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ABSTRACT

The success of sparse representation as a signal representation mechanism has been

well-acknowledged in various signal and image processing applications, leading to the

state-of-the-art performances. Flexibility and local adaptivity form the main advantage

of this representation. It has been widely acknowledged that dictionary design (number

of dictionaries, and the number of atoms in a dictionary) has strong implications on the

whole representation process. This thesis addresses sparse representation over multiple

learned dictionaries aiming at enhancing the representation quality and reducing the

computational complexity.

The first contribution in this work is performing dictionary learning and sparse repre-

sentation in the wavelet domain, merging the desirable attributes of wavelet transform

with the representation power of learned dictionaries. Simulations conducted over the

problem of single-image super-resolution show that this representation framework is

able to improve the representation quality while reducing the computational cost.

Our second contribution is a variable patch size sparse representation paradigm. In this

setting, the size of the patch is adaptively determined to enhance the quality of sparse

representation.

The third contribution is a strategy for designing directionally-structured dictionaries

via subspace projections. Experimental results show that this strategy improves the
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quality of sparse representation at reduced computational complexity.

The fourth and major contribution is a strategy for residual component-based multiple

structured dictionary learning. In this work, we show that a signal and its residual

components subject to a sparse coding algorithm do not necessarily follow the same

model, as commonly assumed in the multiple dictionary approaches in the literature

so far. Accordingly, we propose a mechanism whereby training signal can potentially

contribute to the learning of several dictionaries, based on the structure of each of its

residual components. This strategy is shown to significantly improve the representation

quality while using compact dictionaries.

The final contribution in this thesis aims at improving the representation quality of a

learned dictionary by performing a second dictionary learning pass over the residual

components of the training set. Simulations show that this learning strategy improves

the quality of sparse representation.

Keywords: Sparse representation, dictionary learning, multiple dictionaries, residual

components, structured dictionaries.
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ÖZ

Seyrek sinyal temsiliyetinin farklı sinyal ve görüntü işleme uygulamalarındaki başarımı

kabul görmektedir. Bu yötemin temel özelliği bir sözlükten seçilen birkaç prototip

sinyal (atom) ile sinyallerin temsil edilmesidir. Bu yöntemin temel avantajı sinyallere

uygulanabilir bir yapıya sahip olmasıdır. Sözlük tasarımı (sözlük ve atom sayıları)

ve kullanımı sinyal temsiliyetinde büyük önem arzetmektedir. Bu tezdeki çalışmalar

çoklu sözlükler kullanarak hem sinyal temsiliyetinde kaliteyi artırmayı ve hasaplama

karmaşıklığını azaltmayı hedeflemektedir.

Birinci katkı sözlük öğrenme yönteminin dalgacık dönüşümü ile yapılmasıdır. Dal-

gacık dönüşümünün birçok özelliğinden faydalanarak sözlükler dalgacık alanında öğren-

ilmiştir. Tek görüntünün çözünürlüğünün artırılması konusunda elde edilen sonuçlarla

hem kalitenin arttığı hem hasaplama karmaşıklığının azaldığı gösterilmiştir.

Tezdeki ikinci katki temsiliyet kalitesinin artırılması için sözlüklerin değişken yama

boyutu kullanarak öğrenilmeşidir. Temisilyet kalitesi en iyi yama boyutu seçilerek

iyileştirilmiştir. Üçüncü katkı yansıtma operatörleri kullanarak değişik yönlere sahip

çoklu sözlük öğrenme yöntemi ve bu yönteme dayalı sinyal temsiliyet algoritması

geliştirilmeşidir. Sinyal temsiliyetinde önerilen yöntemin hem kaliteyi hem de has-

aplama karmaşıklığını iyileştirdiği gözlemlen miştir.

Tezde yapılan dördüncü katkı artık bileşenler tabanında çoklu ve yapısal özelliklere
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sahip sözlüklerin tasarlanmasdır. Öncelikle bir sinyalin ve onun artık bileşenlerinin

farklı yapılarda olduğu gösterilmiştir. Bu gerçekten yola çıkarak artık bileşen sinyal-

leri kullanarak yeni bir çoklu yapısal sözlük öğrenme yöntemi önerilmiştir. Önerilen

öğrenme yöntemine dayalı sinyal temsiliyet yöntemi de önerilmiştir. Önerilen yöntem

ile bir sinyal birden fazla sözlüğün uyarlanmasına katkı yapabileceği gibi temsiliyet

safhasında herhangi bir sinyal farklı yapısal özelliklere sahip sözlüklerden atomlar

kullanılarak temsil edilebilmektedir. Önerilen yöntemin sinyal temsiliyetinde önemli

iyileştirmeler sağladığı gösterilmiştir. Bu tezdeki beşinci ve son katkı ise öğrenilen

sözlüğün temsiliyet kalitesini artırmak için hata sinyallerini kullanarak ikinci bir öğrenme

safhası kullanmaktır. İkinci safhadaki öğrenmede problemi Lagrange en iyileme yöntemi

ile çözülmüştür. İkinci safhadaki öğrenmede öğrenilen sözlüklerin ilk safhadaki kaliteyi

düşüremeyecği sınırlaması getirilmiştir. Lagrange çarpanları yöntemi ve çizgi arama

(line search) yöntemi kullanılmıştır. Yapılan simulasyonlar temsiliyet kalitesinin artıtrıla

bilğini göstermiştir.

Anahtar Kelimeler:: Seyrek temsiliyet, sözlük öğrenme, çoklu sözlükler, artık bileşenler,

yapısal sözlükler.
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Chapter 1

INTRODUCTION

1.1 Introduction

Digital signal processing is based on sampling continuous time or space signals with

respect to time, space or frequency and then quantizing the acquired samples. The abil-

ity of such samples in extracting the intrinsic meaningful parts of a signal is of crucial

importance. Therefore, signal representation (modeling) is an important area in the

signal processing field. It has been widely acknowledged that better signal modeling

is a reason for improving the performance in any of the signal processing applica-

tion areas [1]. Intuitively, a model has to be carefully selected to be compatible with

the problem in hand. One of the most successful and widely used signal representa-

tion techniques is sparse representation. This thesis addresses some of the open-ended

problems concerning this representation and attempts at providing suitable solutions.

The two purposes throughout this work can be summarized as enhancing the quality of

the representation and lowering the levels of computational and storage costs, within

the sparse signal model.

1.2 Background and Motivation

Sparse representation has been employed in various signal and image processing ap-

plications, leading to state-of-the-art performances. Examples include, and not limited

to, classical audio, image and video processing applications such as denoising, de-

blurring, inpainting, compression, and super-resolution, as well as, speech and object
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recognition (source separation and classification), multimedia data mining, bioinfor-

matic data decoding, applications also range from correcting error for corrupted data

(face recognition despite occlusion) to detecting activities and events through a large

network of sensors and computers [2].

The key property of sparse representation is its ability in capturing intrinsic signal

features (information content) [3]. Such features depend on the problem of interest. It

can be salient object features for recognition problems. In compression, such intrinsic

features should be the most informative signal portions, allowing for an economical yet

a meaningful description of data. In denoising, such features should be the attributes of

the true signal buried in noise. In super-resolution, these features would be an invariant

quantity from a low-resolution image that can be used to infer relative information

about the unknown high-resolution image. Overall, sparse representation is shown

able to capture the intended intrinsic information, regardless of the problem in hand

[4].

As the name suggests, a sparse representation of a signal is the one that uses a few basis

vectors to approximate the signal. Basis vectors are typically arranged as the columns

of a dictionary matrix D. A signal x can be sparsely represented as a linear combination

of a few elements of a dictionary D. This representation can be cast as x = Dw,

where w is the sparse coding coefficient vector. Given x and D, the determination

of w is referred to as the problem of sparse coding. This problem aims at finding a

loyal representation of x in terms of a few atoms in D. Typically, the sparse coding
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problem can be viewed as an error minimization problem, where sparsity is fixed.

Alternatively, it can be viewed as a sparsity minimization problem, with a specific

representation error tolerance. The determination of D is of crucial importance to the

sparse presentation model. In fact, there are two basic categories of dictionaries, these

are:

I Mathematically-defined dictionaries: these are in fact pre-defined basis functions

that give the support to a given signal. Examples include Fourier basis functions,

wavelets, contourlets and several others. The main advantage of such dictionaries

is the fact that sparse coding over them is carried out in two easy and fast steps.

The first step is an inner product operation between the signal and the basis func-

tion to determine the representation coefficients. The second step is to threshold

these coefficients leaving only a few non-zero ones, making the representation

sparse. However, this sparsity enforcement paradigm is shown not to fit a wide set

of signals. In other words, such a representation does not have the ability to fit a

specific class of signals [5, 6].

II Learned dictionaries: a learned dictionary is a matrix whose columns are inferred

from example signals. This matrix is initialized with a set of randomly selected

signals, and then undergoes a training process over a set of training signals. Dur-

ing the training process, dictionary atoms are updated in such a way that serves

for two purposes. The first one is to loyally represent the training data, and the

second one is to keep the representation of the data sparse. Accordingly, the dic-

tionary learning problem is a two-fold optimization problem aiming at these two
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purposes. Several dictionary learning algorithms exist in the literature that can

give good solution to this problem.

The great advantage of a learned dictionary is its signal fitting capability. This is due to

the fact that the atoms of a learned dictionary are prototype signal structures conveyed

from natural signal examples. It has been shown that it is better to learn over-complete

(redundant) dictionaries. Redundancy further improves the representation quality of a

learned dictionary. Intuitively, a redundant dictionary contains more prototype signal

structures, and is thus better able to approximate more signals.

Sparse coding over a learned dictionary is no more an inner product process. Atom

selection is in fact a vector selection process. This process is shown to be non-

deterministic polynomial-time (NP)-hard, i.e., computationally expensive. However,

several vector selection algorithms exist in the literature and can give a good approxi-

mate solution to the sparse coding problem.

Despite the added benefit of redundancy, it significantly increases the computational

complexity of sparse coding. Furthermore, high levels of redundancy tend to cause

instabilities and degradation in the sparse coding solution. These concerns make an

upper bound of feasible levels of redundancy.

Based on the above discussion, the objective of sparse coding is thus to learn a dic-

tionary with an acceptable redundancy that can represent the signal space loyally and
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with a specific degree of sparsity. Given the fact that signal’s variability in a class is

less than the general signal variability, recent research has been directed towards di-

viding or classifying the signal space into a set of classes and learning a dictionary

for each class. This leads to a set of class dictionaries. To perform sparse coding of a

signal, the same classification criterion is applied in order to select the class this signal

belongs to, and to eventually perform its sparse coding over the class dictionary. Many

works came along this line of designing multiple dictionaries. The essential differ-

ence between them is the way they define classes, or more precisely, the classification

criterion applied to the problem.

The work conducted in this thesis comes as an attempt to remedy, or partially solve the

following open-ended problems in sparse representation over learned dictionaries

1. The need for an extensive training set for the training of a good representative

dictionary.

2. Dictionary learning is a large-scale and highly non-convex problem. It requires

high computational complexity, and its mathematical behavior is not yet well

understood [7].

3. Non-linear sparse inverse problem estimation may be unstable and imprecise due

to the coherence of the dictionary. [4]

4. Determining the optimal image patch size that governs the dictionary atom size.

[8]

5



5. The need for a systematic approach for the design of directionally-structured

dictionaries.

6. The need for an effective sparse coding paradigm to make the best use of multiple

designed dictionaries [9, 10, 11, 12, 13, 14].

1.3 Thesis Contributions

In this thesis we have investigated the problem of learning multiple structured dictio-

naries. The first topic is learning wavelet-domain dictionaries with the correspond-

ing wavelet-domain based sparse coding. In this work, we have shown that this idea

naturally merges the desirable features of wavelet transform such as compactness, di-

rectionality and analysis in many levels, with the representative power of learned dic-

tionaries. We have shown that this idea improves the quality of sparse representation

at reduced computation complexity. This idea is studied over the problem of single-

image super-resolution. The next contribution is to design projection operators for the

purpose of dividing the signal space into more localized directional subspaces. The

same operators are used to decompose an test signal into directional components. In

this setting, a signal’s sparse representation is the summation of the sparse codings of

its subsapce components, each coded over its respective subsapce dictionary. We have

shown that this dictionary learning and sparse representation paradigm enhances the

representation quality at moderate levels of computational complexity. The third con-

tribution is devising a strategy for adaptively selecting the patch size when performing

sparse coding. This strategy is shown to improve the quality of sparse representa-

tion with a moderate increase in computational complexity. The next contribution is

concerned with the learning of multiple structured dictionaries on a residual compo-
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nent level. In this work, we show that a signal and its residual components subject to a

sparse coding technique are not necessarily consistent with the same model. Therefore,

it is advantageous to perform the dictionary learning process on a residual component

base. In this setting, each residual component contributes exclusively to the training

of the dictionary most fitting its structure. In other words, this contribution forms a

mechanism whereby the intended structure of the dictionaries is enhanced using resid-

ual components. Another contribution is a strategy for constrained residual-based dic-

tionary re-training. In this setting, a first pass dictionary learning process is excused.

Then, the residual components of the training set used in the first pass with respect to

the obtained dictionary are calculated. These are then used to update that dictionary in

such a way that the representation fidelity of the original training set is imposed. The

work presented in this thesis formulates this learning paradigm as a constrained error

minimization problem, which can be easily solved with Lagrange multipliers.

1.4 Thesis Outline

This thesis is organized as follows: Chapter presents a basic introduction to dictionary

learning and sparse coding, approaching the main contributions presented in this work.

A concise literature review of dictionary learning, sparse coding, the existing methods

of designing multiple dictionaries and their sparse coding along with the relevant clas-

sical image processing applications is outlined in Chapter 1.4. Chapter 2.6.2 introduces

an approach for designing wavelet-domain dictionaries, along with experimental re-

sults testing its performance. Next, an approach for directionally structural dictionary

learning and sparse coding based on subspace projections is detailed in Chapter 3.3.2,

along with experimental validations. Chapter 5 presents an approach for sparse repre-
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sentation with a variable patch size, with the accompanying experiments. A strategy

for residual component-based multiple structured dictionary learning is then outlined

Chapter 5.3.2, with experiential tests. Chapter 6.3.2 presents a strategy for re-training

a dictionary over residual components of a training set, along with numerical exper-

iments. In Chapter 7.3.2, the conclusions of this work are made, and possible future

works and extensions are stated.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Sparse representation requires the availability of a dictionary and a vector selection

technique to handle the representation process. In this chapter, a concise revision of

sparse representation over learned dictionaries is presented. This is done by first pre-

senting the problem statement of sparse coding. Then, the dictionary learning problem

is formulated while revising some benchmark approaches to this problem. Afterwards,

the shortcomings of the single dictionary usage are highlighted. Then, several ap-

proaches to sparse representation over multiple dictionaries are reviewed. Finally, im-

age super-resolution and denoising are presented as two classical application areas of

sparse representation.

2.2 Sparse Coding

Many signal and image processing operations are inherently ill-posed inverse prob-

lems. Regardless of the application encountered, the problem in hand can customarily

be viewed as solving for the following (typically under-determined) system of equa-

tions.

Dw = x, (2.1)
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where one needs to effectively find a solution vector w ∈ Rn, given the matrix

D ∈ Rn×K and the observation vector x ∈ Rn. Amongst the infinitely many pos-

sible vectors in the solution space, there exists a certain solution set which is the sparse

solution set. The importance of the sparse solution has been well-established for many

reasons depending on the application. In case of sampling where D is a sensing ma-

trix, for example, the sparsest solution is the one that better describes the intrinsic

information content in a signal. For the case of (image) compression, where D is dic-

tionary representing the code book, the sparsest solution means a higher compression

efficiency. For the case of image denoising, where D is a dictionary learned over image

patches, such a sparse solution is more likely to be more noise-free as compared to the

others.

Having a set of basis signals collected column-wise as a matrix D, representing a sig-

nal x as a linear combination of a few columns in D is referred to as sparse coding

(representation). It is customary to learn D over a certain training set in such a way

that K > n, i.e., D is said to be a redundant (an over-complete) basis. The sparse

representation problem thus can be posed as

argmin
w
∥w∥0 subject to Dw = x, (2.2)

where ∥x∥0 denotes the the number of non-zero elements in a vector.
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If one allows a certain level of representation error tolerance ϵ, the sparse representa-

tion problem is said to be a sparse approximation problem. This can be expressed as

solving for w in the following approximation.

x ≈ Dw, (2.3)

This problem can be formulated as the following optimization problem.

argmin
w
∥w∥0 subject to ∥x− Dw∥2 ≤ ϵ, (2.4)

where ∥x∥2 denotes the Euclidean vector norm. Clearly, the above formulation requires

two objectives to be met. These are the representation sparsity and the representation

fidelity. In the above formulation, the sparse approximation or sparse coding problem

is posed as an error-constrained sparsity minimization problem. There is still another

dual formulation that meets the aforementioned two requirements, but in the reverse

direction. In this formulation, sparse coding is viewed as a sparsity-constrained error

minimization problem, which can be posed as follows.

argmin
w
∥x− Dw∥2 subject to ∥w∥0 < S, (2.5)

where S denotes sparsity.
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2.3 Sparse Approximation Approaches

The formulation in (2.5) is more commonly used for the purposes of representation.

