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ABSTRACT

Andrey Andreyevich Markov is the founder of the Markov Chain. The Markov
Chain is a stochastic process involving modeling over time and space. In sciences or
randomize sciences in particular, it is usually important to predict an outcome based
on the acquired or previous knowledge of a process. There exits various random
processes. The Markov Chain appears as a key technique to deal and model such

processes.
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Oz

Bu c¢alismada, oOncelikle 1stokastik siirecler tanimlanarak ozellikleri verilmis,
sonrasinda da orneklerle ve uygulamalarla konu pekistirilmeye calisilmistir. Daha
sonra da, Markov Zinciri tanimlanmig ve uygulama alanlar1 verilmis ve 6rneklerle

desteklenerek konu anlatilmistir.

Anahtar kelimeler: Istokastik Matris, Olasilik Vektorl, Markov Zinciri.
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Chapter 1

INTRODUCTION PRELEMINARIES
AND SOME REVIEWS

Probability and statistics sciences are usually called the uncertain sciences. The aim
in those sciences (probability and statistics) is usually to find a good estimation or to
define a process which is a suitable model to the data. The observed variables are
usually random. A special case of random processes called Markov Chain is of our
interest in this work. The Markov chain plays an important role in various fields of
sciences from social sciences to computer sciences.

1.1 Definition

A sequence of experiments is called stochastic process. A stochastic process is a
mathematical model that evolves over time in a probabilistic manner. If the outcomes
of an experiment depend on only outcomes of previous experiment, then such a
process is called Markov Chain or Markov Model or Markov Process. In other
words, the next state of a Markov Chain (Markov Model or Markov Process), the
system depends only on present state, not on preceding states.

We will clarify this definition with theorems, properties and some examples.
1.2 History
Markov Chain was initially introduced by Russian Mathematician called Andrey

Markov 1906. Since then it has had many fields of applications. Below are some

keys dates when the Markov Chain has efficiently affecting some particular topics in



sciences. The keys dates are mostly considered from the application to health
sciences.

In the year 1986, Hillis et Al., and Jain, show that the Markov Chain was a perfect
alternative of evaluating a time-event data set. This developed the idea of the
application of the Markov chain to many others sciences. Health sciences researchers
and practitioners also got interested in the Markov Chain or Markov process.
Explicitly, Marshall and Jones applied the techniques for the study of diabetic
retinopathy in 1995. Whereas Silverstein, Shaubel applied in the studies of renal
disease and papillona virus respectively in 1998. In the year 1997, Norris defined the
Markov properties. The state space under measurement is effective to classify
Markov Chain. Therefore there exists finite space or discrete Markov process, which
is defined under the assumption that there is a finite number of states to be reached
by the process. In the either case, the process is described as an infinite or continuous
process. The mentioned classification was introduced by Bard and Jesen in 2002. In
a similar way, a classification based on time intervals leads to the name discrete
interval and continuous interval respectively. In many references, the term Markov
process is used for continuous — time process whereas Markov Chain is used for
discrete — time process. This means, the name Markov process may eventually refer
to all chains and processes.

1.3 Plan

We Dbriefly defined above the Markov Chain and we all gave a little review about the
Markov Chain’s history. In the remaining of our work, we discussed more deeply
about the topic of our interest called Markov Chain. To do so, our work is divided
into several chapters. Some chapters are considered as preliminaries to others

chapters. Our discussion started with a chapter based on reviews of probability and
2



algebraic theories which are absolute necessities to discuss about the Markov Chain.
It follows by a chapter on probability vectors and stochastic matrices. After the latest
mentioned chapter, we move to the heart of our task which is the main chapter
focusing on the Markov Chain. We finally conclude our work by given a briefly

review of what we did so far.



Chapter 2

REVIEW OF PROBABILITY AND ALGEBRAIC
THEORY

In this part we shall focus on some important notations and basic concepts of
probability theory such as probability space, T-field, conditional probability and
matrix theory such as matrix diagonalization and matrix limits [7, 11].

2.1 Definitions of Probability Space and T-fields

The probability space will be explained by using the system language of measure
theory.

Definition 2.1. (Sample Space (Q))

The set of all possible outcomes of a random experiment is called sample space.

Example 1

The possible outcomes of the experiment to a toss a die are 1, 2, 3, 4, 5 or 6.

Therefore the sample space is Q={1,2,3,4,5,6}.

Definition 2.2. (Event Space (E))

The outcomes of an experiment are called events of the experiment.

Example 2
We can define an event as the die shows an odd number. In this case the space event

isD=4{1, 3, 5}.



Definition 2.3. (Probability Measure (P))
Probability measure P is a function defined as P: Q — [0, 1] such that the following
axioms are satisfied.
1. P(Q)=1
2. P(EUE,)=P(E)+P(E,)-P(E,NE,). When E, and E, are not disjoint.
3. Forevents E,E,eQ,whereE NE, = then
P(E,UE,)=P(E)+P(E,)

More generally,
P E)= X.P(E)
i=1
Where E;NE; =& and i= j.[11,14]

2.2 Conditional Probability

Definition 2.4. The probability of an event A under a condition that an event B has
already occurred is called the conditional probability of Aunder B[11]. This
conditional probability of A under the condition B, is denoted by P(A|B) and it is

defined by

P(ANB)

P(A|B)= o(B)

Properties (Conditional Probability)

1) Forsome B fixed, A and A, are mutually exclusive, then

2) P((AUA)B)=P(A|B)+P(A]B)



3) In general, P(Ui”:lA|Bi) = Zn:P(A|B) where ANA, #Q wheni# j.
i=1

Note: P(A|BUC) = P(A|B)+P(A|C)and also P(A|B)=P(B|A).

Example 3
An amphitheater in Eastern Mediterranean University we have regrouped the

following data. [7]

Table 1;: Smokers data

Male Female Total
Smoke 82 38 120
No smoke 26 54 80
Total 108 92 200

What is the probability that an student chosen at randomly,
1. smoke cigarette?
2. is male and smoke cigarette?
3. is female and does not smoke?

