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ABSTRACT

Recently biometric researches against spoofing attacks has been an important role of
study, today we can examine the improvement of this biometric security technology

against challenging methods such as spoofing attacks.

In this thesis software-based approach is presented based on image quality
assessments (IQA) to discriminate real genuine face images from impostor samples,
a liveness assessment method is added to the present system to ensure friendly use,

processing speed, and non-intrusive biometric system.

The proposed method RFIDS uses 15 image quality features to decrease the level of
complexity and make the system applicable for real-time applications. The
experimental results achieved from this implemented work on an available dataset
generates a high degree of positive detection compared to other existing methods and
that the 15 image quality measures (parameters) are efficient in classifying real faces
from printed impostor samples. There are some useful information retrieved from
real images using IQA that makes the system capable enough to discriminate them

from printed traits.

Keywords: Image quality assessment, biometric, real and spoof face detection.



0z

Gergek ve sahte ylz goruntuleri arasinda ayrim yapmak, biyometrik kimlik
dogrulama arastirmalarinda 6nemli bir yer tutmustur ve son zamanlarda biyometrik

sistemlerde koruma gelistirmek i¢in bu alan iizerinde arastirmalar yapilmistir.

Bu tezde, yazilim tabanli yaklasim olarak Goriinti Kalitesi Degerlendirme (IQA)
yontemteri kullanilmistir ~ Gergek orijinal yiz imgelerini sahte Orneklerden
ayirabilmek icin, kolay kullanim, isleme hizi ve miidahaleci olmayan biyometrik
sistemi saglamak i¢in mevcut sisteme bir ‘“canlilik degerlendirme yontemi”

eklenmistir.

Onerilen yontem, karmasiklik seviyesini azaltmak ve sistemi gercek zamanli
uygulamalar i¢in uygun hale getirmek icin 15 goriintii kalitesi Ozelligini
kullanmaktadir. Literatirde kullanilan bir veri kimesi (zerinde uygulanan bu
caligmadan elde edilen deneysel sonuglar, diger mevcut yontemlere kiyasla yiiksek
derecede pozitif algilama iiretir ve 15 goriintii kalitesi 6l¢iitii, basili sahte 6rneklerden
gercek yiizleri simiflandirmada verimli olur. IQA kullanarak gercek gorintilerden
elde edilen bazi bilgiler, onlari, basili géruntulerden ayirt edebilecek kadar sistemi

yeterli kilan bir yapiya getirmistir.

Anahtar Kelimeler: Goriintii kalitesi degerlendirmesi, biyometri, gercek ve sahte

ylz saptama.
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Chapter 1

INTRODUCTION

Nowadays, Biometric Recognition, or Biometrics can be defined as the recognition
of individuals based on their physical and/or behavioral characteristics, is a
prominent field of research [1]. Although among all the biometrics like: face,
fingerprint, iris, signature etc. face has an outstanding importance over other systems
because it’s reliable, cheap and non-intrusive [2]. Although it’s affected by some
changes in sunglasses, lighting, facial hair etc. but all these affections can be

enhanced using some filtering process.

There are different threats that detect such systems such as spoofing attacks which
has been an important and motivated area for biometric researchers to investigate on

such types of actions in areas such as iris [3], fingerprint [4], face [2], etc...

In such spoofing-attacks hackers use some synthetically produced materials such as
gummy finger, printed faces or iris images, or try to copy the behavior of the genuine
user such as signature [5], to access the system. Since these attacks are performed in
the analogue domain with regular identifications, the usual known protection

mechanisms are not effective such as encryption, watermarking or digital signature.

The number of different works done on this particular field has shown the necessity
of implementing an advanced protection strategy to ensure more security [1].
Researchers in the recent years have focused on finding some specific quality
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measurements that changes the modification of biometric systems in order to target
impostor samples and reject them, using this strategy to increase the security level of

the biometric system.

This quality assessment method must be developed to ensure and satisfy some

important needs [6]:

1) Non-intrusive: the proposed work should not have any degree of harmful contact
with the user.

2) User friendly: users should not hesitate using the system.

3) Processing time: results should be taken out in a short interval for users not be
connected for a large amount of time with the biometric sensor

4) Price: the cost should be affordable to increase the amount of users.

5) Performance: the system should have a low percentage of false fake rate (FFR)
which indicates the real samples identified incorrectly as fake and false genuine
rate (FGR) which indicates the fake samples identified incorrectly as real, for

users confident when interacting with the system.

The system can be divided into four stages:

a) Image acquisition from user.

b) Apply Gaussian filter to image.

¢) Calculate image quality measures (feature extraction).

d) Classification to discriminate between genuine and impostor samples.

Liveness detection methods can be classified into 2 approaches [6]:



1) Hardware-based approach: A specific machine is added to the sensor in a
biometric system in order to measure some properties such as sweat, or facial
hair etc.

2) Software-based approach: A system where an impostor users is recognized
once their biometric traits are acquired using a normal sensor.

Somehow these two methods have benefits and downsides, which means a

combination of both can give a superior protection approach to develop security

of biometrics systems[7][8].

In the thesis, we implement a real face image detection software system (RFIDS)
using image quality assessment (IQA), with different classifiers to ensure the
quality of our system that gives a good level of real face image detection. The
rest of the thesis is organized as follows. Section 2 presents a brief literature
survey of existing methods based on spoofing detection and the problem
definition, Section 3 is our implementation which presents a general diagram of
our system and consist of how we implemented feature extraction and classifiers
and we used Gaussian distribution to examine the feature implemented, Section 4
contains description of our experiments done on RFIDS and it shows the
experimental setup and results obtained, Section 5 concludes our work and

discusses the future work.



Chapter 2

SURVEY OF EXISTING RFIDS AND PROBLEM
DEFINITION

2.1 Structure of IQA Method

I ——
Training [Ja]aj

FR-IQA

(21 1Ms)

R : Final
Gaussian Filtering (33, 0=0.5) Parmeterization LDA ’I> REAL/FAKE
(25 1aMs)
NR-IQA

I

I

I I
(4 1QMsz) |

I

I

I

TN — Y

Feature Extraction Classification

_______________________________________

Figure 1: Structure of IQA Method [1]

IQM stands for image quality measurement, FR is full reference, and NR is no
reference. The input image will be filtered using a Gaussian filter for calculating FR-
IQA and the NR-IQA only operates with original image, at the final step of feature
extraction the 25 IQA-measures (parameters) are combined, a classification method

is applied to classify real or fake samples.

Steps of IQA method:
1) First the training model has to be obtained for obtaining training model a

number of input images of known users fake and real have to be trained using



LDA classification method for the system to classify in further stages
according to this training model.

2) Input image for classification : a gray scale image will be input to the system
for classification

3) Gaussian filter: a Gaussian filter with 3*3 kernel and ¢ = 0.5 will be
introduced to the image in order to obtain 2 images original and enhanced
image using Gaussian filter

4) Feature extraction: 25 features will be calculated for the input image

5) The last step will be classification process where LDA method is introduced,
the inputs to this stage are two: training model and input image and according
to the training model and LDA classification method the image is classified

as either fake or real.
2.2 Gaussian Filter

Gaussian filter or Gaussian blur [42] in image processing is the result of blurring an
image by a Gaussian function. It is a widely used effect in graphics software,
typically to reduce image noise and reduce detail. The visual effect of this blurring
technique is a smooth blur resembling that of viewing the image through a
translucent screen, distinctly different from the bokeh effect produced by an out-of-

focus lens or the shadow of an object under usual illumination.

Mathematically, applying a Gaussian blur to an image is the same as convolving the

image with a Gaussian function.

The Gaussian blur is a type of image-blurring filters that uses a Gaussian function

(which also expresses the normal distribution in statistics) for calculating the


https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Image_noise
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Bokeh
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Normal_distribution

transformation to apply to each pixel in the image. In two dimensions, it is the

product of two such Gaussians, one in each dimension:

2 &
1 =
Glz,y) = e 2%
2mwo?
(2.24)
Equation (2.24) is provided in [44]
. 3o 1 Mo 1
Ii.np= 2., D Ii+x.j+yGx.y)
x=—[30 ] y=—[3c ] (225)

Equation (2.25) is provided in [44]

Where —[3 0] <=x<=[3¢] and - [3 0] <=y <=[3 7].

An image with Gaussian blur distortion is given by "1 =1* G

X = the distance from the origin in the horizontal axis

Y= the distance from the origin in the vertical axis

o = the standard deviation of Gaussian distribution

When applied in two dimensions [42], this formula produces a surface whose
contours and concentric circles with Gaussian distribution from the center point.
Values from this distribution are used to build a convolution matrix which is applied

to the original image.

The implementation of Gaussian blur effect is typically generated by convolving an
image with a kernel of Gaussian values. In practice, it is best to take advantage of the
Gaussian blur’s separable property by dividing the process into two passes. In the
first pass, a one-dimensional kernel is used to blur the image in only the horizontal or
vertical direction. In the second pass, the same one-dimensional kernel is used to blur

6
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in the remaining direction. The resulting effect is the same as convolving with a two-

dimensional kernel in a single pass, but requires fewer calculations.
2.3 Definitions of Known Image Quality Measures and Classifiers

In [9], defines 26 image quality measures and two types of classification methods.
The presented measures are divided into two parts, FR 1QA that is referred to full
reference image quality measures which extracts quality features using two images,
input image and the enhanced version of the same image using Gaussian filter, and
NR IQM that refers to no reference image quality measures, these features are used
to evaluate the condition of the real sample. This method [9] extracts 26 1QA features
to reduce the level of complexity. It uses a discriminant analysis to discriminate
between real and fake images namely linear discriminant analysis (LDA) and

quadratic discriminant analysis (QDA).

The 26 image quality measures (parameters) in [9] are as follows:
Mean Squared Error (MSE) [10]

Peak Signal to Noise Ratio (PSNR) [11]
Signal to Noise Ratio (SNR) [12]
Structural Content (SC) [13]

Maximum Difference (MD) [13]

Average Difference (AD) [13]
Normalized Absolute Error (NAE) [13]
R-Averaged MD (RAMD) [10]

Laplacian MSE (LMSE) [13]

Normalized Cross Correlation (NCC) [13]
Mean angle Similarity (MAS) [10]

Mean angle Magnitude Similarity (MAMS) [10]
7



Total Edge Difference (TED) [14]

Total Corner Difference (TCD) [14]

Spectral Magnitude Error (SME) [15]

Spectral Phase Error (SPE) [15]

Gradient Magnitude Error (GME) [16]

Gradient Phase Error (GPE) [16]

Structural Similarity Index Measurement (SSIM) [17] [18]

Visual Information Fidelity (VIF) [19] [18]

Reduced Reference Entropy Difference (RRED) [20] [18]

JPEG Quality Index (JQI) [21] [18]

High-Low Frequency Index (HLFI) [22] [18]

Blind Image Quality Index Measurement (BIQI) [23] [18]

Natural Image Quality Evaluator (NIQE) [24] [18]

Spatial Spectral Entropy Quality (SSEQ) [25] [18]

In our next subsections, we give detailed explanations of these measures.

2.3.1 FR Image Quality Assessment Measures

Full reference measures are divided into five different parts [9], 11 pixel difference
measures, 2 edge based measures, 2 spectral distance measures, 2 gradient based

measures, and 3 information theoretic measures, explained below:

1) Pixel difference measures:
1) Mean Squared Error (MSE): is a measure that estimates the sum of
squared difference (Error) between the input and enhanced image.

The equation is:

MSEMLT) = f 20, 2, -T2 (21)



Equation (2.1) is provided in [10]

4)

2) Peak Signal To Noise Ratio (PSNR): this term is used to measure the ratio

between the signal power and distortion noise, the equation is:

PSNR(LT) = 10log(22x0)  (22)
Equation (2.2) is provided in [11]
PSNR is used to measure the loss of quality when image is compressed, the
real data in PSNR is assumed to be the signal, and the noise is the loss

introduced when image is compressed, measured in

Decibel (DB).

3) Signal To Noise Ratio (SNR): this measure is used to contrast the useful
signal level to the noise level introduced by the background,
SNR is known as the rate of power in the input signal to the rate of the noise

power, it is also referred to the ratio of wanted information to unwanted. The

equation is given by:

. - ‘>'Z-M_1 )_:':'11”& '-:'2\\ (2 3)
N = ([—— “— = '
SNR(LI) = 10log(= = S ra D

Equation (2.3) is provided in [12]

Structural Content(SC): is characterized as the summation square of original

input image divided by the summation of enhanced image squared, the

formula is:

. N M g, 2
4y _ dwim] i 1vhe, g
SC(LI) = TN 3—\:1,1’ 1. 2

i=] dfwgy=1]

Equation (2.4) is provided in [13]

(2.4)



5) Maximum difference (MD): it is the absolute maximum difference

between the original and enhanced image, the equation is:

M D(T,T) = max [I; ; — 1, 4] (2.5)

Equation (2.5) is provided in [13]

6) Average difference (AD): is known as the sum of difference between the
original and distorted image averaged by the number of image pixels, the

formula is as follows:

AD(LY) = 7 205, 00, (L, — L) (26)

Equation (2.6) is provided in [13]

7) Normalized Absolute Error (NAE): is the summation of absolute
difference between original and enhanced image divided by the

summation of the absolute original image, its equation is known as:

NAE(LT) =12g=y i iss | 2.7)

Equation (2.7) is provided in [13]

8) R-Averaged MD (RAMD): is known as maximum difference summation
of R between the real and enhanced images averaged by R value, the
equation is:

RAMD(LI, R) = & STE max, L, -1 (2.8)
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Equation (2.8) is provided in [10]

Where maxr is known as the r highest pixel difference between our original

and enhanced image. In the present implementation r=10.

9) Laplacian-MSE (LMSE): is known as the sum ratio between the
difference of the original and distorted image to the original image

squared

Where h(li,j)= li+1, j +li—1,j +li, j+1 + li, j—1 — 41i, the equation is given as:

- STV Mo, —h(i 0?
LMSE(LT) = == ,;;_ﬁjd‘ (2.9)

fwg—=1 _;—2

Equation (2.9) is provided in [13]

10) Normalized Cross Correlation (NCC): it is a standard image processing
equation used for adjusting the brightness and normalization, it is known
as the rate of summation when multiplying the real and enhanced sample,

divided by summation squared of the original image, NCC equation is as

follows:

N My \
xcnuJy:Etlz SSRLEE

N
s1=1 ‘I}J'

(2.10)

Equation (2.10) is provided in [13]

11) Mean Angle Similarity (MAS): is known as the mean angle that measures

the similarity of the original sample when compared with enhanced

samples the formula is as follows:

MAS(LT) =1 - 5 2, 20 (ee;)  (2.10)
Equation (2.11) is provided in [10]
11



12) Mean Angle Magnitude Similarity (MAMS): can be defined as the mean
angle that measures the magnitude similarity of original when compared

enhanced samples, the formula is:

MAMS(LE) = 25N 5™ 11—, )0 - e Tually (2.12)

NM 1=1 £ay=1

Equation (2.12) is provided in [10]

2) Edge Based Measures:
1) Total Edge Difference(TED): the absolute difference of edges between the
original and distorted image averaged by the value of image pixels, its formula is

as follows:

ff‘h'l"r';“:]:-i:' = Ln\,'l_.LI Z.hi'l Z:.i'l |1E:'.|j' - i]:;-'I. Jl (213)

Equation (2.13) is provided in [14]

2) Total Corner Difference (TCD): is known as absolute value of subtraction when
summing the corners of original samples from distorted samples then averaged
by the maximum image number of corners, it is given in the equation:

TCD(I Ty = eVl (2.14)

mmasl Mo, Vel

Equation (2.14) is provided in [14]

3) Spectral Distance Measures:
1) Spectral Phase Error (SPE): is defined as summation of Fourier angle in
distorted sample subtracted from Fourier angle of real sample squared and

divided by the summation of image pixel, the formula is:

12



SPELT) = =20 oM Jarg(F ;) — arg(F, ;)2 (2.15)

Equation (2.15) is provided in [15]

2) Spectral Magnitude Error (SME): is defined as summation error introduced
from difference between the absolute Fourier transform of original image
and the absolute Fourier transform of the enhanced image squared and
averaged by the total number of image pixels, the equation is:

SMEMTD = 2N M (F, .| [F., 0% (2.16)

MNof =1 Lwg=1

Equation (2.16) is provided in [15]

2D Fourier transform Equation:

| M-1N-i 2| E i L |

F[ﬁr;] — ﬂ’{f\r E} ; f[;”_ ”]‘:_: 7 '\_.l_{l'"+__\" f (217)

Equation (2.17) is provided in [15]

3) Gradient Based Measures:

1) Gradient Phase Error (GPE): is known as summing the difference of the
absolute gradient value angle in the original sample and angle value of
absolute gradient in enhanced sample divided the summation of image

pixels, the formula is:

GrPE(LT ot bl ol arg( Gy g ) arg (G,

WM 1=l Lwg=1

(2.18)

Equation (2.18) is provided in [16]

2) Gradient Magnitude Error (GME): is known as the sum of difference

between the absolute gradient of the original image and the absolute

13



difference of the enhanced image squared divided by the total number of

image pixels, the equation is given as:

GME(LT) = g TN, =M, (1G] — 1G.,;51)?

(2.19)
Equation (2.19) is provided in [16]

3) Information Theoretic Measures:

1) Structural Similarity Index Measurement (SSIM): upgrade of Widespread
index, can be defined as the quality measurement when a single image is
contrasted, and the other image is with its original quality.

(See [17] and practical implementation in [18])

2) Visual Information Fidelity (VIF): VIF assumes that real face images are on
scenes described as natural and based on this they should have same types of
properties.

(See [19] and practical implementation in [18])

3) Reduced Reference Entropy Difference (RRED): this measurement process
as using wavelet to extract some local information’s of the given sample and
some speculation of the sample is not visible in samples in nature.

(See [20] and practical implementation in [18])
2.3.2 No Reference Image Quality Measures
a) Distortion specific measures:

1) High Low Frequency Index (HLFI): it’s sympathetic with sharpness and

works by estimating the power difference between low and up frequency

actions of Fourier spectrum.
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SME(T) = =it

L ) a - el i .
YLD SeLEP | PRI 3 1 Eajegy 41 (i

ig 41 ey

SN R, (2.20)

Equation (2.20) is provided in [22]

2) JPEG quality index (JQI): it evaluates image qualities distorted by known

closed artificial initiated when comparing algorithms at a decreased number

of bit rate as JPEG. (See [21] and practical implementation in [18])

b)

1)

1)

2)

Training based measures [9]:

Blind Image Quality Index Measurement (BIQI): This technique is known
in the past to train images, the idea behind this mode is that clear real
images introduce some regular properties if calculated properly, aberrance
of the uniformity in statistics presented in nature is able to calculate the
quality of the given image. (See [23] and practical implementation in
[18]).

Natural scene statistic approaches:

Spatial Spectral Entropy Quality (SSEQ): this quality can be calculated
by converting the input image to spatial and spectral format, using Fourier
transform the entropy amounts are evaluated, then match the two entropy
values, calculate and consider the inequality between them.

(See [25] and practical implementation in [18]).

Natural Image Quality Evaluator (NIQE): This measurement is known as
the evaluation of blind image quality when extracting features of statistics
associated to many alterations generating quality information’s.

(See [24] and practical implementation in [18])
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2.3.3 Classification Methods Results are Plotted in Terms of

1) Scatter Plot [35]: is also known as scatter graph or chart, the input in these
chart is two variables, with the use of Cartesian coordinate these variables
values are plotted and displayed. These values are displayed in a number of
points, each point has a value representing one variable showing the position
on horizontal axis, and value showing the position in vertical axis.