It is well-known that the calculation of the l0 norm in (2.2) makes this formulation

an NP-hard problem and therefore excessively computationally demanding. There-

fore, research conducted so far in the field of sparse representation aims at merely

approximating the sparse solutions with tractable complexity. There are basically two

approaches to arrive at a suboptimal solution. These can be categorized into two main

categories. The first category is greedy algorithms that approximate the l0 norm so-

lution. This is basically known as the matching pursuits (MP) methods. The second

category is the convex-relaxation algorithms known as basis pursuit (BP) methods.

These are based on replacing the l0 minimization with l1 minimization, giving effective

solutions while significantly reducing the computational complexity of the problem.

2.3.1 Greedy Algorithms

This family of sparse coding algorithms try to effectively minimize the l0 norm in an

iterative manner. In each iteration, a certain signal portion is represented by picking

a specific atom in D. The process continues until a stopping criterion is met. The

essence of these methods comes from the MP algorithm proposed by Mallat and Zhang

[15]. Many other variants and extensions have also been proposed. One of the most

successful extensions is the orthogonal matching pursuit (OMP) [16]. Herein, the MP

and OMP methods are viewed.

2.3.1.1 Matching Pursuit. MP is the first attempt at solving the sparse coding prob-

lem in a greedy manner. It is a simple and effective approach to sparse coding. This

method defines a residual vector r containing portions of x which have not yet been
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represented. This residual is initialized by the signal itself, and is iteratively repre-

sented in terms of atoms selected from D, denoted by the set dk, at the k-th iteration.

As MP iterates, r is minimized and updated after each iteration. The rationale of MP

can be outlined as the following steps.

I. Initialize the coefficient vector as the zero vector w = 0 and set the residual as

r = x.

II. Compute the inner products between the residual and the atoms in the dictionary

ck =< rr,dk >.

III. Select the atom of the largest absolute inner product k∗ = argmax
1≤k≤K

|ck|.

IV. Update the residual by subtracting the contribution of the optimal atom r ←

r− ck∗dk∗ .

V. Repeat steps II to IV until a stopping criterion is met.

The main steps of MP are outlined in Algorithm 1.

Algorithm 1 Matching Pursuit (MP)
INPUT: x,D, S or ϵ.
OUTPUT: w.
Initialization: r← x, i← 1.
while i ≤ S or ∥r∥2 ≤ ϵ do

c = DT r
}

Atom
Selection

k∗ = argmax
1≤k≤K

|ck|

r← r− ck∗dk∗ } Residual Update
i← i+ 1

end while
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2.3.1.2 Orthogonal Matching Pursuit. OMP [16] has been proposed as a better ex-

tension to the MP algorithm. In OMP, the same atom selection criterion is adopted.

However, it differs in the way the residual is calculated. This is done by projecting the

current residual on the complement of the subspace spanned by the atoms selected up

to that point.

OMP initializes the residual r with x, and the set of selected atoms Λ as the empty set

ϕ. The first step is to calculate the inner product between the current residual and the

complement of the selected atoms denoted by Λc. Initially, Λc is the whole dictionary

D. In each iteration, the atom in D that has the maximal inner product is selected to be

in the set Λ. After this selection, r is updated by calculating the vector of coefficients x∗
Λ

derived from projecting the signal onto the subspace spanned by the selected atom(s).

This is achieved by computing the Moore-Penrose pseudo-inverse of the sub-dictionary

as DΛ
† = [DT

ΛDΛ]
−1DΛ

T that contains the selected (active) atoms, where † and T

denote Moore-Penrose pseudo-inverse and the transpose operator, respectively . A

summary of the main OMP steps is presented in Algorithm 2.

Algorithm 2 Orthogonal Matching Pursuit (OMP)
INPUT: x,D, S or ϵ.
OUTPUT: w.
Initialization: r← x, i← 1 and Λ← ϕ
while i ≤ S or ∥r∥2 ≤ ϵ do

c = DΛcr
k∗ = argmax

1≤k≤K
|ck|


Atom
Selection

Λ← Λ ∪ k∗

wΛ∗ ← DΛ
†x

r← x− DΛwΛ∗ } ResidualUpdate
i← i+ 1

end while
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The principal advantage of OMP over MP is the fact that the inner product is calculated

between the residual and the atoms that are not yet in the selected set Λ. This is because

the current residual is naturally orthogonal to the subspace spanned by the atoms in Λ.

So, the inner product of the residual and any atom in Λ is zero (< rk,Dk >= 0,∀k),

and there is no need to perform such a calculation. Technically, this difference means

that an atom can not be selected more than once. In view of these ideas, it has been

shown that OMP converges to a zero residual (error) within n iterations, where n is

the dimension of the signal space. The orthogonality character of the residual in OMP

requires solving the following least-squares problem w∗
Λ = argmin

wΛ

∥x − DwΛ∥2 at

each residual update. This means a pseudo-inverse calculation with each iteration.

This forms a corresponding computational complexity overhead of OMP as compared

to MP, despite the improved approximation quality of OMP over MP.

Several other greedy approaches to sparse coding are proposed in the literature as ex-

tensions which are based on MP and OMP. Examples include regularized orthogonal

matching pursuit (ROMP) [17], the compressive sampling matching pursuit (CoSaMP)

[18] and the subspace pursuit (SP) [19]. These methods essentially aim at offering

convergence grantees that come in the context of the restricted isometry concept in

compressive sampling. Interested reader is referred to [20] for an elaborate review of

sparse coding methods.
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Figure 2.1. Coefficient space and solutions of an under-determined system of
equations with K=2 and n=1.

2.3.2 Convex Relaxation Algorithms

The optimization in (2.2) is not convex in the l0 norm. However, the l0 norm mini-

mization can be relaxed by replacing this norm with the l1 norm. In fact, the l1 norm

is shown to be the closest convex surrogate function to the original objective of the l0

minimization. This convex relaxation can be cast as follows.

argmin
w
∥w∥1 subject to x = Dw. (2.6)

The principal idea of convex relaxation came from observing the geometry of the solu-

tion space to an under-determined system of equations which is composed of infinitely

many vectors. A toy example is shown in Fig 2.1 with n=1 and K=2. Let us consider
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this example based on which the idea can be generalized. Linking this example to the

optimizations in (2.2) and (2.6), a solution vector w ∈ R2 is required to the problem of

having a single equation with two unknowns such that only one variable is non-zero.

In view of Fig. 2.1, the sparsest solution can be given as the one whose x1 or x2 com-

ponent is zero. This solution has the minimal possible l0 norm. Let us consider the

cases of having solutions with minimized l1 and l2 norms, and examine whether such

solutions are potentially consistent with the l0 solution. In Fig. 2.1, the circle shape

represents contour lines with a fixed l2 norm, whereas the diamond shape corresponds

to contour lines with a fixed l1 norm. Besides, the diagonal line represents the l0 solu-

tion to the problem Dw = x. Clearly, an l0 minimized solution is the one that intersects

with the axes x1 or x2. It is geometrically evident that an l1 norm minimized solution

can still be l0 minimized, as the diamond shape intersects with the solution line and

the axes x1 and x2. However, the l2 solution can not intersect with the solution line

and any of the axes at the same point. Therefore, the l2 minimization violates sparsity

in the l0 sense. In other words, minimizing the l1 norm is potentially consistent with

minimizing the l0 norm, which is not the case for l2 minimization.

2.3.2.1 Basis Pursuit. In line with the above discussion, Chen et al. proposed the

BP algorithm [21] as the convex relaxation formulated in (2.6). In this approach, the

deployment of l1 eases the problem of sparse coding in such a way that it can be solved

using linear programming optimization. This is achieved by defining an augmented

dictionary D̄ = [D,−D] which includes negative copies of the atoms in its columns.
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Then, sparse coding boils down to the following optimization problem.

w̄∗ = argmin
w̄∈RK

1T w̄ subject to x = D̄w̄, w ≽ 0, (2.7)

where w̄ ∈ R2K is an augmented coefficient vector whose elements are constrained to

be greater than zero (here we used the notation ≽ to indicate element-wise inequality)

and 1 indicates a vector of ones and is introduced to express the l1 norm as an inner

product < 1, x̄ >= ∥x̄∥1. This way, re-formulating the problem makes it possible

to use a standard convex optimization method [22] resulting in an optimal solution

to the new problem x̄∗. This solution can be directly translated to the solution of the

original problem in (2.6) (x∗). This is done easily by splitting x̄∗ in two consecutive

vectors of length K as x̄∗ = [v∗,u∗] and subtracting the second vector from the first

one x∗ = v∗ − u∗.

The problem formulated in (2.6) can be extended to include the case where an exact

solution does not exist, and an approximate solution is required. This is known as the

basis pursuit denoising problem (BPD), i.e., there is no more any zero representation

error constraint. The unconstrained problem can be posed as

w∗
λ = argmin

w∈RK

1

2
∥x− Dw∥2 + λ∥x∥1, w ≽ 0, (2.8)

in this setting, the parameter λ is introduced to balance the trade-off between the spar-
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sity of the solution in the l1 sense, and the representation fidelity. It is worth mention-

ing that λ is set to be proportional to variance of the noise in case of additive Gaussian

noise. This means that (2.8) is consistent with (2.6) for the noiseless case.

Similar to the case of (2.6), the optimization in (2.8) is a quadratic program that can

be solved with any standard convex optimization algorithm [22] and has a convenient

Bayesian interpretation as the maximum a posteriori (MAP) estimate of the signal

under the assumptions that the noise follows a Gaussian distribution and that the coef-

ficients follow a Laplacian distribution.

2.3.2.2 Least Absolute Shrinkage and Selection Operator. In [23] Tibshirani proposed

the least absolute shrinkage and selection operator (LASSO) algorithm attempting at

solving the l1 relaxation of the sparse coding problem. This algorithm was extended

by Osborne et al. in [24]. In the context of LASSO, the sparse coding problem formu-

lation becomes as follows.

w∗
p = argmin

w∈RK

∥x− Dw∥22 subject to ∥w∥1 ≤ p, (2.9)

where the parameter p controls the sparsity of the solution.

The homotopy algorithm [24] introduced to solve (2.9) is an iterative method that starts

form the solution w∗
0 = 0 and traces a solution path which follows increasing values

of the parameter p until the desired constraint is reached. Enlarging the feasible set by
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increasing the value of p causes new atoms to enter the active set Λ and may result in

other atoms to exit it. The least angle regression (LARS) algorithm proposed by Efron

et al. [25] is a simplification of the homotopy idea where atoms are only allowed to

enter the active set every time the solution gets updated.

2.4 Dictionary Learning

The sparse signal model is based on the availability of a dictionary D whose columns

can give an approximation to a given signal x. A dictionary can be obtained in two

ways. The first way defines a dictionary as an analytic function. Examples of this

sort include the standard algebraic basis functions such the Fourier basis functions,

wavelets, contourlets, bandlets, etc. Sparse coding over such dictionaries is quite easy.

This requires performing a simple inner product operation between x and D. Then,

sparsity can be imposed by thresholding the representation coefficients. However, such

a sparse enforcement paradigm is shown not to fit a large set of signals [6]. In other

words, pre-defined dictionaries are not adaptive to the signals to be sparsely repre-

sented. The second alternative is to learn dictionary over a set of training signals. The

work by Mallat and Zhang [15] is the first to suggest performing a signal expansion

based on a small subset of basis functions selected from a general dictionary of basis

functions. Then, Chen et al. proposed the idea of basis pursuit (BP) [21] for succes-

sive sparse coding over a given dictionary. It is pointed out that these two pioneering

works have together set the motivation for the recent shift of signal representation from

transforms to dictionaries [26]. Learned dictionaries are shown to be more adaptive to

local signal structures. Therefore, they have a better signal-fitting capability [7]. Nev-

ertheless, sparse coding over a learned dictionary is no more carried out as an inner
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product process. Rather, a vector selection algorithm is necessary for this purpose,

which is more computationally expensive than inner product and thresholding. It is

worth mentioning that a dictionary and a frame are often regarded as the same thing,

but the (tiny) difference is that a frame spans the signal space while a dictionary does

not have to do so.

Dictionary learning (DL) is the process of learning or training a dictionary D over a

certain training set X. This set is often composed of example signals. The common

practice in the context of image processing is to obtain a training set as a column-

stacking of patches extracted from natural images and reshaped into the vector form.

D is first initialized with randomly selected training vectors. Then, it undergoes a DL

process that aims at two purposes; first giving a loyal representation to the vectors in

X, and second is keeping the representation sparse. Given X ∈ Rn×m as a training

set composed of m training vectors x ∈ Rn, the DL process can be formally posed as

finding a solution pair D ∈ Rn×K , W ∈ RK×m for the following inverse problem.

X ≈ DW, (2.10)

where the matrix W has as its columns the sparse coding coefficient vectors of the

training data, thus, it is sparse column-wise. In other words, each column in W is the

sparse coding of the corresponding column in X, which needs to be sparse.
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There is an ambiguity concerning the above DL model in the sense that if (D,W) is

a solution pair, there exists another equivalent solution (D′ = DA,W′ = BW) where

the matrices A and B are related as AB = I, where I denotes the identity matrix. It

has been shown that imposing a unit-l2norm constraint on the columns of D overcomes

this ambiguity, as D = D : ∥dk∥2 = 1, 1 ≤ k ≤ K. Therefore, it is customary to learn

dictionaries whose atoms have a unit 2-norm.

In view of the fact that the DL process is a two-fold optimization problem, it can

have two possible formulations in analogy with the case of sparse coding. The first

formulation considers the DL problem as an error-constrained sparsity minimization

problem as follows.

argmin
D,W

∥wi∥0 subject to ∥Xi − DWi∥2F < ϵ ∀ 1 ≤ i ≤ m, (2.11)

where ϵ again denotes the representation error tolerance, ∥x∥F is the Frobenius matrix

norm and W = [w1w2...wm] is the matrix of sparse coding vectors such that X ≈ DW.

The other DL problem formulation views it as a sparsity-constrained representation

error minimization problem, as follows.

argmin
D,W

∥Xi − DWi∥2F subject to ∥Wi∥0 < S ∀ 1 ≤ i ≤ m. (2.12)

22



Analogous to the sparse coding problem, the DL process can be formulated as an un-

constrained error minimization problem, as follows.

argmin
D,W

∥Xi − DWi∥2F + λ∥Wi∥0 ∀ 1 ≤ i ≤ m, (2.13)

where the parameter λ balances the trade-off between sparsity and representation fi-

delity.

In view of the NP-hard nature of sparse coding, the formulations in (2.11), (2.12) and

(2.13) are all non-convex. This is because optimizing in D and W can not be convex

at the same time, even if the l0 norm minimization is relaxed to l1 minimization as

done with sparse coding. A common remedy to handle this obstacle is to tackle the

optimizations in a block-coordinate descent fashion. This means performing the DL

process as a successive alternation between a sparse coding stage and a dictionary up-

date stage. This is advantageous in the sense that the DL optimization can be made

convex in one of the two variables D and W while keeping the other one fixed. In sum-

mary, the DL process starts with an initial dictionary D0, and performs the following

two steps successively at each iteration t, as follows:

I. Sparse coding: given a fixed dictionary Dt, the matrix of spare representation co-

efficients Wt can be computed as a standard sparse approximation problem using

any solver that is suitable to the particular formulation. For example, if dictionary

learning is defined as a sparsity-constrained optimization, then any method that
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seeks a best S-term approximant to the training signals can be employed, such as

OMP or LARS.

II. Dictionary update: given a fixed matrix of sparse approximation coefficients

Wt, the dictionary Dt is updated to Dt+1 in order to improve the objective of the

dictionary learning optimization, subject to optional constraints.

It is noted that the solution space to (2.11) does not necessarily contain dictionaries

with unit-l2 norm. Therefore, a normalization step is often carried out at the end of

each DL iteration, as follows.

Dt+1 ← Dt+1E−1, (2.14a)

Wt ← EWt, (2.14b)

Where E is a diagonal matrix whose elements ek,k = ∥dt
k∥2 contain the norm of the

dictionary. This way, every atom in the updated dictionary is normalized and the co-

efficients in the matrix Wt are updated such that the product Dt+1E−1EWt = Dt+1Wt

remains unchanged.

Noting that the DL process is a succession of a sparse coding stage and a dictionary

update stage, many DL algorithms exist in the literature. It can be noted that the

core difference between them lies in the way a dictionary is updated, while sparse

coding is not much influential in the DL process. The reader is referred to the paper
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by Rubinstein et al. [26] for more details about other DL algorithms. In the next

subsections, some well-known DL algorithms are briefly reviewed.

2.4.1 The MOD Algorithm

One of the well-known DL algorithms is the method of optimal directions (MOD), pro-

posed by Engan et al. [27]. This algorithm is based on the DL formulation specified

in (2.11). In this algorithm, the authors proposed using any sparse coding method (e.g.

OMP) for the first stage. Then, they performed the dictionary update by calculating

the pseudo-inverse of the DL equation using the calculated sparse representation coeffi-

cient matrix. This gives a locally optimal solution to the problem argmin
D,W

∥X− DW∥2F .

