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ABSTRACT

A COMPARATIVE STUDY OF BACKGROUND ESTIMATION

ALGORITHMS

Segmenting out mobile objects present in frames of a recorded video
sequence is a fundamental step for many video based surveillance applications. A
number of these applications can be listed as: detection and recognition,
indoor/outdoor object classification, traffic flow monitoring, lane fullness analysis,
accident detection etc. To achieve robust tracking of objects in the scene systems are
required to have reliable and effective background estimation and subtraction units.
There are many challenges in developing an all round good background subtraction
algorithm. Firstly the method(s) chosen must be robust against illumination changes.
Second then should avoid detection of non-stationary backgrounds (swaying grass,
leaves, rain, snow etc.) and shadows cast by objects blocking sun light. Finally they
should be quick in adapting to stop and start of vehicles in urban traffic. Therefore
high precision and computational complexity issues are very important while trying
to choose an algorithm for a particular environment.

In this thesis we have focused on five different background subtraction
algorithms. The methods which attracted considerable interest in the literature and
seemed to have fairly good characteristics were selected and implemented. These
were namely, approximated median filtering, mixture of Gaussians model,
progressive background estimation method and histogram/group-based histogram
approaches. These techniques were tested under different environments (using test

sequences) and also compared in a quantitative way using some synthetic video.



Also the work entailed an effective shadow removal technique which is used to avoid
detection of shadow pixels as part of the foreground mask.

The results show some critical tradeoffs between precision and speed of the
process. For instance, although approximated median filtering seems to be a suitable
approach due to its simplicity in computation, it fails to detect foreground objects
accurately when the background scene contains movements, in addition it is slow in
the case of adapting to frame changes which makes this algorithm impractical for
many outdoor applications.

The results of progressive method indicate that the algorithm is able to handle
the adaptation or deal more effectively than approximated median filtering with even
better accuracy for foreground extracting in expense of slightly losing the
performance speed. However, the background movement problem (shaking leaves,
flag in the wind, flickering, etc) still stands.

Mixture of Gaussians based results was promising in both adaptation and
precision however the method’s sensitivity to transient stops and its heavier
computational complexity were its main drawbacks. Finally although the group
based histogram was still too sensitive to fluctuation of light it led to acceptable
results introducing itself as a reliable background-foreground segmentation method
for its ability to deal with transient stops.

Keywords: Temporal Median Filtering,Background estimation,Mixture of
Gaussians background estimation, Median filtering, Histogram, Precision and recall,

Shadow removal



OZET

ARKA PLAN KESTIRIiM ALGORITMALARI UZERINE

KARSILASTIRMALI BiR CALISMA

Bir video dizinini olusturan gergevelerdeki hareketli nesnelerin boliitlenmesi
bir¢ok video tabanli sistem i¢in temel bir adim teskil eder. Bu uygulamalardan
bazilar1 asagidaki gibi siralanabilir: kestirim ve tanima, bina i¢i veya dis1 ortamlarda
nesne siiflandirmasi, trafik akis hesaplamasi, serit doluluk analizi, kaza algilama vb.
Izlenen alandaki nesnelerin saglikli takibi igin giivenilir ve etkili arkaplan tahmin ve
ayristirma Uniteleri gerekmektedir. Biitlin yonleri ile iyi bir algoritma gelistirmek
hemen hemen imkansiz1 istemek gibidir. Ik olarak secilen ydntemler aydinlatmada
meydana gelebilecek degisikliklere karsi dayamikli olmalhidir.  Daha sonra
algoritmalar sabitligi devamli degisen nesneleri (sallanan ot ve yapraklar, yagmur ve
kar gibi) arka planin bir parcasi olarak almamalidirlar. Ayrica algoritmalar giines
1s1gmmin  bloke edilmesinden olusan hareketli golgeleri de arka plandan
ayirabilmelidirler. Son olarak sehir i¢i trafiginde sikg¢a karsilagilan durma ve hareket
etmelere kars1 arka plani1 hizli bir sekilde adapte edebilmelidirler. Bu ylizden yiiksek
dogruluk ve hesaplama karmasikliginin ger¢ek zamanli calisacak kadar az olmasi
onemli noktalar1 teskil etmektedir. Bu tezde dort ayr1 arkaplan ¢ikarma algoritmasina
(background subtraction algorithms) odaklanilmistir. Literatiirde en ¢ok referans
almis ve 1yi benzetim sonuclar1 veren yontemler secilmis ve gerceklestirilmistir. Bu
bes yontem siras1 ile yaklasik ortanca siizgecleme yontemi, Gauss fonksiyonlari
karisim modeli, asamali arka plan Kestirim yontemi ve histogram/grup-tabanl

histogram yontemleridir. Bu teknikler farkli ortamlar i¢in degisik test video dizinleri



kullanarak degerlendirilmis ve ayrica sentetik video dizinleri kullanilarak kiyaslamali
olarak karsilastirilmistir. Ayrica, etkili bir golge kaldirma teknigi tanitilip tahmini
onplanlara uygulanmistir. Sonuglar islemin kesinligi ve hizi arasinda bazi kritik
odiinlesimler gostermistir. Ornegin approximated median filtering hesaplamadaki
kolaylig1 sebebiyle uygun bir yaklasim olarak goriilse de geri plandaki mekan
hareket igerdigi taktirde onplandaki nesneleri dogru olarak tespit edememektedir.
Ayrica bu yontem, gergeve degisimlerine uyumu agisindan da yavastir Ki bu durum
sozkonusu algoritmay1 bircok dis uygulama ig¢in kullanissiz kilmaktadir. Asamali
arkaplan kestirim algoritmasiyla elde edilen sonuglar gOstermektedir ki bu
algoritmanin adapte olma becerisi yaklasik ortanca siizgegli yonteme gore daha
etkilidir. Cok az hiz kaybina ragmen onplan c¢ikartmasi daha kesin bir bigimde
yapilabilmektedir. Buna ragmen geri plan hareket problemi hala (sallanan yapraklar,

dalgalanan bayrak, titreme, vb) devam etmektedir.

Gauss fonksiyonlar1 karigimli arkaplan kestirim yontemi keskinlik ve
adaptasyonda iyi olmasina ragmen gegici duraklama ve kalkislara hassas ve islem
zamani agisindan daha uzun bir zaman aralig1 gerektiren bir yontemdir. Son olarak,
grup temelli histogram yontemi 1sik dalgalanmalarina karsi ¢ok hassas olmasina
karsin duraklama ve kalkmalara karsi basarili olmasi nedeni ile guvenilir ve basarili

bir 6nplan-arkaplan bélitleme yontemi olarak kabul edilebilir.

Anahtar kelimeler: zamansal ortanca siizgecleme, asamali arkaplan kestirimi,

Gauss fonksiyonlar1 karigimli arkaplan kestirimi, keskinlik ve hatirlama dlgekleri,

golge belirleme ve kaldirma

Vi
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CHAPTER 1

INTRODUCTION

Video based surveillance systems (VBSS) employ machine vision
technologies to automatically analyze traffic data collected by wired CCTV cameras
and/or wireless IP camera systems. VBSS can be used to monitor highway
conditions, intersections, and arterials for detection of accidents, it can be used to
compute traffic flow, and for vehicle classification and/or identification. VBSS
systems are of three different types:

1) Tripwire Systems,

2) Tracking Systems,

3) Spatial Analysis based systems.

In Tripwire systems the camera is used to simulate usage of a conventional
detector by using small localized regions of the image as detector sites. Such a
system can be used to detect the state of a traffic light (red, yellow, green) or check if
a reserved section has been violated or not. Tracking systems detect and track
individual vehicles moving through the camera scene. They provide a description of
vehicle movements (east bound, west bound, etc.) which can also reveal new events
such as sudden lane changes and help detect vehicles travelling in the wrong

direction. Tracking systems can also compute trajectories and conclude on accidents



when different trajectories cross each other and then motion stops. Spatial analysis
based systems on the other hand concentrate on analyzing the two-dimensional
information that video images provide. Instead of considering traffic on a vehicle-to-
vehicle basis, they attempt to measure how the visible road surface is being utilized.

