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ABSTRACT 

Andrey Andreyevich Markov is the founder of the Markov Chain. The Markov 

Chain is a stochastic process involving modeling over time and space. In sciences or 

randomize sciences in particular, it is usually important to predict an outcome based 

on the acquired or previous knowledge of a process. There exits various random 

processes. The Markov Chain appears as a key technique to deal and model such 

processes. 

Keywords: Stochastic Matrix, Probability Vector, Markov Chain.  
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ÖZ 

Bu çalışmada, öncelikle ıstokastik süreçler tanımlanarak özellikleri verilmiş, 

sonrasında da örneklerle ve uygulamalarla konu pekiştirilmeye çalışılmıştır. Daha 

sonra da, Markov Zinciri tanımlanmış ve uygulama alanları verilmiş ve örneklerle 

desteklenerek konu anlatılmıştır.    

Anahtar kelimeler: Istokastik Matris, Olasılık Vektörü, Markov Zinciri.
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Chapter 1 

INTRODUCTION PRELEMINARIES  

AND SOME REVIEWS 

Probability and statistics sciences are usually called the uncertain sciences. The aim 

in those sciences (probability and statistics) is usually to find a good estimation or to 

define a process which is a suitable model to the data. The observed variables are 

usually random. A special case of random processes called Markov Chain is of our 

interest in this work. The Markov chain plays an important role in various fields of 

sciences from social sciences to computer sciences.  

1.1  Definition 

A sequence of experiments is called stochastic process. A stochastic process is a 

mathematical model that evolves over time in a probabilistic manner. If the outcomes 

of an experiment depend on only outcomes of previous experiment, then such a 

process is called Markov Chain or Markov Model or Markov Process. In other 

words, the next state of a Markov Chain (Markov Model or Markov Process), the 

system depends only on present state, not on preceding states. 

We will clarify this definition with theorems, properties and some examples.  

1.2 History 

Markov Chain was initially introduced by Russian Mathematician called Andrey 

Markov 1906. Since then it has had many fields of applications. Below are some 

keys dates when the Markov Chain has efficiently affecting some particular topics in 
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sciences. The keys dates are mostly considered from the application to health 

sciences.  

In the year 1986, Hillis et Al., and Jain, show that the Markov Chain was a perfect 

alternative of evaluating a time-event data set. This developed the idea of the 

application of the Markov chain to many others sciences. Health sciences researchers 

and practitioners also got interested in the Markov Chain or Markov process. 

Explicitly, Marshall and Jones applied the techniques for the study of diabetic 

retinopathy in 1995. Whereas Silverstein, Shaubel applied in the studies of renal 

disease and papillona virus respectively in 1998.  In the year 1997, Norris defined the 

Markov properties. The state space under measurement is effective to classify 

Markov Chain. Therefore there exists finite space or discrete Markov process, which 

is defined under the assumption that there is a finite number of states to be reached 

by the process. In the either case, the process is described as an infinite or continuous 

process. The mentioned classification was introduced by Bard and Jesen in 2002.  In 

a similar way, a classification based on time intervals leads to the name discrete 

interval and continuous interval respectively. In many references, the term Markov 

process is used for continuous – time process whereas Markov Chain is used for 

discrete – time process. This means, the name Markov process may eventually refer 

to all chains and processes. 

1.3 Plan  

We briefly defined above the Markov Chain and we all gave a little review about the 

Markov Chain’s history. In the remaining of our work, we discussed more deeply 

about the topic of our interest called Markov Chain. To do so, our work is divided 

into several chapters. Some chapters are considered as preliminaries to others 

chapters. Our discussion started with a chapter based on reviews of probability and 
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algebraic theories which are absolute necessities to discuss about the Markov Chain. 

It follows by a chapter on probability vectors and stochastic matrices. After the latest 

mentioned chapter, we move to the heart of our task which is the main chapter 

focusing on the Markov Chain. We finally conclude our work by given a briefly 

review of what we did so far.     
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Chapter 2 

REVIEW OF PROBABILITY AND ALGEBRAIC 

THEORY 

 

In this part we shall focus on some important notations and basic concepts of 

probability theory such as probability space, Ŧ-field, conditional probability and 

matrix theory such as matrix diagonalization and matrix limits [7, 11]. 

2.1 Definitions of Probability Space and Ŧ-fields 

The probability space will be explained by using the system language of measure 

theory. 

Definition 2.1. (Sample Space ( )) 

The set of all possible outcomes of a random experiment is called sample space. 

Example 1 

The possible outcomes of the experiment to a toss a die are 1, 2, 3, 4, 5 or 6. 

Therefore the sample space is  1,2,3,4,5,6 . 

Definition 2.2. (Event Space (E)) 

The outcomes of an experiment are called events of the experiment. 

Example 2  

We can define an event as the die shows an odd number.  In this case the space event 

is D = {1, 3, 5}. 
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Definition 2.3. (Probability Measure (P))  

Probability measure P is a function defined as P:    → [0, 1] such that the following 

axioms are satisfied.  

1. ( ) 1P    

2. 1 2 1 2( ) ( ) ( )P E E P E P E  – 1 2( ).P E E
 
When 1E  and 2E  are not disjoint. 

3. For events  1E , 2E  , where 1 2E E   then  

1 2 1 2( ) ( ) ( )P E E P E P E   

More generally,  

P(
1

n

i
E

 i) =  
1

( )
n

i

P E


  

Where 
i jE E 

 
and  i j . [11,14] 

2.2 Conditional Probability  

Definition 2.4. The probability of an event A  under a condition that an event B  has 

already occurred is called the conditional probability of A under B [11]. This 

conditional probability of A under the condition B, is denoted by ( )P A B and it is 

defined by 

( )P A B = 
( )

( )

P A B

P B


 

 

Properties (Conditional Probability) 

1) For some B  fixed, 1A  and  2A  are mutually exclusive, then 

2)  1 2 1 2( ) ( ) ( )P A A B P A B P A B   
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3) In general,  P(
1

n

i
A

 B i) = 
1

( )
n

i

i

P A B


  where 
i jA A   when i j . 

Note: ( ) ( ) ( )P A B C P A B P A C  and also ( ) ( )P A B P B A . 

Example 3 

 An amphitheater in Eastern Mediterranean University we have regrouped the 

following data. [7] 

                 Table 1: Smokers data 

         Male      Female Total 

Smoke 
82 38 

120 

No smoke 26 54 80 

Total 108 92 200 

 

What is the probability that an student chosen at randomly, 

1. smoke cigarette? 

2. is male and smoke cigarette? 

3. is female and does not smoke? 

