
Plant Leaf Classification

Cem Kalyoncu

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Eastern Mediterranean University
August 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

—————————————————
Prof. Dr. Serhan Çiftçioğlu

Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor
of Philosophy in Computer Engineering.

———————————————————
Prof. Dr. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate
in scope and quality as a thesis for the degree of Doctor of Philosophy in Computer
Engineering.

—————————————————
Asst. Prof. Dr. Önsen Toygar

Supervisor

Examining Committee
——————————————————————————————————

1. Prof. Dr. A. Aydın Alatan ——————————————

2. Prof. Dr. Hasan Demirel ——————————————

3. Prof. Dr. Adnan Yazıcı ——————————————

4. Asst. Prof. Dr. Önsen Toygar ——————————————

5. Asst. Prof. Dr. Ahmet Ünveren ——————————————

ABSTRACT

Identification of plants is an important subject that has many practical uses. In this

thesis, we devoted our efforts to identify plants through images of their leaves. The

reason behind this choice is that the plants are complicated organisms, therefore, it is

appropriate to identify plants through their leaves.

Leaf classification is a multi-disciplinary field that requires knowledge in botany, im-

age processing, and pattern recognition. Additionally, experimentation requires large

datasets to be performed accurately. Many methods in the literature concentrate on a

single descriptor to describe a leaf. However, in this thesis, we concentrate on mul-

tiple descriptors to describe the leaf from different aspects. The biggest challenge in

using multiple descriptors is identifying the descriptors that complement each other

without significant overlaps. Additionally, not every descriptor is meaningful for ev-

ery leaf type. Therefore, a class-based prioritizing classifier is required to deal with

these issues. In this study, we employ Linear Discriminant Classifier (LDC) for this

task.

We propose two leaf classification methods, namely Geometric Leaf Classification

(GLC) and Combination of Geometric, Texture and Color Features for Leaf Classi-

fication (GTCLC) in this thesis. These methods include new features such as Sorted

LBP, application of LDC for leaf classification and several feature types combined to

improve the classification accuracy. First of all, geometric features are used for the

classification of plant leaves. Then, a number of features, such as geometric, shape,

texture, and color features are combined to perform leaf classification. During the ex-

iii

periments these methods are compared with the state-of-the-art methods. According

to these experiments, GTCLC outperforms all methods both in terms of accuracy and

suitability.

Keywords: leaf classification, pattern recognition, feature extraction, geometric fea-

tures, LBP, CIE-LCH

iv

ÖZ

Yaprakların tanımlanması, bir çok kullanımı olan, önemli bir konudur. Biz de bu tez

esnasında bitki yapraklarının tanımlanması üzerine yoğunlaştık. Yaprakları tercih et-

memizdeki sebep, bitkilerin genel olarak karmaşık canlılar olmasına rağmen, yaprak

görüntülerinin düzenli ve bitkiyi yeterli miktarda ifade edebilmesinden kaynaklanmak-

tadır.

Yaprakların tanımlanması, birden fazla bilim dalına ait bilgi gerektirmektedir; bunlar:

botanik, resim işleme ve örüntü tanıma alanlarıdır. Ek olarak, deneysel çalışmaların

kesin sonuçlara ulaşabilmesi için büyük boyutlu veritabanlarına ihtiyaç duyulmaktadır.

Literatürdeki bir çok yöntem tek bir tip tanımlayıcı kullanmaktadır. Ancak biz bu

tezde, yaprakları farklı yönleriyle tanımlayan çok sayıda tanımlayıcı kullanmaktayız.

Çoklu-tanımlayıcılı sistemlerin en büyük zorluğu bir birlerine destek olurken, aynı bil-

giyi tekrarlamayan tanımlayıcıların tespitidir. Ek olarak, her tanımlayıcı, tüm yaprak

tipleri için anlam ifade etmemektedir. Bu sebepten dolayı, sınıf-tabanlı önceliklendirme

yeteneğine sahip bir sınıflandırma sistemi kullanılmalıdır. Biz de bu çalışmada Doğrusal

Ayırtaç Sınıflandırıcısı’nı (Linear Discriminant Classifier, LDC), bu sorunları çözebildiğinden

dolayı kullanmaktayız.

Çalışmalarımız esanasında, Geometrik Yaprak Tanımlama (GLC) ve Geometrik, Doku

ve Renk Tabanlı Yaprak Tanımlama (GTCLC) olarak iki ayrı sistem öne sürdük. Bu

yöntemler, Sıralanmış Yerel İkili Örüntüler (SLBP) gibi yeni tanımlayıcılar, LDC’nin

kullanımı ve farklı tipte tanımlayıcıların birlikte kullanılması gibi yenilikler içermektedir.

Deneyler esnasında bu yöntemler literatürdeki yöntemlerle karşılaştırılmıştır. Bu deney-

v

lerin sonucunda, GTCLC yönteminin hem performans, hem de uyumluluk yönünden

en iyi sonucu verdiği tespit edilmiştir.

Anahtar kelimeler: yaprak sınıflandırma, örüntü tanıma, öznitelik bulma, geometrik

öznitelikler, Yerel İkili Örüntü, CIE-LCH

vi

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

LIST OF TABLES. x

LIST OF FIGURES . xii

LIST OF ALGORITHMS. xiii

LIST OF ABBREVIATIONS . xiv

1 INTRODUCTION. 1

2 LITERATURE OVERVIEW.. 4

3 BACKGROUND INFORMATION . 13

3.1 Leaf Anatomy and Morphology . 13

3.2 Segmentation . 16

3.3 Contour Extraction . 17

3.4 Geometric Features. 18

3.4.1 Simple Geometric Features . 19

3.4.2 Convexity Features. 20

3.4.3 Circular Features . 20

3.5 Moment Invariants . 21

3.6 Multiscale Distance Matrix . 22

3.7 Local Binary Patterns . 24

3.8 Color Models . 26

3.9 Linear Discriminant Classifier . 28

3.10 Technologies Used . 31

3.10.1 C++. 31

vii

3.10.2 Eigen Library . 33

3.10.3 Gorgon Widgets . 33

4 PROPOSED METHODS . 34

4.1 Preprocessing . 34

4.1.1 Segmentation . 34

4.1.2 Noise Removal . 36

4.1.3 Contour Smoothing . 36

4.1.4 Convex Hull . 38

4.1.5 Corner Detection . 39

4.1.6 Texture Mask . 40

4.1.7 Stalk removal . 41

4.2 Features . 46

4.2.1 Margin descriptors . 46

4.2.2 Texture descriptor . 50

4.2.3 Color features . 53

4.3 Classifier . 55

4.4 Systems . 56

4.4.1 Geometric Leaf Classification . 57

4.4.2 Combination of Geometric, Texture, and Color Features 59

5 RESULTS. 61

5.1 Datasets Used. 61

5.2 Experimental Methodology . 66

5.3 Comparison of Different Systems . 66

5.4 Preprocessing . 74

5.4.1 Segmentation . 74

viii

5.4.2 Noise removal . 77

5.4.3 Stalk removal . 78

5.5 Features . 79

5.6 Classifiers . 81

5.7 Computational Cost . 81

5.8 Discussion on Experimental Results . 82

6 CONCLUSION. 84

REFERENCES . 93

ix

LIST OF TABLES

Table 4.1: Average margin distance and margin statistics of several leaves 49

Table 4.2: Intermediate and final results from LBP feature extraction 54

Table 4.3: Color features of sample leaves. 55

Table 5.1: Comparison of datasets . 61

Table 5.2: Accuracy analysis of different systems . 67

Table 5.3: Accuracy table of the proposed and the state-of-the-art systems. . . . 68

Table 5.4: Statistical information derived from per class accuracies 69

Table 5.5: Comparison of different methods over Flavia dataset 71

Table 5.6: Effect of stalk removal on classification performance 77

Table 5.7: Accuracy improvement of noise removal . 78

Table 5.8: Effect of segmentation on classification performance 79

Table 5.9: Detailed comparison of different features . 80

Table 5.10: Contribution of the features that are used in the proposed GTCLC

system . 81

Table 5.11: Comparison of common classification methods using the pro-

posed descriptors. 82

Table 5.12: Computational performance comparison . 82

x

LIST OF FIGURES

Figure 3.1: Leaf organs . 14

Figure 3.2: Leaf shapes. 15

Figure 3.3: Leaf margins . 16

Figure 3.4: Venation patterns . 17

Figure 3.5: Four different types of leaves and their complexities 21

Figure 3.6: Two leaves with their SDM .. 24

Figure 3.7: Two samples for two different leaves and their MDM represen-

tation . 25

Figure 3.8: Calculation of LBP using different parameters . 25

Figure 3.9: Various images and their LBP transformations. 26

Figure 3.10: Perceived lightness of hue and saturation/chroma channels. 28

Figure 3.11: sRGB color space mapped on to CIE-LAB color space. 29

Figure 4.1: Flowchart of preprocessing and feature extraction steps 35

Figure 4.2: Color channels of two different leaf images . 37

Figure 4.3: Segmentation results and noise removal . 37

Figure 4.4: Contour smoothing operation on two leaf sections 39

Figure 4.5: Corner region extraction of a leaf . 41

Figure 4.6: Analysis of the texture mask . 42

Figure 4.7: Results of stalk removal . 45

Figure 4.8: Area, perimeter and perimeter ratio analysis of an artificially

created margin over a circle . 47

Figure 5.1: Sample images from ICL dataset . 63

Figure 5.2: Sample images from Flavia dataset . 64

xi

Figure 5.3: Sample images from Leafsnap dataset. 65

Figure 5.4: Accuracy comparison of the proposed systems with the state-of-

the-art methods using different datasets. 67

Figure 5.5: Accuracy comparison of the proposed systems with the state-

of-the-art methods using different datasets with varying amount of testing

samples. 68

Figure 5.6: Accuracy comparison of state-of-the-art methods per class 70

Figure 5.7: Most confused leaves and their class indices . 71

Figure 5.8: Confusion matrix for Flavia dataset using GTCLC 72

Figure 5.9: Confusion matrix for Flavia dataset using GLC . 73

Figure 5.10: Results of the proposed segmentation algorithm 75

Figure 5.11: Results of the segmentation algorithm proposed in [1] 76

Figure 5.12: Results of noise removal operation . 78

xii

LIST OF ALGORITHMS

3.1 Pavlidis’ Algorithm . 19

4.1 Noise removal algorithm. 38

4.2 Convex hull algorithm using contour information . 39

4.3 Stalk removal algorithm. 44

4.4 Proposed peak detection algorithm . 50

4.5 LBPs
P,R feature reduction. 53

xiii

LIST OF ABBREVIATIONS

AC Area Complexity

AR Aspect Ratio

CC Circularity

CIE International Commission on Illumination

GLC Geometric Leaf Classification

GTCLC Combination of Geometric, texture, and color features

HSL Hue, saturation, lightness color space

HSV Hue, saturation, value color space

KNN K-Nearest Neighbors

LBP Local Binary Patterns

LCH Luminance, chromacity, hue

LDC Linear Discriminant Classifier

MBR Minimum Bounding Rectangle

MDM Multiscale Distance Matrix

NNC Nearest Neighbor Classifier

PC Perimeter Complexity

PR Perimeter Ratio

QDC Quadratic Discriminant Classifier

RG Rectangularity

SLBP Sorted Local Binary Patterns

SP Sphericity

SLBP Sorted Local Binary Patterns with Feature Reduction

SVM Support Vector Machines

xiv

Chapter 1

INTRODUCTION

Plant classification is required for automated systems in medicine and food industries.

Additionally, a fully functional plant classification system can help its users to identify

plants in nature. Without the ability to match plants using their photographs, finding

the name and related information regarding to a specific plant requires user to define

plant verbally. Verbal definition of a plant is both hard and ambiguous. Therefore,

automated or semi-automated recognition and/or retrieval of plants are helpful in these

contexts.

Plants are complicated organisms. The visual look of a plant is chaotic and varies

greatly. Worse yet, plants look similar even if they are not from the same species.

However, it is possible to determine type of a plant from various factors such as its

size, flowers, leaves, and density of its foliage. Easy-to-access data acquisition devices,

such as digital camera, cannot determine the correct size of an object. Therefore,

the size information cannot easily be obtained. Additionally, not every plant species

have flowers and most flowering species only have flowers for short periods. These

problems also remove flowers from plant identification. On the other hand, leaves of

a plant can easily be accessed. Additionally, leaves contain great deal of information

that can be extracted to classify plants. These reasons increase the use of leaves in

plant recognition.

1

Despite its uses, leaf and plant classification was a subject that did not receive attention

until 2011. With ImageCLEF plant identification campaigns, a certain level of interest

is achieved and plant and leaf identification became an active topic. The success of

leaf classification has increased substantially since then. However, due to the number

of plant species and the variance in leaf and plant structure, there is still room for

improvement.

We concentrate our efforts on leaf classification in this study. Unlike many other meth-

ods [2,3], our research focuses on multiple descriptors. Our primary aim is to describe

the leaf from different aspects. In pattern recognition, it is important to keep dimen-

sionality low, as the training phase of the classification systems are adversely affected

by increasing the number of dimensions. Therefore, our secondary aim is to refine and

eliminate the descriptors so that there will not be any redundant features.

In this thesis, we successfully identified descriptors that work well together. Addi-

tionally, we have developed three novel feature descriptors; margin distance, margin

statistics, and Sorted Local Binary Patterns. Moreover, we analyzed and compared

different classifiers to identify the best classifier that can work with multiple descrip-

tors efficiently. These improvements improved the field significantly in terms of both

accuracy and suitability to real life scenarios.

In Chapter 2, existing methods in the literature are analyzed and presented in an or-

ganized fashion. Background information on topics that are used in this thesis are

summarized in Chapter 3. Additionally, terminology that is often used while describ-

ing leaf is listed. In Chapter 4, the methods that are developed during this thesis are

2

discussed in detail. Experimental results comparing the proposed methods with the

existing methods in the literature are given in Chapter 5. Finally, Chapter 6 discusses

the conclusion of this thesis and possible future works.

3

Chapter 2

LITERATURE OVERVIEW

Leaf classification is an active research topic with many publications in the recent years

[2, 4–12]. In this chapter, the developments in this field are summarized.

The applications of leaf classification in the literature can be separated into three types:

identification, categorization, and retrieval. Identification involves in identifying the

species that a particular leaf belongs to. There are many researches on leaf identifica-

tion [2, 3, 5, 6, 8–22]. Content based image retrieval is generally used to build applica-

tions to serve requests made by humans. These systems cannot be used in automated

system as the lack of the final decision mechanism. These methods are useful for leaf

searches as humans can easily select the correct plant from a short list of candidates.