Conventional approaches of traffic surveillance include manual counting of
vehicles, or counting vehicles using magnetic loops on the road. The main drawback
of these methods, besides the fact that they are costly is that these systems can only
count but they cannot differentiate or classify.

Major part of the existing research and applications on traffic monitoring is
dedicated to monitoring vehicles on highways which carry heavy traffic volumes and
are incident prone. However, successful and efficient traffic monitoring at cross-
sections of the roads in crowded urban areas is also an important issue for road
engineers who are to develop new roads that will ease up the traffic load of the city.
Furthermore the traffic flow in the city can be displayed at a traffic control center by
combining information from various video streams and this information can be
exploited for re-directing flow of traffic intelligently.

Background subtraction is a common approach for identifying the moving
objects (foreground objects) in a video sequence. Each video frame from the
sequence is compared against a reference or background model. Once the reference
is computed (often called a background model), then it will be updated with each
newly arriving frame by exploiting different algorithms. Current frame pixels with
considerable deviation from the background model are accounted to be moving
objects.

Although many background subtraction methods are listed in the literature,

foreground detecting specially for outdoor scenes is still a very challenging problem.



The performance of VBSS will vary based on several environmental changes like the

ones listed below:

e Variable lighting conditions, during sunset and sunrise

e Camera angle, height and position

e Adverse weather conditions such as fog, rain, snow, etc

e Presence of camera vibration due to wind and heavy vehicles

Another important consideration while trying to choose an appropriate
background estimation method is the time required for processing a frame. If a
system has to run in real-time, its computational complexity should not be too high.
The background modeling approach must also be robust against the transient stops of
moving foreground objects and yet maintain a good accuracy.

Eliminating the cast shadows as undesired parts of the detected foreground
mask has become a standard pre-processing step in many applications since moving
shadows would affect the detection and identification processes in a negative
manner. In this work only the HSV color space based shadow removal algorithm will

be mentioned as an example.

1.1 Literature Review

In the literature there are many proposed background modeling algorithms.
This is mainly because no single algorithm is able to cope with all the challenges in
this area. There are several problems that a good background subtraction algorithm
must resolve. First, it must be robust against changes in illumination. Second, it
should avoid detecting non-stationary background objects such as swaying leaves,

grass, rain, snow, and shadows cast by moving objects. Finally, the background



model should be developed such that it should react quickly to changes in
background such as starting and stopping of vehicles.

Background modeling techniques could be classified into two broad
categories as: 1) Non-Predictive Modeling, and 2) Predictive Modeling. The former
tries to model the scene as a time series and creates a dynamic model at each pixel to
consider the incoming input using the past observations and utilizes the magnitude of
deviation between the actual observation and the predicted value to categorize pixels
as part of the foreground or background. However, the latter one neglects the order
of the input observations and develops a statistical (probabilistic) model such as PDF
at each pixel.

According to Cheung and Kamath [2], background adaptation techniques
could also be categorized as: 1) non-recursive and 2) recursive. A non-recursive
technique estimates the background based on a sliding-window approach. The L
observed video frames are stored in a buffer, considering the existing pixel variations
in the buffer the background image will be estimated. Since in practice the buffer
size is fixed as time passes and more video frames come along the initial frames of
the buffer are discarded which makes these techniques adaptive to scene changes
depending on their buffer size. However, in the case of adapting to slow moving
objects or coping with transient stops of certain objects in the scene the non-recursive
techniques require large amount of memory for storing the appropriate buffer. With a
fixed buffer size this problem can partially be solved by reducing the frame rate as
they are stored.

On the contrary the recursive techniques instead of maintaining a buffer to
estimate the background they try to update the background model recursively using

either a single or multiple model(s) as each input frame is observed. Therefore, even



the very first input frames are capable to leave an effect on new input video frames
which makes the algorithm adapt with periodical motions such as flickering, shaking
leaves, etc. Recursive methods need less storage in comparison with non-recursive
methods but possible errors stay visible for longer time in the background model.
The majority of schemes use exponential weighting or forgetting factors to determine
the proportion of contribution of past observations.

In this thesis we tried to neglect the methods which require a long period of
initialization such as the ones described in [3] which is characterized by eigen-
images and [4] using temporal maximum-minimum filtering along with maximum
inter-frame differencing for entire background model, and focused more on adaptable

background models.

1.1.1 Non-Recursive Techniques

The sub-sections below give a brief summary of some non-recursive

techniques.

1.1.1.1 Frame Differencing

This technique is probably one of the simplest among the background
subtraction algorithms. In the literature it is also referred to as the temporal
differencing approach. Simply, the previous frame is considered as the estimate for
the background at each time interval and foreground objects are detected by taking
the difference of the current input frame and the current reference. Since this method
uses only one frame to estimate the background it is quite sensitive to transient stops
[5,6], and can easily be affected by camera noise and illumination changes[7]. This
method also fails in correctly segmenting foreground objects if the size of the object

is large and its color is uniformly distributed. In the literature this problem is referred



to as the aperture problem.

1.1.1.2 Average Filtering

Average filtering approach creates the background model by averaging the
input frames over time. This is based on the assumption that since the foreground is
moving its presence is transient, therefore after averaging, the proportion of object in
the estimated background will become small. If one considers intensity of a certain
pixel over time and assumes that the object intensity is visible for just a specific
period of time (for instance 3 video frames) then the effective object intensity in the
background model based on that pixel will be 3/n, where n is the total number of
averaged frames.

Hence if the objects are large in size or if they move slowly their contribution
becomes more and more significant. Also shadows in same position(s) where the
object was detected in the previous frame(s) will appear in the background model.
They are generally referred to as ghosts in the literature. Furthermore, average
filtering is also known to show poor performance in the crowded scenes where lots
of moving objects or bi-modal backgrounds (flickering, shaking leaves, flag in the
wind, etc) has to be dealt with [8].

Koller et al. [15] has tried to improve the robustness to illumination changes
by means of implementing a moving-window average algorithm along with an
exponential forgetting factor. This trick may be helpful in suppressing some errors
due to illumination changes but it will obviously fail in the case of slow moving
objects and other shortcomings which were mentioned in prior to this method, since
background is updated using both the information from the previous background and

foreground.



Keeping these drawbacks in mind, indoor applications with little illumination
changes and fast moving objects with limited sizes will be the most suitable
environments for applying the average filtering method. The last step to modify this
algorithm is to exclude identified foreground pixels based on our estimated

background model in the updating procedure.

1.1.1.3 Median Filtering

Median filtering is widely used in many applications and has been extensively
discussed in the literature [9],[10],[15],[17]. In this approach, the background
estimate is computed as the median of all the pixel values stored in a buffer at each
pixel location. Here an assumption is made based on the fact that the pixels
belonging to the background scene are going to be sighted more than half of the
length of the entire video frames in the buffer which will result in slow updating
procedure due to the fact that if a static object is added to the scene it takes time at
least half of the entire stored frames to become part of the background.

Replacing median by its color counterpart “medoid” can lead to color
background estimation [10]. In spite of average filtering the median filtering is
capable of saving boundaries and existing edges in the frame without any blurring,

therefore gives a sharper background in comparison to the previous method.

1.1.1.4 Minimum-Maximum Filter

This method uses three different values to decide whether a certain pixel
belongs to background or not. These three values are minimum intensity of each
pixel during a specific time period while assuming no foreground objects are
available in the scene (training sequence), the maximum intensity of each pixel and
the maximum possible change based on the maximum intensity difference between

every two consecutive frames [13].



