
 

 

Hawking Radiation of Warped Anti de Sitter and Rotating 

Hairy Black Holes with Scalar Hair  

 

Huriye Gürsel  

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

 

 

 

Master of Science 

in 

Physics 

 

 

 

 

 

 

Eastern Mediterranean University 

September 2015 

Gazimağusa, North Cyprus 



ii 

 

Approval of the Institute of Graduate Studies and Research  

 

                                                                                      Prof. Dr. Serhan Çiftçioğlu 

                                                                                               Acting Director 
 

 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 

of Science in Physics.  
 

 

 

 

 

 

                                                                                      Prof. Dr. Mustafa Halilsoy 

                                                                                   Chair, Department of Physics  
 

 

 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Physics.  
 

 

 

 

 

 

                                                                                        Assoc. Prof. Dr. İzzet Sakallı  

                                                                                                   Supervisor  
 

 

 

 

 

 

 

                                                                                                    Examining Committee  

 

  1. Prof. Dr. Özay Gürtuğ  

2. Prof. Dr. Mustafa Halilsoy 

3. Assoc. Prof. Dr. İzzet Sakallı 

 

http://chemistry.emu.edu.tr/index.php/people/86
http://chemistry.emu.edu.tr/index.php/people/86
http://chemistry.emu.edu.tr/index.php/people/64-dr-zzet-sakall


iii 

 

ABSTRACT 

This thesis mainly focuses on the Hawking radiation (HR) evacuating from the 

surface of the objects that have earned a reputation as the most extraordinary objects 

existing so far; the black holes (BHs). Throughout this study, quantum tunneling 

(QT) process serves as the model for the HR of scalar, vector and Dirac particles. 

The scalar and Dirac particles are anticipated to be tunneling through the horizon of 

rotating scalar hairy black holes (RHSBHs); whilst the vector particles are associated 

with a rotating warped anti de-Sitter black hole (WAdS3BH) embedded in a (2+1) 

dimensional fabric. It is no coincidence that for all three cases; the standard HT 

expression is derived.  Additionally, the engagement of conformal field theory (CFT) 

with anti de-Sitter (AdS) space presents itself to the reader and the methodologies of 

Klein-Gordon equation (KGE), Dirac equation and Proca equations (PEs) are 

introduced. For all three cases, Hamilton-Jacobi (HJ) approach is used, together with 

Wentzel-Kramers-Brillouin (WKB) Approximation. Finally, the BH structures are 

compared with thermodynamics to derive HT with the aid of Boltzmann factor.  

Keywords: Hawking radiation, quantum tunneling, Klein-Gordon equation, Dirac 

equation, Proca equation, scalar hair, Hamilton-Jacobi method, quantum gravity. 
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ÖZ 

Bu tez, bugüne kadar karşımıza çıkan en gizemli maddeler olarak ün salmış kara 

deliklerden yayilan Hawking radyasyonu (HR) hakkindadir. Bu tezde, skaler, 

vektörel ve Dirac parçacıklarından oluşan HR’u, kuantum tünelleme (QT) esas 

alınarak incelenmiştir. Skaler ve Dirac parçacıklarının, dönen saçlı skaler kara 

deliklerden (RHSBHs); vektör parçacıklarının ise (2+1) boyutlu uzay zamana ait 

dönen eğrilmiş anti de-Sitter kara deliklerden (WAdS3BHs) yayıldığı varsayılmıştır. 

Her üç durum için de hesaplanan Hawking sıcaklığı (HT) standarttır. Aynı zamanda, 

conformal field teorisi’nin (CFT), anti de-Sitter (AdS) uzayı ile olan ilişkisi kendini 

okuyucuya takdim etmiş; Klein Gordon denklemi (KGE), Dirac denklemi ve Proca 

denklemleri (PEs) tanıtılmıştır. Hamilton Jacobi (HJ) denklemi, Wentzel-Kramers-

Brillouin (WKB) yaklaştırması ile birlikte kullanılmıştır. Son olarak, kara delik 

yapıları termodinamik kanunları ile karşılaştırılmış ve Boltmann faktörü kullanılarak 

Hawking sıcaklığı hesaplanmıştır.  

Anahtar Kelimeler: Hawking radyasyonu, kuantum tünellemesi, Klein-Gordon 

denklemi, Dirac denklemi, Proca denklemi, skaler saç, Hamilton-Jacobi metodu, 

kuantum yerçekimi. 

 

 



v 

 

DEDICATION 

Dedicated to my grandmother, Huriye Hüdaoğlu... 

 

 

 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGEMENT 

Firstly, I would like to express my sincere gratitude to my respected supervisor 

Assoc. Prof. Dr. Izzet Sakalli for his endless support, motivation and guidance. 

Without his supervision and remarkable knowledge, this thesis would not have been 

possible to be completed. His guidance helped me in all stages of this research and 

made this a thoughtful and fulfilling voyage. I am extremely thankful and indebted to 

him for experiencing his valuable encouragement throughout these two years. 

Besides my supervisor, my genuine thanks also goes to all of the Department faculty 

members; the esteemed chairman Prof. Dr. Mustafa Halilsoy, the instructors and Mr. 

Resat Akoglu and Mrs. Cilem Aydıntan for their help and support over the past two 

years. I would also like to express my appreciation to all my friends in the faculty, 

especially to Danial for the inspiring discussions and his valuable support and to Ali 

for his encouragement and insightful comments and to Sara for her support.  

In particular, I am grateful to my dear friends Sina and Iman for spending countless 

hours on the format check, proof reading and their endless support alongside. 

Without their support, it would have been extremely hard to finish up the thesis on 

time. I would like to add my special gratitudes for my friends Mobina and Elnaz for 

showing their worthful support, my old friend Hidayet for generously sharing her 

time and the stimulating discussions going on for sleepless nights. I am also 

extremely grateful to Harry Savy who supported me throughout this venture with 

patience and care and provided me with proof reading. 



vii 

 

Last but certainly not the least, I would like to take this opportunity to thank my 

parents Cebriye and Ibrahim Gursel, my brother Ahmet and my whole family for 

supporting me spiritually throughout my life.  The unceasing encouragement, support 

and attention I have received from them have definitely enabled me to carry on my 

further studies. Furthermore, I truly appreciate my father for checking my grammar 

in detail with an infinite patience and for sharing his precious knowledge with me.   



viii 

 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................ iii 

ÖZ ............................................................................................................................... iv 

DEDICATION ............................................................................................................. v 

ACKNOWLEDGEMENT .......................................................................................... vi 

LIST OF TABLES ....................................................................................................... x 

LIST OF FIGURES .................................................................................................... xi 

1 INTRODUCTION .................................................................................................... 1 

2 BHS AND THERMAL PHYSICS ........................................................................... 7 

2.1 Thermodynamic Properties of BHs .................................................................... 7 

2.2 Exploring HR ..................................................................................................... 9 

2.2.1 HR as a QT Process ................................................................................... 10 

2.2.2 Complex Contour Integral Approach ........................................................ 13 

3 HR OF THE ROTATING BHS WITH SCALAR HAIR IN 3D ............................ 20 

3.1 Fundamental Attributes of RHSBHs ................................................................ 20 

3.2 QT of Scalar Particles from 3D RHSBHs ........................................................ 24 

3.3 QT of Dirac Particles from 3D RHSBHs ......................................................... 26 

3.3.1 Estimation of Spin Affine Connection 
 ................................................. 30 

3.3.2 Further Investigation on DE ...................................................................... 33 

4 HR OF THE VECTOR PARTICLES IN THE WAdS3BH GEOMETRY ............. 35 

4.1 The Comparison of Ordinary and Warped Anti-de Sitter BHs ........................ 35 

4.2 QT of Massive Vector Particles from Spacelike Streched WAdS3BHs using 

PEs .......................................................................................................................... 38 

4.2.1 Obtaining the Radial Function r

( ) by Coefficient Matrix Method ........ 39 



ix 

 