Solutions:
1. P(Smoke) = 120 _ 0.6 or 60%
200

P(smoke[1male) _ 82

2. P(Smoke|Male) =
p(male) 108

~ 0.76 or 76%




p(nosmoke[] female) _ 54
p( female) 92

~ 0.59 or 59%

3. P(NoSmoke|Female) =

2.3 Independence of an Event
Definition 2.5. Two events; A and B e Q are independent, if
P(ANB)=P(A).P(B)
We may also define that A and B are independent if
P(A|B)=P(A) and P(B|A) =P(B).

In general, if E,E,,...E, € Qare mutually exclusive, then

P(E,NE,N...E,) = f[P(Ei) =P(E,).P(E,)... .P(E.).

Example 4

Your supervisor invites you to a restaurant, saying it open sometime on weekend
between 4 in afternoon and midnight, but won’t say more. What is the probability
that it starts on Saturday between 6 and 8 at night?

Solution: Time between 4 and midnight we have 8 hours, but we want between 6 and

8 which are 2 hours.
. 2
P(time) = 3 =0.25
Day: we have 2 days on the weekend, so
1
P(Saturday) = > =05

Therefore, P(Saturday and your time) = P(Saturday) . P(your time) = 0.5x0.25 =

0.125 or 12.5%



2.4 Elementary Matrices Operations

2.4.1Matrix Multiplication

Definition 2.6. A matrix A= (g;) is said to have dimension m, xn, if and only if it

has m, rows and n,columns [4,6].

Definition 2.7. Let matrix A=(g;) having dimension m,xn, and B=(b;) be

mg xNng matrix. Thenif n, =m, the matrix product Ax B is defined by

C=AxB =G = Zaik'bkj
k1

Properties of Matrix Product
P1) In general the product of two matrices is not commutative, i.e. in general
AB = BA.

P2) The matrix product AB is defined if and only if the number of columns of A

equals the number of rows of B, i.e. if n, =m,
P3) If the multiplication can be performed (that isn, =m;), the matrix product C

will be a matrix having dimensionm, xn;. [4,6].

Example 5
Let
0 31 1
A=|1 2 0|,and B=|0|.
2 1 3 2
Then



0 3 1 1 O0x1+0x3+2x1 2
AxB=[1 2 0|x|0|=1x1+0x2+2x0|=|1{.
2 1 3 2 2x1+0x1+2x%x3 8

But B x A is not defined.
2.4.2 Determinant of Order 2

Definition 2.8. Let

a b
A_[C djeMZQ(D)i

then the determinant of A is denoted by|A|or det(A) and it is defined by

ad —bc [6].

Example 6

For a 2x2 matrix

A= 2 4 M., ([
—(5 3JE 22(),

we have
det(A) =2x3-4x5=-14.
2.4.3 Determinants of Order n
In this section, we extend the definition of the determinant to nxn matrices for
n>3. Itis convenient to introduce the following definition:

Definition 2.9. Let Ae M, (F)be a square matrix withn>2and let B, denote the

nxn

(n—1)x(n—1) matrix obtained from A by deleting row i and column j. The scalar
value
C; = (1) det(B;)

is called a cofactor of AeM__(F), inrow i, column j.

nxn
9



Definition 2.10. Let AeM__(F)be a square matrix then the matrix defined by

nxn

C=(C;)where C;is the cofactor of AeM_ (F), in row i, column j, is called the

cofactor matrix of Ae M, (F).

Definition 2.11. (Determinant Order n)

LetAeM_ (F).If n=1,sothat A=(A;,), we define det(A) =A;.

nxn

For, n>2 , the scalar value det(A) is defined by;

det(A) = Zn:(—l)“i A;.det(B;).

or
det(A) = Z (-D"' A,;.det(B,;)
det(A) = Zn“(—l)“i A,.det(B,).
Example 7

Compute the determinant of the matrix A

= I\/Ii?:><3(D ) .

>

Il
o w o
~N N R
o U1 N

Using cofactor expansion along the first row, we obtain

det(A) = (- A, det(B,,) +(-1)"* A, det(B,,) + (-1)"” A, det(By;)

2 45 s 35 . 3 4
= (-1) (0).det[7 8j+(—1) (1).det(6 8j+(—1) (2).det[6 7)

10



=0+(=D(-6)+(A(-3)

=66

=0.
2.4.4 Transpose of Matrix
Definition 2.12. Let Ae M, (F) be any matrix and let B be the matrix obtained
from A by interchanging rows by columns. The matrix B is called transpose of A

and denoted B=A" [4,6].

Example 8

Find the transpose of the matrix

1 0 2
K=l4 1 2[eM,,(0)
011
Solution.
1 40
KT={0 1 1
2 21

2.4.5 Adjoint of Matrix

Definition 2.13. Let Abe nxn matrix and let C=(C;) be the cofactor matrix of A

then the transpose of C=(C;)is called the adjoint matrix of Aand denoted by AdjA.

Example 9

Compute Adj(A), where

11



1
A=[1 2 -1|leM,,(O)
30 2

Solution: It is easy to see that,

4 -5 -6 4 0 4
C=/0 -4 0 |and adj(A)=C"=|-5 -4 3
-4 3 2 -6 0 2

2.4.6 Inverse of a Matrix

Definition 2.14. Let Abe a square matrix which is non singular (i.e. det(A)=0 ),

then the matrix denoted by Awhich satisfies AA*=A"A=1, where | is the

identity matrix, is called inverse of A.