1.1.1.5 Linear Predictive Filter

Toyama et al. [14] estimates the background model through applying linear
predictive filters to predict the values corresponding to the background based on the
available k pixel-samples stored in a buffer. Wiener filter is one of the most
commonly used filters in such algorithms. If the accumulated pixel errors exceed the
predicted value too much (several times) those pixels will then be considered as part
of the foreground. The coefficients of the filter are computed at each frame time due
to covariance of the samples, therefore this algorithm is not applicable in real-time
procedures. Linear prediction using the Kalman filter was also used in [15], [16],
[17].

Monnet et al. [18] has used an autoregressive form of filtering for predicting
the newly added input frame. In [18] two different steps have been used to create and
preserve the background model. One of the steps was responsible to update the states
incrementally and the other one replaced the states of variation by means of the latest
observation map. Other methods can also be considered for prediction. For instance,
principal component analysis [19], [20] refers to a linear transformation of variables
that keeps from n operators the most significant magnitude of variation among the
training data in hand. Computing the basis vectors from the available data set is done
using singular value decomposition concept.

Unfortunately evaluation of these basis components for vectors containing
many data values is very time consuming computation. One solution to this problem
is by downsizing the procedure to block level and perform the computations on each

block of the image independently.



1.1.1.6 Non-Parametric (NP) Modeling

In NP modeling, the main interest is focused on estimating the corresponding
probability density function (pdf) at each pixel. Nonparametric methods compute the
density function directly from the observed data and there is no prior assumption or
knowledge regarding the underlying distribution. Therefore unlike its other

counterparts, there will be no model selection and distribution parameter estimation.

t=1 (1.1.1.6.1)

fU: =w) = Ku—-1)

In the above equation K(.) is the kernel estimator which most of the time is
assumed to be Gaussian. The pixels from the newly input video frame named I, is
considered as foreground related pixels when the probability of such occurrence f (1)
is below a specified threshold. It has been shown by [21] and [22] that Kernel density
estimators are able to converge asymptotically to practically any pdf. In fact, [18]
explains that all other existing non-parametric density estimation techniques can be
shown to be a variants of the kernel method. For example histogram based
algorithms which will be detailed in this thesis also are some of these techniques.

As mentioned before kernel density estimator algorithm does not include any
assumption for the general shape of the underlying distribution and it owns the
flexibility to reach any type of distribution for as long as it is fed with enough data
samples. Theoretical proof of this issue can be found in [21].

Flexibility to converge to almost any pdf makes this method appropriate to
estimate the areas containing color-distributions. Unlike the Gaussian Mixture Model
which is a parametric model which tries to fit Gaussian distribution(s) to each pixel,

the kernel density estimation is a more general technique with no fixed parameters.



In addition, the adaptation is performed by only observing the newly added data
instead of going through complex computation procedures hence it is simpler and
less time consuming. However, it should also be mentioned here that while
implementing kernel density estimation method, special care should be taken in
selecting appropriate kernel bandwidth (scale). The choice of kernel bandwidth is a
very critical task. If the bandwidth is chosen too small it will lead to rough or even
misleading density estimation, while if the kernel is chosen too wide it will result in
an over-smoothed density estimate [21].

Since different pixels have different intensity variations over time it’s not
practical to implement a single window for all pixels. A different kernel should be
used for each pixel. Even different kernel bandwidths are required for separate color
channels. Although wide range of kernel functions have been implemented in the
literature, the majority of the algorithms use Gaussian kernel due to its specific
characteristics such as continuity, differentiability, and locality. In practice selecting
a kernel shape (function) has nothing to do with fitting a distribution and kernel
Gaussian is only responsible to weight the data samples according to its shape.

Computational cost is one of the most notable shortcomings of the Kernel
density estimation algorithm. Also, it has serious challenges when the training
sequences are disturbed by the presence of foreground objects and takes quite long
for algorithm to estimate the real background. [23]

In [24], Elgammal explained that for a given new pixel, background model
updating process can be performed in two different ways; either by selective
updating or blind updating. In the former technique, the observed sample from the
input frame is added to the model if and only if it belongs to the estimated

background. However, in the latter one, simply every new sample is added regardless
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of its assigned category. Both of these approaches have their advantages and
disadvantages.

The selective updating method raises the ability of algorithm in detecting the
foreground objects more accurately, due to the fact that object related pixels are
excluded from the updating procedure. However in the case of any wrong decisions,
it will lead to persistent errors in future decisions. This undesired situation in the
literature is referred to as the deadlock situation.

The blind updating approach is not affected by such a problem because it does
not differentiate between samples as it updates the background model however this
will result in poor detection of the targets (more false negatives). This problem can
partially be solved by including less proportion of foreground-object related pixels
through increasing the time window of sampling process [24]. When the time
window is made wider, the adaptation process will be slowed down and therefore

more false positives will be visible in foreground representation.

1.1.2 Recursive Techniques

What follows below is a summary of the recursive techniques that can be used

for background estimation and subtraction.

1.1.2.1 Approximated Median Filter

Shortly after the non-recursive median filtering became popular among the
background subtraction algorithms, McFarlane and Schofield presented in [25] a
simple recursive filter for estimating the median of each pixel over time. This
method has been adopted by some for background subtraction for urban traffic
monitoring due to its considerable speed. This method is explained in the following

chapter and will be examined along with the other selected methods for evaluation of
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its pros and cons.

1.1.2.2 Single Gaussian

As mentioned earlier, calculating the average image of a sequence of frames
and then subtracting each new input frame and checking the difference values against
a predefined threshold is one of the simplest background removal techniques. In [26]
Wren presents an algorithm to assign a normal distribution with a certain mean and
standard deviation to each estimated background pixel using a color space named
YUV color space.

This algorithm requires t frames to estimate the mean p and the standard

deviation ¢ in each color component separately:

t

u(x,y,t) = Z pGeyD) (1.1.2.2.1)

t
i=1

t

o(x,y,t) = sqrt ZM 12y, ) (1.1.2.2.2)

L
i=1

Here, p(x,y,t) is the pixel’s current intensity value at the location ( x,y ) at a

given time t. After computing the parameters, a pixel is considered as a part of the

foreground object based on the following formula:

luCx,y,t) —p(x,y,t)| > c.o (x,y,t) (1.1.2.2.3)
where ¢ is a constant. Even though this method is capable of adapting to indoor
environments with gradual illumination changes, it’s not able to handle moving

background objects like trees, flags, etc.
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1.1.2.3 Kalman Filtering

This technique is one the most well known recursive methods specifically for
situations where noise is known to be Gaussian. If we assume the intensity values of
the pixels in the image follow a normal distribution such as N(u, o), where simple
adaptive filters are responsible for updating the mean and variance of the background
model to compensate for the illumination changes and include objects with long
stops in the background model. Background estimation using Kalman filtering has
been explained in [25] and [27].

Various algorithms can be found in literature that uses Kalman filtering. The
main difference between them is the state space they use for tracking. The simplest
ones are those which are based only on the luminance [26],[28],[29],[30].

In [31] Kalman and von Brandt added information achieved by temporal derivatives
to intensity values to get better results. The following is a summary of this procedure
demonstrating the general steps that should be taken to implement this method.

The internal state of the system is shown by B, the background intensity while B, , is

temporal derivative. Updates are done recursively through:

Bt’-_l

B€]=A [Bf‘l + K, .I, — H.A [
B, ' £t il ): (1.1.2.3.1)

B4
Matrix A describes the background dynamics and H is the measurement
matrix. The particular values used in [31] are as follows:

a= [t 97

o o7 - H=M 0 (1.1.2.3.2)

The Kalman gain matrix K, fluctuates between a slow adaptation rate a; and a fast
adaptation rate a, > a;. K, will be assigned according to whether I,_; is related to

foreground or not, based on the following formula:
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aq H H
K, = “1] if I,_, is foreground
[az] otherwise

ar

(1.1.2.3.3)

K;

1.1.2.4 Hidden Markov Models

All of the previously mentioned models are able to adapt to gradual changes
in lighting. However, if considerable amount of intensity changes occur, they all
encounter serious challenges. Another approach which is capable of modeling a wide
range of variations in the pixel intensity is known as Markov Model and it tries to
model these variations as discrete states based on modes of the environment, for
instance lights on/off or cloudy/sunny skies etc. In [32], a three-state HMM has been
represented for modeling the intensity of a pixel in traffic-monitoring applications. In
[33], as the algorithm is trying to estimate the background model, the topology of the
HMM regarding global image intensity is learned.