2) Confusion Matrix[36]: it is also known as error matrix, it is composed in
machine learning field, it is a table that views the efficiency of an algorithm ,
each column in the matrix show the occurrence in a predicted class where the
row shows the occurrence in the actual class.

3) ROC Curve [37]: it is a graphical plot that represents the achievement of a
binary classification system where the classification threshold is assorted.
True positive and false positive rates are uses in plotting the curve using an
assorted threshold settings

4) Parallel Coordinates Plot [38]: it is used to visualize high dimensional
geometry and to analyze data, it also represents a number of points in an n-
dimension space, parallel lines are drawn in a vertical manner with equal
spaces, the represented point in n-dimension space is a polyline with vertices
sown on the parallel axes, the vertex position on the j-the axis correlates to
the j-th coordinate of the point.

2.3.4 Classification of Real and Fake Face Images

This classification stage is to discriminate between real and fake samples, researchers
recently mentioned two types of classifications namely:

Linear Discriminant Analysis (LDA).

Quadratic Discriminant Analysis (QDA).
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Based on our proposed method we extended the classifiers to ensure the quality of
our system and in order to report better result using other classifiers, our classifiers
where:

Linear Discriminant Analysis (LDA).

Quadratic Discriminant Analysis (QDA).

Logistic Regression (LG).

Linear SVM.

Quadratic SVM.

A brief explanation of the classification metods:

1) Linear Discriminant Analysis (LDA): is defined as the combination of linear
features to discriminate between two or more classed by objects or events, this
approach is used in machine learning, statistics, and pattern recognition, this
method is related to (ANOVA) analysis of variance and regression analysis,
(PCA) principal component analysis and factor analysis are similar to linear
discriminant analysis because it is used in linear combinations.

2) Quadratic Discriminant Analysis (QDA): is almost similar to linear
discriminant analysis, the difference in when using QDA the covariance of
each class are not the same, also LDA process for each observation an
independent variable unlike QDA.

2.4 Methods Based on Image Quality Features

2.4.1 Methods with Less Than 10 Features

1) Method [25] with 8 quality features:

The paper [25] performs liveness detection, and also confirmed that face recognition
is an important field in biometrics, and the importance of this trait for individual’s

identification.
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Due to the existence of spoofing attacks by inserting printed photo, mask, etc. of a
genuine individual, this technique weakens the face recognition process, were
liveness detection overcomes this problem. By using liveness detection before face
recognition some specific features of face that are mainly on the action of eye and
mouth are added to the system in a process of increasing security. The proposed
liveness module symmetry is tested by using photo, video or mask of a genuine
individual.
To perform liveness detection there are three approaches:

1) Using face texture liveness detection.

2) Challenge and response technique for liveness detection

3) Combination of two or more liveness detection

Based on these approaches there are three methods which exist on the field of
liveness detection:

1) Multispectral method

2) Client identity information method

3) Single image via diffusion speed model
Based on the existing techniques we can clearly define that under unconstrained
environments good results are not obtained in the field of face liveness detection.
Hence a proposed method [25] of face liveness detection using image quality

assessments (IQA) features is presented.

The proposed method has been validated on a database with images under
unconstrained environments. To detect liveness of a face image using image quality
assessment features. 1QA is used to evaluate the errors extracted from an input

image.
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There are 8 IQA features used:

SNR: signal to noise ratio [12] equation (2.3)

PSNR: peak signal to noise ratio [11] equation (2.2)

SSI: structural similarity index [17] practical implementation available in [18]
MSE: mean squared error [10] equation (2.1)

TED: total edge difference [14] equation (2.13)

AD: average difference [13] equation (2.6)

NAE: normalized absolute error [13] equation (2.7)

MD: maximum difference [13] equation (2.5)

The proposed technique [25] is designed in the following stages:
1) Query image
2) Enhance
3) Feature extraction

4) Classification

Query image: is the face image input for liveness detection.

Enhance: in this stage a Gaussian filter is applied for filtering noise from the face
image and resizing it.

Feature Extraction: in this process image quality assessment is used in calculating
features, we considered 8 features for extraction : Peak Signal to noise Ratio (PSNR),
Mean Square error (MSE), Normalized Absolute Error (NAE), Signal to Noise Ratio
(SNR), Total Edge Difference (TED), Maximum Difference (MD), Structural
Similarity Index (SSI), Average

Departure (AD).
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Classification: (QDA) quadratic discriminant analysis model is used for classifying
if the input image is real or fake.
This system has been tested on a database with 70 face images taken under

unconstrained environment.

Table 2.1 shows the proposed method compared with other existing methods, as we

can clarify that the IQA method gives indicates:

False Accept Rate (FAR) which indicates the number of false samples classified as

real:

FAR= number of fake samples incorrectly accepted as real / total number of images
both fake and real. (2.21)

Equation (2.21) is provided in [43]

False Fake Rate (FFR) gives the probability of an image coming from a genuine

sample and considered as fake:

FFR= the number of genuine images incorrectly rejected as fake / total number of
images both fake and real. (2.22)

Equation (2.22) is provided in [43]

And Half Total Error Rate (HTER) is computed as:

HTER= (FAR+FFR)/2 (2.23)

Equation (2.23) is provided in [43]
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These measurements give lower values when compared with other methods based on

face liveness detection.

Table 1: Experimental Results Obtained from Different Recognition Methods [25]

Methods FAR FFR HTER
Multispectral 14.98 7.23 18.34
Client identity information 11.96 14.78 21.98
Single image via diffusion speed 9.23 6.07 11.23
model

IQA method 6.23 2.19 4.78

2) Method [26] with 6 quality features:

Recent approach [25] is using different identification systems, and machines that
satisfies the user’s needs and secure important resource, method [26] reviews
biometric identification systems recently developed. This technique is implemented
to ensure the identification of an individual weather its real or fake, the aim of this
paper is to increase the safety of the biometric system by adding liveness assessment
in a user-friendly, fast, simple and non-intrusive manner. This method [26] introduce
previous attacks on face, fingerprint, and iris. The proposed method is suitable for
real-time applications as it presents a low degree of complexity. This system uses
image quality assessments measures extracted from one image to discriminate
between real and fake samples. It shows extremely competitive results compared to
other existing approaches, when we analyze image quality measures there are

valuable information’s that can highly discriminate real samples from impostor traits.

The system [26] objective is to:
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1) Evaluate the methodology of protection in multi-biometric dimension, to
achieve a better fake detection rate when compared to existing approaches,

with different modalities e.g. face, fingerprint, and iris.

2) The ability to notice spoofing attacks and evaluate the methodology of

protection in multi-attack dimension.

Based on classification methods used in recent approaches of real and fake samples
using LDA and QDA algorithms the present system implements a different approach
based on ANN (artificial neural network) algorithm, this algorithm works by loading
the entire input query database of images into the program and it operates by
comparing it with the database and classifying if the input image is real or fake. The
input image is firstly given for feature extraction where the basic 1QA features will
be calculated then the matcher will classify if the input image is of a genuine user or

an impostor client.

In the method [26] six image quality measures are used namely:

Mean Squared Error, Signal to Noise Ratio, Structural Content, Maximum
Difference, and Average Difference. After this quality features are calculated an
ANN classifier is used together with Feed Forward Neural Network Algorithm in
MATLAB 2013 to discriminate between real and fake samples. This method is

designed for real time applications with fast, and user-friendly, specifications.

3) Method [27] with 8 image quality features:
The paper [27] is a biometric system used for face image classification, this

implemented method uses image quality assessment features to indicate if the input
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image is real or fake, the proposed method shows that real biometric traits usually
gives high valuable information’s enough to efficiently discriminate between genuine

and impostor traits.

The quality assessment features used in this report are:
Mean Squared Error (MSE) [10] equation (2.1)
Mean Average Error (MAE) [10]
Peak Signal to Noise Ratio (PSNR) [11] equation (2.2)
Structural Content (SC) [13] equation (2.4)
Maximum Difference (MD) [13] equation (2.5)
Normalized Absolute Error (NAE) [13] equation (2.7)
Laplacian Mean Squared Error (LMSE) [13] equation (2.9)
Structural Similarity Index (SSIM) [17] (practical implementation in 18)
This proposed method extracts eight image quality features to discriminate between
real and fake samples, it is not mentioned the type of classification method used, this
paper also proposed for feature work to increase the multi-biometric system field
adding more biometric traits for example signature, palmprint, etc....
2.4.2 Methods Using 25 Image Quality Feature and Less

1) Method [1] using 25 image quality features:
In [1], a software-based method is used for detecting spoofing attacks, they proposed
multiple biometric system that detects face, fingerprint and iris. The objective of this
paper is to enhance recognition and protection strategies, to develop the biometric
security systems by using image quality assessments and adding liveness assessment

in order to improve the quality of speed, make it user friendly and non-intrusive.
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The proposed in [1] approach is designed in a suitable manner for real-time
applications, with a low degree of complexity, using 25 (IQM)s are extracted from
each input image (similar processes used for authentication) in order to discriminate

between genuine and fake samples.

The results presented in [1] for face recognition show that their approach is highly
competitive compared with other methods and that the use of image quality features
extracted from real face samples is very efficient to discriminate them from fake

images.

The experimental setup in [1] using Replay-Attack database [40]:

Using a 64-bit windows 7 pc with MATLAB 2012b and Replay-attack database [40]
contains 50 different subjects collected from 10 second videos acquired using 320 *
240 resolution webcam of a MacBook Laptop. Results were tested based on a printed
spoof attack under specific conditions like a hand holding the picture, fixed picture
and both. Researchers also took into consideration the execution time. This results
were reported in term of standard rates Table 2.1. FFR is defined as the probability of
incorrectly considering a genuine sample as fake equation is (2.22), FGR gives the
number of fake images that are classified as real equation is (2.21) (FGR = FFR), and

HTER is computed as the average of both FFR and FGR; HTER=(FFR+FGR)/2.

The results reported under hand based condition where FFR=13.6, FGR=5,
HTER=9.3, and the results reported on a fixed based condition where FFR=11.5,
FGR=5.3, HTER=8.4. And an experiment on a mixture of hand and fixed conditions
together gave results as FFR=11.6, FGR=4.1, HTER=7.9. With an average execution

time of 0.148 seconds for all conditions, the present research also reported some
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results based on the best IQA features used with best-5, best-10, and best-15

compared with all the 25 IQA metrics.

Table 2: Experiments Done on Different Number of Features [1]

Measures

HTER

Best-5 | NCC [13],RAMD [10],MAS [10],SPE [15],RRED [20] 53.5

MAS[10], SME[15], SPE[15]

Best-10 | MSE [10],AD [13],SC [13],NCC [13],MD [13], RAMDI10], | 48.9

SNR[12],RAMD[10], MAMS[10],SME[15],SPE[15],

TCD[14],GME[16],VIF[19],NIQE[24]

Best-15 | MSE [10],PSNR [11],AD [13],SC [13],NCC [13],MD [13], 38.3

All ALL

15.2

From Table 2 [1], we see that there wasn’t any clear method of choosing best

features; some features are present in best-5 and not in best-10, which shall be

investigated in our proposed method. In addition to this, this approach [1] was also

compared to some existing methods based on printed spoofing attacks.

Table 3: Comparison between Method and Other State-of-art
Spoofed Printed Face Detection [1]

Methods Based of

METHODS FFR FGR HTER
IQA-based [1] 0.0 1.0 0.5
AMILAB [32] 0.0 1.2 0.6
CASIA [32] 0.0 0.0 0.0
IDIAP [32] 0.0 0.0 0.0
SIANI [32] 0.0 21.2 10.6
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UNICAMP [32] |12 0.0 0.6

UOULU [32] 0.0 0.0 0.0

Based on [1] the reported results (Table 3) it is clear that the IQA-based method did
not give 100% positive identification at the other hand CASIA, IDIAP, and UOULU

methods gave a perfect identification rate with 0% of (FFR) and (FGR).

2) Methods using 18 image quality features:

The paper [28] introduces REPLAY-MOBILE database [41], and compares existing
face recognition approaches based on (IQA) image quality assessment measures, this
method also provides a number of classifiers to discriminate between real and
impostor samples. Based on the existing method 2-sets [1], [33] of presentation
attack detection (PDA) results are presented on face recognition based on image
quality assessment, the results are presented on ISO standard metrics [see the
ISO/IEC 30107-3 standard], (APCER) Attack Presentation Classification Error Rate;

and (BPCER) Bona fide Presentation Classification Error Rate.

This proposed paper compares 2-sets of presentation attack detection (PDA) results
based on face recognition and classification, Face-PAD using IQA [1], and Face-

PAD based on Gabor-Jets [33].

Face-PAD using 1QA: the experiments conducted on this paper are based on 18
image quality measures and tested using Replay-Mobile database [41]
The quality features calculated are:

Mean Squared Error MSE [10] equation (2.1)
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Peak Signal to Noise Ratio PSNR [11] equation (2.2)

Average difference AD [13] equation (2.6)

Structural content SC [13] equation (2.4)

Normalized cross-correlation NK [13] equation (2.10)

Max. Difference MD [13] equation (2.5)

Laplacian MSE LMSE [13] equation (2.9)

Normalized Absolute error NAE [13] equation (2.7)

Signal to noise ratio SNR [12] equation (2.3)

R-averaged Max. Difference (r=10) RAMD [10] equation (2.8)
Mean angle similarity MAS [10] equation (2.11)

Mean angle magnitude similarity MAMS [10] equation (2.12)
Spectral magnitude error SME [15] equation (2.15)

Gradient magnitude error GME [16] equation (2.18)

Gradient phase error GPE [16] equation (2.19)

Structural similarity index SSIM [17] practical implementation [18]
Visual information fidelity VIF [19] practical implementation [18]

High-low frequency index HLFI [22] practical implementation [18]

Face-PAD based on Gabor-Jets[33] in this method for feature extraction an
approach based on Gabor-Jets has been introduced, the Gabor-Jets has been
computed using 40 Gabor wavelets using default parameterization, a process of
resizing is introduced to standardize all images to 85x100 pixels, and a retain layer

model is presented in processing.

Based on a video database the computed Gabor-jets features are calculated on the

face region once the face is detected using a face detector.
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Based on the experiments done on these two approaches [2], [33]. The standard ISO
rates computed are: (APCER) Attack Presentation Classification Error Rate; and

(BPCER) Bona fide Presentation Classification Error Rate.

APCER is considered as False Accept Rate (FAR) and BPCER is False Reject Rate,
(ACER) Average Classification Error Rate is also considered as

ACER=(APCER+BPCER)/2.

The main difference between these 1SO standard rates and the old rates (FAR, FFR,
HTER) is that they take into account attacks type, potential and success probability.
The PAD algorithm performance can be measured as the lower value of ACER
estimates better system performance. Half Total Error Rate (HTER) is also

calculated in the presented results.

The method [1] on IQA for face recognition has used Linear Discriminant Analysis
(LDA) as a classifier and achieved a result of HTER=15%, , the proposed method
[28] used support vector machine (SVM) with radial-basis function(RBF) kernel
which presents better face-PAD classification rate than LDA using the same quality

measurement features.

The results below in Table 4 present HTER, and EER equal error rate percentage
using 2 classification methods Linear discriminant analysis LDA, and Support vector

machine radial bias function SVM-RBF , on REPLAY-MOBILE [41] database.

Table 4: Results Presented in Based on Two Different Classifiers [28]

Classification method [13] LDA SVM-RBF
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Rate

Dev.EER (%)

5.06

2.68

Test.HTER (%)

15.20

9.78

5.28

The comparison done in Table 4 is based on PAD protocol and for SVM, LIBSVM

implementation has been used with kernel =1.5 (kernel = 1 / # features). The HTER

and EER are computed per frame.

Gabor-Jet feature vector using SVM-RBF with kernel = 0.00025, the comparison on

the below Table 5 is done based on Replay-Mobile Database.

Table 5: Comparison between Gabor-Jet and IQM Using Different Spoofing Attacks
Classification | HTER | HTER | HTER | HTER | HTER | ACER | APCER | BPCER
Rate %) | (%) [(0) (%) [() | (%) | (%) (%)
Scenarios MP MV PF PH GT
IQM 7.70 13.64 | 4.22 5.43 7.80 13.64 | 19.87 7.40
Gabor 8.64 9.53 9.40 8.99 9.13 9.53 7.91 11.15

The scenarios considered in this result Table 5:

MP: matte screen-photo

MV: matte screen-video

PF: print-fixed
PH: print-hand

GT: Grand test
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From the results obtained we can come out with the idea that the method based on
Gabor-Jet gives better result than that of image quality assessment as both methods

were experimented on Replay-Mobile database [41].

3) Methods using 25 image quality features:

In paper [29], they have proposed a biometric system based on iris and face fake
detection, several existing methods on liveness detection were adapted and
implemented to a limited-constrained scenario. The proposed method is a
combination of the feature selection in the existing methods classifiers to perform a
classification based on the best features (SVM) support vector machine which is used
for training face and iris images.

The input images result as real and fake images by matching with training real and

fake samples.

We can describe the present system in the following stages:

1) Input image: the input query image is captured using a sensor, the face should
be 2D for image quality assessment calculations.

2) Wiener Filtering [29]: is a filter method used to reduce noise on the input
images, the input image | is of size (NxM) will be filtered using a wiener
filter and generate a smoothed version of the input image ~l. this filter is
adaptive in nature and good for IQA technique.

3) 1Q Measures: this measures are divided into (FR) full reference and (NR) no
reference, (FR) image quality features depend on the real image that is not
distorted, to determine the samples quality.

In (NR) IQA some pre-trained statistical models are used in estimating the

quality of the input image, this depends on a recent knowledge and on the
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image used for training, features are calculated using the difference in quality
between both original image | and smoothed version ”l to estimate the value
of (FR) IQA metric. This technique assumes that the quality difference
produced using Wiener filter can easily differ between genuine and impostor
biometric samples.

2.3.4 SVM Classification

Support vector machines (SVM) are supervised learning models associated learning

algorithms used for analyzing data and classifying the input patterns.

SVM Classification Algorithm:
1) Read the input iris or face training images from database.
2) Calculate the 25 image quality assessments full reference and no reference
features for the input training images.
3) Combine the 25 quality measures as quality assessment features.
4) Create SVM Classification Training Target and compare the trained features
using SVM Classifier.
5) Classify SVM training to two classes and give results of either real or fake
image.
2.3.5 Methods Using More Than 25 Image Quality Features
1) Method [30] with 30 image quality measures:
In paper [30] a software-based biometric system is introduced with a multi-attack

method in order to improve the biometric system security.

This proposed method is based on image quality assessment to discriminate between
real and fake traits. This system presented 30 image quality measurements extracted

from the input query image for identifying the user’s access attempt; these parameter
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vectors extracted from the image are classified using linear and quadratic

discriminant analysis.

This system adds a liveness assessment technique to ensure the biometric system
security and provides a low degree of complexity with good performance. In this
multi-biometric system, attacks from face, iris, fingerprints, and hand palm images
are detected. In hand palm classification of real or impostor users a discriminating
method called Dempster-Shafer theory [35] [34] is used, lots of rotations and
translations are presented in hand palm images. Dempster-Shafer method process by
combining multiple results of decisions obtained by discriminant analysis and

produces decisions between genuine or impostor users.