Properties of Inverse Matrix

a
Pl. Let A= {

b
. d}be 2x 2 matrix with det(A) =0, where a, b, c and d are real

or complex numbers then the inverse of Ais

d -b
S — 1 AdjA. [6]
ad—-bc|-Cc a ad —bc

P2. In general, if Ais nxn matrix with n>3 and det(A) =0 then

o 2di(A)
det(A)

Example 10

Compute the inverse A™of the following matrix

1 0 2
A=|1 2 -1
30 2

12



Solution:

By the property P2,
Atz adi(A)
det(A)
4 0 -4
=—% -5 -4 3
-6 0 2

2.4.7 Power of a Matrix

Definition 2.15. Let Abe a square matrix then the power A" of Awhere n is a non-

negative integer, is defined as matrix product of copies of A.

A" = Ax Ax...xA.
%/—/

n

In particular, the matrix to the zeroth power is identity matrix denoted A° =1 .

Example 11

Compute A, A>and A*for the matrix A given below:

2
Y B

, , (1 2)(-5 4\ (17 -6
A*= AAA=AA? = _

Solution :

-3 1){-6 -5 9 17

A AAA A AR 1 2\(-17 -6) (1 -40
Tl 19 a17) leo 1 )

13



In the next paragraph, we will consider diagonalization method which is a useful

method to compute the large numbers of powers of a matrix.
2.5 Diagonalization of Matrix

The diagonalization problem of a square matrix is directly related with the concept of
eigenvalue and eigenvector. Therefore, in the first part of this section we will focus
on eigenvalues and eigenvectors.

2.5.1 Eigenvalues and Eigenvectors

Definition 2.16. Let A be a matrix in M__(F). A non zero vector x € F"is called

nxn
an eigenvector of A if Ax=A4x for some scalar 1.The scalar A is called eigenvalue
corresponding to the eigenvector X.

Theorem 2.5.1: Let Ae M_ . (F). Then a scalar A is an eigenvalue of A if and only

if
det(A— A1) =0

Definition 2.17. Let Ae M, _,(F). Then the polynomial f(4)=det(A-Al)) is

nxn

called characteristic polynomial of A.

Definition 2.18. Let Ae M__(F). Then the zeros of the characteristic polynomial

nxn

are called the eigenvalues of the matrix A.

Example 12

Let

14



€ MSXS(D ) .

>

I
o o
o N B
w N o

Find the eigenvalues and the eigenvectors of the matrix A.
Solution:

The characteristic polynomial of A is the following equation,
f(1)=det||0 2 2|-4(0
Thus,
&[0 2-2 0 2 (=0 =11 @213 =0.

Then
A=1,4=2and A, =3
are the eigenvalues of A. Let us find corresponding eigenvectors.
To find the eigenvectors x, corresponding to the eigenvalue we will replace A by

eigenvalues in Ax = Ax.
X

Let x=| X, |. For A4 =1, we have
XS

Ax=x=>(A-1)x=0

15



0 1 0)(x
=|0 1 2|{x,|=0
0 0 2)(x

Then

X, =P, X, =0and x, =0 where p is the parameter

1
—=x =10 | when we assign p = 1.
0

Similarly, for A =2, we have
X=p, X, =pand x,=0

1
= x=|1|,whenp=1.
0

For A =3, we have

X\ =p, X, =2pand X, =p

= X=

= N

1
Hence, the set of eigenvectorsis S=</01(,| 1|,| 2
0

2.5.2 Diagonalizability
We presented the diagonalization problem and we can observe that not all matrices
are diagonalizable. Although we are able to diagonalize matrices and even to obtain

necessary and sufficient condition for diagonalizability of a matrix A.

16



2.5.2.1 Diagonal Matrix

Definition 2.19. Let D =(c;) be a square matrix. If D is of the form

then, it is called a diagonal matrix.

Note that, a diagonal matrix D, is also denoted by D =diag(c,,¢c,,...,C,) .

Properties (Diagonal Matrices)

P1) The determinant of a diagonal matrix is the product of elements of diagonal. i.e.

c ... O
if D=|: "-. : |then det(D)=c,c,...C,.
0 --- ¢

n

P2) LetD be the diagonal matrix and n be a positive integer. The n™ power of

diagonal matrix D equals to

2.5.2.2 Diagonalizable Matrix
Definition 2.20. Let Abe a nxn matrix. A is diagonalizable if it can be written as
A=P.D.P*, where D is diagonal matrix, with entries eigenvalues of AandP is the

nxn matrix consisting of the eigenvectors corresponding to the eigenvalues in D

i.e.

D=l : . :|,and P=(v,V,,...,V,)

1 Vp

17



Where v,,v,,...,v, are eigenvectors of A (written as the column vectors) and P*is

the inverse of P.

Theorem 2.1. Let A be annxn matrix. Ais diagonalizable if and only if A has n
linearly independent eigenvectors, i.e. if the matrix rank of the matrix formed by

eigenvectors is n. [6]

Example 13

Consider the matrix A given by,

We can rewrite A as

1 1 1)(1 0 0)(1 -1 1
A=PDP*=|0 1 2|/0 2 0f[.|]0 1 -2
0 0 1){0 0 3/{0 0 1
where
1 00 111 1 1 1
D=|0 2 0|,P=|0 1 2|andP*=|0 1 -2/[.
0 0 3 0 01 0 0 1

Remark: When the size of the matrix is too high, it will be difficult to write the

matrix by using these three partsP,Dand P, in this case, we will use the
applications as Matlab, Scilab, etc. to find the eigenvalues and eigenvectors.

Why it’s interesting to know a diagonalization of a matrix A?

18



In the next chapters, some of time it will be necessary to compute the great power of
matrix , for instance, we will need to evaluate the A", where nis a large natural
number. It is not applicable to evaluate A". If the matrix is diagonalizable, we will

use the transformation of matrix A as A=P.D.P™" then A" =(P.D.P™")"=P.D".P.

Since D is diagonal matrix it is easy to evaluate D".