The main problem in implementing HMMs in real world applications is
twofold: the processing is not real-time since it requires long training periods, and

the topology modification to address non-stationary is also computationally intense.

1.2 Thesis Review

In chapter 2, five different algorithms for background modeling will be
discussed in detail. These techniques are chosen from the two major classes of
background modeling; recursive and non-recursive techniques. Approximated
Median filtering and Mixture of Gaussians model are selected from the former group
while the progressive background generation, Temporal Median Filtering and group-

based histogram approaches belong to the latter group.
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Although, two out of three techniques from non-recursive algorithms are
based on histograms, there are significant differences between them in data storage
and updating procedures. Chapter 3 is dedicated to shadow removal algorithm which
is based on HSV color space. The simulation results of applying these background
estimation methods on different video sequences, which are mostly outdoor traffic
scenes, have been provided in chapter 4. The same sets of video sequences were used
while testing each individual method in order to understand the advantages and
disadvantages of each method. Two quantitative scales called recall and precision
have been used to compare the performance of each algorithm. In addition, the
performances of algorithms in time domain are compared with respect to each other.

Finally the last chapter includes conclusion and future works.

1.3 Previous Departmental Works and Thesis Related Publications

As a result of the work carried out under this thesis two conference
publications were made; one in SIU 2009 and the other in ISCIS 2009. A copy of
these papers can be found in appendix A.

Earlier works done by H. Kusetoullari which was about speed
measurements using surveillance camera would create the reference frame by
averaging 10 consecutive frames of the video sequence when there were no
vehicles or moving objects in the scene. However, in this thesis five different state
of art background estimation techniques have been implemented to obtain the
reference frame. In addition in this work the HSV color space has been used to

detect and remove shadows that constitute part of the foreground image.

15



CHAPTER 2

BACKGROUND ESTIMATION ALGORITHMS

In this chapter the structure and implementation details of five different
background model estimators are presented. The first two are based on the median
operator and are statistical approaches, the third method which is also known as
mixture of Gaussians model (MoG) tries to combine a number of Normal
distributions to model the 3-tuple pixel vectors and the last two methods use

histogram analysis techniques for background modeling.

2.1 Temporal and Approximated Median Filtering:

As it has been mentioned earlier there are two types of background-
foreground segmentation algorithms which use median operator:

1. Temporal Median Filtering (TMF)

2. Approximated Median Filtering (AMF)

Both of these methods are based on the assumption that pixels related to the
background scene would be present in more than half the frames of the entire video
sequence. This is true in most of the situations unless in case of heavy traffic flow
during the rush hours.

TMF computes the median intensity for each pixel from all the stored frames

in the buffer. Considering the computation complexity and storage limitations it is
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not practical to store all the incoming video frames and make the decision
accordingly. Hence the frames are stored in a limited size buffer. Admittedly the
estimated background model will be closer to the real background scene as we grow
the size of the buffer. However, speed of the process will reduce and also higher
capacity storage devices will be required.

In some cases the number of stored frames is not large enough (buffer
limitations), therefore the basic assumption will be violated and the median will
estimate a false value which has nothing to do with the real background model. An
example where temporal median filtering algorithm fails to extract a proper

foreground mask is shown in figure 1 below:

—

(b) Estimated background (c) The mask of extracted foreground

Figure 1: Foreground-Background detection using temporal median filtering [46].
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As can be seen from figure 1, the detected foreground is not acceptable. This
problem is partly due to the poor background estimation since the median is not
correctly detected from the frames in the buffer and partly the incapability to handle
the multi-modal scenes (shaking leaves are incorrectly detected as foreground).

AMF was first introduced by McFaralane and Schofield [25] which uses a
simple recursive filter to estimate the median. This filter acts as a running estimate of
the median of intensities coming to the view of each pixel.

AMF apply the filtering procedure by simply incrementing the background
model intensity by one, if the incoming intensity value (in the new input frame) is
larger than the previous existing intensity in the background model. The reverse is
also true, meaning that when the intensity of the new input is smaller than
background model the corresponding intensity will be decreased by one. It has been
proved by [25] that this trend will converge to the median of the observed intensities
over time. Therefore unlike TMF, this approach does not require storing any frames
in a buffer and tries to update the estimated background model online. Hence it is
extremely fast and suitable for real time applications.

The background estimate and the corresponding foreground mask shown in
figure 2 have been obtained by applying AMF to the same video sequence used while

testing the TMF technique.
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——

@) Estiatd background (b) The mask of extracted foreground

Figure 2: Foreground-Background detection using AMF [46].

It can be seen that foreground mask generated by AMF has improved (note
the nearest car) since our background quality has become much better, but still the
problem related to non-stationary backgrounds remained. In fact this approach is

most suitable for indoor applications.
2.2 Mixture of Gaussians Model

The Mixture of Gaussians technique was first introduced by Stauffer and
Grimson in [8]. It sets out to represent each pixel of the scene by using a mixture of
normal distributions so that the algorithm will be ready to handle multimodal
background scenes.

In this thesis, we tried to present and implement the latest version of this
technique taking advantage of the available modified versions in the literature.
However, the main structure is still the MoG model presented in [8].

The MoG model is designed such that the foreground segmentation is done by
modeling the background and subtracting it out of the current input frame, and not by
any operations performed directly on the foreground objects (i.e. directly modeling

the texture, color or edges). Second the processing is done pixel by pixel rather than
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by region based computations, and finally the background modeling decisions are
made based on each frame itself instead of benefiting from tracking information or
other feedbacks from previous steps.

In the mixture model each pixel is modeled as a mixture of K Normal
distributions. Typically values for K varies from 3 to 7. For K < 3, the mixture
model is not so helpful since it cannot adapt to multimodal environments and if K is
selected a value over 5, often the disadvantage of processing speed reduction (not
able to be performed in real time) outweighs the improvement in quality of
background model. At any time t, K Gaussian distributions are fitted to the intensities
seen by each pixel up to the current time t.

If each pixel intensity would result from specific lighting or from single mode
background intensities then it would be feasible to represent the pixel value samples
over time with a single distribution but unfortunately in real situation often multiple
surfaces along with different illumination conditions appear in the pixel view.

Hence if it’s desired to model the background using Gaussian distributions
there should be mixture of distributions assigned to each pixel instead of a single
one. To illustrate the occurrence of bimodal distributions, (R,G) scatter plots of

single pixel at the same location in all frames over time have been shown in figure 3:
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(a)

5 & ® ® E @ E E E

(b)

Figure 3: (R,G) scatter plots of red and green values of a single pixel[8].

The values of a certain pixel over time are called “pixel process”. If the gray
scale intensities are used for background modeling then pixel process is going to
have 1D values (only a series of scalars between 0-255 ), 2D is also possible while
using normalized color spaces or intensity-plus-range and in the case of standard
color spaces (RGB, HSI, YUV, etc) triple vectors are going to form our per pixel
history. Pixel process can be mathematically described as:

{X1, ... X} = {I(xg,v0,0):1 < i <t} (2.2.1)

Where (xg, yo) indicates the location of the pixel in the image at any time t, |
represents the image sequence and X ’s are the intensities of each pixel over time.
Therefore there would be scalars in gray-scale or triple vectors in color spaces.

The algorithm should perform in a way that if a foreground object stops for a
long period of time consider it as a part of background or while the pixels intensities
of the scene under study are affected by illumination changes be able to adapt to the

new situation .These requirements indicate that more recent observations may be
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more vital for background subtraction hence, the distributions assigned to the pixels
should not be weighted equally.

