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ABSTRACT 

Euler’s integral are two functions, called Beta and Gamma functions. They play 

important role in mathematics and its applications. These functions are defined through 

improper integrals and their properties depend on properties of improper integrals 

depending on parameter. In this thesis, proper and improper integrals are reviewed, 

Beta and Gamma functions are defined and their properties are presented. 
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ÖZ 

Euler integralları Beta ve Gamma fonksyonlarıdır. Bunlar matematik ve onun 

uygulamalarında önemli rol alırlar. Bu fonksiyonlar belirsiz integrallar olarak 

tanımlanırlar ve özelliklerini parametreye bağlı belirsız integralların özelliklernden 

alırlar. Bu tezde belirli ve belirsiz integrallar incelenmidir, Beta ve Gamma 

fonksiyonları tanımlanmış ve özellikleri verilmelidir.  
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Chapter 1

INTRODUCTION

In year 1729 the Swiss mathematician Leon hard Euler (1707-1783) defined the Gamma

function. This definition appears in his correspondence. He was 22 years old when he

defined this function. Discovery of gamma function was in the intersection of two

great problems of the 17th century. The first one is interpolation and the second one

establishing integral calculus, mainly setting up formula of indefinite integration. To

monitor interpolation problem consider the sums

T1 = 1

T2 = 1+2

T3 = 1+2+3

T4 = 1+2+3+4

T5 = 1+2+3+4+5

It is know that the nth sum is calculated by formula

Tn =
n(n+1)

2

This formula is spectacular, because it interpolates non-integer number (say, n = 5
2 ) of

numbers from an integer number (n = 1,2,3, · · · ) of them. For example,

T5
2
=

5
2(

5
2 +1)
2

=
35
8
·

1



This type of questions are frequent in the studies of the 17th and 18th centuries. A

familiar power function is defined for integer values of argument by

f (n) = an = a ·a · · ·a.

Newton extended f (x) to any real x by using

a0 = 1, a
m
n = n
√

am and a−n =
1
an ·

This explains a basic idea of interpolation problem: definition of quantities which may

have no real meaning by reasonably interpolating them by those which have a real

meaning.

In this regard the Gamma function is spectaculars. Its properties Γ(1) = 1 and

Γ(x+1) = xΓ(x) allows to get Γ(n) = (n−1)! if n is integer. Thus, the gamma func-

tion interpolates non integer factorials from integer factorials. Later, gamma function

laid down on interpolation of non integer order differentiation by integer order differ-

entiation.

Euler derived gamma function in the form

Γ(α) =
∫ 1

0
(− logx)(α−1)dx , α > 0.

Later this definition was modified by Adrien Marie Legendre (1752-1833) to the fa-

miliar form

Γ(α) =
∫

∞

0
(e)−ttα−1dt.

2



Moreover, Legendre called gamma function as the second Euler’s integral, regarding

the first Euler’s integral to be the beta function

β(x,y) =
∫ 1

0
tx−1(1− t)y−1dt,

which is related to Gamma function as

β(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

·

In this thesis we review the Euler’s integrals.

The Euler’s integrals are improper Riemann integrals. Therefore, before starting

the Euler’s integrals, we review proper and improper Riemann integrals in this thesis.

3



Chapter 2

RIEMANN INTEGRAL

2.1 Proper Riemann Integral

2.1.1 Definition

Definition 2.1. Let f be a function defined and bounded on the closed interval [a,b],

let P : x0,x1, ...,xn be a partition of the interval [a,b], such that a = x0<x1< · · ·<xn = b

and take a point x∗i in each sub interval [xi,xi−1]. Form the following sum

S(p, f ) = f (x∗0)(x1− x0)+ f (x∗1)(x2− x1)+ ...+ f (x∗n−1)(xn− xi−1),

or

S(p, f ) =
n

∑
i=1

f (x∗i )(xi− xi−1).

Such a sum is called a Riemann sum for the function f over the interval [a,b].

Geometrically, it gives an approximation of the area under the curve y = f (x) be-

tween x = a and x = b. The Riemann integral of f over the interval [a,b] is the limit:

lim
4P→0

S(p, f ) =
∫ b

a
f (x)dt,

where 4p = max{x1− x0, ...,xn− xn−1}. More precisely, Riemann integral is defined

as follows [3].

4



Figure 2.1: Upper integral sum.

Definition 2.2. The function f (x) is said to be Riemann integrable over [a,b] if

a number m exists such that for each ε > 0 there exists a number δ > 0 such that

|m−S(p, f )|< ε for any partition p of the interval [a,b], with a norm ∆p < δ where ∆p

= max {∆xi, i = 1,2, ...,n} [3]. The number m is called the Riemann integral of f (x)

over integral [a,b] and denoted by m =
∫ b

a f (x)dx.

Note 2.3. The integration symbol
∫

was first used by Gottfried Wilhelm Leibniz (1646-

1716) to represent a sum.

Example 2.4. Find the Riemann integral of the function f (x) = x3 +2x over the inter-

val [1,4].

Solution: First of all we divide the interval [1,4] into n sub interval of length ∆ =

4−1
n = 3

n and construct the partition p as follows:

p : x0 = 1 < x1 = 1+
3
n
< x2 = 1+

3
n
+

3
n
< · · ·< xn = 1+

3
n
+ · · ·+ 3

n
= 4.

5



Then

∆xi = xi− xi−1 = 1+
3i
n
− (1+

3(i−1)
n

) =
3
n
.

Take

x∗i = 1+
3
n
+ · · ·+ 3

n︸ ︷︷ ︸
i−times

= 1+
3i
n
·

Now

n

∑
i=1

f (xi)∆xi =
n

∑
i=1

[
(1+

3i
n
)3 +2(1+

3i
n
)

]
3
n

=
3
n

[ n

∑
i=1

(1+
9i
n
+

27i2

n2 +
27i3

n3 +2+
6i
n
)

]

=
3
n

[ n

∑
i=1

1+
9
n

n

∑
i=1

i+
27
n2

n

∑
i=1

i2 +
27
n3

n

∑
i=1

i3 +
n

∑
i=1

2+
6
n

n

∑
i=1

i
]

=
3
n

[
n+

9
n

n(n+1)
2

+
27
n2

n(n+1)(2n+1)
6

+
27
n3

n2(n+1)2

4
+2n+

6
n

n(n+1)
2

]
.

Simplifying, we get

= 3
(

3+
9
2
+

9
2n

+
27
3
+

27
2n

+
27
6n

+
27
4
+

27
2n

+
27
4n

+3+
3
n

)
︸ ︷︷ ︸

A(n)

Hence, by taking limit as x→ ∞, we get

∫ 4

1
(x3 +2x)dx = lim

x→∞
3
(

A(n)
)
=

315
4

.

6



2.1.2 Existence of Riemann Integral

The following theorem establishes a necessary and sufficient condition for existence

of Riemann integral.

Theorem 2.5. Let f (x) be a bounded function on a finite interval [a,b] and let p =

{x0,x1, ...,xn} be any partition of [a,b], let mi and Mi be the infimum and supremum

of f (x) on the subinterval [xi−1,xi] , for i = 1,2, ...,n, respectively. The function f is

Riemann integrable on [a,b] if and only if for a given ε > 0 there exist δ > 0 such that

U(p, f )−L(p, f )< ε

whenever ∆p < δ, where ∆p = max{∆xi, i = 1,2, ...,n} is the norm of p,

U(p, f ) =
n

∑
i=1

Mi∆xi

and

L(p, f ) =
n

∑
i=1

mi∆xi.

To prove this theorem we will give several definitions and lemmas [4].

7



Figure 2.2: Lower integral sum.

Figure 2.3: Difference of Upper and lower integral sums.
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Definition 2.6. We say that a partition p2 is a refinement of a partition p1 or p2 is finer

than p1 if p1 ⊂ p2 that is if every point of p1 is used in p2 [4].

Lemma 2.7 Let p and p
′
be two partitions of interval [a,b] such that p⊂ p

′
[4]. Then

U(p
′
, f )≤U(p, f )

and

L(p, f )≤ L(p
′
, f ).

Proof. Let p = {x0,x1, ...,xn}. Without loss of generality, assume that p
′

differs from

p by division of the ith subinterval [xi−1− xi] into Ti parts with the respective lengths

∆1
xi
,∆2

xi
, · · · ,∆Ti

xi
, where Ti ≥ 1, i = 1,2, ...,n. Now if m( j)

i and M( j)
i are the infimum and

supremum of f (x) over ∆
( j)
i respectively, then it’s clear that mi ≤m( j)

i ≤M( j)
i ≤Mi for

j = 1,2, ...,Ti and i = 1,2, ...,n, where mi and Mi are the infimum and supremum of

f (x) over [xi−1,xi], respectively. This implies that

L(p, f ) =
n

∑
i=1

mi∆xi ≤
n

∑
i=1

Ti

∑
j=1

m( j)
i ∆x( j)

i = L(p
′
, f )

and

U(p
′
, f ) =

n

∑
i=1

Ti

∑
j=1

M( j)
i ∆x( j)

i ≤
n

∑
i=1

Mi∆xi =U(p, f ).