This algorithm is summarized in Algorithm 3.

Algorithm 3 MOD Dictionary Learning
INPUT: a training set X, and initial dictionary D0, S, number of iterations Num.
OUTPUT: D,W.
Initialization: D← D0 and i← 1
while i ≤ Num do

for j = 1 to m do
set Wj ← argmin

Wj

∥Wj∥0 subject to DWj = Xj

}
Sparse Coding

end for
D← XW† } Dictionary Update
D← DE } Dictionary Normalization
i← i+ 1

end while

2.4.2 The K-SVD Algorithm

Aharon et al. proposed the K-SVD algorithm in [28]. It adopts the same DL for-

mulation the MOD uses. However, K-SVD differs in the way the dictionary update

stage is performed. The objective function of (2.11) is C(D,W) = ∥X− DW∥2F .

The approximant term can be re-written as a sum of rank-1 matrices, as C(D,W) =

∥X−
∑K

k=1 DkWk∥
2

F = ∥X−
∑

k′ ̸=k D′
kW′

k − DkWk∥2F .
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Let us define a partial residual matrix, Ek, as Ek = X −
∑

k′ ̸=k D′
kW′

k, then the atom

Dk and the corresponding row of sparse approximation coefficients Wk can be jointly

optimized to locally minimize the cost function C by calculating the best rank-1 ap-

proximation to Ek. Therefore, K-SVD updates D one atom at a time. This can be

summarized as follows.

I. For each dictionary atom Dk, determine the set Λk of nonzero elements of the

k-th row of W. (that is, the set of training data which use the k-th atom in their

approximation).

II. A partial residual matrix is calculated and its columns are restricted to the active

set of signals that use the k-th atom for their sparse approximation.

III. The atom Dk and the coefficients Wk
Λk

are updated using the solution of the best

rank-1 approximation of the matrix Ek, which can be calculated using its SVD.

Since the support of the sparse approximation coefficients should not be modified dur-

ing the dictionary update step, Ek and its rank-1 approximation are restricted to the

columns corresponding to the signals that use the k-th atom in their sparse approxi-

mation, that is, the indices corresponding to non-zero elements of the vector Wk. A

summary of the K-SVD algorithm is presented in Algorithm 4.

2.4.3 Online Dictionary Learning

Instead of learning a dictionary over a set of training vectors, it is possible to continu-

ously tune it with every upcoming signal in an online manner. An approach to online

dictionary learning is proposed by Mairal et al. [5, 6] in their online dictionary learn-

26



Algorithm 4 K-SVD Dictionary Learning
INPUT: X,D0, S,Num.
OUTPUT: D,W.
Initialization: D← D0 and i← 1.
while i ≤ Num do

for m = 1 to m do
set Wm ← argmin

Wm

∥Wm∥0 subject to DWm = Xm

 Sparse
Coding

end for
for k = 1 to K do

set Λk ← i ⊆ 1, 2,m subject to Wk,i ̸= 0
set Ek ← [X−

∑
k′ ̸=k D′

kW′
k]Λk

[U,Σ,V]← SV D(Ek)


Dictionary Update

Dk ← u1

WΛk
← σ1,1vT1

end for
D← DE } Dictionary Normalization
i← i+ 1

end while

ing algorithm (ODL). In their approach, Mairal et al. use the DL formulation in (2.11)

while relaxing the l0 norm with the l1 norm. However, they attempt to solve the opti-

mization for each incoming training signal in an online manner. This can be viewed as

solving the following optimization problem.

(D∗,W∗) = argmin
D,W∈Rn×K

∥XT0 − DWT0∥F + λ∥WT0∥1 forall 1 ≤ i ≤ m, (2.15)

where the super-script T0 indicates that X and W contain online data acquired at dis-

crete times t = 1, ..., T0. Sparse coding is performed using any vector selection tech-

nique that uses l1 minimization such as the LARS algorithm, and the dictionary update

stage is carried out atom-wise. It has been shown that handling the training atoms in

batches of certain training vectors contributes to a better representation quality of the

learned dictionary.
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In [29], Skretting and Engan proposed an online extension to the MOD algorithm.

In this setting, all the dictionary atoms are updated with each training signal. Their

approach uses recursive least-squares to solve for the dictionary update equation. This

is done by using a forgetting factor allowing for increasing the convergence speed

without sacrificing the optimization optimality.

2.5 Sparse Representation over Multiple Learned Dictionaries

It is well-known that the success of the sparse models depends on how closely the

columns (atoms) of D can approximate a given signal [6]. A major challenge to the

DL process is the need for an extensive training signal set. This is because signals have

high dimensionality. They can thus possess many structural features such as directional

edges, textures, etc. Naturally, some image features are more common, while others

are less. DL algorithms such as the K-SVD [28] and the ODL [5, 6] favor the more

common features to be fit by the learned dictionary. Traditional DL and sparse cod-

ing algorithms do not adequately address the problem of learning dictionaries which

possess a certain geometric structure [30].

In view of the above observations, researchers tended to consider splitting the signal

space into several classes, and learning a compact dictionary for each class. Since the

variability of class signals is less than the general signal variability, a class-dependent

dictionary requires a lower degree of redundancy to keep the representation quality in

acceptable levels. Several works exist in the literature aiming at this purpose. These

differ in the criteria applied to define the signal classes. This definition is important

for separating the training data into different classes or clusters. Besides, it determines
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on which dictionary to select for the sparse coding of a given signal. This process is

referred to as model selection. The idea behind this approach is that a class dictionary

needs not to be highly redundant. This allows for designing compact class dictionaries.

This means a good representation quality at minimized redundancy and computational

complexity levels.

Examples of the above research trend include clustering the training and testing data

as proposed by Dong et al. [31], where they applied K-means clustering for separating

signals into several clusters, and learned cluster sub-dictionaries. The same clustering

criterion is used to classify a signal into a cluster and use its dictionary for the pur-

pose of sparse coding. Along this line, researchers aimed at designing directionally-

structured dictionaries that correspond to directionally-selective signal classes. In [30],

Yang et al. employed multiple geometric cluster dictionaries. Each cluster is con-

cerned with a certain directional structure. Sparse coding of a signal is carried out

over the cluster dictionary that best fits this signal based on its structure. Another ap-

proach by Feng et al. [32] employs subspace segmentation-based DL for embedding

structures in the learned dictionary. In [33], Yu et al. designed a structural dictionary

composed of several orthogonal bases that correspond to different structures. Again,

sparse coding of a signal is done by first selecting the best fitting basis (model) accord-

ing to the signal’s structure, and then calculating the sparse coding coefficient with

respect to this basis.
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2.6 Classical Applications of Sparse Representation in Image
Processing

A quick revision to the problems of single image super-resolution and denoising via

sparse representation over learned dictionaries is presented in the following two sub-

sections. These are benchmark image processing applications, and will be used as the

basic applications to test the ideas proposed on this thesis.

2.6.1 Single Image Super-Resolution via Sparse Representation

Super-resolution is the problem of reconstructing a high resolution (HR) image from

given low resolution (LR) image(s) of the same scene. The worst-case scenario is

the case of having one LR image, and this is called as single-image super-resolution

(SISR). Various approaches to the SISR problem have been proposed. The sparse

representation-based approach is one of the most outstanding approaches. An algo-

rithm for SISR using sparse representation is proposed by Yang et al. [34]. This algo-

rithm is based on using patches of a LR image to reconstruct the corresponding patches

of the unknown HR image. Sparsity of the representation is applied as a generic nat-

ural image property that is invariant with respect to scale. In this setting, they apply

two constraints on the reconstructed HR image. First is a reconstruction constraint

enforcing the blurred and downsampled version of the HR image estimate to be con-

sistent with the given LR image. Second, is a sparsity constraint which assumes that

the sparse coding coefficients of a LR patch with respect to a LR dictionary are similar

to those of the underlying HR one with respect to a HR dictionary. More precisely, this

means that the patch sparse representation coefficients are invariant to scale (resolution

level). In [34], the authors used a set of sampled patch pairs as a dictionary pair for

30



sparse coding. However, this paradigm is very slow in practice. Therefore, in [35],

Yang et al. employed a pair of coupled dictionaries learned from such patch pairs in a

coupled manner, i.e., in such a way that the invariance of the sparse approximation co-

efficients of LR and HR patches are kept very close to each other. They first calculated

the sparse coding coefficients of a LR patch with respect to the LR dictionary. Then,

they imposed these coefficients on the HR dictionary to find a HR patch estimate. For

the sake of local consistency of reconstructed HR patches, it is advantageous to divide

the LR image into overlapping patches [34, 35]. Correspondingly, the reconstructed

HR patches are also overlapped. They are then reshaped and merged at the overlap

locations to generate a HR image estimate.

The LR and HR dictionaries are simultaneously learned in a coupled manner. Patches

of HR training images are extracted and column-stacked to form an array of HR train-

ing patches. The mean value of each patch is subtracted to allow for a better training.

At the same time, LR images are obtained by applying a blurring and downsampling

operation of the HR ones. Then, LR images are upsampled to the so called middle res-

olution (MR) level to allow for better feature extraction. Afterwards, first and second

order gradient filters are operated over the MR images to extract the features. The next

step is to combine the extracted features of each MR patch into a single column, and

then to combine feature vectors column-wise to obtain the corresponding LR training

patch array. Eventually, LR and HR training patches are used to simultaneously train

for a pair of coupled LR and HR dictionaries, respectively. This coupling is vital for

the validity of the sparse coding coefficient invariance assumption.
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Given a HR vector patch xH , one may find the sparse coding coefficient vector wH

of this patch over a dictionary in the same resolution level DH . Vector selection tech-

niques such the LASSO [23] can be applied for this purpose. A sparse approximation

of xH can be written as

xH ≈ DHwH . (2.16)

Analogously, one may obtain a sparse approximation for the corresponding LR patch

xL. This requires a sparse coding coefficient vector wL over a LR dictionary DL. This

approximation can be written as

xL ≈ DLwL. (2.17)

A blurring and downsampling operator Ψ can be used to relate xL and xH . With the

assumption that Ψ also relates the atoms of DL and DH , one may write

xL ≈ ΨxH ≈ ΨDHwH ≈ DLwH . (2.18)

Based on the above analysis, the following result in concluded wH ≈ wL. Conse-
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quently, a reconstruction for xH can be obtained using DH and wL, as follows

xH ≈ DHwL. (2.19)

2.6.2 Image Denoising with the K-SVD Algorithm

An example denoising technique via sparse representation is proposed in [36] by Aharon

et al. based on the K-SVD DL algorithm. In this approach, the noisy image is first di-

vided into small overlapping patches. These are then reshaped into the vector form.

Let us denote by Y a column stack of patches extracted from the noisy image. Let us

further denote by X the corresponding patches of the noise-free image. It is customary

to model the relationship between X and Y as follows.

Y = X + η, (2.20)

where η is the added noise. Reconstructing an approximation to X from Y can be

formulated as follows.

(X̂, Ŷ) = argmin
X,Y

∥X− Y∥2F + λ∥DW− Y∥2F +
∑
i

∥Wi∥0, (2.21)

where λ balances the trade-off between the representation fidelity of sparse representa-

tion and the distance between X and Y. This can be viewed as solving a set of smaller
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optimization problems. Each problem can be viewed as

(X̂i, Ŷi) = argmin
Xi,Yi

∥Xi − Yi∥2F + λ∥DWi − RX∥2F +
∑
i

∥Ri∥0, (2.22)

where Ri is the matrix which selects the i-th patch (Xi) from X i.e. Xi = RiX. Min-

imizing the above cost function minimizes the error between each sub-image in the

true image Xi and the corresponding one Yi in the noisy one. This is based on the

assumption that each patch in the input image can be represented sparsely as a linear

combination of a few atoms in a dictionary D. Ideally, for denoising the first term

should be rewritten as ∥X− Y∥2F < Cσ2 where C is a constant and σ2 is the variance

of the noise. However, this term is implicitly incorporated into the cost function in the

selection of the parameter which will depend on the noise variance. The closed-form

solution to this cost function is given by

X̂ =
λY +

∑
i RT

i DWi

λI +
∑

i RT
i Ri

. (2.23)

The solution to this problem thus involves averaging of overlapping patches after each

patch has been sparsely reconstructed along with a weighted sum of the original noisy

patch. Each pixel in a patch is hence a weighted linear combination of different pixels,

the weights being derived from the sparse coding. Since the patches are overlapping,

the final value of each pixel is thus an average of all representations obtained from the

sparse coding stage.
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Chapter 3

WAVELET-DOMAIN DICTIONARY LEARNING AND SPARSE
REPRESENTATION

3.1 Introduction

Wavelets have been widely used as orthogonal basis functions. They possess several

desirable features such compactness, directionality and analysis in many scales. Spar-

sity is another desirable character of wavelets. One can impose sparsity on a wavelet

representation by hard or soft thresholding the representation coefficients. However,

such enforcement is shown not fit a wide class of signals. This means degrading the

representation quality. This chapter presents an attempt to combine the aforementioned

desirable wavelet features with the representative power of learned dictionaries. Par-

ticularly, the appeal of a learned dictionary in being locally adaptive to the signals of

the class it is trained on. The proposed paradigm is tested over the problem of single-

image super-resolution, as proposed in [37]. Experiments conducted on benchmark

images show an outstanding super-resolution performance. This is because the de-

signed subband dictionaries inherit the directional nature of their respective wavelet

subbands.

In the upcoming sections, the proposed wavelet-domain dictionary learning and sparse

coding super-resolution algorithm will be presented with experimental results investi-

gating its performance. The peak signal-to-noise ratio (PSNR) and structural similarity
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index (SSIM) are used as quantitative quality metrics along with visual comparison as

a qualitative measure.

3.2 The Proposed Wavelet-Domain Super-Resolution Approach

Recalling the review in Chapter 2, sparse coding over multiple compact dictionaries

has been shown as a better alternative to designing a single highly redundant dictionary,

in terms of both representation quality and computational complexity [38]. Motivated

by these observations, it seems advantageous to perform sparse coding in the wavelet

domain, over wavelet-domain learned dictionaries. This can be viewed in the following

points.

I. Wavelet decomposition filters are in charge of performing the signal classification

process. A signal is separated into wavelet subbands concerning the directional

nature.

II. A dictionary learned in a certain wavelet subband is expected to inherit the direc-

tional nature of this underlying subband.

III. With wavelet analysis filters, there is no need to apply feature extraction filters.

IV. The variability of subbands within a certain wavelet subband is less than the gen-

eral signal variability. This makes it possible to learn more compact dictionaries

in the wavelet domain.

V. Wavelet synthesis filters are used to build up a signal reconstruction from its

subbands. This means that that there will be no need for applying a sparse model

selection criterion.
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3.2.1 Coupled Dictionary Learning in the Wavelet Domain

Sparse representation-based super-resolution requires the availability of dictionaries

in the two resolution levels. The proposed algorithm thus requires the availability of

wavelet domain training subband signals in both resolution levels. Given a training

image set, one can perform a two-level wavelet decomposition as depicted in Fig. 3.1.

In this work, we assume that level-1 detail subbands are the training signals of the

HR wavelet dictionaries, whereas the level-2 details are the training signals of the LR

dictionaries of the same subbands. There is a variety of possible analysis filters to be

used for this purpose. In this work, we employ the nearly symmetric symlet wavelet

[39] of order 29. Borders are treated with periodic extension.

A common practice in wavelet domain-based super-resolution approaches such as the

works in [40, 41, 42] is to assume that the wavelet filters can model the blurring and

downsampling operator. This means that the given LR image is assumed to be the ap-

proximation subband of the target HR image. It is noted that more investigation can be

directed towards designing filterbanks that can more accurately model the blurring and

downsampling operator. Therefore, the super-resolution problem is to estimate the de-

tail subbands of the unknown HR image. The corresponding wavelet subbands of the

given LR image are thus used to reconstruct their counterparts of the HR one. In this

work, we adopt this assumption. This means that there will be no reconstruction and

thus no DL in the approximation wavelet subband. Accordingly, the proposed algo-

rithm requires three pairs of coupled dictionaries for the three detail wavelet subbands;

the horizontal, vertical and diagonal detail subbands.
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Figure 3.1. Two-level wavelet decomposition of the training image data set. Filters H and G

are the scaling and wavelet filters, respectively.

An easy way to impose the coupling between a LR and HR dictionary is to first learn

the LR one, and then calculate the HR one such that they are related with the blurring

and downsampling operator, as proposed by Zeyde et al. in [43]. In this setting,

LR training images are interpolated to the MR level. Then, features are extracted from

these MR images and used as the training data for the LR dictionary. The next step is to

use the corresponding patches in the HR training images, along with the sparse coding

coefficients of the LR features over the LR dictionary to calculate a corresponding HR

dictionary.