Therefore the observed data samples which are more likely to be a part of
background are weighted more than the less probable distributions.

A pixel process X is assumed to be modeled by a mixture of K Gaussian
distributions with parameters set 6,, one for each distribution as states in equation

2.2.2.

1 3K %l (K=

(2m)" /2|5 /2 (222)

foin Xk, 6,) =

Where i, representing the mean of k*distribution and X indicates the covariance of
the k" density.

In the MoG model theory, two assumptions have been made. Firstly it has
been assumed that dimensions of X are considered independent. This constraint
forces the covariance matrix to be diagonal (hence more easily invertible) having o
as its variance along its diagonal components.

The second assumption is that the variances of each channel of the color
space, are identical. It should be noted here that single o may be reasonable in
linear color spaces as RGB but in non-linear cases, such as HSV, special care should
be taken since this excessive simplification may not work.

Due to the fact that the K occurring events are disjoint, if we want to
formulate the combined distribution of X, we can simply sum up the members of the

Gaussian mixtures. Therefore the general formula would be:

K
fxXlp) = kz P (k) fxx (X 1k, 6x) (2.2.3)
=

Here, the density parameter set is 8, = {u,, o} } for a given k and the total set

of parameters is ¢ = {wy,...,w;, 04, ..., 0, }. P(k) is the probability of occurrence
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for the k™ distribution and it represents the amount of contribution by that
distribution in the mixture model. Hence P(k) is the weight assigned to that
distribution (P (k) = w(k)).

Figure 4 below provides an example for a mixture model with three

distributions where w;,={0.2,0.2,0.6}, ;.= {80,100,200} and o;, = {20,5,10}:

0.025
0.02
0.015F

P(k=3) fy|3(XIk=3)

0.005

150 200 250

Figure 4: The 1D pixel value probability fx(X|¢) [36].

During the processing, the MoG model has to estimate both the parameters
and the hidden (unknown) state k given the observation X. This estimation problem
which is referred to as the “maximum likelihood parameter estimation from
incomplete data” can be solved by the use of an expectation maximization (EM)
algorithm [34]. The EM algorithm works iteratively and has two main steps:

1. E-step which is responsible for finding the expected value with
respect to the complete data in hand (observed data and current estimation of
parameters).

2. M-step which is the calculation of maximum likelihood values for

parameters based on the available observations.
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2.2.1 Current State Estimating

Firstly the model has to distinguish which of the K distributions is more likely
to describe the new data; that is, it has to estimate the distribution from which X, has

most probably come from.

Comparing the posterior probabilities P(k|x, ¢) which indicate likelihood of
the current sample X belonging to the k" distribution, will lead us to achieve this
goal. A plot of posterior probabilities obtained using equation 2.2.4 and Bayes

theorem has been provided in figure 5:

_ pU) fiapy (xIK, 6y )
- fe(xl9) (2.2.4)

Here the value of k which maximizes P(k|x, ¢) will determine the correct

P(k|x, o)

distribution from which X had come from.
k = arg max;, P(k|x, ¢) = argmax; wy, foe) (X1k, 6;) (2.2.9)
The preceding equation is true as long as the current input has been generated

by one of the distributions in the mixture.

1.2 T T T T

1
= P(k=3]X

08k Pk=1]X) (k=3[X)

06

04f

0.2f P(k=2]X)
0 1 | 1 1
0 50 100 150 200 250

Figure 5: The posterior probabilities P(k|x, ¢) plotted as functions of X for
each k=1, 2, and 3 using the same parameters as in figure 4[36].
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Obviously there may be certain points (intensities), which are not covered by
any of the existing distributions. For instance if we consider that the new input
intensity is X=150 after computing the posterior probabilities depicted in figure 5 the
algorithm considers first distribution (k=1) to be fully (almost 100%) responsible for
generating the observed value. However it is clear from figure 4 that the value 150
does not belong to any of the three different distributions. This is only due to the fact
that only three distributions are considered to cover the whole range of intensities (0-
255). This type of challenge would be faced when a previously unseen foreground
object steps in the scene. The solution lies in adding an extra distribution with weight
Wy 41 , considering current pixel value as its mean and assigning a high variance to

this newly added distribution.

2.2.2 Approximating Posterior Probabilities

As mentioned before the EM algorithm needs much iteration to reach the final
result, hence implementing an exact EM algorithm on each pixel of every frame
would be a complicated and time costly procedure. In [8], Stauffer and Grimson
developed a method to approximate the posterior probability in a fast and more
sensible way through defining matching criteria.

A match is defined as a pixel value falling within 2.5 times the standard
deviation of the distribution’s mean. To compute the distance (d) from the mean (u;,)
of a certain distribution at time t, the following formulas are applied [36]:

die = (01D (Xe = i) (2.2.6)
dj, cdy . < A* (2.2.7)

The parameter M, , in equation 2.2.8 has been chosen to show if a match is found:
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1 tch
My, = AR = p (kIX,, ¢)

0 otherwise — (2.2.8)

This is based on the assumption that P(k|X;,¢) is 0 or 1 for most of the X,
values and also it is almost one for only one choice of k at a time, since distributions
are far enough from each other (refer to figure 4). In other words, when P(k|X;, @)
has a value of one at time t for one distribution, the probabilities for other K-1
remaining distributions are zero.

In cases when an observed value is located in a position such that it is close to
more than one distribution, more than one match may be detected. In this case, the
distribution with the highest rank would be selected (Details of rank information can

be found in section 2.2.5).

2.2.3 Estimating Parameters

If samples have been observed then the complete data likelihood function is

calculated as:

N
P(X(, Xy, ., Xy, kl0) = Hwk Forty (Xelk, 6,) (2.2.9)
t=1

Parameters of ¢ defined in equation 2.2.3 can be updated by maximizing the
expected value of the previous formula with respect to k. The details of derivation of
such a procedure are too long and complicated but it can be found in [35].

If we assume that processes are stationary and the number of observations (N)

is fixed, then we have:

N
1
W = > P(kIX, ) (2.2.10)
t=1
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i X, P(kIX,, 0) (2.2.11)

—

He = ?I:l P(let, (P)
o _ S = ) (K~ m)PCKIX, ) (2.2.12)
‘ thvzl P(kIXt; (P)

where in equation (2.2.12), ° indicates Hadamard (element by element)

multiplication.

2.2.4 Online Updating

The equations (2.2.10) to (2.2.12) are weighted averages of observations by
P(k|X;, ®), however, if we want to update our estimated parameters as the program
is executed and new samples (inputs) step in, we should convert these averages to an
on-line cumulative average by defining a time varying gain a; = 1/t and update the
algorithm as follows:

Wee = (1—a)Wwioy +a, P(kIX,, @)  fork=12,..K,t=12,..,t (2.2.13)
Note that for each K, at any time t, w;, ,would be a scalar variable.

Considering that the method should be capable to adapt to the recent changes
of the scene such as illumination variations, the latest observations should be
emphasized more. Therefore just using the equation (2.2.13) will cause problems due
to the fact that while the time is passing, t is increasing and consequently a, will
decrease. The depletion of a leads to canceling the contribution of P(k|X,, ¢) which
is related to the current time t. Hence the process is getting more and more
insensitive to recent scene variations.

One practical solution is to define a lower bound a;, = @ to make the
procedure leaky and as soon as the lower bound is reached, the accumulator would

start to compute the new values with an exponentially decreasing emphasis [36]. This
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part of the algorithm differs from what was presented by Stauffer and Grimson in [8],
since they had assumed a fixed « for all time [37].

Also the mean and variance values could be updated using the equations provided

below:
e = (1 - Pk,t)ﬂk,t + Pr,e Xe (2.2.14)
Gt = (1= Pre) e + Pie ((Xt — ) (X, — u’k})) (2.2.15)
P(k|X
Prer = W (2.2.16)
k,t

Here the newly introduced py . [36] is also different from the one defined in
[8] by a factor of fy(X;|k, 6)) which results in impractical values for p; . if it is
going to be implemented directly.

