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ABSTRACT

It has been demonstrated in the literature that patches from natural images could be
sparsely represented by using an over-complete dictionary of atoms. In fact sparse
coding and dictionary learning (DL) have been shown to be very effective in image
reconstruction. Some recent sparse coding methods with applications to super-
resolution include supervised dictionary learning (SDL), online dictionary learning
(ODL) and coupled dictionary learning (CDL). CDL method assumes that the
coefficients of the representation of the two spaces are equal. However this
assumption is too strong to address the flexibility of image structures in different
styles. In this thesis a semi-coupled dictionary learning (SCDL) method has been
simulated for the task of single image super-resolution (SISR). SCDL method
assumes that there exists a dictionary pair over which the representations of two
styles have a stable mapping and makes use of a mapping function to couple the
coefficients of the low resolution and high resolution data. While tackling the energy
minimization problem, SCDL will divide the main function into 3 sub-problems,
namely (i) sparse coding for training samples, (ii) dictionary updating and (iii)
mapping updating. Once a mapping function T and two dictionaries Dy and D, are
initialized, the sparse coefficients for the two sets of data can be obtained and
afterwards the dictionary pairs can be updated. Finally, one can update the mapping
function T through coding coefficients and dictionary. During the synthesis process,
a patch based sparse recovery approach is used with selective sparse coding. Each
patch at hand is first tested to belong to a certain cluster using the approximate scale
invariance feature, then the dictionary pairs along with the mapping functions of that

cluster are used for its reconstruction. First the low resolution patches of sparse



coefficients are calculated by the selected dictionary which has low resolution, then,
the patches of high resolution is obtained by using the dictionary which has high

resolution and sparse coefficients of low resolution.

In this thesis, comparisons between the proposed and the CDL algorithms of Yang
and Xu were carried out using two image sets, namely: Set-A and Set-B. Set A had
14 test images and Set-B was composed of 10 test images, however in Set-B 8 of the
test images were selected from text images which are in grayscale or in colour tone.
Results obtained for Set-A show that based on mean PSNR values Yang’s method is
the third best and Xu’s method is the second best. The sharpness measure based
SCDL method was seen to be 0.03dB better than Xu’s method. For set-B only the
best performing two methods were compared and it was seen that the proposed
method had 0.1664dB edge over Xu’s method. The thesis also tried justifying the
results, by looking at PSD of individual images and by calculating sharpness based
scale invariance percentage for patches that classify under a number of clusters. It
was noted that when most of the frequency components were around the low
frequency region the proposed method would outperform Xu’s method in terms of

PSNR.

For images with a wide range of frequency components (spread PSD) when the
number of HR patches in clusters C2 and/or C3 was low and their corresponding
SM-invariance ratios were also low then the proposed method will not be as

successful as Xu’s method.

Keywords: sparse representations, super-resolution, semi-coupled dictionary

learning, power spectral density, scale invariance.



Oz

Literatiirde gosterilmistir ki dogal imgelerden aliman yamalar, boyutlar
resimdekinden daha biiyiik olan bir sozliikten alinacak oOgeler ile seyrekce
betimlenebilmektedir. Aslinda, seyrek betimleme ve sozliik 6grenme (DL) teknikleri
imge geri ¢attimi igin oldukga basarilidirlar. Son zamanlarda Onerilen ve yiksek
¢Oziinlirlik uygulamalar1 bulunan seyrek betimleme metodlar1 arasinda gldiimli
sozlik 6grenme (SDL), cevrim i¢i sozlik 6grenme (ODL) ve baglantili sozliik
o6grenme (CDL) bulunmaktadir. Bu baglantili sozliik 6grenme yontemi her iki alanin
betimleyici katsayilarinin esit oldugunu varsaymaktadir. Ancak, bu varsayim farkli
bicimleri bulunan imge yapilarini esnek bir sekilde anlatmak icin ¢ok gii¢liidiir. Bu
tezde, sozii gecen SCDL teknigi SISR i¢in uyarlanmis ve benzetim sonuglarin
yorumlamistir. SCDL yontemi her iki alani birbirine baglayan bir sozlik g¢ifti
bulundugunu varsayan ve seyrek betimlemelerin birbiri ile eslestirilebilecegini
diisiiniip, dusiik ve yiiksek ¢oziiniirliiklii verilerin katsayilarini birbirine eslestirecek
bir fonksiyon kullanan bir yontemdir. Enerji enkii¢iiltme problemini ¢6zmeye ¢alisan
SCDL, problemi dg alt-probleme bdlmektedir: (i) egitim Ornekleri ve seyrek
betimleme, (ii) so6zluk glncelleme ve (iii) eslestirme fonksiyonu giincellemesi.
Eslestirme fonksiyonu W, Dy ve D sozlUklerinin ilklendirmesini mitakip her iki
veri seti i¢in seyrek betimleme katsayilar1 elde edilmekte ve daha sonra sozliik
ciftleri gilincellenmektedir. Son olarak da, elde edilen katsayilar ve sozliiklerin
kullanimi ile eslestirme fonksiyonu giincellenmektedir. Sentezleme esnasinda eldeki
her yamanin hangi topaga ait oldugu belirlenmekte ve daha sonra eslestirme

fonksiyonu ve sozliikler kullanilarak yamanin geri ¢atimi gercgeklestirilmektedir.



Tezde, CDL tabanli Yang ve Xu metodlar1 ile oOnerilen yar1 baglantili sozlik
O0grenme yontemi Set-A ve Set-B diye adlandirdigimiz iki set imge kullanilarak
kiyaslanmistir. Set-A 14, Set-B ise 10 sinama imgesinden olusmaktadir. Set-B deki

imgelerden sekizi gri tonlu ve renkli yazi sinama imgeleri igermektedir.

Set-A kullanildiginda elde edilen ortalama PSNR degerleri Yang metodunun en iyi
ticlincii sonucu ve Xu metodunun da en iyi ikinci sonucu verdigi gozlemlenmistir.
Netlik 6l¢iisii tabanli SCDL yonteminden elde edilen ortalama PSNR degeri Xu ya
gore 0.03dB daha yukardadir. Set-B kullanilirken sadece en iyi basarimi gostermis
iki yontem kiyaslanmigtir. Ortalama PSNR degerleri 6nerilen yontemin Xu ya gore
0.166 dB daha iyi oldugunu gostermistir. Tezde ayrica gii¢c spektal yogunluguna ve
farkli topaklar altinda diisen yamalar igin netlike-6lgiisti degerleri araliklarina bagl
olarak hesaplanan bir 6l¢ii bagimsiz yiizdelik hesab1 kullanilarak elde edilen sonuglar
yorumlanmistir. Goriilmistlir ki ¢ogu frekans bilesenleri diisiik frekansli oldugu
zaman oOnerilen yontem ortalama PSNR baz alindiginda Xu ve Yang’dan daha iyi

sonug saglamaktadir.

Cok farkli frekans bilesenleri olan imgelerde ise (yayilmis PSD), C2 ve C3
topaklarina diisen HR yamalar1 ve bunlara denk gelen SM-degisimsizlik oranlari
diisik oldugu zaman Onerilen yontem en yakin rakibi Xu dan biraz daha Kkotl

basarim gostermektedir.

Anahtar kelimeler: seyrek betimlemeler, yiiksek ¢ozinurlulik, yari-baglasimli

sozlik 6grenme, gii¢c spectrum yogunlugu, scale invariance.

Vi



DEDICATION

To my parents and my dear elder brother Mr. Misbah Ullah

vii



ACKNOWLEDGEMENT

Many thanks to Almighty Allah, the beneficent and the gracious, who has
bestowed me with strength, fortitude and the means to accomplish this work.

| extend my heartfelt gratitude to my supervisor Prof. Dr. Erhan A. ince for
the concern with which he directed me and for his considerate and compassionate
attitude, productive and stimulating criticism and valuable suggestions for the
completion of this thesis. His zealous interest, and constant encouragement and
intellectual support accomplished my task.

| am also grateful to Prof. Dr. Hasan Demirel, the Chairman of the
department of Electrical and Electronic engineering who has helped and supported
me during my course of study at Eastern Mediterranean University.