This proves the lemma.

Lemma 2.8. If p and p
′

be any two partitions of the interval [a,b] , then L(p, f ) ≤

U(p
′
, f ). Proof. Let p∗ = p∪ p

′
. Then the partition p∗ is a refinement of both p and

9



p
′
. By Lemma (2.7.)

L(p, f )≤ L(p∗, f )≤U(p∗, f )≤U(p, f ).

This proves the lemma [4].

Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Let ε > 0 be given and suppose that for every ε > 0, there

is ε > 0 such that

U(p, f )−L(p, f )< ε

holds for each partition p of the interval [a,b] with ∆p < ε and let

S(p, f ) =
n

∑
i=1

f (x∗i )∆xi,

where x∗i is any point in the interval [xi−1,xi], i = 1, ...,n. By the definition of L(p, f )

and U(p, f ) we can write

L(p, f )≤ S(p, f )≤U(p, f ).

Let m and M be the infimum and supremum of f (x) over interval [a,b], respectively.

Then

m(b−a)≤ L(p, f )≤ S(p, f )≤U(p, f )≤M(b−a).

10



By the least upper bound property of the system of real numbers

sup
p

L(p, f ) and inf
p

U(p, f )

exist and satisfy

sup
p

L(p, f )≤ inf
p

U(p, f ).

Now suppose that for the given ε > 0 there exist δ > 0 such that ∆p < δ implies

U(p, f )−L(p, f )< ε.

For any partition of [a,b] whose norm ∆p < δ , we have

L(p, f )≤ sup
p
(p, f )≤ inf

p
U(p, f )≤U(p, f ).

Hence

inf
p

U(p, f )− sup
p

L(p, f )< ε.

Since ε > 0 is arbitrary we conclude that

inf
p

U(p, f ) = sup
p

L(p, f ).

Denote is the common value of

inf
p

U(p, f ) and sup
p

L(p, f )

11



by A. Then

|A−S(p, f )|< ε.

Thus, A is Riemann integral of f (x) on the interval [a,b].

Now we want to prove the converse of the theorem, that is, if f (x) is Riemann

integrable on [a,b] then U(p, f )−L(p, f )< ε is satisfied [4].

Let f (x) be Riemann integrable. Then for each ε > 0, there exist δ > 0 such that

∣∣∣∣A− n

∑
i=1

f (x
′
i)∆xi

∣∣∣∣< ε

3
(2.1)

and

∣∣∣∣A− n

∑
i=1

f (x
′′
i )∆xi

∣∣∣∣< ε

3
(2.2)

for any partition p of [a,b] with ∆p < δ and any choice of x
′
i,x
′′
i ∈ [xi−1,xi], i = 1, ...,n

where A =
∫ b

a f (x)dx. From Eq (2.1) and Eq (2.2) we obtain that

∣∣∣∣ n

∑
i=1

[ f (x
′
i)− f (x

′′
i )]∆xi

∣∣∣∣< 2ε

3
.

Now Mi−mi is the supremum of f (x)− f (x∗) for x and x∗ in [xi−1,xi], i = 1, . . . ,n.

This means that for a given λ > 0 we can choose x
′
i and x

′′
i in [xi−1,xi], so that f (x

′
i)−

f (x
′′
i ) > Mi−mi− λ, i = 1, . . . ,n, otherwise Mi−mi− λ would be an upper bound

for f (x)− f (x∗) for all x and x∗ in [xi−1,xi] which is a contraduction. In particular, if

12



λ = ε

3(b−a) then we can find x
′
i and x

′′
i ∈ [xi−1,xi] such that

U(p, f )−L(p, f ) =
n

∑
i=1

(Mi−mi)∆xi <
n

∑
i=1

([ f (x
′
i)− f (x

′′
i )](∆xi +λ)

<
n

∑
i=1
| f (x

′
i)− f (x

′′
i )∆xi|+λ(b−a)<

2ε

3
+

ε

3
= ε.

Theorem 2.9. If f is continous on [a,b] then f is Riemann integrable [5]. Proof Since

f is continous on [a,b] this implies that ∀ ε > 0, ∃ δ > 0 such that

| f (x∗)− f (x∗∗)|< ε

b−a
(2.3)

whenever |x∗− x∗∗|< δ.

Now, let p = {a = x0,x1, ...,xn = b} be any partition of [a,b] with ||p|| < δ. Since

f is continous on [xi−1,xi]. Let mi and Mi be the infimum and supremum of f re-

spectively for each sub interval [xi−1,xi] where mi = f (ci) and Mi = f (di) for some

di,ci ∈ [xi−1,xi]. Since |cr−dr|< δ it follows from Eq (2.3) that

Mi−mi = | f (ci)− f (di)|<
ε

b−a
i = 1,2, ...,n.

Hence

U(p, f )−L(p, f ) =
n

∑
i=1

Mi∆xi−
n

∑
i=1

mi∆xi

=
n

∑
i=1

(Mi−mi)∆xi <
n

∑
i=1

ε

b−a
∆xi =

ε

b−a

n

∑
i=1

∆xi

13



=
ε

b−a
(b−a) = ε.

Now by Theorem 2.5 we get that f is Riemann integrable.

Theorem 2.10. If f is monotonic on [a,b] then f is Riemann integrable [5].

Proof. Let f be monotonically non-decreasing on [a,b] let ε > 0 be given and let p =

a = x0,x1, ...,xn = b be any partition of [a,b] with

||p|| ≤ ε

f (b)− f (a)
·

Since f is nondecreasing, Mi = f (xi) and mi = f (xi−1). Hence

U(p, f )−L(p, f ) =
n

∑
i=1

(Mi−mi)∆xi

=
n

∑
i=1

[ f (xi)− f (xi−1)]∆xi

≤ ε

f (b)− f (a)
=

n

∑
i=1

[ f (xi)− f (xi−1)]

=
ε

f (b)− f (a)
= [ f (x1)− f (x0)+ f (x2)− f (x1)+ · · ·+ f (xn)− f (x0)]

=
ε

f (b)− f (a)
= [ f (xn)− f (x0)]

=
ε

f (b)− f (a)
= [ f (b)− f (a)] = ε.

14



Now by Theorem 2.5 f is Riemann integrable on [a,b]. Before progressing to further

proporties of Riemann integrals, we have seen that boundedness is necessary but not

sufficient for Reimann integrablity and that continuity is sufficient but not necessary.

With a view if denomestration a condition which is both necessary and sufficient

we introduce at this point the concept of the zero set or a set of measure zero [4].

Definition 2.11. A subset A or R is said to be of mesure zero or (zero set) if for every

ε > 0 there exist a finite or countable number of open intervals I1, I2, ... such that

A⊂
∞⋃

i=1

In and
∞

∑
n=1
|In|< ε.

Thus A is a zero set iff for every ε > 0 , there exist a squence {In} of open intervals

which covers A and satisfy ∑ |In|< ε [4].

Theorem 2.12 (Necessary Condition). If f is Riemann integrable on [a,b] , then the

set of its discontinuity points is a zero set [4].

Proof. Let f be Riemann integrable on [a,b] and let D be the set of discontinuity points

of f and, corresponding to each positive integer i, let Di be the set of points of [a,b] at

each of which the fluctuation of f exceeds 1
i . Then

D =
∞⋃

i=1

Di.

Let us assume that D is not a zero set, then for some integer k the set D 1
k

is not a zero set,

so there exist ε > 0 such every countable open covering {In} of Dk satisfies ∑
∞
n=1 |In| ≥

ε. Let {x0,x1, ...,xn} be a partition of [a,b] and suppose [xt1−1,xt1], [xt2−1,xt2], ..., [xtq−1,xtq]

15



(q < n) are those segments of p that contain points of Dk with

q

∑
j=1

∆xt j ≥ ε.

In each of these segments the oscillation of f exceeds 1
k · Therefore,

Mt j−mt j >
1
k
, j = 1,2, ...,q,

where

Mt j = sup{ f (x) : xt j−1 ≤ x≤ xt j}

and

mt j = inf{ f (x) : xt j−1 ≤ x≤ xt j}.

This impies that

U(p, f )−L(p, f )>
ε

k
·

Since ε

k is independent of p , we get from Theorem 2.9 f is Riemann not integrable.