In [8], full computational benefit of the approximation is not obtained since,
P(k|X;, ) is not used in computing p, . which affects the estimation of u;, and
Okt -

In rare situations when there is a surface with low probability of occurrence
wi e < a, the value of p; . may exceed one. There are other techniques available to
evade such a problem. For instance by setting p, . = a,, and also keeping the latest

matching X, for each distribution and then updating the parameters using the stored

X,[36].

2.2.5 Foreground Segmentation

The mixture model contains both the distributions of the background model
and the foreground model. That’s why the minimum logical value for the number of
distributions is 3, so that 2 of them can be assigned to handle bimodal background

scenes and leave one for describing the foreground.
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Once the current state k is estimated, a scale should be defined to separate the
distributions belonging to the background model from the ones that represent the
foreground. The distributions which are likely to be a part of the background are the
ones with high weights, and also low variances.

To combine these two factors for each pixel, all the existing distributions are
w

L This factor reaches its peak while w, is large and on the

ranked by a criterion -
k

contrary o;, is small. Therefore higher ranked components are the ones with low

variances (intensities do not vary much) and high occurrence probabilities. After the

distributions are ranked based on the factor w; / g}, the weights of the corresponding

distributions are summed up and the result is checked against a predefined threshold:

B
b = argmin, (Z wy >T) (2.2.17)
k=1

Here b indicates the minimum number of distributions which belong to the
background among the K available distributions at each pixel.

Figure 6 provides an example of the above described steps being applied to a
custom video sequence taken at Yeni izmir Junction of Famagusta in order to
estimate the background in the scene. During the simulations the value for K and T

were taken as 5 and 0.85 respectively.
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(b) Background estimation () Foreground‘lﬁrﬁask of the left lane

Figure 6: Background estimation using MoG Model with K=5, T=0.85

2.3 Progressive Background Estimation Method

This method was first introduced by Y.Chung in [42]. A progressive
background image is generated by utilizing the histogram to record the changes in
intensity for each pixel of the image, however, unlike its other histogram based
background generator counterparts, progressive method does not directly use the
input frames to create the histogram. The progressive method constructs the
histograms from the preprocessed images also referred to as the partial backgrounds.
Each partial background is obtained using two consecutive input frames (for details

see section 2.3.1). This method is applicable to both gray scale and color images and

30



is capable of generating background in rather short period of time and does not need

large space for storing the image sequences.

2.3.1 Partial backgrounds

In order to generate the partial backgrounds, the progressive method follows
the following steps. First, the current frame I(t) at time t of an input video sequence
S(t) is captured into the system and this image is compared with the previous frame
image, I(t-1) to generate a current partial background B(t). Each pixel at location i at
time t of the corresponding partial background is called b;(t) and is computed using

equation below [42]:

by(£) = {bg () — bt — )| <e
l non —bg otherwise (2.3.1)

As can be seen from equation (2.3.1), the partial background pixels are
divided into two categories. bg stands for pixels related to the background image
whose intensity value difference from the previous partial background b;(t — 1)
does not exceed a small predefined threshold e.

If the incoming intensity varies from the partial background more than the
selected threshold, the corresponding pixel will be classified as non — bg. There
are several possible ways to assign value to bg pixels; one is to take the minimum
intensity between the new b;(t) and b;(t — 1), another way is to average these
two values and yet another is by simply taking the new value as b;(t). In this
thesis we have chosen the last approach since it needs less computation and is
more suitable for real time application.

For non — bg pixels a specific value should be assigned, so that it will be
possible to distinguish them since we are not interested in them. To separate them

from bg pixels, usually they are assigned 0 or -1. After all the pixels have been
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classified and the numbers are assigned to them, the whole partial background at

time tis created as [42]:

B;(t) = U b;(t) (2.3.2)
i€l(t)

By creating the partial background images, the moving objects are
discarded due to their intensity differences from the background and only the
pixels which are more likely to be a part of background will be kept.

However, in some cases slow moving objects or similarity among
foreground objects and background scene may cause some parts of moving
objects to be misclassified as background related pixels. One solution to such a
problem is to add color information in our decision making. Then equation (2.3.1)

will turn to [42]:

w9 N -k < 233

non — bg otherwise

where c is the different components of the RGB. In other words the classification is

done separately for each color channel and then their intersection is obtained in order

to set aside the pixels that vary in all channels in comparison to previous partial

background.

It is worth mentioning that usage of partial backgrounds instead of the

original video frames directly has two advantages. Firstly foreground objects cannot

interfere with background values since they are removed in partial backgrounds

creation. Secondly it helps overcome the problems caused by camera vibrations that

may occur due to heavy vehicles passing by or strong wind.

An example for partial background generation is shown in figure 7 below:
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Figure 7: Generation of Partial Backgrounds

2.3.2 Histogram of Pixels

The next step of the progressive background estimation method would be
generating a histogram called h,, (t) using the partial backgrounds obtained from the
previous step. The index p indicates that there is a histogram for every pixel of the
image and t stands for time. For each pixel at time t a certain number of generated
partial background depending on the size of our buffer are processed and then the

histograms are created per pixel location in time.

e

-
Counts -
Bt +n)
time
: H N o,

1] 255 Intensity

Partial backgrou

(a) Partial background sequence for p;(t) (b) Histogram for a typical pixel p;

Figure 8 : The partial backgrounds and histograms
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2.3.2.1 Histogram Updating

The updating procedure is done simultaneously with the generation of
histograms. For each pixel the incoming intensity from partial background is checked
by the algorithm to discover whether the new intensity is within the local
neighborhood of the previous background intensities or not. If the mentioned
condition is satisfied (the intensity belongs to the neighborhood) then the frequency
of that intensity is incremented by a constant factor, unlike conventional histograms
this factor is more than one (flexible in general). If the constraint is violated and the
newly gained intensity is located outside the boundaries of our neighborhood
domain, the recorded frequency for corresponding pixel in the histogram will be
decreased by a factor less than mentioned incrementing factor. The preceding

discussion can be summarized by the following equations:
v=v+AS§b;(t),a)—D (2.3.4)

where, v is the count (frequency) of the intensity index a, in the histogram. A
represents the rising factor while on the contrary D is the descending factor and in

general D < A. The § function in equation 2.3.4 can further be defined as:

5t ={! lL—7] <2 (2.3.5)

0 otherwise

When the newly seen intensity (b;(t)) is a member of local neighborhood of
(I(b;(t) — al < A) then §(b;(t), a) will become one and frequency of that intensity
will be incremented by A-D (keep in mind that D < A) and on the other hand for the
reverse case counts will be decremented by D since in this case delta function would

be zero.
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Because the updating process is accumulative, to avoid large numbers and to
be able to cope with changes in the environment the method defines an upper bound
to limit the max value the frequency of each pixel could attain [42].

Hence the histogram values will be raised if they have not already reached to
a certain threshold. For a typical pixel location (x,y) the curve of frequency value

for certain intensity over time would be as depicted in figure 9.

Counts, vy,

LY
-

; d; Time, f

Figure 9: The counts value for a certain intensity index k of a pixel, p; [42].

When observed for many frames, if the observed samples at the same location
belongs to the local neighborhood of the previous background intensities, its
frequency will be incremented till an upper limit K is reached. After that if the same
intensity keeps coming to the view of the considered pixel, the frequency will not
grow anymore but stay at this saturated value K. The situation would remain the
same until at time d;, for a certain reason; a new intensity starts to come to the pixel
view. Therefore the frequency will be decremented by factor D for as long as this

newly value is observed.

2.3.3 Histogram Table

After the histograms are generated and updated, the maximum frequency of
each histogram along with its corresponding intensity for each pixel in the image are

recorded in a table. The histogram table can be utilized as a reference for intensities
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which are responsible for background generation at any time. Whenever the
background image is required, the recently updated intensity values in the table are
used to generate the desired background.