The notable articles related to this topic includes [4, 7, 21, 23–26] Leaf categorization

separates leaves depending on their properties. This separation can be useful by its

own or could be used to enhance identification methods. [17, 27, 28] are some of the

papers related with leaf classification.

Similar to the other classification tasks, leaf classification requires features to work.

Since the leaf shape contains most of the information regarding to the type of the

leaf, shape based features are more commonly used. In [2, 6, 9, 10], new shape based

features for leaf classification are proposed. Additionally, [4, 7, 8, 13, 15–17, 19–27]

4

use previously known shape-based features in their systems. There are few methods

[11, 14, 18, 28] that rely on texture alone, however, texture features are combined with

shape features in [4, 5, 7, 19, 25] to improve the classification accuracy.

Even though leaf margins are a part of leaf shape, it requires specific features to be

used. For most global shape methods, margins are indistinguishable from noise. The

systems in [3, 6, 10, 20] contain features that can effectively represent margins.

The final step in a computer vision system is the classification. Even though there

are many different classification methods used in leaf classification, the most common

method is KNN, with K = 1 in most systems. The papers that use KNN includes

[2, 7, 10, 13, 14, 18–20, 22–25, 28]. However, SVM is also a popular method used in

many researches such as [5, 8, 26].

Dynamic Time Warping algorithm is used in [13] to extract features. However, this

method is not rotation invariant. Authors propose a dynamic algorithm to match bio-

logical sequences to achieve rotation invariance. This method calculates the distance

between two samples. Using this distance metric, KNN is employed to classify leaf

images. Six different plant species are used to demonstrate the performance of the

system. Depending on the data set used, this method achieves up to 97% accuracy.

Authors in [23] use a modified Minimum Perimeter Polygons (MPP) to extract shape

based features. These features are then used to retrieve relevant matches from the

database. In this research a dynamic matching algorithm simply called as SMP is

proposed for similarity calculations. The results in this paper show that Improved

5

MPP method outperforms other contour based methods. Additionally, SMP method

reduces processing time to half of nearest neighbor search.

A method that combines wavelet transform and Gaussian interpolation is proposed

in [14]. This method decomposes the grayscale leaf image using wavelet transform

and adds in the lost details using Gaussian interpolation. On a database containing 20

classes, this method achieves score of 93% using nearest neighbor classifier.

A probabilistic neural network system that works on geometric features is proposed in

[3]. This method extracts 12 commonly used geometric features from segmented leaf

image. Principal Component Analysis (PCA) is employed to reduce the number of

features from 12 to 5. These features are then used in a Probabilistic Neural Network

(PNN) to perform classification. The experiments are performed on 32 kinds of plants

with an accuracy of 90%. This method requires user to enter the start and the end

points of the midrib. Therefore, it cannot be used for automated classification tasks.

A Content-Based Image Retrieval method is proposed for leaves in [28]. This method

determines starting and ending points of the vein in the leaf to classify venation pattern

before performing retrieval using shape information. The authors demonstrate that

using venation classification increases the precision of the system by 25% on average.

However, experimental method in this paper is not discussed in detail. Additionally,

this method requires hand drawn samples to work, which increases the work necessary

to adapt this system.

An extensive research on the use of geometric features is presented in [15] and [16].

In this research, 8 geometric features in addition to 7 moment invariants are used to

6

describe leaf shape. After feature extraction, this system performs linear scaling and

Wilson Editing. This method uses Moving Center Hypersphere Classifier, which is

proposed specifically for leaf classification. MCH Classifier is a variant of KNN and

works in a similar fashion. However, it is much faster even though its performance

decreases faster, compared to KNN, with the increased number of classes.

A method that deals with leaves that have complicated backgrounds is proposed in [17].

This system uses Watershed segmentation algorithm and Zenerike’s Moments for leaf

classification. Authors have shown that this system can reach up to 92.6% classification

accuracy using MCH Classifier. Even though the accuracy is not comparable to most

methods, the segmentation algorithm that is used in this paper is quite useful.

Authors in [27] propose a method that uses shape and venation features for leaf image

retrieval. Minimum Perimeter Polygons (MPP) are used to extract shape features and

uses SMP method for content based image retrieval. Results are only demonstrated for

venation based retrieval which divides leaves into three venation based classes. This

research is a combination of the earlier works of authors that are presented in [28] and

[23].

An information retrieval method using Inner Distance Shape Context (IDCS) is pro-

posed in [24]. Even though this classification method is well-known and used before,

authors demonstrated the complete system implementation, from segmentation to pre-

senting the results, an often overlooked part, of the classification system. This detailed

system allows Smithsonian Institution National Museum of Natural History botanists

to catalog and search three new databases.

7

Another method that works on leaf textures is proposed in [18]. In this method, Gabor

co-occurrences are used as features. For classification, this method uses KNN with

Jeffery-divergence distance measure. The reported results display 85% accuracy on a

hand selected leaf texture database containing 32 classes. Performing this algorithm

on randomly selected sections of leaves produces 80% accuracy. Even though the

accuracy of the system is low, this system does not use the shape of a leaf to obtain

these scores, therefore, it is a useful method that can be combined with shape-based

methods to achieve better classification.

An Incremental Classification method is proposed in [19]. This method uses shape

and texture features. For shape features, gradient histogram of the leaf contour is

employed. Similarly, texture gradient orientation histogram is used for texture repre-

sentation. Both descriptors are classified using nearest neighbor classifier with Jeffrey

Divergence Distance. An incremental combination strategy is employed for final de-

cision. Authors show that the combined system achieves 81% accuracy. However,

this paper does not state any methods to achieve rotation invariance as the gradient

orientations depend on the leaf orientation.

In [25], a method to search a database of leaf images is proposed. This method uses

shape, texture, and color features. Authors used SIFT for shape, HSV for color, and

log-Gabor for texture representation. The results are demonstrated on a database with

45 classes that contains rotations of the same image. This method achieves 97% on the

aforementioned database.

8

A novel contour-based shape descriptor which is named as Multiscale Distance Ma-

trix (MDM) is proposed in [2]. MDM is extracted over selected points in the image

contour. Originally, authors proposed to use 64 nodes. Details of this method are

described in Section 3.6. This method is invariant to rotation, scaling and symme-

try changes. Additionally, the authors proposed Maximum Margin Criterion (MMC)

method to reduce dimensionality. Finally, Nearest Neighbor Classifier (NNC) is used

for classification. Experiments that are also verified by our own research shows that

MDM can effectively describe the leaf shape.

Another plant identification system called Leafsnap is proposed in [26]. This paper

details a complete system from acquisition to presenting the results. Firstly, this sys-

tem checks if the given image is a leaf. The second step is the preprocessing, where

segmentation, background and stalk removal is performed. Then the curvature-based

shape features are extracted to be used in Nearest Neighbors retrieval. The results show

that this method is a substantial improvement over IDCS. However, the speed of this

system is a limiting factor as it takes 5.4 seconds for a single leaf classification.

A method that uses semantic information and active contour segmentation is proposed

in [20]. This method proposes polygonal model parameters used for segmentation,

base and tip model and Curvature Scale Histogram (HCS) as features. Additionally,

this research details polygon fitting method for segmentation, which is a crucial step in

HCS. The authors demonstrated the performance of their systems over Pl@ntLeaves

dataset [29].

9

In [21], authors propose a novel shape descriptor - Multi-level Curve Segment Mea-

sures (MLCSM) - for the purpose of leaf retrieval. MLCSM is rotation and scale invari-

ant shape descriptor that can capture statistical characteristics such as curve bending,

convexity and concavity of curve segments. This operation is performed over different

curve lengths. The results demonstrated in [21] show that MLCSM has the highest

performance and comparable computational complexity compared to the previous ap-

proaches.

A shape-based multiscale method for leaf classification is proposed in [9]. This method

explores different representations of triangular parameters on multiple scales. Multi

Probe Locality Sensitive Hashing technique is used for shape matching. This shape

matching is then turned into a voting system to rank classes. Authors have demon-

strated effectiveness of these methods over several databases as both classification and

image retrieval method.

In [8], authors propose the use of image moments and Fourier Descriptors. Authors

have optimized the weights of these features to improve accuracy of the system. This

research also introduces a new database that contains woody species in Central Europe.

The results presented in that paper shows that this combined method has higher or

comparable performance over different databases.

A label propagation based method with novel weights and feature reduction named as

Supervised Locality Projection Analysis (SLPA) is proposed in [12]. This algorithm is

based on Warshall algorithm and calculates k-nearest-neighborhood-graph to be used

10

in decision process. The researchers show that SLPA outperforms other general mani-

fold based learning algorithms in terms of accuracy.

Authors in [22] propose two new spline embedding based methods called orthogo-

nal locally discriminant spline embedding (OLDSE-I and OLDSE-II). These methods

also employ maximum margin criterion method (MMC) which is used to reduce di-

mensionality.

Authors in [11] propose the use of features extracted from leaf veins and areoles to

classify types of legume plants. In this research, three methods, namely support vector

machines, penalized discriminant analysis and random forests methods are analyzed.

The results demonstrate that random forests method reaches up to 90% accuracy.

A method that relies on leaf margins as descriptors is proposed in [10]. This method,

named as Leaf Margin Sequences, extracts a map of margin peaks and pits along the

leaf margin and represents them as sequences. In this research, Nearest Neighbor

classifier is used with edit distances of these sequences. Authors have combined these

sequences with simple geometric features to show that margin sequences descriptor

has a comparable performance.

In [7], authors have proposed a plant recognition system that combines different fea-

tures representing shape, texture and color of plants. Additionally, this research con-

tains both automated and semi-automatic segmentation of plant and single leaf images.

The proposed method presented in [7] has the highest score in ImageCLEF’2012 plant

identification campaign in both human assisted and automatic categories.

11

A texture based leaf classification method is proposed in [5]. This method combines

two Fourier Transformed Completed LBP descriptors, one extracted from leaf surface,

the other from the edge. Even though the name suggests texture-based classification,

this method actually combines shape and texture information. Authors claim that by

using SVM, this method reaches to 99% score on all databases it is tried on.

Authors in [4] propose a method that contains a novel result representation. This

method resembles a content based information retrieval system, however, it returns

variable number of results instead of fixed number of results. This removes possibly

unrelated classes from the results list. Authors use multiple descriptors with multiple

classifiers combined using confidence sets.

In the literature, there are many different methods used for leaf classification. Most of

these methods concentrate on shape based features, however, there are methods that

use texture features as well. Diversity in classifiers is limited in leaf classification; and

many methods either use KNN or SVM. Over the years, the results of leaf classification

are improved significantly. Moreover, with the increasing interest in leaf classification,

additional databases with more classes and samples become available.

12

Chapter 3

BACKGROUND INFORMATION

Leaf classification is a multidisciplinary field that requires knowledge in botany, image

processing, computer vision, color models, and pattern recognition. In the following

sections, required background information on these subjects are presented.

3.1 Leaf Anatomy and Morphology

Leaves in the nature are analyzed to be able to create descriptors for classification.

Additionally, the way botanists identify plants are also studied. In this section, the

terminology, anatomy and morphology of plant leaves are discussed. The organs of a

simple leaf are displayed in Figure 3.1. The following is the names and descriptions of

leaf parts:

• Midrib: is the first vein level, which is directly connected to the stem

• Blade (Lamina): leaf surface

• Tip: top section of the blade

• Base: bottom section of the leaf blade

• Margin: The edge of a leaf

• Lobe: A rounded or pointed section of a leaf

There are many different leaf shapes. These are categorized by the botanists for iden-

tification. An ideal leaf recognition system should be able to differentiate between

leaf shapes. It is also important to know basic leaf shapes to understand the complex-

13

Veins
Midrib

Blade (Lamina)

Margin

Stem, stalk

Figure 3.1: Leaf organs

ity of the problem. The following is an incomplete list of leaf shapes which are also

illustrated in Figure 3.2:

a. Acicular, pinale leaf: needle shaped

b. Orbicular: circular

c. Elliptic: oval shaped

d. Rhomboid: diamond shaped

e. Acuminate: with a long point

f. Flabellate: fan shaped

g. Ovate: egg shaped, wide base

h. Palmate: with smoothly joining lobes

i. Cordate: heart shaped, growing from cleft

j. Linear: parallel margins

k. Obcordate: heart shaped, steam at point

l. Spatulate: spoon shaped

m. Cuneate: wedge shaped

n. Lanceolate: both sides are pointed

o. Obovate: egg shaped, narrow base

14

a b c d

e f g h

i j k l

m n o p

Figure 3.2: Leaf shapes

p. Digitate: lobes extending from the center

Another distinguishing feature of leaves is margins. Figure 3.3 illustrates different leaf

margins. Names of these margins are listed below:

a. Entire: with no teeth

b. Serrate: teeth pointing forwards

c. Dendate: triangular teeth

d. Lobate: contains lobe-like teeth

e. Denticulate: small triangular teeth

f. Crenate: round teeth

g. Undulate: wavy

h. Serrulate: tiny serrate teeth

15

a b c d

e f g h

Figure 3.3: Leaf margins

Leaf texture is generally affected by the venation pattern and the visibility of its veins.

The following is the list of common venation patterns which are also illustrated in

Figure 3.4:

a. Arcuate: veins bending towards the tip

b. Cross-venulate: smaller veins connecting primary ones

c. Dichotomous: symmetrically branching veins

d. Pinnate: veins that are growing opposite directions along the midrib

e. Longitudinal: almost straight and intersecting veins

f. Palmate: veins that are growing out from a single point

g. Parallel: veins that grows parallel to each other

h. Reticulate: small veins forming a network

3.2 Segmentation

The iterative segmentation algorithm proposed by [1] is employed for some datasets

that are discussed in the results section. This method works iteratively to find an ideal

threshold for segmentation. At every step, a new threshold, which is the average of

mean background and foreground intensities, is used. Initial threshold is set to the

average of minimum and maximum intensity in the image. The following steps are

necessary to perform this operation on image I:

16

a b c d

e f g h

Figure 3.4: Venation patterns

Step 1. Gmax = max [Ix,y] , Gmin = min [Ix,y]

Step 2. k ← 0

Step 3. Tk = (Gmax +Gmin)/2

Step 4. Segment the image using threshold Tk to determine the object at iteration k

Step 5. G f ore = E [Ix,y,(x,y) ∈ ob ject]

Step 6. Gback = E [Ix,y,(x,y) /∈ ob ject]

Step 7. k ← k+1

Step 8. Tk = (G f ore +Gback)/2

Step 9. if Tk �= Tk−1 then return to Step 4

3.3 Contour Extraction

Edges are important features. In classical approaches, edges are used as disjoint points

in the image. However, it is more informative and useful to use edge points that have

connections to the points coming before and after them. The term contour is used

for list of points that are morphologically sequential. It is possible to apply many op-

erations over contour points that cannot be applied to disjoint edges. For instance,

derivative of contour points can be calculated. In regular images, extracting contours

17

are not trivial, however, in a properly segmented image, contour information can be ex-

tracted using simple algorithms. In this research, we use Pavlidis’ Contour Extraction

[30]. This algorithm executes in linear time in respect to the edge pixels, works in 8-

neighborhood, and can process single pixel thickness. We selected this algorithm over

classical contour extraction algorithms like Moore’s algorithm due to these advantages.

