(SOP). However, in the real-world optimization problems, there exists more than one

objective, each of which may have distinct optimal solutions. Thus they are called

multi-objective problems (MOPs). These objectives are generally conflicting and

competing with each other, it is no longer possible to nd the single solution which is
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superior to all others in every objective function. This thesis attempts to utilize and

combine distinct techniques within the probability collective (PC) [4] framework to

cope with the classical and recently published benchmark MOPs.

1.1 General Description of PC

The  framework  of  Collective  Intelligence  (COIN)  involves  a  great  deal  of

approaches to construct a collective that consists of adaptive intelligent agents

according to system-level acceptance rules [5]. Probability collectives extends

structure of COIN paradigm to model, progress and control of distributed approaches,

using inspirations from closely connected fields of mathematics, engineering, and

optimization  [6].  It  uses  the  distributed  MAS  as  a  tool  for  estimating  the  joint

probability space and updating the probability distributions for strategies, which

leads the optimization of system objectives across the evolving distributions. In

particular, PC method deals with the assigned strategies in the design space as

individual agents being acted as intelligent components iteratively [7].

1.2 Literature Review

Under the framework of COIN, Dr. David Wolpert firstly proposed PC in a technical

report presented to NASA [5], and used distributions to update individuals for the

final aim. Except for local utilities of individual agents, world utility is introduced by

Lee and Wolpert to decrease the sample sizes [8]. PC algorithms are able to solve

different problems such as unconstrained [9, 10] and constrained optimization

problems [11, 12]. Sequentially updated PC, proposed by Smyrnakis et al. [13],

applies approximate regression to estimate the expected utility from sampling areas

of continuous actions by Sequential Monte Carlo algorithm. Bieniawski used the data

aging method to effectively diminish the sample sizes [14]. Afterwards, the sampled

strategies from PC have been updated with a set of variables in the predefined limits
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by Kulkarni et al. [15, 16]. For modifying the probability distributions, Wolpert et al.

discussed several mathematical equations, for example, the Nearest Newton Descent

method [17].

PC has also been shown to be effective for the solution of various complex problems,

for example, the aircraft assignment problem [7], Truss Structure Problems [12],

single-depot multiple traveling salesmen problem [15, 18], vehicle routing problems

[15, 18], and aircraft weapon delivery trajectory problem [19]. A majority of PC

approach has emerged to improve a number of single objective problems with

discrete, continuous and mixed variables [12, 15, 18, 20, 21].

Recently, PC algorithms are extended for solving MOPs. Waldock et al. first

successfully addressed a multi-objective PC framework (MOPC) [22], which is

adopted a max-min function and Pareto-based ranking strategy to carry out a number

of single objectives for the PC strategy in multi-objective optimisation. Also the

probability distributions is guided towards non-dominated solutions. Morgan et al.

then developed a MOPC based on decomposition (MOPC/D) [23] to exploit the

search operators within a probabilistic Gaussian mixture model.

Additionally, this thesis mainly involves the hybridization of PC and DE algorithms

since it has been proven that DE was efficiently integrated with other evolutionary

methods [24, 25]. By its evolving operators, a number of DE variants have been

proposed for the puprpose of adapting the DE parameters dynamically during its

execution. For instance, DE mutation by Cauchy [26], alternative memory of

adaptive DE [27], DE with global and local neighborhood [28], Mixed mutation

strategy based DE [29], Self adaptive DE (SaDE) [30] and DE with self-adaptive
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control  parameter  [31],  and  DE with  random localization  (DERL)  [32]  are  some of

the widely referred studies in literature.

Over the past decades, extension of DE algorithm for multi-objective optimization

has received grown interest in applications of real-world problems. Babu et al.

proposed a multi-objective differential evolution algorithm (MODE) [33], and solved

two problems by using a penalty function and a weighting factor. Then, Kukkonen

and Lampinen addressed the selection criterion for the first version of the

Generalized Differential Evolution (GDE) [34]. And the third version of GDE

(GDE3) [35] was developed with constrained non-dominance sorting and

crowdedness to choose the best solution candidates for the purpose of reducing the

population size. Besides, Huang et al. proposed a Multi-objective Self-adaptive

Differential Evolution (MOSaDE) [36], which was adaptively controlled by the

parameter settings and associated objective-wise learning techniques to improve its

performance.

1.3 Summary of the Proposed Works

In this thesis, hybrid optimization methods based on PC approach were developed for

large scale single and multi-objective optimization problems. In the first proposed

algorithm, an adaptive technique was introduced which combines a global search

engine with PC optimizer. In fact, PC approach conducts preliminary random search

in the solution space by updating its probability distributions. Then obtained

favorable solutions are reproduced by using Cross Entropy (CE) method [37]. New

population obtained from CE is submitted to modified DE algorithm for a further

search in the global space to extract the best solution. In effect, the proposed

approach iteratively updates its learning parameters for achieving the best possible
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performance. The experimental studies validated the efficiency of the proposed

hybrid algorithm over a set of classical benchmark problems.

In this thesis, the second proposed algorithm hybridize MOEA/D algorithm with

conventional PC for the solution of MOPs. Also, for the purpose of speeding up the

convergence, two mutation operators are designed and used with the CE method.

1.4 Thesis Overview

Chapter  1  starts  with  an  overview  of  single  and  multiple  objective  optimization

approaches, which are supported by presenting a comprehensive review of scientific

literatures  and  publications  related  to  the  PC  and  DE  algorithms  for  single  and

multiple objective optimization problems. Following the short introduction and

general PC concept, two hybrid algorithms are summarized for the large scale single

objective problems and multi-objective unconstrained optimization problems.

Chapter 2 generally defines the single and multi-objective optimization problems in

the form of the mathematical formulations. The fundamental concepts of multi-

objective optimization are also described with the Pareto dominance concept.

A  detailed  review  of  the  classical  PC  algorithm  is  presented  in  Chapter  3.  The

concepts and techniques used in PC are highlighted with its flowchart. The first

novel hybrid algorithm for single objective problems are presented in Chapter 4,

where PC finds favorable solutions and the CE, DE algorithms then update

promising points with corresponding search operators for two different sets of

problems. Meanwhile, the associated background and the differential evolution

algorithm are shown with its flowchart. Three remarkable operators of mutation,

recombination, and selection are described in DE algorithm. Experimental
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evaluations and comparisons with a state-of-the-art methods are carried out using

two classical sets of benchmark instances. In addition, experimental results show that

that the use adaptive mutation in DE significantly improved the search capability of

the proposed method.

Chapter 5 describes the second hybrid approach for multi-objective problems and

depicts the population-based search of EAs that can be used to converge to the set of

best trade-off solutions. The subsections presents three categories of multi-objective

evolutionary algorithms (MOEAs) [38] with corresponding published literatures and

provides description of multi-objective evolutionary algorithm based on

decomposition (MOEA/D) [39] framework. Techniques shown in this chapter

aggregate all objectives to a set of individual solutions that provide the way for the

PC. This chapter introduces the new mutation scheme in the MOEA/D framework

that  converges  to  the  Pareto  Front  (PF)  in  a  single  optimization  run.  The  statistical

results  and  the  corresponding  convergence  figures  are  shown  at  the  end  of  this

chapter.

Finally, Chapter 6 presents the conclusions associated with proposed hybrid

approaches for single and multi-objective optimization problems based on PC

method. This chapter also covers an outlook on the future perspectives of research

work.
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Chapter 2

PROBLEM DEFINITIONS

2.1 Single Objective Optimization Problems

A generic single objective optimization problem can be defined as

minimize f(x)                                                                (2.1)

subject to gi(x)  0, i = {1, 2, …, m},                       (2.2)

hj(x) = 0, j = {1, 2, …, p}.                       (2.3)

Extraction  of  a  solution  that  minimizes  the  scalar  function f(x), where x is  a D-

dimensional decision variable vector x = (x1, …, xD) from some universe D, is

the fundamental task of any optimization algorithm designed to solve this problem

[21]. Functional expressions gi(x) and hj(x) represent constraints that must be fulfilled

while optimizing f(x) and contains all possible x’s that can be used for the

evaluation of f(x) and its constraints. The function f : D ,  Ø, is  a real

valued objective function. The variable vectors x that result in the smallest objective

function value is referred to as the minimizers, which are further classified as:

Local minimizer: A point x*  is a local minimizer of f if there exist some  > 0

such that, f(x) f(x*), x \ {x*} and ||x x*|| < , where f(x*) is a local minimum.

Global minimizer: A point x*  is a global minimizer of f if f(x) f(x*), x \

{x*}, where f(x*) is known as a global minimum. The difference between a local and

a global minimum is presented in Figure 2.1 [21].
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Figure 2.1: Global vs local minima

In  general,  global  minimizers  are  difficult  to  locate  and  verify,  especially  when the

search algorithm gets trapped in local minima. The task of locating the global

optimum is referred to as global optimization. In some cases, global optimization

may extract many local minima during the course of its execution.

2.2 Multi-objective Optimization Problems

In multi-objective optimization, one attempts to simultaneously maximize or

minimize M objectives, F(x) while satisfying J inequality constraints, gi and P

equality constraints, hj, which are functions of decision variable vector, x =

(x1,…,xD)T X: Fi = fi(x), i =  1, , M. While problems exist for which the decision

vectors are discrete, this study of MOPs is concerned with problems for which each

decision variable, x, is continuous, between a lower bound  and an upper bound ,

where D is  the D-dimensional decision space, F: x  D is M-dimensional

objective space and X is called decision space. Both decision and objective spaces

are real spaces, as they connect to continuous variables and objectives for the

proposed approach. The mapping process from decision space X to objective space F

is shown as Figure 2.2.

local minimum global minimum

x

f(x)
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Figure 2.2: An example of mapping between decision space and objective space for a
2-objective MOP

Without loss of generality, it can be assumed that the objectives are to be minimized,

as maximization of Fi is equivalent to the minimization of 1/Fi or  Fi and that

constraints are of the ‘greater than or equal to’ form; Such multi-objective

optimization problem can be formally expressed as follows:

Minimize F(x) = (f1(x), f2(x),…, fM(x))D,                          (2.4)

 Subject to gi(x)  0; i = 1, 2, , b                                 (2.5)

hj(x) = 0; j = 1, 2, , p                                  (2.6)

Note that p, the number of equality constraints, must be less than dimension D to

provide sufficient degrees of freedom left for optimization. The constraints given in

Equation  (2.5)  and  (2.6)  define  the  solution  space  which  contains  the  set  of  all

feasible solutions. In the interest of simplicity, those constraints are not considered in

this thesis.

Pareto Dominance: For any two decision vectors a and b,

a b (a dominates b), iff i : fi(a) fi(b) i : fi(a) < fi(b);

a b (a weakly dominates b), iff i : fi(a) fi(b);

X2 decision space X

X1

F2

F1

objective space F

Decision vector
Pareto set

Objective vector
Pareto front
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a ~ b (a is indifferent to b), iff i : fi(a) < fi(b) j : fj(a) > fj(b).

The definitions of the opposite binary relations ( , , ~) are analogical [40].

Following the Pareto concept of optimality, there exists a feasible point x1 X that

dominates a point x2 X if f(x1) f(x2). If strict inequality holds for all M objectives,

i.e. f(x1)  < f(x2), then x1 strongly dominates x2.  If  there  does  not  exist  any  feasible

point that dominates x X,  we  say  that x is  an  efficient  solution.  For  the  case  that

there exists no feasible point that strongly dominates x X, we say that x is weakly-

efficient. If there is no x2 X, x2 x1, such that f(x2) f(x1), x1 is called strictly

efficient. Accordingly, the efficient set XE and the weakly efficient set XwE are

defined as,

XE   { x X : there is no X with f( ) f(x)},

XwE   { x X : there is no X with f( ) < f(x)}.

For the given set of points in the decision space, the points located on the non-

domination front do not get dominated by any other point in the objective space,

hence those points are called Pareto-optimal solutions (non-dominated solutions).

A solution is clearly better than (dominating) another solution, if it is better or equal

in all  objectives,  but at  least  better in one objective.  By discarding all  solutions that

are dominated by at least one other solution, the set of best compromise solutions can

approximate the set of Pareto optimal solutions. The remaining solutions are all of

equal  quality,  where  the  set  of  indifferent  solutions  is  called  as  the  Pareto  set  (PS).

The Pareto dominance relation is illustrated for the two-objective case in Figure 2.3

[40].
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Figure 2.3: A graphical interpretation of the Pareto dominance

The Pareto dominance relations between solutions in a two-objective example are

further represented in Figure 2.3, where five nondominated solutions at points A, G,

H, S, and U are on Pareto front. This figure depicts a partial ordering among different

solutions based on the dominance criterion. Those solutions selected may yield the

possible trade-offs among competing objectives. From this figure, the objective

solutions space is divided into four main blocks (light grey, dark grey, and two others)

based on the dominance relations. The reference point A is better in both objectives,

this solution thus strongly dominates solutions lying in the light grey block. On the

contrary, point A is strongly dominated by solutions of the dark block because those

solutions have better objective values than point A. For solutions that lying in the

boundaries of the shaded blocks, they share the equal objective values in one of the

objectives as point A, however, point A has a better objective value in another

objective. Hence, those solutions are weakly dominated by point A. For solutions

located in the rest of two blocks, they are inferior in one of the objective functions;

meanwhile, they are superior in another objective function compared to point A.

Consequently, these solutions are indifferent to point A.

Feasible region

Indifferent Pareto optimal frontStrongly
dominated

Indifferent

Strongly
dominates

f
1

f
2

U

S

G
H

B

E

D

C

F

A Weakly dominated

Weakly dominated
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Chapter 3

PROBABILITY COLLECTIVES

3.1 PC approach

Probability collectives is a single objective optimization solver across the probability

distributions.  Using  the  ability  of  MASs,  each  agent  performs  random  sampling  of

individuals along with its probability distributions, which can be iteratively updated

to make optimization decisions on their alternative actions [11]. The decisions are

done by a set of PC strategies (variables) over updating probability distributions

within  a  number  of  iterations  that  is  different  with  other  metaheuristic  random

optimization approaches. Consequently, the procedure indirectly provides a fitness

landscape  with  the  promising  strategies  from  the  highest  probability.  Hence,  the

solutions have tightly relationship between search indicators and probability

distributions.

3.1.1 Detailed PC Algorithm

As mentioned before, Chapter 2 defines a single objective minimization problem.

Let’s consider an unconstrained optimization problem G: D  that is a real-

valued objective function to be minimized in solution space  with D-dimensional

variable (agent) vector x*=[ x1, …, xD ] D. The detailed PC procedure is explained

below over the flowchart given in Figure 3.1.
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Figure 3.1: PC Flowchart for unconstrained optimization

Initialize k, T, T,  and sampling interval i for each agent i; set up
strategy set xi with mi strategies; k, n

Assign uniform probabilities for each strategies, i.e. r:
q( [ ])=1/mi and compute global expected utility ( ( [ ] ))

For each agent i, update
the sampling interval i
and form corresponding
updated strategy set xi

Update probability distribution q(xi) for each agent i by Nearest
Newton Descent as second order technique

 Find favorable strategy y[fav] of every agent from the probability
distribution q(xi) and evaluate objective function G(y[fav])

Accept current objective
function G(y[fav]) and associated

favorable strategies y[fav]

Current obj. fun 
Previous obj. fun

Accept Final value

Yes

No

k = k + 1

START

Build combined strategy set [ ] for each strategy r of agent i and
evaluate objective function G( [ ])

 Minimize the Homotopy function J(qi(xi),T)

Convergence?

Reject current G(y
[fav]

) and retain
previous solution

Sample around favorable strategies y[fav]

STOP

Yes
Iterations n

No

Yes No
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Each agent i performs sampling of its variables iteratively within its predefined range

denoted as i [ i
L, i

H] and it may modify its lower limit i
L and its upper limit

i
H of the interval i iteratively as the procedure runs. The procedural explanations

in the notations described in this part can be found similar to the ones in [21].

Strategy updates, also called as moves, are carried out by every agent i resulting a set

of strategies xi representing its variables from its associated probability distributions

by agent i: [ ][1] [2] [3]{ , , ,..., },im
i i i i ix x x x x i =  1,  2,…,D and every agent is supposed to

have a same number of strategies, i.e. m1 = m2 =  … = mi =  … = mD-1 = mD. Each

sample xi
[r], 1 r mi, is  a  random  value  created  from i  [xi

L,xi
H] over the

probability distribution q(xi) corresponding to agent i.  Thus,  the  parameters  of

probability distributions have a large impact on the efficiency of the strategy set of

each agent i. Initially, each agent i forms mi set of solution in combination with the

other strategies as [ ] [?] [?] [ ] [?] [?]
1 2 1{ , ,..., ,..., , },j j

i i D Dy x x x x x j m. The superscript [?] of

xr
[?], r i, means that agent i randomly samples from another agent r. These newly

built variables form a set of solutions including mi random strategy values for N

agents. The agent i is used to change its strategy set with the solution j by a selection

rule to discard old value or accept new strategy within its domains. Hence, each

agent i establishes the mi strategy set shown as:

[1] [?] [?] [1] [?] [?]
1 2 1

[2] [?] [?] [2] [?] [?]
1 2 1

[3] [?] [?] [3] [?] [?]
1 2 1

[ ] [?] [?] [ ]
1 2

{ , ,..., ,..., , },

{ , ,..., ,..., , },

{ , ,..., ,..., , },

{ , ,..., ,

i i D D

i i D D

i i D D

r r
i i

y x x x x x
y x x x x x
y x x x x x

y x x x [?] [?]
1

[ ] [ ][?] [?] [?] [?]
1 2 1

..., , },

{ , ,..., ,..., , }.i i

D D

m m
i i D D

x x

y x x x x x

                                (3.1)
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Similarly, all the remaining agents form their combined strategy sets. Since all agents

generated a number of random strategy values, they can calculate their fitness values

to be optimized. In other words, i-th agent evaluates mi objective functions for its

solutions as [ ][1] [2] [ ]{ ( ), ( ), ( ),..., ( )}.imr
i i i iG y G y G y G y  To minimize the problem, every

agent attempt to find the best possible solution from these object functions. Each

agent i accumulates its fitness across its strategy set to be optimized as [ ]
1

( ).im r
ir

G y

The combined strategy sets, involving the associated objective functions and the

collection of system objectives for D number of agents, are presented in Equation

(3.2) as follows.