However, at the beginning of the process some cells of the table may not have
a value and hence the background image contains leakages (undesired black dots).
This problem occurs because the histograms are built over partial backgrounds which
include black parts in the position of moving objects but as time passes, intensities
related to the background image come to the pixel view more and more. Therefore
this leakage effect will be gradually removed.

As stated in [42], a stable background image would be possible when the
counts recorded in the histogram table are approximately 75-80% of a pre-
determined upper limit. The higher the frequency values, the better the image quality
will become. Figure 10 depicts an example where leakage problem is resolved after 5
frames of the video sequence. Also figure 11 provides a sample frame from
Highway-I sequence of VISOR and the corresponding foreground mask obtained

after background subtraction process.

@) Eistence of leakage (b) Leakae removed after 5 frames

Figure 10: Estimated background using Progressive method.
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(@) Original Frame (b) Extracted foreground mask

Figure 11: Extracting foreground objects using progressive method

2.4 Group-Based Histogram

The group-based histogram (GBH) algorithm constructs background models
by using histogram of intensities come to the view of each pixel on the image.
However, unlike the other histogram based methods, group based histogram is forced
to follow a Gaussian shaped trend which as it will be demonstrated later, this
technique will improve the quality of the background-foreground segmentation [38].

In a video sequence taken by a fixed (static) camera the intensity of the pixels
related to background scene is the most frequently recorded intensity at each pixel
location (x,y). Hence many histogram approaches have been presented in the
literature [39], [40], [41].

Since in histogram approaches at each pixel location the most frequent
intensity is proportional (by a factor of N) to its occurrence probability, the
maximum frequency from the histogram is considered as background model intensity
in that location.

The background intensities can therefore be determined by analyzing the
intensities of histogram at each pixel. However, sensing variation and noise from

image acquisition devices or pixels having complex distributions may result in
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erroneous estimates. This may cause a foreground object to have the maximum
intensity frequency in the histogram.

Since the maximum count (amplitude) of the histogram is much greater in
comparison to frequencies of intensities related to the moving objects , there will not
be any effects of slow moving objects or transient stops in the detected foreground.

However, the maximum peak of the conventional histogram of each pixel will
not necessarily locate the intensity of background model at that specific pixel. In
some cases this maximum may not be unique so further processing may be required
to compensate this loss which will affect the real time tracking.

Although the histogram approach is robust to transient stops of moving
foreground objects, the estimation is still less accurate than MoG model in the case of
non-static backgrounds (i.e. swaying grass, shaking leaves, rain, etc). Note that the
frequency or probability of conventional histogram is updated by using a single
intensity; while the probability of GMM is constructed from a group of intensities.
Thus the GMM possesses more admirable capabilities than simple histogram to
represent intensity distribution of the background image [38].

In group based histogram, each of the individual intensities is considered
along with its neighboring intensity levels and forms an accumulative frequency. The
frequency of coming intensity is summed up with its neighboring frequency to create
a Gaussian shape histogram.

The accumulation can be done by using an average filter of width 2w+1
where w stands for half width of the window. The output n;, ,,(1) of the average filter

at level | can be expressed as:

w

ny () = Z n,(+71) 0<l+r<(L-1) (2.4.1)

r=—w
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Here n, ,(l +r) is the count of the pixel having the intensity [ + r at the
location (u, v), and L is the total number of possible intensity levels. The maximum

probability density P s of a pixel can be computed through a simple division of the
occurrence for a pixel by the total frequency of the GBH (N ™).

. maxogq-1{n’,, (D} (24.2)
p uv N*

Since the filter smoothens the histogram curve, if the width of the averaging
window is chosen to be less than a preset value, the location of the maximum will be
closer to the center of the Gaussian model (which corresponds to background value)
than the normal histograms (more details are given in the following section).
Therefore the mean intensity of the background model will be:

M, , =arg max;{n*, , (1} (2.4.3)

Choice of the window size is a critical task since a smaller window width can
save the processing time (due to fewer computations), while a larger window will
lead to smoother GBH and therefore more accurate estimation of the real value of the

pixel related to the background model.

2.4.1 Window Size Selection

To describe the determination of the window width more clearly, an example
has been shown here [38]. In this case 13 Gaussian densities have been generated
randomly. The mean was chosen to be 205 and standard deviations varying from 3
tol5. From the generated data, histograms are created then from each of them the

corresponding GBH are constructed using different window sizes from 3 to 7.
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Table 1: Estimation of error rate of Gaussian mean using histogram and GBH [38].

:E‘:‘fi:;i 3 4| s |6 | 7| 8 |9 | 10|11 ]12]13]14]15
Hiet |—1.2% |—1.5% [=2.0% |=2.4% |-2.4%|=2.9% [-3.4% |=2.9% |=2.9% |—4.4% |—2.9% [—4.9% |—4.4%

Width w Estimation result of GBH
1 0.5% | 1.0% | 0.0% |—-05%|—-0.5%| 2.0% |(-3.4% |—2.4% |—2.9%|—1.5% |—3.4% | 0.3% | 1.0%
2 0.5% | 0.0% | 0.0% |-15%|-1.0%| 1.0% (=2.4%|=2.0% |=2.4%(=2.0% |—3.9% | 1.0% | 1.5%
3 0.0% | 0.0% [—-0.3% |—-1.0%| 0.5% |-1.5% |-2.4% | 2.0% | 2.0% |-2.4% |-1.5%| 1.5% |-2.9%
4 ] 0.5% ] 0.5% | 0.0% |-0.5%] —0.5%]| 0.5% |-1.5%|—1.0%|1.5%|-2.4%|1.0%| 2.49% | -2.4%
5 0.5% | 0.3% |[—0.5% | 0.0% | 0.0% |-0.5% |[-1.0% |—0.5%|-0.5% (=2.0% |-1.5%| 0.3% | 0.5%
6 | 0.5% | 0.0% |—0.5%|—0.5%|—0.5%|—1.0%|—0.5%| 0.0% |—0.5%|—1.5% |-1.5% 0.0% |-1.5%
7 0.5% | 0.5% |[—05% | 0.5% | 0.0% |—-0.5%| 0.0% | 0.0% | 0.0% |[—-0.5% |-1.5%| 1.0% |-1.0%

The results prove the superiority of implementing GBH method to
conventional histograms. Considering the results, it can be concluded that a greater
width of average filter will be required for high-accuracy performance as the
standard deviation increases. Keeping the error rate of mean estimation within + 2%,

and according to the simulation result, the width can be determined as follows [38]:

3 3<ag; <7
w = 5 8<0;,<10
7 10<0, <15 (2.4.4)

where, 9i represents the standard deviation of the original Gaussian.

2.4.2 Mean Estimation

As mentioned before the mean intensity can be computed by selecting the
maximum frequency of the smoothened histogram. When a new intensity | is
captured, the algorithm does not process all the possible intensities, just the new one
and its adjacent intensities which fall in the selected window will be affected.

The steps of the mean estimation procedure include: first recording the
current intensity | of the pixel. Second step contains incrementing the frequency of

occurrence of observed intensity (I) and all the neighboring intensities from I-w to
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I+w by unity. Final step is checking whether the new achieved numbers (frequencies)
are greater than the previously estimated maximum of counts or not. If the condition
is satisfied then replacement of the former mean with the new one is done and then

the algorithm will return to the first step.

2.4.3 Variance Estimation

After computing the mean intensity of the Gaussian shaped histogram the
variance could be estimated using the following expression:

1 xzuulv+3al
O-L%,v = X Z ,(x - uu,v)znu,v(x) (245)
My,v ()

2x=pu‘y+30’ x=1, ,—30
x:uu,v_?"f, '

where, o' is the maximum standard deviation of the Gaussians.