In this work, we adopt the above approach for learning the dictionary pairs in a coupled

manner. Training data for the LR wavelet subbands are obtained by feeding the training

images to a 2-level wavelet decomposition, as explained earlier. The details wL
h,wL

v

and wL
d are interpolated to the MR level. Each of wL

h,wL
v and wL

d is interpolated

separately by feeding it to a one-level inverse wavelet transform, while setting the other
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three subbands to zero. The wavelet-interpolated subbands at the MR level are labeled

as wM
h,wM

v, and wM
d. This interpolation helps in maintaining the same directional

nature of the respective wavelet subband. Also, it increases the size of the LR patches,

allowing for sparse representation vectors that are dimensionally compatible with the

HR dictionaries.

Since one deals with wavelet details, there is no need to apply feature extraction fil-

ters. This means that the wavelet subbands of each training LR image at the MR level

(wM
h,wM

v, and wM
d) are divided into overlapping patches. In this work, we use a

2-pixel overlap. Extracted patches are then stacked column-wise to form a LR training

array. Let WM
h,WM

v, and WM
d denote the training array of all the LR training im-

ages in the horizontal, vertical and diagonal detail subbands, respectively. Then, one

can view the learning process of the three LR subband dictionaries over these training

data as follows.

argmin
DL

y ,αM
y

∥WM
y − DL

yαM
y∥2

2subject to ∥αM
y∥0 < S, (3.1)

where the subscripts L and M denote the LR and MR levels, respectively. The super-

script y = {h, v, d} stands respectively for the horizontal, vertical and diagonal detail

wavelet subbands. DL
y denotes the three LR subband dictionaries learned with Wy

M ,

respectively. αM
y denotes the sparse representation coefficients of WM

y as coded over

Dy
L, respectively. A DL algorithm such as the K-SVD algorithm [28] can be used to

solve for the above optimization problem.
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Figure 3.2. The proposed wavelet-domain DL Algorithm.

As mentioned earlier, HR wavelet training subbands (wy
H) are obtained as the 1-level

wavelet subbands of the training images. The next step is to divide each subband into

patches, reshape them into the vector form and stack them column-wise to form a

training array of HR patches. Similar to the DL algorithm of Zeyde et al., HR training

subbands Wy
H and the sparse coding coefficients αy

M on the respective LR subbands

are together used to calculate a coupled HR dictionary. This calculation can be viewed
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as:

DH
y = WH

yαH
y† ≈WH

yαM
yT (αM

yαM
yT )

−1
, (3.2)

where the superscripts †, T and −1 denote the Moore-Penrose pseudo-inverse, alge-

braic transpose and inverse operators, respectively. The proposed wavelet-domain DL

algorithm is illustrated in Fig. 3.2. In this work, we employed a training set composed

(a)
 (b)
 (
c
)

Figure 3.3. Example HR subband dictionary portions. (a): horizontal detail subband

dictionary, (b): vertical detail subband dictionary and (c): diagonal detail subband dictionary.

of natural and computer-generated images. 6× 6 patches are extracted from the train-

ing subbands. Three couples of LR and HR wavelet subband dictionaries are learned

with the proposed DL algorithm. The K-SVD algorithm with twenty iterations and

sparsity S=3 is used to carry out the LR dictionary learning process. Figure 3.3 shows

example reshaped atoms of the horizontal, vertical and diagonal detail HR dictionar-

ies Dh
H , Dv

H and Dd
H , in subfigures (a), (b) and (c), respectively. It is notable that the

designed dictionaries inherit the directional nature of their respective subbands.
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Figure 3.4. The proposed wavelet subband-based image reconstruction algorithm

3.2.2 Reconstructing the HR Wavelet Subbands

The proposed super-resolution algorithm aims at estimating the detail subbands of the

unknown HR image from their counterparts in the LR image. Once these are estimated,

a wavelet synthesis stage uses them along with the input LR image as the approxima-

tion subband and reconstructs a HR image estimate. This means two usages of the

given LR image. The given LR image is first decomposed to give its wavelet subband

coefficients. The same wavelet filters used in the training process are to be used in the
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reconstruction stage, as well. This decomposition gives the wavelet subbands wL
y of

the LR image. The next step is to upsample each subband to the MR level as wM
y.

Then, it is divided into overlapping patches. These are then reshaped into the vector

form and stacked column-wise to form a LR feature array Wy
M .

The next step is to find the sparse coding coefficients of Wy
M over the corresponding

LR subband dictionary DL
y. This can be formulated as the following sparse coding

problem which can be solved using an algorithm such as OMP.

argmin
αM

y
∥WM

y − DL
yαM

y∥2 s.t. ∥αM
y∥0 < S. (3.3)

Applying the basic assumption of sparse representation-based super-resolution, the

sparse coding of a LR subband over a LR subband dictionary can be used along with a

HR subband dictionary to reconstruct the corresponding HR wavelet subband. There-

fore, an array of HR subband patches can be reconstructed as follows.

WH
y ≈ DH

yαH
y ≈ DH

yαM
y. (3.4)

Each column of WH
y is then reshaped as a two-dimensional (2-D) patch. Next, over-

lapping patches are merged to form a 2-D wavelet subband wH
y. Since patches of

WH
y are overlapping, each pixel value in wH

y is taken as the average of its values

belonging to the overlapping patches that include this pixel. To this end, the algorithm
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reconstructs wH
h, wH

v and wH
d as 2-D wavelet subbands. Given the LR image and

the reconstructed HR wavelet subbands, a HR image estimate can be obtained by per-

forming a one-level inverse wavelet transform. Figure 3.4 illustrates the reconstruction

process.

3.2.3 Sparse Coding and Dictionary Learning Computational Complexity

Reduction

As presented in Chapter 2, the DL process is based on alternating between a sparse

coding stage and a dictionary update stage. It is well-known that the sparse coding

stage requires a vector selection algorithm, and is thus more computationally demand-

ing than the dictionary update [44]. On the other hand, the computational complexity

of sparse coding depends on the dictionary dimensions. In this regard, designing mul-

tiple compact dictionaries means reducing the computational complexity, as compared

to the case of using a single highly redundant dictionary. In return, this means sig-

nificantly reducing the DL computational complexity, since sparse coding causes the

biggest computational complexity overhead in this process.

Let us analyze the computational complexity of OMP as an example vector selection

technique, and compare it for the cases of using a single highly redundant dictionary

and using multiple more compact dictionaries. It is shown in [45] that the computation

complexity of OMP to find the sparse coding of an n-dimensional signal over an K-

atom dictionary with a sparsity S is O(KSn). Therefore, it can be shown that if one

uses three subband dictionaries smaller than a single dictionary with a factor γ, the

computational complexity of sparse coding will be O(3KSn
γ

).
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It is thus evident that using multiple compact wavelet subband dictionaries instead of

a single highly redundant one reduces the sparse coding and DL computational com-

plexities. Basically, it is intuitively expected that a subband dictionary can be compact,

i.e., is not needed to be highly redundant. This is because a subband dictionary is, in

essence, a class dictionary, as it is responsible only for representing the signals of its

class which have a common similarity. Comparing, for example, the computational

complexity of learning a single large dictionary in the spatial domain of size 1000,

to learning three smaller dictionaries in the wavelet domain of size 216, one approxi-

mately reduces the computational complexity of the OMP vector selection stage by a

factor of 1.54.

3.3 Simulations and Results

In this section, we present a study of the impact of the patch size and dictionary re-

dundancy on the proposed algorithm’s performance. It is shown that a relatively large

patch size is can be employed while using a small training set. Next, the performance

of the proposed algorithm is compared to that of several other surer-resolution tech-

niques. This is done in terms of peak signal-to-noise ratio (PSNR) [46] and structural

similarity index (SSIM) [47] as quality metrics, along with visual comparisons.

Given the true image y and its estimate ŷ, both being 8-bit (gray level) with N1 × N2

pixels, the PSNR is defined as

PSNR(y, ŷ) = 10 log10
2552

MSE(y, ŷ)
, (3.5)
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Table 3.1. Kodak set PSNR (dB) and SSIM comparisons of bicubic interpolation, the
baseline algorithm of Zeyde et al., wavelet interpolation and the proposed algorithm.
Image Bic. Zeyde et al. Wav. Int. P6x6 Image Bic. Zeyde et al. Wav. Int. P6x6

1 26.69 27.78 27.30 30.10 13 24.71 25.50 25.08 27.85
0.9117 0.9673 0.9345 0.9726 0.9265 0.9735 0.9495 0.9726

2 34.03 34.98 34.42 36.59 14 29.89 31.19 30.21 33.26
0.8939 0.957 0.9503 0.9834 0.9487 0.9826 0.9653 0.9879

3 35.03 36.54 35.58 36.92 15 32.88 34.39 34.43 36.78
0.9103 0.9579 0.9681 0.9818 0.9073 0.955 0.9674 0.9902

4 34.57 35.94 35.09 39.59 16 32.05 32.82 32.31 35.40
0.9434 0.9787 0.9726 0.9929 0.9263 0.9692 0.9564 0.9843

5 27.13 28.77 27.62 30.31 17 32.86 34.24 33.26 37.19
0.9538 0.9864 0.9657 0.9869 0.9536 0.9813 0.9785 0.9928

6 28.27 29.21 28.70 30.16 18 28.78 29.80 29.40 31.23
0.904 0.9548 0.9493 0.9729 0.9358 0.9761 0.9623 0.9816

7 34.27 36.25 34.47 39.98 19 28.79 30.02 28.95 30.35
0.9425 0.9825 0.9782 0.9969 0.9322 0.9718 0.9569 0.9764

8 24.31 25.36 24.46 27.18 20 32.36 33.90 32.63 34.50
0.92 0.9675 0.9312 0.9706 0.8217 0.8843 0.9672 0.9869

9 33.13 34.89 33.17 35.07 21 29.26 30.29 29.59 31.43
0.8922 0.9505 0.9606 0.9836 0.8961 0.9545 0.9639 0.98

10 32.94 34.47 33.27 36.11 22 31.36 32.45 31.60 33.68
0.9173 0.9649 0.9618 0.9901 0.9295 0.9733 0.9615 0.9849

11 29.93 31.05 30.13 32.26 23 35.92 37.78 36.00 39.04
0.8925 0.9518 0.9472 0.9804 0.945 0.9738 0.9818 0.9857

12 33.56 35.13 34.40 37.09 24 27.62 28.57 28.20 30.59
0.908 0.9605 0.9581 0.9835 0.9365 0.9744 0.9598 0.9855

Average. 30.85 32.14 31.26 33.86
0.9187 0.9646 0.9603 0.9835

where MSE(y, ŷ) denotes the mean-squared error between y and ŷ, which is defined

as

MSE(y, ŷ) =
1

N1N2

N1∑
i=1

N2∑
j=1

(yij − ŷij)
2. (3.6)
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Figure 3.5. Average Kodak set PSNR vs. dictionary length-to-width ratio for different
patch sizes.

3.3.1 The Effect of Patch Size and Dictionary Redundancy on the

Representation Quality

In view of the existing trade-off between the dictionary redundancy and the represen-

tation quality [48]. It is interesting to investigate the performance of the proposed

algorithm with different levels of redundancy. In this context, one may loosely define

redundancy as the ratio between the number of dictionary atoms to the dimension of

each atom. In case of sparse coding of image patches, the atom size is equal to the

patch size. This means that one can define the redundancy as the ratio between the

number of dictionary atoms to the patch size employed. In this regard, the patch di-

mension is also an influential factor; a large patch size is generally desirable as it is

better able to describe image features and structures more distinctly. On the other hand,

this means the need for a larger training set to account for these possible structures. To

sum up, there is an upper limit on effective patch sizes, as a large patch size means
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requiring an extensive training set. It also means a larger atom dimension. For the
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Figure 3.6. Wavelet Interpolation. Symbols a, h, v, d and [0] denote the approximation,
horizontal detail, vertical detail and diagonal detail wavelet subbands, and zero matrix

respectively.

purpose of investigating the proposed algorithm’s performance with different redun-

dancies, the following experiment is conducted. The proposed algorithm is run with

different patch sizes and different redundancy levels over the images of the Kodak set

[49] as test images. DL is done with the K-SVD algorithm with 20 iterations and S=3.

Besides, it is made sure that the training set does not include any of the test images.

The average PSNR value for the whole set is plotted in Fig. 3.5 for each case. It can

be seen in view of Fig. 3.5 that a redundant dictionary performs better than a complete

one, for all patch sizes. Besides, it can be seen that a redundancy of 6 gives a good

performance for all patch sizes, beyond this value, there is no significant performance

improvement. Furthermore, a patch size of 6×6 forms a good compromise between

computational complexity and representation quality inferred in terms super-resolution
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PSNR performance.

3.3.2 Wavelet-Domain Dictionary Learning and Sparse Coding for Single-Image

Super-resolution

In this section we investigate the performance of the proposed algorithm as compared

to the baseline algorithm of Zeyde et al. [43] and bicubic interpolation. It is also in-

teresting to compare the performance of the proposed algorithm with that of wavelet

interpolation. In this context, wavelet interpolation interpolates the wavelet subbands

of the given LR image while conserving their directional nature. This is achieved by

first decomposing the image into wavelet subbands. Then the three detail wavelet sub-

bands of this image are individually interpolated. Each detail subband in interpolated

by feeding it to a discrete wavelet transform (DWT) synthesis stage while setting the

other three subbands to zero. This means that the reconstruction wavelet filters will

be used to interpolate this subband while preserving its subband (directional) nature.

After interpolating the wavelet subbands individually, they are fed along with the LR

image assumed as the approximation subband, to an inverse wavelet transform (IDWT)

stage using the same reconstruction filters. The output of this stage is the wavelet in-

terpolation of the LR image. This interpolation scheme is depicted in Fig. 3.6.

In view of the conclusion made about Fig. 3.5, the proposed algorithm is set to use a

patch size of 6×6 with a redundancy level of 6. This means that the designed subband

dictionaries are of the dimension 36×216. A sparsity S=3 is used throughout the simu-

lations. The baseline algorithm uses a patch size of 4×4, with 1000-atom dictionaries.

It is noted that the baseline algorithm uses 986,981 patches, while the proposed algo-
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(a) (b)

(c) (d)

Figure 3.7. Visual comparison of the Barbara image. (a) original image, (b) the proposed
algorithm’s result, (c) the baseline algorithm’s result, (d) bicubic interpolation’s result.

rithm uses only 98,538 patches to give satisfactory results. This comes in accordance

with proposition that DWT sparsifies a given training set allowing for using smaller

data sets. Besides, a wavelet subband is a signal class of less variability as compared

to the general signal case. Therefore, fewer training vectors are required to train for a

wavelet subband. The 24 images of the Kodak set are used as test images. PSNR and

SSIM measures as used in this test. Table 3.1 shows the PSNR and SSIM values of the

aforementioned approaches. These are denoted by “Bic.”, “Zeyde et al.”, “Wav. Int.”

and “P6×6”, respectively.

In view of Table 3.1, the proposed algorithm has an average PSNR improvement of

1.71 dB over Zeyde et al.’s algorithm. Besides, the average PSNR improvement over

wavelet interpolation is 2.6 dB, and there is a significant improvement over bicubic
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(a) (b)

(c) (d)

Figure 3.8. Visual comparison of the Lena image. (a) original image, (b) the proposed
algorithm’s result, (c) the baseline algorithm’s result, (d) bicubic interpolation’s result.

interpolation. These results point out that the proposed algorithm is better able in

reconstructing the high frequency (HF) image contents. The same observations can be

made in terms of the SSIM measure.

As another quantitative assessment, the performance of the proposed algorithm is com-

pared to those of bicubic interpolation and the algorithms of Zeyde et al., Timezel [42],

and the nonlocal autoregressive model (NARM) algorithm of Dong et al. [50] which

are more recent super-resolution approaches. This test is conducted over a set of well-
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Table 3.2. PSNR (dB) and SSIM comparisons of bicubic interpolation, Temizel’s
algorithm, NARM algorithm, the baseline algorithm and the proposed algorithm with

benchmark images.
Image Bic Temizel NARM Zeyde et al. P6x6

Barbara 25.27 - 23.86 25.73 25.73
0.9117 - 0.8242 0.9622 0.9680

Elaine 31.06 33.4 30.38 31.32 31.45
0.9088 - 0.6733 0.9462 0.9687

Baboon 22.98 24.24 23.74 24.50 24.61
0.9330 - 0.7004 0.9653 0.9796

Peppers 30.28 34.18 35.40 35.20 34.52
0.9505 - 0.9060 0.9753 0.9831

Fingerprint 31.95 - 33.13 33.97 34.98
0.9911 - 0.9613 0.9979 0.9974

Lena 34.70 34.68 35.01 36.18 36.80
0.9566 - 0.9238 0.9807 0.9902

Zone-plate 11.40 - 10.87 11.98 12.72
0.6923 - 0.5875 0.8678 0.7978

Boat 29.93 - 32.61 31.25 33.76
0.9276 - 0.9189 0.9626 0.9741

Avg. 27.20 - 28.13 28.77 29.32
0.9090 - 0.8119 0.9573 0.9574

known benchmark images. Again, a scale-factor of 2 is considered. The algorithm of

Temizel is included in this comparison because it is wavelet-based and does assume

that the LR image is the approximation subband of the HR image. The NARM algo-

rithm is chosen since it has a state-of-the-art performance and is compared with several

outstanding super-resolution techniques, as reported in [50]. PSNR and SSIM Results

of this test are reported in Table 3.2.

