
Efficient Techniques for Improving the Performance

of Multimedia Search Engines

Saed Alqaraleh

Submitted to the

Institute of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

 Doctor of Philosophy

in

Computer Engineering

Eastern Mediterranean University

November 2015

Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Cem Tanova

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor

of Philosophy in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

 Prof. Dr. Omar Ramadan

 Supervisor

Examining Committee

__

1. Prof. Dr. Mehmet Ufuk Caglayan ______________________________

2. Prof. Dr. Oya Kalipsiz ______________________________

3. Prof. Dr. Omar Ramadan ______________________________

4. Assoc. Prof. Dr. Muhammed Salamah ______________________________

5. Asst. Prof. Dr. Gürcü Öz ______________________________

iii

ABSTRACT

The main objective of the work presented in this thesis is to improve the performance

of multimedia search engines. The contributions of the work presented are: First, a

watcher based crawler (WBC) that has the ability of crawling static and dynamic

websites has been introduced. In this crawler, a watcher file, which can be uploaded

to the websites servers, prepares a report that contains the addresses of the updated

and the newly added webpages. The watcher file not only allows the crawlers to visit

the updated and the newly webpages, but also solves the crawlers overlapping and

communication problems. In addition, the proposed WBC is split into five units,

where each unit is responsible for performing a specific crawling process, and this

will increase both the crawling performance and the number of visited websites. The

second contribution of this thesis is presenting a new re-ranking approach based on

the multimedia files contents and some user specific actions. The proposed re-

ranking scheme has the ability of working with all multimedia types: video, image,

and audio. In addition, a group of multimedia descriptors that can be extracted from

the file concurrently using multiple threads, will be used to describe accurately the

multimedia file. Furthermore, the proposed re-ranking approach can show the most

relevant files to the top of the query results, and can increase the percentage of the

retrieved relevant files. Third, we have proposed an efficient scheme for eliminating

duplicated files in multimedia query results, and finally, the performance of the

query by example (QBE) has been enhanced to efficiently support all multimedia

types.

iv

Several experiments have been conducted to show the validity of the proposed

approaches.

Keywords: Multimedia search engines, Information retrieval, Crawling algorithm,

Re-ranking algorithm, Elimination of duplicated files, Query by Example.

v

ÖZ

Bu tezde sunulan yöntemin esas amacı çoklu ortam arama motorlarının

performansını arttırmaktır. Burada sunulan işin getirilerinden ilki, izleyici tabanlı

örün robotudur (Watcher Based Crawler, WBC). Bu robot, statik ve dinamik siteleri

tarama özelliğine sahiptir. Önerilen sistemde, örün sunucularına atılabilen izleyici

dosyası aracılığıyla güncellenen ve yeni eklenen web siteleri raporlanır. Bu izleyici

dosyası örüntü robotunun yeni ve güncellenen sayfaları taramasını sağladığı gibi,

robotların çakışma ve iletişim sorunlarını da çözmektedir. Buna ek olarak, WBC beş

farklı birime ayrılmıştır. Bu birimler kendilerine özgü tarama işlemleri yaparak hem

tarama performansını hem de ziyaret edilen sitelerin sayısını arttırmaktadır. İkinci

olarak bu tezde, çoklu ortam dosya içeriklerine ve kullanıcı işlemlerine dayanan yeni

bir sıralama yöntemi önerilmiştir. Önerilen sıralama yöntemi tüm çoklu ortam

dosyalarıyla çalışabilmektedir (video, resim ve ses). Ek olarak, bir grup çoklu ortam

tanımlayıcısı, çok sayıda iş parçası kullanılarak ayıklanıp çoklu ortam dosyalarını

tanımlamak için kullanılmaktadır. Önerilen sıralama sistemi, aramayla ilgili

kayıtların yukarıda çıkmasını arttırdığı gibi, bulunan dosyaların konuyla ilgili olma

oranını da arttırmaktadır. Bu Ğalişmadak üçüncü katk ise, arama sonuçları listesinde

bulunan aynı sonuçları ayıklayan verimli bir sistem olmasidir. Son olarak, tüm çoklu

ortam dosyalarını verimli bir şekilde desteklemek için, örnekle sorgulama (Query by

Example, QBE) yöntemi kullanılmıştır. Oluşturulan bu sistemin doğrulanması için,

çeşitli deneyler yapılmıştır.

vi

Anahtar kelimeler: Çoklu ortam arama motorları, Bilgi çağırma, Bilgi erişim

sistemi, tarama algoritması, Sıralama algoritması, Eş dosyaların elenmesi, Örnekle

sorgulama, Çoklu ortam arama motorları.

vii

DEDICATION

To My Family

 (Especially to my Father and my Mother)

 أهداء الى كافة اعضاء عائلتي

 وبالخصوص الى أبي وأمي

viii

ACKNOWLEDGMENT

In the name of Allah the most Merciful and Beneficent

First and foremost all the praises and thanks to Allah, the almighty Merciful, the

greatest of all, who ultimately I depend on for the guidance in my whole life.

I would like to thank Prof. Dr. Omar Ramadan, for the guidance and support. I would

also like to thank him for his continuous encouragement, patience and for sharing his

knowledge, as well as his effort in proofreading the drafts, are greatly appreciated.

Without any doubt, his appreciated supervision, lead me to be in this position.

Besides my advisor, I would like to thank and express my honour for Prof. Dr.

Mehmet Ufuk Caglayan and Prof. Dr. Oya Kalipsiz for being a member in my thesis

committee. In addition, a big thanks for Assoc. Prof. Dr. Muhammed Salamah and

Asst. Prof. Dr. Gürcü Öz for being a part of this whole journey and for their

encouragement and insightful comments. I must also acknowledge Asst. Prof. Dr.

Yıltan Bitirim for his valuable suggestions and comments that greatly improved this

work.

My family, I can’t find words that express my gratitude, without you this work

wouldn’t be possible. I owe a huge debt of gratitude to my parents for their

unconditional support and all they have done for me. My dad, mum, grandfathers,

grandmothers, sisters, brothers, aunts, uncles, and all my family members, without

ix

your prayers I wouldn’t be here. I hope that I have achieved the dream that you had

for me.

I am really indebted to wife and my son (Alwaleed) for their understanding, patience,

and unconditional love. I would like also to thank my wife for the sleepless nights

and for the support in the moments that I had difficulties.

Last but not least, I would like to express my sincere appreciation to my second

family, all members of Computer Engineering Department and all my friends for

their helpful attitude and constant support.

x

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

1 INTRODUCTION ... 1

2 OVERVIEW OF INTERNET SEARCH ENGINES .. 5

2.1 Introduction... 5

2.2 Mechanism of the Conventional Search Engines ... 6

2.3 Recent Developments in Search Engines ... 11

3 THE PROPOSED WATCHER BASED CRAWLER ... 12

3.1 Introduction... 12

3.2 Related Works .. 12

3.3 Main Problems in the Existing Crawling Techniques 15

3.4 The Proposed Watcher Based Crawler Structure ... 18

3.4.1 The Watcher File ... 18

3.4.1.1 Mechanism of Building the Watcher’s Report 19

3.4.1.2 Watcher File Setup ... 25

3.4.2 WBC-Server Design .. 25

3.4.3 WBC Complexity Analysis ... 32

3.4.4 WBC Properties... 32

4 THE PROPOSED RE-RANKING APPROACH .. 35

4.1 Introduction... 35

4.2 Related Works .. 35

4.3 The Proposed Re-ranking Structure ... 37

xi

4.3.1 Offline Operations ... 38

4.3.1.1 Pre-processing Operations .. 39

4.3.1.2 Extract File Features ... 41

4.3.2 Online Operations ... 46

5 THE PROPOSED ELIMINATION APPROACH FOR DUPLICATED

MULTIMEDIA FILES .. 49

5.1 Introduction... 49

5.2 The Proposed Elimination Structure ... 50

5.2.1 Hash Algorithms and Feature Extraction Techniques............................. 53

5.2.1.1 Hash Algorithms ... 53

5.2.1.2 Feature Extraction .. 54

5.2.2 Mechanisms of Multimedia Files Comparison Process 55

5.2.3 Parallel Implementation of the Proposed Elimination Scheme 56

6 THE ENHANCED QUERY BY EXAMPLE ... 57

6.1 Introduction... 57

6.2 The Enhanced QBE Structure ... 59

6.2.1 Clustering Techniques ... 60

6.2.2 Parallel Implementation of the Proposed QBE 64

6.2.3 Elimination of Duplicated Multimedia Files ... 66

6.3 Query Processing Mechanism .. 67

6.3.1 User Options for the Queries Using the Proposed QBE 69

7 EXPERIMENTAL STUDY .. 70

7.1 Crawler Technique Performance .. 70

7.2 Re-ranking Technique Performance ... 81

7.3 Elimination Technique Performance .. 94

7.3.1 Image Database Processing ... 94

xii

7.3.2 Video and Audio Databases Processing .. 96

7.4 QBE Technique Performance ... 104

8 CONCLUSIONS AND FUTURE WORKS .. 112

REFERENCES ... 115

xiii

LIST OF TABLES

Table ‎6.1: Total number of comparison of the enhanced QBE as compared with A, B

scenarios. .. 66

Table ‎7.1: The number of updated pages for different websites recorded in seven

days. ... 71

Table ‎7.2: The frequency of downloading specific webpages in three days by running

fifty parallel crawlers. .. 73

Table ‎7.3: The watcher file requirements. ... 74

Table ‎7.4: Number of downloaded distinct webpages using the proposed WBC and

WEB-SAILOR [28]. .. 75

Table ‎7.5: Number of downloaded webpages using the proposed WBC, Apache

Nutch [119], and Scrapy [120]. .. 76

Table ‎7.6: Number of comments for specific YouTube videos reported in [121] and

downloaded using the proposed WBC. .. 80

Table ‎7.7: The 10-Precision of the SCD, EHD, JCD, and the proposed approach for

re-ranking image and video queries. .. 82

Table ‎7.8: The position of first five relevant files for specific queries obtained using

Google, and Yahoo search engines. ... 84

Table ‎7.9: The position of first ten relevant files for specific queries using JCD, and

the proposed re-ranking approach (PRA). ... 85

Table ‎7.10: The 10-Precision of the proposed approach with and without the pre-

processing operation for re-ranking image, video and audio queries. 87

Table ‎7.11: 10-Precision of “Amazon MP3”, and the proposed approach using a

single, and three dynamic signatures. .. 88

Table ‎7.12: R-Precision of the developed re-ranking approach for a sample of the

image queries. .. 90

xiv

Table ‎7.13: R-Precision of the developed re-ranking approach for a sample of re-

ranking video queries. .. 91

Table ‎7.14: R-Precision of the developed re-ranking approach for a sample of re-

ranking audio queries. .. 91

Table ‎7.15: Execution time for updating a database using the proposed elimination

scheme. ... 100

Table ‎7.16: The percentage of relevant and duplicated files for Google search engine

with and without using the proposed elimination scheme. 101

Table ‎7.17: The percentage of relevant and duplicated files for Yahoo search engine

with and without using the proposed elimination scheme. 102

Table ‎7.18: The percentage of relevant and duplicated files for Bing search engine

with and without using the proposed elimination scheme. 103

Table ‎7.19: Percentage of relevant files for some video queries using K-means,

subtractive, spectral, hierarchical, and neural network algorithms. 105

Table ‎7.20: Effect of clusters number on the percentage of relevant files for some

video queries using the proposed ensemble system. .. 106

Table ‎7.21: Execution time using the sequential QBE scheme, sequential QBE with

clustering scheme and parallel QBE with clustering scheme for different number of

multimedia files. ... 107

Table ‎7.22: Comparison between Google QBE and the enhanced QBE for image

queries. ... 108

Table ‎7.23: The efficiency of the enhanced QBE approach for videos/audios. 110

Table ‎7.24: Comparison between the Google, Yahoo and Bing text based search

engines versus the enhanced QBE. .. 111

xv

LIST OF FIGURES

Figure ‎2.1: The conventional search engines mechanism. ... 5

Figure ‎3.1: The WBC structure. ... 18

Figure ‎3.2: Flowchart of the developed watcher file for adding the triggering paths of

onload, onclick, ondblclick and onmouseover events to the watcher report. 22

Figure ‎3.3: Flowchart of the developed watcher file for adding the updated static

pages to the report. ... 24

Figure ‎3.4: Flowchart of the developed crawler unit for processing static webpages.

 .. 28

Figure ‎3.5: Flowchart for processing the dynamic pages by the AJAX unit. *This

process is done according to Algorithm 3.1. .. 30

Figure ‎4.1: The structure of the proposed re-ranking approach. 38

Figure ‎5.1: The flowchart of eliminating the duplication of the multimedia files

during creating and/or adding new files to multimedia database(s). 52

Figure ‎6.1: The structure of the enhanced QBE. .. 60

Figure ‎6.2: The flowchart to define the number of clusters, where z is number of

clusters.. 63

Figure ‎6.3: The flowchart of parallel implementation of part II of the proposed QBE,

using M threads, for Z different clusters. ... 65

Figure ‎6.4: The flowchart of the query process unit in the proposed QBE. 68

Figure ‎7.1: The total number of downloaded webpages using dependent, seed-server,

independent strategies, and the developed WBC in three days. 74

Figure ‎7.2: The required time for re-visiting “www.hkjtoday.com” website using the

crawlers of WBC, uniform, and proportional by rank and by top N level. 77

xvi

Figure ‎7.3: The percentage of downloading updated pages in “www.hkjtoday.com”

website using the crawlers of WBC, uniform, and proportional by rank and by top N

levels. ... 77

Figure ‎7.4: Number of dynamic pages processed in 10 minutes for (a) one crawler,

(b) two crawlers, (c) three crawlers, and (d) four crawlers. 79

Figure ‎7.5: The R-Precision for the image queries. ... 89

Figure ‎7.6: The R-Precision for the video queries. .. 89

Figure ‎7.7: The R-Precision for the audio queries. .. 90

Figure ‎7.8: R-Precision of the developed re-ranking approach and the approach

presented in [34] for specific image queries. ... 92

Figure ‎7.9: R-Precision of the developed re-ranking approach and the approach

presented in [41] for specific video queries. .. 93

Figure ‎7.10: Execution time versus number of images for the MD5 and Bit-wise

algorithms. .. 95

Figure ‎7.11: Execution time versus number of images for 4, 8, 12, and 16 processes

as obtained by using the parallel implementation of the MD5 algorithm. 95

Figure ‎7.12: Execution time versus number of video and audio files for 4, 8, 12, and

16 processes as obtained by using the parallel implementation of the MD5. 97

Figure ‎7.13: Execution time required for creating video/audio databases using the

low level extraction and the MD5 hashing algorithm. ... 98

Figure ‎7.14: Execution time required for the comparison process by using the low

level extraction and the MD5 hashing algorithm. .. 98

Figure ‎7.15: Total execution time versus number of file using the low level

extraction and the MD5 hashing algorithm. ... 99

1

 Chapter 1

1 INTRODUCTION

In the early days of the Web, the limited amount of information that was available

leads the user to find websites and relevant information manually [1]. In the 1990

century, the number of websites, documents and resources had increased

astronomically. This makes the process of finding certain information manually

difficult and sometimes impossible. As a result, web search engines were introduced

[2]. Web search engines are websites that designed to help users in getting specific

information on the World Wide Web (WWW). Nowadays, most search engines use

the crawler techniques [3-5] to collect website’s information such as, site's meta tags,

keywords, multimedia files, etc. Crawler, which is also known as a spider or robot, is

a software that visits the websites in a routinely manner. The main aims of the

crawler are to find new web objects, such as new webpages, multimedia files,

articles, etc., and to observe changes in previously indexed web objects. The crawler

will return all extracted information back to the search engine central server to be

indexed and saved in the databases. Databases mainly contain keywords, URL

addresses, copy of the webpages, multimedia files and other related information.

When the user executes a query, the search engine finds the most relevant

information, and by a specific ranking algorithm, the results will be ordered and

shown to the user.

2

Nowadays, multimedia files are among the most important materials on the Internet.

In the last few years, the number of published multimedia files has grown

considerably, and several developments in the field of accessing the multimedia have

been introduced. However, even for the recently state-of-the-art methods and

applications based on accessing multimedia files on the Internet, we still have

challenging problems. In the following, the main problems related to multimedia

searching are described.

1) Most of current crawlers use the conventional crawling techniques that can’t

detect the updated pages online [3-5] and this will necessitate the crawlers to

download all the webpages. This means that the conventional crawlers spend

most of their working time in visiting un-updated pages. It is worth

mentioning that webpages can be categorized into static which are the

webpages that allocated in the website’s server and delivered to the user

exactly as being stored on the server, and dynamic webpages, which use the

AJAX techniques [6], and in most cases, are not allocated on the server, i.e.,

generated dynamically. Therefore, the conventional crawling techniques can

download only the pages that are allocated on the website server, and they are

inefficient when dealing with AJAX pages, as they can’t index the website’s

dynamic information [7-9].

2) Most search engine’s multimedia databases are still created based on the

multimedia metadata and the surrounding text. This technique does not pay

attention to the contents of the file itself, and sometimes there may be no

relation between the contents of the multimedia files and its metadata and/or

the surrounding text. This may lead the outcomes of multimedia queries to

contain a large number of irrelevant files.

3

3) In the 1970’s, a new searching techniques known as query by example (QBE)

that can be used to find files that are similar to what the user already has, was

introduced [10]. Although, it is performance is good for image files, it still

suffers problems for the other multimedia files such as videos and audios.

4) Last but not least, it has been found in [11-14] that around 40% of the pages

and multimedia files on the web are duplicated.

The main objective of the work presented in this thesis is to solve the above

mentioned problems and improve the overall performance of existing multimedia

search engines as listed below.

I. A watcher based crawler (WBC) [15] that has the ability of crawling static and

dynamic websites has been presented. In the proposed crawler, a watcher file,

which can be uploaded to the websites servers, prepares a report that contains

the addresses of the updated and the newly added webpages. The watcher file

not only allows the crawlers to visit the updated and newly webpages, but also

solves the crawlers overlapping and communication problems. In addition, the

proposed WBC is split into five units, where each unit is responsible for

performing a specific crawling process, and this will increase both the crawling

performance and the number of visited websites.

II. A new re-ranking approach based on the multimedia contents and some user

specific actions is introduced. This approach has the ability to work with all

multimedia types: video, image, and audio. In addition, a group of multimedia

descriptors will be extracted from the file concurrently using multiple threads

to describe accurately the file itself.

4

III. Elimination of duplicated files in multimedia query results has been introduced

[14] by using some techniques such as hashing algorithms [16] and feature

extraction [17].

IV. Finally, QBE approach has been enhanced [18, 19] by adapting some

techniques like dynamic descriptors and clustering.

Several experiments have been conducted to study the performance of the above

introduced techniques. It has been observed that the proposed WBC increases the

number of uniquely visited static and dynamic websites as compared with the

existing crawling techniques. In addition, the proposed re-ranking approach shows

the most relevant files to the top of the query results, and increases the percentage of

the retrieved relevant files. Furthermore, we have successfully managed to eliminate

duplicated files completely, and finally the QBE was enhanced to support all

multimedia types with good accuracy levels.

The remaining of the thesis is organized as follows: Chapter 2 provides the

mechanism of search engines. Chapter 3 presents the developed WBC. The proposed

re-ranking approach is described in Chapter 4. Chapter 5 explains the proposed

methodologies for eliminating the duplicated files in multimedia search engines.

Chapter 6 presents the enhanced QBE approach. Experimental studies are presented

in Chapter 7, and finally, conclusions are given in Chapter 8.

5

Chapter 2

2 OVERVIEW OF INTERNET SEARCH ENGINES

2.1 Introduction

Web search engines are websites designed to help users in getting specific

information on the WWW. In general, search engines use crawler techniques to

collect website’s information such as site's meta tags, keywords, multimedia files,

etc. Then, the collected information will be analyzed to build the databases. When

the user executes a query, the search engine finds the most relevant webpages, and

by specific ranking algorithms [20], the results will be ordered and shown to the user.

The mechanism of the convention search engines is shown in Figure 2.1.

Figure ‎2.1: The conventional search engines mechanism.

6

2.2 Mechanism of the Conventional Search Engines

Based on Figure 2.1 the mechanism of the conventional search engines includes five

steps. The details of these steps are explained below.

2.2.1 Crawling Process

A crawler, also known as spider or robot, is a software that visits all websites over

the Internet, downloads the web documents and stores the collected documents on

the search engine servers [3-5],[7-9]. In general, the mechanism of the crawler can be

summarized as follows:

1) The crawler starts crawling based on a set of URLs, i.e., URLs frontier.

2) The crawler downloads a page, extracts its URLs and inserts these URLs into

a queue. It is worth mentioning that the contents of the queue will be added in

a sorted manner to the crawler’s URLs frontier.