2.6 Matrix Limit

In this section we will study the limit of a sequence of matrices M,M?,--- ' M"
where M is a square matrix with complex entries. The limit of sequence of complex

{z,:n=1,2,3,...} can be defined in terms of limits of the sequences of real and
imaginary numbers. Let z, =a, +ib, witha,and b, are real numbers andiis the

complex number such thati =J-1 (iell). Then

limz, =lima, +ilimb,

nN—oo n—oo nN—o0

Provide that lima, and limb, exist.

n—oo n—oo

Definition 2.21. Let L,M,M?-.- M"---, be nxn matrices with the complex
entries. The sequence M, M,,...is said to converge to the matrix L, if
lim(M,); =L, forall 1 <i, j<n.

In this case, we write

limM, =L

n—o

and L is called the limit of the sequence. [1,6]

19



Example 14

Let M, be the sequence

322 My
n 3n° -1
then
I|m(1+1j Iim(%)
. n—oo n n—oo
IimM, = )
Iim(3—gj Iim( n +2uj
n—w n n—w 3n _
Hence,

e 0

limM, = 1 . |=L.
n—0 3 §+2|

Where e is the base of the natural logarithm.

Theorem 2.2. Let M,,M,,...be a sequence of nxn matrices with complex entries

and L be its limit. Then, for any r xnmatrix P and pxsmatrix Q,

we have

n—oo

limPM,=PL and IimM Q=LQ.
Proof. By the definition of limit and properties of matrix multiplication we have,

lim(PM,)=lim> P, (M,), wherel<i<r and 1< j<p
Nn—o0 nN—o0 k=1

20



= P.k lim Mkj = ik ij = (PL)ij
k=1 k=1
Hence,
limPM, =PL.
Similarly, we can prove that
IimM, Q=LQ.

nN—oo

Corollary 2.1. Let M be a nxn matrix with complex entries where

limM"=L.

n—o0

Then for any invertible matrix T with complex entries ,
lim(TMT )" =TLT .
Proof. By definitions of power of matrix and matrix limit we have,
(TMT )" =(TMT HAMT )..OMT ) =TM"T ™

= [IMTMT )" =limTM" T =T (limM™)T * =TLT .

End of proof.

21



Chapter 3

PROBABILITY VECTORS AND
STOCHASTIC MATRICES

In this chapter, we are going to give a new concept to the vectors and matrices which
are related to Markov Chain. These feature vector sand matrices allow us to model
the socio-economic and scientific problems in the context to understanding, predict,

solve and anticipate. [1,2,9].
3.1 Probability Vector
Definition 3.1. Letv=(v,V,,..,v,)be a vector. In mathematics, especially in

statistics, a vectorv is called probability vector or stochastic vector if the entries

n
are non-negative and their sum equals to 1. i.e.Zvizl, and each individual
i=1

componentv, must have a probability value which is 0<v, <1 for all i=12,...,n.

[2,12,14].

Example 1

The vectors; u, v, w and t given below are all probability vectors.

0.20
u=[0.15 0.25 0.6],v=/030|,w=[0.23 0.77],
0.50

t=[0.12 0 028 06]

22



Properties (Probability Vector)

Let p be a probability vector of the form; p=[p,, p,,..., p,] where phasn

components, then it satisfies the following;

The mean of vector p is % [2,9]

(The mean of probability vector does not depend on the values of the

components but with the number of entries.)

The longest probability vector has the value 1 in a single component and 0 in

all others and its length is 1.

- 1
The shortest probability vector has the value —as each component of the
n

vector and its length is i. [13,17]

Jn
. 1 . .
The length of a stochastic vector to ,ncr2 += where o’ is the variance of the
n

probability vector.

Example 2

i) Let t be the following vector;

t=[0.12 0 028 0.6],

. 1
then the mean of the vectort is equals to 7

ii) Given the vector k of the form

k=[0 0 0 1 0],

thenk is an longest probability vector.

iii) Given the vector b of the form

23



then b is an shortest probability vector.
3.2 Transition Matrix
A stochastic matrix or transition matrix describes a Markov Chain X, over a

finite state space S, then there are several different definitions and types of transition

matrix or probability matrix.

Definition 3.2. A square matrix is called Right Transition Matrix if all entries are

non-negative and the sum of each row equals to 1. [1,15]

Definition 3.3. A square matrix is called Left Transition Matrix if all entries are

non-negative and the sum of each column equals to 1. [15,16]

Definition 3.4. A square matrix is called Double Transition Matrix if all entries are

non-negative and each row and column sums equal to 1. [1,10]

Example 3

Consider the following matrices

0 025 025 05 0o 0 00t
025 04 03 0 0 05 0 05
o 0 0 1
M, = M,=| 0 06 03 0 O|M,={0 1 0
01 0 0 09
0 0 0210 05 0 05
0 028 062 0.1
075 0 02 0 0

M,,M,and M, are right, left and doubly transition matrices, respectively.
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We may also represent the transition matrix by the graph which called transition

diagram.

Example 4
0.3 04 05

Given the left transition matrix T=|{ 0.3 0.4 0.3, then it can also be represented
04 02 0.2

by the follow graph:

0.4

Figure 1: Transition. diagram
Definition 3.5. The graph given above is called transition diagram.

Theorem 3.1. Let A be annxn matrix having real non-negative entries and let v be

a column vector in " having non-negative coordinates, andu ] " be the column

1

1
vector in which each coordinate equalsto 1,i.e. u =| . |, [6]

then
1. vis probability vector if and only if u'v = (1)

2. Ais transition matrix if and only if A'u=u.
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Proof.

v, 1
v, n 1
1. =) Letv=|  |where) v, =1andlet u=| |bean nxl column vector, then
. i=1 .
v, 1

Vl
v
uv=(1 1 - 1) SV ety =(1)

v

n

<) let u'v=(1). We will prove that v is probability vector i.e. we will show that

v, =1 forall i=12,..,n

i=1

uv=>"0 = u'v) =@’

=Vviu=()
1
1
= Vo V)| [E WY, ey ) =(2)
1

Therefore, v is probability vector.