Lastly 1 would like to acknowledge my friends Junaid Ahamd, Gul Sher,
Muhammad Irfan Khan, Muhammad Sohail, Muhammad Yusuf Amin, Muhammad

Waseem Khan, Sayed Mayed Hussain, Saif Ullah and Atta Ullah.

viii



TABLE OF CONTENTS

ABSTRACT .. re e i
OZ et v
DEDICATION ...ttt ne e Vil
ACKNOWLEDGEMENT ... Vil
LIST OF SYMBOLS & ABBREVATIONS ... XI
LIST OF TABLES ..o Xiii
LIST OF FIGURE ... .o Xiv
L INTRODUCTION ..ottt 1
1.2 INErOAUCTION .ttt 1
1.2 IMIOTIVALION ...ttt 3
1.3 CONITDULIONS ...t 4
1.4 THESIS OULIING. .....cuiiiiiiice e 4
2 LITERATURE REVIEW.......ooiii e 6
2.1 INEFOAUCTION ..ottt 6
2.2 Frequency Domain Based SR Image Reconstruction ...........c.cccceevveveivevieenene, 6
2.3 Regularization Based SR Image Reconstruction............cccocveveeeeieeiecievieesnene 9
2.4 Learning Based Super Resolution TeChNIqUES..........ccccevvevveieevieiieseece e 10
2.5 Single Image Super Resolution TeChNIQUE .........cccveivieiieiieiecc e 11
2.6 Dictionary Learning Under Sparse Model ..........c.ccovvvieveiiieiieiccicceee e 11

2.7 Single Image Super Resolution on Multiple Learned Dictionaries and

SNAIPNESS IMBASUIE ...ttt ettt ra e e e 12
2.8 Application of Sparse Representation Using Dictionary Learning.................. 13
2.8.1 DEBNOISING ..eevveeiieiit e itie sttt ettt e e et e et et e e e e s be e e nte e naeeanns 13
2.8.2 IN-PAINTING.....eeiiiiiiieiie e re e sreeanrs 13



2.8.3 IMage COMPIESSION ...ecuveieieireieeieesteesieseestae e esee e e e sseesreesaesneesreeeesseesrens 14

3 SUPER-RESOLUTION. ...ttt 15
L INEOTUCTION .. 15
3.2 J0INt SPArSE COAING.......eiieieiieieeie e sre et e e aeanaesres 17
3.3 Coupled Dictionary LEArNING ........ccvcvueieereiiieieerie e seeste e sreesee e e se e e 18
3.4 K-SVD Based Dictionary Learning ........cccccevveresieeieesesiieseeseseeseeseseesnnas 20

4 THE PROPOSED SUPER RESOLUTION METHOD.......ccccoiiiiiiiiiceceeee 23
4.1 Single Image Super ReSOIULION .........ccoiveiiiieiiee e 23
4.2.1 Proposed Dictionary Learning Approach.........ccccccecvveveiieiieie s 24
4.2.2 Training of Semi Coupled Dictionary Learning...........cccccevvveverveieesesinennnnn 26
4.2.3 Reconstruction of SR Image using Semi Coupled Dictionary Learning....... 29

S SIMULATION RESULTS ... 32
5.1 INEFOTUCTION ..t 32

QUAITEY ..ottt e e b et te et et e re e rearaenre s 33
5.3. Evaluation and Comparison of Proposed Algorithm ............cccccoeoeiviiiiienn, 36
5.3 Quality of Super-Resolved IMages..........cccccvveiieiiiieieeie e 47
6 CONCLUSIONS AND FUTURE WORK .......ooiiiiiiiee e 51
6.1 CONCIUSION ...ttt 51
6.2 FULUIE WOTK ...t 53
REFERENGES...... .ottt et 54



LIST OF SYMBOLS & ABBREVIATIONS

D Dictionary

T Sparsity

S Down Sampling Operator

X High Resolution Training Set
Y Low Resolution Training Set
X High Resolution Patch

y Low Resolution Patch

Uy Average of X

Oy k" Singular Value

Ox% Covariance of X, X

1o Zero Norm

Il Frobenious Norm

Il Euclidean Norm

HR High Resolution

KSVD K-Mean Cluster Value Decomposition

MP Matching Pursuit

LARS Least Angle Regression Stage-wise
LR Low Resolution

SISR Single Image Super Resolution
MSE Mean Square Error

OMP Orthogonal Matching Pursuit

SR Super Resolution

Xi



PSD Power Spectrum Density

SM Sharpness Measure

MR Mid Resolutions

PSNR Peak to Signal Noise Ratio

SSIM Structural Similarity Index

DFT Discrete Fourier transform

SCDL Semi-coupled Dictionary Learning

QCQP Quadratically Constrained Quadratic Program

Sl Scale Invariance

Xii



LIST OF TABLES

Table 5.1: Average PSNR and SSIM results for (3 x 3) patch size and different
number of dictionary atoms and SAMPIES. .........cceriiiiiiiiiie 34
Table 5.2: Average PSNR and SSIM results for (5 x 5) patch size and different
number of dictionary atoms and SAMPIES. .........cceriiiiiiiiiiie 35
Table 5.3: Average PSNR and SSIM results for (7 x 7) patch size and different
number of dictionary atoms and Samples. .........c.ccoveviiieiicce e 35
Table 5.4: Average PSNR and SSIM results for (9 x 9) patch size and different
number of dictionary atoms and Samples. .........ccccoveveiie i 36
Table 5.5: Proposed SCDL SISR method versus classic bi-cubic interpolator, Yang’s
algorithm and Xu’s algorithm. .........cccooiiiiiiiiii e 38
Table 5.6: Xu versus Proposed Method on test images in Set-B............ccccovevvinenn. 42
Table 5.7 Scale Invariance of Regular Texture Images and Text images in Set-B ... 46

Table 5.8: Scale Invariance of Regular Texture Images and Text images in Set-A...47

Xiii



Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 4.1.
Figure 4.2:
Figure 4.3:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:

Figure 5.6:

Figure 5.7:

LIST OF FIGURE

Framework of Wavelet Based SR Image Reconstruction ...............c......... 8
The Interpolation based SR Image Reconstruction.............ccccceeveveiienen, 9
Learning based SR Image Framework ..........c.ccccoovvveiieiin v, 10
Training IMages Data Set .........ccccvveiieiicc e 26
Atoms for Low Resolution DiCtioNaries............cccurereineneieneneneeenes 29
Atoms for High Resolution DICtionaries..........ccceveiveevvevesieceese e, 31
The Power Spectral Density Plots of Different images in Set-A ........... 41
Power Spectral Density Plots of Images in Set-B........................... 45
SR images for test image 'AnnieYukiTim’ from Set-A..................... 48
SR images for test image 'Flower’ from Set-A....................ooeel. 48
SR images for test image 'Butterfly’ from Set-A .......c.ccoceevveiviveiveeee 49
SR images for test image 'Rocio’ from Set-A .........ccocvvievieeivniniierien 49
SR images for test image 'Starfish’ from Set-A ... 50

Xiv


file:///C:/Users/Zia%20Ullah/Desktop/ZiaUllah_MS%20thesis_19_09_2016_Final%20copy1.docx%23_Toc462086486
file:///C:/Users/Zia%20Ullah/Desktop/ZiaUllah_MS%20thesis_19_09_2016_Final%20copy1.docx%23_Toc462086487
file:///C:/Users/Zia%20Ullah/Desktop/ZiaUllah_MS%20thesis_19_09_2016_Final%20copy1.docx%23_Toc462086488
file:///C:/Users/ince/Desktop/Ziya_MS_thesis/ZiaUllah_MS_finalcopy/ZiaUllah_MS%20thesis_20_09_2016_FinalFinal.docx%23_Toc462127246

Chapter 1

INTRODUCTION

1.1 Introduction

Super resolution (SR) has been one of the most active research topics in digital
image processing and computer vision in the last decade. The aim of super
resolution, as the name suggests, is to increase the resolution of a low resolution
image. High resolution images are important for computer vision applications for
attaining better performance in pattern recognition and analysis of images since they
offer more detail about the source due to the higher resolution they have.
Unfortunately, most of the times even though expensive camera system is available
high resolution images are not possible due to the inherent limitations in the optics
manufacturing technology. Also in most cameras, the resolution depends on the

sensor density of a charge coupled device (CCD) which is not extremely high.