The aim of [30] is to discriminate between real and fake images. The classifiers used
is LDA. The proposed system can be divided into three main parts:

1) The input image is enhanced using a Gaussian filter, and a smoothed version
is generated, the quality between the input image and smoothed image is
calculated using the image quality assessment metric. This approach
considers the loss of quality generated between the original and smoothed
image as a quantity to differ between genuine and impostor biometric
samples.

2) Feature Extraction: in this part the 30 image qualities measures are extracted
and calculated:

3) Classification: this section uses LDA classifier to discriminate between fake

and real images.
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The results obtained from this work is carried out in terms of False Positive Rate
(FPR) which indicates the number of false samples classified as real equation is
given (2.21) and True Negative Rate (TNR) that gives the probability of an image

coming from a genuine sample and considered as fake equation is given (2.22) .

The results obtained from face where classified using (LDA) Linear Discriminant
Analysis, the attack considered in this section is printed face photographs, the

database consist of 800 samples of real and fake images.

Table 6: Results Reported from Proposed Method [30] Based on Spoofed Printed

Faces [30]
FPR TNR
4.5 8.7

2) Method [31] with 31 image quality features:

The method [31] is developed to increase the biometric security system by using 31
image quality features and adding a liveness assessment method to the system,
spoofing attacks is an important field in biometrics, it has been divided into direct
and indirect attacks, in this approach these attacks are detected by using 31 IQA and
discriminant classifier to discriminate fake and real images, in [30] discriminant

power analysis (DPA) is used in face recognition.

The 31 quality features being used in this method are:
Mean Squared Error (MSE) [10]
Root Mean Square Error (RMSE) [10]

Peak Mean Square Error (PMSE) [10]
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Mean Absolute Error (MAE) [10]

Peak Signal to Noise Ratio (PSNR) [11]
Maximum Difference (MD) [13]

Signal to Noise Ratio (SNR) [12]

Structural Content (SC) [13]

Correlation Quality (CQ) [13]

Average Difference (AD) [13]

Normalized Absolute Error (NAE) [13]
R-Averaged Maximum Difference (RAMD) [10]
Laplacian Mean Squared Error (LMSE) [13]
Error Root Mean Square Contrast (ERMSC) [10]
Normalized cross correlation (NXC) [13]

Image Fidelity (IF) [19]

Mean angle similarity (MAS) [10]

Mean angle magnitude similarity (MAMS) [10]
Total Edge Difference (TED) [14]

Total Corner Difference (TCD) [14]

Spectral Magnitude Error (SME) [15]

Spectral Phase Error (SPE) [15]

Gradient Magnitude Error (GME) [16]

Gradient Phase Error (GPE) [16]

Structural Similarity Index Measures (SSIM) [17]
Visual Information Fidelity (VIF) [19]

Reduced Reference Entropic Difference index (RRED) [20]
JPEG Quality Index (JQI) [21]

High Low Frequency Index (HLFI) [22]
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Blind Image Quality Index (BIQI) [23]

Natural image quality evaluator (NIQE) [24]

The system [31] process on a single image it does not require a sequence of images,
it also does not require any steps before the computation of image quality features,

there are two main stages for this system identification, and authentication.

a) Identification phase consist of:
1) input of image
2) quality features extracted

3) Classification of image either real or fake and output.

Classification process uses three main classifiers, Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), Artificial Neural Network (ANN),

In the identification process the input image is classified using these three classifiers,
if the three give positive result as the input image is real the next phase takes step but

if one of the classifiers classifies as fake image authentication process does not start.

b) Authentication phase consist of:
1) Discrete Cosine Transform (DCT): DCT is applied to the input face image
then using Discriminant Power Analysis (DPA) technique the features

considered as the most important are processed.

2) Support Vector Machine (SVM) is used in this stage to discriminate whether

the user access is authorized or not
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The results reported from these proposed method where experimented on replay
attack database for identification and authentication. These experiments where done

based on printed faces for three different classifiers:

The results are reported in terms of:

False Accept Rate (FGR) which indicates the number of false samples classified as

real Equation is given in (2.21)

False Fake Rate (FFR) that gives the probability of an image coming from a genuine

sample and considered as fake: Equation is given in (2.22)

And Half Total Error Rate (HTER) is computed as the average between FFR and

FGR the Equation is given in (2.23)

Table 7: Results Presented From the Present Paper [31], Comparison of 3 Classifiers

Classifier FFR FGR HTER
QDA 10.3 8.2 9.25
ANN 5.2 2.1 3.65
LDA 9.2 6.4 7.8

As we can clarify from the above results Table 2.7 ANN classifier gives the best

results.

The results reported from authentication approach are based on webcam spoofing

attacks (Table 8).
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Table 8: Results Reported on SVM Classifier [31]

FFR FGR HTER

SVM 2.2 11 1.65

2.3 NUAA Photograph Imposter Database

NUAA Photograph Imposter Database [39], was collected in three sessions with
about 2 weeks interval between two sessions, and the place and illumination
conditions and scenarios of each session are different as well. Altogether 11 subjects

(numbered from 1 to 11) were invited to attend in this work.

Note that it contains various appearance changes commonly encountered by a face
recognition system (e.g., sex, illumination, with/without glasses). All original images

in the database are color pictures with the same definition of 640 x 480 pixels.

Illustration of different photo-attacks: (1) move the photo horizontally, vertically,
back and front; (2) rotate the photo in depth along the vertical axis; (3) the same as
(2) but along the horizontal axis; (4) bend the photo inward and outward along the

vertical axis; (5) the same as (4) but along the horizontal axis.

In this thesis we will use 600 genuine samples and 700 imposter samples of 11

different users for our test results. Images are resized to 380 x 580.

Type of spoofing attack in NUAA database [39]:
Photograph samples, were taken using high definition photo for each subject using a
usual Canon camera in a way that the face area should take at least 2/3 of the whole

area of the photograph, then developed the photos in two ways. The first is to use the
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traditional method to print them on a photographic paper with the common size

of 6.8cmx10.2cm (small) and 8.9cm x 12.7cm (bigger), respectively. In the other

way, print each photo on an A4 paper using a usual color HP printer.

2.5 Problem Definition

Based on paper [1], we found some problems that will be investigated in this thesis,

these problems are:

1)

2)

3)

4)

5)

6)

7)

Implement and test real face image detection system (RFIDS)

Conduct experiments on RFIDS as in [1]

Increase number of classifiers used compared to [1], by trying other
classifiers rather than LDA, QDA like Linear SVM, Quadratic SVM, and
Logistic Regression.

Investigate how to define best 10 and best 5 features that are used but not
clearly defined the way of choosing in [1].

Compare RFIDS with other methods based on face spoofing attacks [1], [32].
Recent papers used different number of quality measures; we are going to
investigate the use of 15 image quality measures namely: MES, PSNR, SNR,
SC, MD, AD, NAE, RAMD, NCC, TED, TCD, SME, SPE GME, GPE.
Examine our proposed method on different data subjects 4, 5, 7, 8 on NUAA

database [39]

2.6 Conclusion

In this chapter, we have made a literature survey. From the analysis of

[1],[9].[25].[26], [27].[28].[29],[30],[31], we conclude that existing methods use

different number of image quality features, and also present different types of

classification methods, the results were tested on different databases and we can also

say in the recent years that the result obtained were not 100% positive. We defined
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the problems of the thesis: implement and investigate experimentally real face image

detection system (RFIDS)
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Chapter 3

IMPLEMENTATION AND TESTING OF RFIDS

RFIDS has two structures training and classification, in our training structure the
input is 60 images 30 real and 30 fake and after Gaussian filtering and feature
extraction and classification process the output is a training model which we use in

our classification structure.

Classification structures input is a sequence of 4 images, we apply Gaussian filter
and extract features the input to the classifier is table of faces and training model,
according to these inputs classifiers operate and classify our images to either real or

fake.
3.1 Training and Detection Structure of RFIDS

Training structure of RFIDS is shown in Figure 2 (a): Training structure of RFIDS

(b): Detection Structure of RFIDS

Figure 2 (a) | indicates real image (annotated face image) and "I indicates enhanced
image, the input image in RFIDS training structure is a sequence of 60 annotated
face images, each image is filtered using a Gaussian filter with 3*3 kernel, then two
images are produced the original and enhanced image using Gaussian filter, using
these two images the feature extraction process works by extracting 15 image quality
features, then a table of annotated face images is created to combine the 60 users and
their respective 15 image quality features, in the next stage 5 classification methods

are introduced for training the model.
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Figure 2 (b) shows RFIDS detection structure, the input to this structure is the
sequence of 4 face images for classification process, these images are filtered using
Gaussian filter 3*3 kernel, then 15 image quality features are extracted in the feature
extraction stage, next a final parameterization is made for combining the 15 image
quality features, the final stage is the classification stage where the classifier

determines if the images are real or fake depending on the training model.

In the next section of the chapter 3, we give implementation and testing of RFIDS.

Gaussian filtering

Annotated face Images _| | (3*3 5=0.5) E—————

Database for Training(L)

(15 IQMs)

| Classifiers (LDA, QDA,
Table of face images

Linear SVM, Quadratic

(@)

Gaussian filtering

Face images for classification | , ]
J (3*3 6=0.5) Feature Extraction

(15 10Ms)

Model of Training faces Table of faces

Real / Fake

Classifiers (LDA, QDA,

Classification Table of faces

Linear SVM, Quadratic
(b)

Figure 2: (a) Training Structure and (b) Detection Structure of RFIDS
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3.2 Implementation and Testing of Gaussian Filtering

Gaussian filter is use to blur image, it is used to reduce the noise and the image

details.

For applying Gaussian blur we have to Design the kernel, the formula to design 2D
Gaussian kernel is given by Equations (2.24) and (2.25). A ready matlab function

code is available see (Appendix A form line 16-20)
For example:

1) We use a small image to check correctness of Gaussian distribution
generation with MATLAB function:
2) The full result screenshots are available in [Appendix C]

Original image:

0 10 7 5
0 2 9 12
4 2 2 6
10 3 9 15

With 0.025 variance and 0 mean:

-0.0018  9.9970 6.9706 4.9659

-0.0171 19910 9.0262 12.0202

3.9996 1.9923 1.9888 5.9781

10.0135 3.0052 9.0126 15.0112

With 0.05 variance and 0 mean:

-0.0349  10.0545 7.0376 5.0802
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0.0711  1.9968 9.0217 12.0258

4.0066 1.9933  1.9697 5.9810

10.0145 2.9889  8.9668 15.0136

With 0.1 variance and 0 mean:

-0.0379  9.8749 6.9059 5.0493

0.0176 1.9207 9.0281 11.8907

3.8973 19792 1.9458 6.0790

9.8374 3.0753  8.9681 15.1888

With 0.5 variance and 0 mean:

0.2382 10.2664  7.0265 4.7215

-0.2709  2.0598  8.8272  12.4882

3.3937 2.5270 2.8774  6.0242

9.0544 2.7450 8.7057 15.7674

With 1 variance and 0 mean:

-2.0454 9.2755  8.2832  4.3307

0.9755  2.8478  8.7432  10.4564

2.9469  1.8501 2.5228 5.2887

8.5677 3.0550 8.2185 15.8684
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Table 9: Quality Measures Based on Gaussian Noise

0 0.025 0.05 0.1 0.5 1
MSE 0 2.9195 0.0013 0.0085 0.2251 1.0158
PSNR INF 83.477 76.903 68.815 54.607 48.062
SNR INF 52.740 46.166 38.078 23.870 17.325
SME 0 0.0038 0.0064 0.1043 2.6984 9.2138
SPE 0 2.7666 7.974 3.2452 0.0022 0.0018
GME 0 4.7342 0.0015 0.0139 0.3507 1.0240
GPE 0 1.1700 1.1194 0.0010 0.0243 0.0531
MD 0 0.0341 0.0802 0.1888 0.9456 2.0454
SC 1 0.9993 0.9964 1.0040 0.9846 1.0694
AD 0 0.0029 -0.011 0.0237 -0.028 0.4229
NAE 0 0.0023 0.0048 0.0131 0.0635 0.1450
R-MD 0 0.0232 0..0488 0.1231 0.6473 1.3145
LMSE 0 3.229 5.060 4.893 0.0305 0.0770
NCC 1 1 1.0018 0.9979 1.0058 0.9583

Table 9 shows the results based on Gaussian noise to ensure the correctness of our
features calculated we used a small image and to check correctness of Gaussian

distribution generation with MATLAB function:
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Table 10 : Quality Measures Based on Gaussian Noise

0 0.025 0.05 0.1 0.5 1
MSE 0 6.256 0.0025 0.0100 0.2503 0.9999
SME 0 73.651 333.905 1.5266 4.8119 2.0300
SPE 0 0.640 0.9221 1.1532 1.4894 1.5722
GME 0 4.853 0.0020 0.0082 0.2303 0.9569
GPE 0 1.917 2.0437 2.1800 2.3926 2.4406
SNR INF 29.250 23.2174 17.193 3.2297 -2.7856
PSNR INF 80.167 74.1343 68.110 54.468 48.1315
NCC 1 1.0001 0.9998 1.0001 1.0001 0.9987
AD 0 -7.795 1.2365 -1.5369 -4.416 1.3452
SC 1 0.9987 0.9956 0.9812 0.6777 0.3452
MD 0 0.1210 0.2208 0.4916 2.4653 4.6419
R-MD 0 0.1055 0.2080 0.4384 2.1906 42132
NAE 0 0.0334 0.0668 0.1337 0.6666 1.3332
LMSE 0 0.8166 3.2911 13.1390 | 328.277 1.3096

Table 10 shows the results based on Gaussian noise to ensure the correctness of our

features calculated we used a real face image and to check correctness of Gaussian

distribution generation with MATLAB function, face image, distribution using

Gaussian noise, results and screen shots are provided (see appendix E) Figure E.1

shows original image and Gaussian noise image, Figure E.2 shows corner and edge

detection of image, Figure E.3, E.4, E.5, E.6 shows the results implemented with

variance 0, Figure E.7 shows original image and Gaussian noise image, Figure E.8

shows corner and edge detection of image, Figure E.9, E.10, E.11, E.12 shows the

45




results implemented with variance 0.025, Figure E.13 shows original image and
Gaussian noise image, Figure E.14 shows corner and edge detection of image, Figure
E.15, E.16, E.17, E.18 shows the results implemented with variance 0.05, Figure
E.19 shows original image and Gaussian noise image, Figure E.20 shows corner and
edge detection of image, Figure E.21, E.22, E.23, E.24 shows the results
implemented with variance 0.1, Figure E.25 shows original image and Gaussian
noise image, Figure E.26 shows corner and edge detection of image, Figure E.27,
E.28, E.29, E.30 shows the results implemented with variance 0.05, Figure E.31
shows original image and Gaussian noise image, Figure E.32 shows corner and edge
detection of image, Figure E.33, E.34, E.35, E.36 shows the results implemented
with variance 1.

3.3 Implementation and Testing of Feature Extraction Subsystem
For testing of the implementation of the features shown below, we are going to use a
4*4 matrix, 1(M,N), with M=N=4 to represent a gray scale image to make
computation easier and clearer | is original image, ‘I is distorted image.

Original image (reference clean image):

0 10 7 5
0 29 12
4 2 2 6
10 3 9 15

Distorted image (smoothed version of the reference image), I(M,N) is as follows:

2 9 10 5

0 1 6 1
3 6 2 6
11 3 14 14
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For implementing our 15 image quality assessment features, we refer to respective
formula, calculate it manually, show screenshot of the code developed for it, and

show and explain the code, the full code is provided in Appendix B.

1) Implementation and testing of Mean Squared Error (MSE): MSE is given by
equation (2.1). It is implemented by the following MATLAB code (MSE

code see in Appendix B1).

Explanation of code in MSE implementation each numbered line corresponds to its
code in Appendix B1:

Line 1 shows the function of mean squared error that we have two inputs reallmg
corresponds to real image and ehnlmg corresponds to enhanced image, Line 4 M, N
correspond to the image row and column size respectively of our real image, Line 5
calculates the difference between real and enhanced image, Line 6 calculates the

MSE using equation (2.1).

Then for I and ‘L.

MSE= 1/16 * (0-2)"2 + (10-9)"2 + (7-10)"2 + (5-5)"2 + (0-0)"2 + (2-1)"2 + (9-
6)A2 + (12-1)72 + (4-3)"2 + (2-6)"2 + (2-2)"2 + (6-6)"2 + (10-11)"2 +  (3-3)"2 +
(9-14)"2 + (15-14)"2 =

=1/16*(189) = 11.8125 (3.1)
Results of mean squared error calculation by Code 1 is shown in Figure 3, it

complies with (3.1)
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Figure 3: Result Obtained by Code 1 for MSE

2) Implementation and testing of Peak Signal To Noise Ratio (PSNR): PSNR is
given by equation (2.2). It is implemented by the following MATLAB code

(PSNR code see in Appendix B2).

Code explanation of PSNR implementation each numbered line corresponds to its
code in Appendix B2:

Line 1 shows the function of PSNR that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 M, N correspond to
the image row and column size respectively of our real image, Line 5 calculates the
difference between real and enhanced image, Line 6 calculates the MSE using

equation (2.1). Line 7 calculates the PSNR using equation (2.2).

We use MSE=11.8125
MAX =255 (maximum possible pixel intensity in a grayscale image)

PSNR = 20log MAXI — 10 log MSE
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= 20l0g255 — 10l0g11.8125

=48.13-10.7

= 37.407 (3:2)
Results of peak signal to noise ratio calculation by Code 2 is shown in Figure 4, it

complies with (3.2)
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Figure 4: Reslt Obtained by Code 2 for PSNR (2.2)

3) Implementation and testing of Signal To Noise Ratio (SNR): SNR is given by
equation (2.3). It is implemented by the following MATLAB code (SNR code

see in Appendix B3).

Code explanation of SNR implementation each numbered line corresponds to its
code in Appendix B3:

Line 1 shows the function of SNR that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 M, N correspond to

the image row and column size respectively of our real image, Line 5 calculates the
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difference between real and enhanced image, Line 6 calculates the MSE using

equation (2.1). Line 7 calculates the SNR using equation (2.3)

We use MSE=11.8

SNR=10log (22 + 10"2 + 7"2 + 572 + 0"2 + 272 + 9"2 + 122 + 4”2 + 272 + 22 +
672 +107"2+3"2+9"2+1572) /4 *4*11.8

=10 log 882/188.8

=10 log 4.67

=6.6703 (3.3)
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Figure 5: Result Obtained by Code 3 for SNR

4) Implementation and testing of Structural Content (SC): SC is given by equation
(2.4). 1t is implemented by the following MATLAB code (SC code see in

Appendix B4).

Code of SC implementation each numbered line corresponds to its code in Appendix

B4:
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Line 1 shows the function of SC that we have two inputs reallmg corresponds to real
image and ehnlmg corresponds to enhanced image, Line 4 calculates the SC using
equation (2.4)

Then for | and ‘L

SC=(0"2+10"2+7"2+5"2+0"2+2"2+9"2 +12"2 + 4"2 + 2"2 + 2"2 + 6”2 +
1002+ 372 +972+1272) [ (2"2+97"2+10"2+5"2+ 072+ 172 +672 + 12 +
32+ 672+ 272+ 672 + 1172 + 372 + 1472 + 1472)

=878/855

=1.026 (3.4)
Results of structural content calculation by Code 4 are shown in figure 6. It complies

with (3.4)
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Figure 6: Result Obtained by Code 4 for SC

5) Implementation and testing of Maximum Difference (MD): MD is given by
equation (2.5). It is implemented by the following MATLAB code (MD code

see in Appendix B5).
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Code of MD implementation each numbered line corresponds to its code in
Appendix B5:

Line 1 shows the function of MD that we have two inputs realimg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 calculates the
difference between real and enhanced image, Line 5 calculates the MD using
equation (2.1).