As noted in Table 3.2, the proposed algorithm is clearly superior to bicubic interpola-

tion and generally performs better than the baseline algorithm, with an average PSNR

improvement of 0.83 dB. Also, the proposed algorithm’s performance is comparable to

that of Temizel’s algorithm, and is generally better than that of the NARM algorithm.

In accordance with the PSNR performance, SSIM values of the proposed algorithm are

comparable to those of the baseline algorithm. Besides there is an average SSIM im-

52



(a) (b)

(c) (d)

Figure 3.9. Visual comparison of perspective image. (a) original image, (b) the proposed
algorithm’s result, (c) the baseline algorithm’s result, (d) bicubic interpolation’s result.

provement of 0.1455 and 0.0484 over the NARM algorithm and bicubic interpolation,

respectively.

As an empirical indication to the computational complexity of the proposed algorithm

as compared to that of the baseline algorithm, we measured the execution times of

both algorithms. As run on an Intel Core i7 2.00 GHz laptop PC under Matlab R2009a

environment, the proposed algorithm requires 1.01 S to train for a 36×216 dictionary,

with the aforementioned settings. However, training for a 36×1000 dictionary with the

same settings is 150.68 S. This result comes in accordance with the expected reduction

of computational complexity as a result of designing more compact dictionaries, as

explained in subsection 3.2.3.

For a qualitative assessment, Figures 3.7, 3.8, 3.9 and 3.10 compare the ground-truth

53



(a) (b)

(c) (d)

Figure 3.10. Visual comparison of image number 8 in the Kodak set. (a) original image, (b)
the proposed algorithm’s result, (c) the baseline algorithm’s result, (d) bicubic interpolation’s

result.

image to its reconstructions obtained with the proposed algorithm, the baseline al-

gorithm of Zeyde et al. and bicubic interpolation on the images Barbara, Lena, a

perspective image and Kodak set image number 8, respectively. It can be seen in

Fig. 3.7 the proposed algorithm’s reconstruction is the best to approximate the true

image. It is slightly better than that of Zeyde et al.’s and bicubic interpolation’s re-

constructions. Particularly, the insets provided show that Zeyde et al. and bicubic

interpolation’s reconstructions exhibit aliasing. However, the proposed algorithm’s re-

construction exhibits less aliasing. Similar conclusions can be made about Fig. 3.8. It

is again observed that the proposed algorithm’s reconstruction has the smallest amount

of artifacts. The same observations are made with the case of Fig. 3.9. It is seen in

view of Fig. 3.10 that the proposed algorithm is better able to reconstruct the edges.
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This can be particularly seen in observing the details on the window object. Overall,

the aforementioned visual comparisons point out that the proposed algorithm is better

in terms of reconstructing the image HF details such as edges and textures and thus

exhibits less artifacts.

For the purpose of examining the ability of the proposed algorithm in reconstructing

the detail wavelet subbands, Figures 3.11, 3.12 and 3.13 show the detail subbands of

the original image, along with the corresponding ones in the reconstructions obtained

with the proposed algorithm, the baseline algorithm and bicubic interpolation. This

test is conducted on the inset shown in Fig. 3.10 as it is rich of texture and other HF

contents. In view of these figures, it is noted that the proposed algorithm superior in

reconstructing the detail wavelet subbands on an image.
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(a) (b)

(c) (d)

Figure 3.11. Horizontal detail subband reconstruction. (a) original and reconstructions with
(b) the proposed algorithm, (c) the baseline algorithm and(d) bicubic interpolation.

(a) (b)

(c) (d)

Figure 3.12. Vertical detail subband reconstruction. (a) original and reconstructions with (b)
the proposed algorithm, (c) the baseline algorithm and(d) bicubic interpolation.
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(a) (b)

(c) (d)

Figure 3.13. Diagonal detail subband reconstruction. (a) original and reconstructions with
(b) the proposed algorithm, (c) the baseline algorithm and(d) bicubic interpolation.
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Chapter 4

DIRECTIONALLY-STRUCTURED DICTIONARY LEARNING
AND SPARSE CODING BASED ON SUBSPACE PROJECTIONS

4.1 Introduction

Recalling the discussion made in Chapter 2, it is noted that sparse coding over multi-

ple dictionaries came as an attempt towards improving the representation quality while

reducing the computational cost of sparse representation. In this approach, each dic-

tionary is concerned with a certain signal class. DL is done over the class signals,

and sparse coding of a signal in a specific class is then carried out over the class dic-

tionary. However, there are still open ended questions concerning the definition of a

class, and the accuracy of the model selection process in adopting a certain class to

a given test signal. Accordingly, the work presented in this chapter forms an attempt

to address these questions. In this chapter, we propose a strategy for designing multi-

ple structured dictionaries in such a way that the signal as a whole is represented as a

summation of structural components. This work is published in [51].

In our approach, we divide the signal space into directionally-selective structured (di-

rectional) subspaces. This signal division process is carried out using the projection

operation. Projection operators are specially designed to fit for this task. In this set-

ting, a signal class is in fact a signal subsapce obtained as the projection of the signal

space using a certain projection operator that is concerned with a certain directionality.
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For each signal subsapce, a compact dictionary is learned over the subsapce training

set which is obtained by projecting the training set onto that subsapce. On the sparse

coding side, a signal is decomposed into its structural components using the suitable

projection operators. Then, the signal’s sparse approximation is obtained as the direct

sum of the sparse codings of each of these components, each coded over its repressive

subsapce dictionary. Since projection operators are designed to exactly decompose

and reconstruct a signal, the signal as a whole is represented. This is essentially the

advantage of this proposed strategy over standard sparse coding over multiple dictio-

naries with a single model selection, e.g., [31, 32, 33]. In these approaches, a model

(dictionary) is selected once for each signal based on its major information content.

However, this approach over-looks the possibility that this signal may possess struc-

tural components that are not suitably fit with the selected model.

The proposed strategy is shown to improve the sparse representation quality as com-

pared to standard sparse coding over multiple dictionaries. This result is validated

in terms of the PSNR measure over the tests of image representation. Moreover, the

designed subspace dictionaries are shown to inherit the intended directional nature of

their respective directional subspaces.

4.2 The Proposed Dictionary Learning and Sparse Approximation
Strategy

Signal and Image features are inherently directional. Redundant dictionary-based

sparse representation approaches most often fail to take the advantage of the direc-

tional image contents. In the standard DL approach, the training data is treated as
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a whole without emphasizing the structural image content. Better representation of

this directional content promises to improve the overall image representation quality.

The scope of this work is to generate a multiplicity of directional structured subspace

dictionaries. Such dictionaries are expected to better represent various image patch

structures, especially the least common ones. The same idea can be extended towards

designing dictionaries based on other image features, such textures.

4.2.1 Subspace dictionary learning

Let us denote by U the signal space in Rn. Let us further denote by u1 and u2 the

subspace of horizontally and vertical aligned signals in Rn. It is noted that these two

subspaces are selected to have orthogonal directionalities.This orthogonality comes in

harmony with the nature of OMP as a vector selection algorithm. In fact, OMP ini-

tializes a so-called residual vector with the signal, and successively approximates this

vector by selecting more dictionary atoms. This residual is updated after each atom

selection. In this update process, the residue is orthogonal to the atoms selected, as

detailed in Chapter 2. If u3 denotes the remainder of signal space of signals being

neither horizontal nor vertical, then U can be written as the direct summation of the

three subspaces as U = u1⊕u2⊕u3. Intuitively, the projection of a signal onto a certain

subspace is the signal’s component that belongs to this subspace. A projection oper-

ator can thus be designed to characterize the directional nature of its corresponding

subspace. The three subspace can be written as projections of U onto their respective

column spaces, as u1 = ϕ1U, u2 = ϕ2U and u3 = ϕ3U, where ϕi is a projection

operator defining the i-th subspace. Complete division of U into these three subspaces

requires that ϕ1 + ϕ2 + ϕ3 = I, where I denotes the identity matrix.
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To this end, one can think about designing such projection operators to serve for the

division purpose. If s1 denotes a set of horizontally-aligned signals (vectorzied image

patches), one can obtain a projection operator that corresponds to the directionality

of these patches as p1 = s1s1† where the superscript † denotes the Moore-Penrose

pseudo-inverse. In this setting, pre-multiplying U with p1 yields the projection of U

onto the column space of the vectors in s1. In other words, if s1 contains enough vec-

tors, one may assume that this set represents almost all horizontally-aligned patches.

Correspondingly, if another set s2 contains enough vertically-aligned patches, then one

may similarly obtain the vertical projection operator as p2 = s2s2†. To this end, the re-

mainder subspace u3 can be defined as the projection of U onto the complements of the

column spaces of the vectors in s1 and s2. This can be written as u3 = [I−p2][I−p1]U.

One can readily assume that this projection contains signal portions that have neither

horizontal nor vertical components. Besides, it is clear that the tree subspaces add up

to U.

According to the above discussion, a signal x ∈ Rn can be decomposed into three sub-

space structural components x1∈u1, x2∈u2 and x3∈u3. The same projection operators

can be used for this decompositions as x1≈ϕ1x, x2≈ϕ2x and x3 = ϕ3x. If x is known

to be more strongly horizontal, then ϕ1 = p1, ϕ2 = p2[I−p1] and ϕ3 = [I−p2][I−p1].

On the other hand, if x has more vertical structures than horizontal, then one may write

ϕ2 = p2, ϕ1 = p1[I − p2] and ϕ3 = [I − p1][I − p2]. This means that a model selec-

tion is required to identify the major directionality a signal has, in order to accordingly

arrange the succession of the projections.
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To establish the sets of directional patches s1 and s2, one may use a directional classifier

such as the dominant angle in the gradient operator’s phase as proposed in [30] to

obtain patches of the desired directionality. Then, a suitable dimensionality reduction

operation can be carried out on such patches to extract the sets. For example, K-

means clustering can be applied for this purpose. Moreover, directional patches can

be extracted from the image of interest and used accordingly to design the projection

operators. In this setting, projection operators are specially designed for the image in

hand.

To this end, if X is a set of training signals, a training set for the subspace u1 can

be obtained by projecting X onto that subsapce. This can be easily achieved by left

multiplying X with the relevant projection operator p1. Similarly, the training sets of

the other two subspaces can be obtained using the corresponding projection operators.

This can be written as X1≈p1X, X2≈p2X and X3 = [I − p2][I − p1]X. Any standard

DL method such as K-SVD or ODL can be used for the training process.

The above mentioned setting defines three directional subspaces u1, u2 and u3. This

forms a triplet of subspaces well-suited for the representation of patches with hori-

zontal or vertical directional nature. The remainder subspace u3 is dedicated for the

representation of image components that are neither horizontally nor vertically ori-

ented. In the same manner, the setting can be extended to be well-suited for patches

of other orientations. Using similar steps, a diagonally-oriented subspace u4 can be

defined, and along with an anti-diagonal subspace denoted by u5. Considering these
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two subspace, a remainder subspace u6 can be defined to correspond to patched struc-

tures that are neither diagonal, nor anti-diagonal structures. It can thus be seen that

the second subspace triplet u4, u5 and u6 can be effectively used to sparsely represent

patches of diagonal or anti-diagonal dominant directional nature. Subspace training

sets for this triplet can be obtained after designing the underlying projection operators

p4 and p5. This can be written as X4≈p4X, X5≈p5X and X6 = [I − p5][I − p4]X.

Obtaining the training data for the aforementioned subspaces is illustrated in Fig. 4.1.

The proposed DL strategy is illustrated in Algorithm 5.
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Figure 4.1. Subspace projection of a training signal, i=1 for the first triplet and 4 for
the second one.

4.2.2 Component-wise sparse representation

By means of the above mentioned projection operators, a signal x can be exactly de-

composed as the summation of three subspace components. If the dominant directional

structure of x is horizontal or vertical, then it will be decomposed in the subspaces of

the first triplet. If it is diagonally or anti-diagonally structured, it will be decomposed
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using the subspaces of the second triplet. This decomposition can be written as follows.

x = ⊕i=j+3
i=j xj, (4.1)

where ⊕ denotes direct sum, and j=1 for the case of the first triplet, and j=2 for the

case of the second one. Given that xi≈Diαi gives the sparse approximation of the

component xi over its subspace dictionary Di with the sparse approximation vector α,

one can write the sparse approximation of x as follows.

x̂ =

i=j+3∑
i=j

x̂j, (4.2)

where j=1 for the case of the first triplet, and j=2 for the case of the second one.

Algorithm 5 The Proposed Subsapce DL Strategy
1: INPUT: Training signal set X.
2: OUTPUT: Subspace dictionaries (D1 through D6).
3: Classify patches in X (or the test image) into directional clusters.
4: Apply K-means on the directional clusters and put the centroids as columns of s1 through

s4.
5: Calculate projection operators p1 through p4.
6: Project X onto the six subspaces to find the corresponding training data sets X1 though X6.
7: Learn a compact dictionary for each subspace with its training data set.

4.2.3 Representation quality of subspace component-wise sparse approximation

Recalling the signal decomposition in (4.2), it is interesting to trace the successive

approximation of a signal x during sparse approximation. In (4.2), x1 = p1x, x2 =

p2x and x3 = [I − p2][I − p1]x. Let us use the following notation ϕ1 = p1, ϕ2 =

p2 and ϕ3 = [I − p2][I − p1]. Considering OMP as an example vector selection
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technique, it successively selects that atom in a dictionary which has the maximum

projection onto a so-called residual vector. This residual vector is initialized with x,

and is updated with each iteration as the difference between x and its resulting sparse

approximation. OMP first computes a one-atom approximation of x as x = Dw ⊕ r,

where α is the coefficient corresponding to the first selected atom (denoted by d1), and

r is the residue which characterizes the error of this one-atom representation. OMP

calculates r as r = [I − d1d1†]x. Intuitively, effective sparse approximation requires

minimizing the resulting residue after selecting each atom. Now, effective selection of

the atom d1 should result in minimizing r. To this end, it seems interesting to analyze

the residue that remains after one-atom sparse approximation in the standard sparse

representation case, and how does it compare with the case of the proposed strategy.

Similar to the decomposition of x, one may decompose r as r = r1⊕r2⊕r3, where

r1 = ϕ1r, r2 = ϕ2r and r3 = ϕ3r. Following a few algebraic steps, one can write

r1 = [ϕ1−ϕ1d1d1†]r, r2 = [ϕ2−ϕ2d1d1†]r and r3 = [ϕ3−ϕ3d1d1†]r. For the standard

sparse coding scenario, it is clear that minimizing r1 requires the quantity d1d1† to

approximate ϕ1. On the other hand, minimizing r2 and r3 requires d1d1† ≈ ϕ2 and

d1d1† ≈ ϕ3, respectively. It is thus clear that the selected atom d1 can not minimize the

three components of the residual at the same time. Only one component can potentially

be minimized. The same argument holds for the other atoms to be selected.

When the same scenario is re-made with the proposed strategy, the difference is that

one now selects three atoms at the same time from three different subspace dictionar-

ies. Let us denote the first selected atom in D1 through D3 by d1
1 through d1

3, respec-
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Figure 4.2. Reshaped atoms of triplet dictionaries designed with the proposed
strategy. The first/second triplet in the first/second row.

tively. A similar analysis reveals that the requirements for minimizing r1, r2 and r3

are d1
1d1

1
† ≈ ϕ1, d1

2d
1
2
† ≈ ϕ2 and d1

3d
1
3
† ≈ ϕ3, respectively. It is thus possible to

minimize these three components of the residue at the same time. In conclusion, the

proposed strategy is potentially able to loyally represent different signal structures at

the same time, whereas standard DL and sparse approximation is unable to loyally rep-

resent them at the same time. This is because loyalty in representing a certain structure

causes a certain disability in representing the other one.

4.2.4 Computational complexity reduction

As discussed in Chapter 3, designing multiple compact dictionaries instead of a single

highly redundant one is advantageous for reducing the computational complexity of

sparse coding, and that of the DL process, as well. In this work, using 3 triplet dictio-

naries where each has sixth the number of atoms in a single dictionary (K) reduces the
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computational complexity of OMP to be O(KSN
2

). Therefore, the proposed strategy

serves for the purpose of reducing the computational complexity of sparse coding.

4.3 Experimental Validation

This experiment aims at examining the representation quality of the proposed strategy.

Patches extracted from natural images are reshaped into the vector form and used as

training and testing signals. Testing images are divided into fully-overlapping 6×6

patches. These are then sparsely represented. The sparse approximations of image

patches are then reshaped to the two-dimensional case and merged to form an image

estimate. This estimate is compared to the ground-truth image in terms of PSNR.

Three scenarios of dictionary learning and sparse approximation are considered in this

experiment. 40,000 patches are used as the training set for all the cases. In the first

scenario S1, a 36×360 dictionary is learned over the whole training set with ODL.