Solutions: 

1. P( Smoke ) = 
120

200
= 0.6 or 60% 

2. P( Smoke Male )  = 
( )

( )

P smoke male

p male


= 

82

108
   0.76  or  76% 
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3. P( No Smoke Female ) = 
( )

( )

p nosmoke female

p female


= 

54

92
  0.59  or  59% 

2.3 Independence of an Event 

Definition 2.5. Two events; A  and B   are independent, if  

( ) ( ). ( )P A B P A P B  

We may also define that A  and B  are independent if 

( ) ( ) and ( ) ( )P A B P A P B A P B  . 

In general, if  1 2, , nE E E  are mutually exclusive,  then 

1 2( )nP E E E  
1

( )
n

i

i

P E


  = 1 2( ). ( ). . ( ).nP E P E P E  

Example 4 

Your supervisor invites you to a restaurant, saying it open sometime on weekend 

between 4 in afternoon and midnight, but won’t say more. What is the probability 

that it starts on Saturday between 6 and 8 at night? 

Solution: Time between 4 and midnight we have 8 hours, but we want between 6 and 

8 which are 2 hours. 

P(time) = 
2

8
= 0.25 

Day:  we have 2 days on the weekend, so  

P(Saturday)  = 
1

2
= 0.5 

Therefore, P(Saturday and your time) =  P(Saturday) . P(your time) =  0.5x0.25 = 

0.125  or  12.5% 
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2.4 Elementary Matrices Operations    

2.4.1Matrix Multiplication 

Definition 2.6. A matrix ( )ijA a  is said to have dimension A Am n  if and only if  it 

has Am rows and An columns [4,6]. 

Definition 2.7. Let matrix ( )ijA a  having dimension A Am n  and ( )ijB b   be 

B Bm n   matrix.  Then if  A An m  the matrix product A B  is defined by  

ijC A B c    = 
1

.
n

ik kj

k

a b


  

Properties of Matrix Product 

P1) In general the product of two matrices is not commutative, i.e. in general 

AB BA . 

P2) The matrix product AB  is defined if and only if the number of columns of A  

equals the number of rows of B , i.e. if A Bn m  

P3) If the multiplication can be performed (that is A Bn m ), the matrix product C

will be a matrix having dimension A Bm n . [4,6]. 

Example 5  

Let  

0 3 1

1 2 0

2 1 3

A

 
 

  
 
 

, and B =

1

0

2

 
 
 
 
 

. 

 Then 
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A B =

0 3 1

1 2 0

2 1 3

 
 
 
 
 



1

0

2

 
 
 
 
 

=

0 1 0 3 2 1 2

1 1 0 2 2 0 1

2 1 0 1 2 3 8

       
   
        

          

.  

But B A  is not defined. 

2.4.2 Determinant of Order 2 

Definition 2.8. Let 

A= 2 2 ( ),
a b

M
c d



 
 

 
  

 then the determinant of A is denoted by A or det( )A and it is defined by  

ad bc  [6]. 

Example 6 

For a 2 2  matrix  

A  2 2

2 4
( )

5 3
M 

 
 

 
 ,     

we have  

det( ) 2 3 4 5 14.A        

2.4.3 Determinants of Order n    

In this section, we extend the definition of the determinant to n n  matrices for 

3n  . It is convenient to introduce the following definition: 

Definition 2.9. Let ( )n nA M F be a square matrix with 2n  and let ijB .denote the 

( 1) ( 1)n n    matrix obtained from A  by deleting row i  and column j . The scalar 

value 

C ( 1) det( )i j

ij ijB   

is called a cofactor of ( )n nA M F , in row i , column j . 
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Definition 2.10. Let ( )n nA M F be a square matrix then the matrix defined by

C (C )ij where Cij
is the cofactor of ( )n nA M F , in row i, column j, is called the 

cofactor matrix of ( )n nA M F . 

Definition 2.11. (Determinant Order n) 

Let ( )n nA M F . If 1n  , so that 11( )A A , we define det( )A  = 11A .  

For, 2n   , the scalar value det( )A is defined by; 

1

1 1

1

det( ) ( 1) .det( )
n

j

j j

j

A A B



  . 

or 

1

2 2

1

det( ) ( 1) .det( )
n

j

j j

j

A A B



   

  

1

1

det( ) ( 1) .det( ).
n

j

nj nj

j

A A B



   

Example 7 

Compute the determinant of the matrix A  

0 1 2

3 4 5

6 7 8

A

 
 

  
 
 

3 3( )M   .   

Using cofactor expansion along the first row, we obtain 

1 1 1 2 1 3

11 11 12 12 13 13det( ) ( 1) det( ) ( 1) det( ) ( 1) det( )A A B A B A B         

                             
2 3 4

4 5 3 5 3 4
( 1) (0).det ( 1) (1).det ( 1) (2).det

7 8 6 8 6 7

     
         

     
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                              0 ( 1)( 6) (2)( 3)      

                              6 6  

                             0. 

2.4.4 Transpose of Matrix 

Definition 2.12. Let ( )n nA M F be any matrix and let B be the matrix obtained 

from A  by interchanging rows by columns. The matrix B is called transpose of A  

and denoted 
TB A . [4,6]. 

Example 8 

Find the transpose of the matrix 

3 3

1 0 2

4 1 2 ( )

0 1 1

K M 

 
 

  
 
 

  

 

Solution. 

1 4 0

0 1 1

2 2 1

TK

 
 

  
 
   

2.4.5 Adjoint of Matrix 

Definition 2.13. Let A be n n  matrix and let C (C )ij  be the cofactor matrix of A  

then the transpose of C (C )ij is called the adjoint matrix of A and denoted by AdjA . 

Example 9  

Compute ( )Adj A , where   
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A =

1 0 2

1 2 1

3 0 2

 
 

 
 
 

3 3( )M    

Solution: It is easy to see that, 

4 5 6

0 4 0

4 3 2

C

  
 

  
  

 and ( )adj A = TC

4 0 4

5 4 3

6 0 2

 
 

   
  

. 

2.4.6 Inverse of a Matrix 

Definition 2.14. Let A be a square matrix which is non singular (i.e. det( ) 0A   ), 

then the matrix denoted by 
1A
which satisfies 

1 1. .A A A A I   , where I is the 

identity matrix, is called inverse of A. 

Properties of Inverse Matrix 

P1. Let A = 
a b

c d

 
 
 

be  2  2  matrix with det( ) 0A  , where  a, b, c and d are  real 

or complex numbers then the inverse of  Ais 

1A 1 d b

c aad bc

 
  

  

1
AdjA

ad bc



. [6] 

P2. In general, if  A is  nn matrix with 3n   and det( ) 0A   then  

1A
= 

( )

det( )

adj A

A
 

Example 10  

Compute the inverse 
1A
of the following matrix 

A =

1 0 2

1 2 1

3 0 2

 
 

 
 
 
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Solution: 

By the property P2, 

                                              
1A
= 

( )

det( )

adj A

A
 

                                                    

4 0 4
1

5 4 3 .
8

6 0 2

 
 

    
  

 

2.4.7 Power of a Matrix 

Definition 2.15. Let A be a square matrix then the power 
nA  of A where n  is a non-

negative integer, is defined as matrix product of  copies of A . 