Pavlidis’ Contour Extraction works over binary images to produce sequential contour

data. Ideally, the starting point should be the bottom-most point of the region of interest

(leaf surface in our system). The algorithm stops when the start point is reached for

the second time. During its execution, this method jumps from a pixel to another one

in a clockwise fashion adding them to the sequence of edges. Pavlidis’ algorithm is

presented in Algorithm 3.1.

3.4 Geometric Features

Geometric features are widely used in shape based descriptors. They are often com-

bined with other descriptors, such as image moments, as they are too broad to capture

details in the shapes. All geometric features are scale and rotation invariant. In this

section, the frequently used geometric features are listed. These features are grouped

into categories. Some geometric features defined here are not used in our proposed

method. Some features are eliminated as they contain information that is available in

other features.

Geometric features are calculated over segmented image. However, some of the fea-

tures described here can be calculated over contours. Since contour extraction is a fast

process and reduces the number of pixels to be processed to roughly the square root of

the original, calculating these features using contour data should be preferred.

18

Algorithm 3.1: Pavlidis’ Algorithm. x starts from left, y starts from bottom
1: procedure PAVLIDISCONTOUR(I)
2: � I is binary image
3: direction = north
4: for y = 0 to heightof(I) do
5: for x = 0 to widthof(I) do
6: if Ix,y then
7: f irst = (x,y)
8: goto found
9: end if

10: end for
11: end for
12: found:
13:
14: location = f irst
15: do
16: if targetvalue(I, location, direction, frontleft) then
17: location = targetlocation(location, direction, frontleft)
18: direction = rotate(direction, left)
19: push location to path
20: else if targetvalue(I, location, direction, front) then
21: location = targetlocation(location, direction, front)
22: push location to path
23: else if targetvalue(I, location, direction, frontright) then
24: location = targetlocation(location, direction, frontright)
25: push location to path
26: else
27: direction = rotate(direction, right)
28: end if
29: while location �= f irst
30: return path
31: end procedure

3.4.1 Simple Geometric Features

Simple features are aspect ratio (AR), perimeter ratio (PR) and rectangularity (RG).

AR represents how long and thin the leaf is. Generally higher PR denotes a complex

leaf. However, thinner leaves have higher PR. RG measures how well the Minimum

Bounding Rectangle (MBR) fits to the leaf. For instance a linear leaf has a higher

RG compared to a palmate leaf. These features require MBR, Leaf Area and Leaf

Perimeter. MBR is the smallest rectangle that can contain the entire leaf. Long edge of

19

the MBR is called maximum distance (Dmax), short edge is called orthogonal distance

(Dort). This rectangle can be calculated by finding furthest points in the segmented

image. Leaf area is the number of points that are determined to be in the leaf surface

by segmentation operation. Leaf perimeter is the number of contour points that are ex-

tracted. Using these geometric properties, simple geometric features can be calculated

as follows:

AR =Dmax/Dort

PR =Perimeterlea f /
�

Arealea f

RG =Arealea f /AreaMBR

(3.1)

3.4.2 Convexity Features

Convexity features measure the complexity of the leaf. These are Area Convexity (AC)

and Perimeter Convexity (PC). The value of both of these features are 1 for a simple,

fully convex leaf. As the leaf gets more complicated, these values will deviate from

this point. This effect is illustrated in Figure 3.5.

Convexity features require the calculation of the convex hull of the leaf. There are

different methods to calculate convex hull. The algorithm we use in this thesis is

explained in Section 4.1.4. The formulas to calculate convexity parameters are as

follows:

AC =Arealea f /Areaconvex

PC =Perimeterlea f /Perimeterconvex
(3.2)

3.4.3 Circular Features

Circular features represent circular structure of the leaf. These are Sphericity (SP) and

Circularity (CC). A low SP shows that the leaf is circular in shape and high CC shows

a leaf is circular. SP requires the radius of the largest circle (ri) that can fit into the

leaf and the radius of the smallest circle that can hold the leaf (Dmax). The area and the

20

(a) a = 1.00
p = 0.92

(b) a = 0.92
p = 1.00

(c) a = 0.68
p = 1.28

(d) a = 0.47
p = 1.70

(e) a = 0.54
p = 1.68

Figure 3.5: Four different types of leaves and their area, a and perimeter, p complexi-
ties. Leaves in (d) and (e) belong to the same class.

convex hull of the leaf are required to calculate circular features.

SP =ri/Dmax

CC =Arealea f /Perimeter2
convex

(3.3)

3.5 Moment Invariants

Moment invariants are used in object recognition. They are first proposed by [31] and

later expanded and analyzed in [32, 33]. They are calculated using image moments.

Image moments describe statistical information about images. Raw moments are basi-

cally weighted average of the image pixel intensities. Moment of order i, j, (Mi, j) for

a regular 2-dimensional, discrete image, I, is defined as follows:

Mi, j = ∑
x

∑
y

xiy jI(x,y) (3.4)

Although it is meaningful for some contexts, such as in determining the centroid or

area of the image, raw moments are not very useful as they are affected by translation,

rotation and scale. Central moments are defined to achieve translation invariance. The

basic idea is to use x and y distance from the centroid, instead of a fixed point. Central

moment µpq is calculated as follows:

x̄ =
M10

M00
, ȳ =

M01

M00

µpq = ∑
x

∑
y
(x− x̄)p(y− ȳ)qI(x,y)

(3.5)

21

Scale invariance can be achieved by dividing a central moment to the scaled area (M00).

The following equation calculates translation and scale invariant central moment ηpq:

ηpq =
µpq

M
(1+ p+q

2)
00

(3.6)

It is also possible to derive rotation invariant moments. In this thesis, we use 8 rotation

invariant moments up to order 3. First 7 of these moments are called Hu’s Moment

Invariants. The equations that are used to calculate rotation invariant moments are

given in (3.7).

σ1 =η20 +η02

σ2 =(η20 −η02)
2 +4η2

11

σ3 =(η30 −3η12)
2 +(3η21 −η03)

2

σ4 =(η30 +η12)
2 +(η21 +η03)

2

σ5 =(η30 −3η12)(η30 +η12)[(η30 +η12)
2 −3(η21 +η03)

2]

+ (3η21 −η03)(η21 +η03)[3(η30 +η12)
2 − (η21 +η03)

2]

σ6 =(η20 −η02)[(η30 +η12)
2 − (η21 +η03)

2]

+4η11(η30 +η12)(η21 +η03)

σ7 =(3η21 −η03)(η30 +η12)[(η30 +η12)
2 −3(η21 +η03)

2]

− (η30 −3η12)(η21 +η03)[3(η30 +η12)
2 − (η21 +η03)

2]

σ8 =η11[(η30 +η12)
2 − (η03 +η21)

2]

− (η20 −η02)(η30 +η12)(η03 +η21)

(3.7)

3.6 Multiscale Distance Matrix

Multiscale Distance Matrix (MDM) is a feature descriptor proposed by [2]. It is specif-

ically designed for leaf classification. MDM is extracted from the contour and it is

scale and rotation invariant. MDM uses a number of equidistant points from the con-

tour which are called nodes. These points can be determined from the edge pixels since

the ordering is not necessary. However, in that case, the distance between the nodes

might not be uniform.

22

MDM descriptor is a modified form of distance matrix between these nodes. The

number of features generated by MDM grows quadratically with the number of nodes.

The following equation can be used to calculate how many features that an n node

MDM has:
Nf eatures = n�n/2� (3.8)

Building MDM requires several steps. The first step is to create distance matrix be-

tween each node. Various distance metrics can be employed for this task. Authors

in [2] recommend the use of Inner Distance proposed by [34]. However, similar to

the findings in [2], we found that the distance metric does not change accuracy sig-

nificantly and using Inner Distance in some cases decreases the accuracy. Since the

overall improvement is negligible, we adopted Euclidean Distance in our research.

The following equation can be used to construct distance matrix DM using nodes N:

DMi j =
�
(xNj − xNi)2 +(yNj − yNi)2 (3.9)

In the next step, distance matrix is shifted. Together with the next step, this step

achieves rotation invariance by removing any location dependent data. Shifting is per-

formed per column. Every column is shifted upwards by the zero based index of that

column. This operation moves all diagonal elements, which are 0, to the first row. The

following formula can be used to calculate shifted distance matrix SDM, with indices

that are 0-based:
SDMi j = DM(i+ j mod n) j (3.10)

where n is the number of nodes. After shift operation, first and the last �n
2 − 1� rows

are discarded. The first row is discarded as it only contains zeroes. The last �n
2 − 1�

rows are the duplicates of previous rows.

23

(a) (b) (c) (d)

Figure 3.6: (a) and (c) are original images. (b) and (d) are on-the-image representa-
tion of the first (solid lines), fourth (dashed lines), and twelfth (dotted lines) rows of
shifted distance matrix. SDMs are populated by lengths of these lines. MDM nodes
are marked around the edge with discs.

After shift operation, each row of SDM represents a different node distance. For in-

stance, the values on the second row are the distances between the nodes and their

neighbors. Every column represents a node. Visual representation of SDM is shown in

Figure 3.6. Since the order of nodes depends on the orientation of the shape, the next

step is to eliminate this information. This is achieved by simply sorting every row.

Since sorted SDM contains distances, it is scale dependent. This descriptor is made

scale invariant by dividing it to its average. In [2], different methods for scale indepen-

dence are given, however, the best method both by intuitive and empirical approaches

is using matrix average for scale factor. The following equation is the final step in

calculating MDM descriptor:

MDMi j =
SDMi j

E [SDM]
(3.11)

where E is the expected value function. MDM descriptors of different leaves are pre-

sented in Figure 3.7.

3.7 Local Binary Patterns

Local Binary Patterns (LBP) is an illumination invariant transformation. LBP captures

local characteristics of textures and proves itself to be a useful descriptor in Biometrics.

The result of this transformation on various images is shown in Figure 3.9. As the

simplest approach, LBP histogram is used as the texture descriptor. However, LBP is

24

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Two samples for two different leaves and their MDM representation.
(MDM matrix is represented as color coded values where darkness of a cell increases
with the value of that cell.)

(a) P=8, R=1 (b) P=8, R=2 (c) P=12, R=2

Figure 3.8: Calculation of LBP using different parameters

an orientation dependent transformation. There are many LBP variants in the literature

and some of these methods are rotation invariant.

LBP transformation simply compares the intensities of the neighbors around a central

point to the center. Boolean results from these comparisons are then used as a binary

number where each digit is the result of a comparison. This number is then assigned as

the new intensity. Every neighbor is sampled around the center. The number of neigh-

boring points, P, determines the bit depth of the transformed image. Additionally, LBP

requires another parameter, which is the distance from the center to the neighbors. This

parameter is denoted as R. Since a digital image is discrete, the intensity values at the

25

Figure 3.9: Various images and their LBP transformations.

points are determined by interpolation. Generally linear interpolation is employed for

this task. Figure 3.8 illustrates the processing of different parameters. The following

are the formulas that are necessary to calculate LBP transformation:

s(x) =





1, x ≥ 0

0, otherwise

LBPPR =
P

∑
p=0

s(gc −gp)2p

(3.12)

where gc is the intensity of center pixel and gp is the intensity of neighbor p. LBP

transformations of sample images are displayed in Figure 3.9.

3.8 Color Models

Digital images are generally represented in Standard Red-Green-Blue (sRGB) color

space. However, this color space is not very suitable for computer vision applications.

It is more useful to represent color as hue, saturation and lightness. This separation

allows computer to differentiate an object regarding to its color tone (hue and satura-

tion) without being affected by the illumination, which might vary due to many factors.

HSV and HSL color models separate hue, saturation, value/lightness channels. How-

ever, these color models are defined over sRGB color space (generally mistaken as

RGB) and for simplicity in calculation, hue and saturation channels are not fully sep-

26

arated from value/lightness channels. HSV and HSL color spaces are developed for

designers who can handle value shifts manually. However, in computer vision appli-

cations, this issue causes a great problem.

CIE (International Commission on Illumination) defines color spaces that are indepen-

dent from devices. Most of these color spaces map the real world color more accurately

than the commonly used color systems such as sRGB. The first color spaces defined

were CIE 1931 RGB and XYZ color spaces. Both of these color spaces are mod-

eled after human vision. In 1976, CIE released another color space, CIE-LAB. CIE-

LAB color system covers entire color range visible to human eye and it is designed

to be device independent. The components of CIE-LAB color space are lightness (L),

red/green (a) and yellow/blue (b). Commonly L channel starts from 0 (black) to 100

(white). a and b channels starts from -100 to 100. If both a and b are 0, the resultant

color is gray. In addition to standard representation, CIE-LAB color system can be

expressed in cylindrical form which is called CIE-LCH. Similar to CIE-LAB, L chan-

nel is lightness. C is the chromacity channel which represents the saturation of the

colors. H is the hue channel representing the hue of the color. Hue channel in CIE-

LCH is circular and represented as an angle. Similar to HSV and HSL color spaces,

0 hue denotes red where 120 is green and 240 is blue. Unlike HSV and HSL color

spaces, hue channel of CIE-LCH has a fixed lightness. This trait can be observed from

Figure 3.10. It must be noted that CIE-LCH spectrum covers much larger spectrum

compared to HSV and HSL color spaces. In fact, CIE-LAB color space is much larger

than visible spectrum. RGB spectrum in CIE-LAB color space is displayed in Figure

3.11.

27

(a) (b) (c)

Figure 3.10: Perceived lightness of hue and saturation/chroma channels of (a) LCH,
(b) HSV, and (c) HSL color systems.