4.2.2 HT Calculation on the Event Horizon ....................................................... 41 

5 CONCLUSION ....................................................................................................... 43 

REFERENCES ........................................................................................................... 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

LIST OF TABLES 

Table 1. The linkage between Dirac matrices in flat and curved spacetimes ............ 27 

Table 2. The vierbein component values. .................................................................. 32 

Table 3. Classification of WAdS3BHs ...................................................................... 37 

Table 4. Components of the Coefficient Matrix. ....................................................... 39 

 

 

  



xi 

 

LIST OF FIGURES 

Figure 1. QT for the case when vacuum fluctuations create particle – antiparticle 

pairs just outside the event horizon. ........................................................................... 12 

Figure 2. QT for the case when vacuum fluctuations create particle – antiparticle 

pairs just inside the event horizon. ............................................................................. 13 

 

 

 

 

 

 

 

 

  



1 

 

Chapter 1 

INTRODUCTION 

If one dwells on the past, then he robs the present. However, if one ignores the past, 

he may rob the future. Have you ever wondered to comprehend what actually is 

happening behind the scenes in life? In point of fact, physics cardinally emerges 

from curiosity. The more one thinks about how the universe was created, the deeper 

s/he moves into the field of physics. For decades, physicists have been carrying out 

experimental and theoretical research for being able to obtain more information 

regarding the universe that we live in. This thesis has also eventuated from certain 

questions asked due to the inspiring curiosity. If one is able to squeeze the rules of 

nature in the equations provided by physics and mathematics, does there exist any 

place in the universe where these laws as we know them are not valid anymore? Can 

information ever be lost? Before the creation of galaxies, were there any other 

objects that were already in existence? All these questions divert us to the mysterious 

world of BHs.  

As can be noticed from the title, we will be covering HR sparkling from a BH and 

we will be dealing with several methodologies in order for deriving the surface 

temperature associated with this radiation process, more widely known as the HT. 

Since the temperature is directly linked to the BHs, it is legitimate to first delve into 

the scope of BHs and the first question popping into our minds should be; ‘what is a 

BH?’  
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BHs can be thought as hazardous deadfalls in which nothing can survive. They are 

formed as a consequence of stars bursting out loudly and violently, which marks 

them as awe-inspiring objects. What make them different from the rest of the 

universe are the enormously intense gravitational effects that they experience which 

cause laws of nature to be non-valid. There exists prevailing reasons to believe that 

BHs are the most mysterious objects we have come across with so far, hiding a lot of 

secrets waiting to be revealed regarding the past, present and future of our universe. 

The more we can find out about them, the more understanding we will gain about the 

nature of our universe.  

The two distinctive constituents of a BH are its boundary and the singularity at the 

center, which is infinitely small and dense. Clearly, the singularity is the point that 

we are willing to stay away from, however it is worthy to point out that it should be 

the boundary that should concern us the most. Not because there exists a prospect of 

danger on the boundary, but due to the conjecture that once a particle passes the 

point of no return, or more commonly known as the ‘event horizon’, nothing will 

save it from being trapped inside and it will continue falling towards the singularity.  

Having made mention of the structure of BHs, we may now move on to the question 

of how we can describe a BH mathematically. It is intuitive to recognize that each 

BH is represented by a characteristic metric of its own. Depending on the structure 

that it possesses, one can be equipped with the hallmarks of the BH concerned. Even 

though the metric of a BH seems to be considerably trivial, its importance should not 

be taken for granted. It plays a crucial role in the theory of BHs, not only because it 

obscures latent information regarding the BH’s geometry, but also for enabling a 

plausible explanation of what ‘gravity’ means in the language of general relativity 



3 

 

(GR). Rather than conceptualizing gravity as a type of force, one may refer to it as 

being a natural outcome of the curvature of spacetime. This idea offered itself as an 

outcome of a very critical question in Albert Einstein’s mind. He kept on asking 

himself whether the gravity should be treated as a type of force or not. To be truthful, 

this was a basic concern for why Newton’s interpretation of gravity was not adequate 

once light was tackled. Based on these reasons, Einstein developed his equations 

which will be studied in detail later on in this chapter.  

The substantial punchline in Einstein’s approach was that the concept of gravity in 

GR had to agree with Newton’s formalism on classical level. Therefore, along the 

investigation of BHs, one should definitely give an enormous amount of credits to 

Albert Einstein’s hard work on the theory of gravity. 

Before we get around to the line element describing the structure of a BH, it is 

ineluctable to ask why it is of great importance. Metrics can be computed by taking 

into account the main constituents of our universe; matter and energy. Just like the 

DNA of a person, these two factors are the building stones determining the unique 

BH structures. Einstein had proposed his equations 1  in order for facilitating a 

mathematical expression to explain the physics of nature in one line. He managed to 

relate the curvature of spacetime to matter and energy, or in other words, the galactic 

dust surrounding us. His idea was outstanding and his equations had rather 

impressive solutions; the BHs. These famous equations of Einstein which is the 

fundament of GR read (Stephani, Kramer, MacCallum, Hoenselaers, & Herlt, 2003). 

                                                 
1 It is known that Einstein’s Field Equations are presented as a single equation. 

However, since it includes tensors of rank 4x4, I preferred to name them as 

equation‘s’ throughout this thesis. Once they are examined explicitly, sixteen distinct 

equations arise.   
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4

1 8

2

G
R Rg g T

c
   


  

                        (1.1) 

where 
R ,

g  and 
T  represent 4x4 matrices known as Ricci, metric and energy 

momentum stress tensors respectively; whereas R ,  , G  and c  stand for Ricci 

scalar, cosmological constant, gravitational constant and speed of light. For 

simplicity, I will be using 1c G  throughout this thesis. Hence, Eq. (1.1) can be 

rewritten as 

1
8

2
R Rg g T     

 

In some resources like (Carroll, 2004; Hartle, 2002), the term including the 

cosmological constant is ignored, since its value is rather small. However, its 

importance should not be looked upon lightly. From Eq. (1.2), it is quite clear that all 

the three terms at the left hand side of the equation describe the geometrical shape of 

spacetime to be considered. If we were to determine from which term to start our 

investigation on Einstein’s equations, the metric tensor would be the most logical one 

to be chosen. The reason for this is because once the metric of the BH is known, the 

metric tensor is rather simple to be recognized. Consider a metric of the form 

(Carroll, 2001)  

                                        
2 2 2 2 2 2 2 2sinds dt dr r d r d       ,                                   (1.3) 

which describes flat spacetime with the time coordinate t and spatial spherical polar 

coordinates ( , , )r   . If we were willing to find the metric tensor belonging to Eq. 

(1.3), we would require the relation 

                                                

2 x x
ds dx dx

 
 

 



 

 


 


,                                  (1.4) 

      (1.2) 
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 where the coefficient of dx dx 
 generates the elements of the metric tensor. For 

information regarding the computation of the Ricci tensor and Ricci scalar from the 

metric tensor, please assign (Einstein, 1952).  

After all, why have we introduced Einstein’s field equations and what is the 

relationship between these equations and BHs? When one can successfully solve 

these equations, the solutions obtained will be equivalent to the BHs. Furthermore, 

with the aid of these equations, one of the greatest mysteries in the physics world 

was unlocked: the reason of why we are able to stay still on the floor, sit down on an 

armchair and so on so forth. Einstein’s equations victoriously implied that we are 

being forced by the curvature of spacetime to be pushed downwards. This opened a 

brand new chapter in physics and gave birth to a fascinating approach towards the 

concept of gravity. 

It is worthwhile to mention that in curved spacetime, everything will be obliged to 

follow geodesics throughout their motion. The geodesic equation can be introduced 

as (Hobson, Efstathiou, & Lasenby, 2006) 

                                              

2

2
0

d x dx dx

d d d

  



  

 
                                         (1.5) 

where 




 is known as the Christoffel symbol playing a core rothe Ricci 

tensorlculation of Ricci tensor and scalar curvature. The patterns followed, obeying 

Eq. (1.5), appear to fit the criteria supporting the hypothesis of particles trying to 

always travel in straight lines on a flat space. In the case where we consider curved 

surfaces, the geodesic equation is actually equivalent to Newton’s laws of motion in 

classical mechanics while every day objects’ motion in ordinary space is discussed.  
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When planets, galaxies, or more explicitly, the spherical objects existing in our 

universe are considered, the metric to be processed should be the Schwarzschild 

metric which experiences spherical symmetry. However, in this thesis, we are not 

interested in this metric, hence for further details, one may check (Mei, 2006).  