[1] [1] [?] [?] [?] [?] [1]
1 1 2 1 1
[2] [2] [?] [?] [?] [?] [2]
1 1 2 1 1

[ ] [ ] [?] [?] [?] [?] [
1 1 2 1 1

{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } (

i D D

i D D

r r
i D D

y x x x x x G y
y x x x x x G y

y x x x x x G y
[ ]
1]

1

[ ] [ ] [ ][?] [?] [?] [?]
1 2 1 1

( )
)

{ , ,..., ,..., , } ( )

i

i i i

m
r

r
r

m m m
i i D D

G y

y x x x x x G y

[1] [?] [?] [1] [?] [?] [1]
1 2 1

[2] [?] [?] [2] [?] [?] [2]
1 2 1

[ ] [?] [?] [ ]
1 2

{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

{ , ,..., ,...,

i i D D i

i i D D i

r r
i i

y x x x x x G y
y x x x x x G y

y x x x
[ ]

[?] [?] [ ]
11

[ ] [ ] [ ][?] [?] [?] [?]
1 2 1 1

( )
, } ( )

{ , ,..., ,..., , } ( )

i

i i i

m
r

ir
rD D i

m m m
i i D D

G y
x x G y

y x x x x x G y

[1] [?] [?] [?] [?] [1] [1]
1 2 1

[2] [?] [?] [?] [?] [2] [2]
1 2 1

[ ] [?]
1

{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

{ ,

D i D D D

D i D D D

r
D

y x x x x x G y
y x x x x x G y

y x
[ ]

[?] [?] [?] [ ] [ ]
12 1

[ ] [ ] [ ][?] [?] [?] [?]
1 2 1

( )
,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

i

i i i

m
r

ir r
ri D D D

m m m
D i D D D

G y
x x x x G y

y x x x x x G y

           (3.2)
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Consequently, the set of objective functions of minimization problem becomes

1 2[ ] [ ] [ ]
1 21 1 1

{ ( ), ( ), , ( )}Dm m mr r r
Dr r r

G y G y G y , which forms the collection of system

objectives.

Figure 3.2: Optimization space conversion with Homotopy function

It  is  often difficult  to get optimal solutions to this computationally difficult  task for

multimodal function optimization. In order to address this difficulty, the above

discussed fitness is converted into easier one by use of a Homotopy function as

illustrated  in  Figure  3.2.  Definition  of  the  new  form  of  the  Homotopy  function  is

given in Equation (3.3).

[ ]
1

( ( ), ) ( ) ,im r
i i ir

J q x T G y T Es                                  (3.3)

where q(xi) indicates probability distribution of agent i and the temperature is

denoted by T  [0, ). At  the  beginning,  the  uniform  probability  distribution  sets

[ ]( ) 1 / ,r
i iq x m r = 1, 2,…, mi. Each agent i then calculates the expectation by

aggregating its fitness as [ ]
1

( )im r
ir

G y .  From the  joint  probability  distribution  of  all

agents, the equation for the accumulated fitness is expressed as

[ ] [ ] [ ] [ ] [?]
( )1 1 1 ( )

( ( )) ( ( )) ( ) ( ) ( )i i im m mr r r r
i i i i ir r r i

E G y E G y G y q x q x ,

G G

Iteration Iteration

f(x)
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where (i) denotes every agent other than i. Consequently, the expected system

objectives and the associated expected collections for D agents  are  shown  in

Equation (3.4) as follows:

[1] [1] [?] [?] [?] [?] [1]
1 1 2 1 1

[2] [2] [?] [?] [?] [?] [2]
1 1 2 1 1

[ ] [ ] [?] [?] [?] [?] [
1 1 2 1 1

{ , ,..., ,..., , } ( )
{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } (

i D D

i D D

r r
i D D

y x x x x x G y
y x x x x x G y

y x x x x x G y
[ ]
1]

1

[ ] [ ] [ ][?] [?] [?] [?]
1 2 1 1

( )
)

{ , ,..., ,..., , } ( )

i

i i i

m
r

r
r

m m m
i i D D

G y

y x x x x x G y

[1] [?] [?] [1] [?] [?] [1]
1 2 1

[2] [?] [?] [2] [?] [?] [2]
1 2 1

[ ] [?] [?] [ ]
1 2

{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

{ , ,..., ,...,

i i D D i

i i D D i

r r
i i

y x x x x x G y

y x x x x x G y

y x x x
[ ]

[?] [?] [ ]
11

[ ] [ ] [ ][?] [?] [?] [?]
1 2 1 1

( )
, } ( )

{ , ,..., ,..., , } ( )

i

i i i

m
r

ir
rD D i

m m m
i i D D

G y
x x G y

y x x x x x G y

[1] [?] [?] [?] [?] [1] [1]
1 2 1

[2] [?] [?] [?] [?] [2] [2]
1 2 1

[ ] [?]
1

{ , ,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

{ ,

D i D D D

D i D D D

r
D

y x x x x x G y

y x x x x x G y

y x
[ ]

[?] [?] [?] [ ] [ ]
12 1

[ ] [ ] [ ][?] [?] [?] [?]
1 2 1

( )
,..., ,..., , } ( )

{ , ,..., ,..., , } ( )

i

i i i

m
r

ir r
ri D D D

m m m
D i D D D

G y
x x x x G y

y x x x x x G y

         (3.4)

Thus the expectation with respect to fitness values for D agents is formed with

utilities: 1 2[ ] [ ] [ ]
1 21 1 1

{ ( ( )), ( ( )), , ( ( ))}.Dm m mr r r
Dr r r

E G y E G y E G y It  also  means  that  the  PC

algorithm can convert discrete variables into continuous variable vectors in the form

of probabilities corresponding to these discrete variables. An ordinary choice for the

Es function of Equation (3.3) is the entropy function given in Equation (3.5).

[ ] [ ]
2( ) log ( ).im r r

i i ir
S q x x                                         (3.5)
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Hence, minimizing the Homotopy function for each agent i can now be redescribed

in Equation (3.6) as:

[ ]

1
[1] [1] [?] [2] [2] [?]

( ) ( )( ) ( )

[ 1] [ 1] [ ] [ ][?] [
( ) ( )( )

( ( ), ) ( ( )

                  ( ) ( ) ( ) ( ) ( ) ( )

                      ( ) ( ) ( ) ( ) ( ) (

i

i i i i

m
r

i i i i
r

i i i i i ii i

m m m m
i i i i i ii

J q x T E G y T S

G y q x q x G y q x q x

G y q x q x G y q x q x ?]
( )

[ ] [ ]
2

1

)

                      ( ( )log ( ))
i

i

m
r r

i i
r

T q x x

(3.6)

where T  [0, )  is  the  temperature  parameter.  The  Homotopy  function  is  to  be

optimized using any admissible optimization tool. In literature, several approaches

are considered to find the minimal value of J(qi(xi),T); widely used approaches are

Nearest Newton Descent Scheme, Broyden Fletcher Goldfarb Shanno (BFGS) and

the Deterministic Annealing [21]. This thesis presents a further acceleration method

by use of DE algorithm according to the probability distributions produced by

Nearest Newton Descent Scheme. The Homotopy function, as the procedure of

minimization for every agent, leads to new probability vectors q(xi), i =1 ,…, D. In

this regard, agent i has the distribution of its probability q(xi), that yields the strategy

vector [ ], r  = 1,…,mi, for the minimization of the aggregate expectation of the

fitness, [ ]
1

( ( ))im r
ir

E G y . The rule of updated probability [ ]( )r
i kq x , where k indicates

number of algorithmic iterations, relies on the adopted optimization approach. For

the core PC algorithm, the Nearest Newton Descent method is shown for agent i in

Equation (3.7-3.8):

[ ] [ ]
1 ,

[ ]
,

[ ]
[ ]

, 2

( ) ( )

* ( ) *

(   ) log ( ( ) )

r r
i k i k i k

r
i k s i k

r
ri k

i k i k
k

q x q x q

q q x

Contribution of x S q x
T

                 (3.7)
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[ ] [ ] [ ]
1

(  ) ( ( ( ))) ( ( ( )))imr r r
i k i k i kr

Contribution of x E G y E G y (3.8)

where s (0, 1] denotes the descent step size. In order to ensure non-negative

probabilities, values less than 0 are set to 10-6 and then all probability values are re-

normalized accordingly.

There is one special strategy [ ],1r
i ix r m , in the mi strategy set that takes the largest

effert in the minimization of the expectation of utilities. This distinguished variable is

called the favorable strategy, xi
fav. As shown in Figure 3.3, for a case where there are

10 strategies, i.e. mi = 10, the convergence of the highest probability value among the

probability distributions of agent i is illustrated. Consequently, the favorable strategy

vectors for the D agents are rearranged as: [ ] [ ] [ ] [ ] [ ]
1 2 1{ , ,..., , }fav fav fav fav fav

D Dy x x x x .

Figure 3.3: Probability distribution of agents

Then the objective function G(y[fav]) can be evaluated by y[fav].  If  the current system

objective G(y[fav]) is better than that from the previous iteration solution, accept the

current system objective G(y[fav]) and corresponding y[fav] as  current  solution  and

continue to the next iteration, else reject current system objective G(y[fav]) and the

corresponding y[fav], and retain the previous iteration solution to next run.

Pr
ob

ab
ili

ty

Strategy

Favorable Strategy
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In order to the convergence of the optimization process, Nash equilibrium is

achieved at termination as follows: either temperature T = Tfinal or G(yfav)k  G(yfav)k-

1 , for a predefined  >  0.  If  any  termination  criterion  is  not  met,  then  the  PC

algorithm modifies the strategy limits of interval i and temperature parameter in

Equation (3.9-3.11) as follows.

xi
L(k+1) = (1– )*xi

fav, i=1,…,D                                     (3.9)

xi
H(k+1) = (1+ )*xi

fav, i=1,…,D (3.10)

Tk+1 = (1– T)*Tk                                                           (3.11)

where 0 <  <1.0 represents the limit factor, while 0< T <1.0 denotes temperature

ratio. If strategy values exceed their corresponding upper and lower bounds, those

values should be repaired with random and uniform sampling within the predefined

range. Each agent i then samples mi strategies within the updated sampling interval

i and forms new strategy set xi represented as xi = {xi
1, xi

2,…, }, and i = 1, 2,…,

D. Finally, PC increases inner iteration k and the process repeats until termination

criteria are reached. The detailed procedure of PC algorithm is summarized in

Algorithm 3.1.

While PC approach is applied to a given problem, each agent coordinates all

distributed strategy vectors with its probability distribution. According to the

independent probabilities assumption, all agents build a set of solutions to minimize

a Homotopy function with customized expected utilities in the joint probability space.

Then each agent updates the probability distributions to determine the favorable

strategy vectors from the peaky probability in its distribution. Thus PC approach uses

random sampling search mechanism to explore the solution space around the
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favorable strategies based on the agent’s knowledge during the iterations. This

procedure thus prevents premature convergence due to the updated search space.

Eventually, the algorithm enhances search ability and converges to a global optimal

solution.

Algorithm 3.1: Procedure of Probability Collectives
1: Specify the number of samples for each iteration;
2: Set the parameters: learning range factor , probability update step size s, cooling rate

T and the termination criteria ;
3: Assign agents to the variables in the problem, with their actions representing choices for

values. Set the starting probabilities for each agent to uniform over its possible actions;
4: Initialize T and iteration step k  0;
5: Repeat
6: Form mi number of strategies yi

[r] of agent i;
7:   Evaluate mi objective functions G(yi

[r]);
8: Calculate local expectation E(G(yi

[r])) over joint actions;
9:   Compute every agent’s global expected utility ( ( [ ] )) for the agents for each

of their possible moves;
10: Repeat
11:     Minimize the Homotopy function J(qi(xi),T);
12:     Compute contributions for each agent;
13: Compute new probability value to update its distribution q(xi) using an second order

technique such as Nearest Newton Descent Scheme;
14: Update the temperature T;
15: Until the termination condition are met
16:   Determine favorable strategy yfav by the highest probability action for each agent;
17: Update variable ranges along with the most favorable strategy vector in i;
18: k = k + 1;
19: Until Termination Criterion are met
20: Return the best solution found so far.

3.2 Multi-Objective PC

From empirical findings, researchers adapted the PC framework for multi-objective

optimization problems. Decomposition technique in multi-objective optimization is

known to be superior to other methods on a wide variety of problems since it

provides optimal portfolio for converting a MOP into a number of individual single

objective optimization problems. Hence, PC optimization can easily conduct the

single objective optimization for the solution of the multi-objective problem. The
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detailed information about decomposition with its technical expressions will be

discussed in Chapter 5.

In this thesis, the potential schemes explore the nondominated points along the

Pareto optimal front during the PC procedure are investigated. Through sufficient

search of the sampling distributions of the decision variables, promising regions of

in the Pareto set are exploited for fitness values. It is observed that multi-objective

PC-based optimization involving the proposed methods exhibit that PC works

successfully for MOPs. The first multi-objective algorithm based on PC approach is

MOPC algorithm [22], which is shown in Algorithm 3.2. In this algorithm, the max-

min fitness function [41] was introduced to approximate the Pareto set with the

expression shown in Equation (3.12).

max min 1
( ) max(min( ( ) ( )))

j

j
i i ii mx x

f x f x f x                                  (3.12)

where m is the number of objective functions, xj is the jth sample vector in the set and

fmaximin(x) is the fitness value for the decision vector x. This method keeps an

updating archive for maintenance of better solutions and allows a greater diversity of

distributions. A more detailed description of this algorithm can be found in [22]. In

this concern, most multi-objective PC algorithms with constructed objective

functions must deal with the behavior of various objectives in a single run.
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Algorithm 3.2: MOPC Optimization
1: Initialize the archive set A to empty, T to Tstart and calculate Tdecay and the number of

evaluations to 0
2: Initialize the set of MOPC Particles P
3: Repeat
4: For all MOPC Particles Do
5: If first run Then
 6:       Draw and evaluate a set of samples D from X using a uniform distribution for the first
            run and q  thereafter
7: End If
8: Add the samples taken in D to a local cache L

 9:      Calculate maximin for the members of L A
10:     Find the new q (using L) by minimizing the KL Divergence
11: Add the samples from D that are not dominated to the archive A
12:     evaluations evaluations + 1
13: End For
14: If (T > Tend) Then

15:       Decrement T by
| | | |

| |
P D

Eend
decay

start

TT
T

 where maximum number of evaluations allows E

16: End If
15: until (evaluations > maximum evaluations)
16: Output the non-dominated set from archive set A
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Chapter 4

PROBABILITY COLLECTIVES FOR SINGLE

OBJECTIVE OPTIMIZATION PROBLEMS

4.1 Introduction

This  chapter  provides  descriptions  of  DE  and  CE  algorithms  that  are  proposed  for

unconstrained global optimization. Through a great deal of empirical investigation

and observation, PC and DE algorithms together with the CE method are the

powerful methods to resolve difficult problems. As discussed in the second chapter,

PC progresses with different techniques such as gradient technique and Nearest

Newton Descent scheme to update its probability distributions for the favorable

solutions. CE refines solution distributions using two smoothing operators. On the

other hand, DE algorithm performs as one of the high-speed and robust global

heuristic search to update parameter vectors of population in progress.

Using a harmonious combination of the three algorithms, an innovative hybrid

algorithm is proposed, named MPCDE, i.e., modified PC and DE [42]. This hybrid

model uses conventional PC optimization updated by CE method and adaptive DE

mutation scheme to improve search ability for large scale single-level global

optimization problems. In the context of hybridization, the PC algorithm initially

seeks a set of feasible strategy vectors to find the most favorable strategies by the

update of probability distributions with its corresponding parameters while DE takes

experience of PC into existing population to perform a further search using adaptive
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operators for achieving appropriate indicators. Meanwhile, CE improves solutions

related to knowledge of PC by refining distributions with two smoothing operators

and improves the population of DE algorithm. At the end of this chapter,

experimental results presented that the introduced algorithm has competitive

performance for two classical sets of single objective functions.

4.2 Differential Evolution

Differential  Evolution  algorithm  is  first  introduced  by  Storn,  R.  [2].  It  is  a  typical

representative of EAs for solving real-parameter optimization problems. Indeed, DE

has many advantages including its robustness, reliablility, and ease of use for many

aspects.  Due  to  these  properties,  DE  is  considered  to  be  an  effective  global

optimization algorithm [43]. DE has also been used to optimize a mixture of integer,

discrete, and continuous variables optimization problems [43].

4.2.1 Description of the DE Algorithm

Differential Evolution is one of the most powerful population based stochastic search

methods used to deal with global optimization problems. DE is usually affected and

adjusted by two primary factors: control factor F and crossover ratio CR [43]. Even

though DE can capture the better solution by exploring existing population and

improve the convergence speed for the global solutions, it possibly gets stuck into a

local  minimum  for  some  cases.  In  order  to  tackle  problems  such  as  stagnation,  the

most researchers have developed variants of DE algorithm, which resulted in five

different mutation operators such as basic DE/rand/1, DE/current-to-best/1 and so on

[30]. Meanwhile, two different significant crossover types: exponential and binomial

[30] were also developed to keep coordination with other search operators. Detailed

descriptions of exponential crossover operator are presented in [30]. Binomial

(uniform) crossover will be introduced in the following section.
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DE operates using a set or population vectors S =  {x1, x2, , xN} of potential

solutions  or  points.  The  population  size N remains constant throughout. The

population vectors evolve into a final individual solution by simple techniques of

combing  simple  arithmetic  operators  with  a  cycle  of  events  of  mutation,  crossover

and selection. Mutation and crossover operators are used to produce new trial vectors,

and selection operator then determines whether the trial vector survives for next

generation or not. At each generation g,  the  procedure  aims  to  generate  a  new

population by replacing points in the current population S with better ones. The

population is simply a set of parameter vectors Xi,g’ ,  where i indicates the index of

the population member. The main operators of DE perform along with the cycle of

phases, as shown in Figure 4.1.