I = reference clean image

i =smoothed version of the reference image

P1=0-2=-2 p2=4-3=1
P3=10-9=1 p4=2 - 6=-4
P5=7-10=-3 p6=2-2=0
P7=5-5=0 p8=6-6=0
P9=0-0=0 pl0=10-11=-1
P11=2-1=1 p12=3-3=0
P13=9 - 6=3 pl4=9-14=-5
pl5=12-1=11 p16=15-14=1
MD=11 (3.5)

Result of Maximum Difference calculation by Code 5 is shown in figure 7. It

complies with (3.5)
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s
=
Workspace e
Name Value
[z ans ‘distimg’ "
distl 4xd double 1 ®
Lot s e Command Window
| GME 3.0213 ~
FH cpe 0.9815 15-Maximum Diff e =
H mp 11 11
jd MSE 11.8125
origlma dxd double v| s g>> v
~| 4 usages of "origimg" found MaximumDifference In 6 Col 1

- . - 431PM
f m 7 ) B NG 1172002016

Figure 7: Result Obtained by Code 5 for MD

6) Implementation and testing of Average Difference (AD): AD is given by
equation (2.6). It is implemented by the following MATLAB code (AD code

see in Appendix B6).

AD code explanation each numbered line corresponds to its code in Appendix B6:

Line 1 shows the function of AD that we have two inputs reallmg corresponds to real
image and ehnlmg corresponds to enhanced image, Line 4 M, N correspond to the
image row and column size respectively of our real image, Line 5 calculates the
difference between real and enhanced image, Line 6 calculates the AD using

equation (2.6)

Then for I, ‘I
AD=1/16 (2-0)+(9-10)+(10-7)+(5-5+(0-0)+(2-1)+(9-6) +(12-1)
+(4-3)+(2-6)+(2-2)+(6-6)+(10-11)+(3-3)+(9-14) + (15 - 14))
=1/16(-2+1+-3+0+0+1+3+11+-4+-1+0+-5+1+1)
=3/16
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=0.187 (3.6)
Results of Average Difference calculation by Code 6 is shown in figure 8. It

complies with (3.6)
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s
4
s function AD = AverageDifference (origIng, disclmg)
5
7 - | briging = douple(origing):
8- distImg = double (distImg);
s
10— | W] = size(origimg):
11 - | erzor - origing - distImg:
o |22
|13 8D = sum(sum{erzor)) / (M * W
Command Window
I ame 20013 12-Average Difference =
EH are 0.3815 0.1875
o MD m
MSE 118125 v fe o>

- | 5 usages of "origimg” found AverageDifference n 7 Col 1

7) Implementation and testing of Normalized Absolute Error (NAE): NAE is
given by equation (2.7). It is implemented by the following MATLAB code

(NAE code see in Appendix B7).

Code explanation for NAE implementation each numbered line corresponds to its
code in Appendix B7:

Line 1 shows the function of NAE that we have two inputs reallmg corresponds to
real image and ehnimg corresponds to enhanced image, Line 4 calculates the
difference between real and enhanced image, Line 5 calculates the MNAE using

equation (2.7).

Then for I,’1.
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NAE=|(0-2)+(10-9)+(7-10)+ (5-5)+(0-0)+(2-1) +(9-6) + (12- 1) +
4-3)+(2-6)+(2-2)+(6-6)+(10-11)+(3-3)+(9-14)+(15-14) |
|0+10+7+5+0+2+9+12+4+2+2+6+10+3+9+15]|

=33/96

=0.343 (3.7)
Results of Normalized Absolute Error calculation by Code 7 is shown in figure 9. It

complies with (3.7)
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Figure 9: Result Obtained by Code 7 for NAE

8) Implementation and testing of R-Averaged MD: RAMD is given by equation

(2.8). It is implemented by the following MATLAB code (RAMD code see in

Appendix B8).

Code explanation for RAMD implementation each numbered line corresponds to its

code in Appendix B8:

Line 1 shows the function of RAMD that we have two inputs reallmg corresponds to

real image and ehnlmg corresponds to enhanced image
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Line 4 Calculate the difference between the real image and enhanced image and save
it in error, Line 5 shows how we Assign error as the absolute value of error in Line 6
Convert matrix to vector in Line 7 we Select top ten, because there equals number,
there is more than 10 classed. If you want take only 10 include this code

Line 8 shows how we calculate R-averaged MD using equation (2.8).

Then for I,’1.

R =7 (we take maximum 7 difference between the two images and divide over 7)

P1=0-2=-2 p2=4-3=1
P3=10-9=1 p4=2_6=-4
P5=7-10=-3 p6=2-2=0
P7=5-5=0 p8=6-6=0
P9=0-0=0 p10=10-11=-1
P11=2-1=1 p12=3-3=0
P13=9-6=3 pl4=9-14=-5
pl5=12-1=11 pl6=15-14=1

RAMD=1/7|11+5+4+3+2+1+0|

=26/7

=3.7142 (3.8)

Results of R-Averaged Maximum Difference calculation by Code 8 is shown in

figure 10. It complies with (3.8)
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Figure 10: Result Obtained by Code 8 for RAMD

9) Implementation and testing of Normalized Cross Correlation (NCC): NCC is
given by equation (2.10). It is implemented by the following MATLAB code

(NCC code see in Appendix B9).

Code explanation for NCC implementation each numbered line corresponds to its
code in Appendix B9:
Line 1 shows the function of NCC that we have two inputs reallmg corresponds to

real image and ehnlmg corresponds to enhanced image, Line 4 calculates the NCC

using equation (2.10).

Then for I,’1.

NXC=(0*2)+(10*9)+(7*10)+(5*5)+(0*0)+(2*1)+ (9
*6)+(12*1)+(4*3)+(2%6)+(2*2)+(6*6)+(10*11)+ (3*3
)+ (9*14)+(15*14)/(0"2 +10"2 + 772 + 572 + 072 + 22 + 9"2 + 1272 + 4"2

+2/2 + 272 + 672 + 102 + 372 + 9°2 + 15°2)
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=(0+90+70+25+0+2+54+12+12+12+4+36+110+ 9+ 126 + 210)/ (0
+100+49+25+0+4+81+144+16+4+4+ 36+ 100 + 9 + 81 + 225)
=760/878

=0.879 (3.9)

Results of R-Averaged Maximum Difference calculation by Code 9 is shown in

figure 11. 1t complies with (3.9).
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Figure 11: Results Obtained by Code 9 for R-AMD

10) Implementation and testing of Total Edge Difference (14): TED is given by

equation (2.13). It is implemented by the following MATLAB code (TED

code see in Appendix B10).

Code explanation for TED implementation each numbered line corresponds to its

code in Appendix B10:
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Line 1 shows the function of TED that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, in line 2 we Apply sobel
filter to real image in line 5 we Apply sobel filter to enhanced image

Line 8 M, N correspond to the image row and column size respectively of our real
image, Line 9 Calculate the difference between the real image and enhanced image
and save it in error Line 10 calculates the TED using equation (2.13), Results of

Total Edge Difference calculation by Code 10 is shown in figure 12 (a), (b).

T . T — [

File Edit View Inset Tools Desktop Window Help
Edit View Inset Tools Deskiop Window Help

SHe| KM ARRUDEL- S| 08| a0

DEde | KRNV EA-S|0E o

TotalEdgeDifference Ln 6 Col 1

 Ga2PM
A D) NG e B

- | Stopped in debugger
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7- edge (distImg, 'scbel’);
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9 - | disting = double(distImg);
10 - . ze (origimg) :
1 - gImg - distImg;
12— L[ED = sum(sum(abs(ezzoz})) / (M * N):
13
1 GAUSSIANNOISE.m v
Details ~
Workspace
~
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Figure 12: (a) and (b) Results obtained by Code 10 for TED

11) Implementation and testing of Gradient Magnitude Error: GME is given by
equation (2.19). It is implemented by the following MATLAB code (GME

code see in Appendix B11).

Code explanation for GME implementation each numbered line corresponds to its
code in Appendix B11:

Line 1 shows the function of GME that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 calculates the
Gradient transform of image, Line 5 M, N correspond to the image row and column
size respectively of our real image, Line 6 Calculate the difference between the real
image and enhanced image and save it in error Line 7 calculates the GME using

equation (2.19)

Then for I, ‘1.

Original image (reference clean image):
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0 10 7 5
0 29 12
4 2 2 6

10 3 9 15

Gradient of pixel (2,2)
FX1=df/dx=9-0/2
=9/2=45

Sqrt -472 + 4.5"2

=Sqrt 36.25
=6

FX1:

10 35 -25 -2
2 45 5 3
2 -1 2 4
7 05 6 6

Original Image:
10 87 32 7.2
28 6 5.5 3
53 11 2 4.2
92 11 92 102

Original — Distorted

2.7119  -0.2121  -1.2706
1.7104 2.6667 1.5902
-0.8798 0 -2

FY1l=df/dx=2-10/2

=.8/2=-4

FY1:

o -8 2 7
2 -4 -2505
5 05 0 15
6 1 7 9

Distorted Image:
72 89 44 64
11 33 4 5
6.2 11 4 7.6

113 33 132 8

0.8770
-1.9836

-3.3602
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-2.0942 -2.2361  -3.9808 2.8167

1/16 (2.719972 + -0.2121"2 + -1.2706"2 + 0.8770"2 + 1.7104"2 + 26667"2 +
1.59027"2 + -1.9836"2 + -0.8798"2 + 072 + -2"2 + -3.3602"2 + -2.0942"2 + -
2.236172 + -3.9808"2 + 2.8167°2)

=1/16 (7.3978+0.0449+1.6144+ 0.7619 + 2.925 + 7.1112 + 2.5287 + 3.9346 +
0.7740 + 4 + 11.290 + 4.3856 + 5 + 15.8467 + 7.9337)

=4.7223 (3.11)
Results of Gradient Magnitude Error calculation by Code 11 is shown in figure 13. It

complies with (3.11)
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Figure 13: Result Obtained by Code 11 for GME

12) Implementation and testing of Gradient phase error: GPE is given by
equation (2.18). It is implemented by the following MATLAB code (GPE

code see in Appendix B12).

Code explanation for GPE implementation each numbered line corresponds to its

code in Appendix B12:
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Line 1 shows the function of GPE that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 show how we
calculate Gradient of original image in line5 we Transfer to complex number Line 6
calculate Angle of complex original image Line 7 calculates Gradient of enhanced
image, Line 8 Transfer to complex number, Line 9 Angle of complex enhanced
image, Line 10 M, N correspond to the image row and column size respectively of
our real image, Line 11 Calculate the difference between the real image and
enhanced image and save it in error, Line 12 calculates the GPE using equation

(2.18).

Then for I, ‘1.

Gradient:

FX1: FY1:

10 35 -25 -2 o 8 2 7

2 45 5 3 2 -4 -2505

2 -1 2 4 5 05 0 15

-7 05 6 6 6 1 7 9

Z= F=

10+0i 35-8i -25+2i -2+7i 7-2i  4-8i  -2-4i -5-4i
2+2i 45-4i 5-25i 3+0.5i 1+0.5i 3-1.5i 0-4i -5+0.5i
-2+5i -1+05i 2+0i 4 + 1.5i 3+5.51 -0.5+1i 0+4i 4+6.5i
-7+6i -05+1i 6+7i 6+9i -8+8i 1.5-3i 5.5+12i 0+8i
arg original (angle(2)): arg distorted (angle(f)):

0 -1.1584 24669 1.8491 -0.27 -1.107 -2.034 -2.466
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0.785 -0.726 -0.463  0.165 0.463 -0.463 -1.570 3.041
1.9513 2.6779 0 0.3588 1.071 2.034 1570 1.019
2.4330 2.0344 0.8622 0.9828 2.366 -1.107 1.141 1.570

arg(original) — arg(distorted)

-0.2783 0.0512 0.4324 -0.6178

0.3218 0.2630 -1.1071 -2.8768

0.8799  0.6435 -1.5708 -0.6604

0.0768  0.9273 -0.2789 -0.588

GPE = 1/16 (-0.2783"2 + 0.0512"2 + 0.4324"2 + -0.6178"2 + 0.3218"2 + 0.2630"2
+ -1.1071"2 + -2.8768"2 + 0.8799"2 + 0.6435"2 + -1.5708"2 + -0.6604"2 +
0.0768"2 + 0.9273"2 + -0.2789"2 + -0.588"2)

GPE = 4.7223 (3.12)

Results of Gradient phase error calculation by Code 12 are shown in Figure 14. It

complies with (3.12)
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Figure 14: Result Obtained by Code 12 for GPE

Implementation and testing of Spectral Magnitude Error: SME is given by equation

(2.16). It is implemented by the following MATLAB code (SME code see in

Appendix B13).

Code explanation for SME implementation each numbered line corresponds to its
code in Appendix B13:

Line 1 shows the function of SME that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 Fast Fourier
transform of image, Line 5 shows the Image real part, Line 6 shows Image imaginary
part, Line 7 calculates Gradient of image, Line 8 shows Image real part, Line 9
shows Image imaginary part, Line 10 calculates Gradient of image

Line 11 calculates the SME using equation (2.16).

Then for I, ‘1.

2D-Fourier Transform Equation [39]:

65



Original image: FFT Original image:

0 10 7 5 96+0i -13+21i -14+0i -13+21i
0 29 12 8+14i -11+1i -6+6i  -7+19i
4 2 2 6 -2+01  3-23i -6+0i  3+23i
10 3 9 15 8-14i -7-19i -6-6i  -11-1i
Distorted image: FFT Distorted image:

2 9 10 5 93+0i -16+7i 3+0i  -16-7i

0 1 6 1 9+34i -20-1li 5+4i 2+7i

3 6 2 6 -7+0i 2-151 -21+0i 2+15i
11 3 14 14 9-34i 2-71  5-4i -20+1i

FFT (Original Image) Gradient:
Sqrt 9672 + 072

=96

Sqrt -1372 + 2112

= 24.698

Gradient (Original Image):

96 24.698 14 24.698
16.124 11.045 8.485  20.248
24 23.194 6 23.194

16.124 20.248 8.485 11.045
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Gradient (Distorted Image):

93 17.464 3 17.464
35.171 20.025 6.4031 7.280

7 15.132 21 15.132

35.171 7.280 6.403 20.025

Original — distorted
3 7.233 11 7.232
-19.046  -8.979 2.082 12.968
17 8.062 -15 8.062

-19.046  2.968 2.082 -8.979

SME = 1/16 (372 + 7.233"2 + 1172 + 7.232"2 + -19.046"2 +-8.979"2 + 2.082"2 +
12.96872 + 1712 + 8.0622 + -1572 + 8.062"2 + -10.04672 + 2.968"2 + 2.0822 + -
8.979°2)

= 131.905 (3.13)

Results of Spectral Magnitude error calculation by Code 13 is shown in Figure 15. It

complies with (3.13)
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Figure 15: Results Obtained by Code 13 for SME

13) Implementation and testing of Spectral phase error: SPE is given by equation

(2.15). It is implemented by the following MATLAB code (SPE code see in

Appendix B14).

Code explanation for SPE implementation each numbered line corresponds to its
code in Appendix B14:

Line 1 shows the function of SPE that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 calculates Fast
Fourier transform of image.

Line 1 shows the function of SPE that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, Line 4 M, N correspond to
the image row and column size respectively of our real image, Line 5 calculates the
difference between real and enhanced image, Line 5 calculates the SPE using

equation (2.15).
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Then for I, ‘1.
Original image:
0 10 7 5
0 29 12
4 2 2 6

10 3 9 15

Distorted image:

2 9 10 5

0 1 6 1
3 6 2 6
11 3 14 14

Argument (original image)

0 2125 3.141
1.051 3.050 2.356
3.141  -1.441 3.141
-1.051  -1.923 -2.356

Original — distorted

0 -0.604
-0.260 -0.040

0 0.002
-0260 0.631

-2.125

1.923

1.441

-3.050

3.141

1.681

1.681

FFT Original image:

96+0i -13+21i -14+0i -13+21i
8+14i -11+1i -6+6i  -7+19i
-2+01 3-23i -6+0i  3+23i
8-14i -7-19i -6-61  -11-1i

FFT Distorted image:

93+0i -16+7i 3+0i -16-7i
9+34i -20-1i 5+4i 2+T7i
-7+0i 2-151 -21+0i 2+15i
9-34i 2-7i  5-4i -20+1i

Argument (distorted image)

0 2.729 0 -2.7129
1312 -3.091 0.674 1.292
3.141 -1438 3.141 1438
-1.312  -1.292 -0.674 3.019
-0.604
0.631
0.002
-0.040
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SPE= 1/16 (072 + -0.604%2 +3.14172 + -0.604"2 + -0.260"2 + -0.040%2 +
1.68172 + 0.63172 + 072 + 0.002°2 + 072 + 0.002°2 + 026072 + 0.63112 + 1.68172
+-0.04072)

SPE = 1.074 (3.14)

Results of Spectral phase error calculation by Code 14 are shown in Figure 16. It

complies with (3.14)

+ MATLAB R2014b

EUEE e @) search Documentation p

PUBLISH VEW
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“| Ma N
6§~ | brigimg = double (origing) :
7 - distImg = double (distImg):
9
10 % Fastfourier transform of image
11 - f£fth = f£ft2(double(ozigimg));
12 - argffth =angle(ffth);
Al FERS £ftB = £fr2 (double(distImg));
Main.m (Sc A e - argfftB =angle (££tB)
15 - [M , N] = size(origImg);
Workspace ® ||
17 - | error =abs (argffth)-abs (argfftB);
Name Value 1 - SPE =gsum(sum( error . *error V) /MW
[d ans “distimg’ ~ll22 hd
EH distimg 4ed double .
H disiz il Command Window
ftd MSE 11.8125
H origimg A double 3-spectral phase error = A
[ origsiz 441 1.074¢
£ PSNR 37.4074
1 sizkre 1 v] | B> v

+| 5 usages of "origmg” found SpectralPhaseError Ln 6 Col 1

Figure 16: Result Obtained by Code 14 for SPE

14) Implementation and testing of Total corner difference: TCD is given by

equation (2.14). It is implemented by the following MATLAB code (TCD

code see in Appendix B15).

Code explanation of TCD implementation each numbered line corresponds to its

code in Appendix B15:
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Line 1 shows the function of TCD that we have two inputs reallmg corresponds to
real image and ehnlmg corresponds to enhanced image, in line 4 we Apply Harris
corner detector to real image, line 5 we Plot number of corners In line 6 we Calculate
the number of corners detected by Harris detector in line 7 Apply Harris corner
detector to enhanced image, line 8 Plot number of corners, in line 9 we Calculate the
number of corners detected by Harris detector, line 10 we Select the maximum
number of corners between original and enhanced images, Line 11 calculates the
TCD using equation (2.14).