The thesis is organized into five chapters. Chapter 2 provides a brief review of the 

thermodynamic properties of BHs. The motivation for this chapter arises from the 

outstanding similarities between black body radiation covered in statistical physics 

and HR phenomenon experienced on the surface of a BH. The chapter ends by 

providing a framework for the issue of HT evaluation with reference to the QT 

process. Throughout the subsequent chapters, I will be basing our findings on the QT 

process; therefore this chapter documents the importance of getting the logic behind 

this technique. 

In Chapter 3, it is attempted to offer a theoretical foundation for the concept of 

evaluation of HT for RHSBHs by using two different approaches. Firstly, the 

particles which are tunneling through the horizon are postulated to be scalar and 

KGE is applied. This section is then followed by the replacement of these particles 

by Dirac particles and the final HT result is demonstrated via using Dirac equation.  

Unlike previous studies, Chapter 4 explicitly takes into account applying PEs to find 

the HT of a WAdS3BH. During this chapter, it is intended to make sense of and 

provide insight into AdS space and examine the engagement between CFT and BHs 

in AdS3 space. Finally, the conclusions drawn are demonstrated in Chapter 5.  
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Chapter 2 

BHS AND THERMAL PHYSICS 

2.1 Thermodynamic Properties of BHs 

According to the laws of thermodynamics, heat energy can be transferred from one 

place to another by conduction, convection and radiation (Young & Freedman, 

2008). Radiation is a type of process where a medium to travel in is not required. All 

bodies emit electromagnetic (em) radiation and the temperature of a body is the 

factor determining the peak wavelength of this radiation (Resnick, Halliday, & 

Walker, 1988). Hawking and Bekenstein stated that BHs behave as black bodies, or 

in other words, they are bodies at a constant temperature that absorb and re-emit all 

the em radiation falling on them (John D. Cutnell, 2013). 

I am inflicted with an intense faith of approaching concepts which appear to be 

tremendously complicated in a version where it is reduced to its bare bones. 

Whenever one is in need of learning something new in any stage of her/his life, 

regardless of the area it belongs to (for instance; a baby trying to figure out how to 

put her/his first step into practice, attempting to pick up how to play a relatively hard 

piano piece, seeking for new baking recipes, grasping new mathematical concepts, 

solving criminal cases, diagnosing the type of disease a patient is suffering from and 

so on), the first step is to create a perspective of our own and inspect the situation in 

the most simplified version. Hence, I would like to start by a naïve but rather 

appealing picturesque way of defining entropy, temperature and heat energy. 
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Suppose that a very considerate man, let us name him as John, with a gentle heart 

moves into a village with the aim of increasing the total number of people smiling in 

that village. John’s purpose of the visit is to record the total number of smiles he 

observes per day and generate a rise in this number. To achieve his goal, he builds a 

farm of his own and starts producing dairy products. Whenever he is satisfied with 

the amount of products he has obtained, he starts visiting each house one by one and 

distributes the daily products free of charge. The more smiles he observes per day, 

the happier he gets. We can apply this scenario to the physics world in order to get a 

clear picture of the definitions of the term ‘temperature’, ‘entropy’ and ‘heat energy’. 

As you might have guessed, the dairy products refer to the heat energy being 

transferred from one place to another, temperature is expressed by the eagerness of 

John to give the products to the peasants and lastly, the total number of smiles 

recorded per day (which is increasing as time passes by) represents the entropy. The 

entropy of a BH is the extent of molecular disorder and one can signify it as being 

equivalent to the quantum microstate degeneracy of the near horizon 2D CFT 

(Strorninger & Vafa, 1996). While the meaning of entropy is considered, one might 

feel like it is dependent on the volume to be taken into account. However, Hawking 

(S. W. Hawking, 1975) and Bekenstein (J.D Bekenstein, 1973) found out that this is 

not the case. They stated that entropy actually depends on the surface area, not the 

volume, which can mathematically be presented as  

                                                               
4

BH

A
S  ,                                                  (2.1) 

in which A  designates the area of the concerned BH’s surface; or in other words, the 

event horizon area. One can go back to thermodynamics and have a look at the first 
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law of it. It will not be of amazement to spot this relation obeys this law and can be 

derived by making the assumption that the temperature associated with the BH can 

be inscribed as 

                                                                 
2

HT



 ,                                                (2.2) 

where   stands for the surface gravity term. Eq. (2.2) is known as the HT which is 

the main focus of this thesis. A selection of approaches will be liberated for 

derivation of this manifestation during the incoming chapters. For further reading 

regarding the laws of BH thermodynamics, please perceive (Bardeen, Carter, & 

Hawking, 1973). 

2.2 Exploring HR 

In 1973, Stephen Hawking  expected the unexpected and claimed that BHs are 

actually not black; they emit radiation from, let say a thin layer near their surface, 

which is now known as the HR.  

Prior to Hawking’s discovery, BHs were thought to be fully black. What made his 

discovery so enterprising was that it brought forth a linkage between 

thermodynamics and gravity. Going into BH’s thermodynamic properties carefully 

can lead us to a precise explanation of what gravity actually is. Thus, let us dig into 

Hawking’s remarkable theory: the HR. 

Since Hawking proposed his theory, many explanatory approaches aroused with the 

aim of finding alternative ways of explaining the HR process. Throughout this thesis; 

I will be focusing on the particle-antiparticle approach, which is just one of the many 

promising hypothetical explanations behind HR.   
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From classical point of view, a BH is expected to only absorb radiation. However, it 

is more convenient to approach BHs from the semi-classical perspective. A particle – 

antiparticle pair is alleged to be produced near the horizon due to vacuum 

fluctuations. In other words, the boundary of the BH can experience both emission 

and absorption, depending on whether we have a particle or an antiparticle tunneling 

through the horizon. Our task is to find expressions for the probabilities of these 

tunneling processes to occur and this is the point where QT comes into stage. Thus, 

let us move on by scrutinizing this technique.  

2.2.1 HR as a QT Process  

QT is a semi-classical approach carried out to achieve the evaluation of HT at the 

surface of a BH. The key point is whether we choose to start with the assumption of 

these particles to be forming inside or outside of the BH. For each case, the QT 

picture alters slightly due to the direction of tunneling (Akhmedov, Akhmedova, & 

Singleton, 2006).  It is relatively easier to picturize particle creation taking place 

outside the BH, since the antiparticle will easily cross the boundary (without even 

being aware of it) and we will not be facing any difficulties. However, for the case 

where the creation of a particle – antiparticle pair is assumed to be taking place 

inside the BH, the tunneling is expected to happen from inside to outside. This 

generates the obligation of the particle crossing the event horizon and leaving the 

BH! At this point, you must be noticing a logical inconsistency between how I had 

defined BHs in Chapter 1 and what I have just stated. Previously, I had written that a 

BH can be described as a type of jail full of danger, not letting anything (even light!) 

escape from it, once the horizon is passed. On the contrary, QT requires one member 

of the particle – antiparticle pair to escape the BH, if the vacuum fluctuations had 

caused them to be formed inside the BH. How can we resolve this tricky 
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contradiction? The answer is hidden in quantum fluctuations and I would like to 

further investigate this for two different cases. In case 1, the antiparticle will be 

moving towards the BH, whereas in case 2, it will be the particle tunneling out of the 

BH. The reason why we have limited ourselves to these cases is for if the other 

possibilities were considered, we would be obtaining an extra factor of two in our 

final HT result. To prevent this problem from arising and due to energy conservation, 

the two cases below will be the only ones that we will work on.   