Figure 4.1: Main phases of the DE algorithm cycle

4.2.2 Operation of the DE Algorithm

Initialization.  The  first  step  of  DE  algorithm  is  to  initialize  the  population.  DE

generates a population of N individuals of D-dimensional parameter vectors

representing the candidate solutions, i.e., 1 2
, ' , ' , ' , '{ , , }, 1,2, ,D

i g i g i g i gX x x x i N  and

every component in the original population is randomly sampled with seeding

Mutation

(calculate difference vectors)

Selection

(elitist replacement)

Crossover/

Recombination

Discarded Solutions

Initialization

(generate population with

random numbers)
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uniformly and subject to boundary constraints. The parameter (target) vectors give

the following simple initialization formula for each component:

,0 rand ( ),  1,2,..., , ,j L U L
i i i ix x x x j D i                           (4.1)

where rand [0, 1] is a uniformly distributed random value generated for each j and

xi
U and xi

L are the upper and lower bounds respectively.

Mutation. This procedure of the DE algorithm produces new trial vectors. At every

generation g, each member of S is targeted to be replaced with a better trial vector.

For the simplest case of DE/rand/1, a mutated point is created by adding the

weighted difference of two population members to a third vector. By this scheme, the

mutation procedure generates an associated mutant (donor) vector

1 2
, ' , ' , ' , '{ , , }D

i g i g i g i gV v v v , i = 1,…,N as follows: for each target Xi, the procedure

operates a uniform selection of three random elements , , and  and r1  r2

r3 i, i.e. all vectors are unique and none of these vectors corresponds to the target

vector Xi,g’. Generate the donor vector Vj as,

1 2 3, ' , ' , ' , '*( )j g r g r g r gV X F X X                                     (4.2)

where the factor F [0,2] refers to a remarkable scaling rate for adjusting subtracted

variations from two components. Figure 4.2 illustrates the location of Vj,g’ as would

be given in Equation (4.2).
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Figure 4.2: Mutation operation using DE/rand/1

Crossover. The target or parent point Xi,g’ together with the new mutated point Vj,g’

are recombined to create the trial point 1 2
, ' , ' , ' , '( , , , )D

i g i g i g i gU u u u . The hybrid

algorithm applies the binomial method for DE. Binomial recombination [30]

generates a random number randj [0,1] for each component. If randj CR then the

binominal crossover operator copies the jth component of mutant vector Vi,g’ to  the

corresponding element in the trial vector Ui,g’, otherwise, it is copied from the

associated target vector Xi,g’. This process continues until all parameter vectors from

Xi,g’ have been considered. The condition of a random integer Irand  [1, 2, ...., D] is

introduced to ensure that the trial vector Ui,g will differ from its corresponding target

vector Xi,g’ by at least one parameter. Binomial recombination can be formulated as

in Equation (4.3) with the crossover constant CR (0,1].

Vj

Optimum point
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, '
, '

, '

     if  ( )  ( )

           1, 2,..., and 1,2,..., .

j
i g j randj

i g j
i g

v rand CR j I
u

x Otherwise

i N j D

(4.3)

Selection. So far, N competitions are maintained to identify the members of S for the

next iteration. The ith competition is reserved to replace the target vector Xi,g’ in S.

This is done by comparing the trial vector Ui,g’ to those of Xi,g’. The better Ui,g’ and

Xi,g’, based on the objective function values, is greedily accepted by the selection

operation with its expression in Equation (4.4).

, ' , ' , '
, ' 1

, '

   if  ( ) ( )

   otherwise
i g i g i g

i g
i g

U f U f X
X

X
                                     (4.4)

The trial vector with better fitness value will thus serve for the next generation.

Accordingly, all the selected individuals of the next generation are better than others

in the current generation. The DE operation loop repeats until the total maximum

number of function evaluations, or any other prede ned termination criterion is

satisfied. The basic DE procedure with mutation scheme DE/rand/1 is given in

Algorithm 4.1.

Algorithm 4.1: The DE algorithm for unconstrained optimization
1: Set control parameters N, CR, F and g 0;
2: Initialize Population, S = {x1,0, x2,0,…, xN,0} using Equation (4.1);
3: Evaluate objective function f for each member in the population;
4: Repeat
5: For i = 1 To N,
6:      generate trial vector Ui,g’ via:
7:      Mutation using Equation (4.2);
8:      Crossover using Equation (4.3);
9: Evaluate f(Ui,g’);

10: End For
11:   Update population using Equation (4.4);
12: g’ = g’ + 1;
13: Until Termination Criterion are met.
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4.3 Cross Entropy Method

The cross entropy method is an optimization algorithm which manipulates multiple

distributions  of  possible  solutions  under  relational  rules  in  a  parallel  way  for  a

stochastic optimization problem. Thus, a general Monte Carlo approach using the

importance sampling technique is used to solve rare event probability estimation

problems [44]. In optimization problems, an optimal solution can be considered as a

rare event. The CE method consists of the following two main phases: generation of

N samples of random data or vectors according to a random mechanism; updating the

parameters of the random mechanism, typically parameters of probability density

function (PDF), to produce better samples from population for the next iteration.

Let X be a random sample taking its value in some discrete space  with a pdf f ),

S’(·) be a real-valued function defined on and  be a real number. In the rare-event

simulation context, one needs to estimate the probability of occurrence l of an event

{S’(·) }, i.e. to estimate the expression EX~ f(·) [I{S’(·) }].

The CE method requires specifying the sampling distribution and the updating rules

for its parameters. The choice of the sampling distribution is quite arbitrary. The s-

dimensional normal distribution with independent components, mean vector µ =

(µ1,  .  .  .  , µs) and variance vector 2 =  ( 1
2,…, s

2) is denoted by N(µ,  2). It is

recalled that a multivariate Gaussian distribution can be used to describe the

distribution of vectors in s with the corresponding probability density [45].

2

2

( )1( , { , }) exp( )
22

s
i i

i ii

Xf X v                          (4.5)
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where v is  the  set  of  2s parameters used to define the probability density and µi

indicates the mean of the i-th component of X. Similarly, i denotes the standard

deviation of the i-th component of X. Using this parameterized distribution, it can be

shown that the updating rules of Equation (4.6-4.7) will be as follows:

{ ( ) }1

{ ( ) }1

i

i

N
S X ii

t N
S Xi

I X

I
                                             (4.6)

2
{ ( ) }2 1

{ ( ) }1

( )
i

i

N
S X i ti

t N
S Xi

I X

I
                                 (4.7)

In the current iteration t of  the  algorithm,  the  distribution  is  updated  in  a  step-wise

mode, using a smoothing parameter to modify the mean:

1(1 )t t t                                              (4.8)

This smooth updating criterion can make the CE method escape from being trapped

at local optimums. Empirically a value of  is given in [0.6, 0.9] for the best results.

To prevent the sampling PDF from getting stuck in a suboptimal solution, Rubinstein

and Kroese [45] proposed the use of dynamic smoothing rule where, at each iteration

t, the variance is updated using a smoothing parameter t by Equation (4.9-4.10) as:

0 0
1(1 )c

t t
                                              (4.9)

2 2 2
1(1 )t t t t t                                       (4.10)

where 0 is smoothing constant (typically between 0.8 and 0.99) and c is a xed

integer (typically between 5 and 10). The proposed algorithms in this thesis apply the

Equation (4.6-4.10) to update the population distribution and its operators for

achieving the better performance.
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4.4 A Hybrid Proposed Approach for SOP (MPCDE)

As  mentioned  before,  the  PC  approach  is  a  random  search  optimizer  that  uses

iteratively the joint probability distributions and gradient descent technique to update

the sampling probability distributions for the favorable solutions. However, the

descent-based technique is likely to trap into local optimum. Such case could

deteriorate the quality of solutions especially for some hardest instances. Also, the

DE algorithm may unusually suffer from locally optimum and premature

convergence. As stated in [46], the cause of stagnations of DE is that the recreation

method gives only a finite set of possible trial vectors and if none of them modifies a

component of the current population during comparison, then stagnation occurs.

Most researchers pay more attentions to study the dimension D and two control

factors F, CR.  From  empirically  scientific  articles,  a  high  dimension  of  decision

variables can result in decreasing stagnation situation. By a great deal of simulation

results, the control factors were usually selected nearly 1.0. Thus, our studies need to

identify suitable parameter settings that are obtained from promising fitness values

during the experiments.

In order to address the typical issues from the PC and DE algorithms, this thesis

introduces a learning model MPCDE to explore the optimal solutions, enhancing

convergence speed and removing from weaknesses of the two approaches. Based on

the search operators of two main algorithms, the evolutionary framework combines

these mechanisms in a coordinated way in which they exchange their search

experience iteratively. Obviously, PC approach optimizes the decision strategy

vectors along with their probability distributions simultaneously to accomplish the

purpose of improving solutions. The solution distributions are produced and refined
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by the dynamic operators from the CE approach. The cross entropy method is used to

update its components of distribution of a Gaussian density by using mean i and

standard deviation i, i = 1,…,D. Then, DE obtains the knowledge from CE method

for updating the population and modifies and selects all components of the parameter

vectors to guide the global minimum by the repeated process. Each individual is thus

randomly sampled to construct new population of solutions. Also, PC utilizes

random search with various techniques over probability distributions to determine

the favorable strategy vectors from the highest probability values for a number of

runs M1. Figure 4.3 describes a general flowchart of the proposed hybrid algorithm

MPCDE.

Figure 4.3: Flowchart of the hybrid algorithm MPCDE
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Update i, i for agent i across Gaussian density to construct
population X of NP-size, D-variable

Execute DE operations with two adjusted mutation operators within
ng iteration

DE Procedure

Find a promising solution from the population; refine CE-operator i, i

Termination
criterion reached?

Return
best values

YesNo

STOP

g = g + 1

g, g of
best solution



34

The proposed MPCDE step conducts DE with existing population that is randomly

constructed by the updated parameter vectors. A new population of DE is contributed

by CE, where its operators i and i are estimated from the solutions obtained by PC

approach. Therefore, the Gaussian distribution is able to initialize each component of

a population and is made up of the values of i and i that are computed as;

' '
i i

SS

q (4.11)

' '

( ) ( )T
i i i i i i i

S S
q x x q (4.12)

where qi indicates the optimized strategy of PC for agent i, S’ denotes the sample set

of solution obtained from the objective function in PC. Let g be the current step of

iteration for the designed model, two search operators are generated and updated by

use of cross-entropy concept as shown in Equation (4.13 4.15):

i,g = i,g-1 + (1 ) i,g                                  (4.13)

i,g = i,g-1 + (1 ) i,g                                   (4.14)

 =  – (1 – 1/g)ri                                        (4.15)

where  represents smoothing factor, ri is an integer and denotes exponential growth

rate. In particular, the introduced hybrid algorithm dynamically refines search

schemes by the distribution factors of CE and explores favorable indicators around

local neighborhood for convergence of optimal solutions in DE. In other words, DE

learns from the existing population that is maintained by the distribution of PC across

a set of favorable strategy vectors and the population solutions are updated by use of

advanced CE tool for reinforcing localization of the strategy vectors.
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The DE procedure launches a new population explained before and executes for a

number of generations M2. The hybrid algorithm presents a modified DE mechanism,

where adopted mutation scheme measures the distance between the candidate

parameter vectors randomly selected from the population and adaptable calculated

learning size. In this respect, adaptive mutation scheme efficiently explores and

perturbs two operators in the search space along with the promising direction of

optimal solution. The procedure of adaptive scheme for DE mutation is outlined in

Algorithm 4.2 as follows:

Algorithm 4.2: The modified mutation operator of DE
r1 = randi(1,|PDE|); r2 = randi(1,|PDE|); r3 = randi(1,|PDE|);  /* r1 r2 r3 * /
Xr1=PDE(r1,:); Xr2=PDE(r2,:); Xr3=PDE(r3,:);
For i =1 to D Do,

If | xr2,i | 2

coeff = ,

Else
coeff = ,

End if
If di = |xr2,i – xr3,i| 1,

ui = xr1,i + F * (xr2,i – xr3,i)
Else

ui = xr1,i + coeff * rand * xr2,i

End if
End for

The parameters 1 and 2 of Algorithm 4.2 are two control coefficients. Values of

these parameters are defined in the experimental evaluations given below. The global

search of the hybrid algorithm involves two schemes, the classical DE/rand/1 and

modified mutation, determined by an adaptive factor according to the length of

vectors in population solutions. The other parameter coeff is defined as a dynamical

factor to measure a scaling scheme for DE according to the search length of vectors.

When the search length is greater than the limited factor 1 then coeff is considered as
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the rate of change for one component xr2,i to the other limited factor 2. Otherwise,

coeff is  evaluated  on  the  proportion  of xr2,i in the problem domain. Two proper

perturbations adjust the algorithm with well-defined parameters to explore the

solution space towards the global optimum.

4.5 Experimental Studies

In the interest of verifying efficiency of the modified evolutionary algorithm based

on PC and present its successful comparison with state-of-the-art methods, two

classical sets of unconstrained problems were applied: one involves 23 classical

benchmarks selected in [47] and the second part comprises 25 competition

benchmarks problems for CEC2005 Special Session. Definition, categorization,

fitness landscape characteristics and other specification of these complicated

functions can be found in [48]. Various difficulties for these problems make them

appropriate for comparison of relative success of continuous global optimization

methods.

4.5.1 Experimental Setting

For the purpose of providing fair comparisons of evaluations for each run, the

dimension D and  the  maximum  number  of  function  evaluations  (Max_FEs)  are

defined the same as the parameters’ set in the associated articles. The same number

of  independent  runs  is  carried  out  for  each  problem  and  statistical  analyses  are

conducted using results of all the trials. The termination criterion for MPCDE is

defined with Max_FEs. The aim of the experimental evaluations is to validate the

optimization performance of MPCDE for all problems by comparing mean values

with some metaheuristics in terms of the number of function evaluations. Every

agent of PC approach is allocated to occupy 15 strategy values so that it forms a

population size of D*15 individuals, while DE algorithm uses a population size of 50
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sizes individuals. When the proposed algorithm starts to initiate population of two

main approaches for global search, the procedure needs to use CE method for

completing  this  task.  In  the  iterative  step,  values  of  iterations  for  PC  and  DE  are

given to M1 = 10, and M2 = 100, respectively. Temperature parameter T is updated

by a cooling factor of 0.9 and step size for probabilities is set as s = 0.098. The inner

termination threshold for PC sets as  = 0.0001 and the step size of modifying

domain ranges is set to  = 0.5. The parameters for CE method for updating the mean

and standard deviation of distributions are defined with = 0.9 and ri =  9,

respectively. In DE operation, two controlling factors are set as F = 0.5 and CR = 0.8.

Moreover, the two learning factors of the combined schemes for DE are given to 1 =

2 and 2 = 1, respectively. If the introduced hybrid algorithm runs and reaches a limit

of 500,000 FEs totally  then it terminates and yields the optimal solution so far.

The hybrid algorithm runs in Matlab®10a programming language on Windows 7

environment and a personal computer (Intel (tm) i5-2540 Dual Core Processor 2540

2.60 GHz, 4GB RAM) is used for program execurions. The precision for the

floating-point operations is set to 15 fractional digits. In all tables illustrating

experimental results, scores of the best performing algorithms are typed in boldface.

4.5.2 Problem Categories

Many potential features such as modality, separability, linearity, noises, and rotations

determine problem difficulties. Generally, different problems are divided into four

characteristics as follows: unimodal functions, basic multimodal functions, highly

multimodal functions and hybrid composition functions. Unimodal (convex)

functions are easier to solve and have one globally optimum while multimodal

functions have several optimal solutions that offer require algorithms to jump out of
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locally optimal solutions. The hybrid composition functions are constructed by

mixing different components of basic problems and get harder to solve according to

dimension of problems, due to a larger relationship between the fitness solution and

its variable values.

4.5.3 First Set of Benchmark Problems

Twenty-three classical test benchmarks selected from [47] for real-valued single

objective optimization are commonly considered for evaluation and exhibit the

convergence speed of MPCDE framework. The test functions that are categorized

into a set of classes in terms of various features are presented in the Table 4.1. This

table lists the names of functions, dimensions (D) of decision variables, modality and

associated properties in each category of the functions. Besides, the test functions are

also defined in Table 4.2 with their corresponding domain of search and global

minima in the fitness landscapes. A more detailed description of these test functions

can be found in [47]. Separable functions as those that can be decomposed in terms

of single-dimensional functions (one for each dimension) and nonseparable functions

are those for which this decomposition is not possible. In other words, separable

functions are quite easy to solve, when compared with their nonseparable counterpart,

because each variable of a function is independent of the others [49]. In Table 4.1,

functions f1 f13 are high-dimensional problems. In particular, functions f1 f5 are

unimodal problems while f7 is a noisy problem and illustrates a simple convex shape

occupied noisy variables in [0, 1) for its equation. Additionally classic Rosenbrock

function f5 defined in Table 4.2 belongs to unimodal class and has a tight optimum

that is located in a narrow and bent shaped valley. For these unimodal function, f2, f3

and f5 are nonseparable and relatively difficult to solve because their variables

display inter-relation among themselves or are not independent. Moreover, f10, f11, f12
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and f13 are nonseparable functions which are the hardest instances. Functions f8 f13

are denoted as highly multimodal functions which are non-convex with many local

optima, but all have strong symmetries around the global optimum, located at either

0 or others. Except that, functions f14 f23 have lower dimensions of decision

variables for the multimodal problems. The convergence behavior of the hybrid

algorithm highly affects the final results of convex problems. The best solutions

obtained for these multimodal problems is important because they impact a method’s

capability of jumping from poorly locally optima and getting stuck in sub-optimal

solution.