...n

n

A A A A    . 

In particular, the matrix to the zeroth power is identity matrix denoted
0A I .  

Example 11 

Compute A , 
2A and 

3A for the matrix A given below: 

1 2

3 1
A

 
  

 
 

Solution : 

2
1 2 1 2 5 4

.
3 1 3 1 6 5

A A A
    

      
       

 

3 2
1 2 5 4 17 6

. . .
3 1 6 5 9 17

A A A A A A
      

       
       

 

4 3
1 2 17 6 1 40

. . . .
3 1 9 17 60 1

A A A A A A A
      

       
     

. 
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In the next paragraph, we will consider diagonalization method which is a useful 

method to compute the large numbers of powers of a matrix. 

2.5 Diagonalization of Matrix 

The diagonalization problem of a square matrix is directly related with the concept of 

eigenvalue and eigenvector. Therefore, in the first part of this section we will focus 

on eigenvalues and eigenvectors. 

2.5.1 Eigenvalues and Eigenvectors  

Definition 2.16. Let A be a matrix in ( )n nM F . A non zero vector x
nF is called 

an eigenvector of A if A x = x  for some scalar  .The scalar   is called eigenvalue 

corresponding to the eigenvector x . 

Theorem 2.5.1: Let A ( )n nM F . Then a scalar  is an eigenvalue of A if and only 

if 

det(A – nI ) = 0 

Definition 2.17. Let A ( )n nM F . Then the polynomial ( ) det( )nf A I    is 

called characteristic polynomial of A . 

Definition 2.18. Let A ( )n nM F . Then the zeros of the characteristic polynomial 

are called the eigenvalues of the matrix A. 

Example 12 

Let  
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A  = 

1 1 0

0 2 2

0 0 3

 
 
 
 
 

3 3( )M   .   

Find the eigenvalues and the eigenvectors of the matrix A . 

Solution: 

The characteristic polynomial of A  is the following equation, 

( ) detf  

1 1 0 1 0 0

0 2 2 0 1 0

0 0 3 0 0 1



    
    

    
    
    

. 

Thus, 



1 1 0

0 2 2

0 0 3













 = 0   (1-λ) (2-λ) (3-λ) = 0. 

Then 

1 2 31 ; 2 and 3      

are the eigenvalues of A . Let us find corresponding eigenvectors. 

To find the eigenvectors x , corresponding to the eigenvalue we will replace λ by 

eigenvalues in A x = x . 

Let 

1

2

3

x

x x

x

 
 

  
 
 

. For    = 1, we have   

A x  = x  ( A  – I ) x  = 0   



1 1 0 1 0 0

0 2 2 0 1 0

0 0 3 0 0 1

    
    

    
    
    

1

2

3

x

x

x

 
 
 
 
 

 = 0 
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

0 1 0

0 1 2

0 0 2

 
 
 
 
 

1

2

3

x

x

x

 
 
 
 
 

 = 0 

Then  

1 ,x p 2 0x  and 3 0x   where p  is the parameter 

x = 

1

0

0

 
 
 
 
 

 when we assign p = 1. 

Similarly, for λ = 2,  we  have  

1x p ,  2x p  and 3 0x   

  x=

1

1

0

 
 
 
 
 

, when p = 1. 

For λ = 3, we have  

1x p , 2 2x p  and 3x p  

  x = 

1

2

1

 
 
 
 
 

 

Hence, the set of eigenvectors is 

1 1 1

0 , 1 , 2

0 0 1

S

      
      

       
      
      

. 

2.5.2 Diagonalizability 

We presented the diagonalization problem and we can observe that not all matrices 

are diagonalizable. Although we are able to diagonalize matrices and even to obtain 

necessary and sufficient condition for diagonalizability of a matrix A. 

 

 



17 

 

2.5.2.1 Diagonal Matrix 

Definition 2.19. Let ( )ijD c  be a square matrix. If D is of the form  

D  = 

1 0

0 n

c

c

 
 
 
 
 



  



, 

then, it is called a diagonal matrix. 

Note that, a diagonal matrix D, is also denoted by 1 2( , , , )nD diag c c c  . 

Properties (Diagonal Matrices) 

P1) The determinant of a diagonal matrix is the product of elements of diagonal. i.e. 

if D  = 

1 0

0 n

c

c

 
 
 
 
 



  



 then 1 2det( ) . . . nD c c c  . 

P2) Let D  be the diagonal matrix and n  be a positive integer. The n
th

 power of 

diagonal matrix D equals to  

nD = 

1 0

0

n

n

c

c

 
 
 
 
 



  



= 

1 0

0

n

n

n

c

c

 
 
 
 
 



  



. 

2.5.2.2 Diagonalizable Matrix 

Definition 2.20. Let A be a n n  matrix. A  is diagonalizable if it can be written as 

1. .A P D P , where D is diagonal matrix, with entries eigenvalues of A and P  is the

n n  matrix  consisting  of  the eigenvectors  corresponding  to the eigenvalues in D  

i.e. 

D =

1 0

0 n





 
 
 
 
 



  



 , and 1 2( , , , )nP v v v   
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Where 1 2, , , nv v v  are eigenvectors of A (written as the column vectors) and 
1P
is 

the inverse of P . 

Theorem 2.1. Let A  be an n n  matrix. A is diagonalizable if and only if A  has n  

linearly independent eigenvectors, i.e. if the matrix rank of the matrix formed by 

eigenvectors is .n  [6] 

Example 13  

Consider the matrix A given by,  

A = 

1 1 0

0 2 2

0 0 3

 
 
 
 
 

3 3( )M   . 

We can rewrite A  as 

1. .A P D P = 

1 1 1 1 0 0

0 1 2 . 0 2 0

0 0 1 0 0 3

   
   
   
   
   

.

1 1 1

0 1 2

0 0 1

 
 

 
 
 

 

where 

1 0 0

0 2 0

0 0 3

D

 
 

  
 
 

, 

1 1 1

0 1 2

0 0 1

P

 
 

  
 
 

and
1

1 1 1

0 1 2

0 0 1

P

 
 

  
 
 

. 

Remark: When the size of the matrix is too high, it will be difficult to write the 

matrix by using these three parts P , D and 
1P
, in this case, we will use the 

applications as Matlab,  Scilab, etc. to find the eigenvalues and eigenvectors. 

Why it’s interesting to know a diagonalization of a matrix A? 
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In the next chapters, some of time it will be necessary to compute the great power of 

matrix , for instance, we will need to evaluate the 
nA , where n is a large natural 

number. It is not applicable to evaluate 
nA . If the matrix is diagonalizable, we will 

use the transformation of matrix A as 1. .A P D P  then 1 1( . . ) . .n n nA P D P P D P   . 