 Case 1 

Assume that a particle – antiparticle pair is created just outside the event horizon as 

shown in Figure 1. One may presume the antiparticle to be travelling towards the 

BH, while the particle is moving away from it. The antiparticle will be passing 

through the horizon into the BH without any difficulty, nothing unusual about that. 

The moment when the antiparticle passes the point of no return, as its name suggests, 

it will not be able to escape from the BH ever again. The particle moving away is 

what we name as the ‘HR’ and consequently, the BH, which now does not seem to 

be fully black, radiates off a radiation of all kinds.  

In particle physics, antiparticles are treated as moving backwards in time; hence they 

are drawn from right to left in Feynman diagrams. Due to this reason, we must keep 

in mind that the antiparticle entering the BH has negative energy and it will cause the 

BH to reduce in size as it radiates.  
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Figure 1. QT for the case when vacuum fluctuations create particle – antiparticle 

pairs just outside the event horizon. 

 Case 2 

Let us now change our starting point. What happens if we consider particle – 

antiparticle pairs to be created just inside the event horizon? This time, the particle 

can be picturized to tunnel out of the horizon (which is an event that would 

classically be prohibited), whilst the antiparticle starts its journey towards 

singularity. As for case 1, the mass of the BH will again be decreasing during the 

radiation process which is nothing but the particle tunneling outwards. One may 

check Figure 2 for a simple sketch of this case.  

 



13 

 

  
Figure 2. QT for the case when vacuum fluctuations create particle – antiparticle 

pairs just inside the event horizon. 

2.2.2 Complex Contour Integral Approach 

Prior to explaining the complex contour method, it is important to specify the metric 

to be used during our calculations, since it conceals marvelous information regarding 

the structure of the BH.  In Chapter 3, we will be studying the line element 

                             
2

2
2 2 2 2

2
( ) ( )

( )

dr
ds N r dt r d N r dt

N r

                                 (2.3) 

whilst in chapter 4  

                                  
4

2
2 2 2 2 2 2

2 24
ds N dt dr R d N dt

R N

                        (2.4) 

will be used. Hence, I would like to explicate how to use complex contour analysis 

by taking 

                                             

2
2 2( )

A( )

dr
ds A r dt

r
                                                   (2.5) 

and the scalar fields as basis. Even though metric (2.5) is a naive version of what we 

will be dealing with throughout the incoming chapters, understanding how this 
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mechanism works for the simplest case carries a tremendous importance in grasping 

the procedure. Once this version is understood, it can easily be applied to more 

complicated situations. 

It is essential to note that the function ( )A r must have a non-zero radial derivative 

which is also finite at the boundary of the BH at Hr r . Furthermore, Taylor 

expansion can be applied to this function for the points close to the event horizon, 

which permits us to denote (Arfken, 2013) 

 
2( )

( ) ( ) ( )H
H H H

dA r
A r A r r r r r

dr
     
 

 
2( )

( )H
H H

dA r
r r r r

dr
    
 

   (2.6)                           

since ( ) 0HA r   . This expression is beneficial, as complex contour integral analysis 

necessitates derivatives of the concerned functions.  Having declared expressing our 

arbitrary function in terms of the radius of the horizon, let us now continue by 

witnessing how Eq. (2.6) will be of use.  

Scalar particles obey the relation (Grössing, 2002; Izzet Sakalli, 2012) 

                                      
2

2
0s

s s

m
g g g

         ,                               (2.7) 

of which sm  and s   represent mass and wave function of the scalar particles and   

stands for the partial derivative. This relation is acknowledged as the KGE. The wave 

function can be replaced by the änsatz 

                                                 exp I( , )s

i
r t

 
   

 
,                                               (2.8) 

in which the action ( , )I r t  can be further expressed as  

                                     2

0 1 2( , ) ( , ) ( , ) ( , ) ...I r t I r t I r t I r t                               (2.9) 
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Substituting Eq. (2.8) with the expanded form of the action in Eq. (2.7) and applying 

WKB Approximation which is allowed to be used in the theory of BHs (Gecim & 

Sucu, 2013), one can signify  

                                       

2 2

2 20 0( ) ( ) 0s

I I
A r m A r

t r

    
     

    
 ,                            (2.10)       

which is nothing but the HJ equation. Clearly, to be able to move on, we need to 

substitute the time and radial derivatives of our action.  

Note that the lowest order action 0I  is composed of two parts: time-dependent and 

space-dependent. It can be written as 

                                                 0 ( ) hI Et r     ,                                    (2.11) 

where E  and h  respectively represent energy and angular momentum and   is a 

complex constant. Hence, the derivatives we require are 

                                                 
 

0
EtI

E
t t

 
  

 
                                             (2.12) 

and  

                                                       0 ( )I r

r r

 


 
 .                                                 (2.13) 

Substituting Eqns. (2.12) and (2.13) into Eq. (2.10) brings about  

                                         
2

2 2 2( ) ( ) 0sE A r m A r
r

 
    

 
                              (2.14) 

which should be solved for the radial function ( )r .  Rearranging for the term 

including the partial derivative of radial function and solving for ( )r yields to 

                                               2 21
( ) ( )

( )
sr E m A r

A r
                                   (2.15) 
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On the horizon, the second term will vanish and plugging Eq. (2.6) into Eq. (2.15), 

we can alternatively express Eq. (2.15) as 

                                               ( )
A (r )( )H H

E
r

r r
  

  ,                                       (2.16) 

where  

                                                     
( )

(r ) H
H

dA r
A

dr
  .                                              (2.17) 

According to the residue theorem (Arfken, 2013), under the condition that f (z) is an 

analytic function on our contour, the following relation holds. 

                                                  0

0

1 ( )
( )

f z dz
f z

i z z


 ,                                           (2.18) 

iff 0z  is an interior singular point. In our case, an isolated simple pole exists at 

Hr r . So, Eq. (2.18) shall be modified as 

                                                  
1 (r)

(r )H

H

f dr
f

i r r


  .                                            (2.19) 

Once Eq. (2.19) is compared with Eq. (2.16), it can be observed that the function 

( )f r  should be asserted as 

                                                         ( )
( )H

E
f r

A r



,                                             (2.20) 

which entails  

                                                ( )
( )

H

H

i E
i f r

A r


     


.                                   (2.21) 

where the positive and negative signs indicate emitted and absorbed particles 

respectively.  
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What we actually seek for are the imaginary terms in the action, as the virtual pairs 

are created due to the singularities to be inspected here (I Sakalli & Mirekhtiary, 

2013). The only complexity exists in the radial function and the constant  , which 

signifies 

                                               0Im( ) Im( ) Im( )I    .                                       (2.22) 

For the antiparticles being absorbed, the equation is in the form 

                                               0Im( ) Im( ) Im( )
abs

I    ;                                  

(2.23) 

whereas for the emitted particles 

                                                0Im( ) Im( ) Im( )
ems

I                                      (2.24) 

holds. From Eq. (2.21), one can noticeably read that   

                                                          
( )H

i E

A r


 


                                                 (2.25) 

and 

                                                         
( )H

i E

A r


  


.                                              (2.26) 

Thus, we can assertively state the relation  

                                                     Im( ) Im( )                                               (2.27) 

This equation will have an imperative importance during the incoming equations so 

we will be coming back to it shortly.  

Now, let us go back to the inspection of probabilities of emission and absorption, for 

they provide flourishing information in the process of derivation of HT. Semi-

classically, the probability of the absorption will be one, as BHs act as black bodies 



18 

 

and the probability can be established by taking the square of the wave function 

considered; in our case, Eq. (2.8). Hence,  

                                                   
2

exp( ) 1abs

iI
P                                               (2.28) 

allowing us to write  

                                                        
2

0
iI

  ,                                                       (2.29) 

followed instantly by   

                                                       Im( ) 0
abs

I   .                                                 (2.30) 

Therefore, Eq. (2.23) becomes 

                                                   Im( ) Im( ) 0                                                (2.31) 

denoting that 

                                                   Im( ) Im( )   .                                              (2.32) 

Going back to the emitted particles, one can now substitute Eqns. (2.27) and (2.32) 

into Eq. (2.24) and rewrite the imaginary part of the action of particles being 

tunneled out of the horizon as 

                                                  0Im( ) 2Im( )
ems

I  .                                         (2.33) 

To sum up, one can draw the conclusion that the probabilities for emission and 

absorption of the particles and antiparticles can respectively be exhibited as  

                                             
2

exp( 2Im )ems emsP                                      (2.34) 

and 
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2

exp( 2Im )abs absP     .                                  