This contraduction implies that D is a zero set.

Definition 2.13 [Oscillatory Sum]. Recall that

L(p, f ) =
n

∑
i=1

mi∆xi , U(p, f ) =
n

∑
i=1

Mi∆xi.

16



Let ωi =Mi−mi. ωi is called the oscillation of f on [xi−1,xi] and denoted by ω(p, [xi−1,xi]) :

U(p, f )−L(p, f ) =
n

∑
i=1

(Mi−mi)∆xi =
n

∑
i=1

ωi∆xi.

The sum ∑
n
i=1 ωi∆xi is called oscillatary sum for the function f corresponding to the

partition p and denoted by ω(p, f ) [5].

Theorem 2.14(Sufficient Condition). If f is a bouded function having a zero set of

discontinuoty points on [a,b] then f is Riemann integrable on [a,b] [4]. Proof. Let

{c1,c2, ...,cn} be the finite (ordered) set of points of discontinouity of f in [a,b]. Let

ε > 0 be given we enclose the points c1,c2, ...,cp respectively in p non-overlapping

intervals

[a1,b1], [a2,b2], ..., [ap,bp], (2.4)

such that

ω(p,q) =
p

∑
j=1
|[a j,b j]|<

ε

2(M−m)
,

where as usual

M = sup{ f (x) : a≤ x < b} , m = inf{ f (x) : a≤ x < b}.

Now if f is continous on each of the subintervals

[a,a1], [b1,a2], · · · , [bp,b], (2.5)

17



there are partitions pr : r = 1,2, ..., p+ 1 respectively of the sub intervals in Eq (2.5)

such that

ω(pr, f )<
ε

2(p+1)
, r = 1,2, ..., p+1.

Now consider the partition p = ∪{pr : r = 1,2, ..., p+1}. The subintervals of p can be

divided in to two groups:

(a) All the subintervals given in Eq (2.4)

pr : r = 1,2, · · · , p+1;

(b) All the subintervals of Eq (2.5).

The total construction to the oscillatory sum ω(p, f ) of the subintervals in (a) is

ω(p, f )<
ε

2(p+1)
(p+1) =

ε

2
,

and the total contribution to ω(p, f ) of the subintervals in (b) is

ω(p, f )<
ε

2(M−m)
(M−m) =

ε

2
.

Thus there exist a partition p such that

ω(p, f )<
ε

2
+

ε

2
= ε

Now by Theorem 2.5 we get that f is Riemann integrable.

18



2.1.3 Properties of Riemann Integral

Theorem 2.15. If f1 and f2 are two Riemann integrable functions on [a,b] and k1 and

k2 are two real numbers [4], then k1 f1 + k2 f2 is also Riemann integrable on [a,b] and

∫ b

a
(k1 f1(x)+ k2 f2(x))dx = k1

∫ b

a
f1(x)dx+ k2

∫ b

a
f2(x)dx

Proof. This follows from the equality

S(P,k1 f1 + k2 f2) = k1S(P, f1)+ k2S(P, f2).

Theorem 2.16. Let f be Riemann integrable on [a,b] and let c ∈ (a,b) then f is

Riemann integrable on [a,c] and on [c,b] [4].

Theorem 2.17. Let f be Riemann integrable on [a,c] and on [c,d] then f is Riemann

integrable on [a,b] [4].

Theorem 2.18. If f1 and f2 are Riemann integrable on [a,b] and f1 ≤ f2 then [4]

∫ b

a
f1(x)dx≤

∫ b

a
f2(x)dx.

Proof. This follows from the ineqality

S(p, f1) =
n

∑
i=1

f1(x∗i )∆xi ≤
n

∑
i=1

f2(x∗i ) = S(p, f2)

Theorem 2.19. Let f be Riemann integrable on [a,b] then | f | is also Riemann inte-

grable and on [a,b] [4]

|
∫ b

a
f (x)dx| ≤

∫ b

a
| f (x)|dx.
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Proof. Let ε > 0 be given and p be a partition of [a,b] then U(p, f )−L(p, f ) < ε (by

Theorem 2.5 let Mi and mi be supremum and infimum of f (x) on [xi−1,xi] with respect

to partition p . And let M
′
i and m

′
i be supremum and infimum of | f | with respect to

partition p, respectively. It is clear that Mi−mi ≥ M
′
i −m

′
i for i = 1, ...,n. So, as a

consequence

U(p, | f |)−L(p, | f |)≤U(p, f )−L(p, f )< ε.

Hence we get that | f | is Riemann integrable.

Now it remains to show that |
∫ b

a f (x)dx| ≤
∫ b

a | f (x)|dx. Since −| f | ≤ f ≤ | f | then

−
∫ b

a
| f (x)|dx≤

∫ b

a
f (x)dx≤

∫ b

a
| f (x)|dx.

This implies

∣∣∣∣∫ b

a
f (x)dx

∣∣∣∣≤ ∫ b

a
| f (x)|dx.

Theorem 2.20 (Mean Value Theorem for Integrals). Let f be continuous on [a,b] and

let M and m be supremum and infimum f on [a,b] respectively then there is c ∈ (a,b)

such that [2]

f (c) =
1

b−a

∫ b

a
f (x)dx.

Proof. Since M and m are supremum and infimum of f on [a,b] and f is continuous,
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there are x1,x2 ∈ [a,b] such that

m = f (x1) and M = f (x2). (2.6)

We know m≤ f (x)≤M Since

m(b−a)≤
∫ b

a
f (x)dx≤M(b−a),

by dividing both sides by (b−a), we get

m≤
∫ b

a f (x)dx
b−a

≤M

and from Eq (2.6)

f (x1)≤
∫ b

a f (x)dx
b−a

≤ f (x2)

By intermediate value theorem there is c ∈ (a,b) such that

f (c) =
1

b−a

∫ b

a
f (x)dx.

This proves the theorem.

Theorem 2.21. Let f ∈ R(a,b), then the function F defined on (a,b) by F(x) =∫ x
a f (t)dt is continous on [a,b] Proof. Since f ∈ R(a,b), f is bounded on (a,b), as-

sume that ∃M ∈ R s.t | f (t)| ≤M, ∀ t ∈ [a,b]. Let a≤ x≤ y≤ b. Then

|F(y)−F(x)|=
∣∣∣∣∫ y

a
f (t)dt−

∫ x

a
f (t)dt

∣∣∣∣
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=

∣∣∣∣∫ y

a
f (t)dt +

∫ a

x
f (t)dt

∣∣∣∣= ∣∣∣∣∫ y

x
f (t)dt

∣∣∣∣≤M|y− x|= M(y− x). (2.7)

Let ε > 0 be given. Then if |y−x|< ε

M we see that from Eq (2.7) that |F(y)− f (x)|< ε

which proves the continuty of F on (a,b).

Theorem 2.22 (Fundemental Theorem of Calculus). The followin statements hold

[2]:

(a) If f : [a,b]→ R is differentiable and f
′ ∈ R(a,b), then

∫ b
a f

′
(x)dx = f (b)− f (a).

(b) If f ∈ R(a,b) and let F(x) defined as F(x) =
∫ x

a f (t)dt, a≤ x≤ b. If f is continous

at c ∈ [a,b] then F is differentiable at c and F
′
(c) = f (c).

Proof. For part (a), let p = {x0, ...,xn} be any partition of [a,b]. Since f is differen-

tiable, it is continous by mean value theorem of differentiability ∃ ci ∈ (xi−1,xi) such

that

f
′
(ci) =

f (xi)− f (xi−1)

xi− xi−1
, i = 1,2, ...,n.

Summation yields

n

∑
i=1

f
′
(ci)(xi− xi−1) =

n

∑
i=1

( f (xi)− f (xi−1)) = f (b)− f (a).

Hence

L( f
′
, p)≤

n

∑
i=1

f
′
(ci)(xi− xi−1)≤U( f

′
, p).

This implies that

L( f
′
, p)≤ f (b)− f (a)≤U( f

′
, p).
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Since f
′
is Riemman integrable , L( f

′
) =U( f

′
). Therefore,

∫ b

a
f
′
(x)dx = f (b)− f (a).

To prove part (b) take ε > 0. Since f is continous at c, we can find δ > 0 such that

f (c)−ε < f (x)< f (c)+ε whenever |x−c|< δ and x ∈ [a,b]. Take t satisfying |t|< δ

and c+ t ∈ [a,b]. Then

∫ c+t

c
( f (c)− ε)dx≤

∫ c+t

c
f (x)dx≤

∫ c+t

c
( f (c)+ ε)dx,

or

( f (c)− ε)t ≤ F(c+ t)−F(c)≤ ( f (c)+ ε)t.