Since D  is diagonal matrix it is easy to evaluate 
nD . 

2.6 Matrix Limit 

In this section we will study the limit of a sequence of matrices 2, , , nM M M  

where M is a square matrix with complex entries. The limit of sequence of complex  

 : 1,2,3,nz n   can be defined in terms of limits of the sequences of real and  

imaginary numbers. Let n n nz a ib  with na and nb  are real numbers and i is the 

complex number such that i = 1  ( i ). Then 

lim lim limn n n
n n n

z a i b
  

   

Provide that  lim n
n

a
  

and lim n
n

b


 exist. 

Definition 2.21. Let L, 2, , , nM M M  , be n n  matrices with the complex 

entries.  The sequence 1 2, ,M M  is said to converge to the matrix ,L if  

lim( )n ij ij
n

M L


 ,  for all 1 ,i j n  .  

In this case, we write   

lim n
n

M L


  

and L is called the limit of the sequence.  [1,6] 
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Example 14  

Let nM  be the sequence 

 

nM = 2 2
2

2

1 1
1

3
( ),

2
3 2

3 1

n n

n
M

n
i

n n



    
    

    
 
  

 

  

then 

lim n
n

M


=
2

2

1 1
lim 1 lim

3

2
lim 3 lim 2

3 1

n n

n n

n n

n

n
i

n n

 

 

    
    

    
            

 

Hence, 

 

0

lim 1
3 2

3

n
n

e

M L
i

 
  
  
 

. 

Where e is the base of the natural logarithm.  

Theorem 2.2.  Let 1 2, ,M M be a sequence of n n  matrices with complex entries 

and L be its limit. Then, for any r n matrix P  and p s matrix Q , 

we have 

lim n
n

PM PL


  and lim n
n

M Q LQ


 . 

Proof. By the definition of limit and properties of matrix multiplication we have, 

1

lim( ) lim ( )
n

n ik n kj
n n

k

PM P M
 



  where1 i r   and 1 j p   
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                                         =
1 1

lim ( )
n n

ik kj ik kj ij

k k

P M P L PL
 

    

Hence, 

lim n
n

PM PL


 . 

Similarly, we can prove that  

lim .n
n

M Q LQ


  

Corollary 2.1. Let M be  a n n  matrix with complex entries where  

lim n

n
M L


 .  

Then for any invertible matrix T  with complex entries , 

1 1lim( ) .n

n
TMT TLT 


  

Proof. By definitions of power of matrix and matrix limit we have, 

1 1 1 1 1( ) ( )( )...( )n nTMT TMT TMT TMT TM T       


1 1 1 1lim( ) lim (lim )n n n

n n n

TMT TM T T M T TLT   

  

   . 

End of proof. 

 

 

 

 

 

 

 



22 

 

Chapter 3 

PROBABILITY VECTORS AND  

STOCHASTIC MATRICES 

In this chapter, we are going to give a new concept to the vectors and matrices which 

are related to Markov Chain. These feature vector sand matrices allow us to model 

the socio-economic and scientific problems in the context to understanding, predict, 

solve and anticipate. [1,2,9]. 

3.1 Probability Vector 

Definition 3.1. Let ),...,,( 21 nvvvv  be a vector. In mathematics, especially in 

statistics, a vector v  is called probability vector or stochastic vector if the entries 

are non-negative and their sum equals to 1. i.e.
1

1
n

i

i

v


 , and each individual 

component iv must have a probability value which is 0 iv  1 for all 1,2, ,i n  . 

[2,12,14]. 

Example 1 

The vectors; u, v, w and t given below are all probability vectors. 

u = 0.15 0.25 0.6 , v =

0.20

0.30

0.50

 
 
 
  

, w = 0.23 0.77 , 

t = 0.12 0 0.28 0.6 .
 



23 

 

Properties (Probability Vector)
 

Let p be a probability vector of the form; 1 2[ , , , ]np p p p   where p has n

components, then it satisfies the following;
 

- The mean of vector p  is 
1

n
.  [2,9] 

 (The mean of probability vector does not depend on the values of the 

components but with the number of entries.) 

- The longest probability vector has the value 1 in a single component and 0 in 

all others and its length is 1. 

- The shortest probability vector has the value 
1

n
as each component of the 

vector and its length is 
1

n
. [13,17] 

- The length of a stochastic vector to 2 1
n

n
   where 2 is the variance of the 

probability vector. 

Example 2 

i ) Let t be the following vector; 

t = 0.12 0 0.28 0.6 ,  

then the mean of the vector t  is equals to 
1

4
. 

ii) Given the vector k of the form 

k =  0 0 0 1 0 ,  

then k is an longest probability vector. 

iii) Given the vector b of the form 
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b= 
1 1 1 1

,
4 4 4 4

 
 
 

 

then b is an shortest probability vector. 

3.2 Transition Matrix 

A stochastic matrix or transition matrix describes a Markov Chain nX  over a 

finite state space S, then there are several different definitions and types of transition 

matrix or probability matrix. 

Definition 3.2. A square matrix is called Right Transition Matrix if all entries are 

non-negative and the sum of each row equals to 1. [1,15] 

Definition 3.3. A square matrix is called Left Transition Matrix if all entries are 

non-negative and the sum of each column equals to 1. [15,16] 

Definition 3.4. A square matrix is called Double Transition Matrix if all entries are 

non-negative and each row and column sums equal to 1. [1,10] 

Example 3 

Consider the following matrices 

1M = 

0 0.25 0.25 0.5

0 0 0 1

0.1 0 0 0.9

0 0.28 0.62 0.1

 
 
 
 
 
 

2M =

0 0 0 0 1

0.25 0.4 0.3 0 0

0 0.6 0.3 0 0

0 0 0.2 1 0

0.75 0 0.2 0 0

 
 
 
 
 
 
  

3M =

0.5 0 0.5

0 1 0

0.5 0 0.5

 
 
 
  

 

1 2,M M and 3M  are right, left and doubly transition matrices, respectively. 
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We may also represent the transition matrix by the graph which called transition 

diagram. 

Example 4 

Given the left transition matrix T =

0.3 0.4 0.5

0.3 0.4 0.3

0.4 0.2 0.2

 
 
 
 
 

, then it can also be represented  

by the follow graph: 

 
                                         Figure 1: Transition diagram 

Definition 3.5. The graph given above is called transition diagram. 