          Table 4.1: Features of 23 classical benchmarks
Function Name Dim Characteristics

f1 Sphere 30 Unimodal, separable
f2 Schwefel 2.22 30 Unimodal, nonseparable
f3 Schwefel 1.2 30 Unimodal, nonseparable
f4 Schwefel 2.21 30 Unimodal, separable
f5 Rosenbrock 30 Unimodal, nonseparable
f6 Step 30 Unimodal, separable, discontinuous
f7 Quartic 30 Unimodal, separable
f8 Schwefel 2.26 30 Highly Multimodal, separable
f9 Rastrigin 30 Highly Multimodal, separable
f10 Ackley 30 Highly Multimodal, nonseparable
f11 Griewank 30 Highly Multimodal, nonseparable
f12 Levy 30 Highly Multimodal, nonseparable
f13 Levy 8 30 Highly Multimodal, nonseparable
f14 Shekel Foxholes 2 Basic Multimodal, separable
f15 Kowalik 4 Basic Multimodal, nonseparable
f16 Six-Hump Camel 2 Basic Multimodal, nonseparable
f17 Branin 2 Basic Multimodal, separable
f18 Goldstein-Price 2 Basic Multimodal, nonseparable
f19 Hartman 4 4 Basic Multimodal, nonseparable
f20 Hartman 6 6 Basic Multimodal, nonseparable
f21 Shekel 5 4 Basic Multimodal, nonseparable
f22 Shekel 7 4 Basic Multimodal, nonseparable
f23 Shekel 10 4 Basic Multimodal, nonseparable
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Table 4.2: Description (definition, search domain and functional value of minima) of
23 classical benchmark test functions

Algebraic Equation of Test Function Search Domain Optimum
2
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This experiment is conducted in 50 independent runs for every algorithm and every

test problem, leading a total of 50 × 23 = 1150 independent runs. The experimental

formalities are identical to the ones introduced in [47]. The maximum number of

function evaluations for all problems are presented in Table 4.3.

Table 4.3: Maximum number of function evaluations as introduced by Yao et al.
Func. #FEs Func. #FEs Func. #FEs

f1 150,000 f9 500,000 f17 10,000
f2 200,000 f10 150,000 f18 10,000
f3 500,000 f11 200,000 f19 10,000
f4 500,000 f12 150,000 f20 20,000
f5 2 × 106 f13 150,000 f21 10,000
f6 150,000 f14 10,000 f22 10,000
f7 300,000 f15 400,000 f23 10,000
F8 900,000 f16 10,000
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According to successful implementations in literature, some heuristic algorithms are

considered for comparison and evaluation, such as fast evolutionary programming

(FEP) [47], differential evolution [50], particle swarm optimization (PSO) [50, 51],

artificial bee colony optimization (ABC) [52, 53], simple evolutionary algorithms

(SEA) [50, 54] and two-staged memory Great Deluge Algorithms (TSM_GDA) [55].

In those algorithms, TSM_GDA is recent variant of GDA which used two different

referenced templates of memories to operate searching schemes and reserve the best

possible solution under the structure of a Great Deluge Algorithm (GDA) [55]. By

contrast, FEP shows a distinct probability of evolution model, which proposed a

mutation scheme related to Cauchy distribution for creating random sampling and

enhanced the classical evolution program (EP) algorithm during its operation.

All simulation outputs of means and standard deviations obtained from TSM-GDA,

FEP, PC, and MPCDE methods are shown in Table 4.4. It can apparently be

observed that the proposed MPCDE algorithm performs better than other methods

for the test functions according to their values of mean and standard deviation. In

particular, achievements yielded from DE in terms of the adaptive mutation operator

provide alternative valuable ways with perturbed parameter schemes for global

evolution  search.  It  is  obviously  shown that  MPCDE algorithm is  better  than  other

participated algorithms from functions f8 f13. Considering the other functions f14

f23, the TSM-GDA algorithm and MPCDE have similarity on their achievements and

beated the rest of two approaches with their mean values and standard deviations

because they have lesser dimensions of decision variables and get stuck in a limited

set of locally minimum solutions. In all these instances from Table 4.4, the MPCDE

algorithm generally has excellent performances for all problems through all methods.
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Table 4.4: Comparative results of mean (in first row for every function) and standard
deviation (in next row) derived from algorithm of PC, MPCDE, TSM-GDA and FEP
for the set of classical benchmark problems over 50 runs

Function PC MPCDE TSM-GDA FEP
f1 6.591e-5 6.889e-8 7.513e-6 5.7e 4

1.301e-5 1.938e-7 1.340e-5 1.3e 4
f2 4.304e-3 4.606e-6 2.569e-5 8.1e 3

1.252e-3 8.856e-6 3.575e-5 7.7e 4
f3 9.938e-3 3.351e-7 2.038e-6 1.6e 2

3.590e-3 3.343e-7 6.300e-6 1.6e 2
f4 3.715 3.908e-5 2.891e-3 0.3

2.353e-1 2.795e-5 2.606e-3 0.5
f5 8.476e-3 4.684e-10 7.021e-6 5.06

1.784e-3 5.697e-10 1.652e-5 5.87
f6 0.00 0.0 0.0 0.0

0.00 0.0 0.0 0.0
f7 7.911e-3 1.813e-4 1.604e 3 7.6e 3

1.751e-3 1.110e-4 1.255e 3 2.6e 3
f8 -1.143e+4 -1.256e+4 -12,542.88 12,554.5

7.168e+2 14.01 43.15 52.6
f9 2.666 4.832e-13 3.208e 8 4.6e 2

1.156 1.095e-12 5.214e 8 1.2e 2
f10 8.734e-1 1.008e-6 5.527e 5 1.8e 2

9.337e-1 4.763e-7 6.177e 5 2.1e 3
f11 3.221e-1 5.115e-5 1.743e 3 1.6e 2

5.642e-1 9.683e-6 5.444e 3 2.2e 2
f12 1.823e-1 1.325e-19 2.437e 10 9.2e 6

9.563e-1 6.382e-20 4.027e 10 3.6e 6
f13 1.932e-1 8.370e-19 9.166e 8 1.6e 4

2.785e-1 8.053e-19 2.626e 7 7.3e 5
f14 1.016 0.998 0.998 1.22

1.634e-1 1.051e-3 1.215e 11 0.56
f15 1.160e-3 3.075e-4 3.075e 4 5.0 e 4

1.354e-4 8.439e-11 1.188e 10 3.2e 4
f16 -1.032 -1.032 1.032 1.031

5.342e-5 5.274e-9 5.776e 12 4.9e 7
f17 0.398 0.398 0.398 0.398

7.700e-4 2.364e-10 9.600e 9 1.5e 7
f18 3.000 3.000 3.000 3.02

7.777e-6 1.296e-6 3.877e 7 0.11
f19 -3.863 -3.863 3.863 3.86

2.129e-6 9.737e-7 5.053e 14 1.4e 5
f20 -3.298 -3.312 3.297 3.27

4.827e-2 3.264e-2 1.758e 2 5.9e 2
f21 -10.153 -10.153 10.153 5.52

3.078e-5 1.713e-10 3.775e 5 1.59
f22 -10.059 -10.402 10.402 5.52

1.375 9.528e-11 3.641e 5 2.12
f23 -10.198

1.385
-10.536
2.046e-10

10.536
1.695e 5

6.57
3.14

In order to gain better results as a reward, PC random search exchange the

knowledge with CE method and DE operation coordinated with multi-agent
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approach for the communication of adaptive techniques to accomplish given

optimization tasks more efficiently and robustly. Therefore, the proposed method

presents superior mean results compared to other three competitors for all the 23 test

problems.

The convergence speeds of the MPCDE algorithm is illustrated for two classical

multimodal problems: Rosenbrock and Ackley, that are described in Figure 4.4.

Horizontal axis shows the FEs and vertical axis captures the mean fitness extracted

solutions. Obviously, it is evident from Figure 4.4(a) that MPCDE algorithm yields

significantly promising performance in comparison on Rosenbrock problem. Three

algorithms starts with nearly similar values, but the MPCDE algorithm performs

faster towards the global optima at 6000 FEs and obtains a approximate value of 10-5

at about 18000 FEs, whereas the PC approach can only yield about value of 0.01 and

gets stuck into a locally optimal solution. The MPCDE algorithm is advanced PC

approach in the evolutionary runs and this is mainly because the MPCDE algorithm

emphasizes the smoothing factors of distribution operators of CE concept to update

strategy vector’s search operator. Later, the MPCDE algorithm improves

convergence speeds since it attempts to combine with the updated DE operation for

exploring the global optimal solution by use of search distances based on scaling

mutated  schemes  in  promising  solution  of  search  spaces.  On  the  contrary,  the  FEP

and PC approaches maintain almost identical convergence speeds. It can be seen

from Figure 4.4(b) that, MPCDE obviously has better performance than the FEP and

PC approaches such that all selected algorithms display similarly converging speeds

at 600 FEs or earlier. Since the proposed algorithm explores a quite narrow localized

neighbor problem space for earlier time, it applies dynamical smoothing updates of
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distribution  operators  to  improve  the  speed  of  convergences  and  arrives  at  about  1

over 750 FEs.

                            (a) Rosenbrock f5                                                           (b) Ackley  f10
Figure 4.4: Evolution plots in comparisons with PC, FEP, and MPCDE, PC on

(a) Rosenbrock and (b) Ackley Function

Table 4.5 demonstrates comparative results among the algorithms DE, PSO, ABC,

SEA, TSM-GDA, and MPCDE for the 23 test benchmarks for 30-trials and 5.0e+5

FEs. ABC is corporately developed by Karaboga and Basturk [52], Karaboga and

Akay [53], while the PSO, SEA, and DE algorithm’s outputs are available in [50].

The  TSM-GDA algorithm’s  outputs  are  available  in  [55].  Given  a  set  of  the  single

objective functions, first analytical comparison of their evaluations was undertaken

with  MPCDE  and  DE  to  reveal  the  hybridized  strengths  of  the  proposed  approach

against  the  classical  DE  algorithm.  From  this  table,  The  DE  method  has  better

performance than MPCDE for functions f10, f12, and f13 respectively. In contrast,

TSM-GDA yields the best result for function f23 only. Note that the algorithm of DE,

PSO and SEA produce the poor results for test functions f19 and f20 in comparison

with  other  algorithms.  Simulation  evaluations  show  that  MPCDE  outperforms  6

various algorithms on entire problems except for f3, f10, f12, f13, f23, respectively. For

function f3 PSO obtains optimal result in comparison to the MPCDE algorithm.
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Table 4.5: Comparative results of the mean (in first  row for each function),  and the
standard deviation (in new row) derived from algorithm of ABC, DE, TSM-GDA,
SEA, PSO, and MPCDE within 5.0e+5 FEs over 30 runs

Func. MPCDE DE PSO ABC SEA TSM-GDA
f1 0.0 0.0 0.0 5.02e 47 1.79e 3 8.087e 10

0.0 0.0 0.0 4.10e 47 2.77e 4 1.959e 9
f2 0.0 0.0 0.0 2.87e 31 1.72e 2 3.644e 6

0.0 0.0 0.0 1.62e 31 1.7e 3 3.592e 6
f3 5.955e-14 2.020e 9 0.0 3.04e+3 1.59e 2 3.870e 8

1.730e-14 8.26e 10 0.0 4.55e+2 4.25e 3 5.835e 8
f4 3.645e-17 3.850e 8 2.11e 16 39.19 1.98e 2 3.602e 4

3.986e-17 9.17e 9 8.01e 16 3.42 2.07e 3 2.375e 4
f5 1.099e-13 29.0 4.026 1.417 31.32 2.462e 3

5.835e-14 0.0 4.99 2.23 17.4 3.609e 3
f6 0.0 0.0 4.0e 2 0.0 0.0 0.0

0.0 0.0 1.98e 1 0.0 0.0 0.0
f7 1.193e-4 3.939e 3 1.91e 3 0.10 7.11e 4 4.980e 3

1.173e-4 1.13e 3 1.14e 3 0.02 3.27e 4 2.691e 3
f8 1.257e+4 1.257e+4 7.187e+3 1.257e+4 1.167e+4 1.257e+4

2.933e-8 2.30e 4 6.72e+2 5.87e 8 2.34e+2 1.39e 4
f9 0.0 0.0 49.17 0.0 7.18e 1 2.869e 12

0.0 0.0 16.2 0.0 9.22e 1 8.289e 12
f10 5.587e-15 8.881e 16 1.4 3.18e 14 1.05e 2 1.370e 5

1.688e-15 7.03e 16 7.91e 1 3.76e 15 9.08e 4 2.737e 5
f11 0.0 0.0 2.35e 2 0.0 4.64e 3 1.997e 6

0.0 0.0 3.54e 2 0.0 3.96e 3 3.811e 6
f12 1.571e-32 0.0 3.819e 1 2.59e 4 4.56e 6 3.009e 12

1.113e-47 0.0 8.4e 1 9.36e 5 8.11e 7 6.549e 12
f13 1.350e-32 0.0 5.969e 1 1.10e 3 1.143 1.896e 9

2.782e-48 0.0 5.17e 1 3.64e 4 1.34e 5 4.689e 9
f14 9.980e-1 9.98e 1 1.157 9.980e 1 9.98e 1 9.98e 1

9.178e-6 3.75e 8 3.68e 1 3.21e 14 4.33e 8 2.024e 14
f15 3.075e-4 4.173e 4 1.338e 3 3.90e 4 3.704e 4 3.075e 4

5.511e-20 3.01e 4 3.94e 3 8.33e 5 8.78e 5 1.425e 9
f16 1.032 1.032 1.032 1.032 1.032 1.032

0.0 1.92e 8 3.84e 8 0.0 3.16e 8 0.0
f17 3.979e-1 3.979e 1 3.98e 1 0.3979 3.98e 1 3.979e 1

1.129e-16 1.17e 8 5.01e 9 3.27e 10 2.20e 8 1.521e 10
f18 3.00 3.0 3.0 3.00 3.0 3.0

9.029e-16 0.0 0.0 6.28e 16 0.0 3.078e 10
f19 -3.862 – – 3.862 – 3.862

3.160e-15 – – 2.77e 11 – 2.657e 13
f20 -3.322 – – 3.322 – 3.322

1.037e-8 – – 3.35e-8 – 3.103e 8
f21 10.15 10.15 5.4 10.15 8.41 10.15

4.941e-6 4.60e 7 3.40 4.60e 7 3.16 1.768e 8
f22 -10.40 10.40 6.946 10.40 8.912 10.40

0.0 3.58e 7 3.70 3.11e 8 2.86 7.421e 9
f23 -10.536

9.029e-15
10.53

2.09e 7
6.71

3.77
10.536

2.02e 8
9.8

2.24
10.541

9.501e 9

MPCDE is able to escape from poor locally optima of the PC approach and explores

promising strategy vectors with corresponding parameters, which results in guiding
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the appropriate search direction. In this respect, for Rosenbrock function (f5) where

MPCDE found better results in comparison to the rest four algorithms. This is a

popular problem that has multiple features involving nonseparable, differentiable,

scalable, and unimodal, where a globally optimum point is held in a cramped,

extended, curved valley with bending parabola. The search distance based adaptive

mutation scheme for MPCDE enables the hybrid algorithm to determine the high

quality solutions in the complex landscape. Even though DE shows better

performance than MPCDE and other three algorithms for Ackley problem f10,

MPCDE still reveals the 2nd superior achievement over some test functions: f3, f10, f12,

f13 and f23. For lower dimensional functions f14 – f23, TSM-GDA shows better

achievements over 6 competitors because of its two-stage external memory

architecture. Nonetheless, the proposed hybrid algorithm generally has preferable

achievements in comparison with DE, PSO, ABC, and SEA on the rest of functions.

Wilcoxon signed ranks test is provided for comparison between MPCDE algorithm

and other methods for the sake of assessing statistical similarities of the associated

scores. In the interest of testifying the population distribution of each test functions

for every method, procedural parameters of competitors were defined in [50] to

evaluate the simulation scores presented in Table 4.6. The scores of ABC, DE, SEA,

and PSO algorithms can be found in [52]. Based on revealed results, the test of null

presumption  should  be  addressed  to  the  same  populations  of  MPCDE  and  other

methods. Thereby the approximate sums of the ranks are estimated. If the difference

among sum of  ranks  is  too  large,  the  test  tool  rejects  the  null  presumption  that  the

mean of populations are the same.
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Signrank method with Matlab examines the sets of populations by the use of

Wilcoxon signed ranks test. A matched coupling values in statistical signed rank p

and h can be computed based on a factor  = 0.05. Paires of values [p, h] measured

with the signrank tool  are  illustrated  in  Table  4.6.  The  statistical  test  yields  the

following results: eliminated the case of void presumption (p ) for h =  1,

otherwise unable to discard the situation of void presumption (p > ) for h =  0.  In

this respect, the value p principally makes decision whether the test information

sustains the case of null hypothesis or not. According to the indication from Table

4.5, the statistical test deletes null hypothesis for most instances as h =  1.  Besides,

value p is quite minor representing extremely accuracy of the null hypothesis for the

most cases as h = 0. These outcomes of the statistical tests apparently show that the

population of distribution of MPCDE is totally different from its other opponents.