3) Save the downloaded page in the search engine database(s).

4) Steps 1-3 will be repeated for the next URL, and the crawling process can be

stopped based on specific criteria, such as the frontier is empty and/or a

predefined stopping time specified by the crawler administrator, etc.

The primary goals of the crawler are a) finding new web objects, and b) observing

changes in previously indexed web objects. To achieve the first goal, the crawler has

to visit as many websites as possible, and to achieve the second one, the crawler has

to maintain the freshness of the previously visited websites, which can be achieved

by re-visiting such websites in a routinely manner. In the following, the most

frequently used re-visiting policies are summarized:

7

1) Uniform policy: In this policy, the entire websites pages will be downloaded

at each visit [21-25]. Although, this approach enriches the databases, it

requires a large processing time [21-25].

2) Proportional policy: This policy is performed in different ways. In the

following the most frequent used ones are listed:

a) Download only the pages that have a rank more than a threshold value

specified by the crawler administrator [21-23]. The rank of a page is

based on many factors such as the importance and the frequency of

updating the page.

b) Download the webpages allocated in the top N levels of each website.

In general, this type of proportional policy, which is based on breadth

first algorithm [21, 26], involves visiting the main page (root) of the

website, and downloading only the pages that have URL links or

allocated in the top N levels [21, 26]. This helps the crawler to avoid

exploring too deeply into any visited website [27].

It is worth mentioning that the time required for re-visiting a website for

the proportional policy is significantly less than the uniform policy. On

the other hand, the proportional policy may ignore visiting the new

webpages, as their rank is initially low, and it may also ignore the

updated webpages which are not allocated on top N levels.

Based on the fact that there are a huge number of websites, parallel techniques were

used to speed up the crawling operations. Parallel crawlers can be static or dynamic

[30], which are described as below.

8

1) Static crawlers

In this case, the websites are divided and assigned statically to each crawler, and

there is no controller to co-ordinate the activities of individual crawlers. This type of

crawlers can be categorized into two groups:

a) Dependent crawlers: In this case, all running crawlers have to communicate

with each other, and this increases the time of the crawling process, which

degrades the overall performance of the crawling system. For example, if we

have 3 hundred crawlers working at the same time, and when any crawler

visits a webpage, this crawler has to communicate with the other 299 crawlers

to make sure that they didn’t visit this webpage.

b) Independent crawlers: In this case, each of the working crawlers has its own

decision without communicating other. The main problem with this type of

crawlers is the overlapping issue, which means more than one crawler may

visit and download the same webpage.

2) Dynamic crawlers

In the dynamic crawlers, a controller is used to partition the websites into groups and

assigns each group to a specific crawler. As in the static crawlers case, overlapping

problem may occur with this type of crawlers.

In [3-5], [28], the main introduced techniques that can be used for solving

overlapping problem are summarized as below.

1) The crawler will discard the URLs that are not in its URLs frontier and

continue to crawl on its own partition erasing any possibility of overlap [3-

9

5]. But, in this case, many important URLs will be lost, and this will

reduce the quality of the query results [3-5].

2) The running crawlers have to communicate with the server to decide the

crawling decisions [28]. Although this approach eliminates the

communication between the running crawlers, an extra time delay is

required for communicating with the server to decide on visiting the

websites.

2.2.2 Indexing Process

The second major step of the conventional search engines mechanism is the indexing

process. This step starts by analysing the information collected by the crawlers.

Then, the crawled pages and its information such as, the keywords, the website’s

address and multimedia files, will be saved in the databases. It is worth mentioning

that, as the contents of the websites change frequently, the search engines must keep

maintaining and updating all database(s) contents.

2.2.3 Searching Process

When a user requests a certain information or webpage by writing keyword(s), i.e.,

query, the search engines, in most cases, use Boolean operations, such as “and”, “or”,

etc. to control the relation between the words in the queries. In addition, a spell

checking process that allocate misspelled words and notify the user of the

misspellings has been introduced, to increase the chance of detecting the required

information and to improve the search results.

2.2.4 Database Searching

When a query is submitted, the search engine will post a request to the databases to

find the related websites. In general, search engines perform statistical analysis on

10

the indexed pages to find the most relevant ones. In last few years, search engines

start to use “caching” [29] to reduce the processing time while searching for common

queries. In this case, the search engine returns the result from the cache without

checking the databases [29].

2.2.5 Page Ranking

In this step, the search engine will rank the websites in a list that will be displayed as

the query result. Basically, the mechanism of ranking the websites is categorized into

the following two categories:

1) Query independent ranking scheme [30-32]: This scheme ranks the

importance of websites based on some factors like the number of hits, the

keywords, the website meta-tags, its contents, etc.

2) Query dependent ranking scheme [32-34]: In most cases, it is a distance

based scheme that ranks the files by calculating their distance to the query.

Then, the website with a high rank will be shown to the top of the listed results. On

the other hand, the above ranking mechanisms do not pay attention to the contents of

the requested file itself. This is unfair with multimedia files which are an important

part of the web contents, as both text and multimedia files contents can contain

useful information that should be used in ranking the websites. This is because in

some cases, there may be no relation between the contents of the multimedia files

and the surrounding text, and this will lead the outcomes of query to contain a large

number of irrelevant files. Hence, re-ranking techniques have been introduced to

improve the quality of the retrieved information [35-41]. In general, the mechanism

of the re-ranking is based on re-order the query’s results based on their relevance.

11

2.3 Recent Developments in Search Engines

2 In the last few years, the number of published multimedia files has grown

considerably, and several developments in the field of accessing the multimedia have

been introduced [42- 48]. In [42], an image retrieval system working on extracting

information from files (content based retrieval) has been developed. In [43], a new

mechanism, which uses a hybrid method that combines ontology and content based

methods, was presented for effective searching through multimedia contents. A new

search engine for the scientific researches and learning purposes has been presented

in [44]. In this search engine, several score functions have been introduced to

improve the order of the query’s relevant pages. In addition, an anchor text analyser

that analyses pages that may or may not contain the query terms to decide if the

pages are relevant. Furthermore, the crawler of this search engine has the ability of

finding the priority for URLs queue, and balancing the load of the crawling process.

In [45], a semantic approach that presents the multimedia documents based on

conceptual neighbourhood graphs has been proposed. In [46], a 3D model retrieval

technique based on 3D factional Fourier transform has been introduced to improve

the searching outcomes. In [47], a hybrid search engine framework based on

“historical and present sampling values” was presented. This search engine supports

three kinds of search conditions: keyword-based, spatial-temporal and value-based.

In [48], a group of researchers have designed collection of tools named as

SpidersRUs, which can be used in building crawling, indexing and searching

functions. Finally, in addition to the above techniques, it is important to note that

most of the information about the commercial search engines such as Google and

Bing are kept hidden as business secrets, and there are very few documents about the

mechanisms of these engines.

12

Chapter 3

3 THE PROPOSED WATCHER BASED CRAWLER

3.1 Introduction

In the last decade, the number of websites, documents and resources had increased

astronomically. As of February 2015, the total number of the published websites on

the Internet was over 1.25 billion [49]. Up to date, the number of websites that can be

processed by the conventional crawlers compared with the current huge number of

published websites is still limited. To speed up the conventional crawlers, a very

large number of terminals must be used [3-5]. This increases both the cost and the

complexity of the crawling system. Therefore, improving the crawling techniques

have been and continue to be an important issue.

3.2 Related Works

In the last few years, several developments in the web crawler field have been

introduced. In [28], a dynamic parallel web crawler based on client-server model,

named as WEB-SAILOR, has been introduced. This approach eliminates the

communication between the running crawlers by introducing a seed-server which is

responsible for the crawling decisions. In [50], a new crawler, named as DCrawler,

has been implemented. In this crawler, a new assignment function is used for

partitioning the domain between the crawlers. In [51], a parallel web crawler based

on the cluster environment was presented. In this approach, a new distributed

controller pattern and dynamic assignment structure were used. In [52], a scalable

13

web crawling system, named as WEBTracker, has been proposed to increase the

number of visited pages by making use of distributed environment.

In addition, topic specific crawlers were introduced for specific topic search engines,

where the databases contain websites that are related to a specific topic(s) only [53,

54]. These crawlers, which are also known as focused crawlers, download only

webpages that are relevant to a pre-defined topic(s). In [53], a focused web crawler

which calculates the prediction score for the unvisited URL’s based on the webpage

hierarchy and the text semantic similarity was introduced. In [54], a multiple specific

domains search engine has been developed. The main problem in the developed

crawlers of [53] and [54] is that they need to visit all published worldwide websites

and this will increase the required time for updating the databases and showing the

new information on query results.

In last ten years, rich Internet applications (RIAs) [6], that enhance and support the

accessibility of scripted and dynamic contents, become more and more popular.

AJAX, which is a group of interrelated techniques that can be used on the client side

to create asynchronous web applications, can be considered as the most popular

technique used in RIAs [6]. Hence, dynamic indexing crawlers were also introduced.

In [7], an AJAX crawler that crawls dynamic webpages has been developed. In [8],

an ontology based web crawler that can download the information in dynamic pages

has been proposed. In [9], a new crawler, which extracts the information in dynamic

pages by analysing java script language, was introduced. In [55], a new crawling

methodology, named as model-based crawling, was introduced to design efficient

crawling strategies for RIAs. Although current AJAX based crawlers can extract a

14

promising percentage of dynamic pages information, it is important to note that this

process still requires a large processing time and this will slow down the process of

extracting dynamic data [7-9].

From the above survey, it can be concluded that the webpages can be categorized

into the following two categorizes: static and dynamic webpages. The details of these

categories are described below.

a) In the static case, webpages are allocated in the website’s server and

delivered to the user exactly as stored on the server [56].

b) In the dynamic case, the webpages use AJAX techniques. In addition,

triggering AJAX events may dynamically introduce new pages, known as

states, and in most cases these pages are not allocated on the server [6-9].

It should be noted that the process of updating static pages can be done by

editing and changing the contents of the file offline. On the other hand, the

content of AJAX pages can be generated and updated dynamically (online)

without reloading the whole page or changing the URL.

15

3.3 Main Problems in the Existing Crawling Techniques

In this section, the main crawler challenging problems are summarized:

1) Most of current crawler techniques can’t detect the updated pages online [3-

5], and this will necessitate the crawler to download all the webpages, and

hence, increases the crawling processing time, the Internet traffic and the

bandwidth consumption [57, 58].

2) Overlapping problem where more than one crawler process the same

webpage.

3) Up to our knowledge, most of the crawling techniques require

communications between the running crawlers, and this increases the

crawling processing time and requires high quality networks [3-5, 28, 42, 50].

4) The conventional crawlers work is based on the URLs, and it download only

the pages that are allocated on the website server. Therefore, conventional

crawlers are inefficient when dealing with AJAX pages, as they can’t index

the website’s dynamic information [7-9].

In addition to the above static crawling problems, AJAX crawling techniques are still

suffering from several challenging problems such as:

1) Identifying webpage’s states: In some cases, in order to identify the page

states the AJAX events need to be triggered, and this may change the content

of the corresponding page without changing the page URL, and such page

will be recognized as one of the page’s states.

2) As AJAX technique contains many events, triggering all page events will

lead to a very large number of states. In some cases, more than one event may

lead to the same state, and this will be considered as duplicated state. For

16

example, by clicking the “next” tab in page (i-1) and clicking the “previous”

tab in page (i+1), will lead to the same page (i), i.e., the same state [62].

As it has been mentioned before, the conventional crawler techniques necessitate

downloading all website pages to find the updated ones, and this will increase the

Internet traffic and the bandwidth consumption. It has been found that approximately

40% of the current Internet traffic, bandwidth consumption and web requests are due

to search engine’s crawlers [57, 58]. To solve this issue, mobile crawlers [58, 59] and

sitemaps based crawlers [59-61] were introduced. The details of these two techniques

are explained below:

A. Mobile crawlers:

Unlike the conventional crawlers, the mobile crawlers go through the servers of the

URLs in its frontier to detect and store in its memory the required data such as the

updated pages. This mechanism reduces the amount of data transferred over the

network and therefore, decrease the network load caused by the crawlers. However,

mobile crawling techniques are not wildly used due to the following problems:

1) Mobile crawlers occupy large portion of the visited website resources such as

memory, the network bandwidth, CPU cycles, etc. [57].

2) Due to security reasons, the remote system in most cases will not allow the

mobile crawlers to reside in its memory, and may recognize it as viruses.

B. Sitemaps based crawlers:

Sitemap file is an XML file that contains a list of the URLs of website pages with

additional metadata such as: loc, which is a required field representing the URL of

the webpage, and lastmod, which is an optional field representing the last time the

webpage of the URL was updated. Recently, the websites start providing sitemap(s)

17

to the users for easier navigation. Sitemaps based crawlers use the sitemap(s) to find

the updated and the new webpages. However, this mechanism suffers from the

following problems:

1) Nowadays, many websites do not have sitemap, and therefore, the web

crawler has to follow the traditional way of crawling.

2) Recently, a group of websites and softwares have been developed to create

the website’s sitemaps automatically. However, when any of the site pages is

updated, the system administrator has to update the pages metadata such as

lastmod manually [58, 59]. This makes the process of updating the sitemap,

especially for larger websites, difficult and time consuming.

The main objective of the work presented in this chapter is to solve the above

mentioned problems. A watcher based crawler (WBC) that has the ability of crawling

static and dynamic websites has been presented. In the proposed crawler, a watcher

file, which can be uploaded to the websites servers, prepares a report that contains

the addresses of the updated and the newly added webpages. The watcher file not

only allows the crawlers to visit the updated and newly webpages, but also solves the

crawlers overlapping and communication problems. In addition, the proposed WBC

is split into five units, where each unit is responsible for performing a specific

crawling process, and this will increase both the crawling performance and the

number of visited websites. Several experiments have been conducted and it has been

observed that the proposed WBC increases the number of uniquely visited static and

dynamic websites as compared with the existing crawling techniques.

18

3.4 The Proposed Watcher Based Crawler Structure

The developed WBC consists of two main parts: the watcher file, and the WBC

server. The structure of these parts is shown in Figure 3.1, and the details of these

parts are summarized below:

Figure ‎3.1: The WBC structure.

3.4.1 The Watcher File

In the proposed WBC, the watcher file, which will be uploaded to the websites

server, prepares a report that contains only the updated and the newly added

webpages. The watcher file is small in size which does not require any specific

19

requirement on the web server and it will not affect its performance. The main

advantage of the watcher file is that it allows the crawlers to visit only the updated

and the newly added pages. In addition, it solves crawlers overlapping and

communication problems by introducing a flag in the watcher report, which will be

set to 1 by the watcher file when a crawler processes that website. In this case, other

copies of WBC will not visit any website whose flag is set. Hence, there will be no

need for communication between the running crawlers.

3.4.1.1 Mechanism of Building the Watcher’s Report

The mechanism of building the watcher report is performed using the following

monitoring and ranking functions:

1) Monitoring function: This function keep track of the website directories and

detects the updated and the newly added pages. In the case of updating static

pages, the ranking function will be called to rank and add the pages URLs in the

appropriate position in the report. In the case of dynamic pages, the monitoring

function detects and adds the AJAX events including its triggering path into the

watcher report as shown in Figure 3.2. The format of adding the dynamic page

information is:

 Dynamic page URL, Event(s), Source element(s), Target element, Value.

 Triggering path

where event(s) is the java script event that will be triggered, Source element(s)

represents the corresponding HTML object, Target element is the object whose

information will be updated, and Value is the new value that will be assigned to

the target or the name of the function that will be called. For instance, a dynamic

page event can be represented in the report as follows:

20

As it has been mentioned before, one of AJAX crawling problems is that same

state may be retrieved multiple times. The following two scenarios illustrate such

problem: First, in some cases, more than one HTML object in an AJAX page

may contain exactly the same event and its triggering path. For instance, by

triggering the following two reported events, the same state will be produced:

The second scenario is that multiple events may have the same triggering path

that produces the same state. For instance, the following events produce the same

state:

To overcome this problem, the monitoring function has the ability of detecting

and combining the information of all similar events in one field. This allows the

WBC to trigger only one of the similar events. For instance, a group of combined

similar events is represented in the report as follows:

 www.test.com/main.asp, onclick, div id=”next”, text. innerHTML, Updateinfo()

 Dynamic page URL Event Source Target Value

www.test.com/main.asp, onclick, div id=”next”, text. innerHTML, Updateinfo()

 Dynamic page URL Event Source Target Value

www.test.com/main.asp, onclick, div id=”previous”, text. innerHTML, Updateinfo()

 Dynamic page URL Event Source Target Value

www.test.com/main.asp, onclick, div id=”next”, text. innerHTML, Updateinfo()

 Dynamic page URL Event Source Target Value

 www.test.com/main.asp, onload, body id=”next”, text. innerHTML, Updateinfo()

 Dynamic page URL Event Source Target Value

21

It is worth mentioning the followings: First, the watcher file will consider only the

most important JavaScript events: onload, onclick, ondblclick and onmouseover [62].

Second, the WBC ignores the pages that require some database queries, which

necessitates the user intervention to fill some forms, such as login pages. We believe

that this type of information is private and shouldn’t be indexed by crawlers.

www.test.com/main.asp, {onclick, onload}, {button id=”move”,div id=”next”},

 text. innerHTML, Updateinfo()

22

Figure ‎3.2: Flowchart of the developed watcher file for adding the triggering paths of

onload, onclick, ondblclick and onmouseover events to the watcher report.

23

2) Ranking function: Based on Figure 3.3, this function is responsible for ranking

and adding the URLs of the updated and the new static pages into the appropriate

position of the watcher report. This allows the crawler to visit and download the

most important pages first. In the proposed WBC, the rank of the website pages

is calculated according to the frequency of updating the page, and its closeness to

the main page. As both of these two factors determine the importance of

webpages, an equal weight of 0.5 has been assigned to each one. The calculation

details of these factors are summarized below:

a) Frequency of updating the pages: Initially, the frequency value of all pages is

set to zero. Whenever a page is updated, its frequency is incremented. Then,

the frequency values will be normalized to be within the range {0, 0.5}. The

normalized frequency of page i (Fni) is computed as

 Fni = 













FF
FF

minmax

mini

-

-

2

1
 Eq.(3.1)

where Fi is the frequency of updating the i
th

 page, Fmin and Fmax are,

respectively, the smallest and the largest assigned frequency values.

b) Closeness of the page to the root (main page): The main page and the pages

that are linked to it get the highest level value, i.e., 0.5. All other pages are

categorized and get a discrete level value of 0.1, 0.2, 0.3, or 0.4, depending on

their closeness to the main page. The number of categories Ncat is specified by

applying the rule of thumb [63] on the length of the website tree and computed

as

24

 Ncat=⌈√
𝑙𝑒𝑛𝑔𝑡ℎ−1

2
 ⌉ Eq.(3.2)

Finally, the rank of each page is calculated by adding its frequency and level

values. It is worth mentioning that the watcher file saves and updates the

frequency, the level and the rank values of each page in the report.

Figure ‎3.3: Flowchart of the developed watcher file for adding the updated static

pages to the report.

Ranking

function

NO

YES

Monitor the website directories

Detect update
process

YES

NO

Update frequency (page (i))

Calculate Rank (page (i))

Get level values (page (i))

Add URL of Webpage (i) to the
appropriate position in the report

Get name and URL (updated page (i))

Last Updated
page

i++

25

3.4.1.2 Watcher File Setup

To run the watcher file on the web server, the administrator has to upload it to the

main directory. Initially, the flag is re-set to zero, and this allows the WBC to visit

the website. Then, if the website is processed by the WBC, its flag will be set to one.

This prevents other WBC copies of visiting such website. In the developed WBC,

two strategies that re-set the website flag have been implemented. Furthermore, the

search engine administrator has the ability to select one of these re-set strategies. The

details of these strategies are described below.

A. Event-Based- Re-set Strategy

In this strategy, the watcher file re-set the flag automatically when any of the

website pages is updated. This increases the chance of re-visiting this website. On

the other hand, visiting the same website many times may lead to decreasing the

chance of visiting other lower ranked websites.

B. Time-Based- Re-set Strategy

In this strategy, the watcher file re-set the flag after a period of time which is

assigned by the search engine administrator. The main advantage of this strategy

is that all processed websites will be visited only once in a predefined period of

time. It is important to note that if none of the website pages is updated during the

predefined period of time, the flag will not be re-set, i.e. no pages to be processed

by crawlers.