This implies that

∣∣∣∣F(c+ t)−F(c)
t

−F(c)
∣∣∣∣< ε.

this proves the theorem.

Theorem 2.23 (Change of Variable). Let g be a real valued function on the closed

bounded interval [a,b] such that g
′ ∈ R(a,b). If f (x) is a continous function on [a,b],

then [5]

∫ g(b)

g(a)
f (x)dx =

∫ b

a
f (g(u))g

′
(u)du.

Proof. Since f is continous function on the closed bounded interval [g(a),g(b)], the

by Theorem 2.21 there exists a function F(x) s.t F
′
(x) = f (x), x ∈ [a,b]. Now, let
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Q(u) = F(g(u)) for u ∈ [a,b] then

Q
′
(u) = F

′
(g(u)) ·g

′
(u) = f (g(u)) ·g

′
(u) = ( f ◦g)g

′
(u), a≤ u≤ b.

Now, continuity of g
′
implies the continuity of g and continuity of f and g implies the

continuity of ( f ◦g)g
′

on [a,b]. By Theorem 2.21 F is continous and by fundamental

theorem of calculus we have the conclusion of theorem.

Theorem 2.24 (Integration by Parts). If u and v be differentiable on [a,b] with u
′
,v
′ ∈

R(a,b) [5]. Then

∫ b

a
uv
′
dx = u(b)v(b)−u(a)v(a)−

∫ b

a
u
′
vdx

Proof. We know that (uv)
′
= u

′
v+ v

′
u. So u

′
v+ v

′
u ∈ R(a,b) now by taking integral

from a to b on both sides we get

∫ b

a
(uv

′
)dx =

∫ b

a
vu
′
dx+

∫ b

a
uv
′
dx

u(b)v(b)−u(a)v(a) =
∫ b

a
vu
′
dx+

∫ b

a
uv
′
dx

∫ b

a
uv
′
dx = u(b)v(b)−u(a)v(a)−

∫ b

a
u
′
vdx.

2.1.4 Riemann Integral Depending on Parameter

The idea of an integral depending on a prameter is a considration of

F(y) =
∫

Ey

f (x,y)dx
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where y is a parameter over a set T and for each y ∈ T there corresponds a set Ey and a

function gy(x) = f (x,y) which is Riemann integrable over Ey in the proper or improper

senses, where T is a subset of R.

Now, we consider a function f (x,y) on [a,b]× [c,d] which is Riemann integrable on

[a,b]. We study continuity, differentiability and integrability of F(y) on [a,b].

Theorem 2.25 (Interchange of limit and integral). Let fn be a sequence of continous

functions in [a,b] ⊂ R, such that fn converges to f uniformly as n→ ∞. Then f is

Riemann integrable on [a,b] and [3]

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f (x)dx

Proof. Since uniform limit of continous functions is continous, f is continous. There-

fore, f is Riemann integrable on [a,b]. Furthermore, from uniform continuity, for every

ε > 0 there is N such that ∀n > N, | fn(x)− f (x)|< ε

b−a , for all x ∈ [a,b]. This implies

−ε

b−a
< fn(x)− f (x)<

ε

b−a

or

∫ b

a

−ε

b−a
dx <

∫ b

a
fn(x)dx−

∫ b

a
f (x)dx <

∫ b

a

ε

b−a
dx.

Then

−ε(b−a)
b−a

dx <
∫ b

a
fn(x)dx−

∫ b

a
f (x)dx <

ε(b−a)
b−a

dx.
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Then, for all n > N.

∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣∣∣∣< ε.

This means

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f (x)dx.

Theorem 2.26 (Continuity of an integral depending on a parameter). Let f : [a,b]×

[c,d]→ R be continuous function [10]. Then

F(y) =
∫ b

a
f (x,y)dx , y ∈ [c,d],

is continous at every point y ∈ [c,d].

Proof. Take y0 ∈ [a,b]. By continuity of f , for every ε > 0 there is δ > 0 such that

| f (x,y)− f (x,y0)|<
ε

b−a
·

Then

∫ b

a

−ε

b−a
dx <

∫ b

a
( f (x,y)dx− f (x,y0))dx <

∫ b

a

ε

b−a
dx

or

∣∣∣∣∫ b

a
( f (x,y)dx− f (x,y0))dx

∣∣∣∣< ε.
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Thus

lim
y→y0

∫ b

a
f (x,y)dx =

∫ b

a
f (x,y0)dx.

This mean the continuity of F at y0.

Theorem 2.27 (Differentiation of an integral depending on a paramter). Let f (x,y) :

[a,b]× [c,d]→ R be a continous function on [a,b]× [c,d] and has a continous partial

derivatives with respect to the parameter y ∈ [c,d] then [10]

F ′(y) =
∫ b

a

∂ f (x,y)
∂y

dx

Proof. Let y0 ∈ [c,d]. Applying Theorem 2.26 we can calculate F ′(y) as follows

F ′(y) = lim
y→y0

F(y)−F(y0)

y− y0

= lim
y→y0

∫ b

a

f (x,y)− f (x,y0)

y− y0
dx =

∫ b

a

∂ f (x,y)
∂y

dx.

Theorem 2.28 (Interchange the order of integration). If the function f : [a,b]× [c,d]→

R is continous then the functions [12]

F(y) =
∫ b

a
f (x,y)dx , c≤ y≤ d,

and

G(x) =
∫ d

c
F(x,y)dx , a≤ x≤ b,
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are integrable and

∫ d

c

(∫ b

a
f (x,y)dx

)
dy =

∫ b

a

(∫ d

c
f (x,y)dy

)
dx

Proof. By Theorem 2.26 F(y) and G(x) are integrable. Let

F0(t) =
∫ t

a

(∫ d

c
f (x,y)dy

)
dx , G0(t) =

∫ d

c

(∫ t

a
f (x,y)dx

)
dy, a≤ t ≤ b

By Theorem 2.26 and (fundemental theorem of calculus) F0(t) and G0(t) are differen-

tiable on [a,b] and

F
′
0(t) = G

′
0(t) =

∫ d

c
f (t,y)dy.

We conclude that F0(t) = G0(t), since F0(a) = G0(a). In particular F0(b) = G0(b).

Hence the proof is complete.

2.2 Improper Riemann Integral

Previously, we have only considered integrals of bounded functions on a finite interval

[a,b]. We now extend the Riemann integral to unbounded functions and functions on

infinite intervals. In these cases the Riemann integral is called an improper integral.

There are two kinds of improper integrals. The first kind improper integrals con-

siders bounded functions on unbounded intervals. If f (x) is Riemann integrable on

[a,b] for any b > a , then

∫
∞

a
f (x)dx

is called improper integral of the first kind.
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In other words, let I be an interval of the form [a,∞) or (−∞,b] and let f be a function

defined on I and Riemann integrable on every bounded and closed subinterval of I. We

informally let

1.
∫

∞

a f (x)dx = limb→∞

∫ b
a f (x)dx if I = [a,∞),

2.
∫ b
−∞

f (x)dx = lima→−∞

∫ b
a f (x)dx if I = (−∞,b] .

The second kind improper integrals considers functions f (x) on a bounded inter-

val [a,b] where f (x) is unbounded about finite number of points inside [a,b]. Then∫ b
a f (x)dx is said to be improper integral of the second kind [5].

In other words, let I be an interval of the form [a,b) or (a,b] and let f be a function

defined and unbounded on I and Riemann integrable on every closed subinterval of I,

we informally let

1.
∫ b

a f (x)dx = limc→b−
∫ c

a f (x)dx if I = [a,b)

2.
∫ b

a f (x)dx = limc→a+
∫ b

c f (x)dx if I = (a,b] .

2.2.1 Definition

Definition 2.29. Let F(y) =
∫ y

a f (x)dx suppose that F(y) exist for each y > a, if F(y)

has a finite limit L as y→ ∞ , then the improper integral
∫

∞

a f (x)dx is said to be con-

verge to L, where L represents the Riemann integral value of f (x) on [a,∞) and we

write as L =
∫

∞

a f (x)dx. On the other hand, if L = ±∞ then
∫

∞

a f (x)dx is said to be

diverge. Similarly we define the integral

∫ a

−∞

f (x)dx as
∫ b

−y
f (x)dx as y→ ∞,
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and also

∫
∞

−∞

f (x)dx = lim
u→∞

∫ b

−u
f (x)dx+ lim

v→∞

∫ v

b
f (x)dx.

Definition 2.30 [Cauchy Sequence]. A sequence {an}∞
n=1 is a Cauchy sequence if for

any ε > 0 there exists a natural number N such that for both natural numbers p and q,

where p > N and q > N, |ap−aq|< ε [4].