Converting from sRGB color space to CIE-LCH color space is not trivial and requires

many steps. Equation (3.13) shows the necessary calculations to convert a color repre-

sented with R, G, and B components to L, C and H components. These transformations

use fixed sRGB gamma value of 2.2 for simplicity. sRGB gamma changes non-linearly

from 1.0 to 2.3 with average being 2.2.

r = R2.2 , g = G2.2 , b = B2.2

X = 0.4338r+0.3762g+0.1899b

Y = 0.2126r+0.7152g+0.0722b

Z = 0.0177r+0.1095g+0.8728b

x = 3
√

X , y = 3
√

Y , z = 3
√

Z

L = y , a = 5(x− y) , b = 2(y− z)

C =
�

a2 +b2 , H =
arctan(b

a)

2π

(3.13)

3.9 Linear Discriminant Classifier

Bayes Minimum Error Decision Rule lowers the probability of error using known pri-

ories. In a known environment, classification according to this rule results in the best

possible accuracy. However, this system requires the probability distribution function

for the data points. The best estimate for this task in an unknown environment is the

Normal Distribution. Linear Discriminant Classifier (LDC) is one of the classifiers de-

28

b

a

G

R

B

Figure 3.11: sRGB color space mapped on to CIE-LAB color space.

rived from Bayes Decision Rule using normal distribution. In a two class classification

system, Bayes Decision Rule is given below:

maxargiP(ωi|x̄) (3.14)

where P is the probability function, ωi is the class i and x̄ is the test sample.

Using Bayes Rule, this decision rule can be transformed into the following form:

maxargiP(x̄|ωi)P(ωi) (3.15)

If we use the Multivariate Normal Distribution function which is given below

P(x̄|ωi) =
1

(2π)
d
2 |Σi|

1
2

e−
1
2 (x̄−µ̄i)

T Σ−1
i (x̄−µ̄i) (3.16)

where µ̄i is the expected value for class i and Σi is the covariance matrix of the samples

of class i, the resultant decision rule is Quadratic Discriminant Classifier (QDC). It

must be noted that the logarithm of the decision function is used. As logarithm is a

monotonically increasing function, the decision is not affected. This transformation

is performed to simplify the equation. The support for class i, gi, using QDC can be

29

calculated as follows:

gi =− 1
2
(x̄− µ̄i)

T Σ−1
i (x̄− µ̄i)+(Σ−1

i µ̄i)
T x̄

− 1
2

µ̄i
T Σ−1

i µ̄i −
1
2

ln|Σi|+ lnP(ωi)

(3.17)

LDC is closely related to Quadratic Discriminant Classifier. The main difference of

LDC and QDC is that LDC assumes that the covariance matrices for all classes are

the same. Although this assumption does not hold in real life scenarios, common

covariance for all classes can be calculated and used as follows:

Σ =
1
N

C

∑
i=1

NiΣi (3.18)

where Σ is common covariance, N is the number of training samples, Ni is the number

of training samples for class i, Σi is the covariance of class i. If the number of training

samples is less than the number of dimensions, Σ will be a singular matrix.

After determining the common covariance matrix, LDC should be trained separately

for each class. Training yields to a constant c and a vector w̄ for every class. The

following formula is used to calculate c and w̄ for class i:

w̄i =Σ−1µ̄i

ci =lnPi −
1
2

µ̄T
i Σ−1µ̄i

(3.19)

where µ̄i is the mean of class i, Pi is the probability of class i. Matrix inversion in this

step will fail if the covariance matrix calculated in the previous step is singular.

While classifying a sample, support for each class is calculated separately. The class

with the highest support is declared as the classification result. Support for class i is

calculated as follows:
gi(x̄) = w̄T

i x̄+ ci (3.20)

30

Therefore, LDC has a lower or similar computational complexity compared to other

classification methods. Additionally, LDC assigns separate weights to features for

every class which allows it to ignore features that have no meaning for some classes.

This trait is very important in cases where combination of multiple descriptors are

used. As an improvement over QDC, LDC requires more total training samples than

the number of dimensions, whereas QDC requires more training samples per class.

Therefore, it is possible to use LDC where QDC cannot be used.

3.10 Technologies Used

In this thesis, we use C++ programming language and Eigen and Gorgon Libraries to

implement the proposed methods and the methods that are used for comparison. These

technologies are explained in the following subsection in detail.

3.10.1 C++

C++ is a multi-paradigm programming language that is designed to provide high-level

functionality without sacrificing speed. There are many high level libraries, such as

Eigen Library, programmed in C++ to provide additional functionality. C++ template

system offers type security to typeless constructs such as vector class. Unlike gener-

ics in Java and C#, templates in C++ do not incur any cost in the run-time, making it

suitable for applications that require many calculations. Additionally, silent type con-

versions allow library programmers to perform on-the-fly optimizations such as lazy

evaluation.

C++11 standard brings more functionality to the language. For instance, lambda func-

tions allow programmers to create functions inline, making standard library algorithms

much easier to use. Automatic type deduction with the help of auto keyword speeds

up programming tasks.

31

Many programmers believe that lower level languages are faster. However, in regu-

lar programming, C++ outperforms C up to %30 in some cases. There are two main

reasons behind it. The first reason is that the compiler can produce faster running

code when the program is more expressive. However, generally expressive program-

ming incurs additional costs. In C++, additional functionality are all compiled into a

compact form, through compiler steps such as inlining, redundant variable and code

elimination and therefore, does not have significant additional cost. The second rea-

son is the improved library functions. These functions are well-optimized and provide

basic functionality that is either missing or very slow in C.

Standard Template Library (STL) is designed to provide extra functionality with min-

imum additional cost. Generally, the additional cost is using a little more memory

but the provided extra functionality, and in some cases, speedup is significant. For

instance, using an STL vector is much faster than using a C array and expanding it as

necessary. The reason behind it is the allocation setup. When allocation is required, a

vector object increases its size more than requested. Heuristics are employed to deter-

mine ideal increment step. Since memory allocation is a very slow process, this trait

improves the speed. Only additional cost of using a vector is an extra integer defined

in vector class. Additionally, using STL vector is much safer as in debugging mode, it

checks the array boundaries. Additionally, STL is a header-only library. This means

that all STL functions can be inlined. Inlining removes the function call by performing

operations on the caller, hence, providing new possibilities for performance optimiza-

tion.

32

3.10.2 Eigen Library

Eigen is a matrix library for C++ that supports fixed-size, variable-size and space ma-

trices of any numeric type. Eigen uses templates and lazy evaluation to speed up op-

erations. Lazy evaluation allows multiple matrix operations to be performed together,

removing the need for temporary matrices and in some cases, removing unnecessary

steps from the whole operation. Eigen Library provides operator overloads for matrix

and vector operations, providing an intuitive programming for linear algebra. Ad-

ditionally, Eigen Library supports explicit vectorization for different instruction sets,

benefiting from the parallel execution facilities of the respective platforms. Eigen Li-

brary is well documented and tested. Every function is explained in detail and there are

many examples. Finally, it has a large development team (currently 118 contributors)

and a liberal license allows it to be used in any kind of project.

3.10.3 Gorgon Widgets

Gorgon Widgets is a cross-platform user interface library distributed with Gorgon

Game Engine. Gorgon Widgets provides easy-to-use and functional user interface

components (widgets). This library contains templated widgets such as NumberBox,

so that they can be used with different data types. Additionally, this library provides

support to read and write image files, which is required for computer vision applica-

tions.

33

Chapter 4

PROPOSED METHODS

We propose two leaf classification methods in this thesis. These methods include new

approaches such as Sorted LBP, application of LDC for leaf classification and several

feature types combined to improve the classification accuracy. First of all, geometric

features are used for the classification of plant leaves. Then, geometric, shape, texture,

and color features are combined to perform leaf classification. All the steps involved

in these proposed methods, including preprocessing, feature extraction, and classifica-

tion are explained in the following subsections in detail. Additionally, the order and

dependency of these operations are illustrated in Figure 4.1.

4.1 Preprocessing

Preprocessing step includes segmentation, noise removal, contour smoothing, convex

hull extraction, corner detection, texture mask, and stalk removal operations. These

operations are described below with some examples.

4.1.1 Segmentation

Geometric features require binary images to work. Therefore, the color images that

are acquired from various sources, should be segmented. Although there are many

segmentation methods, we developed a simple segmentation method specifically tar-

geted to leaf image segmentation. This method performs better compared to a more

complicated and generic method described in Section 3.2 in two out of three datasets

we use. The main idea behind this segmentation method is that the blue color channel

34

srlbp

Reduce

Sort

mask

color

Stats

Extract hue

LBP

Erosion

Image acquisition

Segmentation

Noise removal

Contour extraction

cc moments pr

Smooth: 3

Convex hull

Smooth: 15

Distance

Avg

Peak detect

md

Stats

msacpc mdm

Histogram

Texture mask

mask

Extract MDM

Corners

mask

height distance

Figure 4.1: Flow chart of preprocessing and feature extraction steps. Nodes with gray
backgrounds are only used in GTCLC

has the most variance in a leaf image if the background of the image is white. This

is evident from Figure 4.2. Using this fact, we simply segmente the image from the

mean intensity of the blue channel. Any pixel having an intensity that is lower than this

threshold is assumed to be leaf surface. This segmentation method can be formulated

as follows:
Lea f =

�
(x,y), blueIx,y < E [blueI]

�
(4.1)

where, I is the input image and E is the expected value function.

35

The result of this segmentation method is presented in Figure 4.3. Even though this

segmentation method performs admirably, there is still some noise in the result. Gen-

erally, this noise is caused by highlights or dirt particles on the acquisition device.

4.1.2 Noise Removal

It is possible to obtain a noisy segmentation due to various reasons. Geometric features

are sensitive to noise. For instance, inscribed circle will be much smaller if there is a

small patch within the leaf surface. We developed a simple noise removal method

to fix this problem. The basic idea behind this is to iteratively analyze and correct

connected components in the segmented image. Any connected component that is

smaller than 20% of the entire leaf surface, is determined to be a noise patch, and

its value is inverted, so that enclosing component will inherit it. Since there may be

additional noise inside a noisy region, this operation is performed iteratively. In images

with many noisy regions, this method might work slowly. However, it is possible to

speed up this process by marking processed regions. This algorithm is illustrated in

Algorithm 4.1 with the results shown in Figure 4.3.

4.1.3 Contour Smoothing

We employ contour smoothing both to reduce noise and to detect smaller changes

along the leaf blade. Our smoothing operator works over a given window and performs

one dimensional vector convolution. The kernel that is used consists of equal entries,

causing a box smoothing. If the smoothing factor is s, the size of the smoothing kernel

will be 2s+ 1 and each entry in the kernel will be 1
2s+1 . After contour extraction,

we perform a smoothing operation with a factor of 3. This is performed to cancel

segmentation and quantization errors. Figure 4.4 shows the result of contour smoothing

over two different contour segments. Contour smoothing with factor of 15 is used to

remove the teeth of the leaf margin.

36

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Color channels of two different leaf images. (a) and (e): all channels; (b)
and (f): red channel; (c) and (g): green channel; (d) and (h): blue channel.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Segmentation results and noise removal. (a) and (d): original leaf; (b) and
(e): segmented leaf; (c) and (f): after noise removal

37

Algorithm 4.1: Noise removal algorithm.
1: procedure NOISEREMOVE(I, limit)
2: � I is binary image
3: J is a new set of points
4: startover:
5: for each pixel at (x,y) do
6: if (x,y) /∈ J then
7: open and closed are stacks of 2D coordinates
8: push (x,y) to open stack
9: current = Ix,y

10:
11: � Finding connected components
12: while open has items do
13: (x�,y�) = pop open
14: push (x�,y�) to closed stack
15: for (xx,yy) ∈ I4−neighborhood

x�,y� do
16: if (xx,yy) /∈ J∧ (xx,yy) /∈ open ∧
17: (xx,yy) /∈ closed then
18: push (xx,yy) to open stack
19: end if
20: end for
21: end while
22:
23: if sizeof(closed)> limit then
24: append closed to J
25: else
26: for (x�,y�) ∈ closed do
27: Ix�,y� = ¬Ix�,y�

28: end for
29: goto startover
30: end if
31: end if
32: end for
33: end procedure

4.1.4 Convex Hull

Convex hull is required for some of the geometric features. Although determining

convex hull of a binary image is challenging, extracting this information from contour

data is relatively simple. We developed a convex hull algorithm that works only on a

fully connected contour data extracted in clockwise direction. This algorithm simply

determines whether a point causes concave feature by simply analyzing its position

38

(a) (b)

Figure 4.4: Contour smoothing operation on two leaf sections. (The lines on the top
are the original contours, middle contours are smoothed with a factor of 3 and the
bottom contours are smoothed with a factor of 15.)

in respect to the surrounding points. This method works in linear time and if the

conditions are fully satisfied, it never fails. Algorithm 4.2 illustrates this method.

4.1.5 Corner Detection

Corner region detection is a necessary step to prevent margin features getting affected

from the corners of the leaf. Corner regions are the contour segments that contain a

leaf tip. Depending on the leaf type, corners may have different properties compared

to the other segments of leaf blade. Therefore, these segments are ignored while cal-

culating some of the features that are discussed in Section 4.2.1. This detection uses

smooth contour information. We determined smoothing factor of 15 to be optimal in

Algorithm 4.2: Convex hull algorithm using contour information
procedure CONVEXHULL(L)

� L is the contour of the leaf
a = 0, b = 1, c = 2
while c �> SizeL do

m =
Lcy−Lay
Lcx−Lax

a = Lcy −mLcx
if mLbx −Lby +a < 0 then

� Removal of b causes c to point to the next contour
remove b from L
a = a−1, b = b−1, c = c−1

else
a = a+1, b = b+1, c = c+1

end if
end while

end procedure

39

the datasets we use. This value depends on the size of the image, rather than the size

of the leaf to be analyzed.

In order to determine corner regions, we use average arc angles of different distances.

The algorithm determines the contour point that is distance before and distance after

the current point to calculate an arc angle over a given distance. Using these points,

the angle between the lines that passes from the previous point to the current point,

and from the current point to the next point is calculated. Arc angles are averaged for

the distances that start from 1 to n/4, where n is the number of contour points. It is

possible to derive the maximum distance using heuristics, however, using a fixed ratio

also results in predictable and useful corner regions. Therefore, we use the simpler

technique both for efficiency and to avoid additional complexity.