3.4.2 WBC-Server Design

To improve the performance of the developed WBC, the following schemes are used:

First, multiple crawlers are run concurrently, where each crawler can run multiple

threads. Second, the WBC work has been divided into five units: controller unit,

26

crawler unit, link extractor unit, AJAX unit, and link sorter unit, as shown in Figure

3.1. The functions of each unit are described below.

A. Controller unit: This unit is responsible for the following:

I. Specify the number of working crawlers, and the associated threads.

II. Cache the DNS tables: In the case of connecting a crawler to a website, it will

contact with the DNS server to translate the website domain name into IP

address [64]. As the DNS requests may require a large period of time, the

controller unit of the proposed WBC is responsible for preparing and

maintaining the WBC DNS caches. Hence, WBC crawler’s frontiers contain the

IPs instead of the domain names, and this will speed up the crawling

performance.

III. Distribute the URLs in the main frontier(s) between the running crawlers. In

addition, the controller has the ability of updating the working crawler’s

frontiers.

B. Crawler unit: Multiple copies of this unit can run concurrently, where each copy

is responsible for visiting the IPs in its frontier, reads the watcher report and

downloads the updated pages in a directory named as “LastDownloadedPages”.

To avoid degrading the performance of any visited server, the developed WBC is

designed in a way that it allows only one copy of the crawler unit to visit the

server at the same time. This crawler unit has the ability of processing static and

dynamic webpages as described below.

I. Processing static pages

The flowchart of the developed crawler unit for processing static webpages is

shown in Figure 3.4. In the case of static pages, this unit gets the URLs of the

27

updated and the newly added pages from the watcher report. Then, it will check

the Robot.txt file, which includes downloading permissions and specifies the files

to be excluded by the crawler [65]. In the case that the crawler unit does not find

the Robot.txt file, it will visit all updated and newly added website pages.

II. Processing dynamic pages

The process of indexing all dynamic pages requires a large period of time as the

AJAX crawlers have to visit all webpages and search and trigger AJAX events to

reach the dynamic information. The developed watcher file has been designed to

detect and add the AJAX events including its triggering path to the watcher report.

Hence, when the crawler visits the website, it downloads the dynamic pages and

its report to be processed by the AJAX unit. This mechanism decreases the

processing time and hence improves the crawling efficiency.

28

Figure ‎3.4: Flowchart of the developed crawler unit for processing static webpages.

NO

YES

YES

NO

NO

YES

NO

YES

End

 Last IP in the
frontier?

Last page in the
report?

Have permissions to
download page(j)?

Download page (j)

Set the flag (The website is visited) =1

Get page (j) address from report

Start

Get IP (website(i)) from the frontier

Read website(i) report

flag (The website
is visited) =1?

j++

i++

Set j

Visit (website(i))

29

C. Link extractor unit: This unit is responsible for getting the pages from the

“LastDownLoadedPages” directory, extracts and saves the pages URLs in a queue

named as “ExtractedURLsQueue”. In this unit, the following are executed:

I. Remove the processed pages from the “LastDownLoadedPages” directory and

save the static pages in the database. In addition, it moves the dynamic pages to

a directory named as “LastDownloadedAJAX Pages” to be processed by the

AJAX unit.

II. In order to obey the webmaster restriction, the link extractor discards all URLs

whose attribute "rel" set to "nofollow".

III. Add the URL of the website main page only to the “ExtractedURLsQueue”.

This is because the watcher report provides the crawler the URLs of the

updated pages. This is done by abstracting the main website URL for each of

the extracted URLs. For example, all “cmpe.emu.edu.tr” website pages such as

cmpe.emu.edu.tr/FacultyMemberList.aspx are abstracted to cmpe.emu.edu.tr. It

is worth mentioning that most of the current crawler approaches extract all the

URLs of the visited pages, and these URLs are visited and processed as well.

This process consumes the system resources such as the memory, CPU cycles,

etc. In addition, the crawler has to request a connection to a web server

whenever it has a URL of a page hosted on it.

IV. Removes the duplicated URLs from “ExtractedURLsQueue”.

D. AJAX unit: This unit is responsible for getting the dynamic pages from the “Last

DownloadedAjaxPages” directory and triggering the events that have been

reported by the watcher file instead of triggering all page’s events. Figure 3.5

shows the flowchart for processing the dynamic pages by the AJAX unit.

30

Figure ‎3.5: Flowchart for processing the dynamic pages by the AJAX unit. *This

process is done according to Algorithm 3.1.

Based on Figure 3.5, to detect new states, the DOM of the generated state is

compared with the DOMs of the previously founded states. This is done by

applying the following algorithm:

 Set j

YES

NO

NO

 Get the reported Event(j) in page(i)

NO

Construct DOM page (i)

Start

Get Webpage (i)

YES

End

Last web page on the
AJAX directory?

Last reported
Event in page (i)?

Trigger Event (j)

Generate New DOM

New DOM≠ DOMs (states

(Webpage (i)))*

Save state (z) as html in the database

YES

i++

j++

31

Algorithm 3.1: Detecting the AJAX page’s distinct states.

It is worth mentioning that, webpages may contain useless and irrelevant information

for crawling, such as advertisements, timestamps and counters, which are changed

very frequently [66] and to insure that such information will not mislead the

comparison process, the AJAX unit deletes these tags from the generated state, as

mentioned in Algorithm 3.1, step 2. Finally, in order to obtain the dynamic content,

the JavaScript engine V8 [67], and the embedded web browser Chromium [68], are

used by this unit to parse the JavaScript code in a webpage, trigger its reported

events, and constricting the new DOMs.

E. Link sorter unit: This unit is responsible for getting the URLs from the

“ExtractedURLsQueue” and adds those URLs to the appropriate position in the

main URLs frontier(s) based on the sorting process. In this work, we have

adopted the back link count algorithm [69, 70] to sort the URLs. Moreover, the

1: Re-set flag=false; // The variable flag is set to true if the generated state is new.

// NGD refers to the new generated DOM.

2: Remove the information of useless and irrelevant tags form the NGD

3: For i =1 to N do // N: Number of the previously founded states.

4: For j =1 to M do // M: Number of elements (tags) in the generated state.

// E is an element (tag) in DOM(I) and NGD

5: If (
J

(i) DOME .Contents !=
J

NGDE .Contents) then

6: flag =true;

7: Break;

8: ELSE

9: flag =false;

10: End If

11: End For

12: If (flag ==false) then //The NGD and DOM (i) are identical

13: Exit;

14: End If

15: End For

16: If (flag==true) then

17: Set NGD as one of the page state

18: Save the html of NGD in the database

19: End If

32

link sorter unit has the ability of using a group of main frontier. In such case, each

frontier has a rank depending on the importance and the rank of its URLs. Hence,

the URLs of most important frontier(s) are visited faster and more frequently than

the URLs of the lower ranked frontier(s).

3.4.3 WBC Complexity Analysis

As of February 2015, it has been mentioned in [49] that the total number of the

published websites on the Internet was over 1.25 billion. Hence, visiting and

processing all published websites is a challenging task. Most of the conventional

crawlers have to visit and process all web pages in each website, and its complexity

in terms of the number of required visits is O(W*N), where W is the total number of

published websites and N is the total number of web pages in each website. On the

other hand, the complexity of WBC in its worst case is of the order of O(W*U), and

in its best case is of order O(W), where U is the number of updated web pages. As

U<<N, the number of required visits of the WBC is much less than the number of

required visits by the conventional crawlers.

3.4.4 WBC Properties

The developed WBC has the following properties:

1. Low cost and high performance: The watcher file increases the number of

visited websites at almost no cost. The website administrator can get the

watcher for free.

2. Parallel independent crawlers: Many independent crawlers can work in

parallel with multiple threads.

3. The watcher file has the ability to perform its duties on the hosting servers,

i.e., one copy of the watcher file can monitor a group of websites that are

hosted on the same server.

33

4. The running crawlers can only read the watcher report and have no

permission to control or contact the watcher file itself. This feature protects

the websites servers and its data from any possibility of violation or attacked

by spams softwares through using the watcher file.

5. Failure recovery: In the case that the controller unit did not receive

information from any working crawler, the controller will consider that

crawler as a dead one and the IPs in its frontier will be assigned to a new

crawler.

6. Dynamicity of the assignment function: The controller unit has the ability to

analyse previous work of the crawler and build statistic reports that helps in

estimating the number of required crawlers and balancing the distribution of

URLs. In addition, if any frontier contains a large number of IPs, the

controller can run new crawlers and re-divides the IPs. Hence, the time

required to visit all IPs is decreased.

7. By making use of the watcher report that provides the crawler the URLs of

the updated pages, the “ExtractedURLsQueue” will contain only the main

websites URL. This process decreases the number of URLs in the

“ExtractedURLsQueue” and in the main frontier(s). This not only save the

system resources but also significantly decreases the number of connection

requests to each web server.

8. Flexibility of the assignment function: By making use of the flag, that has

been introduced for solving the overlapping problem, the proposed WBC can

work with any assignment function.

9. To avoid degrading the performance of the WBC server(s), if any of the

directory or queue of the server units is found to be empty, the corresponding

34

unit will be set to inactive mode, and will be re-activated when new data is

added to its corresponding path.

10. The watcher file has the ability to set the services of the ranking function to

inactive mode during the server rush times, and re-activate these services

later. This feature avoids degrading the performance of the website server.

11. Unlike, sitemap crawler, the proposed WBC perform all crawling processes

in the sense that it detects the updated and the newly added pages

automatically without any human explicit intervention or downloading the

entire websites.

35

Chapter 4

4 THE PROPOSED RE-RANKING APPROACH

4.1 Introduction

Nowadays, re-ranking techniques are needed to improve the quality of the retrieved

information. In general, re-ranking work based on re-order the original results of

query, to show the most relevant files at the top of results list. In this chapter, an

efficient re-ranking scheme is introduced.

4.2 Related Works

In [34-41, 71, 72], multiple content based re-ranking approaches have been

developed to improve the quality of the retrieved multimedia files. In [34], it has

been assumed that the images that are clicked in a response to a query are relevant

ones, and the similar files will be ranked to the top of the new re-ranked list.

However, in some cases, some checked images may appear to be irrelevant and in

this case the approach of [34] will lead to get absolutely irrelevant files. In [35], an

automatic re-ranking process, which works on integrating the files keywords and

visual features, has been implemented for images only. In [41], a video re-ranking

scheme that re-evaluates the rank of the video shots by the homogeneity and the

nature of the video itself was proposed. The main disadvantage of this approach is

that the process of estimating the rank will be done independently for all video shots

in the database, and this will require a large processing time. In [71] and [72], other

re-ranking algorithms have been introduced. These approaches are based on the

36

relationships between the files. The inclusive and exclusive relationships between

semantic concepts are utilized to find the files relation in [71]. The inclusive

relationship refers to the high co-occurrence relation between files, and the exclusive

relationship refers to low or none co-occurrence relation between files. Then, the re-

ranking of the retrieved results will be based on the average for all values of the

impact weights between the attributes. In [72], a multiple pair-wise relationships

between files were proposed. The set of the pair-wise features are used to capture

various kinds of pair-wise relationships. Then, the extracted pair-wise relationships

will be combined with a base ranking function to re-rank the original results.

Although, the approaches of [71] and [72], can be used for multimedia files re-

ranking and improves the percentage of relevant files. Those techniques have to find

the relationship between a large numbers of objects and this will increases the

required processing time.

In recent years, cross-media retrieval systems [35-41], where the type of the query

example and the returned results can be different such as submitting an image of an

object to retrieve its text description, were developed. However, finding the semantic

correlation and the heterogeneous similarity of different multimedia modalities

(cross-media) is still a challenging problem.

The main objective of the work presented in this chapter is to build a new re-ranking

approach that can efficiently deal with all multimedia files. The proposed approach is

based on the multimedia contents and some user specific actions such as download,

copy a file or a part of a file or spending more than a number of seconds (N) in

checking the file. The approach has the ability of accurately representing the

37

multimedia file using a group of descriptors that can be extracted concurrently

through multiple threads. In addition, the weight of these descriptors is dynamically

calculated and changed from a file to another based on the descriptors ability to

distinguish between the files. Furthermore, unlike most of the conventional re-

ranking approaches, the developed approach does not require any tuned parameters.

Finally, the re-ranking process does not require any explicit user intervention, and it

works is based on detecting some implicit user actions. Several experiments have

been conducted and it has been observed that the developed re-ranking approach has

the ability of showing the most relevant files to the top of the query results, and

increases the percentage of retrieved relevant files.

4.3 The Proposed Re-ranking Structure

In the proposed re-ranking approach, the user actions will be detected and will be

taken into account to improve the percentage of the retrieved relevant files. We

believe that if a user performs one of the following actions on any of query results

(files), it means that this file, which is referred in this work as Target, is related to the

required ones:

1. Download the file.

2. Copy the file or a part of the file.

3. Spend more than a number of seconds (N) in checking the file, where N will

be specified by the system administrator.

Then, the Target file will be analyzed and the query results will be reordered

depending on their similarity with the Target. The structure of the proposed re-

ranking approach is shown in Figure 4.1. The proposed approach contains offline

operations like pre-processing and features extraction and online operations like

38

calculating files similarity and re-ordering the query results. In the following, the

details of these operations are described.

Figure ‎4.1: The structure of the proposed re-ranking approach.

4.3.1 Offline Operations

In the case of adding a new file to the database, the file will be pre-processed and its

features will be extracted and saved. The details of these operations are explained

below.

39

4.3.1.1 Pre-processing Operations

Nowadays, capturing and editing multimedia files is frequently used, and this may

increase the noise in multimedia files, which has a strong influence on the quality of

multimedia retrieval systems [73]. In the proposed approach, the noisy and the

useless parts of multimedia files will be removed. The pre-processing operations for

each multimedia type are performed using the most popular methods as described

below.

I. Image files pre-processing operation

In general, image noise reduction methods are categorized as linear, nonlinear like

median filter [75] and weighted median filter [75], and fuzzy methods [74, 75]. It has

been found that linear filters may destroy image details, especially the edges. Fuzzy

filters were found to provide promising result for image-processing tasks [74, 75].

However, it’s processing time make it unsuitable for large image databases.

In this work, we have adapted the median filter which was found to be effective in

keeping image detail at reasonable cost. It is worth mentioning that if the image

contains text, the deskewing approach presented in [76] will be used to remove any

skew.

II. Video files pre-processing operation

Video structure contains large number of consecutive frames combined with the

audio information. Each video has redundant information, and it has been observed

that videos include some meaningless frames, like totally black frames, totally white

frames, faded frames, etc. [77]. This makes the process of selecting efficient features

for representing video files difficult and time consuming. In this work, static video

40

summarization method [78, 79], which is found to be efficient and requires less time

than dynamic method [78, 79], is used to filter and remove the irrelevant and

redundant video frames. This is done by applying the following steps:

1) The meaningless frames will be detected and discarded by checking if the

standard deviation of pixels in a frame is close to zero [77].

2) Assign a weight for each frame to represent the average of the frame similarity

with other frames in the same video. The similarity between the frames will be

calculated as

Similarity(frame(𝑖), frame(𝑗)) =
Ns

Nt
 , for i=1,...,N, j=1,...,N, i≠j Eq.(4.1)

where N is the total number of frames, 𝑁𝑠 is the number of similar features in

frame (i) and frame (j), and Nt is the number of features in the used descriptors,

which is explained in details in the following section. Then, the weight of i
th

frame is calculated as

Weight (frame(𝑖)) =
∑ similarity(frame(i),frame(j))N

j=1,j≠i

N−1
 Eq.(4.2)

Finally, frames that have almost the same weight will be grouped and

represented by one frame referred as key frame, while the other frames will be

discarded.

III. Audio files pre-processing operation

Audio retrieval systems are more complicated than image and video systems, and the

file features have to be selected carefully. This is because of many facts such as 1)

41

Audio formats (extensions) produce distinct file features, i.e., the features of two

similar files but with different formats show that the files are different [80, 81], and

2) The combination of internal characteristics of the same audio format, such as bit

rate, sampling rate, and number of channels, will indicate that two similar files are

different [80, 81]. To solve such problems, the audio files will be decoded with Pulse

Code Modulation format (PCM) [80, 81], and then, the sampling rate can be reduced

by taking a discrete signal from the file’s continuous signal [82]. This will lead to

remove irrelevant information from the human perceptual point of view, and to focus

on the important features of the signal. In this work, the audio files are sampled to

5512 Hz, which is considered to be safe and a required operation at the same time

[80, 81].

4.3.1.2 Extract File Features

The features extraction is the process of extracting efficient representatives of

multimedia files. One of the well-known challenges in content-based multimedia

retrieval is selecting which features to represent the files. This is because selecting

few features may not be sufficient to characterize the multimedia data, while

selecting large number will make the system complex and time consuming. In the

following, the feature extraction process for image, video and audio files is

described:

I. Image feature extraction process

To represent the images accurately, we have selected the following descriptors:

1) Scalable Color Descriptor (SCD): This descriptor describes the color

distribution in an image by obtaining the color histogram, which can provide

the global color features when it is measured over the entire image [83].

42

2) Edge Histogram Descriptor (EHD): This descriptor describes the edges

distribution in an image, which are important features to represent the images

contents [84]. In addition, EHD descriptor helps in finding the semantic

meaning of the image contents.

3) The Joint Composite Descriptor (JCD): This descriptor is a combination of

the color and edge directivity descriptor (CEDD) [85], and the fuzzy color

and texture histogram descriptor (FCTH) [86]. These two descriptors

combine color and texture information in order to describe the file visual

contents. The JCD was introduced in [87] based on the fact that the CEDD

was found to be better for some multimedia files while the FCTH was found

better for some others. In addition, it has been found in [87] that the JCD

demonstrates high success rates in image databases.

In this work, the above descriptors have been utilized to ensure the quality of the

extracted features. Each image file is represented in the database by three vectors

containing the descriptors output as follows:

Fdscr1= [f1; f2; …; fN]
T
, Fdscr2= [f1; f2; …; fM]

T
, and Fdscr3= [f1; f2; …; fL]

T
,

where dscr1, dscr2 and dscr3 represent the SCD, EHD, and JCD, respectively, and

the values of N, M and L are 255 [83], 80 [84], and 168 [87], respectively.

II. Video feature extraction process

In order to avoid increasing the computational cost of processing large videos

databases, file fingerprinting, which is a content-based compact signature that

summarizes the characteristics of the file and can distinguish between the files, has

43

been used [88]. In addition, the video fingerprint will be represented by three vectors

only, where each vector contains the average of one of the used descriptor values for

all video key frames. In this case, the video Key frames can be represented as

[K1; K2…. ; KKF]
T
,

where KF is the number of Key frames which varies from a video to another, and the

video features are represented as

Fdscr1= [𝑓1̅; 𝑓2̅; …; 𝑓N̅]
T
, Fdscr2= [𝑓1̅; 𝑓2̅; ….; 𝑓M̅]

T
, and Fdscr3= [𝑓1̅; 𝑓2̅; ….; 𝑓L̅]

T
,

where the value of 𝑓i̅ for the dscrj is calculated by finding the average of fi obtained

by dscrj for all the video key frames, where j=1, 2, 3, and i = 0-255 for SCD [83], 0-

80 for EHD [84], and 0-168 for JCD [87].

III. Audio feature extraction process

The features of audio files can be classified into local features, which represent the

characteristic of a specific part of the audio file, and global features, which represent

the characteristic of the entire file [88]. These two types may suffer from the

problems discussed in the pre-processing section, i.e., the features of two similar files

may show that these files are different. Nowadays, audio fingerprinting, also known

as audio identification, is used to summarize an audio file by finding its unique

characteristics. In this work, the fingerprints of the audio files will be constructed

through the following steps:

1) Building the spectrogram: After preprocessing the signal with 5512 Hz PCM,

the audio spectrogram, which shows how the spectral density of a signal

44

varies in time, will be constructed [80, 81]. In this work, the file spectrogram

is built by dividing the signal into overlapping frames, and then each frame is

passed through a Fast Fourier Transform [80, 81] to get the spectral density

variation in time domain.

2) Band filtering: Generally human ears can recognize the frequencies in the

range 20 Hz-2000Hz. In this work, the spectrogram is filtered to obtain this

range.

3) Reducing the length of the fingerprint: The audio file is represented by a

group of frames, which produce a large number of feature points, i.e., the

fingerprint of each audio file is represented by 8192 points. One important

aim of the developed approach is that it can deal with large databases

efficiently. This can be achieved by reducing the file fingerprint. To achieve

this, we have proposed a method that can reduce the fingerprint length. This

method is based on chain code algorithm [82]. The details of the proposed

method are summarized below.

i. Represent the file fingerprint in a two dimensional chart. In this chart,

each fingerprint point is represented by its value on the x axes and a zero

on the y axes. Based on the experimental work, it has been found that

assigning a zero on the y axes for all points not only decreasing the

processing time, but also, the produced fingerprint represents the unique

properties of each audio file.

ii. Divide the chart into group of blocks, where each block may contain

different number of points. In this step, the fingerprint chart will be

divided into 100 blocks. This number was selected as it was shown in

[80, 81] that it can give the unique properties of the audio file. For

45

instance, the following diagram shows a snapshot of an audio feature

points.

iii. Represent each block in the audio fingerprint by a value. This value is

computed by applying the following:

a) Eliminate all points allocated at the boarders of the blocks.

b) Represent any empty blocks (if any) by a zero.

c) Represent other blocks by the average of the points allocated

inside it.