(2.35) 

Familiar as we are with the probability expressions, we can now creep forward and 

expose the overall tunneling rate as (Shankaranarayanan, Srinivasan, & 

Padmanabhan, 2001) (I Sakalli & Ovgun, 2015)   

                                                  exp 4Imems

abs

P

P
    .                                   (2.36) 

                                                 
4

exp
( )H

E

A r

 
   

 
                                               (2.37) 

from which the HT reads  

                                                       
( )

4

H
H

A r
T




   .                                                (2.38)         

with the aid of the Boltzmann factor stating  (Schroeder, 2000) 

                                                      exp
E

T

 
   

 
.                                                (2.39) 

The HT expression (2.38) will be shown to remain unchanged throughout the thesis.  
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Chapter 3 

HR OF THE ROTATING BHS WITH SCALAR HAIR IN 

3D 

In the theory of BHs, it has been extensively believed that BHs have no hair (Falls & 

Litim, 2014), which is known as the ‘No Hair Theorem’. What is the meaning of the 

statement ‘hair’ in this expression? If we are referring a BH to be ‘bald’, what we 

actually have in mind is that our concerned BH can be portrayed only by referring to 

its mass, angular momentum and charge. (Note that the charge can be electric charge; 

or in the case of the hypothetical magnetic charge’s existence is ever experimentally 

verified, then it would imply magnetic or electric charge; or both.) Therefore, if the 

BH is not bald, there exists a supplementary characteristic which contributes to the 

depiction of the BH. In this case, the no hair theorem as stated by Bekenstein (Jacob 

D Bekenstein, 1995) will be violated for some specific occasions. Some examples of 

these occasions can be given as SU (N) Einstein-Yang-Mills theory where there 

subsists a negative cosmological constant and RHSBHs (Toubal, 2010); which is the 

case we will be exploring.    

3.1 Fundamental Attributes of RHSBHs  

The metric in which the geometrical properties of our concerned BH are encoded can 

be written as  

                                
2

2
2 2 2 2

2

dr
ds N dt r d N dt

N

    ,                                       (3.1) 

where 
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                                       
2

2 2 2 2 2

2
12 36

36

r
N J x M x                                        

(3.2) 

and 

                                               
3

3 2

6

J r c
N

r

   
  

 
,                                               (3.3) 

in which c and J stand for the scalar charge and angular momentum respectively. For 

simplicity, let us use the substitution 

                                                
3

3 2r c

r


  ,                                                      (3.4) 

which implies that Eq. (3.3) should take the form  

                                                 
6

J
N 

  .                                                             (3.5) 

It is also possible to express Eq. (3.2) in a more compact version as 

                                           
2 2

2

1 2
36

J r
N                                            (3.6) 

in which 1  and 2  differ due to  

                                    2 2 2

2

6 1
1

i

i M M J
J

 
     

 

.                                    (3.7) 

At the surface of the BH where Hr r , the metric coefficient 2N vanishes 

(Bojowald, 2012). Hence, one can state 

                                       
2 2

1 2 0
36

HJ r
     ,                                           (3.8) 

which implies that  

                                              1 2 0   ;                                                  (3.9) 

since angular momentum is non-zero. Let us examine Eq. (3.9) in two parts. 
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Part 1 -   1 0    

Substituting Eqns. (3.4) and (3.7) with 1i   into the first part of Eq. (3.9) enables us 

to write 

                               
2 2 2

3 2

3 2 6 1
0H

H

r c
M M J

r J

   
     

  
.                           (3.10) 

Now, one can equate the denominators of each term and present the equation 

                             2 3 3 2 2 2

3 2

3 2 6 6
0

H H H

H

r c J M r r M J

r J

   
 ,                        (3.11) 

which clearly vanishes to 

                        

   

2 3 2
3

2 2 2 2 2 2

3 2
0

6 6

H
H

J r c J
r

M M J M M J
  

   
.             (3.12) 

Part 2 -   2 0   

The same procedure will now be applied for 2i  . In this case, one gets 

                         

   

2 3 2
3

2 2 2 2 2 2

3 2
0

6 6

H
H

J r c J
r

M M J M M J
  

   
.            (3.13) 

From Eq. (3.9), it is clear that both parts 1 and 2 should hold. Therefore, one can 

combine the two by the following compact statement. 

                                                   
3

H(i) H(i) 0i ir r c                                               (3.14) 

where  

                                                            
3

i

i

  


                                                  (3.15) 

and 
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2

i

i

c
c  


 .                                                  (3.16) 

The resolution of this problem will require a more detailed analysis of Eq. (3.14). To 

be able to solve this equation, we first need to find the determinant, namely ib , which 

was evaluated as   

                                                           

3 24 27

108

i i
i

c
b

 
  .                                        (3.17) 

For further details of how to obtain the discriminant, please check (Cox, 2011).   

The discriminant (3.17) can be rewritten in the form 

                                                           
 6

3

1i

i

i

b c
 




 ,                                           (3.18) 

once (3.15) and (3.16) are placed in Eq. (3.17).  The solutions shine through in in two 

different cases; for 0ib   and for 0ib  . The positive roots lie at the very core of  

                             
1/3 1/3

2 3 2 3

H(i) 1 1i i i i i i

i

c
r

 
              

            (3.19) 

                                            1

H(i)

2 1
cos cos

3
i

i

B
r x

x

 
  

 
                                    (3.20) 

To see how these equations are derived, please refer to (Zou, Liu, Wang, & Xu, 

2014). 

Finally, it is substantial to make a record of the unique hallmarks of RHSBHs (Zou, 

Liu, Zhang, & Wang, 2014) which makes them distinguishable from other BH types. 

The mass of the RHSBH can be expressed as 

                                              
 

 

22 2 6

2 3

2 3 36

12 2 3
BH

J c r r
M

r c r

 

 

 



,                              (3.21) 
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whereas the HT and entropies read 

                    
   

 

22 2

2 5

36 2 3

2 24 2 3
H

c r r J c r
T

r c r



 

  

 

   
 

 


                                   (3.22) 

and  

    

2
2 41

1 (r )
4 8

H
BH

A r
S

c r


 





 
   

 
 ,                     (3.23) 

of which a potential of the form   

8
( )

c
r

c r
  


                    (3.24) 

can be introduced. 

The angular frequency   and the function N at the event horizon can be denoted 

as  

 
3

3 2
( )

6

t

r r

g r c J
N r

g r

 











      .                            (3.25) 

3.2 QT of Scalar Particles from 3D RHSBHs 

In quantum field theory (QFT) (Kaku, 1993), one can investigate fields in four 

different categories: scalar, vector, tensor and spinor fields. Quantization of scalar 

field gives rise to scalar particles2, vector field to vector particles and so on. The 

categorization of fields is carried out according to the unique spin values that these 

particles possess. Our focus is to examine HT in the case when scalar particles are 

concerned, which requires spin value to be zero. By comparing the HT expression 

that will eventually be obtained at the end of this section with the result in section 

                                                 
2 For further detailed information on derivation of particle creation from fields via 

quantization, please refer to (Zou, Liu, Wang, et al., 2014). 
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3.3, we aim to argue that no matter what spin value the particles in a RHSBH have, 

the HT outcome must stay invariant.  