Table 4.6: Results of statistical tests between MPCDE and its adversaries for each
function created by the Wilcoxon tool of population: (p,h)

Func. MPCDE vs. DE MPCDE vs. PSO MPCDE vs. ABC MPCDE vs. SEA
f1 (1.0, 0.0) (1.0, 0.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f2 (1.0, 0.0) (1.0, 0.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f3 (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f4 (1.73e-6, 1.0) (1.06e-4, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f5 (1.67e-6, 1.0) (5.79e-5, 1.0) (3.88e-4, 1.0) (1.73e-6, 1.0)
f6 (1.0, 0.0) (1.50e-1, 0.0) (1.0, 0.0) (1.0, 0.0)
f7 (1.73e-6, 1.0) (1.73e-6, 1.0) (1.02e-5, 1.0) (1.57e-2, 1.0)
f8 (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f9 (1.0, 0.0) (2.84e-5, 1.0) (1.0, 0.0) (1.73e-6, 1.0)
f10 (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f11 (1.0, 0.0) (9.63e-4, 1.0) (1.0, 0.0) (1.73e-6, 1.0)
f12 (1.31e-5, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f13 (1.44e-5, 1.0) (9.71e-5, 1.0) (1.74e-4, 1.0) (1.73e-6, 1.0)
f14 (1.72e-6, 1.0) (3.11e-5, 1.0) (1.72e-6, 1.0) (1.73e-6, 1.0)
f15 (7.16e-4, 1.0) (2.41e-4, 1.0) (1.73e-6, 1.0) (1.24e-5, 1.0)
f16 (3.59e-4, 1.0) (3.58e-4, 1.0) (4.32e-8, 1.0) (3.59e-4, 1.0)
f17 (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f18 (1.73e-6, 1.0) (1.71e-6, 1.0) (6.15e-4, 1.0) (9.62e-4, 1.0)
f19 (1.73e-6, 1.0) (6.25e-2, 0.0) (1.25e-1, 0.0) (2.05e-4, 1.0)
f20 (3.11e-5, 1.0) (1.5e-3, 1.0) (1.73e-6, 1.0) (1.73e-6, 1.0)
f21 (1.73e-6, 1.0) (7.81e-1, 0.0) (2.80e-1, 0.0) (6.64e-4, 1.0)
f22 (4.45e-5, 1.0) (5.79e-5, 1.0) (1.73e-6, 1.0) (4.17e-1, 0.0)
f23 (1.73e-6, 1.0) (1.73e-6, 1.0) (6.89e-5, 1.0) (9.78e-2, 0.0)
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Different convergence plots of the mean optimal objective function of MPCDE and

its  other  state-of-the-art  metaheuristics  are  presented  Figure  4.5  for  some  typical

benchmark problems with various dimensions.

                                  (a) f3                                                                      (b) f4

                                  (c) f5                                                                     (d) f7

                (e) f10                                                                    (f) f15
Figure 4.5: Evolutionary convergence of averaging optimal results yielded in ABC,

DE, PSO, SEA and MPCDE with FEs for 6 problems
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Most selected problems have various sizes and fitness landscape features in whole

set of test benchmarks. Except for problem f3 in Figure 4.5(a), the speed of

convergence  for  the  MPCDE  algorithm  has  superior  and  quicker  performance  than

its opponents for the problems f4, f5, f7, f10, and f15 in Figure 4.5(b–f). This is due to

the integrated strength of PC, CE and DE under the hybrid frameworks to improve

global search ability for different types of selected functions. ABC illustrates a very

fast convergence rate, but it may get trapped into local optimal solutions for case f5

and f10. MPCDE shows similar convergence results to the other methods and DE for

f10. Besides, it is observed from last figure for function f15 that similar convergence

rates has been obtained from MPCDE, DE, ABC and SEA because of lower

dimensions. Observations have been done for the convergence results of the function

f3, f4, f5, f7 and f10, respectively. Obviously, it is evident from the Figure 4.5 that

MPCDE showed faster speed of convergences on all problems but f3. It is proved that

MPCDE attempts to extract efficiently enhanced solutions due to its refining search

schemes for parameters of procedures PC, CE, DE.

4.5.4 CEC2005 Benchmark Problems

In the interest of validating MPCDE for single objective optimization, the second set

of experimental study is conducted on CEC2005 benchmark functions to compare its

evaluations with state-of-the-art metaheuristics. These functions contain 25 different

test problems. Most of the problems from this benchmark set are obtained using

complex techniques of shifting, rotation, and scaling coordinate system based on the

original equations that are given in the first set of benchmark functions. In terms of

difficulty,  most  of  the  test  functions  are  nonseparable,  rotated  and  all  of  them  are

scalable as shown in Table 4.7. Except for two functions (F7 and F25), all other

functions have limits of boundary constraints. Some of the benchmark functions
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contain their global minimum on the boundary. Similar with the first set of problems,

these functions are also categoried into four classes which are presented in Table 4.7.

This  table  lists  name,  domain  of  decision  variable,  optimum,  modality,  and  related

properties including rotated, separable, and scalable of the test functions.

Table 4.7: The Description (Name, Domain, Optimum, Type, Rotated (R), Separable
(Se), and Scalable (Sc)) of the CEC 2005 benchmark functions (Y: Yes; N: No), U:
unimodal, BM: Basic multimodal, HC: Hybrid Composition

# Function Name Initial Range Opt. Type R Se Sc
F1 Shifted Sphere Function [-100, 100]D -450 U  N Y Y
F2 Shifted Schwefel’s Problem 1.2 [-100, 100]D -450 U  N N Y

F3
Shifted Rotated High Conditioned
Elliptic Function [-100, 100] D -450 U  Y N Y

F4
Shifted Schwefel’s Problem 1.2 with
Noise in Fitness [-100, 100] D -450 U  N N Y

F5
Schwefel’s Problem 2.6 with Global
Optimum on Bounds [-100, 100]D -310 U  N N Y

F6 Shifted Rosenbrock’s Function [-100, 100] D -390 BM N N Y

F7
Shifted Rotated Griewank’s Function
without Bounds [0, 600] D * -180 BM Y N Y

F8
Shifted Rotated Ackley’s Function with
Global Optimum on Bounds [-32, 32] D -140 BM Y N Y

F9 Shifted Rastrigin’s Function [-5, 5] D -330 BM N Y Y
F10 Shifted Rotated Rastrigin’s Function [-5, 5] D -330 BM Y N Y
F11 Shifted Rotated Weierstrass Function [-0.5, 0.5] D 90 BM Y N Y
F12 Schwefel’s Problem 2.13 [- , ] D -460 BM N N Y

F13
Shifted Expanded Griewank’s plus
Rosenbrock’s Function [-5, 5] D -130 HC N N Y

F14 Shifted Rotated Expanded Scaffer’s F6 [-100, 100] D -300 HC Y N Y
F15 Hybrid Composition Function 1 [-5, 5] D 120 HC N Y Y

F16
Rotated Version of Hybrid Composition
Function 1 [-5, 5] D 120 HC Y N Y

F17
Rotated Hybrid Composition Function 1
with Noise in Fitness [-5, 5] D 120 HC Y N Y

F18 Rotated Hybrid Composition Function 2 [-5, 5] D 10 HC Y N Y

F19
Rotated Hybrid Composition Function 2
with Narrow Basin for Global Optimum [-5, 5] D 10 HC Y N Y

F20
Rotated Hybrid Composition Function 2
with the Global Optimum on the Bounds [-5, 5] D 10 HC Y N Y

F21 Rotated Hybrid Composition Function 3 [-5, 5] D 360 HC Y N Y

F22
Rotated Hybrid Composition Function 3
with High Condition Number Matrix [-5, 5] D 360 HC Y N Y

F23
Non-Continuous Rotated Hybrid
Composition Function 3 [-5, 5] D 360 HC Y N Y

F24 Rotated Hybrid Composition Function 4 [-5, 5] D 260 HC Y N Y

F25
Rotated Hybrid Composition Function 4
without Bounds [2, 5] D * 260 HC Y N Y

* Note: No boundary for search range.
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Complete explanations of these functions consisting of the concepts, clarification and

their  associated  function  evaluations  conditions  are  available  in  [48].  Each  problem

specifies the initialization space as well as the required accuracy level. These

functions are solved by the proposed method for three dimensional sizes: D=10,

D=30 and D=50 and a maximum number of function evaluations (Max_FEs) is set as

10000 D for these functions. All the investigated algorithms are repeatedly run in

25 independent trials to report all mean objective function values. All outcomes

related to the revealed state-of-the-art metaheuristic methods are available in [55].

In order to measure the success of the proposed approach from its DE hybridization

point of view, three additional DE hybridizations are selected from literature. These

are self-adaptive hybrid differential evolution with simulated annealing algorithm

(SaDESA) [56], self-adaptable genetically programming DE (SaGPDE) [57], and

hybrid real-coded GA (RCGA) [58].

Considering problems with 10 dimensions, Table 4.8 shows the mean fitness values

of the introduced algorithm compared to the scores of 14 well-known metaheuristics

for twenty-five benchmarks of CEC2005 competition. It is very clear that MPCDE is

better for fourteen out of twenty-five problems. In comparison to other methods, the

MPCDE algorithm presented better results for 2 unimodal problems: F3, F5 and

majority of the multimodal problems F6, F7, and F12.  In addition, it is as good as

other methods for the rest of multimodal functions F8, F11, F14. Hybrid composition

functions are more difficult than the other methods because of the synthetic

techniques for combination of several classical benchmark problems.
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Table 4.8: Comparative results of mean values among 14 and MPCDE Algorithms
for CEC2005 test benchmarks with 10-dimension of 1.0e+5 FEs over 25 runs

Alg. F1 F2 F3 F4 F5 F6 F7
BLX-GL50 1.00e-9 1.00e-9 5.71e+2 1.00e-9 1.00e-9 1.00e-9 1.17e-2
BLX-MA 1.00e-9 1.00e-9 4.77e+4 2.00e-8 2.12e-2 1.49 1.97e-1
COEVO 1.00e-9 1.00e-9 1.00e-9 1.00e-9 2.13 1.25e+1 3.71e-2
DE 1.00e-9 1.00e-9 1.94e-6 1.00e-9 1.00e-9 1.59e-1 1.46e-1
DMS-L-PSO 1.00e-9 1.00e-9 1.00e-9 1.89e-3 1.14e-6 6.89e-8 4.52e-2
EDA 1.00e-9 1.00e-9 2.12e+1 1.00e-9 1.00e-9 4.18e-2 4.20e-1
G-CMA-ES 1.00e-9 1.00e-9 1.00e-9 1.00e-9 1.00e-9 1.00e-9 1.00e-9
K-PCX 1.00e-9 1.00e-9 4.15e-1 7.94e-7 4.85e+1 4.78e-1 2.31e-1
L-CMA-ES 1.00e-9 1.00e-9 1.00e-9 1.76e+6 1.00e-9 1.00e-9 1.00e-9
L-SADE 1.00e-9 1.00e-9 1.67e-5 1.42e-5 1.23e-2 1.20e-8 1.99e-2
SPC-PNX 1.00e-9 1.00e-9 1.08e+5 1.00e-9 1.00e-9 1.89e+1 8.26e-2
TSM-GDA 1.69e 9 4.07e 6 3.42e+4 2.15e+1 3.11e 2 6.31e 2 1.28e 1
SaDESA 0.00e+0 0.00e+0 1.60e-6 0.00e+0 1.14e-3 1.59e-1 4.57e-2
RCGA 8.34e-9 8.21e-9 5.71e+2 8.32e-9 8.94e-9 8.87e-9 1.17e-2
MPCDE 7.05e-14 6.82e-14 7.28e-14 8.64e-14 4.51e-12 7.96e-14 8.30e-14

F8 F9 F10 F11 F12 F13 F14
BLX-GL50 2.04e+1 1.15 4.97 2.33 4.07e+2 7.50e-1 2.17
BLX-MA 2.02e+1 4.38e-1 5.64 4.56 7.43e+1 7.74e-1 2.03
COEVO 2.03e+1 1.92e+1 2.68e+1 9.03 6.05e+2 1.14 3.71
DE 2.04e+1 9.55e-1 1.25e+1 8.47e-1 3.17e+1 9.77e-1 3.45
DMS-L-PSO 2.00e+1 1.00e-9 3.62 4.62 2.40 3.69e-1 2.36
EDA 2.03e+1 5.42 5.29 3.94 4.42e+2 1.84 2.63
G-CMA-ES 2.00e+1 2.39e-1 7.96e-2 9.34e-1 2.93e+1 6.96e-1 3.01
K-PCX 2.00e+1 1.19e-1 2.39e-1 6.65 1.49e+2 6.53e-1 2.35
L-CMA-ES 2.00e+1 4.49e+1 4.08e+1 3.65 2.09e+2 4.94e-1 4.01
L-SADE 2.00e+1 1.00e-9 4.97 4.89 4.50e-7 2.20e-1 2.92
SPC-PNX 2.10e+1 4.02 7.30 1.91 2.60e+2 8.38e-1 3.05
TSM-GDA 2.0e+1 6.69e-11 5.72 4.42 8.04e 1 7.27e-2 2.94
SaDESA 2.02e+1 0.00e+0 4.63 5.22 1.40e+2 4.87e-1 2.80
RCGA 2.04e+1 1.15 4.97 2.33 4.07e+2 7.50e-1 2.17
MPCDE 2.00e+1 5.68e-14 9.44e-1 1.33e-1 1.75E-9 5.87e-1 1.89

F15 F16 F17 F18 F19 F20 F21
BLX-GL50 4.00e+2 9.35e+1 1.09e+2 4.20e+2 4.49e+2 4.46e+2 6.89e+2
BLX-MA 2.70e+2 1.02e+2 1.27e+2 8.03e+2 7.63e+2 8.00e+2 7.22e+2
COEVO 2.94e+2 1.77e+2 2.12e+2 9.02e+2 8.45e+2 8.63e+2 6.35e+2
DE 2.59e+2 1.13e+2 1.15e+2 4.00e+2 4.20e+2 4.60e+2 4.92e+2
DMS-L-PSO 4.85 9.48e+1 1.10e+2 7.61e+2 7.14e+2 8.22e+2 5.36e+2
EDA 3.65e+2 1.44e+2 1.57e+2 4.83e+2 5.64e+2 6.52e+2 4.84e+2
G-CMA-ES 2.28e+2 9.13e+1 1.23e+2 3.32e+2 3.26e+2 3.00e+2 5.00e+2
K-PCX 5.10e+2 9.59e+1 9.73e+1 7.52e+2 7.51e+2 8.13e+2 1.05e+3
L-CMA-ES 2.11e+2 1.05e+2 5.49e+2 4.97e+2 5.16e+2 4.42e+2 4.04e+2
L-SADE 3.20e+1 1.01e+2 1.14e+2 7.19e+2 7.05e+2 7.13e+2 4.64e+2
SPC-PNX 2.54e+2 1.10e+2 1.19e+2 4.40e+2 3.80e+2 4.40e+2 6.80e+2
TSM-GDA 7.43e 7 1.27e+2 1.42e+2 6.99e+2 4.96e+2 6.76e+2 4.72e+2
SaDESA 1.10e+2 1.03e+2 5.38e+2 8.35e+2 8.06e+2 8.09e+2 6.07e+2
RCGA 4.00e+2 9.35e+1 1.09e+2 4.20e+2 4.49e+2 4.46e+2 6.89e+2
MPCDE 1.33e+2 1.07e+2 1.07e+2 3.00e+2 3.00e+2 3.00e+2 3.96E+2

F22 F23 F24 F25
BLX-GL50 7.59e+2 6.39e+2 2.00e+2 4.04e+2
BLX-MA 6.71e+2 9.27e+2 2.24e+2 3.96e+2
COEVO 7.79e+2 8.35e+2 3.14e+2 2.57e+2
DE 7.18e+2 5.72e+2 2.00e+2 9.23e+2
DMS-L-PSO 6.92e+2 7.30e+2 2.24e+2 3.66e+2
EDA 7.71e+2 6.41e+2 2.00e+2 3.73e+2
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G-CMA-ES 7.29e+2 5.59e+2 2.00e+2 3.74e+2
K-PCX 6.59e+2 1.06e+3 4.06e+2 4.06e+2
L-CMA-ES 7.40e+2 7.91e+2 8.65e+2 4.42e+2
L-SADE 7.35e+2 6.64e+2 2.00e+2 3.76e+2
SPC-PNX 7.49e+2 5.76e+2 2.00e+2 4.06e+2
TSM-GDA 7.05e+2 5.54e+2 2.00e+2 6.94e+2
SaDESA 7.24e+2 7.85e+2 2.01e+2 4.33e+2
RCGA 7.59e+2 6.39e+2 2.00e+2 4.04e+2
MPCDE 7.53e+2 5.59e+2 2.00e+2 3.68e+2

Interestingly, the TSM-GDA algorithm obtained better scores for problem F15 only.

In effect, the MPCDE algorithm outperformed its competitors on composition

functions F17 F19, F21, meanwhile it has similar better performance to the other

algorithms for problems of F20 and F24. It was also observed from Table 4.8 that the

other hybrid SaDESA algorithm has prominent performance with the other methods

for four non-composition problems F1, F2, F4, and F9.