The average arc angles are calculated and then a threshold is determined as follows:

arcthreshold =
min(arcs)+3E[arcs]

4
(4.2)

Setting threshold to this value reduces the amount of noise, while making sure to in-

clude all the meaningful corner regions. The average arc angles, their average and

determined threshold are presented in Figure 4.5.

4.1.6 Texture Mask

Texture features around and outside the leaf margin are significantly different com-

pared to the texture features inside the leaf. Additionally, the color on the edges could

be slightly different because of non-perfect sampling since the edge pixels will con-

tain color information both from leaf surface and from background. We developed a

method to create a mask to only extract texture and color features that are strictly in-

40

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.5: Corner region extraction of a leaf. (a) arc angles, guidelines from top
to bottom: average, threshold, minimum, origin; (b) Original image; (c) Segmented
image; (d) Leaf contour with corner regions marked, (e), (f), (g) additional samples
showing corner regions

side the leaf surface. This mask is generated from the segmented image by applying

erosion operator. The erosion operation is performed by a square kernel with size of

3. This value should be set according to the distance used in LBP operation, to ensure

that LPB operation will never hit a border pixel. However, if a given leaf is extremely

thin (like pinale leaves), it is possible to remove all or most of the image by the erosion

operator. In these cases, instead of failing, the whole segmented image is used as the

mask. Figure 4.6 compares LBP histogram around and outside the leaf margin.

4.1.7 Stalk removal

Some datasets and, in practice, result of some image acquisition techniques contain

leaf stalks. Stalks may cause problems in geometric features. However, natural length

of the stalk can contribute as an additional information. In some cases it might be

beneficial to remove them. We developed a method to remove leaf stalks using the

41

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.6: Analysis of the texture mask. (a) and (g) are original images, (b) and (h)
are generated mask where the interior region is the final mask and the outer region is
the area removed using erosion operator, (c) and (i) are LBP transformations, (d) and
(j) are the masked histograms, (e) and (k) are the histogram outside the masked area,
(f) and (l) are histograms of the border regions

42

smoothed contour data (with factor of 15). Using contour data instead of the whole

image speeds up this procedure as contour points grow much slower than the leaf

surface.

Stalk removal algorithm marks contour regions that are running parallel in opposite

directions which are very close to each other. The threshold distance should be derived

according to the dataset used. As an example, we use threshold distance as 4 in Leafs-

nap dataset. This method may produce multiple regions; in this case, only the longest

of these regions is removed. Formal definition of this method is given in Algorithm

4.3 with the results shown in Figure 4.7. This algorithm assumes that arrays and lists

are circular. It is possible for this algorithm to remove the entire image if the leaf is too

thin. As a solution, it is possible either to ignore pinale leaves or use original contours

for the feature extraction.

43

Algorithm 4.3: Stalk removal algorithm.

1: contours is the array containing contour data
2: Tdistance is the input parameter
3: Tangle = π/8 � threshold for straight line
4:
5: detected is an empty list of indices
6: pairs is a mapping from and index to another
7:
8: � used to prevent connected points to be selected as the nearest point
9: mindi f f = 2× threshold

10:
11: � Find the closest point
12: for every contour point ind do
13: current = contours[ind]
14:
15: distance = Tdistance
16: minind =−1
17: for every contour point ind2 do
18: d = ||contours[ind2]− current||
19: if d < distance then
20: distance = d
21: minind = ind2
22: end if
23: end for
24:
25: if distance ≥ Tdistance then
26: continue with the next point
27: end if
28:
29: other = contours[minind]
30:
31: � Stalks are a part of the leaf surface
32: pivot is the point half way between current and other
33: if pivot /∈ Lea f then
34: continue with the next point
35: end if
36:
37: � Check if two points are parallel
38: anglecurrent is the angle between contours[i−1] and contours[i+1]
39: angleother is the angle between contours[minind −1] and
40: contours[minind +1]
41: if |anglecurrent −2π +angleother|> Tangle then
42: continue with the next point
43: end if
44:
45: � Successfully classified this point as a stalk point
46: push (current,other) to pairs
47: push current to detected
48: end for

44

49: if detected is empty then
50: No stalks to remove, exit
51: end if
52: � Find index difference between points
53: di f f erences is an empty list of numbers
54: for every point detected ind do
55: push |detected[ind]−detected[ind −1]| to di f f erences
56: end for
57:
58: � Start from the beginning of a new group
59: start = maxarg [di f f erences]
60:
61: � Find the longest uninterrupted sequence
62: maxlen = 0
63: maxind = 0
64: current = 0
65: startelm = start
66: for ind starts from start until all elements of di f f erences visited do
67: � End of the current sequence
68: if di f f erences[ind]> Tdistance then
69: if current > maxlen then
70: maxlen = current
71: maxind = startelm
72: end if
73: startelm = ind
74: current = 0
75: else
76: current = current +1
77: end if
78: end for
79:
80: � Remove longest sequence as the leaf stalk
81: start = detected[maxind]
82: end = pairs[start]
83: remove points from contours beginning from start to end

(a) (b) (c) (d)

Figure 4.7: Results of stalk removal. (a) and (c) are original segmented images
whereas (b) and (d) are images after stalk removal

45

4.2 Features

4.2.1 Margin descriptors

During our research, we examined leaves to develop additional ways of describing

them. When we first started, there was a single method [3] to describe leaf margins.

However, during our analysis, we found that this method was insufficient for this task.

Therefore, the first feature set we introduced was aimed at describing leaf margins.

Several methods used for describing margins are explained in the following four sub-

sections.

4.2.1.1 Smooth factor

Before describing our solution, it might be beneficial to understand the margin feature

proposed by [3]. This feature is called smooth factor. It is the ratio between the area

of the leaf smoothed by 5x5 rectangular smoothing filter and the one smoothed by 2x2

filter. While smoothing removes margins, and therefore, creating a meaningful image,

the area of the leaf is not affected. In Figure 4.8, this operation is illustrated. This

example is a controlled sample, therefore, it is the worst case. In real life applications,

this method might extract useful data, however, its usefulness will be limited as the

method clearly does not perform the operation it intends to do.

4.2.1.2 Multiple Perimeter Ratios

Inspired from smooth factor feature, our first attempt to define leaf margin was to

calculate perimeter ratio of the leaf after opening filters with different window sizes.

Opening filters have an effect similar to smoothing, they remove the dents on the mar-

gin. Then, filters with different sizes are employed to capture margins of different

sizes. However, this approach has several disadvantages. Firstly, filter size depends

on the scale. Even though scanned leaf images have the same scale, this filter was not

suitable for an all-purpose classification system independent from image acquisition

46

(a) A = 15110, P = 464
PR = 0.07

(b) A = 15117, P = 452
PR = 0.073

(c) A = 15125, P = 413
PR = 0.09

Figure 4.8: Area (A), perimeter (P) and perimeter ratio (PR) analysis of an artificially
created margin over a circle. a) Original image, b) Smoothed by 2x2 rectangular filter,
c) Smoothed by 5x5 rectangular filter

method. Another disadvantage of this method is its speed. It takes too long to per-

form multiple opening operations on the image. Finally, the features that are generated

from this system is correlated and small scale changes might shift the values from one

feature to another, causing problems with linear classifiers, such as LDC. Despite its

disadvantages, this method is an improvement over smooth factor feature as evident

from Figure 4.8 (on a regular circle PR is roughly 0.1 for all three cases). Since this

method has many problems, we are not using this feature in our proposed systems.

4.2.1.3 Average Margin Distance

Implementing contour extraction system allows us to work with contour data. Since

contour data is a time series, it can be smoothed using a one dimensional filter. Addi-

tionally, after smoothing step, it is possible to track new locations of the data points.

This allows the calculation of the distance between smoothed and regular contour. This

distance represents the amount of margins of a leaf. Additionally, the average of the

distances extracted from the points are used to achieve scale invariance. This feature is

called Average Margin Distance (MD). Margin distance feature has a single parameter

47

and is versatile against scale changes. In the results section, we set this parameter,

smoothing amount, to 15 in all simulations.

Although this method shows promise, there is a problem that prevents it from work-

ing on leaves. Smoothing causes large changes around the corners of the leaf. These

changes are much larger than the changes along the leaf margin. Therefore, any vari-

ance in the leaf corners causes large amount of noise on this feature. In order to solve

this issue, the corner regions detected by the method described in Section 4.1.5 are

ignored while calculating this feature. Table 4.1 shows several leaf samples and their

respective margin distances and statistics.

4.2.1.4 Margin Statistics

Although average margin distance is a stable and useful feature, it is possible to ex-

tract more information from the leaf margins. The second set of margin features we

developed is margin statistics. These features are extracted from the margin peaks and

describe the margin in more detail. For instance, a leaf type having a serrate margin

and another leaf type having a crenate margin can have similar average margin dis-

tance. However, when examined, the teeth of the leaf having serrate margin would be

higher to cover the same area as round and thick crenate margin.

There are four features in margin statistics. These are average peak distance (MSAD),

average peak height (MSAH), peak distance variance (MSDV), and peak height vari-

ance (MSHV). When combined with margin distance, these statistics adequately de-

scribe leaf margins.

48

Table 4.1: Average margin distance and margin statistics of several leaves (MD: mar-
gin distance, MSAD: margin statistic: average distance, MSAH: margin statistic: av-
erage height, MSDV: margin statistic: distance variation, and MSHV: margin statistic:
height variation).

Class Image MD MSAD MSAH MSDV MSHV

4 0.38 0.25 0.71 0.063 0.0005

4 0.37 0.50 0.39 0.25 0.0

10 1.98 0.019 2.14 0.0004 0.58

10 1.99 0.011 2.04 0.0001 0.67

22 1.86 0.012 1.92 0.0001 0.72

22 1.96 0.011 2.04 0.0001 0.54

28 0.48 0.067 0.88 0.004 0.047

28 0.49 0.053 0.92 0.003 0.034

Unlike margin distance, margin statistics cannot be extracted trivially. The first step

to extract margin statistics is peak detection. Leaf margin distances that are calcu-

49

Algorithm 4.4: Proposed peak detection algorithm
procedure PEAKS(M, L)

� M is the margin distances, L is the threshold
V is an empty M×L matrix
for i = 1 to SizeM do

for k = 1 to L do
if Mi > Mi−k ∧Mi > Mi+k then

Vk,i = 0
else

Vk,i = 1
end if

end for
end for
sumsi = ∑k Vk,i
return indexeso fsums=0

end procedure

lated while extracting average margin distance are used for this task. We employ a

peak detection algorithm that is derived from Automatic Multiscale Peak Detection

algorithm proposed in [35]. This algorithm first calculates multi-scale maxima matrix,

however, instead of cutting the matrix from an automatically determined point, we set

the threshold to be the half of the smoothing distance used to obtain margin distances.

The final form of the algorithm is presented in Algorithm 4.4. Additionally, we remove

any peaks that are less than 0.5. These very low peaks can be formed by segmentation

noise around the edges and do not contain any information about margins. The margin

statistics extracted from various leaves are shown in Table 4.1.

4.2.2 Texture descriptor

We developed a new variant of Local Binary Patterns for texture description called

Sorted Local Binary Patterns (LBPs
P,R). There are many LBP variants that achieve

rotation invariance [36–40], however, our aim in texture description is not to describe

ordinary textures. Leaf textures distinctly contain veins that are expanding from the

50

midrib. Therefore, the texture descriptor should take this information into account.

There are two modifications that are performed over the regular LBP.

After extraction of 8-bit LBP histogram with distance of 1, this method sorts the values

of the histogram. This removes any direction information as it is represented by the x-

axis of the histogram. We chose this method over other LBP methods that are rotation

invariant as these features should represent length, frequency, and angles of the veins

instead of entirety of the texture. Although, Regular LBP contains separate information

for separate directions, most rotation invariant methods, such as Rotation Invariant

Uniform Binary Patterns, combine different directions into a single pattern. However,

this information is required to correctly distinguish between vein types. Sorting does

not combine different directions into one, it simply discards the direction information

related with a histogram value. Therefore, if there are three dominant patterns, there

will still be three dominant patterns in the sorted histogram, but they will always be at

the right side of the histogram.

LBPs
P,R = sort [LBPP,R] (4.3)

where P is the number of neighbors, R is the distance of neighboring samples from

the center, gc is the gray-scale intensity at the center pixel, and gp is the intensity of

neighbor p.

The second modification is the feature reduction on LBPs
P,R. Since the histogram is

sorted, left side of the histogram contains many similar values. These values can ef-

fectively be represented with less features as they contain much less information com-

pared to the higher values. Our research shows that using variable averaging of these

values to reduce the number of features improves the performance and the processing

51

speed. This feature reduction method has a single parameter, σ which is the number

of features that will not be averaged at the end. After this reduction operation, there

will be P− log2σ +2 segments, where P is the neighborhood of LBP, with each having

σ/2 elements. The following set of equations show how this feature reduction method

works:

Nσ
P,R,i = max

�
2P

σ ∗2�2i/σ�

�

Sσ
P,R,i =

i−1

∑
k=0

Nσ
P,R,k

LBPrsσ
P,R,i =

Sσ
P,R,i+Nσ

P,R,i

∑
k=Sσ

P,R,i

LBPs
P,R,k

Nσ
P,R,i

(4.4)

where LBPs
P,R,i is the entry i (0 based) of the Sorted LBP histogram with P neighbor-

hood and R distance. N is the number of items to be averaged for element i and S is

the start of ith averaging group in LBPs
P,R histogram. In addition to this formula, the

algorithm for this method is presented in Algorithm 4.5.

It is possible to derive differentiation information by looking into the sorted histograms.

In Table 4.2, LBP histograms of different leaves are shown. It is evident from this

table that when the veins are parallel to each other, there are a few very frequent pat-

terns (the first and the second rows), however, when the veins are not very obvious,

the histogram will not have very frequent patterns. When applied to regular texture

classification, LBPrsσ
P,R has a low performance. However, it performs comparable or

better in terms of accuracy in the leaf texture classification when compared to the other

LBP variants. The detailed analysis of LBPs
P,R and LBPrsσ

P,R with feature reduction is

discussed in Chapter 5.

52

Algorithm 4.5: LBPs
P,R feature reduction.