~e. = number of corners in original image using Harris corner detector

~.r = number of corners in distorted image using Harris corner detector

Ner = 366

.. =385

TCD =366 — 385| / 385

=0.0494 (3.15)
Results of mean squared error calculation by Code 15 are shown in Figure 17. It

complies with (3.15)

71



e (v W o | @ISeartho(umentahm‘ ,OE

0TS EDTOR PUBLISH VEW 25
~ = 4] Figure 1 - O X
d g Find Files 'g
L‘I‘\_IHNJ ; File Edit V I Tools Desktop Window Hel
| Compare ~ GoTo v | File Edit View Inset Tools Desktop Window Hel ~
New Open Save S . i 4
=z M =1 M=l S HO (K RAODELAL- S| 0B|aD
FILE NAVIGATE
R At s » A: » imagequalitymeasurewith M, -
Current Folder ® x
Name tm AverageDifferencem +
E 2 -
~
utrecht datal
@ amnalmageQualityMeasuresme.exe
#¥) AverageDifference.m
) bigim
#) disimg_sobel_filter.m
7] dislapfilter.m
%) enhancement.m
B m
#) GAUSSIANNOISE
Workspace
| Name
H distimg
@] NCRorig v
- origimg =
T vivive -
10-Total Edge Difference =
0.0031
S g>> v
TotalComerifference Ln 14 Col 1

~| 6 usages of "NCRorig" found

4\ MATLAB R2014b - X
‘A
E}‘ ™~ @ [gJFindFies <3 insert = fx [ v [ % & |stepin a
- o = " Function Call Stack:
| ) Compare  CfGoTo » Comment |4 Step Out
New Open Save Breakpoints  Continue  Step TRYALWITHENHANCME., ¥|  Quit
v v v Pt~ ({Find v Indent [5] b Fe - 14t | Run o Cursor Debugging
FILE NAVIGATE EDIT BREAKPOINTS DEBUG
G EE v A imagequalitymeasurewithpic ¥ MLz
Current Folder
Name Main.m TRVALWITHENHANCMENT.m GAUSSIANNOISE.m TotalComenDifference.m StructuralContent.m AverageDifference.m +
9
@ | sberdeen database ale® ul™
®  blind image quality ineex 9
® Distortedimages 10 - | NCRorig = detectHarrisFeatures(origlmg):
@ haris_comer 11 - | imshow(origImg);
& naturlaness image quality estimator 12 — hold on;
® | Originallmages 13 - | plot (NCRorig)
@ | | utrecht database 14 - | NCRorig = length(NCRorig):
@ amnalmageQualityMeasuresme.exe 15
) AverageDifference.m oG
£ bigi.m .
" 17
1] dislmg_sobel filter.m s
1) dislapfitter.m n . .
f 19 — NCRdist = detectHarrisFeatures(distImg);
enhancement.m ,
m 20 - | imshow(distImg):
) GAUSSIANNOISE.m /25 | Bold ©
—— ~ |22- | plot (ncRadist);
—_|[=l= NCRdist = length (NCRdist);
Workspace © a2 - maxl= max (NCRorig,NCRdist):
Name Value 25
[ a1 70871604 o286 - TCD =(abs (NCRorig-NCRdist) ) /max1;
| ans ‘distimg’ & v
| distimg 20 double —
|- distsiz [380,580] Sommand Window
e filenamet ‘adrian1jpg’ "
I GaussF 3804580 double 18-TotalCornerDifference =
[ 6meT 22192¢-04 0. 0a04
[ 6pe1 02292
EHH [00113,0.0836,00113... vl |8 x> M
TotalComenDifference In 26 Col 1

- Stopped in debugger

(b)

Figure 17: (a) and (b) Results Obtained for TCD

3.4 Implementation of Training Structure

In MATLAB 2016 there is a ready application provided called classification learner

that we can use to import tables from our work space, these application extracts
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predictors and observations and allows a number of classification algorithms (LDA,
QDA, Linear SVM, Quadratic SVM, Logistic Regression) to train the samples

extracted.

For training we used NUAA database as we considered 60 face image samples, 30
real and 30 fake images see (Appendix C) for samples feature values, the training

process in a model for which the classification process relay on.

Classification learner application in MATLAB: Using the classification learner
application for training we have to arrange our features results into a table and
display them in workspace, the classification learner app imports all results in work
space and asks for permission of which table you want to use, we select the table T
containing all results of implemented faces with all 15 features, the next step will be
the selection of response and predictors the response in our implementation is real or
fake, where we have 15 predictors that are the quality features, then we run our
training process to train the samples imported to obtain the model we use in
classification process for either classifying face image as real or fake, The following

screen shots Figures 18 - 23 show the steps on how the training process work:
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Figure 18: The R

Figure 18 the left side shows the matlab files for calculation of our features and the
middle side shows the table T arranged for using 15 features and 60 face image for
one user, 30 real and 30 fake images, it does not show all 60 arranged users due to
limitation of screenshot, there are 15 features shown and real and fake users for 60
users full features calculations see (Appendix C). Table C.1, C.2, C.3 shows the

calculations of 15 image quality features of 60 users, 30 real and 30 fake users.

It also shows how the table is created in the workspace for importing this table in our

classification learner application, it is not complete due to limitation of screenshot.
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Figure 19: The application Used is Classification Learner App which is Clear above

Figure 19 shows the application of MATLAB we used classification learner, click on

APP and select classification learner.

Oy Owtaset Comernmcen @ Prwdciom  §  Fmponee Veistie Fspomse © 2 Soec#Owmet OM Vedamcn  Ba Valdetion

Figure 20: Run of Classification Learner Application and Click New Session to
Import Faces from Work Space

Figure 20 shows the first page of classification learner application, on this page the
only clickable choice is New Session, when clicking it we import all results from our

recent Workspace
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Figure 21: Select T that Refers to Table and Select our Response that is our Users,
and the Predictors that are Refer to our Feature

Figure 21 the left side shows all the results imported from our work space including
our table created T, we select our table, and the middle pane shows the selection of

predictors and response then click start session for training process.

Fresciors
2e .
)
&
= Cmimen
W Conrant el
Mool murter | o
Stanes Deat
Clarvadier
Peser 4
e )
T -
PCA
rCa o
e
Kbk il Moy be e Oute Bomsan.  Ongmed Owtanet 1 Ctmervtions  # Pradioons Raspomow Ywistin USRS Sepooss Ot 2 Son of Detwsets 1308 Vs ) bk Krows Viehdesem

Figure 22: Select all for all Classifiers, Click Run to Run the Classification Process
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Figure 22 shows all classifiers that can be selected for selecting all classifiers just

click ALL classifiers and all classifiers will be imported and ready for run process,

click run for starting the training process .
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Figure 23: The Results of Training is Reported on the Left Side with (%), also we
Can View our Results in Term of Scatter Plot, Confusion Matrix, ROC Curve, and

Parallel Coordinate Plot, on the Top

Figure 23 shows the training reports and plots provided there are 4 types of

classification plots provided by the classification learner application, scatter plot,

confusion matrix, ROC curve, and parallel coordinates all these plots are provided

with the present classification method that we choose at our left hand side, with

percentage of accuracy presented.

The classification methods used are:
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LDA

QDA

Linear SVM
Quadratic SVM

Logistic Regression
3.5 Implementation of Classification Subsystem

For classification process we need the model provided by training structure ten we
input 4 images of different subjects from NUAA database for our system to classify

if these images are fake or real.

Steps for implementing the classification process:

1) Export model of currently selected classifier to the work space for
classification process

2) The function yfit = trainedClassifier.predictFcn(newT) must be added to your code
for classification using the current model

3) Input 4 images for classification process

4) Run and classify
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The below screenshots show how classification process works in details:
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Figure 24: Training Model

Figure 24 shows the Training model we are going to export to our work space for

classification process the left side shows the training information’s of each classifier

used the middle side shows the model of 60 real and fake training images.
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Figure 25: Exporting Process

Figure 25 shows after training our 60 real and fake images and obtaining a model we
have to export the model to our work space for classification process to enter
different images and let the model classify if they are real or fake, for exporting click
on the upper right button Export model and select export the currently selected
classifier in the history list to the work space to make predictions with new data, this

will export the current model to the work space.
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Figure 26: Name the Exporting Model

Figure 26 shows that we have to name our exported model because a line in the code
will be added to our current code for classifying according to this model, type name

and click ok, the name selected in the current implementation is trained classifier.
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Figure 27: Exported Training Model

Figure 27 shows our exported training model in the work space for classification
process it says that: Variables have been created in the base work space structure
“trained classifier” exported from classification Learner. To make prediction on a
new table T, code for classification process is form (line 6-81 Appendix A) in line 6
we can adjust the number of images we want to input from 60 to 4 for classification
and in line 82 we have to add the following function to our code of input images for
classifying  according to the current training model:  yfit =

trainedclasifier.predictFcn(T) .
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Figure 28: Code and Function for Classification

Figure 28 shows the code in the middle side it is not complete due to screenshot
limitation but the function added is clear in the box indicated in the middle side, we
enter four images for classification process and according to the exported model the

classifier classifies if the 4 input images are real or fake.
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Figure 29: Table of Four Images for Classification

Figure 29 shows the table created after running our classification code the Table is
not complete due to screenshot limitation. The Table contains each input image 15
quality features extracted and arranged in the corresponding Table without
specifying which image is real and which is fake, According to the model exported
from the classification learner application these images are classified either real or
fake. For our current implementation we enter four real images of different users and
they are classified correctly as real, as we can see in the box on work space yfit.
(Figure 29 bottom left side)

3.6 Conclusion

In this chapter we show how we implemented our RFIDS. We implemented an
overall structure having the following subsystems, Gaussian noise subsystem 3.2,
feature extraction subsystem as seen in section 3.3 for 15 features MSE, SNR, PSNR,
SC, MD, AD, NE, RAMD, NCC, TED, TCD, SPE, SME, GPE, GME, training as
seen in section 3.4, and classification as seen in section 3.5. Each subsystem was
implemented and tested in MATLAB 2016 see (Appendix A-C). These subsystems
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were implemented and tested in chapter 3 and code and screenshots are in Appendix
C. Classifiers subsystem implemented in MATLAB 2016 as a separate application
and exported into RFIDS (see Appendix D, We show how we export our training
model to the main code for classification process). We also show how to name the
exported model, and where the exported model appears in our classification

structure.
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Chapter 4

EXPERIMENTS ON RFIDS

This chapter shows the experiment setup for RFIDS and results of our experiments,
the results are experimented on different datasets Tables 12 - 15 to ensure the
presented methods quality, also we compared our proposed method with other state
of-the-art methods Table 18 and see the efficiency of our work, the results are also
conducted Table 16, 17 on different experiments on different types on quality
features and show that with 15 features extracted for face images for training and

same images for classification we get a good result.
4.1 Experiment Setup

Comparison between our experimental setup and the experimental setup used in [1]

Table 11: Comparison between RFIDS and 1QA Based Method

RFIDS IQA based method

Our measurement will be made on| The results were measured on a standard
MATLAB R2016a the computer 64-bit Windows7-PC with a 3.4 GHz
specifications where as follows 2.40| processor and 16 GB RAM memory,
GHZ processor of 64-bit windows10-pc,| running MATLAB R2012b

with core i7, and 16 GB RAM memory,
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Classification methods:
LDA (linear discriminant analysis)
QDA (Quadratic discriminant analysis)

Linear SVM

Classification method:

LDA (linear discriminant analysis)

Quadratic SVM

Logistic Regression

Results will be reported in terms of FAR
(indicates the number of false samples
which are identified as real), FFR
(indicates the number of real samples

considered

as fake), and

HTER=(FGR+FFR/2)

Results will be reported in terms of FAR
(indicates the number of false samples
which are identified as real), FFR
(indicates the number of real samples

considered

as fake), and

HTER=(FGR+FFR/2)

Best-5: SNR, PSNR, R-AMD, NAE,
GME.

Best-10: SNR, PSNR, R-AMD, NAE,
GME, MSE, SPE, SC, AD, MD

ALL

Best-5: NCC, RAMD, MAS, SPE,
RRED

Best-10: MSE, AD, SC, NCC, MD,
RAMD, MAS, SME, SPE, MSE, PSNR,
AD, SC, NCC, MD, SNR, RAMD,
MAMS, SME, SPE, TCD, GME, VIF,
NIQE

Best-15: MSE, PSNR, AD, SC, NCC,
MD, SNR, RAMD, MAMS, SME, SPE,
TCD, GME, VIF, NIQE

ALL

NUAA Photograph Imposter Database

[39]

Replay-Attack database [40]
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Table 11 the experimental setup of RFIDS and IQA base method are almost the same
as there are slightly difference. The difference are 1QA based method uses 25 image
quality features where RFIDS uses 15 image quality features, the database used in
IQM based method is Replay-Attack database [40], and in RFIDS we used NUAA
Photograph Imposter Database [39], also the number of classifiers used are different
as we used 5 classification methods namely LDA, QDA, Linear SVM, Quadratic
SVM, and Logistic Regression, in IQA based method they used only LDA. Apart

from this difference al other experimental setups are similar.
4.2 Code Explanation for Experiments Conducting

The first part of the code is the Gaussian filtering subsystem that consist of image
input, converting image from rgb to grayscale, then converting the input image to
double, and apply filtering using a 3*3 Gaussian filter, and resizing of original and

distorted image to the same size see (Appendix A line 1-29).

The second part of the code is the feature extraction subsystem, in this part there are
15 features implemented each feature has an equation for calculation, the input to
this subsystem are 2 images an original image and distorted image using this two
images each function can successfully calculate the feature value. Then the 30 real
face images and 30 fake face images together with their 15 image quality measures
are combined in a vector and arranged in a table to be imported in the classification

learner application for training process see section 3.4.

The third part is classification process using classification learner application, that

classifies our images to real and fake images using 5 different classification methods
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LDA, QDA, Linear SVM, Quadratic SVM, Logistic Regression for screenshots see
Figure 24, 25, 26, 27, 28, 29.
4.3 Experimental Results Based on NUAA Database

The Experiments done are based on NUAA database using subject-4 for training and

different subjects for classification.

Table 12: Training Results Using NUAA Database Subject-4
Subject number : 4, 60 face images (30 real/30 fake)

Classifier FFR FGR | HTER | Training time(sec)
(%) (%) | (%)

LDA 0 0 0 1.5614

QDA 0 0 0 1.8197

Linear SVM 0 0 0 2.8546

Quadratic SVM 0 0 0 1.6242

Logistic Regression |0 0 0 7.0507

NUAA database subject-4 seen in section 2.5 is used to obtain the results in Table 12
was in terms of FFR equation (2.22), FGR equation (2.21), and HTER equation
(2.23) from 4 classifiers on subject number 4 which is calculated using confusion
matrix (Appendix C1, Figure C.2), a detailed Table C.1 that shows the result of 15
image quality measurements calculations with 30 real face images and 30 fake
samples is provided. LDA is given from Figure C.1- C.3, QDA is given from Figure
C.4- C.6, Linear SVM is given from Figure C.7- C.9, Quadratic SVM is given from

Figure C.10- C.12, and Logistic Regression is given from Figure C.13- C.15.
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Table 13: Classification Results Using NUAA Database

4 face images with different database subjects
Classifier FFR (%) FGR HTER
(%) (%)

LDA 0 0 0
QDA 0 0 0
Linear SVM 0 0 0
Quadratic SVM 0 0 0
Logistic Regression 0 0 0

Table 13 shows the classification results using 4 images and 5 classifications for
training models, the results were obtained by input of different types of images, fake
and real, and the classifier successfully detected fake images (see appendix D for

screenshots).

Table 14 results are obtained using 4 different images for classification and best-5

quality measures: SNR, PSNR, RAMD, NAE, GME.

Table 14: Results Obtained On NUAA Database Based On Best-5

Classifier FFR (%) FGR HTER
(%) (%)
LDA 10 0 )
QDA 11.6 1.6 6.6
Linear SVM 5 0 2.5
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Quadratic 3.3 0 1.6

SVM

Logistic 3.3 0 1.6

Regression

Results obtained in Table 14 is in terms of FFR, FGR, and HTER from 4 classifiers
on best-5, a detailed table that shows the result of 15 image quality measurements
calculations with 4 images is provided together with screenshots of 5 different
classifiers see (Appendix C.1 Table C.2). And best-5 was selected according to
parallel distribution plot see (Appendix C.1, Figure C.3) we see that some features
represent in more difference than others so we choose best features according to
large difference of quality measures see Table C.4 it shows the minimum and

maximum of each feature calculation.

Table 15 results are obtained using 4 different images for classification and best-10

quality measures: SNR, PSNR, RAMD, NAE, GME, MSE, SPE, SC, AD, MD.

Table 15: Results Obtained For Subject 4 Based On Best-10

Classifier FFR (%) FGR HTER

(%) (%)
LDA 6.6 1.6 4.1
QDA 3.3 1.6 2.45
Linear SVM 1.6 0 0.8
Quadratic 3.3 0 1.6
SVM
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Logistic 8.3 1.6 4.95

Regression

Results obtained in Table 15 is in terms of FFR, FGR, and HTER from 4 classifiers
on best-10, a detailed table that shows the result of 15 image quality measurements
calculations with 4 images is provided together with screenshots of 5 different
classifiers see (Appendix C1, Table C.3). And best-10 was selected according to
parallel distribution plot see (Appendix C.1, Figure C3) we see that some features
represent in more difference than others so we choose best features according to

large difference of quality measures

From the results in Table 12 that are done on subject 4 NUAA database for training
using 5 different classifiers LDA, QDA, Linear SVM, Quadratic SVM, Logistic
Regression using our implemented code (see appendix A-P), we can see Table 4.3
and consider our proposed system as a comparative discriminator system when it
comes to detecting false from real samples, Linear SVM is considered as the best
discriminator when number of measures are decreased, based on LDA it gives the
best execution time in all dataset experiments. On tables 14, 15 we presented the
results conducted on different number of features to ensure the performance of the
total 15 features, the experiments were conducted on database [39], using our

implemented code [Appendix A-P].

Comparison between our RFIDS method and other state-of-art methods based on

printed face note that our method uses linear SVM as a classifier:

Table 16: Comparison between RFIDS Method and Other State-of-Art Methods in
Term of Spoofed Printed Faces.
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Methods FAR | FGR | HTER
IQA-based[1]: 00 |10 |05
AMILABJ32] 00 |12 |06
CASIA[32] 00 (00 |O0.0
IDIAP[32] 00 (00 |0.0
SIANI[32] 0.0 |[21.2 |10.6
UNICAMP[32] 1.2 (0.0 |06
UOULU[32] 00 (00 |0.0
RFIDS 00 (00 |0.0

Table 16 shows our proposed method RFIDS in comparison with other existing
methods, our method is highly competitive in term of detecting fake faces and it
shows HTER equal to 0, also some existing methods showed similar results but using
different techniques, from this table we can say that using 15 image quality measures
(parameters) our system showed better results than 1QA based method that uses 25

image quality measures.
4.4 Conclusion

Chapter 4 shows experimental setup used in our proposed method and compared it to
IQA based method that has similar setup except the database and number of image
quality features, we show the results of our experiments done on NUAA database
[39], and the results are trained using subject-4 Table 12 show a 0% of HTER in all
classifiers. and classification results are present in table 13 shows the presented
method quality using 5 different classification methods all results present HTER of

0%., we also show results based on best-5 and best-10 Table 14 and 15 and we
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introduced a method of how we selected this best called parallel distribution in
(Appendix C, Table C.4) that shows the minimum and maximum of each feature
based on 60 face images 30 real and 30 fake we can see that using Best-5 and Best-
10 image quality features we can see that some error rates are present but we
consider Liner SVM as our best classification method that give HTER of 0.8% in
Best-10 features, also we compared our proposed method with other state-of-the-art
methods in Table 16 to show our 0% result of HTER, three methods showed similar
results of 0% HTER but using different techniques, based on image quality measures
technique we used 15 features and showed result of 0% in HTER and IQA based
method that uses 25 features showed higher HTER with 0.5%. Both methods used

almost similar experimental setups.
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Chapter 5

CONCLUSION

Recently biometric researches against spoofing attacks has been an important role of
study, today we can examine the improvement of this biometric security technology
against challenging methods such as spoofing attacks, we made a literature survey of
similar methods, and saw that existing methods used different number of image
quality features, and also present different types of classification methods, the results
were tested on different databases, we can say that in recent years the results
obtained on detecting fake faces were comparative but there was a clear absence of
perfect results. Based on this investigation we defined problems of previous systems

we implement RFIDS.