Theorem 2.31. The improper integral
∫

∞

a f (x)dx converges if and only if for a given

ε > 0, there exist t0 such that |
∫ t2

t1 f (x)dx|< ε whenever t1 and t2 exceed t0 [3].

Proof. If F(t) =
∫ t

a f (x)dx has a limit L as t → ∞ then for a given ε > 0 there exist t0

such that t > t0 implies

|F(t)−L|< ε

2
.

Now since t1 and t2 exceed to,

∣∣∣∣∫ t2

t1
f (x)dx

∣∣∣∣= |F(t2)−F(t1)|

≤ |F(t2)−L|+ |F(t1)−L|

<
ε

2
+

ε

2
= ε.

Conversely: suppose that for every ε > 0 there is t0 such that for all t1 > t0 and t2 > t0,∣∣∣∣∫ t2
t1 f (x)dx

∣∣∣∣ < ε. We want to show that F(t) has a limit as t → ∞. Let {gn}∞
n=1 be a
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sequence defined as follows

gn =
∫ a+n

a
f (x)dx n = 1,2, ...

This means that for each ε > 0,

gn−gm =
∫ a+n

a
f (x)dx−

∫ a+m

a
f (x)dx

=
∫ a+n

a
f (x)dx+

∫ a

a+m
f (x)dx

=
∫ a+n

a+m
f (x)dx.

This implies that

|gn−gm|=
∣∣∣∣∫ a+n

a+m
f (x)dx

∣∣∣∣< ε.

If m and n are large enough, this implies that {gn}∞
n=1 ia a Cauchy sequence.

Hence it converges by theorem which state ”the sequence {gn}∞
n=1 converges iff for

each ε > 0 there is and integer N such that |am−an|< ε for all m > N , n > N ”. Let

g = lim
n→∞

gn.

To show that

lim
t→∞

F(t) = g,
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we write

|F(t)−g|= |F(t)−gn +gn−g| ≤ |F(t)−gn|+ |gn−g|. (2.8)

Suppose that ε > 0 is given so there exist an integers N1 and N2 such that |gn−g|< ε

2

for all n > N1, and

|F(t)−gn|=
∣∣∣∣∫ t

a+n
f (x)dx

∣∣∣∣< ε

2
(2.9)

for all n > N2. If n > N1 and t = a+ n > N2 thus by choosing t > a+ n , where

t > max{N1,N2−a} from Eq (2.8) and Eq (2.9) we get that |F(t)−g|< ε.

Definition 2.32 [Absolute Convergence]. If
∫

∞

a | f (x)|dx is convergent, then
∫

∞

a f (x)dx

is said to be absolutely convergent [3].

2.2.2 Properties of Improper Riemann Integral

Theorem 2.33 (Comparison Test). Let f (x) and g(x) be two functions which are

bounded and integrable on [a,∞) and let f (x) be positive and |g(x)| ≤ f (x) , x ≥ a.

Then if
∫

∞

a f (x)dx is convergent, then
∫

∞

a g(x)dx is also convergent and that
∫

∞

a g(x)dx≤∫
∞

a f (x)dx [5].

Proof. Since |g(x)| ≤ f (x) it’s clear that

∫
∞

a
( f −g)(x)dx≥ 0

because

U( f −g, p)≥ L( f −g, p)≥ 0.
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Hence by Theorem 2.15

∫
∞

a
f (x)dx−

∫
∞

a
g(x)dx≥ 0.

This implies that

∫
∞

a
g(x)dx≤

∫
∞

a
f (x)dx.

Now if

∫
∞

a
f (x)dx < ∞ then

∫
∞

a
g(x)dx < 0.

Example 2.34. Test the convergence of [5]

∫
∞

0

cosx
1+ x2 dx

Solution: Let

f (x) =
cosx

1+ x2

Since |cosx| ≤ 1, we have

∣∣∣∣ cosx
1+ x2

∣∣∣∣≤ 1
1+ x2 ·

Let g(x) = 1
1+x2 · Then

∫
∞

0

dx
1+ x2 = lim

b→∞

∫ b

0

dx
1+ x2
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= lim
b→∞

[
tan−1 x

]b

0

lim
b→∞

[
tan−1 b− tan−1 0

]
=

π

2
.

So by comparison test we get that
∫

∞

0
cosx
1+x2 dx is convergent.

Theorem 2.35 The improper integral
∫

∞

a
dx
xp , where a ≥ 0, converges if and only if

p > 1 [5].

Proof. We have, for p 6= 1,

∫
∞

a

dx
xp = lim

b→∞

∫ b

a

dx
xp

= lim
b→∞

[
x1−p

1− p

]b

a

= lim
b→∞

[
x1−p

1− p

]
− a1−p

1− p
.

Now if p < 1 then b1−p

1−p → ∞ as b→ ∞ in this case the integral is not convergent. If

p > 1, then

∫
∞

a

dx
xp =

a1−p

p−1
,

and the improper integral converges. Additionally, for p = 1, we have

∫
∞

a

dx
x

= lim
b→∞

[lnb− lna] = ∞
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so, for p = 1, the improper integral diverges.

Note 2.36. This integral is one of the most important integrals for the application of

comparison test.

Theorem 2.37 (Absolute convergence). If f is bounded and integrable on [a,x] for

each x≥ a and if
∫

∞

a | f (x)|dx is convergent then
∫

∞

a f (x)dx is also convergent [5].

Proof. Let f (x) = [ f (x)+ | f (x)|]−| f (x)| then

∫
∞

a
f (x)dx =

∫ b

a
[ f (x)+ | f (x)|]dx−

∫ b

a
| f (x)|dx, b≥ a (2.10)

By assumption
∫

∞

a | f (x)|dx converges as b→ ∞. Also

0≤ f (x)+ | f (x)| ≤ 2| f (x)|.

Then

0≤
∫ b

a
[ f (x)+ | f (x)|]dx≤

∫ b

a
2| f (x)|dx.

Since

∫ b

a
2| f (x)|dx

is converges as b→ ∞, by comparison test, we get that

∫ b

a
[ f (x)+ | f (x)|]dx

is also convergent as b→ ∞ and by Eq (2.10) we obtain that

∫ b

a
f (x)dx
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is convergent as b→ ∞

Example 2.38. Prove that
∫

∞

1
sinx
x4 dx is absolutely convergent [5].

Solution: We have

∫
∞

1

∣∣∣∣sinx
x4

∣∣∣∣dx = lim
b→∞

∫ b

1

|sinx|
|x4|

dx

≤ lim
b→∞

∫ b

1

1
x4 dx

= lim
b→∞

[
x−3

−3

]b

1

=

[
1
3
− lim

b→∞

1
3b3

]
=

1
3
·

Hence,

∫
∞

1

∣∣∣∣sinx
x4

∣∣∣∣dx

is convergent. This implies that

∫
∞

1

sinx
x4 dx

is absolutely convergent.

Now we will consider a few examples of the second kind improper integrals

Example 2.39. Test the convergence of
∫ b

a
dx

(x−a)n ·We have

∫ b

a

dx
(x−a)n = lim

t→0

∫ b

a+t

dx
(x−a)n
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= lim
t→0

1
1−n

(x−a)1−n

= lim
t→0

1
1−n

[
(b−a)1−n− t1−n

]

1
1−n

(b−a)1−n i f n < 1

and if n = 1 we have

∫ b

a

dx
(x−a)

= lim
t→0

ln(b−a)− ln t = ∞

So the integral is convergent if n < 1 and it’s divergent (non-convergent) if n≥ 1.

Example 2.40. Test the convergence of
∫ 1

0
secx

x dx. Since |secx| ≥ 1 for each values of

x [5].

∣∣∣∣secx
x

∣∣∣∣≥ 1
x

and

∫ 1

0

1
x

dx = lim
t→0

[
ln1− ln t

]
= ∞ · (2.11)

This implies that
∫ 1

0
dx
x is divergent and this means that the given integral is also diver-

gent.

2.2.3 Improper Riemann Integral Depending on Parameter

Suppose that the improper integral

F(y) =
∫

I
f (x,y)dx
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over I ⊂ R converges for all values of the parameter y ∈ E 6= /0 and assume that the

integral (2.11) has only one singularity that is either I = [a,∞) or I = (−∞,b] or f

unbounded as a function of x in the interval I = [a,b) or I = (a,b]

Definition 2.41. We say that the improper integral Eq (2.11) depending on the param-

eter y ∈ E converges uniformly for y ∈ E if there exist a function g : E → R such that

[12]

1) lim
y→∞

sup
y∈E

∣∣∣∣g(y)−∫ b

a
f (x,y)dx

∣∣∣∣= 0 i f I = [a,∞),

2) lim
a→−∞

sup
y∈E

∣∣∣∣g(y)−∫ b

a
f (x,y)dx

∣∣∣∣= 0 i f I = (−∞,b],

3) lim
c→b−

sup
y∈E

∣∣∣∣g(y)−∫ c

a
f (x,y)dx

∣∣∣∣= 0 i f I = [a,b),

4) lim
c→a+

sup
y∈E

∣∣∣∣g(y)−∫ b

c
f (x,y)dx

∣∣∣∣= 0 i f I = (a,b].