After applying a-c steps, the produced audio fingerprint is represented as

 F= [f1; f2; …; fZ]
T

where Z =100, and fi is the average of the i
th

 square points or zero. Based on

the experimental work, we have noticed that in some cases, the fingerprint

may not reflect effectively the similarity between some files especially those

that have different lengths. To overcome this problem, each audio file will

be virtually divided into approximately three equal parts, and then the

fingerprint for each part is obtained by applying 1-3 steps. It is worth

mentioning that the three fingerprints of a file are found concurrently using

multiple threads. Finally, each audio file is represented by three vectors as:

FSign1= [f1; f2; ….; FZ]
T
, FSign2= [f1; f2; ….; FZ]

T
 and FSign3= [f1; f2; ….; FZ]

T
,

46

where Sign1, Sign2 and Sign3 represent the fingerprint of the first, the

second and the third part of the file, respectively.

Finally, the extracted features will be normalized and adjusted to be in the same

range.

4.3.2 Online Operations

In this section the user behavior will be monitored, and when the user performs one

of the following actions: download, copy, or spending more than a number of

seconds (N) with a Target file, the query results will be re-ranked by applying the

following steps:

1) Calculate the distance between the Target file (T) and the other files (Y) by

using the Euclidean formula [83]

 𝐷dscrj
(T, Y) =√∑ |𝑓i(T)𝑛

𝑖=1 − 𝑓i(Y)|2 , for j=1, 2, 3 Eq.(4.3)

where the descriptors for video/image files are SCD, EHD, and JCD, while

they are the file’s three fingerprints for the audio files.

2) Assign a weight for each descriptor that specifies its influence on the file rank.

This is based on the similarity of the descriptor vector of the Y and T files. In

the case of images and videos, the descriptor that has the ability to distinguish

between the files will be assigned a higher weight than the others, while the

opposite is applied in the case of audios. This is because the proposed audio

signature summarizes an audio file by finding its unique characteristics, and

therefore, when the distance of the signature values for Y and T files is low

means that these files are related to each other. In this work, the weights sum

47

of the used descriptors is assumed to be 1, i.e., α+ β+ γ=1, where α, β and γ are

the weights of the used descriptors, which are computed for the images/videos

as

 α =
Ddscr1(T ,Y)

𝑇𝐷(T ,Y)
 Eq.(4.4)

 β =
Ddscr2(T ,Y)

𝑇𝐷(T ,Y)
 Eq.(4.5)

 γ =
Ddscr3(T ,Y)

𝑇𝐷(T ,Y)
 Eq.(4.6)

where TD is the total distance between T and Y files computed as

 TD(T , Y)= Ddscr1(T , Y)+ Ddscr2(T , Y)+ Ddscr3(T , Y) Eq.(4.7)

while for the audios, α, β and γ are computed as

 α=
α̅

α̅ +β̅+γ̅
 Eq.(4.8)

 β =
𝛽̅

𝛼̅ +𝛽̅+𝛾̅
 Eq.(4.9)

 γ =
𝛾̅

𝛼̅ +𝛽̅+𝛾̅
 Eq.(4.10)

 with

 𝛼̅ =
𝑇𝐷(T ,Y)

Ddscr1(T ,Y)
 Eq.(4.11)

 𝛽̅=
𝑇𝐷(T ,Y)

Ddscr2(T ,Y)
 Eq.(4.12)

 𝛾̅ =
𝑇𝐷(T ,Y)

Ddscr3(T ,Y)
 Eq.(4.13)

48

3) The rank of the file (Y) is computed as

 R(Y) = α Ddscr1(𝑇 , 𝑌) + 𝛽 Ddscr2(𝑇 , 𝑌) + 𝛾Ddscr3(𝑇 , 𝑌) Eq.(4.14)

4) Finally, in order to ensure the rank value to be in the range [0, 1], the rank of

file (Y) need to be normalized. The file rank normalized is donated as NR
Y and

computed as

 NR
Y =

minmax

min

R-R

R- (Y) R
 Eq.(4.15)

where Rmin and Rmax are, respectively, the smallest and the largest assigned

rank value.

49

Chapter 5

5 THE PROPOSED ELIMINATION APPROACH FOR

DUPLICATED MULTIMEDIA FILES

5.1 Introduction

Recently, it has been found that around 40% of published webpages and its contents

are duplicated [11-14]. In the following, the main problems caused by the huge

amount of duplicated files are described:

1. The chance of getting the required files is reduced, and the order of the

relevant files is negatively affected. It is well known that most of the users

check only the first twenty results of the query [91], and because of this, the

user may find few relevant files.

2. Increase both the search engine process time and the user time for examining

the results.

In last few years, several approaches have been introduced to eliminate the

duplicated multimedia files [11]-[14], [92-96]. In [12, 13], an approach for

eliminating the repetition in image search engines has been developed. This approach

creates an image database and calculates the Hash values [16, 97] for each image.

Then, it compares the Hash values to find the repetitions and marks only one copy of

the repeated image files. In [94], a framework for eliminating near-duplicate videos

on social web has been proposed. Near-duplicate video means that the contents of the

50

videos are identical but the videos are different in one or more of their characters,

i.e., formats, caption, logo, time duration, etc. The framework of [94] is based on

combining the contextual information with the contents of the files to find and

eliminate the near-duplicate videos from the top rank list. The comparison process in

this approach is done on each query, and this will increase the query time. In [95],

the contextual information such as time duration, number of views, and thumbnail

images have been combined with the file content information, such as colour and

local points, to find and eliminate the near-duplicate videos. Finally, an audio

approach that detects the duplicated files has been introduced in [80, 81]. This

approach is based on the audio fingerprint technique [80, 81] that produces exactly

the same value for each file and its duplicated copies.

The main objective of the work presented in this chapter is to improve the efficiency

of multimedia search engines by eliminating the duplicated files. For this purpose,

we have developed an elimination scheme, which can deal with any type of

multimedia files like image, video and audio. In addition, the performance of the

proposed elimination scheme is improved by parallel processing. Moreover, unlike

recently developed approaches [94, 96], the proposed elimination scheme performs

the comparison process offline and only once, i.e., during the creation and the

updating process of the database(s).

5.2 The Proposed Elimination Structure

The scheme developed in this work uses the Hash [16, 97] and the feature extraction

[17] techniques for performing the comparison process. The Hash algorithms will be

used for image files, and the low level features are extracted for the video/audio files.

As will be shown in the experimental work, the performance of the MD5 algorithm

51

for dealing with images outperforms other popular techniques [13]. Although, MD5

algorithm has the capability of dealing with video and audio, however, we have

observed that this algorithm was not able to detect duplicated video and audio files

that have different formats, i.e., extensions. Therefore, the low-level feature

extraction [17] has been adapted in the video and audio comparison process. The

algorithm of eliminating the duplication of the multimedia files during creating

and/or adding new files to multimedia database(s) is summarized below, and its

flowchart is shown in Figure 5.1.

Algorithm 5.1: Eliminating the duplication of the multimedia files during creating

and/or adding new files to multimedia database(s).

// N= Number of new files which will be added to the database

1: For i =1 to N do

2: Get the multimedia file (i)
3: Set Flag (new file (i)) =1.
 //Create the file properties (hash value using MD5 or extract low level features using MPEG-7).

4: If (Type of (new file (i)) =Image)

5: Properties (new file (i)) =MD5 (new file (i))

6: Else

7: Properties (new file (i)) = extract the features (new file(i))

8: End If

9: For j=1 to Y do //Y=Number of files in the database

10: If properties (newfile(i))= properties(file(j)) then

11: Re-set Flag (new file (i)) = 0

12: Exit
13: End If

14: End for

15: Save new file (i), Flag (new file (i)) and Properties (new file (i)) in the database.
16: End for

52

Figure ‎5.1: The flowchart of eliminating the duplication of the multimedia files

during creating and/or adding new files to multimedia database(s).

53

The proposed elimination scheme has the advantage of working with any existing

databases. In addition, it can be used for creating the databases itself. It is important

to note that in the proposed elimination scheme, the websites ranking positions is

kept unchanged, and the repeated files are not physically deleted from the database

during the process of detecting duplicated files. Instead, a flag field is added to the

multimedia database table(s). This flag is set to 1 for a file and will be set to 0 for its

duplicated ones (if any). In addition, when processing a query, the system will only

list files whose flag value is set to 1. Unlike most of the duplicated elimination

approaches, in the proposed approach, the files properties are extracted once and

stored in the database(s) during its creation rather than re-extract the properties

repeatedly.

5.2.1 Hash Algorithms and Feature Extraction Techniques

5.2.1.1 Hash Algorithms

Hash algorithms are cryptography functions that take any information as input and

convert it to a numeric code. The output of these algorithms is unique for each file,

and it is like a fingerprint. By using Hash algorithms, files can be compared in fewer

amounts of data. For instance, to compare two images only 16 bytes are used, rather

than comparing all images pixels, i.e., Bit-wise comparison [16, 97]. In this work, a

special Hash algorithm called Message-Digest 5 (MD5) [16] is used to find

duplicated image files. MD5 Hash algorithm was chosen because it has the following

advantages over other hashing algorithms:

a) The size of the input file can be infinite.

b) The output of MD5 is small in size (16 bytes) as compared to other Hash

algorithms like SHA256 (32 bytes) and SHA512 (64 bytes), and hence, the

comparison process using Md5 is less than the other Hash algorithms [13].

54

The steps of producing the MD5 hashing value [16] are briefly summarized below:

a) Set the input: In this step, n-bit message is submitted as an MD5 input, where

n>=0. In the case of image, the MD5 input will be an array of bytes derived

from the image.

b) Append padding bits: The message is extended so that its length in bits equals

to 448 mod 512. To do so, a single “1” bit is appended to the message, and

then “0” bits are appended so that the length in bits equals 448 mod 512.

c) Append length: A 64-bit representation of the message length is appended to

the result of step b. After applying step b and c, the length of the resulting

message will be a multiple of 512 bits.

d) Initialize MD buffer: Four buffers, which are known as A, B, C, and D are

used to compute the message digest. Each of these buffers is a 32-bit register

and initialized to a specific hexadecimal values.

e) Process message in 512-bit blocks: In this step, four rounds of operations,

where each round has 16 operations, are performed on each 512-bit block of

the message and the four buffers, and the contents of the four buffers will be

updated after each round.

f) Output: In this step, the message signature is produced by combining the

contents of A, B, C, D buffers starts with the low-order byte of A buffer, and

ends with the high-order byte of D buffer.

5.2.1.2 Feature Extraction

Feature extraction refers to the process of getting a set of features (useful

information) from the input file. In the proposed elimination scheme, we have

extracted low level information from the multimedia files themselves by using

Multimedia Content Description Interface feature (MPEG-7) [17]. In this manner,

55

the following video/audio file properties will be extracted: format, caption, logo, and

time duration. In order to improve the performance of the proposed elimination

scheme for detecting all the duplicated video and audio, the following properties will

be extracted as well: In the case of audio, the file size, the bite rate, the sampling rate,

and the number of channels. In the case of video, the features of the following

descriptors will be extracted:

a) Color layout descriptor: This descriptor describes the spatial distribution of

color in the input file, which can be obtained by applying the discrete cosine

transformation [98] on the local representative colors in Y or Cb or Cr color

space [98].

b) Texture descriptor [99]: This descriptor describes patterns such as

directionality and regularity in video’s frames. In order to describe the

frame’s texture, energy and energy deviation values are extracted.

c) Contour-based descriptor [100]: This descriptor describes objects based on

detecting its contours (borders).

5.2.2 Mechanisms of Multimedia Files Comparison Process

In the proposed elimination scheme, the Hash value will be computed for image files,

and the comparison is performed by comparing the files hashing value (16 Bytes). In

addition, low level features are extracted for the video and audio files, and the

comparison process is performed by comparing the files extracted properties. The

result of comparing video and audio properties can be categorized into three cases:

1. All the files properties have the same values. This indicates that the files are

duplicated. Hence, the flag of the new file is set to 1, and the comparison

process is stopped.

56

2. All the files properties are different. This indicates that the files are not

duplicated, and the comparison process for these two files will be stopped, and

the new file will be compared with the next one in the database.

3. Some files properties have the same values. This indicates that the files may or

may not be duplicated. In the case of videos, the files descriptors values will be

compared using Euclidean distance formula to find duplicated files. In the case

of audios, the files signals decoded with Pulse Code Modulation format (PCM)

will also be compared using Euclidean distance formula.

5.2.3 Parallel Implementation of the Proposed Elimination Scheme

The efficiency of the proposed elimination scheme can be increased by using parallel

processing. In the case of having one database, the number of multimedia files is

divided evenly between the running parallel processes. However, in the case of

having more than one database, which is the situation of search engines, multiple

processes will be run for each database. The server administrator can decide on the

number of running processes depending on the total number of multimedia files in

the database(s). It is important to note that in the case of the sequential elimination,

each file of the database file is compared with the other files, and the comparison

process stops as soon as a duplicated file is found. In the case of parallel elimination,

the database files are divided evenly between the running processes, and then, each

of the process will compare the files in its part with the other files. Similar to the

sequential elimination scheme, the comparison process stops as soon as a duplicated

file is found.

57

Chapter 6

6 THE ENHANCED QUERY BY EXAMPLE

6.1 Introduction

Query by Example (QBE) is a powerful search engine that allows the user to search

for files based on an example [10]. QBE necessitates the user to upload a file, i.e.,

example file, to find the most relevant ones. In recent years, several developments in

this field have been introduced [101-110]. In [101-106], Query by Sketch (QBS) was

introduced to improve the performance of QBE. In QBS, the user will have more

options, like using drawing tools, to describe what required exactly. In [106], a new

content based image retrieval system has been proposed to improve QBS and QBE

by using intelligent user interface agents, which is a combination of the dynamic user

interface and the artificial intelligence techniques [106]. This system has four

different types of user interfaces to perform image queries: keyword searching,

category browsing, QBE and QBS. In [107], a video retrieval method based on QBE

has been introduced. This approach is capable of filtering irrelevant video shots and

selects example shots to perform the query without user supervision. On the other

hand, its query processing may take a large time, especially for large duration videos

[107]. In [108], a novel method to represent video data by developing an optical flow

tensor (OFT), which is used for estimating the motion in the video was presented.

This method incorporates Hidden Markov Models (HMMs) [108] to capture the

implicit statistical correlations among video shots. In this method, the query video

58

shots will not be compared with all other shots recorded in the database. The

precision of this method, however, does not exceed 70% [108]. In [109], a graph

transformation and a matching scheme to find similar contents of a short video query

within a long video sequence was presented. It has been shown that this method

allows finding the smaller set of video candidates related to the query. In addition,

this scheme can deal with videos whose shots have been reordered. Although this

feature can increase the number of candidate videos, it can lead to obtain files which

have no relation with the required ones. In [110], an audio QBE approach that

estimates the similarity of the uploaded file and database files by calculating the

distance using the probability density functions [110] was introduced. This approach

may require large processing time as it finds the probability density functions for the

features of each frame.

Although the above approaches have improved QBE performance, existing QBE still

suffers from the following two problems:

1) Up to date, the efficiency of the QBE for video and audio files is much lower

than QBE for image files [101-110].

2) The QBE query processing time is relatively large as compared with other

search engine mechanisms like text based engines.

The main objective of the work presented in this chapter is to improve the overall

performance of QBE for handling all multimedia types such as: image, video and

audio. This is achieved through the following: First, a dynamic structure of clustering

is used for creating and updating multimedia databases. Second, parallel

implementation of the QBE has been implemented. Finally, the enhanced QBE has

59

the ability of eliminating duplicated multimedia files from the queries results by

using the elimination scheme explained in Chapter 5. From the experiments

conducted in Chapter 7, Section 7.4, it has been observed that the enhanced QBE

supports all multimedia types, increases the percentage of relevant files and

decreases the query processing time.

6.2 The Enhanced QBE Structure

The structure of the enhanced QBE is shown in Figure 6.1. The enhanced QBE

consists of the following three main steps:

1) Collecting the data, which is done in most cases by using web crawlers.

2) Creating / updating the database.

3) Processing the query.

In this chapter, the QBE is enhanced by improving the performance of steps 2 and 3

by making use of clustering and parallel implementation techniques as described

below.

60

Figure ‎6.1: The structure of the enhanced QBE.

6.2.1 Clustering Techniques

Clustering [111, 112] is a technique that can be used to categorize multimedia files

automatically in order to speed up the process of finding the queries relevant files. In

general, clustering techniques can be categorized into two categories: hard, where

each object belongs to a single cluster only, and soft, where each object can belong to

61

several clusters. We have noticed that the hard clustering outperforms the soft

clustering when they are used with the enhanced QBE. It is important to note that, in

the enhanced QBE, the clustering techniques will be used during the creation of the

databases. The steps for creating and/or adding files to the database are shown in

Figure 6.2 and summarized as follows:

1) Input: Get new multimedia file.

2) Pre-processing: This step involves removing unwanted and useless part of a

file. The details of the pre-processing were explained in the re-ranking

technique introduced in Chapter 4, Section 4.3.1.1.

3) Features extraction: This step is designed in order to allow QBE to deal with

all multimedia types. The details of the feature extraction were explained in

the re-ranking technique introduced in Chapter 4, Section 4.3.1.2.

4) Features normalization: The values of the extracted features are normalized

and adjusted to be in the same range.

5) Multimedia clustering: In this step, the following clustering algorithms are

used: k-means [113], subtractive [114], spectral [115], hierarchical [116],

neural network [117]. Although the enhanced QBE was designed to work with

these clustering algorithms, it has the ability to work with any other clustering

algorithm.

62

 Figure ‎6.2: Steps of creating and/or updating the database(s).

To enhance the clustering performance and to eliminate the danger of specifying the

number of clusters, which is known to be one of the clustering problems, we have

decided to automatically specify the number of clusters. This is done based on the

percentage of similarity between the files. The files will be clustered by using the

following two steps:

1) Specify number of clusters: Initially, a cluster is created and one of the new

files is defined as the cluster leader. If the similarity of next file with the

leader of the previously created cluster(s) is under a threshold value, a new

cluster will be created and that file will be defined as its leader. It is worth

mentioning that this process will be done only once, i.e., when the database is

created. The flowchart of this step can be seen in Figure 6.3.

63

Figure ‎6.2: The flowchart to define the number of clusters, where z is number of

clusters.

Set z=1

Start

Get first multimedia file

Create a cluster Xz and assign

the file as the cluster leader

Extract file features

End

YES

Create a cluster Xz and assign

the file as the cluster leader

Extract the file features

NO

YES

Get the next multimedia file

Similarity (file,

leader (Xi =1...z))>=

Threshold

Add the file to cluster (Xi)

Last

multimedia file

NO

z=z+1

64

2) Multimedia clustering: In clustering all multimedia files, we used an ensemble

clustering system, which is based on static classifier selection [118], and built

by finding the best combination of the above mentioned clustering algorithms.

From the experimental work mentioned in Chapter 7, Section 7.4, we have

found that the best performance was obtained by using the combination of k-

means, subtractive and spectral. It is important to note the following: First, the

leader of each cluster created in this step is represented by the centroid of the

cluster’s files. Second, the majority voting method [118], which is widely used

in clustering ensemble because of its simplicity, robustness and stability, was

used in the clustering process. Third, during the process of the file clustering,

if each member of the ensemble votes for different cluster, then the file will be

saved in a new cluster.

6.2.2 Parallel Implementation of the Proposed QBE

In order to implement the enhanced QBE in parallel, it has been divided into the

following two parts:

Part I: This part includes the main webpage, which will be used by the user to

upload the multimedia file and to browse the query results.

Part II: This part is not shown to the user and implemented in parallel by

running multiple threads. The aim of this part is to compare the features of the

uploaded file and the leaders of clusters in the database(s).

It is important to note that in the case of having one database, the number of existing

clusters will be divided equally between the running threads. However, in the case of

having more than one database, multiple threads will run for each database. The

flowchart of the proposed parallel implementation for one database is shown in

65

Figure 6.4. In the case of multiple databases, a copy of this implementation is used

for each database.

Figure ‎6.3: The flowchart of parallel implementation of part II of the proposed QBE,

using M threads, for Z different clusters.