These problems can be overcome through the use of super-resolution techniques
which are based on the idea that a combination of low resolution (noisy plus blurred)
sequence of images of a scene can be used to generate a high resolution image or an
image sequence. Most of the time, it is assumed that the low resolution images have
resulted from resampling of a high resolution image. Accuracy of imaging models is
quite vital for super-resolution processing. Incorrect modelling of motion can
actually further degrade the image. The images which are super resolved give more

information or give more minutiae about the original image and also have high pixel



density. A high resolution (HR) image can also be recovered from a single image via
the use of a technique known as “Super resolution from single image”. Many
researchers worked on this topic and gain some good quantitative and qualitative

results as summarized by [1].

The authors of [1] have introduced the concept of patch sharpness as a measure and
have tried to super-resolve the image using a selective sparse representation over a
pair of coupled dictionaries. Sparsity has been used as regularize since the single-
image super resolution process maintains the ill-posed inverse problem inside. The
sparse representation is based on the assumption that a n-dimensional signal vector
(x € R™) could be approximated as a linear combination of some selected atoms in a
dictionary of k-atoms (D € R™¥). Hence the approximation can be written as
x = D - a where a denotes a sparse coding vector mainly composed of zeros. The
problem of determining this representation is generally referred to as the sparse

coding process.

The single image super resolution algorithm is composed of two parts. The first part
is the training stage where a set of dictionary pairs is learned and the second is the
reconstruction stage in which the best dictionary pair is selected to sparsely
reconstruct HR patches from the corresponding LR patches. Processing in the
training stage would start by dividing each HR image into non-overlapping patches.
Then these HR patches are reshaped and combined column-wise to form a HR
training array. Next, a set of LR images are obtained by down sampling and blurring
each HR image in the HR Training image set. Afterwards each LR image would be
up-sampled to form mid-resolution (MR) images. Similar to the HR images the mid

resolution images are divided into patches, vectorized and column-wise combined to
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form a LR training array. Then for each patch in the LR training array the gradient
profile magnitude operator is used to measure the sharpness of the corresponding
patch in the MR image. Based on a set of selected sharpness measure (SM) intervals
the patches would be classified into a number of clusters. The algorithm would then
add the MR and the HR patches to the corresponding LR training set of the related
cluster or to the corresponding HR training set. Finally, the training data in each

cluster is used to learn a pair of coupled dictionaries (LR and HR dictionaries).

In the reconstruction stage from these learned dictionaries the SM value of each LR
patch is used to identify which cluster it belongs to and the dictionary pair of the
identified cluster is used for reconstructing the corresponding HR patch via the use of
sparse coding coefficients. The high resolution patch is calculated by multiplying the

high resolution clustered dictionary with the calculated coefficients.

In the literature researches have used coupled dictionary, semi coupled dictionary,
coupled K-SVD dictionary to super resolve an image [3] [4]. In [5],[6] and [7]
authors have made proposals to improve upon the results of Yang’s approach. In this
thesis we will super resolve the image with better semi-coupled dictionaries where
the coupling improvement between LR and HR image coefficients are due to a new
mapping function. The general approach is similar to what has been presented in

[1][2][3][4],but the procedure is different and leads to improved results.
1.2 Motivation
As in [5], the objective of this thesis is to propose a new mapping function that

would improve the coupling between the semi-coupled dictionaries in the single

image super resolution technique and improve the peak-signal-to-noise ratio (PSNR)



values obtained for the super-resolved images. Clustering was used to regulate the
intrinsic grouping of unlabelled data in a set. Since there is no absolute criteria for
selecting the clusters the user can select his/her own criteria and carry out the

simulations to see if the results would suit to their needs.

Various researchers have worked on coupled dictionary learning for single image
super-resolution, but here we are doing coupling as well as mapping between HR and
LR patches. For assessing the quality of the reconstructed HR image as in [9] the
peak signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) were used

and the test image and the reconstructed image were compared.
1.3 Contributions

In this thesis we used the MATLAB platform to simulate semi-coupled dictionary
learning and applied it to the problem of single image super resolution. Our
contributions are twofold: firstly we have obtained results for the specific sharpness
measure based mapping function that relates the HR and LR data and have compared
them against results obtained from other state-of-the-art methods. Secondly we have
tried to analyse the results. To this end we have used PSD and SM-invariance values

to explain the results.
1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 provides a literature
review on super-resolution techniques. This is followed in Chapter 3 by a detailed
study of super resolution, single-image super resolution, coupled dictionary learning
and K-SVD based DL methods. Chapter 4 gives details about our proposed SISR
algorithm based on SCDL and its mapping function that relates two spaces to each

other. Chapter 5 provides simulation results for the proposed method and compares



these results with those obtained from classical bi-cubic interpolator and two other
state of the art methods. This chapter also tries to interpret the results. Finally,

Chapter 6 provides conclusions and makes suggestions for future work.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

The aim of super resolution (SR) image reconstruction is to obtain a high resolution
image from a set of images captured from the same scene or from a single image as
stated in [28]. Techniques of SR can be classified into four main groups. The first
group includes the frequency domain techniques such as [13, 14, 15], the second
group includes the interpolation based approaches [16, 17], the third group is about
regularization based approaches [19, 20], and the last group includes the learning
based approaches [17, 18]. In the first three groups, a HR image is obtained from a
set of LR images while the learning based approaches achieve the same objective by

using the information delivered by an image database.
2.2 Frequency Domain Based SR Image Reconstruction

The first frequency-domain SR technique [13] was proposed by Huang and Tsai
where they considered SR computation for noiseless LR images. Their idea was to
transform the data of the low resolution images into the Discrete Fourier Transform
(DFT) domain and then combine the data based on the relationship between the
aliased DFT coefficients of the observed LR images and the unknown HR image.
The combined data would finally be transformed back to the spatial domain. Even
though frequency domain techniques have low computational complexity they are
still insufficient for dealing with real-world applications. This is due to the fact that
the frequency domain techniques require only a global displacement between

6



observed images and the linear blur function. Two examples to frequency-domain
techniques include usage of the discrete cosine transform (DCT) to perform fast
image deconvolution for SR image computation (proposed by Rhee and Kang) and
the iterative expectation maximization (EM) algorithm presented by Wood et al. [21,
22]. The registration, blind deconvolution and interpolation operations are all

simultaneously carried out in the EM algorithm.

In the literature many researchers have investigated the usage of wavelet transforms
for addressing the SR problem. They have been motivated to use wavelets since the
wavelet transform would provide multi-scale and resourceful information for the
reconstruction of previously lost high frequency information [14]. As depicted in Fig.
2.1 wavelet transformation based techniques would treat the observed low-resolution
images as the low-pass filtered sub-bands of the unknown wavelet-transformed high-
resolution image. The main goal is to evaluate the finer scale coefficients. This is
then followed by an inverse wavelet transformation to obtain the HR image. The
low-resolution images are viewed as the representation of wavelet coefficients after
several levels of decomposition. The final step include the construction of the HR
image after estimating the wavelet coefficient of the (N+1)" scale and taking an

inverse discrete transformation.
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Figure 2.1: Framework of Wavelet Based SR Image Reconstruction [28]

The interpolation based SR image method involves projecting the low resolution
images onto a reference image, and then fusing together the information available in
the individual images. The single image interpolation algorithm cannot handle the
SR problem well, since it cannot produce the high-frequency components that were

lost during the acquisition process [14]. As shown by Fig 2.2, the interpolation based

SR techniques are generally composed of three stages. These stages include:

i.  registration stage for lining up the LR input images,
ii.  interpolation stage for generating a higher resolution image, and the

ii.  de-blurring stage for enhancing the HR image obtained in step (ii).
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Figure 2.2: The Interpolation Based SR Image Reconstruction [28]

2.3 Regularization Based SR Image Reconstruction

In the literature we can find numerous regularization based SR image reconstruction
methods [24, 25]. These methods have all been motivated by the fact that the SR
computation was an ill-posed inverse problem. The aim of these regularization based
SR methods is to incorporate the prior knowledge of the unknown high-resolution
image into the SR process. According to the Bayesian point of view, the information
that can be extracted from the low-resolution images about the unknown signal (HR
image) is contained in the probability distribution of the unknown. Therefore the HR
image can be estimated via some statistics of a probability distribution of the
unknown high-resolution image, which can be established by applying Bayesian
inference to exploit the information provided by both the low-resolution images and
the prior knowledge on the unknown high-resolution image. The most popular
Bayesian-based SR approaches include the maximum likelihood (ML) estimation

[20] and the maximum a posterior (MAP) estimation [24] approaches.