Theorem 2.42 (Weierstrass test). Let I be one of the four intervals in the definition

(2.41) and let E 6= /0. Assume that a function I : I×E→ R [12]. Proof. Let I = [a,∞).

From

∫ b

a
|g(x,y)|dx≤

∫ b

a
f (x)dx≤

∫
∞

a
f (x)dx.

We obtain that, under fixed y ∈ E, the function

ψ(b,y) =
∫ b

a
|g(x,y)|dx, b≥ a
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is bounded and increasing. Therefore, the improper integral
∫

∞

a g(x,y)dx converges

absolutly at every y ∈ E. Furthermore,

0≤ sup
y∈E

∣∣∣∣∫ ∞

a
g(x,y)dx−

∫ b

a
g(x,y)dx

∣∣∣∣

0 = sup
y∈E

∣∣∣∣∫ ∞

b
g(x,y)dx

∣∣∣∣≤ sup
y∈E

∫
∞

b
|g(x,y)|dx≤

∫ in f ty

b
f (x)dx.

Since
∫

∞

b f (x)dx converges, limb→∞

∫
∞

b f (x)dx = 0. This implies that the improper

integral
∫

∞

a g(x,y)dx converges uniformly for y ∈ E. The other cases of the interval I

can be handled similarly.

Example 2.43. The integral
∫

∞

1
dx

x2+y2 converges uniformly for each value of y ∈ R

since ∀y ∈ R

∫
∞

a

dx
x2 + y2 ≤

∫
∞

a

dx
x2 =

1
a
,

where the Weierstrass test is used [10].

Example 2.44. The integral
∫

∞

1 e−xydy converges only for y > 0 and moreover it con-

verges uniformly. This follows from [10]

0≤
∫

∞

1
e−xydx = lim

b→∞

∫ b

1
e−xydx = lim

b→∞

1− e−by

y
=

1
y
·
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Chapter 3

EULER’S INTEGRALS

The Beta and Gamma functions are two functions which are famous as Euler’s inte-

grals. The Beta and Gamma functions are defined as

β(m,n) =
∫ 1

0
xm−1(1− x)n−1dx, m,n ∈ R,

and

Γ(α) =
∫

∞

0
xα−1e−xdx, α ∈ R.

These integrals are very important and have wide applications in mathematics, physics,

statistics and other applied siences. Furthermore, Beta and Gamma functions are de-

fined as two improper integrals , depending on a parameter [10].

3.1 Gamma Function

3.1.1 Definition

In 1729 the Gamma function was defined by Leonhard Euler for the first time as fol-

lows:

Γ(α) =
∫ 1

0
(− logx)α−1dx, α > 0.
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Then Euler defned the Gamma funtion as follows:

Γ(α) = lim
n→∞

nαn!
α(α+1) . . .(α+n)

·

Later the following definition of Gamma function was adopted:

Γ(α) =
∫

∞

0
xα−1e−xdx.

By integration by part we have

∫
∞

0
xα−1e−xdx =

[
− xα−1e−x

]∞

0
+(n+1)

∫
∞

0
xα−2e−xdx.

Here

lim
x→0

xα−1

ex = lim
x→0

xα−1

1+ x+ x2

2! + ·+
xn

n!

= 0 ,

and

lim
x→∞

xα−1

ex−1 = 0.

So,

Γ(α) = (α−1)
∫

∞

0
xα−2e−xdx = (α−1)Γ(α−1) . (3.1)

Assuming that α is a positive integer, we can repeat the formula in (3.1) α-times and

obtain

Γ(α) = (α−1)(α−2) · · ·3 ·2 ·
∫

∞

0
e−xdx,
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implying

Γ(α) = (α−1)!.

Therefore, sometimes, the Gamma function is called a generalized factorial function.

3.1.2 Properties of Gamma Function

The Gamma function has the following basic properties [10] [5]:

1. Γ(1) = 1

2. Γ(α+1) = αΓ(α) α > 0

3. Γ(n) = (n−1)! n ∈ N

4. limα→0+ Γ(α) = ∞, α ∈ N.

Proof. To prove this limit, we consider

Γ(α) =
∫

∞

0
xα−1e−xdx≥

∫ 1

0
xα−1e−xdx≥ 1

e

∫ 1

0
xα−1dx. (3.2)

Hence,

lim
α→0+

Γ(α)≥ 1
e

lim
a→0+

∫ 1

0
xα−1dx

=
1
e

lim
a→0+

[
xα

α

]1

0

=
1
e

[
1
α
−0
]

Thus

lim
α→0+

Γ(α) = lim
α→0+

1
α
= ∞·
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5. Γ(α) = 2
∫

∞

0 x2α−1e−x2
dx

Proof. Let t = x2. Then dt = 2xdx and x = t
1
2 ·We obtain that

2
∫

∞

0
x2α−1e−x2

=6 2
∫

∞

0
t

1
2 (2α−1)e−t dt

6 2 t
1
2
=

∫
∞

0
tα−1e−t = Γ(α).

6. Γ(α) =
∫ 1

0 (− lny)α−1dy.

Proof. Let x =− lny. Then dx =−dy
y and y = e−x. We obtain that

∫ 1

0
(− lny)α−1dy =−

∫ 0

∞

xα−1e−xdx =
∫

∞

0
xα−1e−xdx = Γ(α)

3.2 Beta Function

There is an important integral which can be expressed in terms of the Gamma function.

3.2.1 Definition

The function

β(m,n) =
Γ(m)Γ(n)
Γ(n+m)

, m,n > 0.

is called the Beta function [10].

Theorem 3.1. For m > 0 and n > 0,

β(m,n) =
∫ 1

0
xm−1(1− x)n−1dx =

Γ(m)Γ(n)
Γ(n+m)

(3.3)

Proof. We know that

Γ(n) =
∫

∞

0
tn−1e−tdt
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and by Proposition 2.1 we have

∫
∞

0
tn−1e−tdt = 2

∫
∞

0
x2n−1e−x2

dx, (3.4)

and similarly

Γ(m) = 2
∫

∞

0
y2m−1e−y2

dy. (3.5)

Hence by multiplying Eq (3.4) and Eq (3.5) we get that

Γ(m)Γ(n) =
(

2
∫

∞

0
x2n−1e−x2

dx
)(

2
∫

∞

0
y2m−1e−y2

dy
)
.

Since two integrals are independent, we can write

Γ(n)Γ(m) = 4
∫

∞

0

∫
∞

0
x2n−1y2m−1e−(x

2+y2)dxdy.

Using polar cordinates letting x = r cosθ, y = r sinθ and dxdy = rdrdθ, where 0≤ θ≤

π

2 and r > 0, we have

Γ(n)Γ(m) = 4
∫ π

2

0

∫
∞

0
r2(n+m)−1e−r2

sin2m−1
θcos2n−1

θdrdθ

=

(
2
∫ π

2

0
sin2m−1

θcos2n−1
θdθ

)(
2
∫

∞

0
r2(n+m)−1e−r2

dr
)

=

(
2
∫ π

2

0
sin2m−1

θcos2n−1
θdθ

)
Γ(m+n). (3.6)

Hence we must to show that 2
∫ π

2
0 sin2m−1

θcos2n−1 θdθ = β(m,n). Let t = sin2
θ. If
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θ = 0, then t = 0 if θ = π

2 , then t = 1, and dt = 2cosθsinθdθ. Therefore,

2
∫ π

2

0
sin2m−1

θ cos2n−1
θdθ

= 2
∫ 1

0
tm− 1

2 (1− t)n− 1
2

1
2
(1− t)−

1
2 t−

1
2 dt

=
∫ 1

0
tm−1 (1− t)n−1 dt. (3.7)

So from Eq (3.3), Eq (3.6) and Eq (3.7), we obtain that Γ(n)Γ(m) = β(m,n)Γ(m,n),

and this implies that β = Γ(m)Γ(n)
Γ(m+n) .