66

The total number of comparison for the enhanced QBE, i.e., parallel QBE with

clustering implementation, has been compared with the following two scenarios:

A. Sequential QBE without clustering.

B. Sequential QBE with clustering.

Assuming that we have N files in the database(s), K clusters, and P threads, then the

total number of comparison for these approaches is shown in Table 6.1.

Table ‎6.1: Total number of comparison of the enhanced QBE as compared with

A, B scenarios.

Scenario
The proposed parallel

QBE with clustering
A B

Total number

of comparisons
K/P N K

It is important to note that in the case of QBE with clustering (the enhanced QBE and

scenario B), the comparison is done only with the leader of each existing cluster,

while, in the case of sequential QBE (scenario A), the comparison is done with all

database(s) files.

6.2.3 Elimination of Duplicated Multimedia Files

In the enhanced QBE, the elimination of the duplicated files is performed during the

process of adding any new file to the database. This process is done by adding a flag

field to the multimedia database table(s). This flag is set to 1 for a file and will be set

to 0 for its duplicated ones (if any). As the enhanced QBE is dealing with clusters,

the elimination of the duplicated files is done by applying the following two steps:

67

A. Find the most similar cluster(s): This is done by comparing the new file with

the leaders of the existing clusters.

B. Compare the new file with the files in the most similar cluster(s): In this case,

if a duplicated copy found in any of these clusters, the new file flag will be set

to 0, and to one otherwise.

6.3 Query Processing Mechanism

During the query, the features of the uploaded file will be extracted, and its similarity

with the clusters leaders will be found using Euclidean distance formula. The

contents of the most similar cluster(s) will be shown to the user. The flowchart of the

query process unit in the enhanced QBE can be seen in Figure 6.5.

68

Figure ‎6.4: The flowchart of the query process unit in the proposed QBE.

YES

Show the user result’s list

End

NO

YES

Get the leader of cluster (X)

Similarity (uploaded

file, leader (X))>=
Threshold

Add content of cluster (X) to the

result’s list

Last cluster in

database(s)

NO

Start

Get the query uploaded file

Extract its features

X++

69

6.3.1 User Options for the Queries Using the Proposed QBE

A. Image QBE Options

1) Find exactly similar images to the uploaded one.

2) Find all images that have a specific percentage of similarity to the uploaded

one. For instance, if the user selects 50% as a percentage of similarity, the

enhanced QBE will find all images in the database that have at least half of its

pixels similar to the uploaded file.

B. Video/Audio QBE Options

As the video and audio files have approximately the same structure, the following

options are used to deal with these files:

1) Find exactly similar files to the uploaded one.

2) Get the complete file for an available part of video or audio.

3) Find a higher quality video or audio file that can be of different format, i.e.,

extension.

4) Find all files which have a specific percentage of similarity to the uploaded

one.

It is important to note that, in case that the user wants to find exactly similar files to

the uploaded one, the enhanced QBE will ignore the flag of database files.

70

Chapter 7

7 EXPERIMENTAL STUDY

In this study, several experiments have been conducted to investigate the

performance of the proposed WBC, the re-ranking, the elimination of the duplicated

multimedia files and the enhanced QBE approaches. The number of days and the

number of samples used in these experiments were chosen to achieve a 95%

confidence level.

7.1 Crawler Technique Performance

The performance of the conventional crawler, and the proposed WBC for static and

dynamic websites was studied in seven experiments. In the WBC experiments the

time-based-flag mechanism was used to re-set the flag in the watcher report. The

server PC used in this study has the following characteristics: Intel Core i7 CPU, 2.4

GHz clock frequency, 8GB RAM, 1TB Hard Drive, and the operating system was

Windows 7.

Experiment 1: Percentage of updated webpages in a group of websites

In this experiment, the watcher file has been used to monitor a group of websites that

belong to different categories, such as education, sport, banks and news, for one

week and the number of updated pages in each website was recorded and shown in

Table 7.1. The average percentage of the updated and the newly added pages was

calculated using Eq.7.1.

71

 %100
)(

7

1
 % Average

7

1

 
D M

DN
 Eq.(7.1)

where N represents the number of updated and newly added webpages in a specific

day, M represents total number of webpages. This experiment was performed by

downloading a copy of the monitored websites pages. Then, a copy of the watcher

file was run for each website to detect the updated and the newly added pages. The

following can be seen from Table 7.1: First, less than 12% of the webpages are

updated. This means that the conventional crawling techniques are spending most of

their working time in visiting the un-updated pages. Second, the percentage of the

updated webpages in websites 6 and 7 that belong to news category was very small.

This is due to the fact that such websites have to keep the old information available

to the users, and the update process is done by adding new webpages.

Table ‎7.1: The number of updated pages for different websites recorded in seven

days.

W
eb

si
te

 #

Website URL

Total

number

of

webpages

(M)

Number of

updated and newly added

webpages (N) Average

%

Day1 Day2 Day3 Day4 Day5 Day6 Day7

1 cmpe.emu.edu.tr ≈591 74 70 60 77 65 63 62 ≈11.5%

2
ahu.edu.jo/colleges/

engineering
≈402 43 44 40 50 35 39 34 ≈10%

3 global.nytimes.com ≈15090 1346 1403 1321 1297 1273 1432 1357 ≈9%

4 garanti.com.tr/en ≈153 10 8 11 10 7 9 8 ≈6%

5
picosoftengineering.

com
≈35 2 1 2 2 4 3 2 ≈5%

6 Sarayanews.com ≈3377 80 110 89 120 81 94 85 ≈3%

7 Kooora.com ≈9320 200 150 170 220 190 175 195 ≈2%

72

Experiment 2: Crawler overlapping and communication problems study

In this experiment, the crawler overlapping and communication problems were

studied for the developed WBC and for the following three popular crawling

scenarios, which we have re-implemented: First, independent crawlers, which means

that the working crawlers have no communication between each other and more than

one crawler may visit the same website. Second, dependant crawlers, which means

that the crawlers have to communicate with each other before visiting a new

webpage. Third, seed-server crawler: this scenario eliminates the communication

between the running crawlers by introducing a seed-server which is responsible for

crawler’s decisions such as allowing a crawler to visit a specific website [28].

The experiment was conducted by running fifty parallel copies for each scenario for

three days. These crawlers were allowed to crawl all websites under the domain of

“emu.edu.tr”, and the extracted outer links. Table 7.2 shows the number of times that

randomly selected webpages were downloaded for the four scenarios, and Figure 7.1

shows the number of downloaded webpages. From Table 7.2 and Figure 7.1 the

followings can be derived:

1) In the independent scenario, more than 40 out of 50 crawlers have visited the

same webpages. This means that the percentage of the overlapping problem

was above 80%, and this decreases the performance of the crawlers. On the

other hand, these crawlers were able to download on the average 688,120

webpages.

2) Although the dependent scenario has reduced the overlapping problem (less

than 7 out of 50 crawlers have visited the same webpages), the average of

total number of distinct downloaded webpages was less than 240 thousands.

73

3) The seed-server strategy has successfully solved the overlapping problem. On

the other hand, this approach was able to download only around 350,816

distinct webpages.

4) Finally, by making use of the flag in the developed WBC there is no

communication between the running crawlers, and only one crawler can

process a specific page. In addition, the WBC was able to download

approximately one million distinct webpages, which is almost double the

number of the downloaded pages as compared with the independent strategy,

which was found to be the second best scenario. Furthermore, the WBC has

downloaded the five pages in the first day, as shown in Table 7.2, and then

downloads only the updated pages in the second and third day. Finally, it

must be mentioned that the WBC was the only approach which is capable of

downloading the updated pages only, while the other scenarios may

download updated and un-updated pages.

2)

Table ‎7.2: The frequency of downloading specific webpages in three days by

running fifty parallel crawlers.

W
eb

 p
ag

e

#

Frequency

Independent Dependent Seed-Server WBC

Day

1

Day

2

Day

3

Day

1

Day

2

Day

3

Day

1

Day

2

Day

3

Day

1

Day

2

Day

3

1 43 44 47 5 7 4 2 1 1 1 0 0

2 44 41 43 4 3 2 1 2 2 1 1 1

3 42 42 45 7 5 4 2 1 2 1 1 1

4 47 45 43 1 7 3 1 2 1 1 0 0

5 44 43 40 7 5 4 1 2 3 1 0 0

74

Figure ‎7.1: The total number of downloaded webpages using dependent, seed-server,

independent strategies, and the developed WBC in three days.

Experiment 3: Watcher file effects on the site servers

In this experiment, the effects of the watcher file on the websites server have been

investigated by recording the size of the allocated memory and the percentage of

CPU usage for the watcher file, when it is uploaded and run on a server that contains

10 thousands, 100 thousands, and 1 million webpages. The results are recorded and

shown in Table 7.3.

Table ‎7.3: The watcher file requirements.

Number of

webpages

Size of allocated

memory

Percentage of

CPU usage

10,000 62.351 KB 0.84%

100,000 155.857 KB 2.37%

1,000,000 197.140 KB 3.45%

It is clear from Table 7.3 that the watcher file does not require large CPU and

memory resources. For instance, only 3.45% of CPU usage and around 197 KB of

the memory were used for 1 million webpages.

0

200

400

600

800

1,000

1,200

Day1 Day2 Day3

D
o

w
n

lo
ad

ed
 p

ag
es

 #
 x

 1
0

3

Dependant

Seed-Server

Independent

WBC

75

Experiment 4: Number of distinct downloaded webpages study

This study is composed of two experiments. In the first experiment, the performance

of the proposed WBC and the WEB-SAILOR crawler [28] was studied. We have re-

implemented the same scenario of [28]. As the SAILOR crawler requires a seed-

server, three machines were used for this approach while two machines were used for

the proposed WBC. Two machines were used as crawler clients for both scenarios:

one for .com domain, and the other for downloading pages from .edu, .net, and .org

domains. Due to the huge number of published .com websites compared with other

domains, the number of threads for the crawler clients has been specified to be 25 for

.com, and 10 for .edu, .net, and .org [28, 49]. Finally, both crawlers were allowed to

crawl a group of randomly selected URLs, and then visit all extracted URLs. The

number of downloaded distinct webpages for both approaches was recorded in Table

7.4. It can be seen from Table 7.4 that the proposed WBC increases the number of

visited websites by approximately a factor of 3 as compared with the SAILOR

crawler.

Table ‎7.4: Number of downloaded distinct webpages

using the proposed WBC and WEB-SAILOR [28].

Day #
Number of downloaded webpages

WEB-SAILOR WBC

1 126,981 381,007

2 131,045 390,074

3 126,987 383,941

In the second experiment, the performance of the proposed WBC was compared with

the most popular open source crawlers: Apache Nutch [119], and Scrapy [120]. This

experiment was repeated for seven days, where one copy of Apache Nutch, Scrapy

76

and the WBC was run on a separate machine, and each crawler can run at most fifty

threads. The number of webpages that have been processed by these crawlers were

recorded in Table 7.5. It is clear from Table 7.5 that the proposed WBC outperforms

both the Apache Nutch, and Scrapy crawlers by a factor of approximately 1.6, and

1.4, respectively.

Table ‎7.5: Number of downloaded webpages using the proposed

WBC, Apache Nutch [119], and Scrapy [120].

Day #
Number of downloaded webpages

WBC Apache Nutch Scrapy

1 113,854 71,154 82,140

2 114,978 70,447 80,261

3 114,864 71,601 81,126

4 115,912 72,008 82,307

5 114,991 70,397 81,151

6 114,784 71,029 81,353

7 115,005 72,042 82,046

Experiment 5: The performance of the re-visiting policies

In this experiment, the re-visiting performance has been investigated for the WBC

and the following three re-visiting policies: the uniform [21-25], the proportional by

rank [21-23], and the proportional by top N levels [21, 26]. This experiment was

repeated for seven days, where one crawler with five threads was used for each

policy. In addition, the crawlers were responsible to visit and process news website:

www.hkjtoday.com. The performance of the re-visiting policies was studied

according to the following factors:

1) The time required for re-visiting and downloading a website pages.

2) The percentage of the updated pages that the crawler was able to download at

the time of visiting.

77

In the proportional policies, the number of levels (N) and the threshold values were

selected based on experimental values that provide the best result. The required time

for processing the website and the percentage of downloading the updated and newly

added pages are shown in Figures 7.2 and 7.3, respectively.

Figure ‎7.2: The required time for re-visiting “www.hkjtoday.com” website using the

crawlers of WBC, uniform, and proportional by rank and by top N level.

Figure ‎7.3: The percentage of downloading updated pages in “www.hkjtoday.com”

website using the crawlers of WBC, uniform, and proportional by rank and by top N

levels.

It can be seen from Figure 7.2 that the proposed WBC decreases the website

processing time by a factor of 2.5 as compared with the second best scheme, which is

0

10

20

30

40

50

60

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

T
im

e
(M

in
)

WBC

Proportional Policy By
Rank

Proportional Policy By N
levels

Uniform policy

0%

20%

40%

60%

80%

100%

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

D
o
w

n
lo

ad
 %

WBC

Uniform policy

Proportional Policy By
Rank

Proportional Policy By N
levels

78

found to be the proportional by ranking. In addition, the processing time for the

uniform policy is approximately 10 times that of the WBC. This is because the

uniform policy has to visit and download the entire website. Furthermore, it can be

seen from Figure 7.3 that the WBC and the uniform policy were able to download all

the updated pages in most cases, whereas the proportional policies were able to

download at most 82% of the updated pages. Based on this study, it is clear that the

WBC outperform the performance of the other re-visiting policies.

Experiment 6: WBC performance for processing AJAX websites

In this experiment, the performance of the proposed WBC and the crawler developed

in [7] for processing AJAX websites were studied. We have repeated the same

scenario performed in [7] by using the WBC with 1, 2, 3, and 4 crawlers, where each

of the working crawler can run up to four threads. The number of processed dynamic

pages in 10 minutes was recorded and shown in Figure 7.4. It can be seen from

Figure 7.4 that the proposed WBC increases the number of the processed dynamic

pages by approximately 20% as compared with the approach of [7].

Figure ‎7.4: Number of dynamic pages processed in 10 minutes for (a) one crawler, (b) two crawlers, (c) three crawlers, and (d) four

crawlers.

80

Experiment 7: WBC performance for real AJAX data set

In this experiment, the performance of the proposed WBC for processing a real

AJAX data set was studied. This experiment was performed on YouTube videos data

set [121]. The main aim of this experiment is to investigate the ability of the WBC to

access and download the related comment pages written by the video viewer. The

number of the video comments reported by [121, 122] and the number of comments

that the WBC was able to obtain by triggering the related AJAX events are recorded

in Table 7.6. It can be seen from Table 7.6 that the proposed WBC was able to

download more than 98% of the reported AJAX comment pages.

Table ‎7.6: Number of comments for specific YouTube videos reported in

[121] and downloaded using the proposed WBC.

Video Name

Number of comments Percentage of the

downloaded

comments
Reported in

[121]

Downloaded by

the WBC

New Numa - The Return

of Gary Brolsma!
17657 17589 99.61%

CRAZED NUMA FAN

!!!!
3010 3010 100%

Influence 3866 3862 99.90%

My united states of...

WHATEVA !!!
4447 4440 99.84%

Heather Martin - When

Are You Coming Home
6045 6044 99.98%

The COMMENT Video!! 976 960 98.36%

iBlinds - New generation

iPod accessory
3606 3606 100%

Smosh Short 1: Dolls 7919 7875 99.44%

81

7.2 Re-ranking Technique Performance

To study the performance of the proposed re-ranking approach, the following six

experiments were conducted. The server machine used in these experiments was a

PC, with Windows 7 operating system, and with the following properties: Intel Core

i3 CPU, 3.3 GHz clock frequency, 4GB RAM, and 512GB Hard Drive.

Experiment 1: Query re-ranking performance using the SCD, EHD, JCD, and

the proposed approach

This experiment was conducted by re-ordering the first fifty files of Google results

for specific queries using the SCD, EHD, JCD descriptors and the proposed

approach. The performance was measured by calculating the R-Precision (𝑅𝑃𝑟𝑒𝑐)

[123], which is the precision value obtained for the top retrieved R documents, and

computed as

 RPrec =
𝑟

𝑅
 Eq.(7.2)

where r is the number of relevant documents among the top R retrieved ones. In this

experiment, the precision was found for R=10. Table 7.7 shows the 10-Precision of

the SCD, EHD, JCD, and the proposed approach for re-ranking the results of specific

queries. In the case of the proposed approach, the effect of assigning equal or

dynamical weights for the used descriptors has also been investigated. It can be seen

from Table 7.7 that the proposed approach was able to show more relevant files to

the top of the list than the SCD, EHD, and JCD descriptors. In addition, it is clear

that assigning the descriptors weights dynamically outperform the equal weights

assignment.

82

Table ‎7.7: The 10-Precision of the SCD, EHD, JCD, and the proposed

approach for re-ranking image and video queries.

Query

type
Query SCD EHD JCD

The Proposed Approach

Equal

Weight

Dynamic

Weight
Im

ag
es

World Cup 0.2 0.4 0.5 0.6 0.7

Jordan Country 0.7 0.8 0.8 0.8 0.9

white pages 0.3 0.7 0.7 0.8 0.9

EMU Logo 0.5 0.6 0.6 0.6 0.7

Ebola 0.4 0.3 0.4 0.5 0.6

Malaysia Airlines 0.4 0.4 0.5 0.6 0.7

Frozen 0.6 0.5 0.6 0.7 0.8

Sochi Olympics 0.5 0.5 0.5 0.6 0.6

V
id

eo
s

Mutant Giant Spider

Dog
0.4 0.3 0.5 0.7 0.9

World Cup 0.3 0.3 0.3 0.4 0.5

EMU 0.6 0.6 0.7 0.8 0.8

Ebola 0.2 0.4 0.5 0.5 0.6

Jordan 0.6 0.5 0.5 0.7 0.8

Malaysia Airlines 0.7 0.7 0.7 0.8 0.9

Frozen 0.3 0.5 0.5 0.6 0.7

Sochi Olympics 0.2 0.3 0.3 0.5 0.7

Experiment 2: Position of the most relevant files for image and video queries

This experiment includes two parts. In the first part of this experiment, the position

of the first five relevant files for specific queries using Google, Yahoo search engines

was found. The results of this experiment are shown in Table 7.8. Two independent

evaluators were used to decide on the file relevancy. It can be seen from Table 7.8

83

that the relevant files are distributed among large number of results. This leads the

user to check a large number of results to get the required files and it is time

consuming process.

In the second part of the experiment, the position of first ten relevant files for the

same queries is obtained after re-ordering the first hundred files of the Google

results. These results were computed using JCD, which is found to be the best among

the other descriptors, and the proposed re-ranking approach (PRA). The results are

shown in Table 7.9. It is clear from Table 7.9 that the proposed re-ranking approach

outperforms the JCD scheme. In addition, the proposed re-ranking approach

successfully re-orders the original results and shows the most relevant ones at the top

of the list.

Table ‎7.8: The position of first five relevant files for specific queries obtained using Google, and Yahoo search engines.

Q
u
er

y

ty
p
e

Query

Google Yahoo

1
st

relevant

2
nd

relevant

3
rd

relevant

4
th

relevant

5
th

relevant

1
st

relevant

2
nd

relevant

3
rd

relevant

4
th

relevant

5
th

relevant

Im
ag

es

World Cup 10 22 25 33 50 10 29 33 42 63

Jordan 3 4 10 32 55 4 8 14 27 41

pages 5 20 30 55 65 25 30 35 50 61

EMU Logo 1 3 15 37 82 8 9 25 67 81

Ebola 5 27 28 31 54 33 37 45 51 65

Malaysia Airlines 31 34 53 79 131 6 9 39 52 63

Frozen 3 5 20 34 35 12 20 27 30 34

Sochi Olympics 13 22 24 42 52 4 13 17 34 41

V
id

eo
s

Mutant Giant

Spider Dog
1 5 9 17 20 2 9 16 18 25

Baby 1 2 27 32 57 1 14 20 26 32

World Cup 3 6 14 22 25 9 17 24 37 47

Jordan 2 6 16 24 31 10 32 40 68 68

Ebola 6 14 29 43 61 3 14 27 45 59

Malaysia Airlines 3 16 31 38 42 15 33 45 57 58

Frozen 6 22 27 34 41 3 18 20 24 30

Sochi Olympics 1 24 25 32 40 2 11 20 29 32

Table ‎7.9: The position of first ten relevant files for specific queries using JCD, and the proposed re-ranking approach (PRA).