As dimensions are set to 30 in this experiment, Table 4.9 exhibits the mean fitness

values obtained from 11 algorithms and MPCDE with 1.0e+5 FEs. Compared to the

results of 10-dimension, similar performance of MPCDE can be observed for F4 and

F5 due to exploration of relatively small local neighborhoods. MPCDE had similar

results for F6 – F14, except F7, F9, F10 and F13, where MPCDE lost on those functions

probably because of their multimodal landscape properties. For composition

functions, the introduced algorithm had similar results and gave the same results

compared to the other methods of F23, however, it had better achievement than others

for F18 F20, and F22. Besides, it is quite clear that hybrid SaDESA algorithm has

excellent performance with the other methods for six different types of problems of

F1, F2, F7, F9, F24, and F25 respectively. It was clearly observed from Table 4.9 that,

MPCDE generally outperformed the other methods on 12 out of 25 test functions.
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Table 4.9: Comparative results of mean values among 11and MPCDE Algorithm for
CEC2005 test benchmarks with 30-dimension of 3.0e+5 FEs over 25 runs

Alg. F1 F2 F3 F4 F5 F6 F7

BLX-GL50 1.00e-9 1.00e-9 3.11e+3 1.68e+1 3.33e+2 2.60e-7 1.00e-9
BLX-MA 1.00e-9 8.72e-6 8.77e+5 3.97e+1 2.18e+3 4.95e+1 1.33e-2
COEVO 7.97e-1 4.40e-1 3.67e+2 4.80e+3 8.34e+3 1.21e+3 1.41e-1
DE 1.00e-9 3.33e-2 6.92e+5 1.52e+1 1.70e+2 2.51e+1 2.96e-3
G-CMA-ES 1.00e-9 1.00e-9 1.00e-9 1.11e+4 1.00e-9 1.00e-9 1.00e-9
K-PCX 1.00e-9 1.00e-9 5.79e+1 1.11e+3 2.04e+3 1.75 1.50e-2
L-CMA-ES 1.00e-9 1.00e-9 1.00e-9 9.26e+7 1.00e-9 1.00e-9 1.00e-9
SPC-PNX 1.00e-9 6.95e-7 1.10e+6 8.13e-7 4.24e+3 1.52e+1 1.46e-2
TSM-GDA 2.80e 9 4.32e 2 4.68e+5 1.84e+4 5.25e+3 1.18e+1 3.62e 3
SaGPDE 0.00e+0 0.00e+0 3.52e+6 1.23e-3 6.20e+3 2.30e+1 0.00e+0
RCGA 8.88e-9 9.84e-9 3.11e+3 1.68e+1 3.33e+2 2.60e-7 9.07-9
MPCDE 9.09e-14 9.32e-14 2.62e+2 1.46e-13 1.36e-11 9.78e-14 1.19e-13

F8 F9 F10 F11 F12 F13 F14
BLX-GL50 2.09e+1 1.51e+1 3.52e+1 2.47e+1 9.52e+3 5.15 1.21e+1
BLX-MA 2.07e+1 6.81e-1 9.06e+1 3.11e+1 4.39e+3 3.96 1.26e+1
COEVO 2.09e+1 1.31e+2 2.32e+2 3.77e+1 1.01e+5 9.02 1.32e+1
DE 2.10e+1 1.85e+1 9.69e+1 3.42e+1 2.75e+3 3.23 1.34e+1
G-CMA-ES 2.01e+1 9.38e-1 1.65 5.48 4.43e+4 2.49 1.29e+1
K-PCX 2.00e+1 2.79e-1 5.17e-1 2.95e+1 1.68e+3 1.19e+1 1.38e+1
L-CMA-ES 2.00e+1 2.91e+2 5.63e+2 1.52e+1 1.32e+4 2.32 1.40e+1
SPC-PNX 2.09e+1 2.39e+1 6.03e+1 1.13e+1 1.31e+4 3.59 1.31e+1
TSM-GDA 2.00e+1 1.05e 9 1.66e+2 2.58e+1 6.90e+2 8.35e 1 1.29e+1
SaGPDE 2.01e+1 0.00e+0 1.25e+2 3.13e+1 1.72e+3 1.28 1.28e+1
RCGA 2.09e+1 1.51e+1 3.52e+1 2.47e+1 9.52e+3 5.15 1.21e+1
MPCDE 2.00e+1 1.02e-13 1.38e+1 1.12 3.76e+2 2.76 2.76

F15 F16 F17 F18 F19 F20 F21
BLX-GL50 3.04e+2 8.87e+1 1.35e+2 9.04e+2 9.04e+2 9.03e+2 5.00e+2
BLX-MA 3.56e+2 3.26e+2 2.79e+2 8.78e+2 8.80e+2 8.79e+2 5.00e+2
COEVO 4.11e+2 3.81e+2 4.54e+2 1.06e+3 1.05e+3 1.06e+3 6.04e+2
DE 3.60e+2 2.12e+2 2.37e+2 9.04e+2 9.04e+2 9.04e+2 5.00e+2
G-CMA-ES 2.08e+2 3.50e+1 2.91e+2 9.04e+2 9.04e+2 9.04e+2 5.00e+2
K-PCX 8.76e+2 7.15e+1 1.56e+2 8.30e+2 8.31e+2 8.31e+2 8.59e+2
L-CMA-ES 2.16e+2 5.84e+1 1.07e+3 8.90e+2 9.03e+2 8.89e+2 4.85e+2
SPC-PNX 3.68e+2 7.47e+1 8.54e+1 9.05e+2 9.05e+2 9.05e+2 5.00e+2
TSM-GDA 8.02e+1 2.09e+2 3.93e+2 9.10e+2 9.10e+2 9.09e+2 5.00e+2
SaGPDE 1.09e+2 2.80e+2 2.77e+2 9.00e+2 9.00e+2 9.00e+2 5.19e+2
RCGA 3.04e+2 8.87e+1 1.35e+2 9.04e+2 9.04e+2 9.03e+2 5.00e+2
MPCDE 2.11e+2 1.40e+2 1.51e+2 8.16e+2 8.16e+2 8.16e+2 5.00e+2

F22 F23 F24 F25
BLX-GL50 8.74e+2 5.87e+2 8.77e+2 2.11e+2
BLX-MA 9.08e+2 5.59e+2 2.00e+2 2.11e+2
COEVO 1.16e+3 9.22e+2 1.10e+3 1.03e+3
DE 8.97e+2 5.34e+2 2.00e+2 7.30e+2
G-CMA-ES 8.03e+2 5.34e+2 9.10e+2 2.11e+2
K-PCX 1.56e+3 8.66e+2 2.13e+2 2.13e+2
L-CMA-ES 8.71e+2 5.35e+2 1.41e+3 6.91e+2
SPC-PNX 8.81e+2 5.34e+2 2.00e+2 2.13e+2
TSM-GDA 9.56e+2 5.34e+2 9.89e+2 9.84e+2
SaGPDE 5.19e+2 5.51e+2 1.90e+2 1.91e+2
RCGA 8.74e+2 5.87e+2 8.77e+2 2.11e+2
MPCDE 5.14e+2 5.34e+2 2.00e+2 2.08e+2
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Table 4.10 demonstrated simulation outputs of three valuable methods and MPCDE

algorithm for 25 classical benchmark functions with 50 dimensions and 5.0e+5 FEs.

G-CMA-ES  and  L-CMA-ES  are  more  advanced  versions  of  CMA-ES  that  was

introduced in [59]. Compared with its competitors, MPCDE obtained better mean

values for 20 test functions. From the achievement of the proposed method, MPCDE

was winner over the other competitors for all functions except for functions: F3, F10,

F13, F15, F16, F17 and F21, respectively. Because the proposed algorithm is able to

jump from a locally minimum, obviously MPCDE has better performance compared

to its competitors for more composition problems but functions F15, F16, F17 and F21.

In effect, Table 4.9 and 4.10 show useful references of the scalability’s property for

verifying the introduced hybridization’s performance. As shown in Table 4.9 4.10,

even though MPCDE failed in some cases because of the exploration in local search,

MPCDE still presented better performance than the other state-of-the-art algorithms

on most benchmark problems.

Table 4.10: Comparative results of mean values between L-CMA-ES, G-CMA-ES,
MPCDE and TSM-GDA Algorithm for CEC2005 test benchmarks with 50-
dimension of 5.0e+5 FEs over 25 runs

Alg. F1 F2 F3 F4 F5 F6 F7
G-CMA-ES 1.00e-9 1.00e-9 1.00e-9 4.68e+5 2.85 1.00e-9 1.00e-9
L-CMA-ES 1.00e-9 1.00e-9 1.00e-9 4.46e+8 3.27 1.00e-9 1.00e-9
TSM-GDA 1.91e 9 1.37e 1 6.00e+5 1.05e+5 1.21e+4 1.48e+1 3.26e 4
MPCDE 1.11e-13 1.11e-13 2.82e+2 7.02e-10 8.66e-1 1.11e-13 1.42e-13

F8 F9 F10 F11 F12 F13 F14
G-CMA-ES 2.01e+1 1.39 1.72 1.17e+1 2.27e+5 4.59 2.29e+1
L-CMA-ES 2.00e+1 5.67e+2 1.48e+3 3.41e+1 8.93e+4 4.70 2.39e+1
TSM-GDA 2.01e+1 1.23e 10 4.10e+2 4.77e+1 3.91e+3 1.26 2.25e+1
MPCDE 2.00e+1 1.18e-13 3.60e+1 3.50 9.45e+2 5.80 2.17e+1

F15 F16 F17 F18 F19 F20 F21
G-CMA-ES 2.04e+2 3.09e+1 2.34e+2 9.13e+2 9.12e+2 9.12e+2 1.00e+3
L-CMA-ES 2.50e+2 7.09e+1 1.05e+3 9.06e+2 9.11e+2 9.01e+2 5.00e+2
TSM-GDA 2.00e+2 2.94e+2 3.99e+2 9.26e+2 9.23e+2 9.23e+2 1.02e+2
MPCDE 2.96e+2 6.29e+1 2.57e+2 8.39e+2 8.37e+2 8.36e+2 5.60e+2

F22 F23 F24 F25
G-CMA-ES 8.05e+2 1.01e+3 9.55e+2 2.15e+2
L-CMA-ES 9.10e+2 6.37e+2 8.43e+2 4.77e+2
TSM-GDA 1.04e+3 7.59e+2 1.22e+3 1.32e+3
MPCDE 5.00e+2 5.80e+2 2.25e+2 2.12e+2
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Chapter 5

PROBABILITY COLLECTIVES FOR MULTI-

OBJECTIVE OPTIMIZATION PROBLEMS

5.1 Introduction

Multi-objective  optimization  problems  deal  with  optimization  of  two  or  more

objective functions that must be simultaneously optimized. These objectives

generally conflict with each other by their nature. Pareto optimal solutions involve a

set of nondominated individuals as a compromise (or trade-off) between different

objective functions. Because of the difficulties of real-world problems, the aim of the

multi-objective optimization problem is to carry out an approximate set of solutions

that is as close to the Pareto optimal front as possible. Thus, it is important to define

two criteria to describe how good the generated set of solutions is. These criteria to

be satisfied in MOPs are presented as follows:

1) Convergence: Determine how close the obtained solutions are to the Pareto

optimal front.

2) Diversity:  Determine  how well  the  obtained  solutions  are  distributed  along

the Pareto optimal front.

The convergence, which defines the distance between the obtained solutions and the

optimal  solutions,  is  the  main  criterion  of  all  optimization  algorithms.  On the  other

hand, the diversity defines how well is the coverage of the obtained solutions in the

optimal space while the spread defines how evenly distributed are the multiple

solutions in the optimal space.
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The decomposition technique is a major advantage that requires an aggregation of all

objectives to a single figure of merit. The benefits are supported with single objective

optimization algorithms such as CE, DE, PC and so on. Therefore, a single-objective

problem can be solved more efficiently for a generalized multi-objective model of

the problem. For multi-objective optimization, our research works covers the

investigation of probability distributions of the PC approach together with the

mechanisms of utility to efficiently determine fitness values based on the

accumulated knowledge of communicating agents. Meanwhile a hybrid optimization

algorithm,  combined  with  PC  random  search  optimization  in  the  platform  of

evolutionary algorithms, is developed for solving MOPs. This algorithm involves

most MOEA/D features and algorithmic refinements to improve solution’s quality in

the Pareto set. The performance of the proposed approach is compared with some

state-of-the-art competitors including the MOEA/D algorithm for several

unconstrained MOPs including two and three objectives functions. Experimental

results empirically demonstrated that the proposed approach is highly competitive

and can be considered as a powerful alternative for MOPs.

5.2 MOEAs

Over the past two decades, EAs and other population-based metaheuristics attempt to

nd the set of Pareto optimal solutions in a single run. MOEAs become increasingly

popular for solving MOPs because they evolve simultaneously a population of

potential solutions, which are particularly useful for approximating the trade-off

between solutions extracted qualities in a single run. Most MOEAs perform the

procedures of EAs to find a well-converged and well-diversified set of non-

dominated solutions. Essentially, MOEAs utilize the concepts and development of
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evolutionary algorithms by means of their stochastic operators (crossover, mutation,

and selection) to simply find a set of optimal trade-offs.

Various MOEAs have been proposed to solve MOPs [39, 60-64]. Depending on

different strategies for selecting offspring solutions, the classical MOEAs can be

mainly broken down into 3 categories: Pareto dominance-based methods, e.g. Non-

Dominated Sorting Genetic Algorithm II (NSGA-II) [60] and Strength Pareto

evolutionary algorithm 2 (SPEA2) [61]; Indicator (hypervolume) based algorithms,

e.g. indicator-based evolutionary algorithm (IBEA) [62]; and Scalarizing Function-

based approaches, e.g. multiple single objective Pareto sampling (MSOPS) [63] and

MOEA/D [39, 64, 65].

Pareto dominance-based methods adopt the Pareto dominance relation along with the

crowding distance in NSGA-II or clustering methods in SPEA2 to select offspring

solutions for promoting the convergence and the diversity. Besides, with the prior

information defined by the decision maker (DM), the earliest preference-based

MOEAs  were  made  to  select  the  preferred  solutions  for  well-distributed

approximation of the PF [66]. Additionally, the preference information was

hybridized with NSGA-II by perturbing the dominance concept and adapting

weighted crowding distance to yield a more fine-grained selection operators [67].

The second class guides the selection operator by using scalar indicators, considered

as the fitness. The most commonly recommended performance indicator is

hypervolume (HV) [68], which can measure two multi-objective criteria

simultaneously. However, indicator based method requires more search capability.

For example, the high time complexity of hypervolume calculation exponentially
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increases as the number of objective functions raises [69]. To solve this problem, a

general IBEA [62] takes different performance measures to compare differences of

pairwise solutions by using an arbitrary indicator for approximating HV

contributions.

In contrast to the above two classes of MOEAs, plain aggregation approaches

calculate particular fitness assignment by predefined weight vectors and decompose

various complicated problems into a set of subproblems for solution selection. The

earliest application for non-Pareto-based approach of the MOEA, known as Vector

Evaluated Genetic Algorithm (VEGA) [70] was proposed to extend the basic GA’s

principle. Its linear aggregating feature transformed all objective functions into a

single population without decreasing their solution qualities. Later, the term

decomposition [39] has emerged as an effective way for tranforming a number of

single objective subproblems based on population. Except that, Hybrid MOEAs

usually lies in this group as well, so that different characteristics of scalability can be

utilized as natural choices. For example, one hybrid EA-PSO was integrated with the

search operators from two different algorithms of PSO and EAs for optimal solutions

in permutation representation [71]. In hybridization, memetic MOEAs combined

various local search methods for better offspring selection. As a typical

representative EAs for this group of multi-objective optimization, MOEA/D has

achieved great success in the field of evolutionary multi-objective optimization

involving decomposition, scaling weight vectors and other nature inspired methods.

5.3 MOEA/D

Recently, a multi-objective evolutionary approach based on decomposition has

attracted lots of researchers and has achieved enormous success in the field of
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evolutionary multi-objective optimization. Rather than other class of algorithms, it

decomposes a MOP into a set of single objective scalar optimization subproblems

based on aggregation method and then uses the evolutionary computation to optimize

these subproblems in a concurrent manner. Each objective is handled by its optimizer

with their corresponding weight vectors. Besides, neighborhood relations between

these subproblems are established according to the distances among their aggregation

weight vectors to provide useful information for each subproblem.

In the interest of the aggregation method, conventional MOEA/D mainly involves

three decomposition approaches: weighted sum [41], Tchebycheff decomposition

and boundary intersection [72]. According to their characteristics, MOEA/D

discovers several merits over Pareto dominance concept such as computational

adaptability, ef ciency, scalability and feasibility to many types of problems. In spite

of its advantages, MOEA/D has also been exposed two drawbacks: unable to create

an arbitrary number of weight vectors when the number of objectives is more than

two; unchanged weight vectors for different shapes of PF.

However, the MOEA/D paradigm has been studied and used with success for dealing

with  many  MOPs  and  complex  ones  as  well.  The  original  MOEA/D  [39]  used  the

techniques of simulated binary crossover (SBX) [73] and polynomial mutation [60]

to generate new offspring. A solution is allowed to couple only with its neighbors

and a new solution could replace any old solution in its neighborhood if it is better

than them. The evolutionary process ow of MOEA/D is illustrated with Algorithm

5.1. Meanwhile, MOEA/D has received increasing research attention and different

follow-up studies can be classified into four aspects:

Combination MOEA/D with other nature inspired metaheuristics;
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Incorporation of new decomposition strategies into the framework of

MOEA/D;

Creation of newly initial weight vectors and adaptively adjusting the

distribution of problems in the process of evolution;

Modification of offspring solution reproduction mechanisms in MOEA/D.

Algorithm 5.1: Pseudo-code of MOEA/D [38]
Initialization:          // N, population size and M, the number of objective;
1: Generate a set of weight vector W  {w1, ,wN}, form subproblem B(i) = {i1,…, iQ} from the

Q shortest Euclidean distance to wi;
2: Randomly initialize a population P  {x1, ,xN}, and evaluate its objective values S

{F(x1), ,F(xN)};
3: Determine reference point z* (z1

*,…,zM
*)T by zj

* = min i N fj(xi);
4: Set g’  0, iter 0;    // g’ is generation and iter is iteration
5: While g’ < FEs Do
6: For i = 1,…,N, Do
7:       (xa, xb) Selection(B(i), P);
8:       (xa’, xb’ ) Crossover(xa, xb) by simulated binary crossover;
9: y Mutation(xa’, xb’) by polynomial mutation;

10: F(y) Evaluate_Fitness(y);
11: Update of z*: For j = 1,…,M, If zj

* > Fj(y’), Then zj
* = Fj(y’);

12: gte Assign_Fitness(W, F(y), z*) by Tchebycheff;
13: Replace_Solution: For j B(i) Do If gte(y| j, z*) gte(xj| j, z*), Then

xj = y, and Sj = F(y);
14: End For
15: End While

A number of MOEA/D variants, like MOEA/D-DE [64] with DE operator was

addressed and shown to outperform classical MOEA/D and NSGA-II, especially for

complex problems. Another further improved version MOEA/D-DRA [65] allocates

various amounts of computational effort to different subproblems according to their

utility functions. This approach updates a set of descendant individuals by use of

ranking and tournament selection [3] as shown in following section. A parallel

version of MOEA/D-DE, named pMOEA/D [74], obtains linear speedup from

running on different multi-core processors. Besides, the idea motivated from

MOEA/D has been integrated with local search into a hybrid algorithm [75]. The
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MOEA/D family usually addressed the straightforward decomposition techniques is

described as follows.

5.3.1 Decomposition of Multiobjective Optimization

By way of simplicity, there are two main methods of decomposition. These

techniques address composite functions, where a set of single objective functions can

easily model a MOP.