Since we are examining scalar field, it is convenient to use KGE  

                                        
2

0

2
0s s

m
g g g

         .                           (3.26) 

In component form, this equation can further be expressed as  

                    
2

00 11 22 02 20

0 s,0 1 s,1 2 s,2 0 s,2 2 s,0 2
0s

s

m
rg rg rg rg rg r             .      (3.27) 

Supposing the wave function for scalar particles as 

                                                 1exp ( )s

i
I I O

 
    

 
                                  (3.28) 

and substituting the elements of metric tensor, Eq.(3.27) turns into 

                  
2 2

2 2 22 2

0 1 2 0 22 2 2

1 ( )
2 0s

N r N N
I N I I I I m

N N r N

 
           .       (3.29) 

We can carry on our voyaging by recalling the action term  

                                               0 ( )I t h r     ,                                    (3.30) 

being composed of the energy E and angular momentum h of scalar particles and 

ω(r) is the radial function which is the term deserving the most attention for the rest 

of our calculations. The radial function reads 

                                               

2
2 2 2

2

( )

s

h
E N m

r
r

N


 
  

 
  ,                          (3.31) 

or shortly 

                                              
 

(r)
A ( )r r r



 


 

  ;                                      (3.32) 
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where  

                                                        2A( ) ( )r N r ,                                                (3.33) 

and the modified energy is nothing but  

                                                         
Hh    .                                               (3.34) 

As stated before, the compact notation for radial function of incoming and outgoing 

particles is 

                                                        
A ( )

i
r

 




 


  .                                         (3.35) 

All in all, the final HT expression can be written as  

                                    
   

 

22 2

2 5

36 2 3

24 2 3
H

c r r J c r
T

r c r

  

 

   
 




   .                        (3.36) 

3.3 QT of Dirac Particles from 3D RHSBHs  

In this section, the vierbein formalism, or in other words the tetrad formalism, will 

be used. Hence, before we start our profound exploration on the Dirac equation in 

three dimensions, it is beneficial to introduce the main highlights behind this 

formalism. 

The vierbein field theory is a theory proposed by Albert Einstein in 1928 (Einstein, 

1928a, 1928b) as an alternative recipe of gravitation. In other words, he asserted a 

new technique of expressing curved spacetime manifold. Even though the formalism 

possesses difficulties of its own, it can be explicated in a rather fuss-free way, which 

is what I will be aspiring after throughout this section. 
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The main constituents of the vierbein3 formalism are Dirac matrices, spinorial affine 

connection and spin operator. While mentioning Dirac matrices, the key argument is 

to point out the necessity of modifying them in such a way that they obey the curved 

spacetime structure. It is not promising to apply the definitions that hold in 

Minkowski spacetime to Einstein’s GR. To be more expositive, in tensor notation, 

one can write 

                                                            
k

DC k DFe   ,                                            (3.37) 

in which the subscript ‘DC’ refers to Dirac matrices in curved spacetime. On the 

other hand, ‘DF’ stands for Dirac matrices in flat spacetime. For further information, 

see (Dirac, 1981). It is worthy to record that the contravariant index µ runs from 0 to 

2 and so does the Latin index k, however k is a dummy index unlike µ. Furthermore, 

Table 1 articulated below can be used as a detailed guideline for the explicit 

computation of these expressions. 

Table 1. The linkage between Dirac matrices in flat and curved spacetimes 

Dirac Matrices under the 

influence of curvature ( DC

 ) 

Computation by using 

Dirac Matrices in flat spacetime(
k

DF ) 

0

DC  
0 0 0 1 0 2

0 1 2DF DF DFe e e     

1

DC  
1 0 1 1 1 2

0 1 2DF DF DFe e e     

2

DC  
2 0 2 1 2 2

0 1 2DF DF DFe e e     

Having grasped the Dirac matrices, it can be seen beyond any doubt that without 

knowing the values for Dirac matrices in flat spacetime, it is not possible to move 

                                                 
3 The words ‘vier’ and ‘bein’ are both German words. Vier means four, whereas bein 

means leg. Thus, vierbein formalism can be thought as ‘tetrad formalism’. 
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forward. Dirac matrices in Minkowski space can be denoted in terms of the well-

recognized Pauli matrices as  

                                                      3 1 2, i , ik

DF P P P     ,                                      (3.38) 

where 
a

P  indicates Pauli matrices and  1,2,3a  . The Latin index ‘a’ is not 

assigned with the value zero, for 
0

P  may imply identity matrix in some resources. 

For further calculations, we will be requiring the Pauli matrix values for each 

component (Condon, 1929), so let us express it in a compact matrix form as follows  

                                                   3 1 2

1 2 32

k k k

k

k k k

i

i

  


  

 
  

  

                            (3.39) 

where the Kronecker delta has the property  

                                                   
0 if  

1 if 
km

k m

k m



 


                                               (3.40) 

and for simplicity one may assume 1  during this section. As can be remarked 

from Eq. (3.39), the definition of Pauli matrix components is given in covariant form. 

However, during our calculations, we will be using contravariant Dirac matrices. 

Since Dirac matrices are in direct relation with Pauli matrices, it is advantageous to 

note that for Pauli matrices, the covariant and covariant notations take exactly the 

same value. To sum up, we do not need to apply any changes to Eq. (3.38).  

The Dirac equation can be illustrated as (Sucu & Unal, 2007) 

                                                  f

DC f f

m
i 

       ,                                (3.41) 

where 
f  and fm  respectively represent the wave function and mass of fermions,  

is the well-known reduced Planck constant,   stands for the connection and DC

  
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implies Dirac matrices in curved spacetime as had already been mentioned. The term 

in brackets is nothing but the definition of covariant derivative in curved space. 

Without the correction term, we would still be dealing with partial derivatives only, 

which would not be sufficient since GR is taken into consideration.  

In order for being able to work out the distinctive Dirac equation for a RHSBH, we 

need to rewrite the metric (3.1) in a way that the coefficients of dt, dr, d  and the 

cross term becomes distinguishable. Ultimately, the line element (3.1) can be 

illustrated as  

                     2 2 2 2 2 2 2 2 2

2

1
( ) 2ds N N r dt dr r d N r d dt

N

        
              (3.42) 

Why have we felt the necessity of expressing the metric in the form above? The 

reason for this is for we wish to evaluate the covariant and contravariant metric 

tensors directly from the line element. The procedure to be followed is quite 

straightforward.  

From Eq. (3.42), the covariant and contravariant metric tensors can be interpreted as 

                                     

2 2 2 2

2

2 2

( ) 0

1
0 0

0

N r N r N

g
N

r N r

 





  
 
  
 
 

 
 

                            (3.43) 

and 

                                   

2 2

2

2 2 2

2 2 2

1
0

0 0

N (N )
0

N

N N

g N

N r

N N r





 

 
 

 
  
 

   
 

.                            (3.44) 

Having represented the metric tensor results, it is now easy to come by the 

determinant of g  . 
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2 2 4 2 4 2
2

2 2

( ) ( )
det

N r r N r N
g r

N N

 
                              

(3.45) 

We have defined all the expressions we need, thus it is time for deliberating Dirac 

equation in detail. Substituting {0,1,2}   into Eq. (3.41) leads to 

                           0 1 2

0 0 1 1 2 2DC DC DC f f fi m               ,        (3.46) 

where the only expression we have not defined is the connection term. The reason 

why we have left the accounting of 
  to the end is because it is the one that is in 

need of the most attentive dealing. Its definition includes spin operator and 

Christoffel symbol components. Moreover, the ordinary derivatives of tetrads should 

be computed. It is more harmonious to approach the evaluation of spin connection 

   step by step. 

3.3.1 Estimation of Spin Affine Connection 
   

 Step 1 - Definition of Spin Connection 

One may define the connection term as (Sucu & Unal, 2007) 

                                                   s   ,                                                     (3.47) 

where s  represents the spin operator and the tensor  can be further illustrated 

as  

                                                   ,

1

4

k

kg e e 

       .                                 (3.48) 

 Step 2 - Definition of Vierbeins 

In this step, we will be checking the metric (3.42) to specify the ‘vierbeins’ to be 

considered.  By definition (Gecim & Sucu, 2013), 
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m k

mkg e e   ,                                                   (3.49) 

where mk  is the Minkowski metric tensor and in our case the metric signature is  

( , , , )    . 