Theorem 3.1. Let A  be an n n  matrix having real non-negative entries and let v  be 

a column vector in 
n  having non-negative coordinates, and u

n be the column 

vector in which each coordinate equals to 1, i.e. u  = 

1

1

1

 
 
 
 
 
 


, [6] 

then 

1.  v is probability vector if and only if  (1)Tu v   

2.  A is transition matrix if and only if .TA u u    
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Proof.  

1.  ) Let v =

1

2

n

v

v

v

 
 
 
 
 
 


where

1

1
n

i

i

v


  and let u =

1

1

1

 
 
 
 
 
 


be an n x1 column vector, then 

Tu v =  1 1 1

1

2

n

v

v

v

 
 
 
 
 
 


= 1 2( ... )nv v v   =(1) 

 ) let (1)Tu v  . We will prove that v  is probability vector i.e. we will show  that

1

1
n

i

i

v


   for all 1,2, ,i n   

(1)Tu v   ( ) (1)T T Tu v 
 

 (1)Tv u   

  1 2 nv v v

1

1

1

 
 
 
 
 
 


= 1 2( ... )nv v v   =(1) 

Therefore, v  is probability vector. 

2.  ) Let A  be transition matrix. We will prove that 
TA u u  

Just make a precision in this case.  We will consider A  as a double transition matrix, 

i.e. sum of each row and sum of each column is equal to 1. 

Let   

A =

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 





   



and u =

1

1

1

 
 
 
 
 
 


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TA u =

11 21 1

12 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 





   



.

1

1

1

 
 
 
 
 
 


=

11 21 1

12 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

   
 

   
 
 

   









=

1

1

1

 
 
 
 
 
 


=u  

 

 ) let 

TA u =u  

We will prove that M  is transition matrix. 

TA u =u  

 ( )T T T T TA u u u A u    

  1 1 1

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 





   



=  1 1 1  

  11 21 1 12 22 2 1 2n n n n nna a a a a a a a a           =  1 1 1  

 11 21 1 12 22 2 1 21;  1;  1n n n n nna a a a a a a a a              . 

i.e. 

1

1
n

ij

i

a


 . 

Therefore, A  is transition matrix. 

Corollaries 3.1 

A) The product of two transitions matrices is a transition matrix. In particular, any 

power of transition matrix is a transition matrix (but error can appear because of 

truncation.) 

B) The product of a transition matrix and probability vector is a probability vector. 
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Proof. To prove the corollary we will use an algebraic definition of endomorphism 

function and the previous theorem. 

A1) The order matrix n  expresses an endomorphism f in the canonical basis, and we 

know that the coefficients of the product matrix are positive; more 1f , 2f  being 

endomorphisms of these matrices 

1 2 1 2 1( ) [ ( )] ( )f f u f f u f u u  
 

by the previous theorem, where u  is a column 

vector in which each coordinate equals to 1. 

A2) Let A be a transition matrix. We will use proof by induction to show that 
nA  is 

also an transition matrix. 

For 0n  , we have  

0

nA I . Where 
1

0
n

if i j
I

if i j


 

  

by convention. A
0
 is transition matrix. 

For n=1, 
1A A is stochastic by hypothesis. 

We assume that it’s true for 
1nA 
and we will prove that it also true for ( )n

ijA . 

For all  ,i j  and for i  fixed we have 

1 1( ) ( ( ) ) [( ) ] 1n n n

ij ik kj ik kj

j j k j

A A A A A        . End of proof. 

B1) Let  

A =

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 





   



and v =  1 2 nv v v , 

be a transition matrix and a transition vector, respectively. We will prove that .v A is a 

probability vector. 
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v . A =  1 2 nv v v .

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 





   



= 

=  11 1 21 2 1 12 1 22 2 2 1 1 2 2a ... ... ... ... .n n n n n n nn nv a v a v a v a v a v a v a v a v          

When we put each iv  in factor, we obtain 

 1 11 12 1 2 21 22 2 1 2     [ ... ] [ ... ] ... [ ... ]n n n n n nnv a a a v a a a v a a a            . 

 We know that   

1

1
n

i

i

v


 and
1

1
n

ij

j

a


  hence the result. 

Example 5 

Let  

M =

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

;  N =

0.65 0.28 0.07

0.15 0.67 0.18

0.12 0.36 0.52

 
 
 
 
 

 and v =  0.5 0.5 0 , 

where M and N  are transition matrices and v  is a probability vector. 

1. .M N =

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

.

0.65 0.28 0.07

0.15 0.67 0.18

0.12 0.36 0.52

 
 
 
 
 

=

0.14 0.5733 0.2933

0.385 0.33 0.295

0.525 0.377 0.0975

 
 
 
 
 

. 

We can verify that the sum of each row is equal to 1 so the matrix .M N is also a 

transition matrix. 
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2. .v M =  0.5 0.5 0 .

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

=  0.25 0.3333 0.4167                                 

0.25+0.3333+0.4167=1. 

Therefore .v M is also a transition vector. 

3.  2 .M M M =

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

.

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

=

0.5833 0.0833 0.3333

0.375 0.4583 0.1667

0.125 0.5 0.375

 
 
 
 
 

 

3 2.M M M 

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

.

0.5833 0.0833 0.3333

0.375 0.4583 0.1667

0.125 0.5 0.375

 
 
 
 
 

 

  =

0.2917 0.4722 0.2361

0.3542 0.2917 0.3542

0.5313 0.1771 0.2917

 
 
 
 
 

 

4 3.M M M 

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

.

0.2917 0.4722 0.2361

0.3542 0.2917 0.3542

0.5313 0.1771 0.2917

 
 
 
 
 

 

=

0.4132 0.2535 0.3333

0.4115 0.3247 0.2639

0.3073 0.4271 0.2656

 
 
 
 
 

… 

We can check that all the powers of matrix M are transition matrices. 
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3.3 Regular Transition Matrix 

Definition 3.6. A transition matrix P  is regular if some integer power of it has all 

positive entries, i.e. for some n  , the entries of 
nP  are positive. [7,9] 

i.e. if 
nP =(

ijp )  then  
ijp >0  for all , 1,2, ,i j n  .  

Example 6 

The transition matrix; 

M =

2 1
0

3 3

0.5 0 0.5

3 1
0

4 4

 
 
 
 
 
 
 

, 

of the previous example is regular. In fact when we compute the different power of 

this transition matrix, we obtain  

2M =

0.5833 0.0833 0.3333

0.375 0.4583 0.1667

0.125 0.5 0.375

 
 
 
 
 

,
3M =

0.2917 0.4722 0.2361

0.3542 0.2917 0.3542

0.5313 0.1771 0.2917

 
 
 
 
 

,  

4M =

0.4132 0.2535 0.3333

0.4115 0.3247 0.2639

0.3073 0.4271 0.2656

 
 
 
 
 

, … 

All the entries of 
2M  are positives we can stop the proof. 

On the other hand, the matrix Q =
1 0

0.5 0.5

 
 
 

 is not regular.  