1) Weighted Sum Approach

This method considers a convex association for the various objectives. Assume that

W = (w1,…,wm)T be a weight vector, i.e., wi  0 for all i = 1,…, m. If = 1 and

wi  1, the weighted sum is known as a convex combination of objectives. Then, the

optimal solution can be defined as the following scalar optimization problem:

1
1

maximize  ( | ) ( )
m

i i
i

g x w w f x

subject to x .                                                          (5.1)

where D is the feasible space of decision vector x = (x1, x2, …, xD)T. The single

objective function g1(x|w), is the combination of the m objectives, given the weights

w1,…,wm if  the  PF  of  the  expression  (2.4)  is  concave  (convex  in  the  case  of

minimization) as illustrated in Figure 5.1. By optimization, g1(x|w)  function  will  be

minimized for locating solutions to a set of Pareto optimal vectors. As changing wi,

each single objective optimizer determines distinct optimal solutions.

Figure 5.1: Convex and concave problems
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2) Tchebycheff Approach

For w M, the scalar optimization problem can be defined in the following form

*
2

1
minimize  ( | , *) max{ | ( ) }i i i

i m
g x w z w f x z

subject to x .                                                   (5.2)

where z* = (z1
*,…, zM

*)T is the reference point, i.e., zi
* = max{fi(x)|x )} for each i

= 1,…,m. For each Pareto optimal point x*, there exists a weight vector w such that x*

is the optimal solution of (5.2) and each optimal solution of (5.2) is a Pareto optimal

solution of (5.1). Thus, this approach is considered to evaluate fitness functions using

the weighted objectives (5.1) and is appealing since aggregation function g1(x|w)

from (5.1) can obtain various Pareto optimal solutions by altering the weight vector.

Even though such method is not smooth for a continuous MOP, the proposed method

for  MOPs  modifies  the  scalar  optimization  technique  to  calculate  the  derivative  of

aggregation function in objective space.

5.3.2 Tournament Selection

Tournament [3] is one of the most popular selection operators in EAs because of its

efficiency and simple implementation. Binary tournament selection is the most

commonly used search operator. For this type of selection, two individual solutions

are randomly selected from the larger population, and take the best one by comparing

both solution into the intermediate population, and this process is repeated for a

predefined number of times. The solution in the highest rank wins as a parent. The n-

tournament selection is an implementation of the binary tournament selection where

n is the tournament size that defines the number of individuals that compete for the

tournament. Algorithm 5.2 shows the procedure for tournament selection [76]. In the

natural process of evolution, the selection operator decides the probability of survival

for the next generation.
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Algorithm 5.2: Tournament selection [76]
1: For individual i = 1 to pop_size
2: Choose two individuals randomly from all population
3: If fitness individual p1 > fitness individual p2
4: Select individual p1, otherwise, select individual p2
5: End If
6: End For

5.4 The Proposed Approach for MOP (MOEA/D-PC)

From a different point of view, multiple objective problems are considered as a set of

single objective optimization, because single objective approaches are frequently

used to suggest new solution ideas for solving MOPs. This idea provides way to

understand relationships between single objective problem and multi-objective

problem, and demonstrates how solution concepts from single objective optimization

can be used to embed a new perception into the structure of multiple objective

optimization methods. Therefore, the proposed approach utilizes the idea of the

decomposition in MOEA/D framework based on PC approach to deal with

unconstrained hard MOPs.

The  relationship  between  SOP  and  MOP  are  explained  as  follows.  Firstly,  a  given

MOP is decomposed into SOP by means of scaling single objective functions with

their corresponding weight vectors. According to the multiple objective problem

concepts, an associated single objective optimization problem is then formulated and

there exists at least one optimal solution for each single objective problem, and their

combination is also optimal for the original multiple objective problem. The general

structure of relationship between MOP and SOP for the proposed approach is

depicted in Figure 5.2. The figure states that a MOP is modeled by decomposition to

form corresponding SOP. The optimal solution for the SOP is used to obtain the
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efficient set XE for the associated MOP as the nondominated solution. This

computational step is also named as filtering.

Figure 5.2: The general structure of relationship between MOP and SOP

The proposed approach adopted the MOEA/D framework to transform the given

MOP into a related SOP by means of an appropriate scalarization. By the

decomposition, the individual solutions was initially handled by PC random search

method. In terms of its randomness, the designed framework distributes principal

tasks to PC agents, which estimates expected utilities of probabilities from extensive

sampling and applies gradient descent technique for updating probability

distributions to optimize them synchronously. The favorable solutions will be found

from the existing population with respect to distinguishing probability by natural

selection and have more opportunities to survive for following generation so that the

algorithm eventually converges to the true optimal solution. According to the

reviews, PC-based studies are naturally well-suited for solving MOPs and they

apparently have more potential for multi-objective optimization. As mentioned

earlier, two algorithms of MOPC [22] and MOPC/D [23] were proposed to place
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greater emphasis on highly promising exploration direction for the PC strategy

vectors in multi-objective optimization.

Since PC is hybridized with classical MOEA/D framework, our proposed approach is

called probability collectives MOEA/D (MOEA/D-PC) [77]. One combined mutation

operator between polynomial and Gaussian schemes adjusted by CE method is

introduced as the global search engine in the MOEA/D framework for the multi-

objective optimization. The promising fitness values in the solution space are

improved by MOEA/D, which then update population of points of the Pareto

distribution. The proposed method involves random weight vectors, probability

distributions search and combined evolutionary operators in order to accelerate the

convergence to a near-optimal Pareto Front. Experimental evaluations of the

proposed MOEA/D-PC approach exhibit the superiority of the proposed method over

several state-of-the-art algorithms for the CEC2009 Special Session Competition

problems. In the proposed framework, MOEA/D combines PC random search

algorithm to deal with a number of single objective problems and optimized them in

a cooperative manner. The proposed method is supported by the MOEA/D as general

framework and emerges from three modifications to MOEA/D-PC:

(1) Constructing the aggregated objectives into a scalar function by using

random weighted approach;

(2) Applying PC approach as a local search operator to approximate the PF in

a single optimization run;

(3) Performing a new mutation scheme as a global search operator by

combining two mutation operators, namely polynomial and Gaussian

adjusted by the CE method.
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These modifications generate new aggregated weight vectors by decomposition

method  to  form  composite  problems,  where  PC  improves  the  convergence  rates

towards nondominated solutions and then DE mutation scheme further updates the

fitness values to maintain the diversity of the population and approximate the PF in

the objective space.

5.4.1 Decomposition of Multi-objective Optimization

MOEA/D decomposes a MOP into a set of single objective optimization

subproblems and optimizes them in a simultaneous manner using a set of random

distributed weight vectors in the objective space. As discussed before, Tchebycheff

approach  has  similar  effects  as  Pareto  dominance  for  selection.  Here,  the  proposed

algorithm constructs the fitness function which is similar with Tchebycheff approach

in  order  to  transform  a  MOP  into  a  number  of  scalar  SOPs.  Each  individual i is

related to a weight vector  =  ( 1
i,…, M

i)T consisting  of M real-valued objective

functions and the set  of all  weight vector is  { 1,…, N}, where N is the population

size.

Decomposition method indicates a convex distribution of the different objectives. Let

=  ( 1,… M)T be a weight vector, i.e., j  0 is a uniformly random sampling

chosen  value  from [0,  1]  for  each  objective j = 1,…,M and  satisfying  the  condition

that
1

1M
jj

. To generate a set of different Pareto optimal vectors, each utilizing

different weight vectors , scalar single-optimization problem is defined as:

1
minimize   ( | ) = max[ ( )],

subject to

i
j jj M

g x h x

x
                         (5.3)
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where x is the variable vector for Pareto optimal point with the convex PF of (2.4).

The optimizing function hj(x) is formulated as

( ) log(1 ( ) )j j jh x f x z                                             (5.4)

where z* = (z1
*,…, zM

*) is the reference point, i.e., zi
* = max{fj(x)|x )} for each j =

1,…, M. A weight vector guarantees to find its corresponding Pareto optimal point

x*,  that  is  the  optimal  solution  of  (5.4)  and  each  optimal  solution  of  (5.4)  is  Pareto

optimal of (5.3). The constructed fitness function ultimately approximates the

objective points desired to lie on the PF by the use of logarithmic function in

evolution.

5.4.2 MOEA/D-PC Framework

Motivated by decomposition, the MOEA/D-PC initially breaks down a MOP into a

number of individual solutions with random weight vectors so that each optimizer

has an equal probability to solve a problem. First, PC operates on probability

distributions to find favorable solutions which can be stored in an archive as

illustrated in Algorithm 5.4. Then offspring solutions are reproduced with the

combined mutation scheme which is presented the following section. The fitter

solutions are obtained from population by the selection operator in MOEA/D.

By N randomly  distributed  weight  vectors i (i =  1,  2,  …, N), each individual

solution i is aggregated by the constructed fitness function g(x| i) under

consideration. Indeed, the hybrid algorithm conducts N individual fitness solutions

simultaneously for single objective subproblems. The uniformity of the aggregation

of  random  weight  vectors  is  contained  within  the  uniformity  of  the  Pareto  optimal
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solutions, and the algorithm could explore the solution space starting from the initial

generation.

Because g(x| ) is a continuous function of , any two subproblems are likely to have

similar solutions if their weight vectors are close to each other. Following this

observation, the neighborhood for each i, B(i)  = {i1,…,iTb} and R(i)  = {i1, ,iNr} are

established according to the Euclidean distance between their weight vectors. B(i)

with Tb weight vectors are the Tb nearest to i among all the N weight vectors. R(i)

with Nr weight vectors are the Nr nearest to i. This relationship of neighboring for

the problems is used for the selection of current solutions and the replacement of old

solutions. B(i) and R(i) are generated and executed in initial and updated search steps.

Therefore, the size of the neighborhood used for selection and replacement plays an

essential role to exchange information for the solutions in a collaborative manner.

For several investigations from other researchers, larger size may deteriorate

effectiveness of the whole MOEA/D because of the furthest neighbor problems for

selection. Smaller size may occupy inherent information to raise the delay due to

limited neighbor problems for replacement.

MOEA/D-DRA [65] is a MOEA/D variant which adopts the dynamical resource

allocation (DRA) technique. The proposed algorithm is derived from this version as

an efficient tool to update individual solutions for all Pareto optimal solutions.

During an iteration, a utility function i is defined for each individual pi to estimate

possible improvement in the aggregation function value according to their amount of

computational efforts. Different computational efforts are thus distributed to a set of

problems based on their utilities. The expression (5.5) of i is:
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1                                  if  0.001;

(0.95 0.05 )  otherwise.
0.001

i

i i
i

                         (5.5)

where i is the relative decrease in the aggregation function value of pi, which can be

evaluated in Equation (5.6) as follows,

* *

*

( | , ) ( | , )
( | , )

old i new i
i

old i

g x z g x z
g x z

                                  (5.6)

where xold and xnew are previous and current solutions of pi.

The proposed hybrid approach MOEA/D-PC combines Gaussian mutation and

polynomial  mutation  together  with  the  CE  method  as  global  search  operator  to

update offspring solutions. This technique efficiently improves the diversity of the

population, thus escapes the local minima and approaches the near-global optimum.

The hybrid algorithm contains PC approach in MOEA/D with DRA technique to

form  MOEA/D-PC,  and  the  complete  operation  of  proposed  framework  is

summarized in Algorithm 5.3. More details of the base framework MOEA/D can be

found in [65]. The polynomial mutation operator in line 21 of Algorithm 5.3

generates y’ based on yK
new based on the Equations (5.7-5.8):

,

,

( )   with probability
'

                            with probability 1

new
K K K K m

new
K m

y b a p
y

y p
             (5.7)

1
1

1
1

(2 ) 1        if <0.5,

1 (2 2 )   otherwise,
K

rand rand

rand
                              (5.8)
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Algorithm 5.3: MOEA/D-PC framework
1: Step 1  Initialization
2: Generate N random spread weight vectors { 1, , i, , N}, and M objective function for each

i;
3: Randomly generate first population Pop = {x1,…, xN} by uniformly sampling for D

dimensions xi from ., evaluate their fitness function F(xi) = {F1(xi),…, FM(xi)};
Set an uniform probability of xi q(xi) = 1/N for PC;

4: EP  non-dominated solutions from Pop;
5: Calculate the Euclidean distances between any two weight vectors to form Tb nearest weight

vectors (B(i) = {i1,…, iTb}, i  [1, N]) for each weight vector as neighboring solutions and
determine the other weight vectors R(i) = {i1, ,iNr} where Nr is the maximal neighborhood
size for replacement to new solution;

6: Define the utility for update step i  1;
7: Initialize reference point of z* = (z1,…,zM)T by setting zj

* = min i N fj(xi) j = 1,…, M to be the
lowest objective values of the solutions;

8: Set Temperature Te  0, evaluation gen  0, iteration K  0;
9: Step 2  PC Search

10: Build PC for updating its distribution using Pop, q, F(xi) and Te (see Algorithm 5.4);
11: Step 3  Update
12: Select N/5 individuals from population based on i by using tournament to form set I;
13: For i =1,…, I Do
14: Reproduction: Uniformly Generate a random number rand from (0,1);
15: If rand < Then
16:        Randomly select two indexes r1 and r2 from B(i);
17: Else
18:        Randomly select two indexes r1 and r2 from Pop;
19: End
20:    Create a new offspring yK,new from parents xr1 and xr2 by using DE operator as yK,new = xi

+ F(xr1 – xr2);
21:    Do polynomial mutation to yK,new and generates y’ by combining two mutations;
22: Evaluation: Evaluate the objective functions F(y’);
23: gen = gen + 1;
24: Update of z*: For j = 1,…,M, If zj

* > Fj(y’) Then zj
* = Fj(y’);

25: Fitness assignment: Calculate fitness value to each solution g(y’| *, z*) using the
constructed fitness solution;

26: Update solution: set c = 0 and perform the following procedure;
27: For each j in B(i) Do
28: If g(y’| j, z*) g(xj| j, z*), Then set xj = y’, and c = c + 1;
29: If c > Nr, Then Go to Step 3;
30: End
31:    Update EP by accepting y’ if no solution dominates it, otherwise removing from EP, that the

solution is dominated by y’.
32: End
33: K K + 1;
34: If mod(K,20) = 0 Then
35:    Update i for each i using previous and current solutions xold , xnew;
36: End
37: Step 4 Stopping Criteria
38: If gen < MAX_FEs Then Go to Step 2;
39:    Otherwise, stop the algorithm and pick Pop, output non-dominated solutions in EP.
40: End
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5.4.3 PC Algorithm in MOEA/D Framework

As mentioned previously, probability distribution is updated by PC to become highly

effective as near optimal strategy vectors. When updating the distribution, all

samples would typically be used to find the favorable strategies simultaneously for

each agent with respect to the highest probability value. This promising vector

contributes to evaluate solution's quality of the Pareto set. During its iterations, PC

repeatedly updates each of the agent’s distributions as reducing Te until the

predefined number of iterations or the quality of the best solution is reached. The

final results of PC are stored in EP. Details of line 10 of Algorithm 5.3 are explained

in Algorithm 5.4.

Algorithm 5.4: Update PC distribution
1: If mod(K,20) = 0 Then
2:   Select Np = 10 strategies from subproblems by using tournament selection;
3:   Find strategy vector yfav from updated q by two functions of E and J for each agent (see

Algorithm 1); Decrease Te in Equation (3.11);
4: Evaluation: Evaluate the objective functions F(yfav);
5: gen = gen + 1;
4: For i = 1, …, Np Do
5: Update of z*: For j = 1,…,M, If zj

* > Fj(yfav) Then zj
* = Fj(yfav);

6: Fitness assignment: Calculate fitness value to each solution g(yfav| *, z*) using the
constructed fitness solution;

7: If g(yfav| i, z*) g(xi| i, z*), Then set xi = yfav;
8: End
9:   Form a new strategy set yi within updated interval [ , ] i and evaluate the objective

functions G(yi) for each agent i  [1, D];
10:    Update z* and assign fitness to estimate g(y[j]|w*,z*) for each j = 1,…, Np;
11: For each strategy j Do
12: If fitness g(y[j]|wj,z*)  g(xj|wj,z*) Then
13: g(xj|wj,z*) = g(y[j]|wj,z*), set xj = y[j];
14: End
15: End
16:    Add x* for Pop to update EP;
17: End

The proposed multi-objective algorithm employs the above described probability

engine to represent its probability distributions for increasing flexibility in addressing

difficult fitness landscapes, while it implements traditional gradient-based local
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search technique to form an integral part of MOEA/D framework without prejudicing

search diversity. The nondominated solutions obtained from Algorithm 5.4 can be

used to perform local search around the favorable solution space. The proposed

approach based on the PC framework balances simultaneously the optimization

criteria of convergence and diversity. Also, PC approach, using the cooling schedule,

allows random sampling to be actively directed towards promising individuals.

Therefore, MOEA/D-PC would generate high quality Pareto set approximations

based on the Pareto dominance.

5.4.4 Combined Mutation Operator

The selection procedure determines the parent individuals based on pervious and

current solutions generated by mutation operator, which is the most important

procedure to produce offspring solutions. Instead of the original polynomial scheme

in MOEA/D [65], the proposed approach combines the new Gaussian scheme and the

original one together with CE method, which results in generating more efficient

solutions closer to the global optimum. Consequently, the hybrid multi-objective

algorithm needs to perturb individuals to specific points in fitness landscape and

maintains the diversity of the population of solutions. For the implementation,

Gaussian mutation is adopted to generate a new individual yg’ from a randomly

selected vector xK,new in the population, which can be described as:

K = (bK aK)/20,                                                   (5.9)

yg’ ~ N (xK,new, K),                                                (5.10)

After obtaining y’ calculated from polynomial Equation (5.7) and (5.8), the proposed

scheme combines two results y’ and yg’  to  yield  a  new  mutated  vector y’ by the

concept of CE method. Let K represents the current iteration step, the vector y’ is



75

renewed by two distribution operators in the CE as shown in Equations (5.11-5.12)

as follows,

y’ = y’ + (1 )yg’,                                            (5.11)

= (1 1/K) ,                                             (5.12)

where denotes a constant of smoothing factor,  is an integer of exponential growth

rate. In this way, the introduced hybrid model reproduces the high-quality solutions

by efficiently searching towards more promising regions in the search space. With

the smoothing parameters in the CE concept, offspring population solutions moves

faster convergence towards the true Pareto-optimal front and maintain the diversity

in the discovered nondominated set of solutions.