Q
u
er

y

ty
p
e

Query
1

st
 relevant 2

nd
 relevant 3

rd
 relevant 4

th
 relevant 5

th
 relevant 6

th
 relevant 7

th
 relevant 8

th
 relevant 9

th
 relevant 10

th
 relevant

JCD PRA JCD PRA JCD PRA JCD PRA JCD PRA JCD PRA JCD PRA JCD PRA JCD PRA JCD PRA
Im

ag
es

World

Cup
2 1 3 2 6 3 7 4 10 5 12 6 13 7 17 8 20 9 21 10

Jordan 3 1 5 2 7 3 10 4 14 5 15 6 16 8 19 9 22 10 25 11

white

pages
1 1 2 2 5 4 8 6 12 8 14 10 15 11 18 12 21 13 23 14

EMU

Logo
3 1 5 2 8 3 11 4 15 8 18 13 21 15 22 17 26 18 27 19

Ebola 2 1 4 2 6 3 9 4 13 5 15 6 19 8 21 10 22 11 23 12

Malaysia

Airlines
4 1 5 2 7 4 10 5 15 6 19 7 20 8 24 10 26 11 28 12

Frozen 2 1 3 2 6 3 9 4 10 5 13 6 15 7 19 8 24 9 25 10

Sochi

Olympics
6 1 7 2 9 3 13 4 17 6 18 7 22 11 23 15 25 16 28 18

V
id

eo
s

Mutant

Giant

Spider

Dog

4 1 6 2 7 3 8 4 13 8 16 10 20 14 24 16 30 17 35 22

Baby 6 1 9 2 11 3 13 4 15 5 17 7 22 11 23 12 31 14 38 16

World

Cup
3 1 5 2 7 3 9 4 13 9 15 10 18 11 21 12 28 13 33 14

Jordan 4 1 5 2 6 3 8 7 12 8 17 11 21 13 24 15 32 16 37 20

Ebola 6 3 9 4 11 6 13 8 16 10 19 12 24 13 30 16 35 18 41 19

Malaysia

Airlines
5 1 6 2 7 3 9 4 11 5 15 8 19 9 24 11 29 13 35 14

Frozen 4 1 7 3 10 4 11 7 14 9 17 13 20 14 25 15 29 17 33 18

Sochi

Olympics
3 1 5 3 6 4 9 5 11 6 15 8 19 13 23 15 30 17 37 18

86

Experiment 3: The effects of multimedia pre-processing on the proposed

approach

In this experiment, the effects of the pre-processing on the performance of the

developed approach were investigated. This experiment was conducted by

downloading the first fifty files of Google results for some video and image queries,

and the first thirty files of “Amazon MP3” results for some audio queries. The offline

operations were done for the following two scenarios:

1) Extracting and saving the features of the files without pre-processing.

2) Extracting and saving the features after pre-processing these files.

The R-Precision was calculated for R=10 by selecting a target file for each query,

and then re-ordered the query files. Table 7.10 shows the 10-Precision of the

proposed approach with and without the pre-processing operation for the image,

video and audio queries. It can be seen from Table 7.10 that the pre-processing

operation improves the proposed approach and significantly increases the percentage

of the retrieved relevant files. In addition, as mentioned in Chapter 4, Section 4.3.1.1,

in some cases the features of two similar audio files may show that these files are

different, and this makes the pre-processing an essential operation for the audio files.

Furthermore, the pre-processing can decrease the overall time required for indexing

and retrieving the multimedia files, especially for video files. For example, for

indexing and retrieving a video file with size of 500 MB and with a duration of one

hour, it has been found that the proposed pre-processing operations allow 50%

saving in the processing time.

87

Table ‎7.10: The 10-Precision of the proposed approach with

and without the pre-processing operation for re-ranking

image, video and audio queries.

Query

type
Query#

The Proposed Approach

Without

pre-processing

With

pre-processing

Im
ag

es

1 0.8 1

2 0.6 0.9

3 0.7 0.9

4 0.6 0.9

5 0.7 0.8

V
id

eo
s

1 0.7 0.9

2 0.6 0.9

3 0.6 0.8

4 0.5 0.7

5 0.6 0.9

A
u
d
io

s

1 0.5 0.8

2 0.6 0.9

3 0.4 0.8

4 0.7 0.9

5 0.5 0.9

Experiment 4: Audio signature performance

In this experiment, the performance of the proposed approach for re-ranking the

results obtained from “Amazon MP3” search engine was studied for two cases:

single and three dynamic weights signatures. The performance was observed by

calculating the 10-Precision by downloading and re-ordering the first thirty files of

“Amazon MP3” results. The results are shown in Table 7.11 and it can be seen that

the proposed approach was capable of re-ordering the “Amazon MP3” results and

show more relevant files at the top of the queries results. In addition, it can also be

seen from Table 7.11 that representing each file by three dynamic weighted

signatures outperform the performance of using a single signature.

88

Table ‎7.11: 10-Precision of “Amazon MP3”, and the proposed approach

using a single, and three dynamic signatures.

Query

Category

Query

Keywords

Amazon

MP3

The Proposed Approach

Single

signature

Three dynamic

Signature

Languages

Learn

English
0.7 0.7 0.9

English

Numbers
0.4 0.5 0.7

English

alphabet
0.8 0.6 0.9

Baby

Baby

Laughing
0.6 0.5 0.7

Baby

Crying
0.4 0.6 0.8

Animals

Funny

animal
0.7 0.7 0.8

lion roar 0.3 0.5 0.7

bird

voices
0.2 0.4 0.6

Experiment 5: Performance of the developed re-ranking approach for a real

large-scale multimedia dataset

In this experiment, the performance of the developed re-ranking approach for a real

large-scale multimedia dataset was investigated. The multimedia dataset includes

25,000 images, 10,000 audios, and 10,000 videos. In this experiment: 25 image

queries, 25 video queries, and 25 audio queries have been conducted. The R-

Precision for the developed re-ranking approach was calculated by selecting a target

file for each query. The precision was computed for R=10, R=20, and R=30. Figures

7.5, 7.6 and 7.7 show the R-precision for image, video and audio queries. Tables

7.12, 7.13 and 7.14 show samples of these queries. It is clear from this experiment

that even when the database contains a large number of files, which includes

different subjects, the developed re-ranking approach successfully showed the most

89

relevant files to the top of the query results and therefore, increases the percentage of

the retrieved relevant files.

Figure ‎7.5: The R-Precision for the image queries.

Figure ‎7.6: The R-Precision for the video queries.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u

er
y

1

Q
u

er
y

2

Q
u

er
y

3

Q
u

er
y

4

Q
u

er
y

5

Q
u

er
y

6

Q
u

er
y

7

Q
u

er
y

8

Q
u

er
y

9

Q
u

er
y

1
0

Q
u

er
y

1
1

Q
u

er
y

1
2

Q
u

er
y

1
3

Q
u

er
y

1
4

Q
u

er
y

1
5

Q
u

er
y

1
6

Q
u

er
y

1
7

Q
u

er
y

1
8

Q
u

er
y

1
9

Q
u

er
y

2
0

Q
u

er
y

2
1

Q
u

er
y

2
2

Q
u

er
y

2
3

Q
u

er
y

2
4

Q
u

er
y

2
5

P
re

ci
si

o
n

10-Precision 20-Precision 30-Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u

er
y

2
6

Q
u

er
y

2
7

Q
u

er
y

2
8

Q
u

er
y

2
9

Q
u

er
y

3
0

Q
u

er
y

3
1

Q
u

er
y

3
2

Q
u

er
y

3
3

Q
u

er
y

3
4

Q
u

er
y

3
5

Q
u

er
y

3
6

Q
u

er
y

3
7

Q
u

er
y

3
8

Q
u

er
y

3
9

Q
u

er
y

4
0

Q
u

er
y

4
1

Q
u

er
y

4
2

Q
u

er
y

4
3

Q
u

er
y

4
4

Q
u

er
y

4
5

Q
u

er
y

4
6

Q
u

er
y

4
7

Q
u

er
y

4
8

Q
u

er
y

4
9

Q
u

er
y

5
0

P
re

ci
si

o
n

10-Precision 20-Precision 30-Precision

90

Figure ‎7.7: The R-Precision for the audio queries.

Table ‎7.12: R-Precision of the developed re-ranking approach

for a sample of the image queries.

Query #
Query

Keywords
Query

Target

Precision

R=10 R=20 R=30

1

Four

Seasons of

Birds

0.8 0.75 0.8

2 Doors

1 1 1

5
Handicraft

Family

0.9 0.85 0.833

10 World Cup

0.9 0.75 0.8

15
Malaysia

Airlines

0.9 0.9 0.8

25
Sochi

Olympics

0.8 0.8 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u

er
y

5
1

Q
u

er
y

5
2

Q
u

er
y

5
3

Q
u

er
y

5
4

Q
u

er
y

5
5

Q
u

er
y

5
6

Q
u

er
y

5
7

Q
u

er
y

5
8

Q
u

er
y

5
9

Q
u

er
y

6
0

Q
u

er
y

6
1

Q
u

er
y

6
2

Q
u

er
y

6
3

Q
u

er
y

6
4

Q
u

er
y

6
5

Q
u

er
y

6
6

Q
u

er
y

6
7

Q
u

er
y

6
8

Q
u

er
y

6
9

Q
u

er
y

7
0

Q
u

er
y

7
1

Q
u

er
y

7
2

Q
u

er
y

7
3

Q
u

er
y

7
4

Q
u

er
y

7
5

P
re

ci
si

o
n

10-Precision 20-Precision 30-Precision

91

Table ‎7.13: R-Precision of the developed re-ranking approach for a

sample of re-ranking video queries.

Table ‎7.14: R-Precision of the developed re-

ranking approach for a sample of re-ranking

audio queries.

Query #

Query

Keywords

Samples of the

Target(Video)

Key Frame

Precision

R=10 R=20 R=30

27 EMU

0.9 0.8 0.9

31 Frozen

0.9 0.9 0.9

38
Sochi

Olympics

0.8 0.9 0.8

49

Mutant

Giant

Spider

Dog

0.7 0.8 0.9

Query #
Query

Keywords

Precision

R=10 R=20 R=30

51
Learn

Spanish
0.8 0.85 0.833

59
Baby

Laughing
0.9 0.9 0.9

64 Lion roar 0.8 0.8 0.833

68
Learn

English
0.9 0.85 0.8

75
Gangnam

Style
0.9 0.85 0.833

92

Experiment 6: Performance of the developed re-ranking approach versus the

approaches of [34] and [41]

In this experiment the performance of the developed re-ranking approach was

compared with that of [34] for image re-ranking and with that of [41] for video re-

ranking. The dataset of experiment 5 have been used for all studied approaches. Note

that we have re-implemented the main algorithm of [34] and [41], and we have used

their tuned parameters. The R-Precision was found for R=10, R=20, and R=30.

Figures 7.8 and 7.9 show, respectively, the performance of the proposed re-ranking

approach as compared with that of [34] for images, and with that of [41] for videos.

From these Figures, it is obvious that the proposed re-ranking approach outperform

both the approaches of [34] and [41] for images and videos, respectively.

Figure ‎7.8: R-Precision of the developed re-ranking approach and the approach

presented in [34] for specific image queries.

93

Figure ‎7.9: R-Precision of the developed re-ranking approach and the approach

presented in [41] for specific video queries.

94

7.3 Elimination Technique Performance

In this section, the performance of the proposed elimination scheme described in

chapter 5 was investigated in seven experiments. These experiments were conducted

using image, video, and audio databases. These databases have been created by

randomly taking multimedia files from the Internet. The server used in these

experiments has the following characteristics: Intel Core i7 CPU, 4.0 GHz clock

frequency, 16GB RAM, 256GB SSD, 1TB Hard Drive, and the operating system was

Windows 7.

7.3.1 Image Database Processing

In this type of database, the Bit-wise [13] and the MD5 hashing [16, 97] algorithms

have been used for the comparison process. In the Bit-wise scheme, the comparison

is done for all pixels in the images. On the other hand, in the MD5 scheme, the

comparison is limited to 16 Bayt. The performance of the proposed elimination

scheme for image database processing was studied in two experiments.

Experiment 1: Performance of the Bit-wise versus the MD5 algorithms

In this experiment, the execution time versus number of images for the two

algorithms has been measured and shown in Figure 7.10. From this Figure, it is clear

that the Bit-wise algorithm is not efficient for large image databases. On the hand,

the MD5 algorithm was found to be much faster than the Bit-wise, especially for

large image databases. In the following experiments the performance of parallel

implementation of MD5 will be investigated.

95

Figure ‎7.10: Execution time versus number of images for the MD5 and Bit-wise

algorithms.

Experiment 2: Performance of parallel implementation of the MD5 algorithm

In this experiment, the performance of the parallel implementation of MD5 algorithm

is investigated by observing the execution time versus the number of images when

running 4, 8, 12, and 16 processes. The results of this experiment are shown in

Figure 7.11. As expected, it can be seen from Figure 7.11 that by using the parallel

technique the search time decreases significantly.

Figure ‎7.11: Execution time versus number of images for 4, 8, 12, and 16 processes

as obtained by using the parallel implementation of the MD5 algorithm.

0

50

100

150

200

250

300

1 2.5 5 10

E
x

ec
u
ti

o
n
 t

im
e

(M
in

)

Number of Images (Million)

Bit wise comparison

MD5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5 10 15 20 25 30

E
x

ec
u
ti

o
n

 t
im

e
(M

in
)

Number of Images (Million)

4 processes

 8 processes

 12 processes

 16 processes

96

7.3.2 Video and Audio Databases Processing

For video and audio databases, the MD5 hashing [16, 97] and the low level feature

extraction [17] algorithms have been used in the comparison process. The

performance of the proposed elimination scheme processing was studied in four

experiments.

Experiment 1: Performance of the parallel implementation of the MD5 hashing

algorithm for video and audio databases

This experiment has been performed for 4, 8, 12, and 16 processes. The execution

time for processing different number of video and audio files is shown in Figure

7.12. It is clear from Figure 7.12 that the MD5 algorithm is capable of dealing with

video and audio within acceptable processing times. For instance, by running 16

processes, a database that contains 30 million multimedia files can be processed in

less than two minutes. On the other hand, we have observed that MD5 hashing

algorithm was not able to detect duplicated video and audio files that have different

formats, i.e., extensions. Therefore, the low-level feature extraction [17] was adapted

in the comparison process, and its performance was examined in the following

experiment.

97

Figure ‎7.12: Execution time versus number of video and audio files for 4, 8, 12, and

16 processes as obtained by using the parallel implementation of the MD5.

Experiment 2: Performance of the low-level feature extraction versus the MD5

hashing algorithm

In this experiment, the performance of low-level feature extraction and MD5

algorithms has been studied according to the following two factors:

1) The time required for creating video/audio databases. In this step, it is

important to note that the files features and the hash values were extracted

and saved in the databases without performing the comparison process, i.e.,

the flag of the files is not set in this step.

2) The time required for the comparison process, i.e., detecting the duplicated

video/audio files and setting the file’s flag.

The results of this experiment are shown in Figures 7.13, 7.14, and 7.15. It can be

seen from Figure 7.13 that the time required for creating video/audio databases using

MD5 hashing algorithm is larger than the time required using the low level extraction

technique. On the other hand, the MD5 algorithm was found to be faster in the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30

E
x

ec
u
ti

o
n

 t
im

e
(M

in
)

Number of Videos/Audios (Million)

4 processes

 8 processes

 12 processes

 16 processes

98

comparison process as shown in Figure 7.14. Figure 7.15 shows the total execution

time required for the MD5 algorithm and low level extraction. From this Figure, it is

clear that both techniques have approximately the same performance.

Figure ‎7.13: Execution time required for creating video/audio databases using the

low level extraction and the MD5 hashing algorithm.

Figure ‎7.14: Execution time required for the comparison process by using the low

level extraction and the MD5 hashing algorithm.

0

50

100

150

200

250

300

350

500 1000 1500 2000

E
x

ec
u
ti

o
n
 t

m
e

(S
ec

)

Number of multimedia files × 103

MD5

Low level
extraction
technique

0

50

100

150

200

250

500 1000 1500 2000

E
x

ec
u
ti

o
n
 t

im
e

(S
ec

)

Number of multimedia files × 103

Low level
extraction
technique

MD5

99

Figure ‎7.15: Total execution time versus number of file using the low level

extraction and the MD5 hashing algorithm.

Experiment 3: The required time for updating multimedia databases

In general, the contents of most websites are updated and modified in a routine

manner. Consequently, the search engines have to update their databases in a similar

manner. We have performed this experiment to investigate the time required for the

comparison during the process of updating a database (adding new files to an

existing database). Table 7.15 shows the execution time for updating three databases

that contain 10, 100 and 1000 million files. It is clear from Table 7.15 that the

proposed elimination scheme, not only has the ability of updating large databases,

but also eliminates duplicated multimedia files.

0

1

2

3

4

5

6

7

8

9

5 10 15 20 25

T
o
ta

l
ex

ec
u
ti

o
n
 t

im
e

(M
in

)

Number of Multimedia Files (Millions)

Low level
extraction
technique

MD5

100

Table ‎7.15: Execution time for updating a database using the proposed

elimination scheme.

Number

of files in

the

database

(Million)

Number of

new files to

be added to

the database

(Million)

Time (Min)

32

Processes

64

Processes

128

Processes

256

Processes

10

5 1 0.45 0.23 0.15

7,5 1.89 0.98 0.51 0.27

10 2.2 1.23 0.69 0.41

15 3.2 1.7 0.91 0.57

50 8.91 4.76 2.67 1.41

100

5 4 2 1 0.5

7,5 6 3 1.6 0.8

10 9 4.8 2.5 1.8

15 16 8.7 4.7 2.5

50 81 42.5 23 11

1000

5 35.3 18 10 4.9

7,5 52.7 27.1 14.6 8

10 68.2 37.9 18.4 10.1

15 101 50.5 26.1 14

50 220.7 113 59 30.8

Experiment 4: The efficiency of Google, Yahoo and Bing search engines with

and without using the proposed elimination scheme

In this experiment, the efficiency of Google, Yahoo and Bing search engines with

and without using the proposed elimination scheme was studied. In this experiment,

the queries were performed for the most frequently searched keywords, which we

have obtained from [124, 125]. The percentage of relevant files and the percentage of

duplicated files for these queries using Google, Yahoo and Bing search engines have

been recorded in Tables 7.16, 7.17 and 7.18. It is important to note the following:

First, the number of results for each query was provided by Google, Yahoo and Bing

search engines. Second, the percentage of duplicated files in the queries results was

101

found by the proposed elimination scheme. Finally, the percentage of the relevant

files was found by two evaluators through checking the first 100 files of each query

results. It can be seen from these Tables that the queries results obtained by Google,

Yahoo and Bing Search engines contain around 40% duplicated files. On the other

hand, by integrating the proposed elimination scheme all duplicated files were

eliminated and this increases the chance of getting more relevant file.

Table ‎7.16: The percentage of relevant and duplicated files for Google

search engine with and without using the proposed elimination scheme.

Keywords

Google

Without using the proposed

elimination scheme

Percentage of relevance in

the first 100 files of Google

query results

Number of

results

(Millions)

Percentage of

duplicated

files

Without using

the proposed

elimination

scheme

With the

proposed

elimination

scheme

Images

Hotels 140 35% 88% 91%

Cars 158 32% 92% 95%

Dog 130 39% 89% 94%

Girls 209 40% 91% 97%

Weather 93,6 39% 88% 92%

Videos

Videos 78,6 30% 92% 96%

Funny

videos
16,2 33% 80% 85%

Dance

movies
3,7 32% 82% 87%

Movie

trailers
3,7 29% 80% 84%

Weight loss 0.42 25% 80% 88%

Audios

Music 14,8 38% 85% 89%

Songs 6,31 41% 88% 92%

Albums 4,51 40% 80% 86%

MP3 5,52 39% 84% 89%

Clips 5,6 35% 82% 86%

102

Table ‎7.17: The percentage of relevant and duplicated files for Yahoo search

engine with and without using the proposed elimination scheme.

Keywords

Yahoo

Without using the proposed

elimination scheme

Percentage of relevance in

the first 100 files of Yahoo

query results

Number

of results

(Millions)

Percentage of

duplicated files

Without using

the proposed

elimination

scheme

With the

proposed

elimination

scheme

Images

Hotels 29,7 33% 86% 89%

Cars 59,8 34% 92% 95%

Dog 31,3 35% 87% 91%

Girls 41,6 36% 90% 93%

Weather 26,7 31% 82% 88%

Videos

Videos 99,5 32% 91% 94%

Funny

videos
12,8 31% 82% 85%

Dance

movies
0.188 35% 80% 84%

Movie

trailers
0.851 25% 80% 82%

Weight loss 0.242 29% 82% 84%

Audios

Music 36,5 40% 84% 86%

Songs 2,25 37% 85% 86%

Albums 76,8 35% 79% 83%

MP3 0.77 36% 80% 85%

Clips 6,3 33% 81% 85%

103

Table ‎7.18: The percentage of relevant and duplicated files for Bing search

engine with and without using the proposed elimination scheme.