2. =) Let A be transition matrix. We will prove that A'u=u
Just make a precision in this case. We will consider A as a double transition matrix,

i.e. sum of each row and sum of each column is equal to 1.

Let
a, &, -,
A= Ay 3, o &y, and u = 1
anl anZ ann 1

26



a; a; - Ay 1 ayta, +--+a, 1
a, 1 - A, +ay, +-+a, 1

aln aZn a'nn 1 a1n+a2n+“'+a'nn 1
<) let

Alu=u
We will prove that M is transition matrix.

Alu=u

= (A'u)" =u" =>u"A=u’

a; & - &,
@1 )|t % T Bl g Ly
a‘nl a‘n2 a‘nn

= (A +a+ay Apta,yteta, e & tay,toeetay,)=(1 1 e 1)
=a,+a, +...+a,=1 a,+a,+...+a,=1 a,+a,, +...+a, =1.

ie.

Therefore, A is transition matrix.

Corollaries 3.1

A) The product of two transitions matrices is a transition matrix. In particular, any
power of transition matrix is a transition matrix (but error can appear because of
truncation.)

B) The product of a transition matrix and probability vector is a probability vector.
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Proof. To prove the corollary we will use an algebraic definition of endomorphism
function and the previous theorem.

Al) The order matrix n expresses an endomorphism f in the canonical basis, and we
know that the coefficients of the product matrix are positive; more f,, f, being
endomorphisms of these matrices

fof,(u)=f[f,(U)]=f(u)=u by the previous theorem, where u is a column
vector in which each coordinate equals to 1.

A2) Let Abe a transition matrix. We will use proof by induction to show that A" is
also an transition matrix.
For n=0, we have

if =]
J by convention. A° is transition matrix.

- 1
A" =1,.Where |, = o
0 if i#]

For n=1, A' = Ais stochastic by hypothesis.

We assume that it’s true for A""and we will prove that it also true for (A"); -

Forall i, ] and for i fixed we have

2 (A =2 QL (A x Ag) = D T(A™), A1 =1. End of proof.

B1) Let
a; &, 8y,
a a a
e Pland v=(v, v, - V),
anl anZ ann

be a transition matrix and a transition vector, respectively. We will prove that v.Ais a

probability vector.
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=(AVy + 3V, +o ALY, BV, + 3V, Fe BV BV BV, oAV, )
When we put each v, in factor, we obtain
(vl[a11 +a,+..+a,]+Vv[a, +a, +..+a,]+..+Vv,[a,+a, +...+am]) )

We know that

>v, =1and ) a; =1 hence the result.
i=1 j=1

Example 5
Let
0 2 1
3 3 0.65 0.28 0.07
M=/05 0 05|; N=/0.15 0.67 0.18|and v=(0.5 05 0),
3 1 0 0.12 0.36 0.52
4 4

where M and N are transition matrices and v is a probability vector.

2 1
O 3 3|(065 028 007) (014 05733 0.2933

1. M.N=|05 0 05/|]015 067 0.18|=]0.38 033 0.295
3 1 ,|l012 036 052) (0525 0.377 0.0975
4 4

We can verify that the sum of each row is equal to 1 so the matrix M.N is also a

transition matrix.
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0 1
3

2. vM=(05 05 0)./05 0.5 [=(0.25 0.3333 0.4167)

Al O WIN

EE
4

0.25+0.3333+0.4167=1.

Therefore v.M is also a transition vector.

o 2 L)(o 21
3 3 3 3| (05833 0.0833 0.3333
3. M’=M.M=05 0 05[.[05 0 05|= 0375 0.4583 0.1667
31 40|31 ,|\o1s 05 0375
4 4 4 4
0o 2 1
3 3 | (05833 0.0833 0.3333
M*=M.M?=|05 0 05|.| 0.375 04583 0.1667
3 1 ,|lo1s 05 0375
4 4

0.2917 0.4722 0.2361
= 0.3542 0.2917 0.3542
0.5313 0.1771 0.2917

1
3 0.2917 0.4722 0.2361

0.5(.] 0.3542 0.2917 0.3542
0.5313 0.1771 0.2917

0
M*=M.M3=|05
0

NlkF, O wlN

3
4

0.4132 0.2535 0.3333
=/ 0.4115 0.3247 0.2639 |...
0.3073 0.4271 0.2656

We can check that all the powers of matrix M are transition matrices.
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3.3 Regular Transition Matrix
Definition 3.6. A transition matrix P is regular if some integer power of it has all
positive entries, i.e. for some n (] , the entries of P" are positive. [7,9]

i.e. if P"=( p;) then p,;>0 forall i,j=12,...,n.

Example 6

The transition matrix;

o 21
3 3
M=/05 0 05|,
31
4 4

of the previous example is regular. In fact when we compute the different power of

this transition matrix, we obtain

0.5833 0.0833 0.3333 0.2917 0.4722 0.2361
M?=| 0.375 0.4583 0.1667 |,M3*=|0.3542 0.2917 0.3542 |,
0125 0.5  0.375 0.5313 0.1771 0.2917

0.4132 0.2535 0.3333
M*=| 04115 0.3247 0.2639 |, ...
0.3073 0.4271 0.2656

All the entries of M? are positives we can stop the proof.

1
On the other hand, the matrix Q :(

is not regular.
05 05

In fact

QZ_1 0 Qs_1 0 o' 1 0
1075 025)° < (0875 0.125) ° 10.9375 0.0625)
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If we continue we will see that every time we have at least an entry which equal to

zero for all powerQ.

Theorem 3.2. Let P be a regular transition matrix, then
(i) There exists a unique stationary vector or fixed probability vectorS .
(i) Given any initial stable matrixS,, the state matrix S, approach the stationary
matrix S . [8,11]
(iii)The matrix P* approach a limiting p, where each row of p is equal to the

stationary matrix S .

Proof. Let matrix P be regular.