We show how we implemented our RFIDS, we implemented the overall structure
using the following subsystems, Gaussian filtering subsystem, feature extraction
subsystem, training mode and classification mode subsystems, each subsystem was

implemented and tested in MATLAB2016.

We show experimental setup used in our proposed method and compared it to IQA
based method that has similar setup except the database and number of image quality
features. We show the results of our experiments done on NUAA database [39], and
the results are trained using subject-4 which show a 0% of HTER in all classifiers.
Classification results that are presented show the presented methods quality using 5

different classification methods. All results present HTER of 0% and we also show
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results based on best-5 and best-10. We introduced a method of how we selected the
best according to parallel distribution that shows the minimum and maximum of each
feature based on 60 face images 30 real and 30 fake images. We can see that using
Best-5 and Best-10 image quality features, some error rates present but we consider
Liner SVM as our best classification method that give HTER of 0.8% in Best-10
features. Also we compared our proposed method with other state-of-the-art methods
to show our 0% result of HTER. Three methods showed similar results of 0% HTER
but using different techniques. Based on image quality measures technique we used
15 features and showed result of 0% in HTER and IQA based method that uses 25
features showed higher HTER with 0.5%. Both methods used almost similar

experimental setups.

Our future work will be aiming implementation of different types on biometric traits
such as fingerprint, iris, etc... In order to conduct a multi-biometric system, we will
include more classifiers to discriminate between real and fake images to ensure

protection strategy.
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Appendix A: Main Code

%This program calculates the difference Image/Picture Quality

Measures
%Clear Memory & Command Window

1. clc;

2. clear all;

3. close all;

4. char origlmg;
5. char distimg;
6. fori=1:60;

%read original image

7. [filenamel pathname]=uigetfile({"™*.png’;"*.bmp';*.tif";"*.jpeg'});
8. R=imread([pathname filename1]);%%read image

9. R=rgh2gray(R);%convert rgb to gray

10. R=im2double(R);%%convert to double

11. R=imadjust(imresize(R,[480 400]),[0.3 0.7],[1);

12. figure;imshow(R,[]);%%figure the original image

13. title(ORIGINAL TEXTURE IMAGE');

14. realimg =R;

%apply gaussian noise

%n2=normrnd(0,0,[380 580]);
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%mean=sum(sum(n2))/220400;

%var=sqgrt(sum(sum((n2-mean)."2))/220399);

%distimg=n2+origimg;

%figure, imshow(distimg)

%iIMAGE ENHANCEMENT

%Gaussian filter using MATLAB built_in function

%Read an Image

16. Img=R;

17. H = fspecial('Gaussian',[3 3],0.5);
18. GaussF = imfilter(R,H);

19. figure,imshow(GaussF);

20. enhlmg=GaussF;

%convert images to double

21. enhimg=im2double(ehnimg);

22. reallmg=im2double(realimg);

%Size Validation

23. reallmg = size(realimg);
24. distSiz = size(enhIimg);

25. sizErr = isequal(reallmg, distSiz);
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26. if(sizErr ==0)

27. disp(‘Error: Original Image & Distorted Image should be of same
dimensions');

28. return;
29. end

%Mean Square Error

30. MSE = MeanSquareError(realimg, enhimg);
31. disp('l-Mean Square Error =),

32. disp(MSE);

%spectral magnitude error

33. SME = SpectralMagnitudeError(realimg, enhimg);
34. disp('2-SME =),

35. disp(SME);

%spectral phase error

36. SPE = SpectralPhaseError(realimg, enhimg);
37. disp('3-SPE =");

38. disp(SPE);

%gradient magnitude error

39. GME = GradientMagnitudeError(realimg, enhimg);
40. disp('4-GME =");

41. disp(GME);
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%gradient phase error

41. GPE = GradientphaseError(realimg, enhimg);
42. disp('5-GPE =");

43. disp(GPE);

%signal to noise ratio

43. SNR = SignaltoNoiseRatio(reallmg, enhimg);
44. disp('6-SNR = );

45. disp(SNR);

%Peak Signal to Noise Ratio

46. PSNR = PeakSignaltoNoiseRatio(reallmg, enhimg);
47. disp('7-PSNR =;

48. disp(PSNR);

%Normalized Cross-Correlation

49. NK = NormalizedCrossCorrelation(realimg, enhimg);
50. disp('8-NCC =");

51. disp(NK);

%Average Difference

52. AD = AverageDifference(reallmg, enhimg);
53. disp('9-AD =7;

54. disp(AD);
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%Structural Content

56. SC = StructuralContent(reallmg, enhimg);
57. disp('10-SC =");
58. disp(SC);

%Maximum Difference

59. MD = MaximumDifference(realimg, enhimg);
60. disp('11-MD =";

61. disp(MD);

%RaverageMD

62. RAMD = RarverageMD(reallmg, enhimg);
63. disp('12-RAMD =";

64. disp(RAMD);

%Normalized Absolute Error

65. NAE = NormalizedAbsoluteError(realimg, enhimg);
66. disp('13-NAE =);

67. disp(NAE);

%Total Edge Difference

68. TED = TotalEdgeDifference(realimg, enhimg);
69. disp('14-TED =";

70. disp(TED);
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%TotalCornerDifference

71. TCD = TotalCornerDifference(reallmg, enhimg);
72. disp('15-TCD =";
73. disp(TCD);

%vector of original image features

74. V(;,)=[MSE; SNR; PSNR; NK; AD; SC; MD; RAMD; NAE; TED;
SPE; SME;

GME; GPE ;TCD];

75. disp('V1=");
76. disp(V(:,1));

77. end

%create table for classification

78. USERS={"real’; 'fake'};

79. T=table(USERS, MSE , SNR , PSNR , AD , SC , MD , RAMD ,
NAE , SPE,

GME, SME, GPE, TCD, TED, NCC );

80. T(1:60,:)

81. disp(T);% create table using real and fake users and 15 image
quality features.

Appendix B: Code of Feature Extraction Subsystem

B1: Mean Squared Error Function

%Program for Mean Square Error Calculation
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1. function MSE = MeanSquareError(reallmg, ehnlmg)

2. reallmg = double(reallmg);

3. ehnimg = double(ehnimg);

4. [M N] = size(reallmg);

5. error = reallmg - ehnimg;

6. MSE = sum(sum(error .* error)) / (M * N);
B2: Peak Signal To Noise Ratio Function

%Program for Peak Signal to Noise Ratio Calculation

1. function PSNR = PeakSignaltoNoiseRatio(realimg, ehnimg)

2. reallmg = double(realimg);

3. ehnlmg = double(ehnimg);

4. [M N] = size(reallmg);

5. error = reallmg - ehnimg;

6. MSE = sum(sum(error .* error)) / (M * N); if(MSE > 0)

7. PSNR = 10*10og10((255.*255)/MSE); else  PSNR = 99; end

B3: Signal To Noise Ratio Function

1. function SNR = SignaltoNoiseRatio(realimg, ehnlmg)

2. reallmg = double(realimg);

3. ehnlmg = double(ehnIimg);
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4. [M, N] = size(reallmg);

5. error = reallmg - ehnimg;

6. MSE = sum(sum(error .* error)) / (M * N);

if(MSE > 0)

7. SNR = 10*log10((sum(sum(realimg.*realimg)))./(M .* N .* MSE));

else  SNR =99; end

B4: Structural Content Function

%Program for Structural Content Calculation

1. function SC = StructuralContent(reallmg, ehnimg)
2. reallmg = double(realimg);
3. ehnlmg = double(ehnimg);

4. SC = sum(sum(reallmg .* reallmg)) ./ sum(sum(ehnimg .* ehnimg)

B5: Maximum Difference Function

%Program for Maximum Difference Calculation

1. function MD = MaximumDifference(reallmg, ehnimg)
2. reallmg = double(realimg);

3. ehnimg = double(ehnimg);

4. error = reallmg - ehnimg;

5. MD = max(max(abs(error)));
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B6: Average Difference Function

%Program for Average Difference Calculation

1. function AD = AverageDifference(reallmg, ehnimg)

2. reallmg = double(reallmg);

3. ehnimg = double(ehnimg);

4. [M N] = size(reallmg);

5. error = reallmg - ehnimg;

6. AD = sum(sum(error)) / (M * N);

B7: Normalized Absolute Error Function

%Program for Normalized Absolute Error Calculation

1. function NAE = NormalizedAbsoluteError(reallmg, ehnimg)

2. reallmg = double(reallmg);

3. ehnimg = double(ehnimg);

4. error = reallmg - ehnimg;

5. NAE = sum(sum(abs(error))) ./ sum(sum(abs(realimg)));

B8: R-Averaged MD Function

1. function RAMD = RarverageMD(reallmg, ehnimg)
2. reallmg = double(reallmg);

3. ehnlmg = double(ehnIimg);

4. error = reallmg - ehnlmg;
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5. error=abs(error);

6. a=error(:);%convert matrix to vector

c=flipud(unique(sort(a)));

7. resultat=c(1:10); %top ten

% because there equals number , there is more than 10 classed. if you want take only
%10 include this code

resultatl=resultat(1:10,:)

R =10;

8. RAMD = sum((abs(resultat1)))/R;

B9: Normalized cross correlation function

%Program for Normalized Cross Correlation Calculation

1. function NK = NormalizedCrossCorrelation(realimg, ehnimg)

2. reallmg = double(realimg);

3. ehnlmg = double(ehnimg);

4. NK = sum(sum(reallmg .* ehnimg)) ./ sum(sum(realimg .*
realimg));

B10: Total Edge Difference Function

1. function TED = TotalEdgeDifference(realimg, ehnimg)
2. reallmg=edge(reallmg,'sobel’);

3. figure, imshow(realimg)

4. reallmg = double(reallmg);

5. ehnlmg=edge(ehnimg,'sobel’);
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6. figure, imshow(realimg)
7. ehnlmg = double(ehnimg);
8. [M, N] = size(reallmg);

9. error =reallmg - ehnimg;

10. TED = sum(sum(abs(error))) / (M * N);

B11: Gradient Magnitude Error Function

%Program for GradientMagnitudeError Calculation

1. function GME = GradientMagnitudeError(reallmg, enhimg)

2. reallmg = double(realimg);

3. enhimg = double(enhimg);

% Gradient transform of image

4. [FX1,FY1] = gradient(realImg);

Gmagorg=sgrt((FX1.*FX1)+(FY1.*FY1));

[FX1,FY1] = gradient(enhIimg);

Gmagdist=sqrt((FX1.*FX1)+(FY1.*FY1));

5. [M, N] = size(reallmg);

6. error=abs(Gmagorg)-abs(Gmagdist); error=error.*error;

7. GME =sum(sum( error)) / (M * N)
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B12: Gradient Phase Error Function

%Program for GradientMagnitudeError Calculation

1. function GPE = GradientphaseError(realimg, enhimg)

2. reallmg = double(realimg);

3. enhlmg = double(enhimg);

% Gradient transform of image

4. [FX1,FY1] = gradient(realimg);%gradient of originalimage

5. z=complex(FX1,FY1);%transfer to complex number

6. argGmagorg = angle(z);%angle of complex original image

7. [FX1,FY1] = gradient(enhlmg);%gradient of ditortedimage

8. y=complex(FX1,FY1);%transfer to complex nhumber

9. argGmadist = angle(y);%angle of complex distorted image

10. [M, N] = size(reallmg);

11. error=abs(argGmagorg)-abs(argGmadist);

12. GPE =sum(sum( error.*error)) / (M * N
B13: Spectral Magnitude Error Function

%Program for SpectralMagnitudeError Calculation

1. function SME = SpectralMagnitudeError(realimg, enhimg)

2. reallmg = double(reallmg);

3. enhlmg = double(enhimg);
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% Fastfourier transform of image

4. fftA = fft2(double(realimg));

5. zlr=real(fftA);%image real part

6. zli=imag(fftA);%image imaginary part

7. fftAl=sqrt((z1r.*z1r)+(z1i.*z1i));%gradient of image fftB =
fft2(double(enhlimg));

8. z2r=real(fftB);%image real part

9. z2i=imag(fftB);%image imaginary part

10. fftB1=sqrt((z2r.*z2r)+(z2i.*z2i));%gradient of image [M , N] =
size(reallmg); error=abs(fftA1)-abs(fftB1);

11. SME =sum(sum( error.*error)) / (M * N);

B14: Spectral Phase Error Function

%Program for SpectralPhaseError Calculation

1. function SPE = SpectralPhaseError(reallmg, enhlmg)
2. reallmg = double(reallmg);

3. enhlmg = double(enhimg);

% Fastfourier transform of image 4. fftA =
fft2(double(realimg)); argfftA =angle(fftA); fftB =
fft2(double(enhimg)); argfftB =angle(fftB); [M , N] =

size(reallmg); error=abs(argfftA)-abs(argfftB);
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5. SPE =sum(sum( error.*error)) / (M * N);

B15: Total Corner Difference Function

%Program for TotalCornerDifference Calculation

=

function TCD = TotalCornerDifference(reallmg, ehnimg)

2. reallmg = double(realimg);

3. ehnlmg = double(ehnimg);

4. NCRorig = detectHarrisFeatures(reallmg); imshow(reallmg); hold
on;

5. plot(NCRorig);

6. NCRorig = length(NCRorig);

7. NCRdist = detectHarrisFeatures(ehnlmg); imshow(ehnimg); hold
on;

8. plot(NCRdist);

9. NCRdist = length(NCRdist);

10. max1= max(NCRorig,NCRdist);

11. TCD =(abs(NCRorig-NCRdist))/max1;
Appendix C: Screenshots of Training Results Obtained in [4.2]

The following are the screen shots of 4 different datasets, each dataset
contains 60 images with 30 real and 30 fake face samples, and each face
with 15 image quality assessments calculated and results provided. 5
different classifiers are calculated with different types of plots, each
classifier is shown in terms of scatter plot, confusion matrix, ROC curve,

and parallel coordinates.
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Appendix C1

NUAA database subject-4:

This table shows the result of 15 image quality measurements calculations with

30 real face images and 30 fake samples for training.

Subject-4 60 face image samples with 15 (IQA) measures results:

USERS MSE SNR PSNR NK AD SC MD RAMD NAE TED SPE
‘real’ 0.00013839 32.934 86.72 0.99604 9.00061522 1.0075 0.19492 0.1739 9.0092871 0.002625 0.012271
‘real’ 0.00014198 33.179 86.608 0.99625 0.00062833 1.0071 09.19256 0.16744 0.0088657 0.0027917 0.01416
‘real’ 0.00016147 32.598 86.05 0.99607 0.00061549 1.0074 0.20097 0.18342 0.0099305 0.00325 0.013656
‘real’ 0.00015828 32.435 86.137 0.9959 0.00062885 1.0077 0.21041 9.18983 0.010396 0.0031979 0.013765
‘real’ 0.00014756 32.735 86.441 9.99602 0.0006144 1.0075 09.20238 9.1655 9.010352 0.0034323 0.016672
‘real’ 9.000159 32.602 86.117 0.99601 9.00062285 1.0075 9.20167 9.18023 9.010156 0.0033542 0.013769
‘real’ 0.00017017 31.738 85.822 0.99535 0.00060042 1.0087 0.21421 0.1912 0.011653 0.0030885 0.01303
‘real’ 0.0001985 32.941 85.153 0.99635 0.00073598 1.0068 9.19495 0.18086 0.0089552 0.0029792 0.012547
‘real’ 0.0001894 33.528 85.357 9.99685 0.00073604 1.0059 0.20786 9.18541 0.0080029 0.0030938 9.01147
‘real’ 0.00019291 33.415 85.277 9.99676 09.00075341 1.0061 0.1908 0.17782 9.008108 9.0031458 9.0095362
‘real’ 0.00016202 33.986 86.035 0.99705 0.00064447 1.00855 0.18593 0.16199 9.0076339 0.0028906 0.013223
‘real’ 0.00018424 33.738 85.477 0.9969 0.00076227 1.0058 0.23706 9.18761 09.0076722 0.0026875 0.011457
‘real" 0.00018953 33.754 85.354 09.99693 0.00076952 1.0058 0.23747 0.18922 0.0075694 0.0030573 0.010764
‘real’ 0.00019154 33.727 85.308 9.99694 0.00076266 1.0057 0.20439 9.18927 0.0076949 0.0029896 0.0085035
‘real’ 0.00019388 33.609 85.256 0.99688 0.00076477 1.0058 0.264 0.19447 0.0077714 0.0029635 0.0093597
‘real’ 0.00019459 33.693 85.24 0.99697 0.00074878 1.0057 0.2004 9.18591 0.0076079 0.003125 0.012308
‘real’ 0.00019479 33.583 85.235 9.99685 9.00077301 1.0059 0.22134 9.18637 9.0076587 9.002901 0.012273
‘real" 0.00019392 33.671 85.255 9.99694 0.00074319 1.0057 9.1997 0.17885 0.0076774 0.0031979 0.012164
‘real’ 0.00019314 33.638 85.272 09.99688 0.00076306 1.0058 0.21931 9.18345 0.0076866 0.003099 0.0092178
‘real" 0.00019131 33.681 85.313 09.99692 0.00075223 1.0058 0.19907 0.17749 9.0076312 0.0029792 0.0098657
‘real’ 0.00019322 33.416 85.27 0.99674 0.00074967 1.0061 0.22075 0.19771 0.0080081 0.003 9.011538
‘real’ 0.00019588 33.393 85.211 09.99673 0.00075814 1.0061 0.23827 0.19304 0.0079388 0.002849 0.010265
‘real’ 0.00019382 33.647 85.257 0.99691 0.00074055 1.0058 0.20841 9.19325 0.0076741 0.00275 0.0078554
‘real’ 0.00019228 33.617 85.291 0.99686 0.00076428 1.0059 0.21396 9.18138 0.0077732 0.0027865 0.0098173
‘real’ 0.0001732 33.756 85.745 9.99692 0.00071376 1.0058 0.22671 09.17936 0.0080104 0.0037448 0.0152
‘real" 0.00017533 33.762 85.692 0.99696 0.00070509 1.0057 0.20167 0.17326 0.0079211 0.0037344 0.015011
‘real’ 0.00017001 33.695 85.826 0.99686 0.00070015 1.0059 0.20167 0.17841 0.0081397 9.0034531 0.016233
‘real" 0.00017006 33.572 85.825 0.99678 0.00070483 1.006 09.21368 0.19082 0.0081743 0.003526 0.015239
‘real’ 0.0001754 33.878 85.69 9.99701 0.00070713 1.0056 0.20167 0.18654 0.0077468 ©9.0033958 0.017633
‘real’ 0.00017986 33.745 85.581 0.99698 0.00070018 1.0056 0.19386 0.16788 0.0079178 0.0032135 0.015126
‘fake' 4.8054e-06 38.497 101.31 0.99811 5.1649e-05 1.0037 0.12605 0.0846438 0.0056693 0.0026615 0.069974
‘fake* 2.7936e-05 35.907 93.669 09.99724 0.00025209 1.0053 0.1785 0.12786 9.0051504 0.0032917 0.065515
‘fake' 5.6548e-05 38.105 90.607 9.99832 0.00036697 1.0032 0.15674 0.12984 9.0048454 0.0019219 0.021402
‘fake* 6.7866e-05 37.902 89.814 9.99829 0.00044861 1.0033 9.18731 9.15286 09.0042187 0.0023437 9.012336
‘fake' 7.3403e-05 37.704 89.474 0.99823 9.00042351 1.0034 0.14932 0.1192 0.0045607 0.001599 0.010396
“fake' 7.9749¢e-05 37.393 89.114 0.99811 0.00043581 1.0036 9.15527 9.12049 0.0050042 0.0018333 0.007759
‘fake' 7.6885e-05 37.575 89.272 09.9982 0.00045617 1.0034 0.15878 0.12016 0.0048253 0.0020677 0.010794
“fake" 4,8946e-05 40.346 91.234 0.99884 0.00051088 1.0022 0.14299 9.11298 0.002892 0.0027135 0.014089
‘fake' 6.2492e-05 39.865 90.173 0.99891 0.0004239 1.0021 0.14031 0.11609 0.0030518 0.0017969 0.009197
‘fake' 7.0479e-05 37.927 89.65 9.99832 0.00038201 1.0032 0.14468 9.11537 9.0049119 0.0016667 0.0061615
‘fake' 7.2001e-05 37.949 89.557 09.99834 0.00043616 1.0032 0.15264 9.11883 9.0044933 0.0020938 0.010704
'fake* 6.8657e-05 38.243 89.764 0.9984 0.00039086 1.0031 0.15815 9.12542 0.0039882 0.0019479 0.013604
‘fake' 7.2132e-05 38.102 89.549 0.99841 0.00037659 1.003 0.14464 0.11568 0.0042557 0.0020729 0.0087943
“fake" 5.8876e-05 39.001 90.431 0.99865 0.00037691 1.0026 9.13285 0.10772 9.0039503 0.0024219 0.007488
‘fake' 5.3248e-05 39.356 90.868 9.99869 0.00035889 1.0025 0.12794 0.10517 5.3248e-05 0.0019167 0.0075881
‘fake' 5.8339e-05 39.064 90.471 9.99861 0.00038632 1.0027 0.13341 0.11713 5.8339e-05 0.0028073 0.013207
‘fake' 5.4537e-05 39.314 90.764 0.99869 09.00037334 1.0025 0.12617 0.11049 5.4537e-05 0.0024896 0.012009
‘fake' 5.0727e-05 39.599 91.078 0.99875 0.0003539 1.0024 0.13325 0.10884 5.0727e-05 0.0029635 0.0085575
ake 6.9204e-05 38.156 89.729 9.99839 9.00046398 1.0031 9.14299 0.1226 6.9204e-05 0.0027083 0.0087255
Vaker
‘fake'  6.9204e-05 3815  89.729  0.99839  0.00046398  1.0031  0.14299  ©.1226  6.9204e-85  0.0027083  ©.8087255
‘fake'  7.0132e-65  38.28  89.672  0.99841  0.00049164  1.003  0.13073  ©.11275  7.0132e-65  0.001974  ©.013808
‘fake'  7.2012e-05 38132  89.557  0.9984  0.00041939  1.0031 0.13733  0.11587  7.2012e-05  0.001974  0.010302
‘fake'  7.3692e-65  37.986  89.457  0.99834  0.00045478  1.0032  0.15024  ©.11566  7.3692e-05  0.0015835  ©.0087009
‘fake'  6.26e-65  38.653 99,165  0.99848  0.00849749  1.0829  0.14915  ©.11746  6.26e-65  0.0031406  ©.017328
‘fake'  7.2664e-05 37,869 89,513  0.99832  0.00042005  1.0032  0.14159  0.11788  7.2664e-65  0.0020521  ©.013308
‘fake'  7.0068¢-85 37929  89.676  0.99833  0.00846432  1.0032  0.1532  0.11365  7.0068¢-65  0.0015833  ©.010553
‘fake'  6.0807¢-65 38755  99.291  0.9985  0.00044488  1.0008  0.14505  ©.11464  6.0807e-05  0.0032448  ©.01152
‘fake'  7.2794e-05 33066  89.51 ©.99836  0.00045375  1.0031  0.15034  ©.12037  7.2794e-05  0.001901  0.812951
‘fake'  5.226%e-85  39.209 99,948  0.99355  0.00041958  1.0828  0.14531 010995  5.2269¢-05  0.0020521  ©.8993765
‘fake'  5.5646e-95  40.288  90.676  0.99897  0.0004452 1,002  0.14498  ©.10007  5.5646e-95  0.0019792  ©.09064
‘fake'  6.8375e-65  38.421 89782  0.99843  0.00042914 1,003  0.1455  ©.11204  0.0042008  0.0016927  ©.0080838