Sparse approximation of a patch is done via OMP with S=4. In the second scenario

(S2), the directional clustering method of Yang et al. [30] is used to cluster the training

set into five clusters. Five 36×72 cluster dictionaries are learned with ODL. These in-

clude directional dictionaries D1 through D4 corresponding to orientations of 0◦, 45◦,

90◦ and 135◦ and D5 as a non-directional dictionary. Sparse approximation is done

by first selecting a dictionary for each patch using the same clustering criterion, and

then the patch is coded over the selected dictionary using OMP with S = 4. In the

third scenario (S3), patches of each test image are used to calculate the corresponding

projection operators. Then, the aforementioned directional dictionaries are used as ini-

tial dictionaries and updated with the proposed DL strategy, as specified in the previous
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section. Two dictionary triplets are established, where the remainder dictionary in each

tripled is the non-directional dictionary D5 as it is. Figure 4.2 shows two-dimensional

reshaped atoms of the five dictionaries trained with the proposed strategy. It is clearly

noted that the dictionaries are directional as their atoms inherit the directional natures

of their respective subspaces. Then, sparse approximation of a patch is done according

to the proposed strategy, using OMP with S = 4. Representation PSNR values of the

three scenarios are reported in Table 4.1. In view of Table 4.1, it is clear that stan-

Table 4.1. Image Representation PSNR (dB) with S1, S2 and S3.
Image S1 S2 S3

Animalroi 36.66 38.06 38.31
Barbara 31.45 30.98 31.81
Butterfly 31.89 33.84 34.51

Fingerprint 33.73 34.45 35.70
Leaves 32.42 35.67 36.11

Peppers256 34.01 35.02 35.46
ppt3 32.91 34.93 35.28

Starfish 34.34 35.77 35.98
Average 33.43 34.84 35.39

dard sparse coding over multiple dictionaries (S2) has better representation compared

to sparse representation over a highly redundant dictionary (S1) with an average PSNR

improvement of 1.41 dB. Besides, the representation quality of the proposed strategy

(S3) is superior to the case of (S2). The average PSNR improvements of the proposed

strategy over standard sparse representation over single and multiple dictionaries are

1.96 dB and 0.55 dB, respectively.
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Chapter 5

VARIABLE PATCH SIZE SPARSE REPRESENTATION

5.1 Introduction

In the context of sparse representation of images, two-dimensional information are

converted into the form of a vector x. Due to computational complexity concerns,

it is impractical to reshape the whole image as a single vector. Rather, an image is

divided into a set of patches of a small size [34, 52, 53]. Each patch is then reshaped

into the vector form, for the purpose of sparse coding. It is quite intuitive to observe

that, as compared to an entire image, a small image patch is a simpler, more local

entity, and hence can be more accurately represented by means of a smaller number

of bases [54]. Therefore, image partitioning into patches allows for feasible dictionary

learning and sparse coding with an acceptable level of computational complexity. In

the sparse representation literature, a trade-off exists between the patch size and the

computational complexity. It is well known that a large patch size is desirable in the

sense that it allows access to more of the intrinsic image features. However, because

a patch size governs the dictionary atom size, a large size increases the computational

complexity of sparse coding and dictionary learning.

It is customary to set the patch size to a specific dimension depending on the perfor-

mance in the problem considered. Recently, researchers tended to select the patch size

to be inversely proportional to the image’s spatial frequency. Other attempts aimed at
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setting a patch size more effectively, e.g., Zhou et al. [55] formulate the patch size de-

termination as an optimization problem that minimizes an objective function involving

image gradients and features. In a recent work in the sparse representation context,

Levin et al. [8] address the patch size issue, and indicate the importance of employing

a variable patch size for sparse representation, in terms of representation quality and

computational complexity.

From other contexts, researchers point out the advantage of employing a variable patch

size. As an example, De Smet et al. [56] proposed using non-uniformly resized image

patch exemplars to find the best patch size and aspect ratio. Additionally, Li at al. [57]

report that it is difficult to determine the appropriate patch-size for patch-based abnor-

mality detection in colonoscopic images, and use multi-size patches to simultaneously

represent image regions.

In this chapter, we preset a variable patch size sparse representation strategy that is

proposed in [58]. The proposed strategy chooses the best representation of each small

image region from a set of possible representations of different sizes. This set includes

direct representation of this region over a corresponding dictionary and other approx-

imations obtained by extracting them from the representations of larger patches that

contain this region. Linear extraction operators are used for this purpose. The most

appropriate representation is the one being closest to the true image region. This way,

sparse representation error is the patch size selection criterion.
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Simulations verify the ability of the proposed strategy to improve the representation

quality as compared to the standard case of employing a fixed patch size. For the im-

age representation problem, the proposed strategy is shown to have an average PSNR

improvement of 0.99 dB over the standard case for a set of benchmark images. Be-

sides, it is presented as a promising image denoising framework. Simulations show

that the proposed strategy, with correct sparse model selection, is competitive to the

state-of-the-art denoising algorithms.

5.2 The Proposed Variable Patch Size Sparse Representation
Strategy

This work attempts to devise an answer to the fundamental question of: which is better,

to sparsely code a small patch over a corresponding dictionary, or to think of it as a

portion of a larger patch which is coded over a dictionary of a larger atom size? Figure

5.1 can suggest a justification as to why this question arises. A sample natural image is

divided into patches of sizes 4×4 and 8×8. Two cases are then considered. In the first

case, each 4×4 image patch is coded over a 16×256 dictionary. In the second case,

the representation of each 4×4 patch is extracted as a part of the sparse approximation

of the 8×8 patch containing it, as coded over a 64×256 dictionary. In both cases, the

true patch is compared to its approximation in terms of the MSE measure. Then, the

difference in MSE of the first and the second cases is calculated.

A histogram of the MSE difference is plotted in Fig. 5.1. The histogram points out

that this difference is positive for some patches, meaning that the second case is better

in representation. However, it is negative for some other patches meaning the contrary.
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For a limited number of patches, there is no difference. This result suggests the need

for a means of a patch size selection criterion to optimize sparse representation.
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Figure 5.1. Histogram of the MSE difference with the cases of 4×4 and 8×8 patch
sizes.

To achieve variable patch size sparse representation, the proposed strategy chooses

the most appropriate patch size for each small image region. Figure 5.2 demonstrates

the basic idea of this strategy. For illustrative purposes, only three patch sizes are

considered. From left to right, large, medium and small-sized patches are shown.

The shaded area represents the image region to be sparsely coded. In this setting,

three dictionaries are to be used: large, medium and small-sized, corresponding to the

three patch sizes. The small shaded square box represents the smallest-size patch of

interest. To this end, the sparse coding of this smallest-size patch can be obtained in

three ways: directly coding it over the small dictionary, extracting its representation

out of the sparse approximation of the medium patch, or extracting it out of the sparse

approximation of the large patch. The representation MSE can be used as the patch

72



size selection criterion.

The proposed strategy requires dividing an image into patches with different patch

sizes. Each patch size requires a corresponding dictionary. Then, each patch at each

size is sparsely coded over its corresponding dictionary. The sparse representation

of each of the smallest-size patches can be obtained by directly coding it over the

corresponding smallest-size dictionary, or, extracting it from the sparse approximation

of each of the larger patches that contain it. Since patches are one-dimensional, linear

extraction operators can be conveniently used for this purpose. Patch extraction is

carried out by pre-multiplying a larger patch with the suitable extraction operator. At

this stage, the MSE between the true patch and its several representations is calculated.

In this work, the MSE measure is used to decide on the most appropriate representation

of a patch.

(a)
 (b)
 (
c
)

Figure 5.2. Different patch representation possibilities.

Having a set of z possible patch sizes put in an ascending order, the j-th patch size

can be labeled with j ranging from 1 to z. The smallest patch size thus corresponds to

j = 1. In this context, the smallest-size image region is denoted by x1, and the j-th size
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patch that contains it is denoted by xj . One can directly obtain a sparse representation

of x1 over a dictionary D1, as x̂1 ≈ D1w1. The patch x1 can be extracted from the j-th

size patch using an extraction operator Rj , as x1 = Rjxj . If xj is sparsely represented

over a corresponding dictionary Dj as x̂j ≈ Djwj , then the sparse approximation of x1

can be extracted from that of xj , as x̂1 ≈ Rj x̂j ≈ RjDjwj . From these representations,

the next step is to determine the optimal patch size jo that minimizes the MSE, between

x1 and its several approximations, as shown in (5.1).

jo = argmin
j

MSE(x1,RjDjwj), j = 1, 2, 3....z, (5.1)

where the linear extraction operator at j=1 is the identity matrix. The optimally-sized

sparse approximation of the patch x1, denoted by x̂1o , can be found as in (5.2).

x̂1o = RjoDjowjo , (5.2)

where Rjo , Djo and wjo denote the extraction operator, the dictionary and the sparse

coding vector corresponding to jo, respectively. After finding the most appropriate rep-

resentation of each smallest-size patch as x̂1o , these representations are to be spatially

concatenated to form an image estimate at the patch size j = z. This concatenation

is the opposite of the function of the linear extraction operators corresponding to that

patch size.
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A plurality of sparse representations has recently been shown to be more advantageous

as compared to the sparsest one alone [38]. The proposed setting can be thought of as

a plurality of representations of each of the smallest-size patches, where the weights

of the representations are all zeros expect for the most appropriate patch size which is

given a unity weight. This is in fact a binary weighting which can be extended toward

adopting more suitable weights assuring better participation of several representations

belonging to different patch sizes. This more detailed weighting needs further investi-

gation and can be the scope of another work.

The proposed sparse representation strategy is outlined in Algorithm 6.

Algorithm 6 The Proposed Variable Patch Size Sparse Representation Strategy
INPUT: The test image, the set of possible patch sizes and their corresponding dictionaries.
OUTPUT: An array of sparse approximations with variable patch sizes.
Divide the image with several patch sizes.
for each of the smallest-size patches do

Calculate the MSE of representing the patch over its dictionary.
Calculate the MSE of representing the patch as a part of each of the larger patches over
its dictionary.
Determine the best patch size jo as in (5.1).
Set the representation of this patch as in (5.2).

end for
Concatenate the approximations x̂1o to form a patch array of the size j = z.

5.3 Experimental Validation

In this section, numerical and visual experimentations are presented to investigate the

performance of the proposed strategy with the problems of image representation and

denoising.
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5.3.1 Image Representation

In this experiment, patch sizes of 4×4 and 8×8 and two dictionaries of 16×256 and

64×256 sizes are employed. Dictionaries are trained over a set of natural images using

the K-SVD algorithm [28] with 20 iterations and sparsity S=3. These parameter values

are typically used in several works.

Table 5.1. Image representation PSNR (dB) Results.

Image Standard Proposed
Baboon 25.58 29.38
Barbara 30.26 33.49
Bridge 25.02 26.56

Coastguard 25.76 26.29
Comic 22.76 23.55
Face 26.34 26.62

Flowers 29.20 30.28
Foreman 23.94 24.05

Lena 27.05 27.29
Man 26.94 27.99

Monarch 28.93 29.32
Pepper 28.07 28.33
Ppt3 22.98 23.31
Zebra 24.57 24.82

Average 26.24 27.23

For a set of benchmark images, the problem is to divide an image into fully overlapping

patches, sparsely code the patch array, reconstruct it, reshape the reconstructed patches

into the two-dimensional form and eventually average overlapping patches to form an

image estimate. Then, each estimate is compared to the ground-truth image. Sparse

coding herein is done with the OMP algorithm [16] with S = 3. For the standard case,

an 8×8 patch size and a 64×256 dictionary are used. The proposed strategy divides an

image into overlapping patches of 4×4 and 8×8 sizes, and selects the best patch size

to code and reconstruct each patch. Size-optimized patches are concatenated to form
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patches of an 8×8 eventual size. Comparisons are done in terms of the PSNR measure

[46].

Figure 5.3. From left to right: the original scene, reconstruction with the proposed
strategy and reconstruction with standard sparse coding.

Table 5.1 lists the PSNR values for reconstructions obtained with the standard and

the proposed cases, respectively. It shows that the proposed representation strategy

is better able to represent images with an average PSNR improvement of 0.99 dB.

Besides, it can be concluded that the PSNR improvement is better for images of rich

directional and structural contents, e.g., the Baboon and Barbara images. As a visual

comparison, Fig. 5.3 shows particular scenes belonging to the Barbara, Zone-Plate

and Baboon benchmark images. Each true scene is compared to its reconstructions
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obtained with the proposed strategy and the standard sparse representation case. It

is clearly seen in Fig. 5.3 that the proposed representation strategy is better able to

reconstruct image regions with high frequency contents, e.g., the stripes and the curvy

lines.

Table 5.2. Denoising PSNR (dB) Results.
Image Noise Level Stand. Prop. BM3D Ram et al.

10 35.57 35.95 35.93 35.39
Lena 25 31.30 31.70 32.05 31.80

50 27.88 28.07 28.96 28.96
10 34.51 35.02 34.93 34.39

Barbara 25 29.57 30.13 30.61 30.47
50 25.42 25.66 27.16 27.35
10 33.65 34.14 33.94 33.70

Boats 25 29.36 29.82 29.89 29.70
50 25.90 26.20 26.71 26.69
10 36.07 36.37 36.63 35.80

House 25 32.08 32.43 32.79 32.54
50 28.05 28.32 29.54 29.64
10 34.35 34.77 34.70 34.26

Peppers 25 29.80 30.37 30.26 30.01
50 26.19 26.59 26.69 26.75

5.3.2 Image Denoising

The performance of the proposed strategy as a framework for K-SVD image de-

noising is investigated, and compared to that of K-SVD denoising with a fixed patch

size [36]. The proposed strategy serves the same denoising methodology of [36], but

with two patch sizes of 4×4 and 8×8. Herein, patch size selection is carried out in

terms of the representation error of sparse approximations as compared to the true im-

age patches. This scenario improves the performance compared to the case of using a

fixed patch sizes of 8×8 as done in [36]. Adopting the proposed strategy as a means

of denoising thus requires developing an effective patch size selection mechanism that
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uses only the noisy image or any of its features.

PSNR=20.19 dB PSNR=29.59 dB PSNR=30.13 dB

PSNR=14.14 dB PSNR=25.41 dB PSNR=25.65 dB
Figure 5.4. From left to right: the noisy image, K-SVD reconstruction with standard

sparse representation and the proposed K-SVD reconstruction.

Figure 5.4 shows the noisy Barbara image and its reconstructions obtained with K-

SVD denoising used with standard sparse coding and with the proposed strategy, re-

spectively. Noise variances are 25 and 50 for the images shown the upper and lower

rows of Fig. 5.4, respectively. Results show a slight visual improvement obtained

when the proposed strategy is applied.

Results reported herein are preliminary, and the development of such a mechanism

is left as a future work. The comparison also includes the Block-matching and 3-D

filtering (BM3D) algorithm of Dabov et al. [59] and the work of Ram et al. [60],

79



as they have the state-of-the-art performances. For some benchmark images, PSNR

values of the aforementioned algorithms are reported in Table 5.2. Zero-mean additive

white Gaussian noise levels of 10, 25 and 50 dB variances are considered.

It can be clearly seen in view of Table 5.2 that the proposed strategy has a good PSNR

improvement over the case of employing a fixed patch size. It can also be seen that the

results obtained with the proposed strategy are comparable with those obtained by the

algorithms of [59] and [60], particularly for the cases of relatively small noise levels.

80



Chapter 6

A STRATEGY FOR RESIDUAL COMPONENT-BASED
MULTIPLE STRUCTURED DICTIONARY LEARNING

6.1 Introduction

In almost all DL algorithms, vector selection plays a crucial role for the sparse ap-

proximation stage. Greedy sparse approximation algorithms such as the orthogonal

matching pursuit (OMP) [16] are initialized with the original (training or test) signal

and each residual component is successively approximated by selecting one atom at

a time from a given dictionary. When multiple dictionaries are to be learned, most

approaches first cluster data into several clusters and then learn a dictionary for each

cluster, using only the cluster data. It is noted that using a signal in a specific cluster

to train for the cluster dictionary does not take into account the structure of its residual

components. In other words, the residual after each single atom approximation may

not necessarily belong to the selected model. Therefore, a dictionary can possibly be

updated with a residual component of an irrelevant structure.

In this work, we show that a signal and its residual after one-atom approximation do

not necessarily possess the same geometric structure. In the multiple DL setting, this

observation calls for a model selection for each residual component. Therefore, a strat-

egy for selecting a model for each residual during the multiple structured DL process

is proposed [61]. This allows the residual components of a training signal to update
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only relevant dictionaries. The advantage of the proposed strategy over the conven-

tional multiple DL algorithms ([31, 33, 30]) is that a given training signal can update

atoms from different dictionaries. Compared to the conventional sparse approximation

methods based on single or multiple dictionaries, the proposed strategy is shown to

significantly improve the sparse representation quality. Simulations over natural im-

ages indicate that the proposed strategy using the online dictionary learning (ODL)

algorithm [5] based dictionary update improves the standard ODL results by averages

of 5.04 dB and 4.71 dB (in terms of PSNR) for the cases of sparsity 2 and 3, respec-

tively. The PSNR improvement over conventional multiple DL based representation is

also significant with an average of 0.85 dB and 1.24 dB for sparsity levels of 2 and 3,

respectively.