(i) Consider there is two stationary vectors S; and S,and we will prove that S, =S, .
S, an stationary vector of P then

SP=§ =5P-S =0,=S(P-1)=0, (1)
S, an stationary vector of P then

S,P=S,=S,P-S,=0, =S,(P-1)=0,(2)
Where | is identity matrix and 0O,, is a zero matrix.
From equations (1) and (2),

Oy =0y, & S,(P-1)=S,(P-1)=5,=5S,.

Therefore, the stationary vector is unique.

(i) If S, is initial stable matrix, then recursively we have:
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S, =S,P

82 = SlP
S,=S,P
Sk = Sk-1P

When we make multiplication member by member, i.e. the left side and the right side

we obtain
S, xS, x-+-xS, =S;xS, x-S, P"
=S, =S,P" = lims, :msopk =S, mpk
Take
S=5, lim P*.

Remark It does not mean that every stochastic matrix have a unique stationary
matrix except a regular stochastic matrix and the successive state matrices always

approach this stationary matrix.

Example 7
Let
0.1 01 038
P=|04 04 0.2],
0.1 0.2 0.7

be a regular transition matrix.

Then let’s find a stationary matrix S whereS =[s, s, s,]

Solution:

The matrix P is regular that means there exist a unique stationary matrix such that,
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01 01 08
SP=S<[s s, s,]{04 04 02|=[s; s, s,]
01 02 0.7

0.1s, +0.4s, +0.1s, =5,

= <0.1s,+0.4s, +0.2s, =s, and we can add s, +5S, +5S, =1
0.8s,+0.2s,+0.7s, =s,

By substitution we obtain
s, ~0.1688, s, ~0.2289 and s, ~0.6024,

hence S =[0.1688 0.2289 0.6024] .
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Chapter 4

MARKOV CHAINS

There are many stochastic processes in mathematics. In this chapter, we will study a
special kind of stochastic process, called Markov Chain, where the next state of the
system depends only on the present state. Before to start, just recall that Markov
Chain where introduced in 1906 by the Russian mathematician Andrei Andreyevich

Markov (1856 — 1922) and were named in his honor.
4.1 Some Definitions
Definition 4.1. Let | = (i, 1,,...,1,) be a countable set and each i, € | is a state, then |

is called a state-space.
In this chapter, we will work in the probability space (Q2,F,P) where Q is a set of

outcomes, T the set of subsets of Qand for any A<¥, P(A) is a probability of A

.Our goal is to study a sequence (Xn)nzowhere X;, X,,...are taking from the set | .

Definition 4.2. The function X : Q — | is called a random variable, where the

values of X belong the state-space 1. [1,9]

Definition 4.3. Let 1=(4 :i€l) be a row vector. Then A is called measure if for
all iel, 4 >0.If Zii, =1 then A is a probability measure or probability vector

given in Chapter 3. In the special case, when1=(0,0,...,1,...,0), it is longest

probability vector given in Chapter 3.We will denote 4 =¢,. [5,7]
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4.2 Markov Chain

Definition 4.4. Let P=(P,:i,jel)be a transition matrix. Then the sequence

(X,).., is called Markov Chain with transition matrix P and initial distribution 2,
if forall n>0

a) iO’il""’in'in+1E| P:P(XOZiO): ﬂ/lo

b) P(Xn+1 = in+l Xo = io’ Xl = il""’ Xn = in) = P(Xn+1 =i

X, =i,) =R, 4.

n+l

On the order hand, we may also say that a sequence(Xn)nZO is Markov (4,P) .

Theorem 4.1. A sequence (X, ) _ isa Markov chain if for any i,i,...,i, €1,

P(XO = iO’ Xl = il""’ Xn = In) :ﬂioeoil"'Pi'

i ©

Proof. Suppose( X, ) _ is Markov (4,P). Then
PX, =1, X,y =1 1,0 Xy =1p)
=P(X, =1, Xy =i g0e0 Xg =) P(Xy =iy g,y X =)
=P(X, =ip)P(X, =i X, =ip)-.P(X, =i | Xy =lgreres X,y =i )

= AP, P,

4.3 Homogeneous Markov Chain

There are several Markov Chains. In this section we will consider Markov Chains
that do not evolve in time.

Definition 4.5. A Markov chain is called homogeneous if its one-step transition

probability does not depend on n. In other words,

vnmel,and i,jel, B® =R
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Then we define the n steps transition probabilities of homogeneous Markov Chain by
I:)ij(m) = I:)(Xn+m = J|Xn = I),
which means that each row of P defines a conditional probability distribution on the

state space. By convention

Remark If E={x,X,,...,x,}and (X,),., is homogeneous Markov Chain, then the

transition matrix P;, is given by:

p(Xn+l:X1|Xn:X1) p(xn+1:X2|Xn:X1) p(Xn+1:Xn|Xn:Xl

P: p(xn+l:Xl|Xn:X2) p(Xn+l:X2|Xn:X2) p(Xn+1:Xn|Xn:X2

p(xn+1=xi|xn=Xn) p(xn+1=X2|Xn=Xn) p(xn+1=xn|xn=Xn)

PO, %) P, %) o P(X,X,)
(G %) (X, %) p(xz,xn)_

P(Xy %) P(Xu %) o P(XyX,)

Example 1 (Predicting the Weather (Finite State-Space))
In Cameroon, there are only 3 types of weather: sunny, foggy and rainy (a state-
space takes three discrete values.) the weather patterns are very stable there, so a
Cameroonians weatherman can predict the weather next week based on the weather
today with the transition rules:
If it is sunny today, then
-probability it will be sunny next week is

*P(X

=sunny| X ;o4ay = SUNNY) =0.7

(week)
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-probability somewhat it will be foggy next week is

* P(X ooy = T099Y| X o0y = SUNNY) =0.25

- itis very unlikely that it will be rainy next week
*P(X

= rainy‘x(today) =sunny) = 0.05

(week)