 Step 3 - Vierbein Computation  

The only non-zero components of covariant metric tensor (3.43) are the diagonal 

terms together with 02g and 20g . Therefore, as expected from its name, only four 

vierbeins survive and the methodology of obtaining them is demonstrated below.  

According to Eq. (3.49), one reads 

                                              0 0

00 0 0 0 0 00

m k

mkg e e e e   ,                                          (3.50) 

                                              1 1

11 1 1 1 1 11

m k

mkg e e e e   ,                                           (3.51) 

                                              2 2

22 2 2 2 2 22

m k

mkg e e e e                                             (3.52) 

and 

                                       
0 0 2 2

02 20 0 2 0 2 00 0 2 22

m k

mkg g e e e e e e      .                         (3.53) 

Notice that even though m and k are dummy indices, I have not written all the 

components from 0 to 2 explicitly. This is due to the simplification that I have 

carried out, only the non-zero terms will survive, so there is no need to write down 

each of them one by one. Consequently, the tetrads can be expressed in a table 

designed below. 
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Table 2. The vierbein component values. 

The tetrad component symbol Value of the concerned tetrad 

0

te  
N  

1

re  
1

N
 

2e  r  

0e   N

N 
  

These results can be plugged into Table 1 and the Dirac matrices in curved manifold 

will take the form 

                                      
3 3 2

1, iN ,P P P
DC P

rN iN

N Nr


   

 
 

   
 

.                          (3.54) 

 Step 4 - Calculating  Tensor 

The tetrad results illustrated in Table 2 will now be used to calculate   tensor. 

Recalling Eq. (3.48) and substituting the concerned vierbeins together with their 

derivatives, the covariant metric tensor and Christoffel symbols, one obtains the non-

zero components of  as  

                               
2

2 2

100 010

1 1

4 2
N r N r N N    

      
 

,                  (3.55) 

                                                   
212 122

4

r
    ,                                              (3.56) 

                                   2

012 210 120 102

1 1

4 2
r N rN  

        
 

         (3.57) 

and 
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                                                    2

021 201

1

8
r N 

    .                                 (3.58) 

 Step 5 - Evaluation of Spin Operators  

By using (Sakurai & Napolitano, 2014) 

                                                      
1

,
2

DC DCs      
                                          (3.59) 

for the spin operator calculation process, the spin affine connection terms specified in 

Eq. (3.47) finally become 

               0 2 2 2 3

0 0

1
( ) 2

4 4
P P

iN
s N r N N N r N    

   
             
   

,      (3.60) 

                                             
 

1 1

1 1
4

P

r N
s

N





  



                                          (3.61) 

and 

                                        
 2

2 2 3

2 2
4 2

P P

r N iN
s





   



      .                         (3.62) 

3.3.2 Further Investigation on DE  

Prosperously, we have managed to construe all the components appearing in DE. 

Now comes the final stage in which the appropriate substitutions should be made into 

Eq. (3.46). Plugging Eqns. (3.54), (3.60), (3.61) and (3.62) into Eq. (3.46) results in  

   23
1 2 3 1 0

0 1 3

1

4 2 4

P
f P f P P f P f P f f f

N N rN N
i N i m

N r N N r


    

  
   

                   
   

 

    (3.63) 

where 
0

P  symbolizes the identity matrix. It is quite clear that we need an ansatz for 

the wave function of the fermions
f . Let us assume that  
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1

2

( , , ) exp ( , , )

( , , ) exp ( , , )

f

i
t r I t r

i
t r I t r

  

  

  
  

   
  
  

  

                               (3.64) 

in which the functions 1( , , )t r  and 2( , , )t r   can be determined by using the 

coefficient matrix method. In this method, we generate a matrix whose determinant 

is set to be zero. By this way, one can successfully obtain two coupled equations 

which will consequently be used to evaluate the radial function. The coefficient 

matrix method will be explained in detail throughout Section 4.2.1, hence for now let 

us express the equation obtained via the application of this method. 

                                   
2 2 22 2

0 2 1 22 2

1 1
0fI N I N I I m

N r

                      (3.65) 

where the radial action can be derived from                                             

                                          

2

2 2 2

( )

f

h
E N m

r
r

N


  
   

   
   ,                         (3.66) 

where  

                                                              E E hN  .                                          (3.67) 

Finally, the HT of our RHSBH can be written as  

                                       
   

 
2

22 2

5

36 2 3

24 2 3
H

B r r J B r
T

r B r

  

 

   
 


.                     (3.68) 

Note that the same steps as in section 2.2.2 should be followed, with an additional 

function N . 
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Chapter 4 

HR OF THE VECTOR PARTICLES IN THE WAdS3BH 

GEOMETRY  

4.1 The Comparison of Ordinary and Warped Anti-de Sitter BHs  

Prior to carrying out a deep investigation on WAdS3BHs, one should first ask 

himself the question of why it is of great importance. As a matter of fact, Minkowski 

spacetime experiences a zero curvature (Aldrovandi, Almeida, & Pereira, 2007). In 

the case when the cosmological constant exists, we can no longer consider a zero 

curvature and this gives rise to the necessity of introducing dS / adS geometries. 

Moschella (Moschella, 2006) designated dS geometry as “the role of reference 

geometry of the universe if one describes dark energy with cosmological constant”. 

To have a better understanding of dS space, one can visualize the case of having a 

hyperboloid with one sheet. The line element of AdSn embedded in (n+1) dimensions 

can be expressed as (Moschella, 2006)  

                                               
2 2 22

10 1 ....... nds dx dx dx    .                            (4.1) 

There exists a constant curvature and a cosmological constant which are both turned 

out to have negative values. By working in AdS space, we can also overcome the 

logical inconsistency in the compulsion of placing a BH in a box that has a finite heat 

capacity to evaluate the thermodynamically stable solutions (Brito, Cardoso, & Pani, 

2015). It is also worthwhile to record that CFT, ADM formalism and AdS/CFT 

Correspondence play a vital role in the investigation of the BH family belonging to 

AdS3 space.  
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As might have been noticed from the title of this section, BHs in AdS space can be 

categorized into two groups; ordinary and warped AdSn BHs. In this thesis, I will be 

dealing with two space coordinates, namely r and ϕ, and time coordinate t, and 

hence AdS3 geometry will be considered.  

You might be wondering how a WAdS3BH differentiates itself from a BTZ BH. 

Knowing that both of these mysterious objects are members of the AdS space, what 

is the main difference we should seek for? To be able to answer this question, let us 

first have a brief look at the geometrical structure of BTZ BHs. The line element of 

BTZ BHs can be constructed as (Li, Li, & Ren, 2011) 

                                   
2

2 2 2 2 2

2

1
BTZ BTZ

BTZ

ds N dt dr r d N dt
N

     ,                  (4.2) 

where  

                                                 

2
2

2 24
BTZ

r J
N M

r
                                                (4.3) 

and  

                                                          
22

BTZ

J
N

r

 
 .                                                     

(4.4) 

BTZ and WAdS3 BHs differ in their structure and for the warped case; the symmetry 

is trimmed down (Birmingham & Mokhtari, 2011). A WAdS3BH is characterized as 

(Gursel & Sakalli, 2015) 

                              
4

2
2 2 2 2 2 2

2 24
ds N dt dr R d N dt

R N

          ,                 (4.5)  
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where 

                                2 2 2 23 1 3 4 3
4

r
R r r r r r   

  
       
  

,          (4.6) 

                                               
   2

2

2

3

4 ( )

r r r r
N

R r

    
                                     (4.7) 

and 

                                              
 2

2

2 3

2 ( )

r r r
N

R r


   

        .                               (4.8) 

The functions ( )N r , 
2( )N r  and ( )R r  include a constant υ of which value being 

equal to 1/3 implies chiral gravity theory (Anninos, Li, Padi, Song, & Strominger, 

2009). By excluding this chiral point, we are left with the possible BH solutions 

arising, depending on the value that υ has. These can be tabulated as follows. 