6.2 The proposed multiple structured dictionary learning strategy

Most DL algorithms such as ODL [5] and K-SVD [28] require the use of a vector

selection algorithm. Such an algorithm selects a few atoms from a given dictionary

D to approximate a given vector signal x. Considering OMP with sparsity S as an

example, it initializes a so-called residual vector ri (i = 0, 1, .., S − 1) as r0 = x and

iterates S times to approximate it. In each iteration, one atom is selected for the current

residual. The residual after each atom selection is updated. This process is recreated S

times.

Compared to x, the residual may possess a different structure. This fact can not be

effectively exploited when one uses a single dictionary. Let us consider the case of

multiple structured dictionaries. Such dictionaries can be trained over data which is
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clustered based on the desired structure. In such a setting, training data in one cluster

regardless of their residuals can only update the dictionary of that specific cluster. This

practice in the multiple dictionary setting ([31, 33, 30]) ignores the possibility that x

and each of its residual components may possess different directional structures.

Table 6.1. Orientation of the signal x = r0 and its first residual component r1.
r1

C0 C45 C90 C135 Cnd

r 0
=

x

C0 1667 30.0 % 16.3 % 18.2 % 16.6 % 19.0 %
C45 2194 16.8 % 20.4 % 22.7 % 17.0 % 23.2 %
C90 2405 16.7 % 23.4 % 19.8 % 18.4 % 21.8 %
C135 2134 17.9 % 17.9 % 19.4 % 21.2 % 23.6 %
Cnd 1600 17.8 % 19.6 % 19.4 % 20.0 % 23.3 %

The following experiment empirically validates the above observation. A training set is

obtained by randomly sampling 105 patches of size 6×6 from the image set [62]. Using

the clustering approach in [30], this set is clustered into five clusters. The first four C0,

C45, C90 and C135 correspond to orientations of 0◦, 45◦, 90◦ and 135◦, and the fifth

cluster Cnd is non-directional. Using ODL with S=2, a 36×72 dictionary is learned

for each cluster. Cluster dictionaries are denoted by D1 through D5, respectively. We

then used 104 randomly selected test patches to investigate the validity of the above

observation.

First, based on the dominant orientation of a test signal x = r0, it is sparsely approx-

imated over the corresponding cluster dictionary with sparsity S=1. Then, the first

residual component r1 is calculated and its dominant orientation is determined. The

selected cluster for each residual component is identified and the results are presented

83



(a) (b) (c)

(d) (e) (f)
Figure 6.1. Graphical illustration of reconstructing a patch. (a) Original, (b) Case 1

reconstruction, (c) Case 2 reconstruction , (d) reconstruction of r0 (S=1), (e)
reconstruction of r1 (S=1), and (f) Case 3 reconstruction (f=d+e).

in Table 6.1. The third column of Table 6.1 shows the number of patches (x = r0)

in each cluster. The next columns show the distribution of r1. For example, 1,667

patches of r0 belong to cluster C0. Only 30.0 % of these patches have a residual r1

which also belongs to cluster C0. The remaining 70.0 % belong to other clusters. A

similar conclusion is valid for all clusters.

Let us further motivate this observation with a toy example. Consider the 6×6 patch

in Fig. 6.1 (a). It is composed of a horizontal stripe and a vertical stripe. We study

three cases. Case 1: sparse approximation with S=2 over a single 36×360 dictionary

trained using the dataset of the previous experiment. Case2: sparse approximation us-

ing multiple dictionaries (D1 through D5 of the previous experiment) with S=2 over the
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Algorithm 7 The Proposed Multiple DL Strategy.
1: INPUT: Training set X ∈ Rn×m, structured random initializations of dictionaries D1 to DM ∈

Rn×K , sparsity S, number of iterations Num.
2: OUTPUT: A set of structured dictionaries D1 through DM .
3: Initialize Aj ∈ RK×K ← I,Bj ∈ Rn×K ← Dj , ∀j ∈ {1, 2, ...,M}.
4: for j=1 to Num do
5: for Each vector x in X, do
6: Initialize r0 ← x.
7: for i = 0, 1, ..., S − 1, do
8: Find the projection of ri onto every atom in each dictionary.
9: Select the dictionary Db

i that maximizes this projection. Also note the single-atom sparse
representation vector wi.

10: Update ri+1 = ri − Db
iwi.

11: Update Ab ← Ab + wiwi
T .

12: Update Bb ← Bb + riwi
T .

13: Using Ab and Bb, update Db
i using Algorithm 2 of [5].

14: end for
15: end for
16: end for

selected dictionary. This case assumes that the directional structure of the first residual

component is the same as that of the original signal. Thus two atoms are selected from

the same dictionary. Case 3: sparse approximation using multiple dictionaries (the dic-

tionaries of Case 2) where r0 and r1 are allowed to be represented with the most fitting

dictionary. The sparse representation of the patch is thus the sum of the sparse (one-

atom) representations of r0 and r1. This residual component-based representation can

be achieved in two ways. A simple and naive way is to join the directional dictionaries

into a single dictionary and rely on OMP to select the two most appropriate atoms.

The second way is to apply a model selection for each residual component. If model

selection is based on maximizing the residual projection, then the two approaches tend

to be the same. In this experiment, Case 3 joins the learned dictionaries of Case 2 into

a single dictionary, over which sparse representation is done.

Figure 6.1 (b) shows the reconstruction for Case 1, which is a moderate approximation
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with a mean-squared error (MSE) of 0.1167. The reconstruction with Case 2 is shown

in Fig. 6.1 (c). The horizontal stripe is better reconstructed. However, the vertical

stripe is almost totally lost. The MSE is 0.1137. This is because D1 is selected based on

the patch directionality, which is well-suited to represent horizontal structures, whereas

it severely fails in representing vertical ones. Fig. 6.1 (d) and (e) respectively show the

one-atom approximations of r0 and r1. Herein, OMP picks one atom from dictionary

D1 and another from D3 to represent r0 and r1, respectively. Fig. 6.1 (f) shows the

reconstruction of Case 3 where both signal portions are effectively reconstructed. The

MSE of this reconstruction is 0.0396 which is significantly lower.

6.2.1 Residual component-based dictionary learning and sparse representation

The above observations suggest a strategy for learning multiple structured dictionaries

based on the structure of not only the original training signal, but the residual compo-

nents, as well. Given an initial set of M dictionaries, D1 through DM , each initialized

with randomly selected data of a specific structure, one can use the residual compo-

nents of a signal in a training set X∈Rn×m to train such dictionaries. It is noted that no

clustering of the original training set X is required. One only needs a model selection

to determine which structure a given residual component possesses.

Given a training signal x, the residual is initialized as r0 = x. The objective is to

identify the best fitting dictionary for each residual ri and then to use it to update

the dictionary. In this work, the model selection for the residual component signals

is based on maximum projection. Having M dictionaries, this requires calculating the

projection of the residual component signal ri onto each atom from all the dictionaries.
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The maximum projection determines the atom and thus the dictionary to be updated.

Once the best dictionary Db
i corresponding to ri is determined, the next residual can be

obtained by projecting ri onto the orthogonal complement of the selected atom in Db
i .

This can be equvalently written as ri+1 = ri − Db
iwi, where wi is a one-atom sparse

representation coefficient vector. Then, ri and wi can be used to update Db
i . In this

work, we chose the update stage of the ODL algorithm [5]. First, the matrices Aj and

Bj [5] for each dictionary Dj (j∈{1, 2, ...,M}) are initialized. They are then updated

with ri and wi using Ab ← Ab + wiwT
i and Bb ← Bb + riwT

i , where b denotes the

selected model and T is the transpose operator. The matrices Aj and Bj are then used

to update Db
i [5].

At this stage, the next residual ri+1 is considered as a new signal. This process is

repeated S times. In contrast to the standard multiple DL [31, 33, 30], the proposed

DL strategy allows each training signal to potentially contribute to the update of several

dictionaries. The proposed DL strategy is outlined in Algorithm 7.

The M dictionaries obtained with the proposed DL strategy can be combined to con-

stitute a single dictionary. A signal x can be sparsely represented using OMP over the

combined dictionary. Another alternative is to perform a model selection process for

each residual component. In this setting, a model Db
i , (b∈{1, 2, ...,M}), is selected for

each residual ri based on its structure. Then, ri is sparsely represented with a single

atom picked from the selected model. This gives an approximation to ri as r̂i = Db
iwi.
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Then, the signal x can be approximated by summing the sparse approximations of its

residuals as x̂ =
∑S−1

i=0 r̂i.

6.2.2 Computational complexity of the proposed strategy

For each training signal, standard DL employs one sparse approximation stage with

sparsity S and one dictionary update, whereas the proposed strategy employs S one-

atom sparse approximations and S dictionary updates. Considering the fact that the

dictionary update stage is not computationally demanding [29], we compare the DL

computational complexity in terms of the computational complexity of the sparse ap-

proximation stage.

The approximate computational cost of the OMP algorithm is O(kSn) [45]. For the

proposed strategy, since dictionaries are of the size K/M , the computational com-

plexity is O(K
M
Sn). However, a model selection is required for each residual. With

a simple model selection criterion, the proposed strategy reduces the computational

cost. With projection-based model selection, the computational cost of the proposed

strategy is O(KSn+ KSn
M

).

6.2.3 Convergence of the proposed strategy

The convergence of the ODL algorithm is well-established [5]. The proposed residual

component-based DL strategy employs single-atom representation for each residual

component and ODL-type dictionary update. Thus, the convergence of the proposed

strategy is certain. Figure 6.2 shows the signal-to-noise ratio (SNR) convergence be-

havior of the proposed strategy in comparison to standard ODL. For this experiment,

105 patches of the size 6×6 randomly selected from the image database used in [43]
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Figure 6.2. SNR convergence of the proposed strategy and standard ODL.

and used as a data set. Sparsity is set to S=3. The preliminary results in Fig. 6.2

show that the proposed strategy converges faster and achieves a higher SNR value in

comparison to standard ODL.

6.3 Experimental Validation

The proposed DL strategy is compared to standard DL of single and multiple dictionar-

ies, in experiments of image representation and reconstruction of a known dictionary.

6.3.1 Image representation test

In this test, a test image is divided into overlapping 6×6 patches. Then, the sparse

approximations of the patches are obtained and merged using the overlap-add method

[3] to form an image estimate. This estimate is then compared to the ground-truth

image in terms of the PSNR measure.
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We study and compare three scenarios. Each scenario is tested with sparsity S=2 and

S=3. In the first Scenario (S1), a single 36×360 dictionary is initialized with randomly

selected data vectors and trained over the training set of the previous experiment using

ODL and with 100 iterations. In the representation stage, each patch is sparsely ap-

proximated using OMP. In the second scenario (S2), the same training set is clustered

into the five aforementioned clusters using the dominant phase angle measure [30]. For

each cluster, a 36×72 dictionary is initialized by randomly selected data vectors and

is trained over the cluster data with 100 ODL iterations. It is noted that the number

of atoms in each dictionary in S2 is one fifth of the number of atoms in the dictionary

of S1. In the reconstruction stage, we use maximum projection to determine the best

dictionary for each patch. The patch is then sparsely approximated by picking all of

the S atoms from the selected dictionary. In the third scenario (S3), five dictionaries

are initialized by randomly selected data from the corresponding clusters in S2. Then,

they are trained over the training set of S1, with 100 iterations according to Algorithm

1. Then, we combine the five dictionaries into a single dictionary, and perform sparse

approximation on it using OMP.

Table 6.2 shows the PSNR values of the three aforementioned scenarios for two-atom

(S=2) and three-atom (S = 3) approximations. It is clearly seen that the proposed

strategy (S3) is better able to represent image patches as compared to the multiple

dictionary-based approximation (S2) and sparse approximation over a single dictionary

(S1). The average PSNR improvement S3 has over S1 and S2 are, respectively, 4.61

dB and 0.85 dB for the case of S = 2, and are 5.02 dB and 1.58 dB for the case of
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Figure 6.3. Number of identified dictionary atoms versus inner angle tolerance values
(in degrees) averaged over 50 trials. SNR= 20 dB.

S = 3, respectively. It is noted that the improvement for images which are structurally

rich (such as Fingerprint and Raccoon) is more significant.

6.3.2 Reconstruction of a known dictionary

To evaluate the ability of the proposed strategy in reconstructing a known dictionary,

the following experiment is conducted. A data set of 105 patches is clustered into the

aforementioned clusters C1 through Cnd. Then, 50 vectors are randomly selected from

each cluster and normalized to unit column norm, to form the structured dictionaries.

These dictionaries are combined to form a dictionary Dc with 250 atoms. A synthetic

dataset Xs of 2000 vectors is generated by superposing 3 atoms randomly selected

from Dc with random weights. Then, additive white Gaussian noise is added such that

the SNR is 20 dB. We consider the three DL Scenarios S1 through S3. All scenarios

use 100 DL iterations with S=3.
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For S1, the dictionary is initialized by randomly selecting 250 vectors from Xs. Then,

it is trained over Xs using ODL. For reference, we also include Scenario S1 using

the recursive least squares dictionary learning algorithm (RLS-DLA) of [29]. For S2,

Xs is clustered into the aforementioned five clusters [30]. Then, 50 data vectors are

randomly selected from each cluster to serve as an initialization for the corresponding

dictionary. In S2, each dictionary is trained over the corresponding cluster data via

ODL. S3 uses Xs to train for the five dictionaries according to Algorithm 1. In S2 and

S3, the five trained dictionaries are combined to form a dictionary estimate. For each

scenario, Dc is compared to its estimate in terms of the similarity measure used in [29],

which is based on the inner angle between matched atoms. In this setting, an atom in

the dictionary estimate is identified if the inner angle between this atom and its match

in Dc is less than a prescribed inner angle tolerance. For a set of inner angle tolerances,

Fig. 6.3 shows the number of identified atoms, averaged over 50 trials. When the inner

angle between the matched atoms is 10◦, the proposed strategy identifies 36 and 40

more atoms compared to standard ODL and RLS-DLA, respectively.
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Table 6.2. Image representation PSNR (dB) comparison for Scenarios S1, S2 and S3,
with 2 and 3-atom representations.

Sparsity 2-Atom Representation 3-Atom Representation
Image S1 S2 S3 S1 S2 S3

Barbara 27.25 30.50 31.25 28.69 31.90 34.06
Boat 31.12 34.32 35.24 32.45 35.54 37.13

Butterfly 28.19 32.99 34.02 30.04 34.33 36.15
Cameraman256 27.62 30.90 31.63 28.98 32.05 33.51

Comic 26.86 30.10 30.91 28.40 31.48 33.00
Face 35.25 36.88 37.41 36.25 37.66 38.69

Fence 28.00 32.87 33.59 29.75 34.62 36.09
Fingerprint 28.48 32.61 34.14 31.09 34.42 36.58
Foreman 35.60 40.46 40.95 37.93 41.82 42.80
Leaves 27.74 33.81 35.08 30.15 35.59 37.81
Lena 34.44 37.89 38.66 36.04 39.15 40.54
Man 30.13 32.65 33.28 31.35 33.68 34.89

Parrot 27.52 31.09 31.85 29.09 32.26 33.63
Peppers 29.93 34.72 35.41 31.54 35.91 37.12
Raccoon 31.60 34.33 35.24 33.08 35.78 37.52
Starfish 30.71 34.47 35.55 32.36 36.04 37.96
Average 30.03 33.79 34.64 31.70 35.14 36.72
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Chapter 7

IMPROVED DICTIONARY LEARNING BY CONSTRAINED
RE-TRAINING OVER RESIDUAL COMPONENTS

7.1 Introduction

Signals contain inherently repetitive structures. It has been shown that the DL process

favors repetitive patterns and structures in the learned dictionary. There are several

attempts at improving the representation power of a learned dictionary by making a

better use of the training set X. These include the work of Mairal et al. [5] which

replaces each dictionary atom with a rank-1 approximation of the vectors in X that

use it. Another attempt is the stage-wise K-SVD approach of Russo and Dumitrescu

[63] where a dictionary is first learned over X and then updated with vectors in X that

are worst represented by this dictionary. Besides, Zepeda et al. [64] addressed the

residual spaces of X subject to greedy pursuit algorithms for sparse representation.

They learned dictionaries in residual domains, where each dictionary is adapted to the

characteristics of its residual domain. Each dictionary is obtained by applying K-means

clustering on the i-th residual of the training set.

In this chapter, we propose a strategy for performing a second pass of dictionary learn-

ing. This pass updates a dictionary obtained in a first DL pass using the residuals of

the training set subject to sparse representation over this dictionary. However, the rep-

resentation fidelity of the original training set is imposed as a constraint. The overall
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update process is formulated as a constrained error minimization problem. This prob-

lem is solved using the Lagrange multiplier method. A line-search step is added to

optimize the multiplier. Experimental results conducted over natural images validate

that dictionaries learned with the proposed strategy have better representation capabil-

ities as compared to dictionaries trained with the standard DL approach. This result is

validated in terms of the PSNR measure.

7.2 The proposed dictionary learning strategy

It is well-known that the sparse representation stage is almost common to all DL al-

gorithms [65]. An algorithm such as the orthogonal matching pursuit (OMP) [16] can

be applied for this purpose. Therefore, such algorithms differ in the way they update

D. More precisely, in the way the representation fidelity is imposed. After calculating

W, the DL process solves for a dictionary D that suffices the representation fidelity

constraint. This fidelity is addressed by solving for D that minimizes the following

objective function.