In fact 

2Q =
1 0

0.75 0.25

 
 
 

,   3Q =
1 0

0.875 0.125

 
 
 

, 4Q =
1 0

0.9375 0.0625

 
 
 

, … 
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If we continue we will see that every time we have at least an entry which equal to 

zero for all power Q . 

Theorem 3.2. Let P  be a regular transition matrix, then 

(i) There exists a unique stationary vector or fixed probability vector S . 

(ii) Given any initial stable matrix 0S , the state matrix kS approach the stationary 

matrix S . [8,11] 

(iii)The matrix
kP  approach a limiting p , where each row of p  is equal to the 

stationary matrix S . 

Proof. Let matrix P be regular. 

(i) Consider there is two stationary vectors 1S  and 2S and we will prove that 1 2S S . 

1S an stationary vector of P  then  

1 1 1 1 10 ( ) 0M MS P S S P S S P I       (1) 

2S an stationary vector of P then 

2 2 2 2 20 ( ) 0M MS P S S P S S P I       (2) 

Where I  is identity matrix and 0M  is a zero matrix. 

From equations (1) and (2), 

1 2 1 20 0 ( ) ( )M M S P I S P I S S       . 

Therefore, the stationary vector is unique. 

(ii) If 0S
 
is initial stable matrix, then recursively we have: 
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1 0

2 1

3 2

1

    

k k

S S P

S S P

S S P

S S P











 

When we make multiplication member by member, i.e. the left side and the right side 

we obtain 

1 2 0 1 1

k

k kS S S S S S P        

 0

k

kS S P  0 0lim lim limk k

k
k k k

S S P S P
  

   

Take  

S= 0 lim k

k
S P


. 

Remark It does not mean that every stochastic matrix have a unique stationary 

matrix except a regular stochastic matrix and the successive state matrices always 

approach this stationary matrix. 

Example 7 

Let 

P =

0.1 0.1 0.8

0.4 0.4 0.2

0.1 0.2 0.7

 
 
 
 
 

, 

be a regular transition matrix.  

Then let’s find a stationary matrix S  where S = 1 2 3s s s  

Solution:  

The matrix P is regular that means there exist a unique stationary matrix such that,  
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SP S   1 2 3s s s

0.1 0.1 0.8

0.4 0.4 0.2

0.1 0.2 0.7

 
 
 
 
 

= 1 2 3s s s  



1 2 3 1

1 2 3 2

1 2 3 3

0.1 0.4 0.1

0.1 0.4 0.2

0.8 0.2 0.7

s s s s

s s s s

s s s s

  


  
   

and we can add 1 2 3 1s s s    

By substitution we obtain     

1 0.1688s  , 2 0.2289s 
 
and 3 0.6024s  , 

hence [0.1688 0.2289 0.6024]S  . 
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Chapter 4 

MARKOV CHAINS 

There are many stochastic processes in mathematics. In this chapter, we will study a 

special kind of stochastic process, called Markov Chain, where the next state of the 

system depends only on the present state. Before to start, just recall that Markov 

Chain where introduced in 1906 by the Russian mathematician Andrei Andreyevich 

Markov (1856 – 1922) and were named in his honor. 

4.1 Some Definitions 

Definition 4.1. Let ),...,,( 21 kiiiI  be a countable set and each Iin  is a state, then I

is called a state-space.  

In this chapter, we will work in the probability space ( ,Ŧ, ) where   is a set of 

outcomes, Ŧ the set of subsets of  and for any A Ŧ ,  ( A ) is a probability of A

.Our goal is to study a sequence  
0n n

X


where 1 2, ,X X are taking from the set I .  

Definition 4.2. The function X :   I is called a random variable, where the 

values of X  belong the state-space  . [1,9] 

Definition 4.3. Let  =( :i i  ) be a row vector. Then   is called measure if for 

all i I , i 0.If 1ii
   then  is a probability measure or probability vector 

given in Chapter 3. In the special case, when )0,...,1,...,0,0( , it is longest 

probability vector given in Chapter 3.We will denote  = i . [5,7] 
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4.2 Markov Chain 

Definition 4.4. Let ( : , )ijP P i j I  be a transition matrix. Then the sequence 

 
0n n

X


 is called Markov Chain with transition matrix P and initial distribution , 

if for all n 0  

a) 0 1 1, , , ,n ni i i i I  0 0( )P P X i  = 
0i

  

b) 
1n+1 1 0 0 1 1 1 1P( , ,..., ) ( )

n nn n n n n n n i iX i X i X i X i P X i X i P 
          . 

On the order hand, we may also say that a sequence  
0n n

X


 is Markov ( , )P . 

Theorem 4.1. A sequence  
0n n

X


 is a Markov chain if for any 0 1, ,..., ni i i  , 

0 0 10 0 1 1 1( , ,..., ) ...
n nn n i i i i iP X i X i X i P P


    . 

Proof. Suppose  
0n n

X


is Markov ( , )P . Then  

-1 1 0 0P( , ,..., )n n n nX i X i X i    

= 1 1 0 0 1 1 0 0( ,..., ) ( ,..., )n n n n n nP X i X i X i P X i X i         

            = 0 0 1 1 0 0 0 0 1 1( ) ( )... ( ,..., )n n n nP X i P X i X i P X i X i X i        

0 0 1 1
...

n ni i i i iP P


 . 

4.3 Homogeneous Markov Chain 

There are several Markov Chains. In this section we will consider Markov Chains 

that do not evolve in time. 

Definition 4.5. A Markov chain is called homogeneous if its one-step transition 

probability does not depend on n . In other words, 

, ,n m  and ,i j ,   
( ) ( )n m

ij ijP P  
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Then we define the n steps transition probabilities of homogeneous Markov Chain by

( ) ( ),m

ij n m nP P X j X i  
 

which means that each row of P defines a conditional probability distribution on the 

state space. By convention  

(0)
1

0
ij

if i j
P

if i j


 


 . 

Remark If  1 2, , , nE x x x  and 0( )n nX   
is homogeneous Markov Chain, then the 

transition matrix ij  is given by:  

1 1 1 1 2 1 1 1

1 1 2 1 2 2 1 2

1 1 1 2 1

...( ) ( ) (

...( ) ( ) (

...( ) ( ) ( )

n n n n n n n

n n n n n n n

n n n n n n n n n n

p X x X x p X x X x p X x X x

p X x X x p X x X x p X x X x
P

p X x X x p X x X x p X x X x

  

  

  

       
 

      
  
 
       

   
 

=

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )
.