2.4 Learning Based Super Resolution Techniques

Similar to the regularization based SR approaches the learning based SR techniques
also try solving the ill-posed SR problem [26, 27]. The aim of these learning based
methods is to enhance the high frequency content of the single LR input image by
extracting the most likely high-frequency information from the given training image
samples considering the local features of the input low-resolution image. For this
end, Hertzman [26] had proposed a method in which the desired high-frequency
information is recovered from a database of LR images. As can be seen from Fig.
2.3, Hertzman’s method is made up of 2- stages. An off-line training stage and the
SR image reconstruction stage. In the first stage image patches are used as ground
truth for the generating LR patches through an image acquisition model proposed in
[28]. The method would first collect pairs of LR patches and their corresponding HR
patches. Later in the reconstruction stage, patches extracted from the input low-
resolution images are compared with other patches stored in a database. Afterwards
to get the HR image a similarity measurement criterion such as minimum distance is

used to select the best matching patches.

ST
A

Training image
data

Low-resolution HV_//

. Predict high
High-pass - - s
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Up-sampling

Figure 2.1: Learning based SR Image Framework
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2.5 Single Image Super Resolution Technique

As stated in [3], the single image super resolution (SISR) technique only makes use
of a single LR observation to construct a HR image. This method which had been
proposed by Yang uses coupled dictionary training and involves patch wise sparse
recovery. In Yang’s approach to SR image reconstruction, the learned coupled
dictionaries are used to relate the LR and HR image patch-spaces via sparse
representation. The learning process makes sure that the sparse representation of a
low-resolution image patch in terms of the low-resolution dictionary can be used to
reconstruct a HR image patch with the dictionary in the high-resolution image patch
space. The SISR method proposed by Yang, is a bi-level optimization problem where

an L;-norm minimization is used among the constraints of the optimization.
2.6 Dictionary Learning Under Sparse Model

Dictionary learning for sparse representation is a very active research topic among
researchers all around the world. As suggested in [3] by Yang et al., the main aim of
sparse representation is to present the data in a meaningful way to capture the useful
properties of signals with only a few coefficients that are nonzero (sparse).
Dictionary learning using sparse representation had become a necessity due to the
limited representation power of the orthogonal and bi-orthogonal DL methods. The
sparse and redundant data modelling seeks the representation of signals as linear
combinations of a small number of atoms from a pre-specific dictionary. Sparse
coding is the name given to the method to discover such a good set of basis atoms.
Given a training data {x;}, the problem of dictionary learning is solving an
optimization problem by minimizing the energy function that combines squared

reconstruction errors and the L; sparsity penalties on the representations. Currently

there is an abundance of DL methods and most of these methods use the Lo and L;
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sparsity penalty measures. Some recent DL techniques include the method of optimal
direction (MODs), the Recursive Least Squares Dictionary Learning (RLS-DLA)
method, K-SVD dictionary learning and the online dictionary learning (ODL). MOD
technique which was proposed by Engan et al. [30], employs the Lo sparsity measure
and K-SVD uses the L; penalty measure. These over-trained dictionaries have the
advantage that they are adaptive to the signals of interest, which contributes to the
state-of-the-art performance on signal recovery tasks such as in-painting [33] de-

noising [31] and super resolution [2],[9].

2.7 Single Image Super Resolution on Multiple Learned Dictionaries

and Sharpness Measure

A new technique has recently been proposed in [1] by Yeganli etal. This new
technique uses selective sparse representation over a set of coupled low and high
resolution cluster dictionary pairs. Patch clustering and sparse model selection are
based on a sharpness measure (SM) value obtained from the magnitude of the patch
gradient operator. The patch sharpness measure used for HR and LR images is
assumed to be independent to patch resolution. SM value intervals are used to cluster
the LR input image patches. For each cluster, a pair of structured and compact LR

and HR dictionaries is learned.

In the reconstruction stage, each LR patch is classified into a certain cluster using the
SM value in hand. Afterwards, the corresponding HR patch is reconstructed by
multiplying the cluster’s HR dictionary with the sparse representation coefficients of
the LR patch (as coded over the LR dictionary of the same cluster). Various
numerical experiments using PSNR and SSIM have helped validate that the method

of Faezeh is competitive with various state-of-the-art super-resolution algorithms.
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2.8 Application of Sparse Representation Using Dictionary Learning

2.8.1 Denoising

In denoising of videos and images the sparse representation is also used [36]. In these
problems the MAP approximation is expressed in which the priority of sparsity is on
the base of given data. A solution is described for the MAP estimate where the sparse
estimate in image block are overlapped and after that by taking average in every

block the data is identified for denoising.

Let suppose X is noisy image of size (R x d) in which the overlapped patches x;, are
being extracted and after that reshaped the patches to make a vector. Use a K-SVD
algorithm for over-complete dictionary D, now use OMP for all patches to be
sparsely coded. The finest atom dis considered as important part y; such that the
noisy part y,is rejected.

N; =D.a; (2.1)

At last reshaped all de-noise patches into 2-d patches. In overlapping patches take the
average value pixel and obtained the de-noised image by merge them.

2.8.2 In-painting

In image processing the image in-painting application is very helpful now days. It is
used for the filling of pixels in the image that are missed, in data transmission it is
used to produce different channel codes and also it is useful for the removal of

superposed text in manipulation or in road signs [34].

Now let suppose consider an image patch x = [x{ x£]¢ that is made from the two sub-

vectors where the sub-vector x, is known for feasible pixel and x; have a missing
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pixels in image in-painting so there is a method proposed for the estimation of the
missing sub-vector x;, by Guleryuz [8] in which missing pixels occupy combination
in orthonormal bases for compression. For the compressibility of x signal means
there is a sparse vector o exists that gives D such as, x = Da. now let suppose Ay, A,y
and Ajare the diagonal matrices with diaognalized value of 1/10 to describe the a
non zero entries, so the i* estimation for the x is given as;

(2.2)

2l = (i:) = AR+ A, (DA,DHRI
2.8.3 Image Compression

For image compression the over-complete dictionaries are used for sparsely
representing the input signal to get good compression. An example of such approach
is the work which is introduced by Bryt and Elad based on the learned K-SVD
dictionary [20]. In their approach, they use some pre-specified face templates. Face
templates which are not overlapped with the others, are used in order to specify a

class of the signals. And then they are represented employing the corresponding K-

SVD dictionary.
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Chapter 3

SUPER-RESOLUTION

3.1 Introduction

In this chapter an introduction to super-resolution techniques is presented. Image
super resolution (SR) techniques aim at estimating a high-resolution (HR) image
from one or several low resolution (LR) observation images. SR carried out using
computers mostly aim at compensating the resolution loss due to the limitations of
imaging sensors. For example cell phone or surveillance cameras are the type of

cameras with such limitations.

Methods for SR can be broadly classified into two families: (i) The traditional multi-
image SR, and (ii) example based SR. Traditional SR techniques mainly need
multiple LR inputs of the same scene with sub-pixel separations (due to motion). A
serious problem with this inverse problem is that most of the time there are
insufficient number of observations and the registration parameters are unknown.
Hence, various regularization techniques have been developed to stabilize the
inversion of this ill posed problem. If enough LR images are available (at subpixel
shifts) then the set of equations will become determined and can be solved to recover
the HR image. Experiments have showed that traditional methods for SR would lead

to less than 2 percent increase in resolution [37].
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In example based SR, the relationship between low and high resolution image
patches are learned from a database of low and high resolution image pairs and then
applied to a new low-resolution image to recover its most likely high-resolution
version. Higher SR factors have often been obtained by repeated applications of this
process, however example based SR does not guarantee to provide the true
(unknown) HR details. Although SR problem is ill-posed, making precise recovery
impossible, the image patch sparse representation demonstrates both effectiveness

and robustness in regularizing the inverse problem.

Suppose we have a LR image Y that is obtained by down sampling and blurring a HR
image X. Given an over-complete dictionary of K atoms (K > n), signal X € R" can
be represented as a sparse linear combination with respect to D. In other words, the
signal X can be written as X = D ay, where oy € R is a vector with very few
nonzero entries. In practice, one may have access to only a small set of the

observations from X, say Y:

Y = LX = LDay, (3.1)

Here L represents the combined effect of down sampling and blurring. L € R "

with k < n and is known as a projection matrix.