3.2.2 Properties of Beta Function

The beta function has properties [5] [10]:

(a). β(m,n) = β(n,m),

(b). β(m,n) = 2
∫ π

2
0 sin2m−1

θcos2n−1 θdθ,

(c). β(m,n) = β(m+1,n)+β(m,n+1) ,

(d). mβ(m,n+1) = nβ(m+1,n),

(e). β(m,n) =
∫

∞

0
tm−1

(1+t)m+n dt,

(f). β(m+1,n) = m
m+nβ(m,n),

Proof (a). In

β(m,n) =
∫ 1

0
xm−1 (1− x)n−1dx

substitute 1− x = y. Then x = y−1, dx =−dy. Respectively,

β(m,n) =
∫ 1

0
xm−1 (1− x)n−1dx
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=−
∫ 1

0
(1− y)m−1 yn−1dy

=
∫ 1

0
yn−1 (1− y)m−1dy = β(n,m).

(b). This is Theorem 3.1

(c). We have

β(m+1,n)+β(m,n+1) =
∫ 1

0
xm (1− x)n−1dx+

∫ 1

0
xm−1 (1− x)ndx

=
∫ 1

0
xm−1 (1− x)n−1 [x+(1− x)]dx

=
∫ 1

0
xm−1 (1− x)n−1 dx = β(m,n).

(d). We have

β(m+1,n) =
∫ 1

0
xm (1− x)n−1dx.

Let u = xm and dv = (1− x)n−1dx. Then

du = mxm−1dx and v =−1
n(1− x)n. By integration by parts formula,

β(m+1,n) =
∫ 1

0
xm (1− x)n−1dx =−xm

n
(1− x)n

]1

0
+

m
n

∫ 1

0
xm−1 (1− x)ndx

=
m
n

∫ 1

0
xm−1 (1− x)ndx =

m
n

β(m,n+1).
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(e). Substitute x = t
1+t then dx = dt

(1+t)2 and t = x
1−x · This implies

∫
∞

0

tm−1

(1+ t)m+n
dt

=
∫ 1

0
xm
(

1+
x

1− x

)−n ( x
1− x

)−1

(1− x)−2dx

=
∫ 1

0
xm−1(1− x)n−1dx = β(m,n).

(f). See proof d.

3.3 Some Important Examples

Example 3.2. Γ(1
2) =

√
π. To prove we consider

Γ(
1
2
) =

∫
∞

0
x−

1
2 e−xdx = 2

∫
∞

0
e−t2

dt.

To go on, we need polar coordinates. Consider the double integral

I =
∫

∞

0

∫
∞

0
e−x2−y2

dxdy.

By chainging to polar coordinates x = r cosθ and y = r sinθ, 0 < r < ∞, θ ∈ [0, π

2 ],

I =
∫

∞

0

∫ π

2

0
er2

r dr dθ =
π

2

∫
∞

0
re−r2

dr =
π

4
·

Also,

I =
∫

∞

0

∫
∞

0
e−x2

e−y2
dxdy =

[∫
∞

0
e−x2

dx
]2

.
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Therefore,

∫
∞

0
e−x2

dx =
√

π

2
·

Thus,

Γ(
1
2
) = 2

∫
∞

0
e−t2

dt = 2
√

π

2
=
√

π.

Example 3.3. Evaluate Γ(3
2). We have

Γ(
3
2
) = Γ(1+

1
2
) =

1
2

Γ(
1
2
) =

√
π

2
·

Example 3.4. Evaluate
∫ π

2
0 sin4

θcos5 θdθ. We have

∫ π

2

0
sin4

θcos5
θdθ =

1
2

β(
5
2
,3)

=
1
2

Γ(5
2) Γ(3)

Γ(11
2 )

=
1
2

[ 3
2

√
π

2 2!
9
2

7
2

5
2

3
2

√
π

2

]
·

Example 3.5. Evaluate
∫ π

2
0
√

tanxdx. We have

∫ π

2

0

√
tanxdx =

∫ π

2

0
sin

1
2 cos−

1
2 dx =

1
2

β(
3
4
,
1
4
)

1
2

Γ(3
4) Γ(1

4)

Γ(1)
=

1
2

Γ(
3
4
) Γ(

1
4
) =

1
2

π

sin(π

4 )
·

Example 3.6. Prove Γ(m)Γ(1−m) = π

sin(mπ) . To prove [11], consider

Γ(m)Γ(1−m) =
π

sin(mπ)
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∫
∞

−∞

eat

1+ et dt =
∫

∞

0

xa

1+ x
dx
x

=
∫

∞

0

xa−1

1+ x
dx =

π

sin(mπ)
·

Hence,

Γ(1−m) =
∫

∞

0
x−me−x dx

= t
∫

∞

0
(xt)−me−xt dx (by letting x = xt)

Then

Γ(m)Γ(1−m) =

(∫
∞

0
tm−1e−t dt

)(
t
∫

∞

0
(xt)−me−xt dx

)

=
∫

∞

0

(
t
∫

∞

0
(xt)−me−xt dx

)
e−ttm−1 dt

=
∫

∞

0

∫
∞

0
e−t(x+1)x−m dx dt

=
∫

∞

0

−1
1+ x

[
e−t(1+x)

]∞

0
x−mdx

=
∫

∞

0

−1
1+ x

x−mdx

=
∫

∞

0

x1−m

1+ x
dx
x

=
π

sin(π(1−m))
=

π

sin(mπ)
·
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3.4 Some Properties of Gamma function

1. Show that 2n Γ(n+ 1
2) = 1 ·3 ·5 · · ·(2n−1)

√
π where n ∈ N [5].

2. Show that Γ(3
2 − x)Γ(3

2 + x) = (1
4 − x2)πsec(πx)[5].

Proof (1). We have

Γ(n+
1
2
) = Γ(n− 1

2
+1) = (n− 1

2
)Γ(n− 1

2
) = (n− 1

2
)(n− 3

2
)Γ(n− 3

2
)·

Proessing this n-times, we obtain that

Γ(n+
1
2
) = (n− 1

2
)(n− 3

2
)(n− 5

2
) · · · 3

2
1
2

Γ(
1
2
)·

So,

2n
Γ(n+

1
2
) = 1.2.3 · · ·(2n−1)(

√
π).

(2) We have

Γ(
3
2
− x) = Γ(

1
2
− x+1)− (

1
2
− x)Γ(

1
2
− x) (3.8)

and

Γ(
3
2
+ x) = (

1
2
+ x)Γ(

1
2
+ x). (3.9)

Multiplying (3.8) and (3.9) we obtain

Γ(
1
2
− x)Γ(

3
2
+ x) = (

1
4
− x2)Γ(

1
2
− x)Γ(

1
2
+ x). (3.10)
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Since Γ(m)Γ(1−m) = π

sin(mπ) , we obtain

Γ(
1
2
− x)Γ(

3
2
+ x) = (

1
4
− x2)

π

sin(πx)
= (

1
4
− x2)πsecπx. (3.11)

Theorem 3.7. The Gamma function is convergent for n > 0 [5].

Proof. We have

∫
∞

0
tn−1e−tdt =

∫ 1

0
tn−1e−tdt +

∫
∞

1
tn−1e−tdt.

Now we choose the first integral for convergence at 0 and the second integral for con-

vergent at ∞ .

Test the convergence at 0 : Let f (t) = tn−1e−t and let g(t) = 1
t1−n . We have f (t)

g(t) =

e−t and we see that e−t → 1 as t→ 0. Thus

∫ 1

0
g(t)dt =

∫ 1

0

1
t1−n dt

is convergent iff 1−n < 0. So
∫ 1

0 tn−1e−tdt convergent at 0 for n > 0.

Test the convergence at ∞: Since et > tn−1 for any value of n when t is heightly

large. So tn+1 < et implies that tn+1e−t < 1 and this means that tn−1e−t < t−2− 1
t2 .

But
∫

∞

1
1
t2 dt is convergent by integral test. So

∫
∞

1 tn−1e−t is also convergent iff n > 0.

So

∫
∞

0
tn−1e−tdt
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converges for n > 0.

Theorem 3.8. The Beta function β(m,n) is convergent for m,n > 0.

Proof. To test the convergence of the Beta function we have

∫ 1

0
tm−1(1− t)n−1dt =

∫ 1
2

0
tm−1(1− t)n−1dt +

∫ 1

1
2

tm−1(1− t)n−1dt

now to test

Convergence at 0: Let f (t) = tm−1(1− t)n−1 and g(t) = 1
t1−m . Then f (t)

g(t) = (1−

t)n−1. It is clear that (1− t)n−1→ 1 as t → 0 and
∫ 1

2
0

dt
tn−1 is convergent iff 1−m < 1

m > 0. So

∫ 1
2

0
tm−1(1− t)n−1dt

is also converges at 0 for m > 0.