( , ) ( , ) ... ( , )

n

n

n n n n

p x x p x x p x x

p x x p x x p x x

p x x p x x p x x

 
 
 
 
 
 

   
 

Example 1 (Predicting the Weather (Finite State-Space)) 

In Cameroon, there are only 3 types of weather: sunny, foggy  and rainy (a state- 

space takes three discrete values.) the weather patterns are very stable there, so a 

Cameroonians weatherman can predict the weather next week based on the weather 

today with the transition rules: 

If it is sunny today, then  

-probability it will be sunny next week is 

             * 7.0)( )()(  sunnyXsunnyXP todayweek  
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     -probability somewhat it will be foggy next week is 

            * 25.0)( )()(  sunnyXfoggyXP todayweek  

-  it is very unlikely that it  will be rainy next week  

            * 05.0)( )()(  sunnyXrainyXP todayweek  

If it is foggy today then 

     -likely that it will be sunny next week 

             * 35.0)( )()(  foggyXsunnyXP todayweek  

      -less likely it will be foggy next week 

             * 55.0)( )()(  foggyXfoggyXP todayweek  

      -fairly unlikely it will be raining next week is 

            * 1.0)( )()(  foggyXrainyXP todayweek  

If it is rainy today then 

      -unlikely that it will sunny next week is 

             * 1.0)( )()(  rainyXsunnyXP todayweek  

       -probability somewhat it will foggy next week is 

             * 2.0)( )()(  rainyXfoggyXP todayweek  

       -fairly likely that it will rainy next week is  

* 7.0)( )()(  rainyXrainyXP todayweek  

If S=sunny, F=foggy and R= rainy, the we can model this example by the following 

transition matrix 
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P=

          S    F     R

0.7 0.25 0.05

 0.35 0.55 0.1

0.1 0.2 0.7

S

F

R

 
 
 
 
 

 

Note that each row of the matrix P above corresponds to the weather of today, and 

each column corresponds to the weather of the next week. 

Question: Assume that it is sunny today what can be the probability it will rainy next 

week, in two next weeks or after 8 months? 

We will answer these kinds of questions after we will study the next paragraphs. 

4.4 Global Markov Property 

Definition 4.6. Let ,A B andC  three sets where A B C   be a partition of V and  

B  separates A from C as shown the graph above; i.e. starting in A and terminate in

C . [11] 

Then distribution   over X
V 

satisfies the global Markov property if for any 

partition ( , , )A B C , 

( , ) ( ) ( )A C B A B C BX X X X X X X   . 

These previous definitions can introduce a new theorem. 

                           
                                    Figure 2: Global Markov Property 
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Theorem 4.1. ( Chapman Kolmogorov Equations ) 

( ) ( ) ( )m r m r

ij ik kjk
P p P 


 

,r  0   

Proof. To prove it we will use a total probability rule and global Markov property. 

0( )ij mP P X j X i    0( , )m rk
P X j X k X i


   

 

=
0 0( , ) ( )m r r r

k

P X j X k X X i P X k X i


    


 

                               = ( ) ( )r m r

ik kj

k

P p 






 by Markov property. 

4.5 Asymptotic Behavior of Homogeneous Markov Chains 

The study of the long-term behavior of Markov Chain seeks to respond to diverse 

questions as
n  distribution does converge when n? 

If 
n  distribution converge when nwhat is a limit λ

*
? And this limit it is 

independent to a initial distribution λ? 

4.5.1 Stationary Chain 

Definition 4.7. The Markov Chain whose evolution does not evolved over time is 

called Stationary Markov Chain. [3,5,9] 

4.5.2 Distribution Invariant 

Definition 4.8. λ is a probability distribution invariant to the transition matrix P if 

P  in this case 1( )n nX   
be Markov ( , )P  is a stationary Markov Chain. We say λ 

is invariant if the terms equilibrium and stationary are also used to mean the same. 

Theorem 4.2. Let I be a finite set. Then for some i I such that 

( )  as n  for all j I.n

ij jp   
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Then 
j=( : ) j I   is an invariant distribution. 

Proof. We have  

( ) ( )

j

j I

lim lim 1n n

ij ij
n n

j I j I

p p
 

  

      

and 

( ) ( ) ( )lim lim limn n n

j ij ik kj ik kj k kj
n n

k I k I k I
n

p p p p p p 
 

  


      . 

We used here finiteness of I to justify interchange of summation and limit 

operations. Therefore,   an invariant distribution. 

Example 2 

 Find the invariant distribution    according to regular transition matrix P where  

P=

0.1 0.1 0.8

0.4 0.4 0.2

0.1 0.2 0.7

 
 
 
 
 

 

Solution See Example 7  in Chapter 3. 

4.6 Absorbing Markov Chains 

Definition 4.9. An state jx  is called Absorbing Markov Chain, if  

1( ) 1.n j n jP X x X x     

Properties: A Markov Chain is absorbing if  

-it has at least one absorbing state; and  

-it is possible to go from any non-absorbing state to an absorbing state. [12,13,14] 
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Example 3  

Between the two matrices below, identify all absorbing states in the Markov chain 

and decide whether the Markov chain is absorbing. 

A =

        1    2    3  4

1 1 0 0 0

2 0 0.8 0.2 0
 

3 0 0 1 0

4 0.7 0 0.3 0

 
 
 
 
 
 

;   and B =

        1    2    3

1 1 0 0

2  0.6 0.2 0.2

3 0 0 1

 
 
 
 
 

 

Solution 

From matrix A, we have  

 
Figure 3: Transition Diagram Absorbing Markov Chain 1 

States 1 and 3 are absorbing, with states 2 and 4 non-absorbing. From state 2 it is 

only possible to go state 3. From state 4 it is only possible to go state 3 and state 1 

the transition diagram above shows it.  

Conclusion: At least an non-absorbing state go to an absorbing state.  

Hence the matrix A is a absorbing Markov chain. 

From matrix B, we have: 
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Figure 4: Transition Diagram Absorbing Markov Chain 2 

11 1P 
 
and 33 1P  both state 1 and state 3 are absorbing state. State 2 is only non-

absorbing state. From state 2, it is possible to go to state 1 with a 0.6 probability and 

0.2 probability from state 2 to state 3. 

Conclusion: It possible to go from non-absorbing state to absorbing state as shown in 

figure then matrix B is also absorbing Markov Chain. 

4.7 Irreducible Markov Chain 

Definition 4.10. A Markov Chain is irreducible if every state is accessible from any 

other state with non-zero probability. 

To detect an chain irreducible, we just have to check that  i j  for every  , .i j  

Note. Any chain possessing an absorbing state is not irreducible. 

4.8 Simulative Study of Homogeneous Markov Chain at Infinity 

Given a Markov Chain 0( )n nX   and a transition matrix P. We seek to study the 

behavior of the distribution of nX
 
when n  which come to study a sequence of a 

matrix ( )n

nP  when nwith 
0P Id . [16] 
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4.8.1 Markov Chain at Two-State P
(n)

 

Example 4 

 Consider the state of a phone line where 0nX  if the line is free at the time n . 