Assuming that in the context of super-resolution x denotes a HR image patch, while y
is its LR counterpart it is possible to sparsely represent the HR and LR patches using
the over-complete dictionary Dy and D:

X= Dyay, y= D;a;

By supposing that D; = LDy , then
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y 5 LDHaH =~ DLaH (32)

(3.2) describes the relationship between the sparse representation coefficient of LR
and HR patches and says that they are approximately same, i.e. ay = ay. Therefore,
given a LR patch y, one can reconstruct the corresponding HR patch as:

X = Dya;. (3.3)

Vector selection for sparse representation of y can be formulated as:

minao ||y — Draoll, st [lagllo<T (3.4)

Where, T is a threshold which is used to control the sparseness. |||, and |||l
respectively represent the L2 and LO norms.

To represent a signal, a well-trained dictionary and a sparse linear combination of the
dictionary atoms is required. First, the initial dictionary is used to sparsely represent
the observation and afterwards the dictionary is updated using the sparse
representation for the given data.

3.2 Joint Sparse Coding

Unlike the standard sparse coding, the joint sparse coding involves learning two
dictionaries Dy and Dy, for two coupled feature spaces, y and Y. The two spaces are
tied by a mapping function F. The sparse representation of x; € y in terms of Dy
should be the same as that of y; € Y in terms of Dy, where y; = F(x;). Yang et al. [3]

addressed this problem by generalizing the basic sparse
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z; = argming, lyi — Dya; |13 + ulla;|l, , Vi=l,2, -+ N 3.7)

z; = argming||Ix; — Dya; |5 Vi=1,2,-- N

Here {x;}}_, are the latent space samples, {y;}), are the samples from observation
space and {z;}}*, denotes the sparse representations. We recall that y; =F(x;) where

F(-) is the mapping function.

Signal recovery from coupled spaces is similar to compressed sensing [32]. In
compressed sensing there is a linear random projection function F. Dictionary D, is
chosen to be a mathematically defined basis and D, is obtained directly from D,
with the linear mapping. For more general scenarios where the mapping function F is
unknown and may be non-linear the compressive sensing theory cannot be applied.
For an input signal y, the recovery of its latent signal x consists of two consecutive
steps: (i) find the sparse representation z of y in terms of D,, according to (3.7), and

then estimate the latent signal, x = Dyz.

To minimize the recovery error of x, we define the following loss term:

L(Dy, Dy, X,Y) =5 || Dxz — x|[3 (3.8)

The optimal dictionary pair {D*,D*y} can be obtained by minimizing (3.8) over the
training signal pairs as:

min 1
D.D, ;Z?’ﬂ L(Dy, Dy, x;,y:)

st z, = argming ||y — Dyl + ullally, vi=1,2, v &9

|| Dy (hk)”z = 1'”Dy(:'k)”2 <1,V =12k
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Obijective function in (3.09) is nonlinear and highly nonconvex. To minimize it one
must alternatively optimize over Dy and Dy while keeping the other fixed. When Dy is

fixed, sparse representation z; can be determined for each y; with Dy, and the problem

reduces to:
min % 1
b, )5 IDezi— il
i=1
st z; = argming |ly; — Dyall5 + ullel|ly, Vi=1,2,, N (3.10)

” Dx (:'k)llz < 1lvk = 1'2!""k

This is a quadratically constrained gquadratic programing problem that can be solved
using conjugate gradient descent algorithm [35]. Minimizing the loss function of
(3.10) over Dy is a highly nonconvex bi-level programming problem as stated in [37]
and this problem can be solved through the use of the gradient descent algorithm
[38].

3.4 K-SVD Based Dictionary Learning

In vector quantization (VQ), a codebook C that includes K codewords is used to
represent a wide family of signals Y = {y;}}", by a nearest neighbour assignment.

The VQ problem can be mathematically described as:

r?ixn{{llY —Call}2} s.t. Vix; =e (3.12)

The K-Means algorithm [38] is an iterative method, used for designing the optimal
codebook for VQ. In each iteration of K-Means there are two steps. The first step is
the sparse coding that essentially evaluates a by mapping each signal to its closest
atom in C, and the second step is the updating of the codebook, changing

sequentially each column c; in order to better represent the signals mapped to it.
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Sparse representation problem can be viewed as a generalization of (3.11), in which
we allow each input signal to be represented by a linear combination of codewords,

which we now call dictionary elements or atoms. Hence, (3.11) can be re-written as:

min{{||¥ — Dal}z} s.t. Villxllo<T (3.12)
,Q

In K-SVD algorithm we solve (3.12) iteratively in two steps parallel to those in K-
Means. In the sparse coding step, we compute the coefficients matrix e, using any
pursuit method, and allowing each coefficient vector to have no more than T non-
zero elements. In second step dictionary atoms are updated to better fit the input data.
Unlike the K-Means generalizations that freeze a while determining a better D the
K-SVD algorithm changes the columns of D sequentially and also allows changing
the coefficients as well. Updating each dx has a straight forward solution, as it

reduces to finding a rank-one approximation to the matrix of residuals;

£k
Where a’denote the j-th row in the coefficient matrix a. Ejy can be restricted by
choosing only the columns corresponding to those elements that initially used d in
their representation. This will give Ef. Once EF is available SVD decomposition is
applied as:
ER =uavT”
Finally we will update d; and af as:
dy =u;, af =A11) v,
While K-Means applies K mean calculations to evaluate the codebook, the K-SVD

obtains the updated dictionary by K-SVD operations, each producing one column.
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For coupled dictionary learning (3.12) will first be replaced by:
min
Do, Dy, {a} Ziall = Daalls + lly: = Dyl
stllaillo < T lldllz < Llldyllz <1 (3.13)

i=1,2,..,N, r=1,2,...,n

Where, d}; and dj, are the r-th atom of D, and D,, respectively.

Afterwards, the two step K-SVD will be implemented.
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Chapter 4

THE PROPOSED SUPER RESOLUTION METHOD

4.1 Single Image Super Resolution

This idea of Single Image Super Resolution (SIRS) by sparse representation rides on
a very special property of sparse representation. According to model of the sparse
land, a vector X can be denoted through a dictionary Dy and sparse representation
vector «<;;. Let Xy be the high resolution image patch and Dy and «j by the
corresponding dictionary and sparse coefficient vector. In the same way let X; be the
low resolution image patch, D, and «; be the corresponding LR dictionary and

sparse representations vector, then X,; and X, can be represented as:

Xu ~ Dy Xy (4.1)

Q

X ~ Dy (4.2)

Here, the X; patches are generated by applying down sampling and blurring on HR
images and then extracting the LR patches from these images. Now consider the
invariance property of this sparse representation due to the resolution blur. Given the
trained LR and HR dictionaries one can estimate HR patches from LR patches using

the HR dictionary and calculate the LR coefficients.
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Xy = X (4.3)

This is a very basic idea of a sophisticated SR process. In [2] [5], Yang has proposed
a mechanism of coupled dictionary learning in which the authors learn the
dictionaries in the coupled space instead of using a single dictionary for each space.
Here, the HR and LR data are concatenated to form a joint dictionary learning
problem. Further, for the sparse coding stage authors suggest a joint by alternate

mechanism and use it for both dictionaries in the dictionary update stage.

In [1], Yeganli and Nazzal have proposed a sharpness based clustering mechanism
to divide the joint feature space into different classes. The idea here is that the
variability of signal over a particular class is less as compared to its variability in
general. They designed pairs of clustered dictionaries using the coupled learning

mechanism of Yang et al. [2], and attained state of the art results.

Motivated from [1], in this thesis a new method is proposed for semi-coupled
dictionary learning through feature space learning. Moreover we introduce a different
sharpness feature than the one introduced in [1] for classifying patches into different
clusters.

4.2.1 Proposed Dictionary Learning Approach

Before discussing the details of the proposed dictionary learning approach, we
provide here first the clustering criteria and data preparation for the semi-coupled
dictionary learning. The sharpness criteria used for the classification of patches into

different clusters was as follows:
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S,y =11, y)—ma (X, Y)lh (4.5)

Equation (4.5) says that the sharpness at any pixel location (x ,y) is equal to the L;
distance between I(x,y) and the mean p, (x,y) of its 8-adjacent neighbours. In this
way we calculate a sharpness value for a particular patch. And assuming the
invariance of this measure due to the resolution blur we consider only those patches
which satisfy this invariance. Based on these criteria three clusters were created and
three different class dependent HR and LR dictionaries are learned. We extract the

patches from the same spatial locations for both HR and LR data.