Convergence at (1): f (t) can be written in the form f (t) = tm−1

(1−t)1−n · Let g(t) =

1
(1−t)1−n · Now f (t)

g(t) = tm−1 and it’s clear tm−1→ 1 as t→ 1. So

∫ 1

1
2

g(t)dt =
∫ 1

1
2

dt
(1− t)1−n dt

converges iff 1−n < 1 i.e n > 0. Thus we get that

∫ 1

0
tm−1(1− t)n−1dt
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exists for all m,n > 0.

Theorem 3.9. (Dirichlet’s integral). The equality

∫ ∫
· · ·

∫
xa1−1

1 xa2−1
2 · · · xan−1

n dx1dx2 · · ·dxn =
Γ(a1) Γ(a2) · · ·Γ(an)

Γ(a1 +a2 + · · ·+an +1)

holds, where the integral is extended to all positive values of the variables subject to

condition x1 + x2 + · · ·+ xn ≤ 1 [5].

Proof. First consider the double integral
∫ ∫

xa1−1
1 xa2−1

2 dx1dx2 where x1 + x2 ≤ 1 Let

us denote the integral by I2. We have

I2 =
∫ 1

0

∫ 1−x1

0
xa1−1

1 xa2−1
2 dx1dx2

=
∫ 1

0
xa1−1

1
(1− x1)

a2

a2
dx1 =

1
a2

β(a1,a2 +1) =
Γ(a1) Γ(a2)

Γ(a1 +a2 +1)

If the condition be x1 + x2 ≤ h, then putting x1
h = u and x2

h = v we see that

I2 =
∫ ∫

xa1−1
1 xa2−1

2 dx2dx1 = ha1+a2

∫ ∫
ua1−1va2−1dudv

=
Γ(a1) Γ(a2)

Γ(a1 +a2 +1)
h(a1+a2).

Now consider the triple integral

I3 =
∫ ∫ ∫

xa1−1
1 xa2−1

2 xa3−1
3 dx1 dx2 dx3,
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where x1 + x2 + x3 ≤ 1. Then

I3 =
∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0
xa1−1

1 xa2−1
2 xa3−1

3 dx1 dx2 dx3

=
∫ 1

0
xa1−1

1
Γ(a2) Γ(a3)

Γ(a2 +a3 +1)
(1− x1)

a2+a3dx1

=
Γ(a2) Γ(a3)

Γ(a2 +a3 +1)
.

Γ(a1) Γ(a2 +a3 +1)
Γ(a1 +a2 +a3 +1)

=
Γ(a1) Γ(a2) Γ(a3)

Γ(a1 +a2 +a3 +1)
·

Thus the theorem is true for double and triple integrals. Now assume that the theorem

is true for nth integrals, this means that

∫ ∫
· · ·

∫
xa1−1

1 xa2−1
2 · · · xan−1

n dxndxn−1 · · ·dx2dx1 =
Γ(a1) Γ(a2) · · ·Γ(an)

Γ(a1 +a2 + · · ·+an +1)

where x1 + x2 + · · ·+ xn ≤ 1.

Now we must prove that it’s true for all (n+1) integralse have

In+1 =
∫ ∫

· · ·
∫

xa1−1
1 xa2−1

2 · · · xan−1
n xan+1−1

n+1 dxn+1 dxn · · ·dx2 dx1

=
∫ 1

0
xa1−1

1
Γ(a2) Γ(a3) · · ·Γ(an) Γ(an+1)

Γ(a2 +a3 + · · ·+an +an+1 +1)
(1− x1)

a2+a3+···+an+1dx1

=
Γ(a2) Γ(a3) · · ·Γ(an+1)

Γ(a2 +a3 + · · ·+an+1 +1)
.

Γ(a1) Γ(a2 +a3 + · · ·+an+1 +1)
Γ(a1 +a2 + · · ·+an +an−1 +1)
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=
Γ(a1) Γ(a2) · · ·Γ(an+1)

Γ(a1 +a2 +a3 + · · ·+an+1 +1)
·

Hence, the theorem holds for all values of n.

3.5 Applications of Beta and Gamma Functions

As we mentioned previously, Gamma and Beta functions have a great usage and appli-

cability in statistics. Before dealing with this issue, we introduce some definitions [7].

Definition 3.10 [Random Variable]. A random variable (statistical variable) is a func-

tion from the sample space into the system of real numbers. Random variables are

divided into two groups:

1. Discrete random variable is a random variable which takes discrete values finite

or (countable) such as x = 0,1, ...

2. Continous random variable is a random variable which takes continous values or

(uncountable) such as (a < x < b) [7].

Probability distribution:

a. Discreate random variable: If the random variable x is defined on the discrete

experiment, then its probability distribution is called discrete probability distri-

bution.

b. Continous random variable: If the random variable x is defined on the continous

expriment then its distribution is called a continous probability distribution [7].

Definition 3.11 [Probability density function].

A function f (x) is said to be a probability distribution function, or the density function

if it satisfies the following conditions:

1. ∑ f (x) = 1 for discrete type;
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2.
∫

∞

−∞
f (x)dx = 1 for continous type ( f (x) be Riemman integrable) [7].

Gamma distribution function:

In the Gamma function, substitute y = x
β

and obtain

Γ(α) =
∫

∞

0
(

x
β
)α−1 e−

x
β

1
β

dx,

where dy = dx
β

. Then

Γ(α) =
∫

∞

0

xα−1 e−
x
β

Γ(α) βα
dx = 1.

Since α > 0, β > 0 and Γ(α)> 0 we see that

f (x) =


xα−1 e

− x
β

Γ(α) βα , 0 < x < ∞,

0, else where,

is a probability density function of a random variable of the continuous type.

A distribution of a random variable x that has a probability density function of this

form is said to be Gamma distribution with parameters α and β [7].

Remark 3.12. The Gamma distribution is the probability model for waiting times. For

instance, in life testing.

Chi-Square (χ2
r ):

A random variable χ of the continous type that has the p.d.f

f (x) =


x

r
2−1 e−

x
2

Γ( r
2 ) 2

r
2

, 0 < x < ∞,

0, else where,

56



is said to have chi-square distribution. A function f (x) of this form called a chi-square

probability distribution function. This is a particular case of Gamma distribution when

α = r
2 and β = 2 [7].

Definition 3.13 [Degree of freedom]. A positive integer normally equal to the number

of independent observations in a sample minus the number of population parameters

to be estimated from the sample [7].

Example 3.14. Let x be χ2
(10) with r = 10 degrees of freedom. Find P(3.25≤ x≤ 20.5)

[7].

Solution:We have

P(3.25≤ x≤ 20.5)

= P(x≤ 20.5)−P(x≤ 3.25)

= .975−0.025 = 0.95

Exponential distribution:

A random variable x is said to have on exponential distribution with parameter β > 0

if the density function of x is [1]

f (x) =


1
β

e−
x
β , 0≤ x < ∞,

0, else where,

The situations when we use exponential distribution:

The exponential density function is often useful for modeling the length of life of elec-

tronics. Suppose that the lenght of time a componenet already has operated does not
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affect its chance of operating for at least b additional time units, that is, the probability

that the component will operate for more than a+b time units, given that it has already

operated for at least a time units, is the same as the probability that a new component

will operate for at least b time units if the new component is put into service at time 0.

A fuse is an example of a component for which this assumption often is reasonable.

We will see in the following example that the exponentioal distribution provides a

modle for the distriution of the life time of such a component [1].

Example 3.15. The lifetime (in hours) x of an electronic component is a random

variable with density function given by

f (x) =


1

100e−
x

100 , x > 0,

0, else where,

Three of these components operate independently in a piece of equipment. The equip-

ment fails if at least two of the components fail. Find the probability that the equipment

will operate for at least 200 hourse without failure [1].

Solution: Let

A = P{y > 200}=
∫

∞

200

1
100

e
−y
100 dy = e−2

P{work match}= P{AAA+AA}

= P{AAA}+P{AA}

= (P{A})3 +(P{A})2

= (e−2)3 +(e−2)2 = e−6 + e−4
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Example 3.16. Let x be an exponential probability density function, show that if a > 0

and b > 0 then p(x > a+b|x > a) = p(x > b) [1]

Solution:

p(x > a+b|x > a) =
p(x > a+b)

p(x > a)

because the intersection of the events (x > a+b) and (x > b) is the event (x > a+b).

Now

p(x > a+b) =
∫

∞

a+b

1
β

e−
x
β dx = e−

x
β

∣∣∣∣∞
a+b

= e−
(a+b)

β ·

Similarly,

p(x > a) =
∫

∞

a

1
β

e−
x
β dx = e−

x
β

∣∣∣∣∞
a
= e−

(a)
β ·

P(x > a+b|x > a) =
e−(a+b)/β

e−a/β
= e−b/β

Note 3.17. This property of the exponential is often called memoryless property of the

distribution.
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