1: procedure REDUCE(SLBP, P, σ)
2: � P is the LBP neighborhood
3: � σ is the number of elements that are not averaged
4: elements = σ/2
5: current = elements/2
6: ind = 0
7: RSLBP is an empty vector
8: while ind < 2P do
9: for i = 0 to elements do

10: sum = 0
11: for j = 0 to current do
12: sum = sum+RSLBPind
13: ind = ind +1
14: end for
15: push sum/current to RSLBP
16: end for
17: current = ceil(current/2)
18: end while
19: return RSLBP
20: end procedure

4.2.3 Color features

Although many leaves have green color, there are variations in the color tone. Addi-

tionally, color shifts on the leaf blade is a characteristic feature generally associated

with specific plant families. Therefore, it is beneficial to include color descriptors

for leaf classification. These features will not improve classification accuracy on all

leaves, however, they will improve accuracy of few classes significantly. Detailed per-

formance analysis of color descriptor is discussed in Chapter 5.

The color features we use are the mean and the deviation of the hue channel. Only

the pixels that are inside the texture mask are considered while collecting statistical

information. Hue channel is extracted using CIE-LCH color model. Hue is preferred

over other channels as it contains less amount of noise, invariant to lighting, and more

meaningful in the context of leaf classification. Hue deviation is employed to measure

53

Table 4.2: Intermediate and final results from LBP feature extraction. Leaves in the
first two rows belong to the same class.

Class Original LBPs
8,1 LBPrs32

8,1 Histogram

192

192

203

134

color change on the leaf blade. For instance, veins on the leaves of some type of

plants are colored differently compared to the rest of the leaf blade. These kind of

changes can be measured using deviation. Several leaves, their hue channels, and their

corresponding color features are listed in Table 4.3; it is possible to observe that these

hue based features have very low variance. However, there are many leaves that have

similar hue, diminishing the contribution of these features.

Hue channel is a circular value. This means that there is a discontinuity in the scale.

However, this discontinuity is at pure red. The highest hue values are purple and the

lowest values are orange. Since purple color leaves are rare, this discontinuity does not

have any real impact on the performance of the system. Additionally, some classifiers,

54

Table 4.3: Color features of sample leaves.

Class Original Hue Mean Deviation

8 0.159 0.031

30 0.306 0.002

30 0.307 0.002

58 0.319 0.002

104 0.136 0.159

104 0.137 0.150

such as LDC, can easily ignore these features for a specific leaf type if the samples of

this leaf type has a drastic variance in these features. Out of 220 different leaf types,

this problem occurs only in a single type of leaf in the largest leaf dataset we use for

experimentation.

4.3 Classifier

K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) are the most pop-

ular choices for the leaf classification. We also started our initial attempts with KNN,

specifically, the case where K is 1, which is called Nearest Neighbor Classifier (NNC).

Despite its simplicity, this classifier outperforms many classification systems. We tried

55

many classifiers for this task. One of the obvious choice for the task was LDC. LDC

assigns different weights to features depending on the class. This allows LDC to prior-

itize features based on class, rather than prioritizing them globally. For instance, KNN

treats all features to be of equal importance. Additionally, LDC is based on normal

distribution, which often occurs in the nature.

Quadratic Discriminant Classifier (QDC) is based on normal distribution similar to

LDC. However, while training LDC, rather than using different covariance matrices, a

common covariance for all classes are calculated. A covariance matrix will be singular,

if the number of samples it is derived from is less than the number of dimensions it

has. Therefore, common covariance allows LDC to work with much smaller sample

sets. This means that for QDC to work, the number of training samples should be more

than the number of dimensions. However, there are no leaf datasets that have as many

samples as the number of features that we use for experimentation.

4.4 Systems

During our research, we introduced various features and a classifier that has never

been tried in this field. However, our most important contribution is the complete leaf

classification systems we designed. For these systems, we identified combinations that

work well together. First of all, we proposed a geometric leaf classification system that

uses geometric features of leaves. Then, we combined texture and color features with

geometric features in order to improve leaf classification accuracy. In the following

subsections, these two systems are explained.

56

4.4.1 Geometric Leaf Classification

The first system we introduced depends on geometric features to describe leaves and

named as Geometric Leaf Classification (GLC) [6]. This system is the first leaf classi-

fication system that uses LDC as classifier.

Previous studies generally focus on single descriptors [2, 9–11] or combine many fea-

tures that may have overlaps [7, 15, 16]. However, for a classification system to work

well, it requires enough but diverse features. In this respect, the main step is to in-

vestigate necessary features to describe a leaf. According to our analysis, a leaf shape

should be described from the following aspects:

• Broad shape

• Shape

• Complexity, such as number of lobes or compound segments

• Margins

There are many geometric features to describe broad shape of the leaf. These are

described in Section 3.4. Additionally, moment invariants describe the leaf shape in

general adding another layer on top of classical geometric features. This combination

sufficiently describes the broad shape of the leaf, however, these features cannot fully

describe the leaf shape.

MDM is employed in this system for the purpose of shape description. Inclusion of

MDM causes several issues. The first problem is that it contains geometric information

that is already described using geometric features. We solved this issue by identifying

and removing these geometric features. MDM describes all point to point distance

57

based geometric features. Therefore, the features that are not related with MDM are

the features calculated using convex hull and perimeter. These are Area Convexity,

Perimeter Convexity, Circularity, and Perimeter Ratio.

The second problem related with MDM is the number of features. Authors in [2]

proposed MDM using 64 or 128 nodes. An MDM with 64 nodes generates 2048

features whereas an MDM with 128 nodes generates 8192 features. Clearly, these

features will dilute the effect of other features. Additionally, increased number of

features might cause classifiers to fail. Therefore, we experimented with the ideal

number of MDM nodes. According to these experiments, 32 node MDM combined

with the other features used in this system has the highest accuracy. Additionally, we

remove one extra row of MDM as this row contains duplicate values in pairs. With this

modification, 32 node MDM extracts 480 features.

The third problem with MDM is leaf margins. MDM is affected by the margin types

other than entire. However, this effect is not uniform. Some nodes fall on peaks of the

margin, whereas some others fall on pits. Therefore, margins are a source of noise for

MDM. To solve this issue, this system extracts MDM from the smooth contours where

the leaf margin is mostly removed. As discussed in Chapter 5, this modification results

in a slight improvement which is beneficial to some leaf types.

Since MDM and other geometric features cannot describe margins, we developed av-

erage margin distance and margin statistics for this task. These features effectively

describe leaf margins, allowing leaves that differ in margin type to be distinguished

easily.

58

The proposed Geometric Leaf Classification (GLC) system is described in detail in [6].

4.4.2 Combination of Geometric, Texture, and Color Features

The success of Geometric Leaf Classification method lead us to focus our efforts to

expand our system beyond shape based classification. We developed texture and color

features for this task. There are studies in the literature that use shape, texture, and

color together. However, as before, our primary aim is to identify and develop features

that are complementary in nature and keep dimensionality low to ensure that the data

supplied to classifier is meaningful.

This system depends on our previous system, Geometric Leaf Classification. However,

due to the increase in the number of features, we further reduce MDM nodes to 24. This

reduces the number of features generated by MDM to 264, almost half of the previous

value. This reduction increases the effect of all other descriptors.

We developed a new LBP variant for texture description. This method is specifically

designed to represent the venation patterns in leaves. A sizable portion of the leaf con-

tains similar texture information as the whole leaf. Therefore, this descriptor not only

improves the accuracy by providing additional information; but also enables classifi-

cation of the leaves that have problems with the segmentation and contour extraction

steps.

Color is an important part of the leaf. Even though many leaves have the same color,

different tones exist. Additionally, non-typical colored leaves can benefit from this

extra distinguishing features. Therefore, we developed color based features into our

59

system for this task. We use hue channel, as the other methods of describing color are

either noisy (chromacity) or vary with light (luminance, red, green, blue).

This system describes a leaf from all aspects. The following is the list of feature sets

and the corresponding methods used in the system:

• Broad shape: moment invariants

• Shape: MDM

• Complexity: area and perimeter convexity, circularity, and perimeter ratio

• Margins: margin distance and margin statistics

• Venation: sorted LBP

• Color: mean and deviation of hue channel

The proposed leaf classification system which is based on geometric, texture and color

features, namely GTCLC, carries leaf classification into another level as the improve-

ment over other methods are significant.

60

Chapter 5

RESULTS

5.1 Datasets Used

We use different datasets to demonstrate and validate methods developed. It is pos-

sible to argue the effectiveness of a system that works on a single dataset, therefore,

it is crucial to test systems on multiple datasets. In this thesis, we use three different

leaf datasets and an additional dataset for texture classification. Comparison of these

datasets is given in Table 5.1.

Table 5.1: Comparison of datasets
Dataset ICL Flavia Leafsnap
Format JPG JPG JPG
License Academic Free Academic
Resolution
Mean 276x366 1600x1200 633x593
Std. deviation 97x174 0x0 39x67
Minimum 29x31 1600x1200 330x200
Background color
Mean (red, green, blue) 252, 252, 252 254, 254, 254 225, 229, 227
Std. deviation 4.1, 3.4, 2.9 1.4, 1.3, 1.4 28, 25, 27
Classes 220 32 132
Samples 16757 1907 4375
Samples per class
Mean 76.2 59.6 33.0
Std. deviation 94.5 6.6 4.5
Minimum 26 50 7
Algorithms
Segmentation Proposed Proposed [16]
Stalk removal No No No

61

Intelligent Computing Laboratory Dataset (ICL) [41] is a dataset available for re-

searchers who agree the terms set forth by Chinese Academy of Sciences. This dataset

contains 220 classes with 16757 images. It is the largest leaf dataset that is publicly

available. We have reduced the number of images in class 42 as it had more than 1000

images. This dataset has a lower resolution compared to other leaf datasets. Unlike

many papers [2,12,22] that use ICL for experimentation, we use entirety of this dataset

in our experiments. Samples from this dataset are shown in Figure 5.1.

Flavia Leaf Dataset [42] is a publicly available leaf dataset with a liberal license, al-

lowing it to be used for any purpose. There are 32 classes with 1907 samples. Images

are very high resolution and taken by a camera. The background is white with some

amount of noise. Since the images are acquired using a camera, probably using flash,

there are bright highlights on some leaves as seen from Figure 5.2. Due to these rea-

sons, noise removal is a crucial preprocessing step in this dataset.

Leafsnap Dataset [26] is gathered with the intention of building a leaf library in a spe-

cific region. Therefore, there are many similar species. Additionally, the background

and the illumination level of the leaves change from image to image, causing simple

segmentation algorithms to fail. We have selected 4375 samples from this dataset con-

taining 132 classes. We have avoided Pinales leaves as they are completely removed

by our stalk removal algorithm. In this dataset, we employed segmentation algorithm

described in Section 3.2. There are additional markers around the leaves that need to

be cleaned. We have built an automated system for this task. Sample images from this

dataset are shown in Figure 5.3.

62

Figure 5.1: Sample images from ICL dataset. Images in the first row belong to the
same class.

63

Figure 5.2: Sample images from Flavia dataset. Images in the first row belong to the
same class.

64

Figure 5.3: Sample images from Leafsnap dataset. Images in the first row belong to
the same class.

65

5.2 Experimental Methodology

Unless explicitly specified, all results presented in this thesis are average of 100 sim-

ulations. All computational cost calculations are performed on a computer with Intel

i5 processor and 4GB of RAM. All methods in the results section are implemented

in C++. In addition to the proposed methods, we implemented other algorithms for

comparison. These algorithms are also implemented in C++ and their parameters are

tuned for the best results.

We performed many experiments in five categories. In the first category, different leaf

classification systems are compared in various aspects. Different datasets and varying

number of training samples are used in these experiments. Experiments related to

preprocessing methods are presented in the second category. Additionally, the ideal

size of the images are explored in this section. Different features, including the ones

that are not used, are evaluated in the third category. These experiments also illustrate

changes in the parameters. The fourth category compares classifiers using different

feature sets and datasets. The final category explores the computational cost of every

method that has been discussed in this thesis. These experiments are discussed in the

following section.

5.3 Comparison of Different Systems

In this section, we compare the proposed systems with the state-of-the-art systems in

the literature. These are the MDM [2], Flavia [3], and MCH [16]. Accuracy com-

parison of these methods are represented in Figure 5.4. Additionally, analysis of 100

simulations for every dataset is given in Table 5.2. According to these experiments,

our research improved this field significantly.

66

ICL Flavia Leafsnap
50

60

70

80

90

100

Dataset

A
cc

ur
ac

y
(%

)

GTCLC
GLC
MDM
Flavia
MCH

Figure 5.4: Accuracy comparison of the proposed systems with the state-of-the-art
methods using different datasets.

Table 5.2: Accuracy analysis of different systems

Accuracy
Dataset Method Minimum Maximum Average Std. deviation

ICL

MCH 50.9 56.7 53.8 1.19
MDM 64.4 69.3 68.9 1.00
GLC 72.1 76.3 74.0 0.88
GTCLC 83.4 87.4 85.6 0.76

Flavia

MCH 78.1 88.8 83.6 2.37
MDM 81.5 94.4 88.7 2.07
GLC 88.2 97.8 93.4 1.91
GTCLC 96.1 100 98.2 0.80

Leafsnap

MCH 47.5 59.6 54.8 2.45
MDM 49.7 81.7 77.8 3.93
GLC 68.0 77.8 72.3 2.14
GTCLC 72.5 82.0 77.9 1.97

It is important for classification systems to work with limited amount of data. There-

fore, we performed an experiment to compare the methods using different ratios for

training/testing data. Results of this experiment are shown in Figure 5.5 and Table 5.3.

67

GTCLC
GLC
MDM
MCH
40%
30%
20%
10%

ICL Flavia Leafsnap

50

60

70

80

90

100

Dataset

A
cc

ur
ac

y
(%

)

Figure 5.5: Accuracy comparison of the proposed systems with the state-of-the-art
methods using different datasets with varying amount of testing samples.

Table 5.3: Accuracy table of the proposed and the state-of-the-art systems.