For the dictionary learning process we have used a subset of the training image data
set provided by Kodak [7]. In our subset we use 69 training images randomly
selected from the Kodak set. Figure 4.1 depicts some of the images that are in this

subset.
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Figure 4.1. Training Images Data Set

4.2.2 Training of Semi Coupled Dictionary Learning

Let us consider the HR training image set as X. We first down sample and blur the
HR images by bi-cubic interpolation and generate the low resolution training image
set as Y. Now we sample the patches after the LR and HR training set image from
each image from same spatial locations. Regarding the clustering of data while
sampling the patches from LR and HR training data we test the sharpness value of
HR and LR and if this value is same we cluster them into the same cluster. Then HR

and LR 2D patches were converted into column vector and stacked column wise into
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a cluster matrix. One more thing to note here is that for the LR training patches, we
first calculate the gradient features of the patches as done by most SR algorithms
before concatenating them into cluster matrix. Let UY be the high resolution HR
patches matrix where y represent the cluster number. In the same way let VY be the
low resolution patches matrix. The joint coupled dictionary learning process can be

expressed as;
min{ D} DY, f() }|U¥ = DY} |+ |[V¥-D) % ||+

Bllay — T7aullE+@ullaylli+ ey llay i +onITIIE (46)

st D7 fl, < 1, [IDyl, <1
Here B, ¢, , ¥, pm are the regularization terms and dzi and df,’i are the respective
cluster dictionary. The problem posed in the above equation is solved in three ways,
first it is solved for the sparse representation coefficients and keeping constant the
dictionaries and mapping function. Then it is solved for the dictionaries while
keeping the sparse representation and mapping functions constant. Finally it is solved

for mapping function and keeping constant the sparse representation and dictionaries.

First given the HR and LR cluster training data for each cluster we initialize a
dictionary and mapping matrix. Given all these dictionaries to the sparse
representation problem and can be formulated as.

min {a2} U¥ = DY a3 + Blla) — Tual 2 + @ullalll; (4.7)

min {ag} [IVY = Dy aylI7 + Bllay — ToagllF + @yllay Il (4.8)

The problem posed above is a typical Lasso problem or one can say a vector

selection problem. There are many algorithms in the literature that can solve this
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problem such as LARS [11]. After finding the sparse coefficients of the HR and LR

training data the dictionaries must be updated. This problem can be formulated as:
Min {0}, D}||U” = DYAY|" + V¥ = DYad||" (4.9)

st IDZill, <1, DYl <1

The problem posed in (4.9) is a quadratically constrained program (QCQP) problem
and can be solved as described in [3]. The third step in the dictionary learning
process is the updating of the mapping matrix. This problem can be stated as:

Min {T7} [l — TV a3 117 + (@m/BINT |17 (4.10)

(4.10) shows a ridge regression problem and has been analytically solved. The

mapping function T¥ would be equal to:

T T }
TV = &y (a5 a7 + (@m/BID* (4.11)

where, | denotes the identity matrix.

This proposed dictionary algorithm is summarized below.

Algorithm 1 The Training Phase

Input: HR Training Image Set.
e Perform down-sampling and blurring on HR images to get the LR images.
e Do bi-cubic interpolation on LR images to get the transformed MR images.
e Extract patches from HR and MR images and classify them using the
sharpness value into clusters to get the HR and LR training data matrices.

e For each directional cluster having HR and LR training data matrices X and
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Y do:

Initialize dictionary pairs Dy and D, for each cluster.

Initialize mapping functions Ty and T in every cluster.

Fix the further variables; update Ay and AL through Eq (3.6).

Fix other variables; update Dy and D by Eq.(3.6) .
e Fix other variables; update Tyand T, by Eq.(3.6) .

Output: Dy, D ,Tyand T for each cluster.

B o

Figure 4.2: Atoms for Low Resolution Dictionaries

Figure 4.2 shows sample atoms of the dictionaries learned for the three clusters. On
the left are the atoms that are not so sharp and on the right the ones that are sharpest.
These are the atoms that will be used for the HR patch estimation during the

reconstruction phase.

4.2.3 Reconstruction of SR Image using Semi Coupled Dictionary

Learning

During the image reconstruction stage an LR image given we first convert 2D image
into column matrix for HR image reconstruction. One thing to remember here is that

we apply full overlap and each LR patch is first tested by its sharpness value to
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decide the dictionary pair for its reconstruction. In the patch wise sparse recovery
process we first calculate the sharpness value of the LR patch at hand. From this
sharpness value we find the cluster to which this patch belongs to. Given the cluster
dictionaries and mapping matrix we calculate the sparse coefficient of this LR patch
using the LR dictionaries and the mapping matrix by the same equation used during
the training stage. Now after finding the sparse coefficients matrix we first multiply
the sparse coefficients by the training matrix and then use the dictionary of HR along
by multiplied sparse coefficients to estimate an HR patch. After estimating all HR
patches. We go from the vector domain to the 2-D image space by using the merge

method of Yang et al [2]. At the end we have our HR estimate image.

Algorithm 2 The Reconstruction Phase

Input: LR Test Image and Dictionary Pairs with Mapping
Functions.
e Up-convert the LR image by bi-cubic interpolation.
e Extract patches from this transformed LR image using full
overlap.
e Use the mapping function and dictionary pair of each cluster
to recover the HR patch.
e For each LR patch test its sharpness value and decide the
cluster it belongs to.
e Use the selected cluster LR dictionary and mapping to get
the sparse coefficients of LR patch.
e Use the selected cluster HR dictionary and mapping to

recover the HR patch using the sparse invariance property.
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e Reshape and merge the recovered HR patches to get the
approximate HR image.

Output: A HR image estimate.

Figure 4.3 depicts the atoms of the dictionaries for the reconstructed HR patches of

the three clusters.
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Chapter 5

SIMULATION RESULTS

5.1 Introduction

In this chapter the performance of the proposed single image SR (SISR) algorithm
based on semi-coupled dictionary learning (SCDL) and a sharpness measure (SM)
has been evaluated and the results compared against the performance of the classic
bi-cubic interpolation and two other state-of-the-art algorithms namely: techniques
proposed by Yang [3] and Xu etal [4]. The dictionary of the proposed SISR
algorithm was trained using 69 images from the Kodak image database [12], and a
second benchmark data set [13]. After training the dictionary of the proposed SISR
method, performance estimation of the reconstructed images were carried out using
two sets of test images, namely: Set-A and Set-B. Metrics used in comparisons

included the PSNR and SSIM.

Peak signal-to-noise ratio (PSNR) represents the ratio between the maximum
possible value (power) of signal and power of distorting noise that disturbs the
quality of its representation. Because various signals have very wide dynamic range
PSNR is usually expressed in terms of the logarithmic decibel scale and is computed

as follows:
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PSNR(X ,X)=101log;g ————,
( ) 910 MSE(X, X)

(5.1)

Where, X is the original high resolution (HR) image and X is the reconstructed

image. Mean square error it’s the error between (X , X) which is defined as:

-~ 1 “
MSE (X 'X) ~ N Ii‘i12§y=1(xij_xij)2 (5.2)

The luminance surface of an object is being observed as the product of illumination
and the reflectance, but the structures of the objects in the scene are independent of
the illumination. Consequently, to explore the structural information in the
reconstructed images, we used a second metric which known as Structural Similarity
index (SSIM). SSIM which compares local patterns of pixel intensities that have

been normalized for luminance and contrast is defined as:

o\ _ (2uxpg+Ci) (2ogg+Cy)

SSIM(X.X) = (MZ+15+C1) (0% +05+C2) (53)
In (5.3), uy, g are the average of the original image X and noisy image X and o2
,0)% are noisy and original image variance where covariance for X, X is oyz. This
covariance is computed as:

1 (5.4)

Txk = N = 1);(%' — ) (R; — ig)

5.2 The Patch size and Number of Dictionary Atoms Effect on the

Representation quality

In sparse representation, the dictionary redundancy is an important term as stated in

[3]. In patch-based sparse representation dictionary redundancy is loosely defined as
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a ratio for the dictionary atoms to patch size. Larger patch sizes mean larger
dictionary atoms and when larger patches are used this will help better represent the
structure of the images. However, when patches of image are large the learning
process needs significantly more training images and inherently leads to an increase
in the computational complexity of the dictionary learning (DL) and sparse coding
processes. To see the effect of patch sizes on representation quality we used patch
sizes of(3 x 3),(5x%x5), (7x7), and(9 x9). Firstly, we checked the four patch
sizes with 256 dictionary atoms. 10,000 sample patches were extracted from a set of
natural images. It was made sure that the test images were not from the training
images set. To assess the effect of increased dictionary atoms on performance, we
have also used the four patch sizes together with 600 dictionary atoms taking 40,000
samples and 1200 dictionary atoms taking 40,000 samples. From the results obtained
we noted that increasing the size of patch (hence the number of atoms) will lead to

higher PSNR but the computations time will also increase.