Table 17 : Suject-4 LDA results
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SME

19.643
20.009
24.756
24.115
21.714
23.432
26.408
29.901
28.721
27.349
22.811
25.557
26.667
26.882
27.578
28.398
27.396
28.409
27.348
27.154
27.671
28.007
27.144
27.175
26.932
26.664
25.693
25.579
26.602
27.527
0.67508

8.2467

8.639
10.262
11.721
11.792
5.3965
8.3214
10.824
10.933

10.08
10.588
8.7381
7.4996
7.6931
7.71227

7.179
8.7369

8.7369
8.3524
10.322
10.345
7.8429
9.3421
10.104
7.7638
10.228
6.9743

6.917
10.245

GME GPE TD
0.00012298 9.18871 0.043716
9.00012931 9.19232 9.045198
0.00014512 9.20561 0.021858
0.00014209 09.20387 0.027273
0.00013139 09.20233 0.026756
9.00014325 9.20296 0.032787
0.00015127 0.20376 0.032922
0.00017819 0.23344 e

09.0001749 09.21364 0.025
9.00017559 0.21702 9.012146
0.00014458 9.21233 9.053333
0.00016804 0.21213 0.13187
9.00017476 9.22635 0.05042
9.00017533 0.2182 0.04386
9.00017721 0.21394 0.0845872
0.00017551 09.22521 0.047619
0.00017778 9.21839 9.028846
0.00017545 0.21967 9.032258
0.00017547 0.2188 ]
0.00017538 0.21423 0.039801
0.00017647 0.20993 0.027174
0.00018014 9.21319 0.043478
0.00017488 0.22058 0.025105
0.00017472 9.20894 0.018957
0.00015593 9.19769 0.02
0.00015638 9.19916 09.0076046

0.0001493 09.19425 0.087379
0.00015093 0.19677 9.00369

9.0001549 9.20338 9.039568
9.00015767 0.20057 9.011811
3.9738e-06 0.088608 0.011111

2.641e-05 09.10046 0.08
5.0944e-05 09.17464 0.10078
6.6474e-05 09.17193 0.12903
6.8378e-05 0.17164 0.060345
7.4845e-05 0.167 0.046296

6.581e-05 9.16944 9.030612
4.6254e-05 0.17298 0.18405
5.5334e-05 0.15688 [}
6.0384e-05 0.17484 0.082645
6.5327e-05 9.16981 0.068966

6.548e-05 0.16881 9.033708
6.6047e-05 9.15915 0.03
5.1857e-05 0.17351 0.10638
4.8106e-05 9.16136 0.11594
5.3788e-05 09.16167 9.083333
5.0296e-05 09.16755 0.0842857
4,7378e-05 09.16735 0.1125
6.6564e-05 9.16388 9.15584
6.6564-05  0.16338 0,158
6.6919¢-05  0.16484  0.845977
6.7932e-05  0.15787  0.058252
67358605  0.15682 0.1028
5.9835-05  0.16192 0.1358
6.6064e-05  0.16855  0.068966
5.94150-05  0.16326  0.10811
5.3266e-05  0.15407  0.10843
6.8728¢-85  0.1645  0.13889
4131305 0.1625 010377

4.993e-05  0.16027  0.08547
5.6433¢-05  0.16859  0.10638
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Figure C.3: Parallel coordinate plot
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Figure C.6: Parallel coordinate plot

Subject-4 QDA results plotted on scatter plot Figure C.4, confusion matrix

Figure C.5, parallel coordinate plot Figure C.6
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Figure C.8: Confusion matrix
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Figure C.9: Parallel coordinate

Dataset-4 linear SVM results plotted on scatter plot Figure C.7, confusion matrix

Figure C.8, parallel coordinate Figure C.9
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Figure C.10: Scatter plot
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Figure C.11: Confusion matrix
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Figure C.12: Parallel coordinate plot

Dataset-4 quadratic SVM results plotted on scatter plot Figure: C.10, confusion

matrix Figure C.11, parallel coordinate plot Figure C.12
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Figure C.13: Scatter plot
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Figure C.14: Confusion matrix
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Figure C.15: Parallel coordinate plot

Dataset-4 logistic regression results plotted on scatter plot Figure C.13, confusion

matrix Figure C.14, parallel coordinate plot Figure C.15
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Appendix C2

BEST-5

This table shows the result of best-5 image quality measurements calculations

with 30 real face images and 30 fake samples, for training.

60 face image samples using Best-5 (IQA) measures results

USERS SNR PSNR GME RAMD NAE

‘real” 34.559 88.877 9.3597e-e5 e.12ee7 ©.e8593
‘real” 34.555 89.3e8 8.3676e-05 ©.11753 ©.0060485
‘real” 32.776 89.532 7.6425e-05 ©.13e75 ©.e883913
‘real” 34.53 88.822 9.3662e-05 ©.12344 ©.e857317
‘real” 34.884 88.795 9.5253e-e5 ©.12169 ©.ee53178
‘real” 35.0e24 88.807 9.4725e-65 e.124e2 ©.e851799
‘real” 35.361 88.696 9.7598e-05 ©.11991 ©.ee473879
‘real” 35.2e5 88.786 9.6072e-05 ©.12807 ©.ee49823
‘real” 34.886 88.753 9.6988e-05 ©.11976 ©.ee5279%4
‘real” 35.876 88.763 9.5883e-05 ©.12522 ©.ee51271
‘real” 34.283 88.698 9.6514e-05 ©.135 ©.e062645
‘real” 34.421 88.666 9.9836e-05 ©.12585 ©.8858685
‘real” 34.895 88.66 9.9127e-e5 e.12e48 ©.e852329
‘real” 35.129 88.587 9.9566e-85 @.13e35 ©.ee51578
‘real” 34.883 88.624 9.7987e-05 ©.1199 ©.ee53251
‘real” 34.229 88.312 ©.0eel1e356 ©.13645 ©.ee61778
‘real” 33.572 85.825 ©.00015e393 e.19es82 ©.ee81743
‘real” 33.878 85.69 ©.0001549 ©.18654 ©.e877468
‘real” 33.745 85.581 ©.ee0e15767 @.16788 ©.ee79178
‘real” 33.838 85.663 ©.20015458 ©.17485 ©.ee77544
‘real” 33.617 85.291 ©.00017472 ©.18138 ©.e877732
‘real” 33.756 85.745 ©.000815593 ©.17936 ©.0880l1e4a
‘real” 33.762 85.692 ©.00015638 ©.17326 ©.ee79211
‘real” 33.695 85.826 ©.0001493 ©.17841 ©.ee81397
‘real” 33.681 85.313 ©.ee017538 e.17749 ©.ee76312
‘real” 33.416 85.27 ©.e0017647 ©.19771 ©.e080081
‘real” 33.393 85.211 ©.e00l180e14 e.193e4 ©.e879388
‘real” 33.638 85.272 ©.e0017547 ©.18345 ©.00763866
‘real” 32.435 86.137 ©.00014209 ©.18983 ©.81e396
‘real” 33.179 86.608 ©.80012931 e.16744 ©.0888657
*fake® 35.493 88.215 ©.0eee1e6 ©.14331 ©.ee51696
‘fake"® 36.243 89.e46 8.3146e-065 ©.155 ©.ee45605
‘fake® 35.345 89.022 8.21e3e-05 e.14201 ©.ee56ce47
‘fake® 35.937 88.658 8.7569e-065 ©.16182 ©.ee53674
‘fake"® 34.967 88.921 8.4007e-065 ©.15956 ©.0858607
‘fake® 35.253 87.763 ©.e001e958 ©.15927 ©.ee6157
‘fake® 36.952 88.742 9.37e3e-e5 ©.1873 ©.00840e661
‘fake® 35.597 88.149 9.9857e-65 ©.1699 ©.9852483
*fake® 35.421 88.561 9.4674e-065 ©.13973 ©.e855972
‘fake*® 37.175 88.559 9.457e-e5 @.157e3 ©.e839232
‘fake® 38.497 l1e1.31 3.9738e-0©6 ©.084648 ©.e856693
*fake® 36.283 9©.179 5.4458e-05 ©.155e3 ©.ee542
‘fake® 36.63 9e.787 5.8339%e-65 ©.1522 ©.e85e557
‘fake® 37.2e8 89.719 7.1426e-05 ©.17229 ©.8839925
‘fake® 35.276 87.736 ©.00012021 ©.2e81 ©.0001e953
‘fake® 36.426 87.733 ©.e0011548 ©.1646 ©.eeel1e96
*fake® 35.9e7 93.669 2.641e-©5 ©.12786 2.7936e-05
‘fake*® 38.1e5 90.607 5.8944e-65 ©.12984 5.6548e-85
‘fake"® 37.9e2 89.814 6.6474e-05 ©.15286 6.7866e-05
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‘fake”® 37.7e4a
*fake" 37.393
‘fake” 37.575
*fake” 49.346
‘fake"® 39.865
*fake"® 37.927
*fake"® 37.949
‘fake”" 38.243
‘fake”® 38.102
‘fake"® 39.ee1
‘*fake® 39.356

Table 18

LDA:

4

89.474
89.114
89.272
91.234
90.173

89.65
89.557
89.764
89.549
9©.431
9©.868

: Best-5 LDA results

6.8378e-©5
7.4845e-065

6.581e-065
4.6254e-05
5.5334e-©5
6.9384e-65
6.5327e-©5

6.548e-65
6.6847e-05
5.1857e-©5
4.8106e-05

©.1192
e.12e49
e.12e1l16
©.11298
©.116e9
©.11537
©.11883
©.12542
©.11568
e.1e772
e.1e517

7 .34e3e-85
7.9749e-65
7 .6885e-85
4.8946e-05
6.2492e-65
7.e479%e-€5
7.200l1e-05
6.38657e-85
7.2132e-©5
5.8876e-065
©.02338863
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Figure C.17: Confusion matrix
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Figure C.18: Parallel coordinate

Best-5 LDA results plotted on scatter plot Figure C.16, confusion matrix Figure

C.17, parallel coordinate Figure C.18
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Figure C.20: Confusion matrix
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LINEAR SVM:

Figure C.21: Parallel coordinate
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Figure C.22: Scatter plot
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Figure C.23: Confusion matrix
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Figure C.23: Parallel coordinate

Best-5 Linear SVM results plotted on scatter plot Figure C.21, confusion matrix

Figure C.22, parallel coordinate Figure C.23
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Figure C.24: Scatter plot
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Figure C.25: Confusion matrix
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Figure C.26: Parallel coordinate

Best-5 Quadratic SVM results plotted on Figure C.24 scatter plot, confusion matrix

Figure C.25, parallel coordinate Figure C.26
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Figure C.28: Confusion matrix
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Figure C.29: Parallel coordinate

Best-5 logistic regression results plotted on scatter plot Figure C.27, confusion

matrix Figure C.28, parallel coordinate Figure C.29

137



Appendix C3

BEST-10:

This table shows the result of best-5 image quality measurements calculations
with 30 real face images and 30 fake samples. 60 face image samples using