5.5 Experimental Studies

In the interest of assessing the performance of the proposed MOEA/D-PC algorithm,

it is compared to some state-of-the-art metaheuristics using the 10 benchmark

problems from the CEC2009 contest on unconstrained multi-objective optimization.

These test functions include seven 2-objective functions (i.e., UF1–UF7) and three

3-objective functions (i.e., UF8–UF10) with complicated Pareto Fronts [78]. Each

problem has different characteristics and their descriptions are presented in Table 5.1.

This table lists name, number of objectives, dimension, search domain, geometry,

modality and separability of all problems. The detailed mathematical representations

of these test functions are given in [78]. According to the PF geometry, these multi-

objective test problems present different shapes of their Pareto-optimal sets (concave,

convex, continuous, discrete, linear, and mixed). Also, the decision variables in most

of the problems are dependent on each other due to nonseparable features. All test

problems contain decision variable linkages and are tightly difficult to classical
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MOEAs. Each problem is defined over 30 decision variables and a maximum of

300,000 function evaluations (FEs) is allowed for each test problem including 2-

objective and 3-objective functions. Each algorithm is independently run 30 times for

each test instance.

Table 5.1: Description (Name, number of Objective, Dimension, Domain, Geometry,
Modality and Separability) of CEC2009 Benchmark Multi-objective Test Problems
with M number of objective, D number of decision variables, scalable S, separable
SP, nonseparable NS

Problem M D Domain Geometry Modality SP/NS

UF 1 2 30(S) [0,1]×[-1,1]D-1 Convex Multimodal SP
UF 2 2 30(S) [0,1]×[-1,1]D-1 Convex Multimodal NS
UF 3 2 30(S) [0,1]N Convex Multimodal NS
UF 4 2 30(S) [0,1]×[-2,2]D-1 Concave Multimodal NS
UF 5 2 30(S) [0,1]×[-2,2]D-1 Linear Multimodal NS
UF 6 2 30(S) [0,1]×[-1,1]D-1 Linear, Disconnected Multimodal NS
UF 7 2 30(S) [0,1]×[-1,1]D-1 Linear Multimodal NS
UF 8 3 30(S) [0,1]2×[-2,2]D-2 Concave Multimodal SP
UF 9 3 30(S) [0,1]2×[-2,2]D-2 Linear, Disconnected Multimodal SP
UF 10 3 30(S) [0,1]2×[-2,2]D-2 Concave Multimodal NS

The hybrid multi-objective algorithm is implemented using Matlab®10a

programming language environment and a personal computer with (Intel (tm) i5-

2540 Dual Core Processor, 2.60 GHz clock speed, and 4GB RAM). The precision for

the floating-point operations is set to 15 fractional digits. In all tables illustrating

experimental results, scores of the best performing algorithms are typed in boldface.

The parameter settings in the experimental studies are kept in consistent in all trials.

Details of parameter settings are as follows:

Initial population N: 600 for 2-objectives, 1000 for 3-objectives problems;

dimension of decision variables D = 30;

Neighborhood size and maximum number of replacement: Tb =  0.1N, nr =

0.01N;
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For PC search, selection size, step size, cooling rate, limit factor and

convergence parameter: Np = 10, s = 0.098, T = 0.9, = 0.9 and  = 0.0001;

Selection rate from neighborhood:  = 0.9;

For DE, crossover rate and mutation rate: CR = 1.0 and F = 0.5;

For mutation operators, distribution index, mutation probability, smoothing

constant and integer parameter: = 20, pm = 1/N, = 0.8 and r = 9;

Terminating condition: the algorithm stops after 300,000 function evaluations

for all test instances.

Based  on  the  CEC2009  setings  for  comparative  evaluations,  IGD  scores  of  the

proposed algorithm and its competitors are used to conclude on their mutual success.

For the PC algorithm calculation of utility function is carried out in every 20

iterations. In order to verify the performance of all algorithnms under consideration,

a popular quality indicator that takes into consideration both the accuracy of a

solution set and its diversity is the inverse generational distance (IGD) [79]. IGD

measures the average Euclidean distance between the true Pareto front and the

approximation obtained by a multi-objective algorithm. Let P* be a set of uniformly

distributed Pareto optimal solutions in the objective space along the PF. Let A be an

approximation to the PF, the average distance from P* to A is defined as:

* ( , )
( , )

| |
v P

d v A
IGD A P

P
(5.12)

where d(v, A) denotes the minimum Euclidean distance between the true PF and the

approximate PF A. |P*| indicates the number of selected points used to represent the

PF.  IGD  is  normally  used  as  an  indication  of  the  diversity  and  convergence  of

solutions. When the value of the IGD is lower, a better approximation is achieved. In
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our experiments, the numbers of nondominated solutions selected from final

nondominated solutions to compute IGD are 100 for 2-objective functions and 150

for 3-objective functions.

The proposed algorithm is run under the standard configurations described in

CEC2009 technical report [78]. The IGD scores for each benchmark function are

shown in  Table  5.2.  This  table  includes  the  best  score,  the  worst  score,  mean score

and standard deviation of the IGD values obtained for each test instance over the 30

independent runs of the introduced approach MOEA/D-PC. Also the mean IGD

values  obtained  by  MOEA/D  are  also  presented  in  the  same  table.  The  results

associated with MOEA/D can be found in [65]. It is evident from the table that

MOEA/D-PC outperforms MOEA/D for almost all the 10 test problems, loses in 1

problem only.

Table 5.2: IGD values obtained with MOEA/D-PC and MOEA/D for 10
unconstrained test problems (UF UF10) in 30 independent runs

Func. MOEA/D-PC MOEA/D
Best Worst Mean Std Mean Std

UF 1 0.003436 0.004059 0.003885 0.000147 0.00435 0.00029
UF 2 0.005226 0.007046 0.005678 0.000504 0.00679 0.00182
UF 3 0.002478 0.007266 0.003195 0.000846 0.00742 0.00589
UF 4 0.039551 0.040698 0.039756 0.000429 0.06385 0.00534
UF 5 0.089697 0.112095 0.091366 0.005242 0.18071 0.06811
UF 6 0.049578 0.060721 0.056016 0.004922 0.00587 0.00171
UF 7 0.003169 0.005926 0.003622 0.000838 0.00444 0.00117
UF 8 0.049672 0.053630 0.049893 0.000919 0.05840 0.00321
UF 9 0.034935 0.042759 0.035534 0.001733 0.07896 0.05316
UF 10 0.167260 0.471266 0.274512 0.110615 0.47415 0.0736

Performance of MOEA/D-PC algorithm is also evaluated and compared with a set of

stochastic and deterministic methods. This experimental analysis is carried out over

ten different multi-objective optimization algorithms as shown in Table 5.3(a, b).

The algorithms selected for comparative evaluations are related to PC and DE as well
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as  several  MOEA/D versions.  The  first  two methods  are  related  to  PC,  i.e.,  MOPC

and MOPC/D. GDE3 is one of popular multi-objective optimization algorithm

because it is a simple but effective MODE with fixed parameter settings.

MOEADGM and extension of the MOEA/D, which introduces two types of

techniques of a guided mutation operator and a priority queue for updating

population elements [80]. OW-MOSaDE adopts an objective-wise learning scheme

by adaptive parameter settings [81]. AMGA (Archive-based Micro Genetic

Algorithm) is a constrained hybrid multi-objective evolutionary optimization

approach involving a classical gradient-based single objective optimization algorithm

[82]. NSGA-II-ls performs a local search by using a scalarizing function [83].

Table 5.3(a): Comparison of mean IGD  values  and  the  standard  deviation  (Std)
between 10 algorithms and MOEA/D-PC on unconstrained CEC2009 benchmark test
functions (UF1 UF5) in 30 independent runs with 300,000 FEs

Alg. Measure UF 1 UF 2 UF 3 UF 4 UF 5
MOEA/D-

PC
Mean IGD 0.003885 0.005678 0.003195 0.039756 0.091366

Std 0.000147 0.000504 0.000846 0.000429 0.005242

MOPC Mean IGD 0.02417 0.03857 0.17403 0.11505 0.50165
Std 0.00355 0.00147 0.01925 0.00605 0.02940

MOPC/D Mean IGD 0.0097 0.0101 0.0128 0.0426 0.146
Std 0.0029 0.0023 0.0087 0.0020 0.0340

GDE3 Mean IGD 0.00534 0.01195 0.10639 0.0265 0.03928
Std 0.000342 0.001541 0.0129 0.000372 0.003947

MOEADG
M

Mean IGD 0.0062 0.0064 0.0429 0.0476 1.7919
Std 0.00113 0.00043 0.0341 0.00222 0.512

NSGA-II-
ls

Mean IGD 0.01153 0.01237 0.10637 0.0584 0.5657
Std 0.0073 0.009108 0.06864 0.005116 0.1827

OW-
MOSaDE

Mean IGD 0.0122 0.0081 0.103 0.0513 0.4303
Std 0.0012 0.0023 0.019 0.0019 0.0174

AMGA Mean IGD 0.035886 0.016236 0.06998 0.040621 0.094057
Std 0.010252 0.003167 0.013954 0.00175 0.012055

MO-
ABC/DE

Mean IGD 0.00632 0.00614 0.04552 0.02896 0.0250
Std 0.000061 0.000082 0.00184 0.00134 0.00112

P-
MOEA/D

Mean IGD 0.0046 0.0092 0.0060 0.0520 0.2362
Std 0.0001 0.0018 0.0016 0.0021 0.0489

SMPSO Mean IGD 0.06279 0.04393 0.12459 0.1083 0.74538
Std 0.00663 0.00157 0.03697 0.00463 0.15191
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Table 5.3(b): Comparison of mean IGD  values  and  the  standard  deviation  (Std)
between 10 algorithms and MOEA/D-PC on unconstrained CEC2009 benchmark test
functions (UF6 UF10) in 30 independent runs with 300,000 FEs

Alg. Measure UF 6 UF 7 UF 8 UF 9 UF 10
MOEA/D-

PC
Mean IGD 0.056016 0.003622 0.049893 0.035534 0.274512

Std 0.004922 0.000838 0.000919 0.001733 0.110615

MOPC Mean IGD 0.11150 0.05208 0.36911 0.15139 0.44892
Std 0.01554 0.00297 0.01215 0.00443 0.01813

MOPC/D Mean IGD 0.0724 0.0113 0.0771 0.0787 0.3412
Std 0.0193 0.0011 0.0060 0.0230 0.0854

GDE3 Mean IGD 0.25091 0.02522 0.24855 0.08248 0.43326
Std 0.019573 0.008891 0.035521 0.022485 0.012323

MOEADG
M

Mean IGD 0.5563 0.0076 0.2446 0.1878 0.5646
Std 0.147 0.00094 0.0854 0.0287 0.102

NSGA-II-
ls

Mean IGD 0.31032 0.02132 0.0863 0.0719 0.84468
Std 0.19133 0.01946 0.01243 0.04504 0.1626

OW-
MOSaDE

Mean IGD 0.1918 0.0585 0.0945 0.0983 0.743
Std 0.029 0.0119 0.0244 0.0885 0.0384

AMGA Mean IGD 0.129425 0.057076 0.171251 0.18861 0.324186
Std 0.056588 0.065309 0.017224 0.042137 0.095718

MO-
ABC/DE

Mean IGD 0.08659 0.05606 0.18658 0.27688 0.29283
Std 0.00554 0.00183 0.00124 0.0209 0.0636

P-
MOEA/D

Mean IGD 0.0721 0.0052 0.0725 0.0769 0.4112
Std 0.0278 0.0005 0.0083 0.0514 0.0510

SMPSO Mean IGD 0.33251 0.0481 0.23546 0.18704 0.28438
Std 0.03695 0.00139 0.01406 0.02434 0.02143

MO-ABC/DE is a recent hybrid multi-objective optimization metaheuristic that

combines natural behavior of ABC with the properties of the DE [84]. Speed-

constrained  Multi-objective  PSO  (SMPSO)  utilizes  the  limited  velocity  of  the

particles to produce new particle positions [85]. Besides, a parallel version of

MOEA/D is designed to integrate within the DREAM software package (P-MOEA/D)

for  test  problems [86].  Table  5.3(a,  b)  lists  mean IGD scores  of  the  10  algorithms,

including MOEA/D-PC, for unconstrained functions in CEC2009 benchmarks set

with 300,000 FEs through 30 independent runs.

As shown in the Table 5.2 and 5.3(a, b), it is apparent that MOEA/D-PC is the most

competitive approach obtaining the best (lowest) IGD values for 7 of 10 problems

(i.e., UF1, UF2, UF3, UF7, UF8, UF9, and UF10). GDE3 method wins on UF4
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while the MO-ABC/DE algorithm has best fronts for UF5. Overall, the MOEA/D-PC

approach obtains best approximation of high quality solutions for 7 test functions and

outperforms the other competitors on all the test problems except for UF4, UF5, and

UF6.

Also, the graphical representations of the PF’s produced by the MOEA/D-PC

algorithm are illustrated in Figure 5.3(a, b). These plots show the quality of the PF’s

produced by the proposed approach with the lowest IGD values for UF UF10. It is

seen from Figure 5.3(a, b) that the MOEA/D-PC algorithm found high quality PF’s

on UF1, UF2, UF3, UF7, UF8, UF9 and UF10, but performs relatively poor

performance on UF4, UF5, and UF6. UF5 and UF6 have discontinuous PF’s while

UF4 is a 2-objective nonseparable concave functions.

Figure 5.3(a): The final approximation Pareto front with lowest IGD value of the
objective space for CEC2009 (UF1  UF4) test problem
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Figure 5.3(b): The final approximation Pareto front with lowest IGD value of the
objective space for CEC2009 (UF5  UF10) test problem
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Chapter 6

CONCLUSIONS AND FUTURE PERSPECTIVES

A variety of real-world problems can be formulated into continuous optimization

problems satisfied with several requirements. This thesis presents hybridizations

using  the  PC  and  the  DE  algorithms.  In  this  research  work,  several  novel  methods

have been introduced by a great deal of heuristic techniques.

As the part of MAS, PC applies random sampling and selection mechanism to

generate a set of individuals to form solution distributions. Each variable in the

solutions entitles its associated learning agent to coordinate with distributed

probabilities in the procedure of optimization at utility level. All agents employ

gradient-based techniques to minimize a Homotopy function so that the approach can

suit for a variety of problems.

Based on PC optimization, two promising hybridizations MPCDE and MOEA/D-PC

were proposed for single and multiple objective problems. Meanwhile, all

components of two proposed optimization methods are also discussed in the context

of PC-based single and multiple objective algorithms. In single objective

optimization architecture, collectives attempt to trace the promising directions for

improvements in terms of evolving probability distributions and population of

solutions  as  the  overall  optimization  process  proceeds.  For  two  well-known  test

problem sets, experimental studies are conducted for comparisons between well-
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known metaheuristic methods. The experimental results show that the MPCDE

algorithm achieved competitive performance compared to the other state-of-the-art

algorithms for most of the benchmark functions.

PC-based optimization provides the appropriate search trend with the MOEA/D

framework to inroduce a synergetic combination for multi-objective optimization.

The proposed adaptive mechanism for multi-objective optimization is a generic

approach, called MOEA/D-PC, which hybridizes PC and MOEA/D search

algorithms. Initially, a set of single objective problems are established by

decomposition approach with randomly weighted aggregation of corresponding

objective functions. So the optimization tasks goes along a set of well-spread

directions, which can be performed by PC-based single objective optimization.

Furthermore, an extension of mutation operator is proposed as combining polynomial

mutation with the Gaussian mutation. This promising perturbation is then guided by

CE operators to explore solutions from local front to nondominated front of MOP,

while the hybrid algorithm achieves greater diversity and converge to the PF in a

global search. The performance of the proposed hybrid algorithm is assessed by

conducting experiment on a range of unconstrained CEC2009 MOEA competition

benchmarks. The experimental results have revealed satisfactory performance of the

introduced approach for MOPs.

Based on the experimental  results,  PC approach may fail  in local minima when the

search space is highly biased, multimodal, and deceptive. In fact, the sampling

strategies of PC adopted in this thesis noticeably depend on the lower and the upper

bound of variable ranges. The boundaries essentially control the domain of the

sampling mechanism, thus can shrink the search space in producing new solutions
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especially when the decision variables are highly interreleted for some problems. In

this way, the updated domain is only defined according to the limit factor and the

favorable strategy for the current iteration.  However, for some special problems, the

proposed algorithm may not prevent search processes from premature convergence

since restricted range is possibly led away from the global optimal solution. In order

to  address  this  problem,  it  would  be  appropriate  to  adopt  an  admissible  global

supervised individual as a reference point to modify the search space for generating

strategy set of PC. In this regard, the lower and the upper bound could be defined

according to the favorable strategy with the reference point. From this idea, the

updated domain may consider the adaptive exploration of existing solution space

towards either the favorable strategy or the reference point relying on a predefined

parameter.

Even though this research study has demonstrated the efficiency of MOEA/D-PC in

solving MOPs, the constructed technique of MOEA/D-PC is recognized to be

inefficient for complex problems with rigid properties. The unconstrained multi-

objective test problems involve different types of characteristics such as continuous,

linear,  multimodality,  separablity  and  so  on.   In  fact,  multimodality  is  always  a

challenging issue in optimization. CEC2009 problems may consist of several

differences,  which  may  arise  in  the  solution  representation  and  level  of  conflict

between objective functions, which could be further studied for improving the

performance of the proposed algorithm. In order to address slow convergence and

poor performance for some problems, different operators can be designed for the

purpose of improving the global search engine in the evolutionary optimization

process. It is especially desirable to replace mutation scheme and add an evaluative

recombination operator to handle MOPs. Future studies could utilize combined
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mutation scheme between polynomial and Gaussian adjusted by a reference

parameter as a threshold instead of the CE method to modify the current population

of solutions. Then, simulated binary crossover would be applied for selecting better

offspring solution from mutated and existing populations to maintain population

diversity  of  MOEA/D  framework.  This  can  make  the  algorithm  capable  to  explore

the solution space and avoid local Pareto optimal fronts.
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