Keywords

Bing

Without using the proposed

elimination scheme

Percentage of relevance in

the first 100 files of Bing

query results

Number

of results

(Millions)

Percentage of

duplicated files

Without using

the proposed

elimination

scheme

With the

proposed

elimination

scheme

Images

Hotels 24,1 30% 85% 88%

Cars 53,2 37% 95% 98%

Dog 28,2 39% 89% 95%

Girls 41,3 29% 93% 96%

Weather 24,3 33% 80% 85%

Videos

Videos 111 33% 90% 93%

Funny

videos
12,7 30% 85% 90%

Dance

movies
0.185 36% 82% 86%

Movie

trailers
0.911 27% 82% 84%

Weight loss 0.236 25% 83% 85%

Audios

Music 34,6 37% 80% 83%

Songs 2,2 39% 83% 85%

Albums 63 30% 81% 84%

MP3 0.75 32% 87% 91%

Clips 5,2 31% 80% 84%

104

7.4 QBE Technique Performance

In this section, the performance of the enhanced QBE approach was studied in six

experiments. The databases used in these experiments were the same as mentioned in

Section 7.3. In the queries process, we have used the most frequently searched

keywords and the most viewed multimedia files reported by [124, 125]. The server

used in this study has the following characteristics: Intel Core i7 CPU, 4.0 GHz clock

frequency, 16GB RAM, 256GB SSD, 1TB Hard Drive, and the operating system was

Windows 7.

Experiment 1: Performance of clustering techniques in creating the databases

The aim of this experiment is to find out which clustering algorithm is more

appropriate for the enhanced QBE. In this experiment, 100 million multimedia files

have been clustered. Table 7.19 shows the percentage of the relevant files for some

video queries when the following clustering algorithms are used in creating the

database: C-means [113], subtractive [114], spectral [115], hierarchical [116], and

neural network [117]. In addition, the Euclidean distance formula [83] has been used

to find the similarity metrics of the clustered files. Furthermore, the percentage of the

relevant files was found by two evaluators by checking the first 50 files of each

query results. It is important to note that this and the second experiments were

performed using the soft clustering technique, and the evaluators rank the queries

results based on the following weight: a) 1 for most relevant files, b) 0.5 for

approximately relevant files, and c) 0 for irrelevant files.

It is clear from Table 7.19 that these clustering algorithms have almost the same

performance, and the percentage of the relevant files is between 60% and 70%. This

percentage, however, does not satisfy user requirements.

105

Table ‎7.19: Percentage of relevant files for some video queries using K-means,

subtractive, spectral, hierarchical, and neural network algorithms.

Title of

uploaded video

file

C-

means
Subtractive Spectral Hierarchical

Neural

Network

Gangnam Style 65.5% 68% 68.1% 66.3% 63.6%

Baby 67.5% 67% 68.1% 67.4% 64%

On The Floor 62.3% 64.1% 65.3% 62.9% 60.5%

Love The Way

You Lie
61.9% 62.6% 67% 60.6% 61%

Party Rock

Anthem
69% 65% 70.2% 62.6% 66.3%

Charlie Bit My

Finger – Again!
66.5% 68.7% 69.8% 65.7% 64.9%

Waka Waka

(This Time for

Africa)

65% 65.9% 70% 69% 65%

Bad Romance 69% 70% 70.5% 69.7% 67.6%

Ai Se Eu Te

Pego
67% 63.4% 68.2% 64% 67.1%

Danza Kuduro 64% 65% 70% 63.4% 63%

To improve the quality of the clustering results, we have built an ensemble system

using k-means, subtractive and spectral, which will be used in the following

experiments.

Experiment 2: The effects of specifying the number of clusters on the QBE

performance

In this experiment, 100 million multimedia files have been clustered. Table 7.20

shows the effect of number of clusters on the percentage of relevant files for some

video queries, where the percentage of the relevant files was found by two evaluators

through checking the first 50 files of each query results. In this Table, the number of

clusters used is 2000, 10000, 25000 and defined automatically as mentioned in

106

Chapter 6, Section 6.2.1. It is clear from this Table that using ensemble system

increases the performance of the enhanced QBE, especially when the number of

clusters is determined automatically, as the relevance was above 91% for this set of

data.

Table ‎7.20: Effect of clusters number on the percentage of relevant files for

some video queries using the proposed ensemble system.

Video file title

Number of clusters

2,000 5,000 10,000 25,000
Automatically

defined

Gangnam Style 63.1% 65% 67.9% 85.3% 92%

Baby 66% 68% 69.5% 80.1% 91%

On The Floor 70.3% 71% 72.1% 82% 94.2%

Love The Way You

Lie 71%
71.9% 72.5% 82.2% 93.1%

Party Rock Anthem 70.2% 71.7% 73% 84.4% 95%

Charlie Bit My

Finger – Again!
72.8% 73.6% 74.5% 81% 92.9%

Waka Waka (This

Time for Africa)
70% 71.9% 73.1% 82% 94.3%

Bad Romance 68.7% 70% 72.1% 83% 94.1%

Ai Se Eu Te Pego 66% 70.4% 71.7% 82.1% 92.5%

Danza Kuduro 68% 69.5% 70.5% 80% 91.6%

Based on the experimental work, it has been noticed that the hard clustering requires

less processing time than the soft clustering, and therefore, it has been used in the

following experiments. In these experiments, the evaluators were allowed to select a

rank of 1 for the relevant files, and a rank of 0 for others, i.e., irrelevant files.

Experiment 3: Performance of sequential implementation versus clustering with

and without parallel implementation

In this experiment, the performance of the sequential QBE scheme, the sequential

QBE with clustering scheme and the proposed parallel QBE with clustering

107

implementation have been studied for different number of multimedia files. It is

important to note the following: First, in the case of sequential QBE, the uploaded

file is compared with all files in the database, while in the case of clustering, the

uploaded file is compared with the leader of the clusters. Second, the execution time

computed in this experiment represents the time required for comparing the uploaded

file features with those of the database files. The result of this experiment is shown in

Table 7.21. It’s clear from this Table that the clustering techniques have improved

the performance of QBE. In addition, the performance of the proposed QBE has been

enhanced by using the parallel implementation.

1.
2.

3.

Table ‎7.21: Execution time using the sequential QBE scheme, sequential

QBE with clustering scheme and parallel QBE with clustering scheme for

different number of multimedia files.

Number of

multimedia

files

(Million)

Sequential

QBE

scheme

Sequential QBE

with clustering

scheme

The proposed QBE

(Parallel with clustering

implementation)

Time (Second) # of threads Time (Second)

0.5 109 3 8 0.12

0.75 147 8 12 0.19

1 204 11 16 0.22

10 509 15 16 0.45

100 812 19 16 0.89

Experiment 4: Performance of the enhanced QBE and Google QBE for image

The performance of the enhanced QBE is compared with that of the Google QBE for

image queries, as Google QBE support images only. In this experiment, for every

query, the number of the query results and the percentage of relevant files were

recorded in Table 7.22. In this experiment, the number of Google results was

provided by the search engine itself. In addition, the percentage of the relevant files

108

was found by two evaluators through checking the first 100 files of each query

results. From Table 7.22, we can see the following:

1) The performance of the enhanced QBE outperforms the Google QBE. For

instance, for this set of data, the percentage of relevant files was increased by

a factor of 9% for the worst case and by a factor of 36% for the best case.

2) Although, the performance of Google QBE is acceptable for some files, it is

found that it is weak for dealing with combined images and the images that

have empty spaces such as the 6
th

 and the 7
th

 uploaded image shown in Table

7.22, respectively.

Table ‎7.22: Comparison between Google QBE and the enhanced QBE

for image queries.

U
p

lo
ad

ed

fi
le

n
u

m
b

er

The

uploaded

image

The proposed QBE Google QBE

Gain in

percentage of

relevant files

Number of

results

Percentage of

relevant in

first 100 files

Number

of results

Percentage of

relevant in first

100 files

1

1150 90% 1200 65% 25%

2

1030 74% 1100 45% 29%

3

200 71% 150 35% 36%

4

1660 89% 1600 80% 9%

5

710 92% 650 70% 22%

6

540 71% 410 50% 21%

7

980 76% 1080 43% 33%

8

990 95% 865 70% 25%

9

1210 87% 1290 65% 22%

109

Experiment 5: The efficiency of the enhanced QBE approach for dealing with

different video and audio files durations

In this experiment, the effect of the video/audio files length on the enhanced QBE

performance was investigated. In this experiment, we have uploaded a group of

multimedia files with different duration. Table 7.23 shows a sample of 5 queries

from the tested group. It is important to note that the images shown in this Table

represent the key frames of the video shots and they are used for the purpose of

explanation. From the results shown in Table 7.23, we can see that the proposed

approach is capable of dealing with video and audio files, and the percentage of the

relevance was more than 91% for this set of data. Also it is clear from query #3 that

although the number of the extracted key frames was small (3 key frames), the

enhanced QBE was able to give more than 95% relevant files.

110

Table ‎7.23: The efficiency of the enhanced QBE approach for videos/audios.

Query

#1

Key frames of the uploaded video

User’s options
Number of results

(Thousand)

Required time

 (Seconds)

Percentage of relevant

 Files

a. Find exactly similar file. 0.97 3.3 100%

b. Find the full video. 0.66 1.87 98%

c. Find a high quality

video.
0.45 1.73 98%

Query

#2

Key frames of the uploaded video

User’s options
Number of results

(Thousand)

Required time

 (Seconds)

Percentage of relevant

 Files

a. Find exactly similar file. 0.75 2.1 100%

b. Find the full video. 0.32 0.67 98%

c. Find a high quality

video.
0.2 0.71 98%

Query

#3

Key frames of the uploaded video

User’s options
Number of results

(Thousand)

Required time

 (Seconds)

Percentage of relevant

 Files

a. Find exactly similar file. 2.57 2.2 100%

b. Find the full video. 4.91 3.67 91%

c. Find a high quality

video.
5.07 3.71 95%

Query

#4

Clips of the uploaded audio

User’s options
Number of results

(Thousand)

Required time

 (Seconds)

Percentage of relevant

 Files

a. Find exactly similar file. 0.5 1.9 100%

b. Find the full audio. 0.25 1 93%

c. Find a high quality

audio.
0.35 1.1 91%

Query

#5

Clips of the uploaded audio

User’s options
Number of results

(Thousand)

Required time

 (Seconds)

Percentage of relevant

 Files

a. Find exactly similar file. 1 1.75 100%

b. Find the full audio. 0.52 0.89 91%

c. Find a high quality

audio.
0.28 0.59 90%

111

Experiment 6: Performance of the enhanced QBE versus the existing text based

search engines: Google, Yahoo and Bing

Finally, we have done an experiment to study the overall performance of the

enhanced QBE versus the existing text based search engines: Google, Yahoo and

Bing. The average of the results of Google, Yahoo and Bing was compared with that

of the enhanced QBE and shown in Table 7.24. It is important to note that the queries

were performed using Google, Yahoo and Bing search engines by submitting the

query keywords, i.e., title of multimedia file, while in the case of the enhanced QBE

a video file was submitted as an example. It is clear from this Table that the

enhanced QBE increased the percent of relevant files as compared with the average

of Google, Yahoo and Bing by a factor of 6% in the worst case and a factor of 12%

in the best case, for this set of data.

Table ‎7.24: Comparison between the Google, Yahoo and Bing text based

search engines versus the enhanced QBE.

Multimedia

type

Multimedia file title

(Query Keywords)

Average of Google,

Yahoo and Bing

Proposed

QBE

Percent of relevant files

Images

Hotels 80% 91%

Cars 88% 95%

Dog 85% 94%

Girls 89% 97%

Weather 80% 92%

Videos

Gangnam Style 90% 96%

Baby 80% 87%

On The Floor 81% 87%

Love The Way You Lie 80% 88%

Party Rock Anthem 80% 89%

Audios

One Day 82% 89%

Ai Se Eu Te 84% 92%

Merry Go Round 80% 88%

She Wolf (Falling To Pieces) 81% 89%

Diamonds 80% 86%

112

Chapter 8

8 CONCLUSIONS AND FUTURE WORKS

9 This thesis provides solutions for some of the most common problems in the

field of multimedia search engines. The main contributions of the thesis are:

1) Proposing a watcher based crawler (WBC).

2) Proposing a re-ranking approach.

3) Proposing an elimination approach for duplicated multimedia files.

4) Enhancing the QBE approach.

10 The advantages of these approaches are as follows: First, unlike the conventional

crawlers, the developed watcher based crawler (WBC) has the ability of

crawling both static and dynamic websites. In addition, WBC downloads the

updated and the newly webpages only. Furthermore, it solves the crawlers

overlapping and communication problems. Moreover, by splitting the proposed

WBC into five units, where each unit is responsible for performing a specific

crawling task, the overall crawling performance and the number of visited

websites have been increased by a factor of approximately 3, 1.6, and 1.4 as

compared with WEB-SAILOR [28], Apache Nutch [119], and Scrapy [120]

crawlers, respectively.

11 Second, the developed re-ranking approach can efficiently deal with all

multimedia files, and has the ability of showing the most relevant files to the top

113

of the query results, and increases the percentage of retrieved relevant files. In

addition, the weight of the used descriptors is dynamically calculated and

changed from a file to another based on the descriptors ability of distinguishing

between the files. Furthermore, unlike most of the conventional re-ranking

approaches, the proposed approach does not require any tuned parameters.

Moreover, the re-ranking process does not require any explicit user intervention,

and it works based on detecting some implicit user actions.

12 Thirdly, the developed approach which eliminate the duplicated files in

multimedia query results has the following advantages 1) it can deal with any

type of multimedia files like images, video and audio, 2) it can work with any

search engine, and 3) it can also work in a routinely manner to deal with any

updates on the databases. Moreover, by using the proposed elimination scheme,

the comparison process will be done only once, and hence the query time will be

decreased. In order to improve the efficiency of the proposed elimination

scheme, parallel implementation is designed by making use of multiple

processes.

13 Fourthly, the enhanced QBE performance was enhanced to support all

multimedia types, to increase the percentage of relevant files and to decrease the

process time in the query process. This is achieved through the following: First,

a dynamic structure for clustering is used for creating and updating multimedia

databases. Second, parallel implementation of the QBE has been designed.

Finally, the enhanced QBE has the ability of eliminating duplicated multimedia

files from the queries results by using the introduced elimination scheme.

114

14 As future work, the study presented in this thesis can be integrated with other

types of search engines, like text based and topic specific search engines. For

instance, the WBC can be integrated with VBScript and JavaFX RIAs

techniques. In addition, WBC can be used to improve the performance of topic

specific crawlers. Furthermore, the proposed re-ranking scheme can be used in

the process of ranking and building the query results, instead of re-ranking the

initial query outputs.

115

REFERENCES

[1] Moschovitis, C. J., Poole, H., & Senft, T. M. (1999). History of the Internet: A

Chronology, 1843 to the Present. AB C-CLIO, Incorporated.

[2] Schwartz, C. (1998). Web search engines. Journal of the American Society for

Information Science, Volume 49, Issue 11, Pages 973–982.

[3] Agarwal, A., Singh, D., Pandey, A. K. A., & Goel, V. (2012). Design of a

Parallel Migrating Web Crawler. International Journal of Advanced Research

in Computer Science and Software Engineering, Volume 2, Issue 4, Pages 147-

153.

[4] Uzun, E., Agun, H. V., & Yerlikaya, T. (2013). A hybrid approach for extracting

informative content from webpages. Information Processing & Management,

Volume 49, Issue 4, Pages 928-944.

[5] Amolochitis, E., Christou, I. T., Tan, Z. H., & Prasad, R. (2013). A heuristic

hierarchical scheme for academic search and retrieval. Information Processing

& Management, Volume 49, Issue 6, Pages 1326-1343.

[6] Bruno, E. J. (2006). Ajax: asynchronous JavaScript and XML. DR DOBBS

JOURNAL, Volume 31, Issue 2, Pages 32-35.

116

[7] Cui, L. J., He, H., & Xuan, H. W. (2013). Analysis and Implementation of an

Ajax-enabled Web Crawler. International Journal of Future Generation

Communication and Networking, Volume 6, Issue 2, Pages 139-146.

[8] Yao, Z., Daling, W., Shi, F., Yifei, Z., & Fangling, L. (2012). An Approach for

Crawling Dynamic Webpages Based on Script Language Analysis. Web

Information Systems and Applications Conference (WISA), Pages 35-38.

[9] Sharma, A. K., Gupta, J. P., & Agarwal, D. P. (2010). Parcahyd: an architecture

of a parallel crawler based on augmented hypertext documents. International

Journal of Advancements in Technology, Volume 1, Issue 2, Pages 270-283.

[10] Zloof, M. M. (1975). Query by example, National computer conference and

exposition. ACM, Pages 431-438.

[11] Manning C., Raghavan P., & SchützeH. (2009). Introduction to Information

Retrieval. Cambridge University Press, Online edition, Chapter 19, Pages 421-

442.

[12] Aybay I., & Alqaraleh S. (2010). Elimination of Repeated Occurrences in Image

Search Engines. 9th International Conference on Application of Fuzzy Systems

and Soft Computing, Prague, Czech Republic, Pages 145-149.

[13] Alqaraleh S. (2011). Elimination of Repeated Occurrences in Image Search

Engines. M.Sc. thesis, Eastern Mediterranean University, Pages 31– 32.

117

[14] Alqaraleh S., & Ramadan O. (2014). Elimination of Repeated Occurrences in

Multimedia Search Engines. The International Arab Journal of Information

Technology, Volume 11, No.2, Pages 134-139.

[15] Alqaraleh S., & Ramadan O. (2015). Efficient Watcher Based Web Crawler.

Aslib Journal of Information Management, Volume 67, Issue 6, Pages 663 –

686.

[16] William, S., & Stallings, W. (2003). Cryptography and Network Security:

Principles and Practice. 3/E, Prentice Hall, Page 681.

[17] Manjunath, B. S., Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7:

multimedia content description interface. John Wiley & Sons, Volume 1.

[18] Alqaraleh S., & Ramadan O. (2015). Utilizing Query by Example for Fast and

Accurate Multimedia Retrieval. Applied Mathematics & Information Sciences,

Volume 9, No. 1, Pages 125-134.

[19] Alqaraleh S., & Ramadan O. (2012). Improving the performance of query by

Sketch using parallel techniques. 3rd International Conference on Information

and Communication Systems, Jordan.

[20] Langville, A. N., & Meyer, C. D. (2011). Google's PageRank and beyond: The

science of search engine rankings. Princeton University Press.

118

[21] Pichler, C., Holzmann, T., & Wright, B. (2011). Information Search and

Retrieval. Crawler Approaches and Technology, Available at:

http://www.iicm.tugraz.at/0x811bc82b_0x0011b4d6/ (accessed 9 September

2015), Pages 6-13.

[22] Bhute, Avinash N., & Meshram, B. B. (2010). Intelligent Web Agent for Search

Engines. International Conference on Trends and Advances in Computational

Engineering (TRACE - 2010), Pages 211-218.

[23] Leng, A. G. K., Ravi, K. P., Singh, A. K., & Dash, R. K. (2011). PyBot: An

Algorithm for Web Crawling. International Conference on Nanoscience,

Technology and Societal Implications (NSTSI -2011), IEEE, Pages 1-6.

[24] Sharma, V., Kumar, M., & Vig, R. (2012). A Hybrid Revisit Policy for Web

Search. Journal of Advances in Information Technology, Volume 3, Issue 1,

Pages 36-47.

[25] Singh, A. V., & Vikas, A. M. (2014). A Review of Web Crawler Algorithms.

International Journal of Computer Science & Information Technologies,

Volume 5, Issue 5, Pages 6689-6691.

[26] Cho, J., Garcia-Molina, H., & Page, L. (2012). Reprint of: Efficient crawling

through URL ordering. Computer Networks, Volume 56, Issue 18, Pages 3849-

3858.

119

[27] Olston, C., & Najork, M. (2010). Web crawling. Foundations and Trends in

Information Retrieval, Volume 4, Issue 3, Pages 175-246.

[28] Mukhopadhyay, D., Mukherjee, S., Ghosh, S., Kar, S., & Kim, Y. C. (2011).

Architecture of a Scalable Dynamic Parallel WebCrawler with High Speed

Downloadable Capability for a Web Search Engine. 6th International Workshop

on MSPT, Pages 103-108.

[29] Markatos, E. P. (2001). On caching search engine query results. Computer

Communications, Volume 24, Issue 2, Pages 137-143.

[30] Yang, Y., Xu, D., Nie, F., Luo, J., & Zhuang, Y. (2009). Ranking with local

regression and global alignment for cross media retrieval. The 17th ACM

international conference on Multimedia, Pages 175-184.