If it is foggy today then

-likely that it will be sunny next week

*P(X = sunny‘x(todaw = foggy) =0.35

(week)
-less likely it will be foggy next week
* I:>(X(week) = foggy‘x(today) = nggy) = 055
-fairly unlikely it will be raining next week is
*P(X westy) = rainy‘x(today) = foggy) =0.1
If it is rainy today then
-unlikely that it will sunny next week is
*P(X ety = sunny‘x(today) =rainy) =0.1
-probability somewhat it will foggy next week is
* P(X(week) = foggy‘x(today) = rainy) = 02
-fairly likely that it will rainy next week is
*P(X

= rainy‘x(todaw =rainy) =0.7

(week)

If S=sunny, F=foggy and R= rainy, the we can model this example by the following

transition matrix
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S F R
P= S (07 025 0.05
F 1035 055 01
R{01 02 07

Note that each row of the matrix P above corresponds to the weather of today, and
each column corresponds to the weather of the next week.

Question: Assume that it is sunny today what can be the probability it will rainy next
week, in two next weeks or after 8 months?

We will answer these kinds of questions after we will study the next paragraphs.
4.4 Global Markov Property
Definition 4.6. Let A,BandC three sets where AUBUC be a partition of V and
B separates Afrom C as shown the graph above; i.e. starting in Aand terminate in
C.[11]
Then distribution 1 over XV satisfies the global Markov property if for any
partition (A, B,C),

£(X 5 X |X) = (X 5| X ) (X[ X))

These previous definitions can introduce a new theorem.

B C

A
Figure 2: Global Markov Property
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Theorem 4.1. ( Chapman Kolmogorov Equations )

R =2 PR rel u{0}

Proof. To prove it we will use a total probability rule and global Markov property.
P =P(X,=j[X,=1)=> _P(X, =X, =k|X,=0)

=Y P(X, = j|X, =k X,, X, =i)P(X, =k|X, =i)

kel

=> P, p, ™" by Markov property.

kel
4.5 Asymptotic Behavior of Homogeneous Markov Chains
The study of the long-term behavior of Markov Chain seeks to respond to diverse
questions as A" distribution does converge whenn — o0?
If A" distribution converge whenn —>cowhat is a limit A'? And this limit it is
independent to a initial distribution A?
4.5.1 Stationary Chain
Definition 4.7. The Markov Chain whose evolution does not evolved over time is
called Stationary Markov Chain. [3,5,9]
4.5.2 Distribution Invariant
Definition 4.8. A is a probability distribution invariant to the transition matrix P if

AP = Zin this case (X,),., be Markov (P, ) is a stationary Markov Chain. We say A

is invariant if the terms equilibrium and stationary are also used to mean the same.

Theorem 4.2. Let | be a finite set. Then for some i e | such that
p™; >, asn—ooforalljel.
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Then z=(z;: jel) isan invariant distribution.

Proof. We have

— i M _ i () _
2= limp,™ =lim > p®; =1
jel jel jel

and

N H M _ i (n) — i (n) —
zy=limp® =lim> p® pg=> limp®p;=> 7p,.
kel kel kel
n—o0

We used here finiteness of |to justify interchange of summation and limit

operations. Therefore, 7 an invariant distribution.

Example 2

Find the invariant distribution 7 according to regular transition matrix P where

01 01 0.8
P=104 04 0.2
0.1 02 0.7

Solution See Example 7 in Chapter 3.

4.6 Absorbing Markov Chains

Definition 4.9. An state X is called Absorbing Markov Chain, if

P(X,0 =X |X, =x)=L.

Properties: A Markov Chain is absorbing if
-it has at least one absorbing state; and

-it is possible to go from any non-absorbing state to an absorbing state. [12,13,14]
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Example 3
Between the two matrices below, identify all absorbing states in the Markov chain

and decide whether the Markov chain is absorbing.

1 2 3 4 1
1/1 0O 0 O
1/1 0 O
A=2| 0 08 02 0|; and B=
2106 02 0.2
310 O 1 0
3{0 O 1
407 0 03 0

Solution

From matrix A, we have

Figure 3: Traﬁsition Diagram Absorbing Markov Chain 1

States 1 and 3 are absorbing, with states 2 and 4 non-absorbing. From state 2 it is
only possible to go state 3. From state 4 it is only possible to go state 3 and state 1
the transition diagram above shows it.

Conclusion: At least an non-absorbing state go to an absorbing state.

Hence the matrix A is a absorbing Markov chain.

From matrix B, we have:
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1
Figure 4: Transition Diagram Absorbing Markov Chain 2

B, =1and P,; =1both state 1 and state 3 are absorbing state. State 2 is only non-

absorbing state. From state 2, it is possible to go to state 1 with a 0.6 probability and
0.2 probability from state 2 to state 3.
Conclusion: It possible to go from non-absorbing state to absorbing state as shown in

figure then matrix B is also absorbing Markov Chain.

4.7 Irreducible Markov Chain

Definition 4.10. A Markov Chain is irreducible if every state is accessible from any
other state with non-zero probability.

To detect an chain irreducible, we just have to check that i — j for every i, j.

Note. Any chain possessing an absorbing state is not irreducible.

4.8 Simulative Study of Homogeneous Markov Chain at Infinity

Given a Markov Chain (X,).., and a transition matrix P. We seek to study the

n=0

behavior of the distribution of X, when n— oo which come to study a sequence of a

matrix (P"),._, when n—cowith P° =1Id. [16]

nell
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4.8.1 Markov Chain at Two-State P

Example 4

Consider the state of a phone line where X, =0if the line is free at the timen.
X, =1if the line is busy at the time n.Also assume each time interval there is
probability p when the call comes in (a call for more). If the line is already busy, the
call is lost. Suppose again that if the call is busy at the time n there is probability q it

is released at the time n+1.
What is the transition matrix of this stochastic process?
We can model this process by an homogeneous Markov Chain with values of E.