Φ(D,W) = ∥X− DW∥2F . (7.1)

This gives an update equation for D after each DL iteration.

Using the same training set, the DL process alternates between the sparse represen-

tation and the dictionary update stages for a certain number of iterations, or until a

specific stopping criterion is met. Standard DL algorithms use the same training set in

the whole DL loop. However, some recent works came to question the effectiveness of
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using the same training set in the DL process. Along this line, Russo and Dumitrescu

[63] proposed updating the dictionary with the data that is worst represented by this

dictionary, instead of the whole training set. At this point, it is interesting to notice

that given a certain D, a signal x can be decomposed into two components in terms

of its sparse representation over this dictionary, as x = xz + xr. In this notation xz

represents the zero-error part of x that is exactly represented as a sparse approximation

over D. This can be written as xz = Dw. On the other hand, xr represents the residual

component of x which can be obtained as xr = x − Dw. Let us consider the case

of performing the DL process on a data set X0 to obtain a dictionary D0. Let us fur-

ther denote by X1 the matrix of residuals components of the columns in X as sparsely

represented over D0. Intuitively, the vectors in X1 characterize the signals that D0 is

unable to represent. Following the same logic, the training set X0 can be written as

X0 = Xz + X1. A dictionary should be able to represent both components of X0. It

is guaranteed that D0 is loyal to representing Xz and disloyal to that of X1. Therefore,

performing a second DL pass on D over X1 is expected to improve its representation

capability given that it is constrained not to degrade the representation fidelity of X0.

The above-mentioned DL pass can be stated as follows.

argmin
D,W1

∥X1 − DW1∥2F

s.t. ∥w1
i ∥0 ≤ S ∀ 1 ≤ i ≤ m

∥X0 − DW1
0∥

2

F ≤ ∥X
0 − D0W0∥2F ,

(7.2)

where W1 and W1
0 denote the sparse coding coefficients of X1 and X0 over D, respec-
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tively and w1
i is the i-th column in W1. Also, D0 represents a dictionary obtained with

a first pass DL process over X0, and W0 is the sparse representation of X0 over this

dictionary.

The above optimization is similar to the standard DL problem stated in (1), with impos-

ing that the dictionary update stage will not degrade the representation of the original

training set X0. This means that the problem is still convex in D and W1 individually.

Therefore, it can be solved by alternating between calculating the coefficients W1 and

updating D. Any sparse representation technique, such as the OMP, can be used for

calculating the coefficients W1. However, the fidelity constraint of X0 is only imposed

during the dictionary update stage. While keeping the coefficients W1 fixed, the dic-

tionary update stage can thus be viewed as the following inequality-constrained error

minimization problem.

argmin
D

∥X1 − DW1∥2F

s.t. ∥X0 − DW1
0∥

2

F ≤ ∥X
0 −D0W0∥2F .

. (7.3)

This problem can be efficiently solved using Lagrange multipliers. If the scalar ϵ

denotes the term ∥X0 − D0W0∥2F , the Lagrangian of this problem can be expressed as

L(D) = ∥X1 − DW1∥2F + γ[∥X0 − DW1
0∥

2

F − ϵ], (7.4)

where γ denotes the Lagrange multiplier. Following the assumption that the error
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minimization is convex in D, and noting that L(D) is differentiable with respect to D,

its gradient with respect to D can give its critical points. A minimal point is obtained

by equating the gradient of the Lagrangian to zero, as shown in (6).

d

dD
L(D) =

d

dD
tr[(X1 − DW1)T (X1 − DW1)]

+γ
d

dD
tr[(X0 − DW1

0)
T (X0 − DW1

0)] = 0, (7.5)

where, T denotes the transpose operation. The solution to (6) gives the critical points

to the problem in (4). This gives dictionary solution D∗ as

D∗ = [X1W1T + γX0W1
0
T
][W1W1T + γW1

0W1
0
T
]−1. (7.6)

In the above formulation, γ is a scalar and therefore its determination is easy. A con-

venient line-search procedure can be applied. For this purpose, a set of γ values can be

used, such that D∗ is calculated for every γ value. Then, D∗ is said to be feasible if it

meets the fidelity constraint of X0, i.e., if ∥X0 − D∗W1
0∥

2

F ≤ ϵ. Then, the optimal solu-

tion of D∗ amongst the feasible solutions is chosen as the one that best minimizes the

objective function ∥X1 − DW1∥2F . The proposed DL strategy is outlined in Algorithm

8.

To analyze the impact of the parameter γ on the DL process, let us compare the dic-

tionary update equation of (7) with that of the standard DL problem. Let us consider
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Algorithm 8 The Proposed Residual Retraining DL Strategy
INPUT: A training set X0 ∈ Rn×m, an initial dictionary D0 ∈ Rn×k trained over X0,
sparsity S, the number of iterations Num and a set of γ values.
OUTPUT: D.
Find the sparse representation coefficients of X0 over D0 as W0.
Calculate the residual set as X1 = X0 − D0W0.

}
Initialization

Initialize D0 ← D0.
while 0 ≤ j ≤ Num− 1 do

Find W1 as the sparse representation of X1 over Dj .

 Sparse Approximation
Find W1

0 as the sparse representation of X0 over Dj .
For each γ value calculate D according to (7.6).
From the set of feasible D solutions, select D∗ that best
minimizes the objective function in (7.3)


Dictionary
Update

Find W1
0 as the sparse representation of X0 over Dj .

Set Dj+1 ← D∗

Normalize Dj+1

j ← j + 1
end while

the method of optimal directions (MOD) [27] as a standard DL algorithm. MOD min-

imize the objective function in (2) using a pseudo-inverse solution as D∗ = XW† =

XWT [WWT ]−1, where † denotes the Moore-Penrose pseudo inverse. It is clear that

setting γ to 0 transforms the update equation of (7) into D∗ = X1W1T [W1W1T ]−1 =

X1W1†. This is in fact the standard MOD update equation with the residue as the train-

ing set. That is, the proposed dictionary update stage becomes the MOD update stage

where the training set is the residual X1 and no constraint is applied on this update

process. However, setting γ to a large value means that D∗ ≈ X1
0W

1
0
T
[W1

0W
1
0
T
]−1 ≈

X1
0W

1
0
† .This gives more importance to continuing the learning process over the orig-

inal training set X0. More precisely, this means disregarding the residue in the dictio-

nary update. In view of this, γ balances the impact of the representation fidelities of

X1 and X0 on the dictionary update. Besides, the proposed DL stage gives a regular-

ized version of the MOD solution. This regularization comes in order to preserve the

representation fidelity of X0, while optimizing the representation of X1.
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7.3 Experimental Validation

This section presents experiments investigating the performance of dictionaries learned

with the proposed strategy, compared to the standard DL approach with the MOD and

K-SVD [28] DL algorithms.

7.3.1 MSE and SNR convergence

To compare the convergence of the proposed strategy as compared to standard MOD

and K-SVD DL, the following experiment is conducted. A training set X0 is obtained

by randomly sampling 103 patches of the size 6×6 from the image set used in [43].

Then, the MOD algorithm is used to train for a 36×72 dictionary over this set, with

sparsity S=3 and 100 iterations. This is called a first-pass dictionary Dfp. To this

end, a residual training set is obtained as X1 = X0 − DfpW0, where W0 denotes the

sparse representation coefficients of X0 with respect to Dfp. Then, two scenarios are

considered. In the first scenario, the DL process is continued with the same training

set for another 100 MOD iterations. In the second scenario, the proposed strategy is

used to update the dictionary Dfp using the residual X1, as explained in Algorithm 1.

Besides, a third scenario is considered where the same training data set is used to train

for a 36×72 with K-SVD and the same parameters for 200 iterations.

The proposed strategy determines γ using a line-search procedure. In this search, γ is

set to values ranging between 0 and 99. For each γ value, D is calculated, and the set

of feasible D solutions is established. From this set, the dictionary that best minimizes

the objective function in (4) is chosen as the optimal solution. For each DL iteration,

the signal-to-noise ratio (SNR) and mean-squared error (MSE) measures are calculated
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Figure 7.1. Convergence of the MSE between X0 and its sparse approximation for
standard MOD, standard K-SVD and the proposed DL strategy.

between the original training set X0 and its sparse approximation. SNR is defined as

SNR(X0, X̂0) = 10 log10

∑M
i=1 ∥x0i ∥22∑M

i=1 ∥x0i−x̂0i ∥22
. In this notation, x0

i denotes the i-th vector

in X0, and x̂0
i denotes its sparse approximation. This approximation is calculated as

x̂0
i = Dwi. Also, MSE is calculated between X0 and its sparse approximation X̂0 over

the current dictionary.

Figure 7.1 shows the MSE of representing the training set X0 using the dictionary in

each scenario after each iteration. It is noted that the MSE of the proposed strategy

converges to a value lower than that of standard MOD and K-SVD. The SNR perfor-

mance of the two scenarios is plotted in Fig. 7.2. It is noted that the proposed strategy

converges to a higher SNR value as compared to standard DL with MOD and K-SVD.
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Figure 7.2. SNR Convergence for the cases of standard MOD, standard K-SVD and
the proposed DL strategy.

7.3.2 Image Representation

In this experiment, we compare the quality of sparse approximations of image patches

over the three dictionaries designed in the first experiment. The objective is to com-

pare each test image to its estimate obtained by merging sparse approximations of

its overlapping patches using each dictionary. Each test image is divided into fully-

overlapping 6×6 patches. Each patch is then sparsely represented over each dictionary

with S=3 to give a patch sparse approximation. Sparse approximations of all patches of

an image are reshaped and merged to obtain an image estimate that is compared to the

ground-truth one in terms of the peak signal-to-noise ratio (PSNR). PSNR values for

some benchmark images are listed in Table 7.1 for the cases of using standard MOD,

the proposed strategy and standard K-SVD, repressively. It is noted that sparse approx-

imation over the dictionary designed with the proposed strategy is better than the cases
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of using standard MOD and K-SVD dictionaries. On average, sparse approximation

over the dictionary designed with the proposed strategy has PSNR improvements of

0.46 dB and 0.16 dB over the cases of using standard MOD and K-SVD dictionar-

ies. It is noted that this improvement is stronger for images rich of texture and high

frequency components such as the Barbara and Kodak images.

Table 7.1. Representation PSNR (dB) with a dictionary learned with standard MOD,
the proposed strategy and standard K-SVD, respectively.

Image MOD Proposed DL K-SVD
Baboon 26.41 26.63 26.42
Barbara 30.29 30.96 30.59
Butterfly 28.25 28.57 28.63

Fence 29.41 30.10 30.03
kodim01 29.34 29.70 29.47
kodim08 27.18 27.73 27.52
Parthenon 30.35 30.75 30.68

TextImage4 19.35 19.83 19.66
Average 27.57 28.03 27.87

These preliminary experiments indicate that the proposed constrained update with the

residual signals improves the representation power of learned dictionaries. In this

work, the proposed strategy comes as an extension to the MOD algorithm. Further

work can be done on extending this idea to be applied to other standard DL algorithms

such as K-SVD and other online DL methods such the online dictionary learning algo-

rithm (ODL) [5].
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, strategies for sparse representation over multiple structural dictionaries

are proposed and investigated. The broad line of this work lies in aiming at improv-

ing the representation quality and reducing the computational complexity. Meeting

these objectives requires first defining signal classes in order to design compact class-

dependent dictionaries. Secondly, it is required to devise suitable sparse representation

paradigms to make the best use of the defined class-dependent dictionaries. In this

context, a class dictionary is better able to represent signals in its class as compared

to a general one. Beside, this allows for designing class dictionaries of compact sizes

whereby reducing the computational costs of dictionary learning and sparse represen-

tation. More specifically, the conclusions made through this study can be summarized

as follows.

• Performing sparse coding on the wavelet domain over wavelet subband dictio-

naries is shown to serve for the above mentioned purposes. It has been shown

that this sparse coding paradigm enhances the representation accuracy. At the

same time, the computational complexity of sparse coding and dictionary learn-

ing is reduced. This is due to the fact that wavelet subbands contain directionally-

structured signals. This allows for designing compact dictionaries, while us-

ing a relatively large patch size. Besides, small size training sets are required.
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This sparse coding paradigm utilized as the framework for a super-resolution

algorithm. Experiments conducted on several natural images point out that this

algorithm is competitive to the state-of-the-art super-resolution algorithms and

its performance is superior to the case of employing a single highly-redundant

dictionary. Moreover, the designed wavelet subband dictionaries are shown to

inherit the directional nature of their respective wavelet subbands. Another de-

sirable characteristic of this paradigm is that it does not need a classification or

a sparse model selection, as these tasks are done by the wavelet analysis and

synthesis filterbanks, respectively.

• The idea of designing directionally-structured dictionaries via subspace projec-

tions is also shown to improve the representation quality at reduced computa-

tional cost. Projection operators are designed in such a way that they uniformly

partition the signal space in a directional sense. Moreover, the projection process

naturally separates signal features. This means that there is no need to perform

classification to define the signal classes. Besides, the signal as a whole is rep-

resented as a composition of the sparse representation of its projections. This

means that one needs not to employ a model selection process. In this work,

the designed subspace dictionaries are shown to inherit the intended directional

nature of their respective subspaces.

• A strategy for determining the optimal patch size is proposed. This is achieved

by dividing an image into very small regions. The sparse coding of each region is

extracted out of the sparse coding of the path containing this region such that the

representation error is minimized. The proposed strategy is shown to improve
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the representation quality of sparse coding. This is validated with experiments

conducted over the problems of image representation and denoising.

• A strategy for residual component-based sparse coding is shown to improve the

quality of the representation while using compact dictionaries. This is motivated

by the observation that a signal and its residual components may not necessarily

be best represented with a certain dictionary. This proposition is empirically in-

vestigated. Splitting a signal into remedial component corresponding to a certain

vector selection method is shown to allow for a better representation. This obser-

vation calls for a dictionary update process that exploits this usage. Experiments

conducted over the representation of natural images validate the improvement in

representation quality. Besides, the proposed dictionary update stage is shown

to enhance the intended structure of the designed dictionaries.

• A strategy for improving standard dictionary learning by performing a second

DL pass over the residual components of the training set. The second DL pass

is constrained to preserve the representation loyalty for the original training

set. A line-search algorithm is used to regularize the two objectives of this DL

paradigm. This proposed strategy is shown to improve the representation power

of learned dictionaries compared to the standard DL approach.

8.2 Future Work

Here is an account of possible extensions to the findings of this thesis.

• The super-resolution algorithm proposed in Chapter 3 can be further extended

along the following directions.
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– The super-resolution algorithm in Chapter 3 assumes that a given low reso-

lution image is the approximation subband of the unknown HR one. How-

ever, the validity of such an assumption relies on how closely the wavelet

analysis filters can resemble the blurring and downsampling operator. Fur-

ther investigation can be paid towards designing wavelet filterbanks that

can have a better resemblance of that operator. The result of this resem-

blance is that the proposed super-resolution algorithm will be better appli-

cable to real-life super-resolution problems.

– one can also extended the work conducted in Chapter 3 by performing dic-

tionary learning in the subband domain of the dual tree complex wavelet

transform (DTCWT). DTCWT has been shown as a directionally selec-

tive transform, and can therefore serve for the purpose of separating image

features based on their directional content.

• The proposed residual component-based DL strategy is shown to be superior to

standard DL of a single divisionary and multiple dictionaries. However, it can

still be further improved along the following directions.

– Addressing the DL problem with a fixed representation error, rather than

fixed sparsity. This allows for the applicability of the prosopic DL strategy

as a framework for image denoising. This is because image denoising via

sparse representation is, in essence, based on minimizing sparsity with a

fixed sparse representation error.

– Extending the proposed DL strategy for the case of coupled feature spaces.
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With this extension, the prossed DL strategy can be used for the super-

resolution application. Besides, the proposed DL strategy in coupled fea-

ture spaces can be used as the DL technique for designing wavelet subband

dictionaries.

– The proposed DL strategy starts with a set of initial structured dictionaries.

It then updates these dictionaries using residual components of the relevant

structure. Dictionaries have been successfully used for the purposes of

classification and recognition [66]. In recent literature, the added benefit

of employing structured dictionaries for the classification task in terms of

label consistency and robustness has been well established [67]. In view

of the ability of the prossed strategy to enhance the structure of a set of

dictionaries, it seems promising to pursue work towards applying it for the

classification task.

• The way projection operators can be investigated with more effort. This includes,

for example, designing custom-made projection operators that are specially de-

signed for a given image.

• Applicability of the proposed subspace sparse coding with subspace projections

requires investigating the invariance of these operators with respect to a given

degradation operator such as scale, noise and other factors. Having projection

operators with invariance to the degradation operators means possibility appli-

cation of the idea in real-life applications.

• Developing a better patch size selection criterion for the variable patch size rep-
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resentation strategy presented in Chapter 5. This means better applicability of

this strategy in real-life applications.

• Extending the representation strategies proposed in Chapters 4 and 6 to be ap-

plied to coupled feature spaces. This allows for making use of these strategies in

the super-resolution application.
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