Table 5.1: Average PSNR and SSIM results for (3 x 3) patch size and different
number of dictionary atoms and samples.

3x3 Average PSNR SSIM

Dictionary atoms: 256 27.77348 dB 0.853831

Samples: 1000

Dictionary atoms: 600 27.84722 0.862038

Samples: 40,000

Dictionary atoms: 1200 27.89209 0.862745

Samples: 40,000
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Table 5.2: Average PSNR and SSIM results for (5 x 5) patch size and different
number of dictionary atoms and samples.

5x%x5 Average PSNR SSIM

Dictionary atoms: 256 27.92892 0.862715

Samples: 10,000

Dictionary atoms: 600 28.02727 0.864475

Samples: 40,000

Dictionary atoms: 1200 28.07202 0.865774

Samples: 40,000

Table 5.3: Average PSNR and SSIM results for (7 x 7) patch size and different
number of dictionary atoms and samples.

7%x7 Average PS R SSIM

Dictionary atoms: 256

Samples: 10,000 27.96074 0.86324

Dictionary atoms: 600

Samples: 40,000 28.04904 0.864984

Dictionary atoms: 1200

Samples: 40,000 28.09911 0.865902
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Table 5.4: Average PSNR and SSIM results for (9 x 9) patch size and different
number of dictionary atoms and samples.

9x%x9 Average PSNR SSIM

Dictionary atoms: 256

Samples: 10,000 27.93783 0.862745

Dictionary atoms: 600

Samples: 40,000 28.0251 0.864353

5.3. Evaluation and Comparison of Proposed Algorithm

For evaluations, the proposed SISR algorithm is compared with two current leading
super-resolution algorithms and the ever green bi-cubic interpolation technique.
Throughout the simulations the same set of general simulation parameters were
assumed for each algorithm and in addition for the bi-cubic technique we have used

Matlab’s “imresize” function for upsampling.

The comparisons are made with Yang et al. [3] which is considered as a baseline
algorithm and with Xu et al. [4] which utilizes a similar kind of dictionary learning
and super-resolution approach as in [3], but the dictionary update is done using the
K-SVD technique. Comparisons were carried out using two image sets, namely: Set-
A and Set-B. Set A had 14 test images from the Kodak set [12] and Set-B was
composed of 10 test images, six from the Flicker image set and 4 from internet

sources. However in Set-B 8 of the test images were selected from text images.

Individual and mean PSNR and SSIM values for test images in Set-A is depicted in

Table 5.5. This is clear from table that for Set-A, the lowest mean PSNR
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performance belongs to the classical bi-cubic interpolator. Yang’s method is the third
best and Xu’s method is the second best which is 0.03dB behind the average PSNR
value for the proposed method. After a careful look at the individual PSNR values
we noticed that the proposed semi-coupled dictionary learning SISR method was not
better than Xu’s method for all 14 images. For test images Barbara, Kodak-08, Nu-
Regions and Peppers Xu’s method would give better PSNR and for the remaining 10
images the proposed method would give higher PSNR values. Curious about why
this was so, we calculated the power spectral density for all images in Set-A which is
as shown in figure 5.1. We note that for images that had most of its frequency
content in and around the low frequency region the proposed method would give
better results and for images whose frequency content is wide and spread then Xu’s

method would perform better.
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Table 5.5: Proposed SCDL SISR method versus classic bi-cubic interpolator, Yang’s
algorithm and Xu’s algorithm.
Images Bic. Yang Xu Proposed

AnnieYukiTim 31.424 32.853 32.800 32.960
0.906404 | 0.938103 | 0.9375 0.922934

Barbara 25.346 25.773 25.866 25.821

0.792961 | 0.832917 | 0.8340 0.834083

Butterfly 27.456 30.387 30.047 30.638

0.898450 | 0.948782 | 0.9447 0.938459

Child 34.686 35.420 35.405 35.420

0.841002 | 0.880024 | 0.8797 0.864272

Flower 30.531 32.442 32.284 32.536

0.896804 | 0.933642 | 0.9326 0.926663

HowMany 27.984 29.219 29.182 29.258

0.868694 | 0.91325 0.9125 0.88598

Kodak-08 22.126 22.827 23.507 22.871

0.699514 | 0.767805 | 0.7964 0.757098

Lena 35.182 36.889 36.851 37.000
0.921749 | 0.948912 | 0.949 0.936711
MissionBay 26.679 28.012 27.929 28.115

0.845938 | 0.890611 | 0.8883 0.880447

NuRegions 19.818 21.383 22.074 21.673

0.846978 | 0.906466 | 0.9178 0.91118

Peppers 29.959 31.283 31.996 31.358

0.904532 | 0.944194 | 0.9588 0.911413

Rocio 36.633 39.217 39.075 39.285

0.961259 | 0.978078 | 0.9775 0.970202

Starfish 30.225 32.205 31.967 32.363

0.892305 | 0.936731 | 0.9350 0.924364

Yan 26.962 28.022 28.003 28.107

0.827686 | 0.874876 | 0.8743 0.856287

Average 28.929 30.424 30.499 30.529

0.864591 | 0.906742 | 0.90986 0.894292
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AnnieYukiTim.bmp Magnitude of FFT2

Barbara.png Magnitude of FFT2 Phase of FFT2

child.jpg Magnitude of FFT2 Phase of FFT2

flower.jpg Magnitude of FFT2

Magnitude of FFT2
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Kodak8.bmp Magnitude of FFT2 Phase of FFT2

lena.jpg Magnitude of FFT2 Phase of FFT2

MissionBay.bmp Magnitude of FFT2 Phase of FFT2

Magnitude of FFT2 Phase of FFT2

Magnitude of FFT2 Phase of FFT2
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Rocio.bmp Magnitude of FFT2 Phase of FFT2

i

Starfish.png Magnitude of FFT2 Phase of FFT2

Yan.bmp Magnitude of FFT2 Phase of FFT2

Figure 5.1: The Power Spectral Density Plots of Different images in Set-A

In the second set of simulations which used test images in Set-B, only the two best

performing algorithms were compared. The results obtained are as depicted in Table
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Table 5.6: Xu versus Proposed Method on test images in Set-B

Xu Proposed SCDL SISR method

Images | psNR | SSIM Images PSNR | SSIM
10.uif 243158 | 0.9472 10 tif 245297 | 0.9561
2'tff 22.7973 | 0.8487 2 tif 23.0514 | 0.8503
5'tff 22.5205 | 0.907 5 tif 23.4412 | 0.9313
6.if 25.5222 | 0.9478 6.tif 25.7378 | 0.9435
b2 27.3879 | 0.925 bs2 27.4646 | 0.9202
t 24.3933 | 0.8898 t1 22.2233 | 0.8345
2 18.7391 | 0.7532 2 16.3692 | 0.6655
B 19.717 | 0.7741 t3 18.7558 | 0.7438
* 21.22 0.6885 t4 19.2275 | 0.5746
Yxfol6 | es00 | 0.8543 Yxfo16 23.0263 | 0.8482