Testing samples
Dataset Method 10% 20% 30% 40%

ICL

MCH 53.8 52.8 51.8 50.6
MDM 66.7 67.6 66.1 64.8
GLC 74.0 73.6 73.0 72.4
GTCLC 85.6 85.3 85.0 84.7

Flavia

MCH 68.4 83.6 83.1 81.7
MDM 88.7 88.0 87.2 86.8
GLC 93.4 92.6 92.1 90.8
GTCLC 98.2 97.8 97.6 97.1

Leafsnap

MCH 54.8 52.5 50.7 49.0
MDM 77.8 75.3 74.7 71.7
GLC 72.3 71.0 69.5 67.3
GTCLC 77.9 76.2 75.2 73.8

Even though overall accuracy is important, a good classification system should be able

to classify all classes with equal accuracy. In order to prove effectiveness of the sys-

tems that are proposed in this thesis, we conducted an experiment where classification

accuracy of individual classes are calculated. The results of this experiment are shown

68

Table 5.4: Statistical information derived from per class accuracies computed using
ICL dataset

MCH MDM GLC GTCLC
Average 54.0 67.3 74.1 85.5
Deviation 21.0 21.3 15.7 11.3
Lowest 3.3 8.1 26.8 32.0
Highest 99.8 100 100 100
0-20% 12 2 0 0
20-40% 43 29 7 1
40-60% 80 59 43 8
60-80% 58 56 88 40
80-100% 27 74 82 171

in Figure 5.6 with the statistical information presented in Table 5.4. Due to having

multiple descriptors, GTCLC performs better in hard-to-classify classes. GTCLC re-

sults in only 9 classes being less than 60%; the number of classes having less accuracy

than 60% is 50 in GLC, 90 in MDM and 135 in MCH.

In addition to the accuracy comparison of the methods that we implemented, we enlist

the accuracy scores of the well-performing methods on Flavia dataset. These values

are taken directly from the original papers. This comparison is shown in Table 5.5.

Finally, we present the confusion matrices of the proposed systems for Flavia dataset

in Figure 5.8 and 5.9. Additionally, the leaves that are most confused are shown in

Figure 5.7. These experiments signify the effect of including texture features. For

instance, classes 1 and 21 are often confused in GLC. The reason behind this confusion

is the variance of the shape of leaves. Class 1 has a high variance in shape, some

samples are similar to class 21 and some of them are different. These different samples

shift the weight matrix of class 1 away from class 21, resulting class 1 samples to be

classified as 21. However, their venation patterns are different. Therefore, using texture

69

20 40 60 80

20

40

60

80

100

120

140

160

180

200

220

MCH
20 40 60 80

MDM
20 40 60 80

GLC
20 40 60 80

GTCLC
Figure 5.6: Accuracy comparison of state-of-the-art methods per class

70

Table 5.5: Comparison of different methods over Flavia dataset

Method Accuracy
Flavia [3] 90
RBPNN [14] 91
MMC [17] 92
BPNN [17] 92
GLC [6] 93
1-NN [14] 93
RBFNN [43] 94
MLNN [43] 94
F-SVM [4] 94
CS1 - MAP [4] 97
GTCLC 98

information, GTCLC improves the separation of these two classes. GLC confuses

these classes a total of 171 times in 100 simulations, whereas GTCLC reduces this

confusion to zero.

1 1 21 21

13 13 14 14

9 9 29 29

Figure 5.7: Most confused leaves and their class indices

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
483 0

0 597 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 6 0 0 0 0 0 0 0 0 0 0
0 0 574 0
0 0 0 700 6 0
0 0 0 0 696 0
0 0 0 0 0 493 0
0 0 0 0 0 0 581 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 497 0
6 0 0 0 0 0 19 0 494 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0
0 0 0 0 0 0 0 0 0 499 0
0 0 0 0 0 0 0 0 0 0 500 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 574 0
0 0 0 0 0 0 0 0 0 0 0 26 475 16 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 0 0 0 0 10 565 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 21 0 0 0 0 0 0 0 0 0 0 0 591 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 487 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 589 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 591 34 0 0 0 0 16 0 0 0 0 0 0
0 566 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 493 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 15 8 0 1 0 8 0 0 0 0 500 0 0 0 0 0 0 0 0 1
1 0 592 0 0 0 0 0 0 0 0

10 3 0 8 498 0 0 0 0 0 0 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 475 0 0 1 0 0 0
0 0 0 0 0 7 0 486 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 4 9 3 0 0 0 0 0 0 0 0 0 9 0 0 472 0 0 0
0 14 0 0 600 0 0
0 0 0 0 0 0 0 2 0 494 0
0 482

96.6 99.5 95.7 100.0 99.4 98.6 96.8 99.4 98.8 99.8 100.0 95.7 95.0 94.2 98.5 97.4 100.0 98.2 100.0 98.5 94.3 98.6 100.0 98.7 99.6 95.0 97.2 100.0 94.4 100.0 98.8 96.4

Figure 5.8: Transpose of confusion matrix for Flavia dataset using GTCLC. First row is the class number,
last row is the accuracy of that class.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
347 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0

0 594 7 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0
0 0 578 0 3 9 0 0 0 0 0 0 0
0 0 0 700 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 4 3 0
0 0 0 0 698 0 0 0 6 0
0 0 0 0 0 497 0
0 0 0 0 0 0 520 0 23 0 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 3 0 496 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 64 0 446 0 0 0 0 27 6 0 0 0 0 0 0 0 0 0 9 3 0 0 50 0 0 0
0 0 0 0 0 0 0 0 0 487 0
0 0 0 0 0 0 0 0 0 0 476 0 10 0 0 0 0 12 9 0 0 0 0 3 0 0 1 13 0 9 0 0
0 0 0 0 0 0 0 0 0 0 0 556 13 7 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 25 410 78 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 38 452 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 10 1 0 0 546 1 0 0 0 0 0 0 20 0 1 0 0 0 26 0 0 0
0 0 0 0 0 0 0 0 2 0 12 14 0 0 1 450 0 0 0 0 0 0 6 0 6 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 577 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 23 17 5 0 0 0 590 0 0 0 47 0 0 0 0 29 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 596 11 0 0 0 0 48 0 0 0 0 0 0

153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 570 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 1 0 0 0 6 19 36 16 0 0 0 0 0 0 427 0 0 0 0 0 0 0 0 10
0 545 1 0 0 0 0 0 0 0
0 6 15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 43 448 0 0 0 0 0 0 3
0 0 0 0 0 0 10 0 3 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 439 0 0 0 0 0 0
0 465 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 458 0 0 0 0
0 0 0 0 0 0 6 0 19 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 0 0 424 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 8 0 0 587 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 497 0
0 480

69.4 99.0 96.3 100.0 99.7 99.4 86.7 99.2 89.2 97.4 95.2 92.7 82.0 75.3 91.0 90.0 100.0 96.2 98.3 99.3 95.0 100.0 85.4 90.8 89.6 87.8 93.0 91.6 84.8 97.8 99.4 96.0

Figure 5.9: Transpose of confusion matrix for Flavia dataset using GLC. First row is the class number,
last row is the accuracy of that class.

5.4 Preprocessing

There are different preprocessing methods that we use in our systems. In this section,

effects of these preprocessing steps are reported.

5.4.1 Segmentation

One of the most important parts of a classification system that uses geometric infor-

mation is segmentation. If segmentation fails and produces incorrect results, it is not

possible for the system to perform properly. This step depends on the dataset used.

We use the segmentation algorithm that is described in Subsection 4.1.1 for ICL and

Flavia datasets. Since the background of leaves varies in Leafsnap dataset, we use

segmentation method described in [1].

The segmentation algorithm that we developed produces better results if the back-

grounds have fixed color. Results of this segmentation algorithm are shown in Figure

5.10 for all datasets. The noise removal algorithm can easily deal with the noise inside

and outside the leaf blade. However, noise on the margin cannot be eliminated. There-

fore, this algorithm is not suitable for Leafsnap dataset where the shadows cause noise

on the leaf margin.

The iterative selection method [1] is more suitable for variable backgrounds as it de-

termines threshold iteratively. However, in plain backgrounds using the segmentation

method that we developed results in much better segmentation. The results of this

segmentation algorithm is presented in Figure 5.11.

74

(a) ICL

(b) Flavia

(c) Leafsnap

Figure 5.10: Results of the proposed segmentation algorithm

75

(a) ICL

(b) Flavia

(c) Leafsnap

Figure 5.11: Results of the segmentation algorithm proposed in [1]

76

Table 5.6: Effect of stalk removal on classification performance

ICL Flavia Leafsnap
Method GLC GTCLC GLC GTCLC GLC GTCLC
Proposed 74.0 85.6 93.4 98.2 68.3 74.5
[1] 72.7 84.7 81.1 93.8 72.3 77.9

Additionally, accuracy improvement using suitable segmentation method is listed in

Table 5.6. It is clear that using a suitable segmentation algorithm is one of the most

important factors in these classification systems.

5.4.2 Noise removal

It is possible to get a noisy result from segmentation. This is true even if the most

fitting segmentation algorithm is used for the task. This noise is caused by highlights

on the leaf or dirt on the acquisition device. Additionally, Gaussian noise might be

caused by poor lighting conditions. The noise in the segmentation can cause great dis-

turbance in geometric features. It is most destructive on convexity features, inscribed

and circumscribed circles. However, using noise removal removes internal features on

complex leaves. The first and the second images in Figure 5.12 are examples to this

situation.

In Figure 5.12 noise removal operation on segmented images are shown. Additionally,

Table 5.7 shows the effect of noise removal on classification accuracy. Since MCH can

exploit internal structure of the leaf, it does not benefit from the noise removal. MDM

works on contour information, which generally is not affected by noise, therefore, it

does not have any significant change in the result. Our proposed methods contain

edge related features which are adversely affected by noise, therefore, noise removal

improves their performance.

77

Figure 5.12: Results of noise removal operation. First image in pairs are the segmen-
tation result, whereas other is the result of noise removal.

Table 5.7: Accuracy improvement of noise removal

Dataset MCH MDM GLC GTCLC

With
noise
removal

ICL 53.8 66.7 74.0 85.6
Flavia 68.4 88.7 93.4 98.2
Leafsnap 54.8 77.8 72.3 77.9

Without
noise
removal

ICL 62.6 68.7 72.5 84.5
Flavia 77.9 88.3 91.8 97.6
Leafsnap 64.0 76.8 65.9 69.2

5.4.3 Stalk removal

Stalk removal is required in some scenarios where the stalks of some leaves are missing

in the same class. Stalks dilute some geometric features, however, if they are intact,

the length of the stalk is a useful information as different types of leaves have different

stalk lengths. During our initial experiments, we included stalk removal, however,

after identifying and optimizing segmentation methods, experiments show that using

stalk removal actually hurts the performance. The results of these experiments are

summarized in Table 5.8. Results also show that there is still room for improvement

78

Table 5.8: Effect of segmentation on classification performance

ICL Flavia Leafsnap
Stalk removal GLC GTCLC GLC GTCLC GLC GTCLC
With 72.3 84.8 92.9 97.7 70.4 76.3
Without 74.0 85.6 93.4 98.2 72.3 77.9

in our stalk removal algorithm as Flavia dataset does not contain any stalks, yet its

performance is adversely affected by it.

5.5 Features

The primary aim of this thesis is to identify the features and feature sets that work well

together. This aim requires experimentation with the combination of different feature

sets. In this section, the results of these experiments are demonstrated. In addition to

the features that we use in the proposed systems, we reported the experimental results

of the features that are not used to demonstrate the reason why they are excluded.

These experiments are performed on ICL dataset only. Results of these experiments are

reported in Table 5.9 and Table 5.10. The first table (Table 5.9) contains performance

results while using feature set alone, GTCLC and GLC with and without the respective

feature set. Additionally, number of features that are in the feature set and whether it

has been used in the proposed methods are reported. Table 5.10 is the accuracy report

of the combination of different features.

In total there are 7 commonly used geometric features described in Section 3.4. We use

4 of these features in our systems. These are perimeter ratio, area convexity, perime-

ter convexity and circularity. In Table 5.9, selected geometric features represent the

features we selected from these geometric features.

79

Table 5.9: Detailed comparison of different features

Used in Number of With Without
Name GLC GTCLC Features Alone GLC GTCLC GLC GTCLC
Selected yes yes 4 26.5 74.0 85.6 72.4 84.7
All no no 7 37.6 74.0 85.5 74.0 85.6
Moment inv. yes yes 8 12.8 74.0 85.6 70.4 83.4
Margin dist. yes yes 1 8.8 74.0 85.6 73.3 85.1
Margin stat. yes yes 4 10.4 74.0 85.6 73.0 85.1
MDM-16 no no 112 54.6 71.0 84.7 74.0 85.6
MDM-24 yes no 264 61.6 73.7 85.6 70.4 72.7
MDM-32 no yes 480 64.7 74.0 85.2 50.2 85.6
MDM-48 no no 1104 65.7 73.8 70.9 74.0 85.6
MDM-64 no no 1984 63.9 71.5 81.5 74.0 85.6
SRLBP yes no 80 34.1 73.9 85.6 74.0 75.1
SLBP no no 256 29.2 74.0 84.9 74.0 85.6
RILBP no no 36 27.1 74.1 76.6 74.0 85.6
ULBP no no 10 22.1 74.0 53.1 74.0 85.6
Color no yes 2 8.2 75.4 85.6 74.0 85.1

Table 5.10: Contribution of the features that are used in the proposed GTCLC system
Feature sets Accuracy
SMDM-24 61.6%
Geometric 38.2%
Geometric + Moments 50.2%
SLBP 34.0%
SLBP + Color 37.2%
SMDM-24 + Geometric 69.1%
SMDM-24 + Geometric + Moments 73.7%
SMDM-24 + SLBP 78.7%
SMDM-24 + Geometric + Moments + Color 75.2%
SMDM-24 + SLBP + Color 79.7%
Geometric + Moments + SLBP 71.4%
Geometric + Moments + SLBP + Color 72.8%
SMDM-24 + Geometric + Moments + SLBP 84.9%
All 85.6%

5.6 Classifiers

During this thesis, we experimented with different classifiers. However, after a series

of experiments, it was clear that LDC performs better than the standard classifiers we

experimented on. Therefore, we use LDC for our classification systems.

This section contains experiments that compare well-known classifiers using the fea-

ture descriptors we developed. The classifiers used for comparison are Linear Dis-

criminant Classifier (LDC), Nearest Mean Classifier (NMC), and K-Nearest Neighbors

Classifier (KNN). Table 5.11 shows the results of these experiments. Classifiers that

are marked with 1 use Euclidean Distance whereas the ones that are marked with 2 use

Manhattan distance. In addition to these classifiers, the accuracy of selecting a random

class for the classification result is also presented for reference.

5.7 Computational Cost

A classification system should be efficient and fast to be useful in real life scenarios. In

some cases, the speed of computation becomes critical. For instance, a leaf classifica-

81

Table 5.11: Comparison of common classification methods using the proposed de-
scriptors.