Best-10 (IQA) measures results

USERS MSE SNR PSNR AD sC MD RAMD NAE SPE GME

‘real’ 8.4209e-05 34.559 88.877 ©.00064206 1.0063 ©.20167 ©.12007 ©.008593 ©.018559 9.3597e-05
‘real’ 7.625e-05 34.555 89.308 9.00061616 1.0064 ©.20167 ©.11753 ©.0060485 9.017381 8.3676e-05
‘real’ 7.243e-05 32.776 89.532 ©.00058189 1.0094 9.20167 ©.13e75 ©.0083913 9.022029 7.6425e-05
‘real’ 8.5278e-05 34.53 88.822 ©.00063461 1.0063 9.20167 ©.12344 ©.0e57917 ©.021296 9.3662e-05
‘real’ 8.5812e-05 34.884 88.795 ©.00064549 1.0058 9.20167 ©.12169 ©.0053178 9.018361 9.5253e-05
‘real’ 8.5573e-05 35.024 88.807 ©.00064688 1.0056 ©.20167 ©.12402 ©.0051799 ©.01955 9.4725e-05
‘real’ 8.779e-05 35.361 88.696 ©.00066055 1.8052 9.20167 ©.11991 ©.0e47879 ©.016268 9.7598e-05
‘real’ 8.60084e-05 35.205 88.786 ©.00066703 1.0055 9.20167 ©.12807 ©.0049823 9.018106 9.60872e-05
‘real’ 8.6658e-05 34.886 88.753 ©.00066096 1.0058 ©.20167 ©.11976 ©.0052794 ©.016649 9.6908e-05
‘real’ 8.6452e-05 35.976 88.763 9.00066368 1.0056 9.20167 ©.12522 ©.0051271 9.018175 9.5803e-05
‘real’ 8.7757e-05 34.203 88.698 ©.00062173 1.0069 9.20167 ©9.135 ©.0062645 9.021273 9.6514e-05
‘real’ 8.8399e-05 34.421 88.666 ©.00067401 1.8865 9.20167 ©.12585 ©.0058685 ©.018366 9.9@36e-05
‘real’ 8.8535e-05 34.895 88.66 9.00066655 1.0059 9.20167 ©.12048 ©.00852329 9.023758 9.9127e-0@5
‘real’ 9.0019e-05 35.129 88.587 9.00065226 1.0056 ©.20167 ©.13035 ©.0051578 ©.017134 9.9566e-85
‘real’ 8.9271e-05 34.883 88.624 ©.0006397 1.0058 9.20167 ©.1199 ©.0e53251 ©.018866 9.7987e-05
‘real’ 9.5989e-05 34.229 88.312 9.00063929 1.0066 9.20167 ©.13645 ©.0061778 9.019357 9.00010356
‘real’ 9.4493e-05 34.597 88.377 ©.00064353 1.0061 ©.20167 ©.13461 ©.0054946 9.020816 ©.00010296
‘real’ ©.00013839 32.934 86.72 ©.00061522 1.8975 ©.19492 ©.17396 ©.0092871 9.012271 ©.00012298
‘real’ 9.00014198 33.179 86.608 ©.00062833 1.0071 ©.19256 ©.16744 ©.0088657 ©.01416 ©9.00012931
‘real’ ©.00016147 32.598 86.05 ©.00061549 1.e074 9.20097 ©.18342 ©.0099305 ©.013656 ©.00014512
‘real’ 9.00017006 33.572 85.825 9.00070483 1.006 9.21368 ©.19082 ©.0081743 9.015239 ©.00015093
‘real’ ©.0001754 33.878 85.69 ©.00070713 1.0056 ©.20167 ©.18654 ©.0077468 ©.017633 ©.0001549
‘real’ ©.00017986 33.745 85.581 9.00070018 1.0056 9.19386 ©.16788 ©.0079178 ©.015126 ©.00915767
‘real’ ©.0001765 33.838 85.663 ©.00068959 1.0056 @.19081 ©.17485 ©.0077944 ©.01914 9.00015458
‘real’ ©.00019228 33.617 85.291 ©.00076428 1.0059 ©.21396 ©.18138 ©.0077732 ©0.0098173 ©.00017472
‘real’ ©.0001732 33.756 85.745 9.00071376 1.0058 9.22671 ©.17936 ©.0080104 ©.9152 ©.00015593
‘real’ 9.00017533 33.762 85.692 ©.00070509 1.8057 9.20167 ©.17326 ©.0079211 9.015011 ©9.00015638
‘real’ 9.00017001 33.695 85.826 ©.00070015 1.8059 9.20167 ©.17841 ©.0081397 9.016233 ©.0001493
‘real’ ©.00019131 33.681 85.313 ©.00075223 1.e058 9.199e7 ©.17749 ©.0076312 9.0898657 ©.00017538
‘real’ ©.00019291 33.415 85.277 ©.00075341 1.0061 9.19838 ©.17782 ©.083108 ©.0095362 ©.00017559
‘fake* 4.8054e-06 38.497 101.31 5.1e49e-05 1.0037 9.12605 ©.084648 ©.0056693 ©.069974 3.9738e-06
‘fake* 2.7936e-05 35.907 93.669 9.00025209 1.0053 9.1785 ©.12786 ©.0051504 9.065515 2.641e-05
‘fake* 5.6548e-05 38.1e5 90.607 9.00036697 1.0032 ©.15674 ©.12984 ©.0043454 9.021402 5.8944e-05
‘fake' 6.7866e-85 37.902 89.814 ©.00044861 1.0033 ©.18731 ©.15286 ©.0e42187 9.012336 6.6474e-05
‘fake* 7.3403e-05 37.7e4 89.474 ©.00042351 1.0034 9.14932 9.1192 ©.0045607 9.010396 6.8378e-05
‘fake* 7.9749e-05 37.393 89.114 ©.00043581 1.0036 9.15527 ©.120e49 ©.0050042 9.007759 7.4845e-05
‘fake* 7.6885e-05 37.575 89.272 ©.00045617 1.0034 9.15878 ©.12016 ©.00438253 9.010794 6.581e-05
‘fake* 4.8946e-05 40.346 91.234 ©.00051088 1.0022 ©.14299 ©.11298 9.002892 ©.014089 4.6254e-05
‘fake* 9.8088e-05 35.493 88.215 9.00074017 1.8055 9.20167 ©.14331 ©.0051696 ©.016988 9.000106
‘fake* 8.1eese-e5 36.243 89.046 ©.00061491 1.e047 9.20167 ©.155 ©.0045605 ©.020919 8.3146e-05
‘fake* 8.1442e-05 35.345 89.022 9.00057141 1.0055 ©.20167 ©.14201 ©.0056047 9.019659 8.21@3e-05
‘fake' 8.8566e-085 35.937 88.658 ©.00054823 1.e047 9.20167 ©.16182 ©.0053674 9.021966 8.7569e-05
‘fake* 8.3372e-05 34.967 88.921 ©.00058639 1.0059 9.23527 ©.15956 ©.0058607 9.038422 8.4007e-05
‘fake® ©.00010885 35.253 87.763 ©.00058799 1.0054 9.20167 ©.15927 9.006157 9.032198 ©.00010958
‘fake* 7.677e-@5 37.434 89.279 ©.00060234 1.0036 9.20167 ©.14072 7.677e-05 9.049049 8.2915e-05
‘fake* 9.0564e-05 35.421 88.561 ©.00059849 1.0053 ©.20167 ©.13973 9.0564e-05 9.017328 9.4674e-05
‘fake* 9.9591e-85 35.597 88.149 ©.0006201 1.0049 9.2143 9.1699 9.9591e-05 ©.0075677 9.9857e-05
‘fake* 8.6868e-05 36.952 88.742 ©.0006171 1.0038 9.20232 ©.1873 8.6868e-05 9.036186 9.3703e-05
‘fake* ©.00010953 35.276 87.736 9.00069352 1.0053 ©.22616 9.2081 ©.00010953 9.029545 9.00012021
‘fake* 6.9372e-05 37.2e8 89.719 9.00054926 1.e036 9.20202 9.17229 6.9372e-05 9.820216 7.1426e-05
*fake’ 5.425e-05 36.63 90.787 ©.00043978 1.0043 ©.20167 9.1522 5.425e-@5 ©.930751 5.8339e-05
‘fake* 6.24e-05 36.283 90.179 ©.00044605 1.0043 ©.20167 9.155e3 6.24e-05 ©.038663 5.4458e-05
‘fake' ©.0001096 36.426 87.733 ©.00071931 1.0042 9.20167 ©.1646 ©.0001096 ©.912264 ©.00011548
‘fake® 7.7542e-05 37.349 89.235 9.00061522 1.0036 9.20167 9.14717 7.7542e-05 9.039177 8.141e-05
‘fake' 6.115e-085 36.412 90.267 9.0004505 1.0044 9.20167 9.15111 6.115e-85 9.042231 6.4219e-05
‘fake* 5.0384e-05 37.571 91.1e8 9.00037773 1.0033 9.20167 ©.12825 5.08384e-05 ©.031618 5.8417e-05
‘fake' 5.7857e-@5 34.223 90.568 ©.00043462 1.0064 ©9.22484 9.13981 5.7857e-05 9.020968 5.3417e-05
‘fake' ©.00010006 36.217 88.128 9.00071932 1.0044 9.20167 9.15737 ©.00010006 9.0827854 ©.00010648
‘fake’ 9.0619e-05 37.175 88.559 ©.000688 1.0037 ©.20167 ©.157e3 9.0619e-05 9.011651 9.457e-05
‘fake' ©.00010313 36.528 87.997 ©.00078093 1.0042 9.22104 0.17036 9.084157 0.022727 ©.00011146

Table 19 : Best-10 LDA result
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Figure C.30: Scatter plot
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Figure C.31: Confusion matrix
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Figure C.32: Parallel coordinate

Best-10 LDA results plotted on scatter plot Figure C.30, confusion matrix

Figure C.31, parallel coordinate Figure C.32
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Figure C.33: Scatter plot
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Figure C.35: Parallel coordinate

Best-10 QDA results plotted on scatter plot Figure C.33, confusion matrix Figure

C.34, parallel coordinate Figure C.35
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Figure C.36: Scatter plot
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Figure C.37: Confusion matrix
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Figure C.38: Parallel coordinate

Best-10 Linear SVM results plotted on, scatter plot Figure C.36, confusion matrix

Figure C.37, parallel coordinate Figure C.38
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Figure C.39: Scatter plot
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Figure C.40: Confusion matrix
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Figure C.41: Parallel coordinate

Best-10 Quadratic SVM results plotted on, scatter plot Figure C.39, confusion matrix

Figure C.40, parallel coordinate Figure C.41
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Figure C.42: Scatter plot
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Figure C.43: Confusion matrix
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Figure C.44: Parallel coordinate

Best-10 logistic regression results plotted on, scatter plot Figure C.42, confusion

matrix Figure C.43, parallel coordinate Figure C.44
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Users Real-min Real-max Fake-min Fake-max
MSE 0.000138 0.000195 2.793 7.974
SNR 31.738 33.986 35.907 40.288
PSNR 85.153 86.720 89.114 101.31
NCC 0.9953 0.9970 0.9972 0.9998
AD 0.0006 0.0006 0.0002 0.0005
SC 1.0055 1.0087 1.0021 1.0053
MD 0.190 0.238 0.126 0.187
RAMD 0.161 0.197 0.100 0.152
NAE 0.007 0.009 0.002 0.005
TED 0.002 0.003 0.001 0.003
SPE 0.0077 0.0176 0.0061 0.0173
SME 19.643 29.901 3.040 10.933
GME 0.00012 0.00018 2.641 6.872
GPE 0.188 0.233 0.100 0.174
TCD 0 0.087 0 0.082

Table C.4: Min, max of 60 users

Table C.4 Minimum and maximum of each feature for 60 users in table C.1
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Appendix D: Screenshots of classification results
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Figure D.2: Exporting process
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Figure D.3: Name the exporting model
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Figure D.4: Exported training model
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Figure D.5: Code and function for classification
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Appendix E: Screenshots of experimental results with Gaussian
noise [3.2]

For real image: With variance 0 and mean 0: Screenshot of Original

Image and Distortion with Mean 0 and Variance 0:
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Figure: E.2: Screenshot of edge and corner detection of image
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Experiment with Gaussian noise (variance 0 and mean 0) shows the real and

distorted image using Gaussian noise Figure: E.1, represents Screenshot of Edge and
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Figure E.11: Results obtained from the present experiment on Gaussian
noise, mean 0, variance 0.025
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Figure: E.12: results obtained from the present experiment on Gaussian noise,
mean 0, variance 0.025

Experiment with Gaussian noise (variance 0 and mean 0) shows the real and
distorted image using Gaussian noise Figure: E.7, represents Screenshot Of Edge
And Corner Detection Of Image Figure: E.8, show the results obtained from the

present experiment on Gaussian noise, mean 0, variance 0.025 Figure: E.9, 10, 11, 12
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Figure: E.15: Results obtained from the present experiment on Gaussian

noise, mean 0, variance 0.05

4\ MATLAB R2014b 23 X
HOME PLOTS APPS EDTOR PUBLISH VEW (2P D )] search Documentation ,OE
L = &) (gFindFies : Insert =] R Stepin
cm HE « & /bl > LI Es= p— ) a
5 unction Call Stack:
[/compare v ) GoTo~v Comment % g %I § |3 step Out
New Open Save Breakpoints  Continue  Step TRYALWITHENHANCME... v|  Quit
v v v Pt ¥ { Find ~ Indent =] 3 - ;1 | Run to Cursor Debugging
FILE NAVIGATE £oiT EREAKPOINTS | DEBUG B
<c>@EA » A » imagequalitymeasurewithpic » -0
Current Folder ® | [ Editor - A\imagequalitymeasurewithpic\TRYALWITHENHANCMENT.m ® x
Name Main.m TRYALWITHENHANCMENT.m GAUSSIANNOISE.m SpectralMagnitudeError.m +
berdesn datab i -
@ aberdeen datab Ao P
@ e quality ineex = .
@  Distortedimages T
= o D 132 @% OLF orglapfilter (origImg) ;
@ s image quality estimator S R =)
T Photograph Imposter Database 134 - disp(OLF):
®  Originallmages 135 -  DLF = dislapfilter(distImg):
= utrecht database 136 - disp('dislapfil )2
@ amnalmageQualityMeasuresme.exe 137 — disp (DLF);
) AverageDifference.m 138 -  IMSE1 = Laplacianmse (OLE, DLF):
) bigim 139 — disp (' =1): v
#) dislmg_sobel_filter.m >
7
‘j dislapfilter.m W
i Ly 23.2172
%) GAUSSIANNOISE.m
£ - ¥
~ 7-Peak Signal to Noise Ratio =
74.1343
Workspace ®
Name Value 8-Normalized Cross-Correlation =
HH Aap1 1.2365-04 ~ 0.9998
xd ans “distimg’
£ distimg 380x580 double 9-Average Difference =
EH distsiz [380,580] 1.2365e-04
2 filename1 ‘adrianl jpg’
£ GmEl 0.0020 10-Structural Content =
£ GPE1 20437 0.9956
EH M1 02201 YR -

- Stopped in debugger

Figure: E.16: Results obtained from the present experiment on Gaussian

noise, mean 0, variance 0.05

158



4\ MATLAB R2014b = X
H PLOTS. APPS. EDITOR PUBLISH VEW E1S S e i e G ®ISur(}'Dn(u'ﬂ:nm‘n(m pn
g =] [q] Find Files : Insert 51 5 ~ C ! & | stepin
CER = Bar-| (3 | b Eer : o
9 3 unction Call Stack:
|zl compare v Y GoTo v Comment % 52 %J |4 Step Out
New Open Save = A Breakpoints  Continue ~ Step TRYALWITHENHANCME... v|  Quit
B { Find Indent 2|z - 1| Run to Cursor Debugging
FiLE NAVIGATE =T EREAKFOINTS DEBUG
s EA » A: » imagequalitymeasurewithpic » v R
Current Folder ® | [A Editor - A\imagequalitymeasurewithpic\TRYALWITHENHANCMENT.m ® x
Name Main.m TRYALWITHENHANCMENT.m GAUSSIANNOISE.m SpectralMagnitudeError.m +
o = o -
@ aberdeen | et =
= 131
® 132 @
@ 5 133 -
@ nposter Database 134 -
® 135 - dislapfilter(distImg);
®  utrecht database 136 — 13151 1 =y
@ amnalmageQualityMeasuresme.exe 137 -
7] AverageDifference.m 138 -  IMSE1 = Laplacianmse (OLE, DLF):
1 bigi.m 139 — 1 =1); v
7 dislmg_sobel filter.m I< >
7
&) disapfiter.m Command Window ®
#) enhancement.m
ﬂ;mrmm 11-Maximum Difference = L}
) GAUSSIANNOISE.m 0.2208
£ o —_—
Details A 12-RaverageMD =
Workspace ® 0.2080
Name Value 13-Normalized Absolute Error =
FH AD1 1.2365¢-04 ~ 0.0668
+d ans
(1 distimg 14-Total Edge Difference =
| distsiz 0.0082
[+ filename1 ‘adriant jpg’
E g’;":‘ ggﬁo 15-TotalCornerDifference =
- GPE1 7
0.1794
Emn1 0.220¢ vil% v

- Stopped in debugger
:03 AM

12/8/2016 ﬁl

Figure: E.17: Results obtained from the present experiment on Gaussian
noise, mean 0, variance 0.05
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Figure: E.18: Results obtained from the present experiment on Gaussian noise,
mean 0, variance 0.05

Experiment with Gaussian noise (variance 0 and mean 0) shows the real
and distorted image using Gaussian noise Figure: E.13, represents

Screenshot Of Edge And Corner Detection Of Image Figure: E.14,
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show the results obtained from the present experiment on Gaussian

noise, mean 0, variance 0.05 Figure: E.15, 16, 17, 18
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Figure: E.19: Real and distorted image using Gaussian noise

4
HOME PLOTS APPS EDITOR PUBLISH VEW DEL S B @I,’wrnwwWnrun'rntntw PE
Figure 3 - O X
Edit View Inset Tools Desktop Window Help | View Inset Tools Desktop Window Help
SHe |k RAOPLEL- 2|08 DO SR AN ELAL- (B |0E | D
[ distimg R — NS—— . . -
EH distsiz 380,580] [
I : . 15-TotalCornerDifference =
Jzxd filename1 adriant jpg SR
| 6mE1 0.0082 9:7623
FH 6pet 21800
- mn1 04916 v| | fx x> v
-| Stopped in debugger script Ln 132 Col 1

211AM

<) / @) NG s B
Figure: E.20: Represents screenshot of edge and corner detection of
image

160



4\ MATLAB R2014b X

HOME PLOTS APPS EDITOR PUBLISH VEW DELsl gl @ls:mhDn(umzmamn ,UB
o — [E] L[dFndFies Insert (=1 fx [f] v < Stepin
co H @ <@ = £z [ L] feiser - @
o o unction Call Stack:
(LJcompare v ) GoTov Comment % g 4 Step Out

New Open Save ot Breakpoints  Continue  Step. TRYALWITHENHANCME... ¥ Quit

v v v Pt v { Find ¥ Indent [=] | |2 - 1 | Run to Cursor Debugging

FLE NAVIGATE £oiT BREAKPOINTS DEBUG
<P EHE » A: b imagequalitymeasurewithpic » P
Current Folder ® | [ Editor - A\imagequalitymeasurewithpic\TRYALWITHENHANCMENT.m ® x
Name Main.m TRYALWITHENHANCMENT.m GAUSSIANNOISE.m SpectralMagnitudeError.m +

@ aberdeen da ~ T brsi|
e R e 126 - TotalCornerDifference (origIng, distimg):
- > 127 - it =)
® s
% 128 -
® 129
@ 130
@ 131 s mse
® e 132 @% OLF = orglapfilter(origImg);:

@ amnalmageQualityMeasuresme.exe 133 — disp('org ilter = ');

7] AverageDifference.m 134 -  disp(OLF):

9 bigi.m 135 — NTE = A% alanfilrar(dsarTme - v

#) disimg_sobel_filter.m I« >

) dislapfilter.m Command Window o

&) enhancementm 6-signato to noise ratio = A

Qe = ;5 1937 A :

#) GAUSSIANNOIS '

B o, i
D PN 7-Peak Signal to Noise Ratio =

68.1108

Workspace ®
Name 8-Normalized Cross-Correlation =
H Ap1 - 1.0001
+d ans
EH distimg ouble 9-Average Difference =
HH distsiz [380,580] -1.5369e-04
[ filenamet ‘adriant jpg’
H 6me 0.0082 10-Structural Content =
1 eper 21300
Emn1 04916 v||& v

| Stopped in debugger

Figure: E.21: Results obtained from the present experiment on Gaussian

noise, mean 0, variance 0.1
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Figure: E.21: Results obtained from the present experiment on Gaussian noise,
mean 0, variance 0.1

Experiment with Gaussian noise (variance 0 and mean 0), shows the real and
distorted image using Gaussian noise Figure: E.19, represents Screenshot Of
Edge And Corner Detection Of Image Figure: E.20, show the results obtained
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E.21

Screenshot of original Image and with Gaussian Noise with Variance 0.5 and Mean

4
HOME PLOTS APPS EDITOR PUBLISH VEW (A S e Search Documentation e} q
1 - o X i
Jiew Insert Tools Desktop Window Help M
View Inset Tools Desktop Window Help ~ 2
\ 2 S = KRN PLEL-E|0B | DO
2R ARAOPEL- S |0B | nO E 2o b =
ORIGINAL TEXTURE IMAGE 7
<
g
38UNXS8U double ®
380,580] "
B . 15-TotalCornerDifference =
adriant jpg
02303 0.9205
23926
E- mp1 2465 v| | fe x>> -
topped in debugger script Ln 132 Col 1

Figure: E.22: Real and distorted image using Gaussian noise
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Figure: E.24: Represents screenshot of edge and corner detection of image
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Figure: E.25: Results obtained from the present experiment on Gaussian noise,
mean 0, variance 0.5
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Figure: E.25: Results obtained from the present experiment on Gaussian
noise, mean 0, variance 0.5
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Figure: E.26: Results obtained from the present experiment on Gaussian noise, mean

0, variance 0.5

Experiment with Gaussian noise (variance 0 and mean 0), shows the real and
distorted image using Gaussian noise Figure: E.22, represents Screenshot Of Edge
And Corner Detection Of Image Figure: E.23, show the results obtained from the

present experiment on Gaussian noise, mean 0, variance 0.5 Figure: E.24, 25, 26
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Figure: E.28: Represents screenshot of edge and corner detection of

image
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Figure: E.29: Results obtained from the present experiment on Gaussian noise,
mean 0, variance 1
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Figure: E.30: Results obtained from the present experiment on Gaussian noise,
mean 0, variance 1
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Figure: E. 31 Results obtalned from the present experiment on Gaussian noise, mean
0, variance 1
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Figure: E.32: Results obtained from the present experiment on Gaussian
noise, mean 0, variance 1

Experiment with Gaussian noise (variance 0 and mean 0), shows the real and
distorted image using Gaussian noise Figure: E.27 , represents Screenshot Of
Edge And Corner Detection Of Image Figure: E.28, show the results obtained
from the present experiment on Gaussian noise, mean 0, variance 1 Figure:
E.29, 30, 31,
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