1nX  if the line is busy at the time n .Also assume each time interval there is 

probability p when the call comes in (a call for more). If the line is already busy, the 

call is lost. Suppose again that if the call is busy at the time n there is probability q it 

is released at the time 1n . 

What is the transition matrix of this stochastic process? 

We can model this process by an homogeneous Markov Chain with values of E. 

Where E  is the set of state  .1,0E
 

So the transition matrix 

1 1

1 1

( 0 0) ( 1 0)(0,0) (0,1)

( 0 1) ( 1 1)(1,0) (1,1)

n n n n

n n n n

p X X p X Xp p

p X X p X Xp p

 

 

      
     

      
=

1

1

p p

q q

 
 

 
 

We then seek a simplified expression for 
nP  easily to calculate its limit. 

We may diagonalize P  because its spectral is  1,1 p q   

Then we can write  

1QDQ   

where 

1

1

p
Q

q

 
  
 

 

and 

1

1

1 1

q

p q p q
Q

p q p q



 
  
 

 
   
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We should show that 1n nQD Q  . 

So  

(1 ) (1 )1

(1 ) (1 )
n

n n

n

n

q p p q p p p q

p q q q p q p q p q

       
   

        

 

from where  

1
lim n

n

q p

q pp q





 
    

  
. 

In general, to get ( )

11

np   for instance, we have ( )

11 (1 )  n np A B p q    for some A 

and B. But  

(0)

11 1p A B   and (1)

11 1 (1 )p p A B p q      . 

Then  

     , , /A B q p p q  , 

Thus 

( )

11 1( 1) (1 )n n

n

q p
p p X p q

p q p q
     

 
 

and the linear recurrence relation is  

( ) ( 1)

11 11(1 )n np q p q p     . 

Remark. As 
n  converges to 

  it means that the homogeneous Markov chain 

approaches an equilibrium system or (stable), i.e. the distribution of this chain is 

stationary at a certain rank.  

In other words, 

0 0 01
/ ,

n n n

on
        and 0 0

0 00

1

1 0

n n

n n n



      . 
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4.9 Application of Markov Chain at Two-State 

4.9.1 Gambler’s Ruin Problem 

This problem is motivated by trying to determine the success or failure of a gambler 

who bet with some amount money initially and wants to leave some larger money at 

the evening. 

Let 1 2, ,Z Z be a sequence of Bernoulli random variable where 1iZ   with 

probability   and 1iZ   with probability . We start with initial value V0>0. We 

define the sequence of sum nV =
0

n

ii
Z

  we are interested in the sequence 

1 2 3, ,V V V which is the stochastic process. 

Now consider a Gambler who wins or loses Turkish lira (TL) on each turn of game 

with probabilities  and  respectively where .1   Let 0V  the initial capital 

with .00 V This capital can increase to   or be reduced to 0.  A probability of the 

Gambler’s ruin is 0V and 0V his probability he wins. We may also show that

0 0 1V V   . 

Theorem 4.3. The probability of the Gambler’s ruin is  

0

0

0

( / ) ( / )

( / ) 1

1 / 1/ 2

V if

V

V if





    

  

  

 


 
   

 

4.9.2 Birth and Death Chain 

We define in this section some of notations we will use to compute the transition 

probabilities of Birth and Death chain. 
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Let ib  and id  the probabilities of birth rate and death rate respectively with i ib d  0  

and ib  , id 0. We will work in the state space  0,1,2,3,S   or  0,1,2,3, ,S k   

with zero boundary condition usually we use 0 0d  and 0b >0 .Then the transition 

probability of birth and death chain is: 

1

1

1

0

i

i

ij

i i

b if i j

d if i j
p

b d if i j

else

 


 
 

  


 

Remark Gambler’s ruin is an example of Birth and Death chain. 

4.10 Markov Chain at n-steps Transition Probabilities 

Example 5  

Consider the following diagram related to a three-state Markov Chain. 

 
Figure 5: n-steps transition diagram 

Using the characteristic polynomial to find the eigenvalues we obtain 

41)21()det()( 2   PIf
 

0)14)(1(
4

1 2    

So, the eigenvalues are obtained as 1, / 2i .  

This means that 

0 1 0

1 1
0

2 2

1 1
0

2 2

P

 
 
 
 
 
 
 
 
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( )

11 ( / 2) ( / 2) .n n np U V i W i                                 (1) 

We know that trigonometry and complex exponentials of  

  / 2( / 2) (1/ 2) cos( / 2) sin( / 2) (1/ 2)n n n ini n n e       . 

Substituting it in equation (1) for some 'V  and 'W  we have  

 ( )

11 (1/ 2) 'cos( / 2) 'sin( / 2) .n np U V n W n     

To find U , 'V and 'W  we can assign n the values 0, 1 and 2  we get 

(0) (1) (2)

11 11 111,  0,  0p p p   then we have U=
1

5
, V’ =

4

5
 and W’ =

2

5
.  

Therefore  

( )

11

1 1 4 2
cos sin .

5 2 5 2 5 2

n

n n n
p

    
     

   
                   (2) 

Recall that this is for some of fix U , 'V  and 'W . Using this equation (2), we can 

predict different values of probability ( )

11

np .  

For instance, for 5n  we have (5)

11 0.1875p  . 

In general, for chain with n states to get probability 
( )n

ijp , from states i and  j we use 

these different steps: 

(a) Compute the eigenvalues 1 2, ,..., n    of the square matrix n n  of P. 

(b) If the eigenvalues are distinct, for some constants 1 2, ,..., nc c c  , 
( )n

ijp  has the 

form  
( )

1 2 2 ...n n n

ij n np c c c     . 

(Recall that 1 =1). If there is repeat eigenvalue  k-times we will write the term 

in this form  1

0 1 1... .k n

ka a n a n 

    

(c) Each complex eigenvalues come in conjugate pairs these can be written in 

trigonometry and complex exponentials form as the previous example.  
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Chapter 5 

CONCLUSION 

In the probability theory, the Markov Chain plays an important role. For instance 

being able to forecast an outcome based on the current state of a process has various 

applications in the life and sciences. The Gamblers may used the Markov change to 

forecast whether or not there can win or lose their bet.  

 

The Markov Chain has also wide application areas; especially, in health sciences, 

biology and genetics sciences. It helps to predict the evolution of a disease and also 

to forecast in the future the outcome of a drug being used currently to fight against an 

epidemic. The Markov Chain is the key of epidemiology sciences. 

The financial mathematics is also a field of study where the Markov Chain is widely 

used. It is actually used by insurances companies to simulate the risk before setting 

the insurance prime on a disaster. The current state of a financial market is used to 

predict the next state based on the Markov Chain. Brownian motion are defined as 

phenomenon with random outcome, but Markov Chain helps to predict outcome of 

processes.  
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