Table 3. Classification of WAdS3BHs 

𝐕𝐚𝐥𝐮𝐞 𝐨𝐟   𝐁𝐇 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧  

<  1 Squashed AdS3  

> 1 Streched AdS3  

                       =  1 Null AdS3  

Table 3 is composed of three elements, however it should be noted that each of the 

specified black hole solution can be separated into two sub groups as spacelike and 

timelike. Thus, it consequently follows that six solutions are present in total.    
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4.2 QT of Massive Vector Particles from Spacelike Streched 

WAdS3BHs using PEs  

In compact notation, PE can be written as (Kruglov, 2014) 

                                                  

2

2
0

m
D  

    ,                                             (4.9) 

where 

                                        D D                   .                        (4.10) 

It is clear from our metric (4.5) that  0,1,2   and since the index   is repeated in 

Eq. (4.9), the three components should be summed up for each   value as stated 

below.  

                                       

2
0 1 2

0 1 2 2
0

m
D D D           .                           (4.11) 

It is prudent to remark that the indices should be lowered, since we are keen to use 

definition (4.10). After a set of calculations, we consequently obtained a set of three 

equations which can be written explicitly as follows.  

      2 2 2 2 2 2 2 2 2 24 0
rtr

t t rm R N R N R N
t


  



 
          

  

,   

    
2

2 2 2 2 2 2 2 2 0
r rtr

r tr rm R N N R R N
t t

 


 

    
                  

 

and 

     2 2 2 2 2 2 2 2 2 24 0t t r tr r rm R N R N R N R 

   
                        (4.12) 
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4.2.1 Obtaining the Radial Function r

( ) by Coefficient Matrix Method    

Having evaluated the PEs, one shall now assume an ansӓ tz for the wavefunction 


in the exponential form and investigate the equations with the aim of radial function 

assessment. Let the wave function be expressed as   

                                                    

( , , )iI t r

c e


   ,                                                  (4.13) 

where I(t,r,ϕ) and c  are the action and coefficient respectively. There are many 

different varieties of approaches that we can derive a profit from to solve PEs, 

however the most practical one is presumably the coefficient matrix method. In this 

method, the coefficients are collected in a matrix, namely , which is summarized 

in the Table 4. 

Table 4. Components of the Coefficient Matrix. 

Components of abM  Value of Component 

00M   4 2 2 2 2 2 24 'R N m R h    

01 10M M   4 24 'R N E hN   

02 20M M  
2 2 2 2 4 2 24 'hE m R N R N N     

12 21M M   2 2 2 24 ' NR E hN N h N R      

11M   
2

2 2 2 2 2 2 24N R m N E hN R N h          
 

22M     4 2 2 2 4 2 2 2 2 2 2 2 24 ( ) 4 ' ( )R N N R N E m R N m N       
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The next step is to find the determinant of the matrix M , equate it to zero and solve 

for the radial function ( )r . The determinant of any 3 3x  matrix can be determined 

by performing the fairly straightforward routine stated below. If 

                                               

11 12 13

21 22 23

31 32 33

A A A

A A A A

A A A

 
 

  
 
 

,                                             (4.14) 

then the determinant reads (Arfken, 2013) 

                               23 2322 21 21 22

11 12 13

32 31 31 3233 33

det( )
A AA A A A

A A A A A
A A A AA A

     .          (4.15) 

Hence, applying the same procedure to the matrix M  leads to  

        
2

2
2 2 2 4 4 2 2 2 2 2 2 2det(M) 4 4 'R N m R N m N E hN R N h

             
  (4.16) 

As had been previously mentioned, setting det(M) 0 is a compulsory requirement 

of the progression. By doing so and applying WKB approximation on the action, we 

only need to take  

                                                  0 ( )I t h r     ,                                 (4.17) 

into account, same as Eq. (2.11). We finally have achieved an appropriate expression 

for the radial function ( )r : 

                   

1/2
2

2
2 2

2 2
( )

2

h
r dr E hN N m

RN R



   
               

               (4.18) 

The radial function attained is hiding two solutions in itself; one for the ingoing and 

another for the outgoing particles. This will almost certainly involve further analysis 

in order for determining which one will be of use throughout the HT evaluation 

process.     
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4.2.2 HT Calculation on the Event Horizon 

The vacuum fluctuations are believed to be taking place at the event horizon limit of 

the black hole, or in other words, during our calculations, it will be appropriate to 

consider r r


 . This will promptly affect the metric function N r( ) , making it 

approach to zero. Subsequently, the radial function expression will reduce to  

                                              2
( )

2

E hN
r dr

RN






   .                                       (4.19) 

Whilst an integral of the form (4.19) is faced, it is usually convenient to discuss the 

calculus of residues. To be able to do so, one should first substitute the metric 

functions in Eq. (4.20) and this results in 

                   
   

 2

2
( ) 2 3 1

43

E hN r
r dr r

r r r r



 




 


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in which  

                                        2 23 4 3r r r r              .                        (4.21) 

According to complex contour analysis, under the condition that f (z) is an analytic 

function on our contour, the following relation holds. 

                                                  0

0

1 ( )
( )

f z dz
f z

i z z


 ,                                           (4.22) 

iff 0z  is an interior singular point. In our case, the singular point is r . So, Eq. (4.23) 

shall be rewritten as 

                                                   
1 (r)

(r )
f dr

f
i r r






  .                                            

(4.23) 

Comparing Eq. (4.21) with Eq. (4.24), it can clearly be seen that  
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which modifies the radial function to the form 

                            
  

 2 2

2
( ) 3 1

3

E hN
r i r r

r r



  


  

 


  

 
 .                    (4.25) 

The task of finding the HT can now be accomplished, since the radial function is 

stated in a compact notation. All in all, the surface temperature of this BH, namely 

the HT, can be written as  

                                                          
4

H

E
T



 .                                                (4.26) 

Substituting Eqn. (4.25) into Eqn. (4.26) results in  
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Chapter 5 

CONCLUSION 

This thesis utilizes various techniques of evaluating the invariant HT expression 

persisting unaltered for different types of BHs. Virtual pair (particle – antiparticle) 

creation and QT were the processes on which these evaluations were based and in 

this manner, it is essential to bear in mind that each particle being tunneled from the 

event horizon of our BH might possibly have a different spin value. We were obliged 

to seek whether this plays a role in the HT expression or not. To pursue this problem, 

we have divided the thesis into different chapters in which spin-0, spin-1/2 and spin-

1 particles were investigated individually; and in the end we have shown that in all 

cases, one unique expression has been attained:  
2

HT



 . The result obtained was in 

harmony with the HT derived in Hawking’s original work (S. Hawking, 1975). 

Consistent with previous research, the results suggest that there is no linkage 

between the spin of the particle being emitted from a BH and the HT acquired.  

Although studies have discussed the importance of evaluation of HT via using QT 

process, a challenge that has received relatively little attention is for WAdS3BHs and 

RHSBHs, as only few have actually focused on the HR being radiated from these 

BHs specifically. The core theoretical contribution of chapter 4 is the suggestion that 

PEs can actually be used in the evaluation of HT of a BH when vector particles are 

taken into account. Furthermore, chapter 3 provided us with more knowledge 

regarding under what circumstances no hair theorem can be deserted.  
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For future studies, the effect of magnetic monopoles on HR of BHs can be 

investigated, which seems to be an inspiring topic; since the magnetic charge could 

actually be a part of the no hair theorem and it can lead to conceivable contributions 

in QM like equipping us with an explanation of why charges are found as quantized 

in nature. One can turn these new ideas over her/his mind, attempting to hit upon 

some theory to catch that line of least resistance, which possibly is the starting point 

of every discovery. 

I would like to finish my thesis with the words of Morgan Freeman: “Gravity feels 

real. But, gravity may not be what it seems. If gravity is an illusion, then it is time to 

call into the question everything we think we know about the cosmos. Only if we let 

go of what we feel to be correct; can we taste the real.”  
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