[31] Dali, L., Fortuna, B., Duc, T. T., & Mladenić, D. (2012). Query-independent

learning to rank for rdf entity search The Semantic Web: Research and

Applications. Springer Berlin Heidelberg, Pages 484-498.

[32] Thollard, F., & Quénot, G. (2013). Content-based re-ranking of text-based image

search results. Advances in Information Retrieval, Springer Berlin Heidelberg,

Volume 7814, Pages 618-629.

[33] Liu, & Tie-Yan. (2011). Query-Dependent Ranking. Learning to Rank for

Information Retrieval. Springer Berlin Heidelberg, Pages 113-121.

120

[34] Jain, V., & Varma, M. (2011). Learning to re-rank: query-dependent image re-

ranking using click data. 20th international conference on World Wide Web,

Pages 277-286.

[35] Zhu, Y., Xiong, N., Park, J., & He, R. (2008). A Web Image Retrieval Re-

ranking Scheme with Cross-Modal Association Rules. International Symposium

on Ubiquitous Multimedia Computing, Issue 13, Pages 83 - 86.

[36] Bellini, P., Cenni, D., & Nesi, P. (2012). On the Effectiveness and Optimization

of Information Retrieval for Cross Media Content. In KDIR, Pages 344-347.

[37] Li, L., Zhai, X., & Peng, Y. (2012). Tri-space and ranking based heterogeneous

similarity measure for cross-media retrieval. 21st International Conference on

Pattern Recognition (ICPR), IEEE.

[38] Bo, L., Wang, G., & Yuan, Y. (2012). A novel approach towards large scale

cross-media retrieval. Journal of Computer Science and Technology, Volume

27, Issue 6, Pages 1140-1149.

[39] Mao, X., Lin, B., Cai, D., He, X., & Pei, J. (2013). Parallel field alignment for

cross media retrieval. In Proceedings of the 21st ACM international conference

on Multimedia, Pages 897-906.

[40] Kang, C., Liao, S., He, Y., Wang, J., Xiang, S., & Pan, C. (2014). Cross-Modal

Similarity Learning: A Low Rank Bilinear Formulation. arXiv preprint

arXiv:1411.4738.

121

[41] Safadi, B., & Quénot, G. (2011). Re-ranking by local re-scoring for video

indexing and retrieval. In Proceedings of the 20th ACM international conference

on Information and knowledge management, Pages 2081-2084.

[42] Jin, H., He, R., Liao, Z., Tao, W., & Zhang, Q. (2006). A Flexible and

Extensible Framework for Web Image Retrieval System. International

Conference on Internet and Web Applications and Services/Advanced, French,

Pages 193 – 198.

[43] Doulaverakis, H., Nidelkou, E., Gounaris, A., & Kompatsiaris, Y. (2006). A

Hybrid Ontology and Content-Based Search Engine for Multimedia Retrieval.

ADBIS Research Communications.

[44] Mirzal, A. (2012). Design and Implementation of a Simple Web Search Engine.

International Journal of Multimedia and Ubiquitous Engineering, Volume 7,

No. 1, Pages 53-60.

[45] Maredj, A. E., & Tonkin, N. (2011). Extending the Conceptual Neighborhood

Graph of the Relations for the Semantic Adaptation of Multimedia Documents.

International Conference on Education and Information Technology, Volume

53, Pages 80-83.

[46] YuJie, L., Feng, B., ZongMin, L., & Hua, L. (2013). 3D Model Retrieval Based

on 3D Fractional Fourier Transform. The International Arab Journal of

Information Technology, Online Publication, Volume 10, No.5.

122

[47] Ding, Z., Dai, J., Gao, X., & Yang, Q. (2012). A Hybrid Search Engine

Framework for the Internet of Things. Ninth Web Information Systems and

Applications Conference, Pages 57 - 60.

[48] Chau, M., & Wong, C. H. (2010). Designing the user interface and functions of a

search engine development tool. Decision Support Systems, Volume 48, Issue 2,

Pages 369-382.

[49] Netcraft (2014), “Web server survey”, Available at:

http://www.news.netcraft.com/archives/2014/01/03/january-2014-web-server-

survey.html/ (accessed 4 July 2014).

[50] Kumar, M. S., & Neelima, P. (2011). Design and Implementation of Scalable,

Fully Distributed Web Crawler for a Web Search Engine. International Journal

of Computer Applications, Volume 15, Issue 7, Pages 8-13.

[51] Wu, Min, & Lai, J. (2010). The Research and Implementation of parallel web

crawler in cluster. Computational and Information Sciences (ICCIS), Pages 704-

708.

[52] Amin, Ruhul, M., Prince, M. A., & Hussain, M. A. (2012). WEBTracker: A

Web Crawler for Maximizing Bandwidth Utilization. Journal of Science and

Technology, Volume 16, No.2, Pages 32-40.

http://www.news.netcraft.com/archives/2014/01/03/january-2014-web-server-survey.html
http://www.news.netcraft.com/archives/2014/01/03/january-2014-web-server-survey.html

123

[53] Yang, Y., Du, Y., Hai, Y., & Gao, Z. (2009). A Topic-Specific Web Crawler

with Web Page Hierarchy Based on HTML Dom-Tree. Asia-Pacific Conference

on Information Processing, Pages 420 - 423.

[54] Mukhopadhyay, D., & Sinha, S. (2008). A New Approach to Design Graph

Based Search Engine for Multiple Domains Using Different Ontologies.

International Conference on Information Technology (ICIT '08), Pages 267 -

272.

[55] Dincturk, M. E., Jourdan, G. V., Bochmann, G. V., & Onut, I. V. (2014). A

model-based approach for crawling rich internet applications. ACM Transactions

on the Web (TWEB), Volume 8, Issue 3, Pages 1-19.

[56] Cui, L. J., He, H., Xuan, H. W., & Li, J. G. (2013). Design and Development of

an Ajax Web Crawler. Tenth International Conference on Computability and

Complexity in Analysis, Volume 17, Pages 6-10.

[57] Nath, R., & Bal, S. (2011). A novel mobile crawler system based on filtering off

non-modified pages for reducing load on the network. The International Arab

Journal of Information Technology, Volume 8, Issue 3, Pages 272-279.

[58] Mishra, S., Jain, A., & Sachan, A. K. (2010). Smart Approach to Reduce the

Web Crawling Traffic of Existing System using HTML based Update File at

Web Server. International Journal of Computer Applications, Volume 11, Issue

7, Pages 34-38.

124

[59] Bhushan, B., Gupta, M., & Gupta, G. (2012). Increasing the Efficiency of

Crawler Using Customized Sitemap. International Journal of Computing and

Business Research, Online Publication, Volume 3, Issue 2.

[60] Schonfeld, U., & Shivakumar, N. (2009). Sitemaps: above and beyond the crawl

of duty. 18th international conference on World Wide Web, ACM, Pages 991-

1000.

[61] Brawer, S. B., Ibel, M., Keller, R. M., & Shivakumar, N. (2013). Web crawler

scheduler that utilizes sitemaps from websites. U.S. Patent Application

13/858,872, Available at: http://www.google.com/patents/US7769742/

(accessed 9 September 2015).

[62] Duda, C., Frey, G., Kossmann, D., Matter, R., & Zhou, C. (2009). Ajax crawl:

Making Ajax applications searchable. 25th IEEE International Conference on

Data Engineering, IEEE, Pages 78-89.

[63] Chen, Y., Sanghavi, S., & Xu, H. (2012). Clustering sparse graphs. In Advances

in Neural Information Processing Systems 25 (NIPS 2012), Pages 2204-2212.

[64] Pan, J., Hou, Y. T., & Li, B. (2003). An overview of DNS-based server

selections in content distribution networks. Computer Networks, Volume 43,

Issue 6, Pages 695-711.

http://www.google.com/patents/US7769742/

125

[65] Kausar, M. A., Dhaka, V. S., & Singh, S. K. (2013). Web Crawler – A Review.

International Journal of Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 8, Pages 31-36.

[66] Choudhary, S., Dincturk, M. E., Mirtaheri, S. M., Moosavi, A., von Bochmann,

G., Jourdan, G. V., & Onut, I. V. (2012). Crawling rich internet applications: the

state of the art. Conference of the Center for Advanced Studies on Collaborative

Research (CASCON 2012), Pages 146-160.

[67] V8 (2014). V8 3.31.1. Available at: https://www.

developers.google.com/v8/ (accessed 7 April 2014).

[68] Chromium (2014). Chromium. Available at: https://www.chromium.org/Home/

(accessed 7 April 2014).

[69] Ward, E., & French, G. (2013). Ultimate Guide to Link Building: How to Build

Backlinks. Authority and Credibility for Your Website, and Increase Click

Traffic and Search Ranking, Chapter 9, Entrepreneur Press.

[70] Kelly, B., & Nixon, W. (2013). SEO analysis of institutional repositories:

What’s the back story?. Open Repositories (2013), Canada.

[71] CHEN, C., LIN, L., & SHYU, M. (2012). Re-Ranking Algorithm for

Multimedia Retrieval via Utilization of Inclusive and Exclusive Relationships

between Semantic Concepts. International Journal of Semantic Computing,

Volume 06, Issue 02, Pages 135-154.

https://www.chromium.org/Home/

126

[72] Kang, C., Wang, X., Chen, J., Liao, C., Chang, Y., Tseng, B., & Zheng, Z.

(2011). Learning to re-rank web search results with multiple pairwise features.

Proceedings of the fourth ACM international conference on Web search and

data mining, Pages 735-744.

[73] Mythili, C., & Kavitha, V. (2011). Efficient Technique for Color Image Noise

Reduction. The research bulletin of Jordan, ACM, Volume 1, Issue 11, Pages

41-44.

[74] Bhattacharyya, S. (2011). A brief survey of color image preprocessing and

segmentation techniques. Journal of Pattern Recognition Research, Volume 1,

Issue 1, Pages 120-129.

[75] Chenglong, C., & Ni, J. (2012). Median filtering detection using edge based

prediction matrix, Digital Forensics and Watermarking. Springer Berlin

Heidelberg, Pages 361-375.

[76] Image Deskewing (2014). Document Skew Checker. Available at:

http://www.aforgenet.com\ (accessed 7 April 2014).

[77] Naveed, E., Bin Tariq, T., & Baik, S. (2012). Adaptive key frame extraction for

video summarization using an aggregation mechanism. Journal of Visual

Communication and Image Representation, Volume 23, Issue 7, Pages 1031-

1040.

http://www.aforgenet.com/

127

[78] Kalogeiton, S., Papadopoulos, P., Chatzichristofis, S., & Boutalis, Y. (2010). A

Novel Video Summarization Method Based on Compact Composite Descriptors

and Fuzzy Classifier. 1st International Conference for Undergraduate and

Postgraduate Students in Computer Engineering, Informatics, related

Technologies and Applications, Pages 237-246.

[79] Rajendra, P., & Keshaveni, N. (2014). A Survey of Automatic Video

Summarization Techniques. International Journal of Electronics, Electrical and

Computational System, Online Publication, Volume 2.

[80] Duplicate Songs Detector via Audio Fingerprinting (2013). Available at:

http://www.codeproject.com/Articles/206507/Duplicates-detector-via-audio-

fingerprinting\ (accessed 7 April 2014).

[81] Baluja, S., & Covell, M. (2006). Content Fingerprinting Using Wavelets.

European Conference on Visual Media Production (CVMP), Pages 198-207.

[82] Bribiesca, E. (1999). A new chain code. Pattern Recognition, Volume 32, Issue

2, Pages 235-251.

[83] Danielsson, P. E. (1980). Euclidean distance mapping. Computer Graphics and

image processing. Volume 14, Issue 3, Pages 227-248.

[84] Rao, R., & Yip, P. (2014). Discrete cosine transform: algorithms, advantages,

applications. Chapter 7, Academic press, Pages 136-163.

128

[85] Lux, M., & Chatzichristofis, S. (2008). Lire: Lucene Image Retrieval – An

Extensible Java CBIR Library. ACM International Conference on Multimedia

(ACM MM), British, Pages 1085-1087.

[86] Balan, S., & Devi, T. (2012). Design and Development of an Algorithm for

Image Clustering In Textile Image Retrieval Using Color Descriptors.

International Journal of Computer Science, Engineering and Applications

(IJCSEA), Volume 2, Issue 3, Pages 199-211.

[87] Chatzichristofis, S., & Boutalis, Y. (2008). CEDD: Color and Edge Directivity

Descriptor: A Compact Descriptor for Image Indexing and Retrieval. 6th

International Conference in advanced research on Computer Vision Systems

(ICVS), Greece, Pages 312–322.

[88] Chatzichristofis, S., & Boutalis, Y. (2008). FCTH: Fuzzy Color and Texture

Histogram - A Low Level Feature for Accurate Image Retrieval. 9th

International Workshop on Image Analysis for Multimedia Interactive Services

(WIAMIS), IEEE Computer Society, Austria, Pages 191 – 196.

[89] Chatzichristofis, S., Boutalis, Y., & Lux, M. (2011). Combining Color and

Spatial Color Distribution Information in a Fuzzy Rule Based Compact

Composite Descriptor. Communications in Computer and Information Science,

Springer-Verlag, Pages 49-60.

129

[90] Kekre, H., Bhandari, N., Nair, N., Padmanabhan, P., & Bhandari, S. (2013). A

Review of Audio Fingerprinting and Comparison of Algorithms. International

Journal of Computer Applications, Volume 70, Issue 13, Pages 24-30.

[91] Baeza-Yates, R., Hurtado, C., Mendoza, M., & Dupret, G. (2005). Modeling

user search behavior. Third Latin American Web Congress (LA-WEB), IEEE,

Pages 242 – 251.

[92] Ngo, C. W., Xu, C., Kraaij, W., & El Saddik, A. (2013). Web-Scale Near-

Duplicate Search: Techniques and Applications. MultiMedia, IEEE, Volume 20,

Issue 3, Pages 10-12.

[93] Chiu, C. Y., Tsai, T. H., & Hsieh, C. Y. (2012). Scalable near-duplicate video

stream monitoring. In Intelligent Signal Processing and Communications

Systems (ISPACS), Pages 12-15.

[94] Wu, X., Hauptmann, A. G., & Ngo, C. W. (2007). Practical Elimination of Near-

Duplicates from Web Video Search. ACM International Conference on

Multimedia, Pages 218-227.

[95] Wu, X., Ngo, C. W., Hauptmann, A. G., & Tan, H. K. (2009). Real-Time Near-

Duplicate Elimination for Web Video Search with Content and Context. IEEE

Transactions on Multimedia, Volume 11, Issue 2, Pages 196 - 207.

130

[96] Dong, W., Wang, Z., Charikar, M., & Li, K. (2012). High-confidence near-

duplicate image detection. 2nd ACM International Conference on Multimedia

Retrieval, Pages 1-8.

[97] Cheddad, A., Condell, J., Curran, K., & McKevitt, P. (2010). A hash-based

image encryption algorithm. Optics Communications, Volume 283, Issue 6,

Pages 879-893.

[98] Kasutani, E., & Yamada. (2001). The MPEG-7 color layout descriptor: a

compact image feature description for high-speed image/video segment retrieval.

International Conference on Image Processing, IEEE, Volume 1, Pages 674-

677.

[99] Ro, Y. M., Kim, M., Kang, H. K., Manjunath, B. S., & Kim, J. (2001). MPEG-7

homogeneous texture descriptor. ETRI journal, Volume 23, Issue 2, Pages 41-

51.

[100] Latecki, L. J., Lakämper, R., & Eckhardt, U. (2000). Shape descriptors for non-

rigid shapes with a single closed contour. IEEE Conference on Computer

Vision and Pattern Recognition, Volume 1, Pages 424-429.

[101] Dimitriadou, K., Papaemmanouil, O., & Diao, Y. (2014). Explore-by-example:

An automatic query steering framework for interactive data exploration. The

ACM SIGMOD international conference on Management of data, Pages 517-

528.

131

[102] Watai, Y., Yamasaki, T., & Aizawa, K. (2007). View-Based Web Page

Retrieval using Interactive Sketch Query. International Conference on Image

Processing, Volume 6, Pages 357 – 360.

[103] Giangreco, I., Springmann, M., Al Kabary, I., & Schuldt, H. (2012). A User

Interface for Query-by-Sketch Based Image Retrieval with Colour Sketches.

Computer Science, Volume 7224, Pages 571-572.

[104] Wang, Y., Yu, M., Jia, Q., & Guo, H. (2011). Query by sketch: An asymmetric

sketch-vs-image retrieval system. Image and Signal Processing (CISP),

Volume: 3, Pages 1368 – 1372.

[105] Yoon, S. M., & Kuijper, A. (2010). Query-by-sketch based image retrieval

using diffusion tensor fields. Image Processing Theory Tools and Applications

(IPTA), Pages 343 - 348.

[106] Vermilyer, R. (2006). Intelligent User Interface Agents in Content-Based

Image Retrieval. SoutheastCon, IEEE, New York, Pages 136-142.

[107] Shirahama, K., & Uehara, K. (2011). Utilizing Video Ontology for Fast and

Accurate Query-by-Example Retrieval. Fifth IEEE International Conference

on Semantic Computing (ICSC), Pages 395 – 402.

[108] Gao, X., Li, X., Feng, J., & Tao, D. (2009). Shot-based video retrieval with

optical flow tensor and HMMs. Pattern Recognition Letters, Volume 30, Issue

2, Pages 140–147.

132

[109] Shen, H. T., Shao, J., Huang, Z., & Zhou, X. (2009). Effective and Efficient

Query Processing for Video Subsequence Identification. IEEE transactions on

knowledge and data engineering, Volume 21, NO. 3, Pages 321-334.

[110] Helén, M., & Virtanen, T. (2010). Audio query by example using similarity

measures between probability density functions of features. EURASIP Journal

on Audio, Speech, and Music Processing, Volume 2010, Pages 1-12.

[111] Chen, L. C. (2011). Using a new relational concept to improve the clustering

performance of search engines. Information Processing and Management,

Volume 47, Issue 2, Pages 287-299.

[112] Hindle, A., Shao, J., Lin, D., Lu, J., & Zhang, R. (2011). Clustering Web video

search results based on integration of multiple features. World Wide Web,

Volume 14, Issue 1, Pages 53-73.

[113] Chen, W. C., & Wang, M. S. (2009). A fuzzy c-means clustering-based fragile

watermarking scheme for image authentication. Expert Systems with

Applications, Volume 36, Issue 2, Part 1, Pages 1300–1307.

[114] Alnihoud, J. (2011). Image Retrieval System with Self Organizing Map and

Subtractive Fuzzy Clustering. International Journal on Information and

Communication Technologies, Volume 4, Issue 3-4, Pages 103-110.

http://www.sciencedirect.com/science/journal/09574174/36/2/supp/P1

133

[115] Tung, F., Wong, A., & Clausi, D. A. (2010). Enabling scalable spectral

clustering for image segmentation. Pattern Recognition, Volume 43, Issue 12,

Pages 4069–4076.

[116] Murthy, V. S. V. S., Vamsidhar, E., Kumar, J. S., & Rao, P. S. (2010). Content

Based Image Retrieval using Hierarchical and K-Means Clustering

Techniques. International Journal of Engineering Science and Technology,

Volume 2, Issue 3, Pages 209-212.

[117] Sowmya, B., & Rani, B. S. (2011). Colour image segmentation using fuzzy

clustering techniques and competitive neural network. Applied Soft Computing,

Volume 11, Issue 3, Pages 3170–3178.

[118] Woźniak, M., Graña, M., & Corchado, E. (2014). A survey of multiple

classifier systems as hybrid systems. Information Fusion, Volume 16, Pages 3-

17.

[119] Apache Nutch (2015). Nutch 2.3. Available at: http://www.nutch.apache.org\

(accessed 20 May 2015).

[120] Scrapy (2015). Scrapy 1.0. Available at: http://www.scrapy.org\ (accessed 20

May 2015).

[121] Statistics and Social Network of YouTube Videos (2008). Available at:

http://netsg.cs.sfu.ca/youtubedata\ (accessed 20 May 2015).

http://www.sciencedirect.com/science/journal/00313203/43/12
http://www.sciencedirect.com/science/journal/15684946
http://www.nutch.apache.org/
http://www.scrapy.org/
http://netsg.cs.sfu.ca/youtubedata/

134

[122] Cheng, X., Dale, C., & Liu, J. (2008). Statistics and social network of YouTube

videos. 16th international workshop on quality of service, IEEE, Pages 229-

238.

[123] Craswell, N. (2009). R-Precision, Encyclopedia of Database Systems. Springer

US, Pages 2453-2453.

[124] Multimedia Search keywords (2014). Available at:

https://www.wordtracker.com\ (accessed 20 May 2015).

[125] Search keywords (2014). Available at: http://www.wordstream.com\ (accessed

20 May 2015).

https://www.wordtracker.com/
http://www.wordstream.com/