ICL Flavia Leafsnap
Classifier GLC GTCLC GLC GTCLC GLC GTCLC
LDC 74.0 85.6 93.4 98.2 72.3 77.9
KNN (k=1) 2 72.1 83.8 88.6 96.2 71.9 74.9
KNN (k=3) 2 66.3 82.5 89.3 96.1 65.9 66.6
KNN (k=1) 1 71.6 83.5 90.6 96.0 68.2 70.5
KNN (k=3) 1 69.6 83.0 90.2 95.8 59.4 61.8
NMC 1 3.3 1.0 7.5 7.1 5.1 5.7
Random 0.45 3.13 0.76

Table 5.12: Comparison of the proposed systems with the state-of-the-art algorithms
in terms of computational performance on ICL dataset

Method Features Classifier Total classification Classification
(includes training, seconds) (per sample, msec)

MCH 15 MCH 258 1.31
MDM 1984 kNN + MMC 1397 5.51
GLC 497 LDC 211 0.17
GTCLC 363 LDC 128 0.13

tion can be used in a factory that processes plant leaves for medical use. The decision

process for eliminating unwanted leaves should work as fast as the conveyor belt not

to create any bottlenecks in the production. Therefore, we performed experiments on

the computational performance of our systems. The results of these experiments are

displayed in Table 5.12.

5.8 Discussion on Experimental Results

We performed many experiments to demonstrate the value of the proposed systems.

According to these experiments the proposed GTCLC method has the highest accuracy

while the proposed method GLC has an acceptable accuracy compared to the state-

of-the-art methods. However, it is clear that the accuracy alone cannot measure the

value of system. Therefore, we performed more experiments for the suitability of the

proposed methods. These include computational speed, per-class accuracy, statistical

82

accuracy analysis, and confusion matrix. In all these experiments, GTCLC achieves

the best results.

In addition to the experiments performed on systems, we performed experiments on

the individual parts of our systems. These experiments show that the features and

preprocessing steps used in the proposed methods cannot be refined further.

83

Chapter 6

CONCLUSION

In this thesis, we devoted our attention to leaf classification using various descriptors.

We proposed two leaf classification systems. The first method, namely Geometric Leaf

Classification (GLC), uses multiple geometric descriptors. The second proposed sys-

tem, namely Combination of Geometric, Texture, and Color Features for Leaf Classi-

fication (GTCLC), uses geometric, texture, and color features to describe plant leaves.

Linear Discriminant Classifier (LDC) is employed for classification as multiple de-

scriptors require class-based prioritizing classifier.

We developed and identified features that work well with each other. Additionally,

we eliminated the features that do not contribute to the final result. Elimination is

important as the increasing number of features increases the complexity of the classifi-

cation system leading to the well-known problem called curse of dimensionality. This

problem causes occasional failures during training.

The features that we combined are complementary in nature, they do not have a sig-

nificant overlap. These features define the leaf semantically. Every feature set used in

the proposed systems have a well-defined meaning. For instance, MDM is included

to define the shape of the leaf. When features that have overlapping information are

combined, the overall accuracy could be adversely affected. After all, there is no ad-

84

ditional information that can be gained to increase accuracy. For instance, selected

geometric features do not perform (26.5%) as good as all geometric features (37.6%)

when used alone. However, when combined with the rest of the features, all geometric

features have slight negative impact compared to the selected features. On the other

hand, inclusion of color features, which have a very low stand-alone accuracy of 8.2%

improves the end result by 0.5%.

The research we performed for this thesis improved the state-of-the-art significantly.

When we started our research, the highest scoring method was MDM, with the accu-

racy of 68% on ICL dataset. Our final system delivers 85.5% accuracy on the same

dataset.

In addition to the systems that we introduced, we have proven that LDC is a suitable

classifier for leaf classification. LDC not only outperforms other classifiers in terms

of accuracy, but also in terms of computational efficiency. The only drawback of LDC

is that it requires number of training samples to be more than the number of features.

In real life scenarios, it is possible to increase the number of samples for the system

to work. Therefore, the only problem that it has is during experiments that involves

limited datasets.

Finally, we introduced new features that have specific tasks. Margin distance and mar-

gin statistics are developed to describe leaf margins. Sorted LBP is developed to define

venation pattern of the leaf. These distinct and meaningful descriptors allow our sys-

tems to distinguish leaves that cannot be distinguished using generic shape descriptors.

85

There are still possible improvements for the proposed GTCLC system. First of all,

new and better features can be employed to describe a leaf. Even though the current

features result in a high accuracy system, there might be features that can result in even

higher accuracy. For instance, in [10], a more complete system for margin description

is proposed. This descriptor might yield a higher accuracy when combined with the

rest of our system.

The methods presented here are not optimized. Their parameters are determined by

logical examination. It is possible to obtain a system that results in a better classifica-

tion accuracy by optimizing parameters of the methods employed. General optimiza-

tion methods such as genetic algorithms could be used to optimize parameters of the

system.

We believe it would be possible to reach better classification results by using classifier

ensembles. Some descriptors, such as color, are not linearly separable. Therefore,

performing LDC on these descriptors cannot yield the best result. However, using a

non-linear classifier like QDC, requires more training samples and may cause over-

fitting when the entire feature space is considered. The solution to these problems can

be found by using different classifiers for different feature sets and combining their

results with a suitable score level fusion. It is also possible to use feature selection

methods to further reduce number of features. Additionally, using a more suitable

feature fusion method might improve results.

86

REFERENCES

[1] Riddler, T. W. & Calvard, S. (Aug 1978) . Picture thresholding using an iter-

ative selection method. Systems, Man and Cybernetics, IEEE Transactions on,

8(8):630–632.

[2] Hu, R., Jia, W., Ling, H., & Huang, D. (2012) . Multiscale distance matrix for fast

plant leaf recognition. IEEE Transactions on Image Processing, 21(11):4667–

4672.

[3] Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y., Chang, Y., & Xiang, O.-L. (Dec.

2007) . A leaf recognition algorithm for plant classification using probabilistic

neural network. In IEEE International Symposium on Signal Processing and

Information Technology, pages 11–16.

[4] Rejeb Sfar, A., Boujemaa, N., & Geman, D. (2015) . Confidence sets for fine-

grained categorization and plant species identification. International Journal of

Computer Vision, 111(3):255–275.

[5] Sulc, M. & Matas, J. (2015) . Texture-based leaf identification. In Computer

Vision - ECCV 2014 Workshops, volume 8928 of Lecture Notes in Computer

Science, pages 185–200. Springer International Publishing.

[6] Kalyoncu, C. & Toygar, Ö. (2015) . Geometric leaf classification. Computer

Vision and Image Understanding, 133:102 – 109.

87

[7] Yanikoglu, B., Aptoula, E., & Tirkaz, C. (2014) . Automatic plant identification

from photographs. Machine Vision and Applications, 25(6):1369–1383.

[8] Novotný, P. & Suk, T. (2013) . Leaf recognition of woody species in central

europe. Biosystems Engineering, 115(4):444 – 452.

[9] Mouine, S., Yahiaoui, I., & Verroust-Blondet, A. (2013) . A shape-based ap-

proach for leaf classification using multiscaletriangular representation. In Pro-

ceedings of the 3rd ACM Conference on International Conference on Multimedia

Retrieval, ICMR ’13, pages 127–134, New York, NY, USA. ACM.

[10] Cerutti, G., Tougne, L., Coquin, D., & Vacavant, A. (2014) . Leaf margins

as sequences: A structural approach to leaf identification. Pattern Recognition

Letters, 49(0):177 – 184.

[11] Larese, M. G., Namı́as, R., Craviotto, R. M., Arango, M. R., Gallo, C., &

Granitto, P. M. (2014) . Automatic classification of legumes using leaf vein

image features. Pattern Recognition, 47(1):158 – 168.

[12] Zhang, S., Lei, Y., Dong, T., & Zhang, X. (2013) . Label propagation based su-

pervised locality projection analysis for plant leaf classification. Pattern Recog-

nition, 46(7):1891 – 1897.

[13] Gandhi, A. (2002) . Content-based image retrieval: Plant species identification.

Master’s thesis, Oregon State University.

88

[14] Gu, X., Du, J., & Wang, X. (2005) . Leaf recognition based on the combina-

tion of wavelet transform and gaussian interpolation. In Advances in Intelligent

Computing, volume 3644 of Lecture Notes in Computer Science, pages 253–262.

Springer Berlin Heidelberg.

[15] Wang, X.-F., Du, J.-X., & Zhang, G.-J. (2005) . Recognition of leaf images

based on shape features using a hypersphere classifier. In Advances in Intelligent

Computing, volume 3644 of Lecture Notes in Computer Science, pages 87–96.

Springer Berlin Heidelberg.

[16] Du, J.-X., Wang, X.-F., & Zhang, G.-J. (2007) . Leaf shape based plant species

recognition. Applied Mathematics and Computation, 185(2):883–893.

[17] Wang, X.-F., Huang, D., Du, J.-X., Xu, H., & Heutte, L. (2008) . Classification of

plant leaf images with complicated background. Applied Mathematics and Com-

putation, 205(2):916 – 926. Special Issue on Advanced Intelligent Computing

Theory and Methodology in Applied Mathematics and Computation.

[18] Cope, J. S., Remagnino, P., Barman, S., & Wilkin, P. (2010) . Plant texture

classification using gabor co-occurrences. In 6th International Conference on

Advances in Visual Computing (ISVC), pages 669–677.

[19] Beghin, T., Cope, J. S., Remagnino, P., & Barman, S. (2010) . Shape and tex-

ture based plant leaf classification. In Advanced Concepts for Intelligent Vision

89

Systems, volume 6475 of Lecture Notes in Computer Science, pages 345–353.

Springer Berlin Heidelberg.

[20] Cerutti, G., Tougne, L., Mille, J., Vacavant, A., & Coquin, D. (2013) . Un-

derstanding leaves in natural images – a model-based approach for tree species

identification. Computer Vision and Image Understanding, 117(10):1482 – 1501.

[21] Wang, B. & Gao, Y. (2013) . Fast and effective retrieval of plant leaf shapes.

In Computer Vision – ACCV 2012, volume 7725 of Lecture Notes in Computer

Science, pages 475–486. Springer Berlin Heidelberg.

[22] Lei, Y., Zou, J., Dong, T., You, Z., Yuan, Y., & Hu, Y. (2014) . Orthogonal locally

discriminant spline embedding for plant leaf recognition. Computer Vision and

Image Understanding, 119(0):116 – 126.

[23] Nam, Y. & Hwang, E. (2005) . A shape-based retrieval scheme for leaf images.

In Advances in Multimedia Information Processing - PCM 2005, volume 3767 of

Lecture Notes in Computer Science, pages 876–887. Springer Berlin Heidelberg.

[24] Belhumeur, P., Chen, D., Feiner, S., David W. Jacobs, W. Kress, H. Ling,

I. Lopez, R. Ramamoorthi, S. Sheorey, & S. White. (2008/// 2008) . Search-

ing the world’s herbaria: A system for visual identification of plant species. In

Computer Vision–ECCV 2008, pages 116 – 129.

90

[25] Bama, B. S., Valli, S. M., Raju, S., & Kumar, V. A. (Apr 2011) . Content based

leaf image retrieval (cblir) using shape, color and texture features. Indian Journal

of Computer Science and Engineering, 2(2):202–211.

[26] Kumar, N., Belhumeur, P. N., Biswas, A., Jacobs, D. W., Kress, W. J., Lopez, I.

C., & Soares, J. V. B. (2012) . Leafsnap: A computer vision system for automatic

plant species identification. In Computer Vision – ECCV 2012, Lecture Notes in

Computer Science, pages 502–516. Springer Berlin Heidelberg.

[27] Nam, Y., Hwang, E., & Kim, D. (2008) . A similarity-based leaf image re-

trieval scheme: Joining shape and venation features. Computer Vision and Image

Understanding, 110(2):245–259.

[28] Park, J., Hwang, E., & Nam, Y. (May 2007) . Utilizing venation features for

efficient leaf image retrieval. Journal of Systems and Software, 81(1):71–82.

[29] Hervé, G., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J., Birn-

baum, P., Mouysset, E., & Picard, M. (September 2011) . The imageclef 2011

plant images classification task. In ImageCLEF 2011, Amsterdam, Pays-Bas.

[30] Feng, H. Y. F. & Pavlidis, T. (May 1975) . The generation of polygonal outlines

of objects from gray level pictures. Circuits and Systems, IEEE Transactions on,

22(5):427–439.

91

[31] Hu, M. (February 1962) . Visual pattern recognition by moment invariants.

Information Theory, IRE Transactions on, 8(2):179–187.

[32] Flusser, J. (2000) . On the independence of rotation moment invariants. Pattern

Recognition, 33(9):1405 – 1410.

[33] Flusser, J. & Suk, T. (Dec 2006) . Rotation moment invariants for recognition of

symmetric objects. Image Processing, IEEE Transactions on, 15(12):3784–3790.

[34] Ling, H. & Jacobs, D. W. (Feb 2007) . Shape classification using the inner-

distance. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

29(2):286–299.

[35] Scholkmann, F., Boss, J., & Wolf, M. (2012) . An efficient algorithm for au-

tomatic peak detection in noisy periodic and quasi-periodic signals. Algorithms,

5(4):588–603.

[36] Ojala, T., Pietikainen, M., & Maenpaa, T. (Jul 2002) . Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971–987.

[37] Guo Z., Zhang, D., & Zhang, D. (June 2010) . A completed modeling of lo-

cal binary pattern operator for texture classification. Image Processing, IEEE

Transactions on, 19(6):1657–1663.

92

[38] Liu, L., Zhao, L., Long, Y., Kuang, G., & Fieguth, P. (2012) . Extended local

binary patterns for texture classification. Image and Vision Computing, 30(2):86

– 99.

[39] Guo, Z., Zhang, L., & Zhang, D. (2010) . Rotation invariant texture classifi-

cation using {LBP} variance (lbpv) with global matching. Pattern Recognition,

43(3):706 – 719.

[40] Liu, L., Fieguth, P., Clausi, D., & Kuang, G. (2012) . Sorted random pro-

jections for robust rotation-invariant texture classification. Pattern Recognition,

45(6):2405 – 2418.

[41] ICL leaf image dataset. http://www.intelengine.cn/dataset/index.html.

[42] Xu, E. Y. Bao, F. S. (2009) . Flavia leaf database. http://flavia.sourceforge.net/.

[43] Du, J., Huang, D., Wang, X., & Gu, X. (2005) . Shape recognition based on radial

basis probabilistic neural network and application to plant species identification.

In Advances in Neural Networks – ISNN 2005, volume 3497 of Lecture Notes in

Computer Science, pages 281–285. Springer Berlin Heidelberg.

93