Where E is the set of state E = {0,1}

So the transition matrix

P_(D(O,O) p(O,l)]_(p(meOIXfO) p(Xn+1=1|Xn=0)J_(1—p pJ
1

p(l,O) p(l’l) p(Xn+1 :0|Xn :1) p(xn+1 :1|Xn :1) B _q

We then seek a simplified expression for P" easily to calculate its limit.
We may diagonalize P because its spectral is {1,1— p —q}

Then we can write

P=QDQ™
where
1 -p
o, 5
1 9q
and
q 1
4 | P+d P+Q
Q= -1 1
p+gq p+q
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We should show that P" =QD"Q™.

So

pr_ L (—q+p(1—p—q)” p—p(l—p—q)”J
p+dl g-qd-p-9)" p+ald-p-q)

from where

|im1>”=i(q pj:P“’.
e p+glg P

In general, to get p,™ for instance, we have p,™ = A+B(1—p-q)" for some A

and B. But
p@,=1=A+Band p®,=1-p=A+B(l-p-Q).
Then
(AB)=(a.p)/(p+a),
Thus

0, = p(X, =) =—1—+—P _a—p_q)
p+q p+q

and the linear recurrence relation is

_1)

pll(n) =0+ (1_ p- q) pn(n

o0

Remark. As P" converges to P” it means that the homogeneous Markov chain
approaches an equilibrium system or (stable), i.e. the distribution of this chain is
stationary at a certain rank.

In other words,

an, el /P* =P™ P** =P%and I1, , =TI, P*" =TI,P" =TI

ng *
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4.9 Application of Markov Chain at Two-State

4.9.1 Gambler’s Ruin Problem

This problem is motivated by trying to determine the success or failure of a gambler
who bet with some amount money initially and wants to leave some larger money at
the evening.

Let Z,Z,,...be a sequence of Bernoulli random variable where Z, =-+1with

probability o and Z, =—1with probability #. We start with initial value V¢>0. We

define the sequence of sum Vn:Zin:oZi we are interested in the sequence

V,,V,,V,...which is the stochastic process.

Now consider a Gambler who wins or loses Turkish lira (TL) on each turn of game
with probabilities o and S respectively where g =1—«.Let V, the initial capital
with V, > 0. This capital can increase to ¢ or be reduced to 0. A probability of the

Gambler’s ruin is SV, and aV, his probability he wins. We may also show that

N, + BV, =1.

Theorem 4.3. The probability of the Gambler’s ruin is

(Bla) -(pla): i azp
Wo=1  (Bla) -1
1-V, /0 if a=p=1/2

4.9.2 Birth and Death Chain
We define in this section some of notations we will use to compute the transition

probabilities of Birth and Death chain.
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Let b, and d. the probabilities of birth rate and death rate respectively withb, +d, <0
andb, ,d, >0. We will work in the state space $={0,1,2,3,...}or$={0,1,2,3,...,k}

with zero boundary condition usually we use d, =0and b,>0 .Then the transition

probability of birth and death chain is:

b, if i=j-1
d if i=j+l

O T S
0 else

Remark Gambler’s ruin is an example of Birth and Death chain.
4.10 Markov Chain at n-steps Transition Probabilities

Example 5

Consider the following diagram related to a three-state Markov Chain.

T
I
Nk O O

O N|Fr P
Nk N|F O

12 2 12

Figure 5: n-steps transition diagram

Using the characteristic polynomial to find the eigenvalues we obtain
f (1) =det(Al —P)=A(1-1/2)* -1/4
1 2
=7 (A-D@x +)=0

So, the eigenvalues are obtained as 1, +i/2.

This means that
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P, =U +V(i/2)" +W(-i/2)". (1)
We know that trigonometry and complex exponentials of
(&i/2)" =1/ 2)" (cos(nz/2) sin(nz/2)) = (1/2)"e*™2.
Substituting it in equation (1) for some V' and W' we have
p."” =U +(1/2)" (V 'cos(nz/2) £W 'sin(nz/ 2)).

Tofind U, V'and W' we can assign n the values 0, 1 and 2 we get

p,? =1, p,* =0, p,? =0then we have U:%, \A :g and W’ :é :

Therefore

1 (1\'[4 _nzr 2 . nx
MW==4]=]|=cos——=sin— |. 2
Pu” =3 [2} [5 2 5 2 @

Recall that this is for some of fix U , V' and W '. Using this equation (2), we can

predict different values of probability p,™.
For instance, for n=5we have p,® =0.1875.

In general, for chain with n states to get probability p,™, from states i and j we use

these different steps:

(@) Compute the eigenvalues 4, 4,,..., 4, of the square matrix nxn of P.
(b) If the eigenvalues are distinct, for some constants c,,c,,...,C, , pij(“) has the
form p,"" =c,+c, 4 +...+C, A7
(Recall that 4,=1). If there is repeat eigenvalue A k-times we will write the term
in this form (2, +a,n+...+a,,n**)A".

(c) Each complex eigenvalues come in conjugate pairs these can be written in
trigonometry and complex exponentials form as the previous example.
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Chapter 5

CONCLUSION

In the probability theory, the Markov Chain plays an important role. For instance
being able to forecast an outcome based on the current state of a process has various
applications in the life and sciences. The Gamblers may used the Markov change to

forecast whether or not there can win or lose their bet.

The Markov Chain has also wide application areas; especially, in health sciences,
biology and genetics sciences. It helps to predict the evolution of a disease and also
to forecast in the future the outcome of a drug being used currently to fight against an
epidemic. The Markov Chain is the key of epidemiology sciences.

The financial mathematics is also a field of study where the Markov Chain is widely
used. It is actually used by insurances companies to simulate the risk before setting
the insurance prime on a disaster. The current state of a financial market is used to
predict the next state based on the Markov Chain. Brownian motion are defined as
phenomenon with random outcome, but Markov Chain helps to predict outcome of

processes.
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