In testing Set-B, images 10.tif, 2.tif, 5.tif, 6.tif, t1.jpg, t2.jpg, t3.jpg and t4.jpg are
text images either in gray tones or in colour. Interestingly, for half of these text
images the proposed algorithm will give higher PSNR values (marked in bold) and
for the other half Xu’s method would. In the mean PSNR values the proposed
method has 0.1664dB edge over Xu’s method. To see if our previous PSD based
argument would hold for this set of images also, we again plotted the power spectral
densities for test images in set-B which are as depicted in Table 5.6. To our surprise,
even when the PSD contained many different high frequency components (spread
psd plot) sometimes Xu and sometimes the proposed method would provide higher
PSNR values. For test images t1.jpg, t2.jpg, t3.jpg and t4.jpg the proposed algorithm
would give higher PSNRs and for 2.tif, 5.tif, 6.tif and 10.tif Xu’s method would.
Clearly a second factor must be tipping the balance to one or the other method. To
better understand why this was so, we followed an idea on scale-invariance proposed

in [1]. Three clusters are denoted by C1 through C3 corresponding to sharpness
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measure (SM) intervals of [0, 5], [5, 10], [10, 20] were defined. First, the sharpness
measure values of all HR and LR patches of the image were calculated. Patches was
then classified into the three clusters C1-C3 based on the calculated sharpness
measure values and selected intervals. The number of total high-resolution patches
divided into each interval was counted. Also, LR counterparts were appropriately
classified into the same cluster were counted. Based on these counts, SM invariance
was calculated as a ratio of LR patches correctly classified to the entire number of

HR patches in a cluster. These Sl-values are provided in Table 5.7.

10.tif Magnitude of FFT2

2.tif Magnitude of FFT2
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Magnitude of FFT2

Magnitude of FFT2 Phase of FFT2

e

t3.jpg

R T R S TSI . o
4 VN a® toih (g gt Sy AT A ,‘Q&{(}'iﬁ N
e AR LA ‘l\
STR AL

Fale

e v i
LRI, Sy B av., -l ar M
AT bt et e ’n..; D S p
: S
b

- T e ey e VA
o e ik gy e e
P A e u)'.—..u/-\.’ ot
o d® ey vy wie dnl, ar,

ettt el i wan r‘v-lﬁ e
"

VoW o g ety b iy L
L N T ,\-"-..w\b.-f A
oA ™o ety »-" TR f. p |
A T b e - s '

Magnitude of FFT2

Y xf016.tif Magnitude of FFT2

45



Table 5.7 Scale Invariance of Regular Texture Images and Text images entire
numbers of HR patches categorized in each interval (top ) SM invariance (bottom)

Image c1 c2 3
10 31,864 936 11,570
94.15328 38.3547 97.74417
2 3,173 898 2,529
98.6133 50.33408 51.16647
5 10,502 672 7,426
94.79147 75.44643 94.68085
6 26484 083 11,509
91.69687 26.14446 99.18325
b82 463 700 1,438
90.49676 77 57.30181
tl 960 71 949
98.85417 64.78873 55.00527
2 607 16 1,402
99.17628 75 64.47932
t3 406 328 1,255
92.11823 40.54878 75.21912
t4 36 118 1,871
52.77778 61.86441 9.353287
yxf016 1,173 274 1,154
97.78346 52.91971 53.37955

It was noted that for images with many frequency components (spread PSD) when
the number of HR patches in C2 and/or C3 was low and their corresponding SM-
invariance ratios were also low then the proposed method will not be as successful as
Xu’s method. For images that’s PSD has frequency components mostly at low

frequencies the proposed method would always perform better than Xu’s method.

To further test this idea we selected 8 more images from the Kodak set that had wide
PSDs and also calculated their corresponding SM-invariance values which are given

in Table 5.8. For all cases the results were as expected, whenever for C2 and/or C3.
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The number of HR patches classified in that interval plus the corresponding SM-
invariance values were low, then as expected Xu’s algorithm will outperform the

proposed method.

Table 5.8: Scale Invariance of Regular Texture Images and Text images entire
numbers of HR patches categorized in each interval (top ) SM invariance (bottom)

Image C1 C2 C3
AnnieYukiTim 4985 1092 859
99.29789 44.87179 47.6135
Barbara 5414 2012 2978
99.64906 41.6501 19.37542
BooksCIMAT 1115 865 934
98.74439 60.34682 53.31906
Fence 1068 598 935
99.1573 27.59197 37.75401
ForbiddenCity 710 580 1624
98.87324 48.7931 4.248768
Michoacan 676 372 1494
37.57396 36.29032 30.25435
NuRegions 46 112 2384
4.347826 29.46429 97.86074
Peppers 1481 371 357
98.64956 63.8814 48.7395

5.3 Quality of Super-Resolved Images

In figures 5.3-5.7 we have provided the SR images produced by the competing
methods for visual comparison. Images are zoomed to clarify the reconstruction
quality. In line with the PSNR values, the bi-cubic images show a significant amount
of blur however the other images show comparatively less blur. Looking at the
zoomed images it can be clearly observed that’s proposed method is on par with the

state of the art algorithms and is able to recover the sharp patches effectively.
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Original Bicubic Yang et al

“ m(j

Figure 5.3: SR irhages for test image AnnieYukiTim from Set-A.

Original Bicubic Yang et al

E:"' !!
\ o »

Figure 5.4: SR images for test image Flower from Set-A
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Original Bicubic Yang et al

Original Bicubic Yang et al

Proposed

Figure 5.6: SR images for test image Rocio from Set-A.
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Original Bicubic

Figure 5.7: SR images for test image Starfish from Set-A
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In our work we proposed a semi-coupled dictionary learning strategy for single
Image super-resolution. An approximate scale invariant feature due to resolution blur
is proposed. The proposed feature is used for classifying the image patches into
different clusters. It is further suggested that the use of semi-coupled dictionary
learning, with mapping function that can recover the representation quality. The
proposed strategy for SISR contains on two phases, the first phase is about the
training and the other one is the reconstruction phase. In the training phase a set of
HR images are taken as input, and these HR images are blurred down-sampled for
the purpose to get Low resolution images. Bi-cubic interpolation is done on these LR
images to get MR images, and from these MR and HR images the patches are
extracted and put in their respective cluster on its sharpness measure values to get
HR and LR data training matrices. After this we initialize the dictionaries Dy and
D; and also initialize the mapping functions Ty and T, and in last updating stage
applied on all these dictionaries and get the updated dictionaries. In reconstruction
phase an LR test image with pair of dictionary with mapping function are taken and
with the help of this the patches are recovered from each cluster and find the
sharpness value for each LR patch and putted in their expected clusters. From LR
dictionary we find the LR patches and from HR dictionary find the HR patches using

sparse invariance property. In last we reshape and merge the HR patches to recover
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the approximate high-resolution image. The comparison of proposed method is made
with bi-cubic, Yang and Xu, and for this purpose two sets of images namely Set-A
and Set-B were used in which it showed that which algorithm gives high PSNR
values. In Set-A 14 images were used in which the proposed method gives better
PSNR values from bi-cubic and also from the method of Yang and Xu. In Set-A
images the conflict come between the proposed and Xu methods, and it was observed
from the results of some images. In which the results of Xu is better for some images
and for some the proposed method performs better, to clarify this doubt a PSD term
is used in which it shows that for those images in which the frequency contents at the
low frequency region and PSD plot is not spread in this case the proposed algorithm
will perform better. In the images in which the frequency contents spread out, the
performance of Xu will be better. In Set-B the images are text images and its gives
some surprising results, in which for half images the Xu method perform better and
for other half the proposed methods perform better. To solve this problem that why
the images behaviour are like this, for this purpose scale invariance technique is used

which gives an evident about this problem.

In the proposed algorithm a patch size of 5 x 5 with 600 dictionary atoms is used
and comparison is made with the ever green Bi-cubic, Yang and Xu. The
performance of the proposed algorithm illustrate 1.6 dB improvement and SSIM
0.02 over bi-cubic interpolation while also ahead from Yang and Xu in term of
PSNR 0.10 dB and 0.03 dB and inferior in SSIM results 0.012 and 0.012

respectively.

52



6.2 Future Work

In this thesis we proposed a semi-coupled dictionary learning algorithm for single
image super-resolution, which contain number of dictionaries with a mapping
function and number of clusters to obtain a high resolution image. This work can be
extended to increase the number of dictionaries as well as the number of clusters and
it would be interesting to optimize the SM intervals in a more systematic manner. For
example bounds of intervals perhaps can be selected to optimize the performance of

the proposed algorithm.
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