Figure 12 demonstrates the histogram smoothing after the implementation of
average filtering window for a certain traffic sequence. From Figure 2.1(a) one can
conclude that it would be possible to model the results with a Gaussian distribution
technique over a histogram of a certain pixel in a video sequence. If it is desired to fit
a Gaussian distribution model to the data in hand, the center of the Gaussian would
be 203.65 with a standard deviation of 3.88 [43].

However, since several peaks with similar frequencies are in the histogram,
selecting the mean is not straightforward. By applying the windowing technique
proposed in GBH, the histogram will be smoothed and this multiple peak problem
will be resolved. In figure 12 the estimated mean and standard deviation are 205 and
4 respectively, which indicates acceptable error rates of 0.67% and 3.17% for mean

estimation and standard deviation respectively.
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Figure 12: Statistic analysis of pixel intensity [38].

To cope with illumination changes of the environment, the histogram can be

re-built every 15 minutes.

2.4.4 Foreground Segmentation

A Gaussian distribution is fitted to smoothed histogram of each pixel in the
image. Based on tolerance intervals in statistical issues pixel intensity is considered
as a part of foreground while its intensity is outside +3o the mean of the background
Gaussian distribution.

If the current pixel intensity is represented by I(u,v) where (u,v) corresponds
to the location of pixel on the image, then foreground objects are extracted by using
equation 2.4.6:

1, (moving objects) if[I(w,v) — u(u,v) > 30(u, v)|
0, otherwise (2.4.6)

F(u,v) = {
where, u(u,v), a(u,v) represent mean and standard deviation of the background
model at location (u,v).

Figure 13 provides an example for background estimation by applying the GBH

approach on a video sequence at a junction. The segmented foreground objects are
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vehicles and pedestrians with their corresponding cast shadows. On segmented
foreground objects shadow removal algorithms are applied in order to get vehicles

without cast shadows.

@) riginal Frame

Figure 13: Estimated Background using GBH method

Figure 14 gives another example where the video sequence is recorded from

one of the streets of Famagusta.

(b) Estimated background (c) Extracted foreground mask

Figure 14: Extracting foreground objects using GBH method
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CHAPTER 3

SHADOW REMOVAL

As it was mentioned in previous chapters video-surveillance and traffic
analysis systems can be heavily improved using vision-based techniques that could
detect objects such as vehicles, people, etc., monitoring the trajectory of foreground
items in the scene. However, although extracting foreground objects out of frames of
a video sequence is an essential task and in fact is the basic step in almost all of the
related applications, in some cases the execution of background subtraction won’t be
enough by itself.

In this chapter one of the algorithms for removing the undesired shadows
which are often misclassified by foreground segmentation algorithms is presented.
This unwanted phenomenon should be removed as much as possible due to its
adverse effects on quality of detected background model.

Incorrect detection of shadows as foreground objects will cause serious
problems in many applications. Some of these applications are listed below:

1. Classifying segmented objects

2. Computing the area occupied by an object on the road (lane fullness
analysis)

3. Recognition procedures
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4. Evaluating the centroid of specified items or motion variation of
foreground objects (tracking).

In general there are two types of shadows present in a scene while a video
sequence is being recorded. First group is static shadows which do not move with the
displacement of moving objects while the other type of shadows is referred to as the
cast shadows. The second group is generated due to occlusion of sun light by moving
objects. The resultant shadow is the projected area on the scene which moves along
side of the moving object, therefore has the same trajectory. An example of

incorrectly detected shadows is shown in figure 15 [14]:

Figure 15: Object merging due to shadows

It is apparent from the figure that some of the marked blobs contain more
than a single moving object due to the existence of cast shadows. Hence it is
impossible to detect the number of objects or perform any classification.

The intensities of pixels related to the cast shadows are significantly different
from the corresponding pixels in the background model. Also, since they appear in
the recorded frames as frequently as the foreground objects, the background

estimation algorithms cannot differentiate them from real moving objects. Therefore
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these pixels will be misclassified as foreground objects. This problem is referred to
as “under-segmentation” in the literature [14].

When a shadow occurs, the intensities of the surface (pixels) which shadow is
projected on becomes significantly less, however, the color information of that
surface is preserved. This feature is the key factor of the algorithm presented in [14].

Human visual system is able to distinguish the colors of objects located in
shaded areas. Therefore to remove the cast shadows the Hue-Saturation-Value (HSV)
color space has been used. The HSV color space corresponds closely to the human
perception of color, and it has been proven to be more accurate in distinguishing
shadows in comparison to the RGB space [45].

In HSV color space Hue varies between zero and one representing the color
(from red through yellow, green, cyan, blue, magenta, and back to red) Saturation
indicates the purity of the color. In other words S shows how much that color is
diluted by white. When S = 1 the color is 100% pure and no white is mixed with it.
The reverse is also true while S = 0. Finally the V component is a measure for
brightness (intensity). H and S are used to describe chrominance information while V

represents luminance. The following figure shows the same discussion graphically:

Saturation

Figure 16: HSV color space
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3.1 Shadow Removal Algorithm

The luminance of a point at location (x, y) which belongs to cast shadow at
instant k can be described as [45]:
Sk(x,y) = Ep(x, ) pi(x, ) 3.1.1)
where p; (x, y) represents reflection of the surface, Ej (x,y) indicates irradiance and

can be formulated as:

_(Cy+ Cpcos(N(x,y),L) illuminated  (3.1.2)
E(x,y) = { C, shadowed

where C4 and Cp are the intensity of the ambient light and of the light source,
respectively, L is the direction of the light source and N(x,y) the object surface
normal [14].

If a static background point is covered by a shadow, then we have:

Cy (3.1.3)
Cy + Cpcos(N(x,y),L)

Rk(X»J’) =

Since the angle between N(x,y) and L varies from — % to % for shadow

points the denominator is greater than numerator. Hence R (x, y) would be less than
one. Taking advantage of equation (3.1.3) and considering the key feature mentioned

above, the following constraint can be used to classify the shadow points [45]:

( IV (x,
1 if a < ky(xy)Sﬁ
By (x,y)
SP(x,y) = 4 A (G y) - BiGoy)) < s (3.1.4)
AMIFG,y) = BE o) < 1y
\ 0 otherwise

The first condition considers the variation of the luminance (the V-
component). Some background points which are affected by noise may have not

exactly the same value. Hence when the luminance ratio is computed the result will
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be less than one. To compensate this loss, an upper bound £(less than one) is used to
avoid the incorrect identification of the regular pixels as shaded ones. The lower
bound « is defined to take strength of the light source into account, (i.e. stronger and
higher the sun the lower will be that ratio, and lower value of a must be chosen).

Since H and S components are responsible for chrominance information, the
variation of these values should not exceed predefined thresholds (zy , ). However,
the choice of the parameters 7, and ;s is less straightforward and is done empirically
with the assumption that the chrominance of shadowed and non-shadowed points
even if could vary, does not vary too much [14].

Figure 17 shows the same scene in figure 15, however, this time the shadows
are correctly detected and removed. One can easily notice how shadow suppression

allows the correct identification of all the objects in the scene.

Figure 17: The correct identification of objects after shadow removal [14].
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3.2 Simulation Results

We have also applied the HSV color space based shadow removal technique
to some custom recorded and standard video sequences. In the figures below same
sample frames are given to show that the algorithm would perform fairly well on all

the different test sequences used.

”(a) Origihal ffame N (b) Foreground mask (c) After shadow removal

Figure 19: Video sequence Highway Il
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CHAPTER 4

SIMULATION RESULTS AND PERFORMANCE

ANALYSIS

Up to this point several algorithms have been selected from literature and are
implemented. It has been tried here to mention the algorithms which are
fundamentally different from each other but most of the existing methods suffer from
a common problem. As they strive to deal with multi-modal scenes they become
more and more sensitive to slow moving objects and transient stops which are often
the case in intersections due to the traffic signals. Therefore these algorithms become
less likely to be implemented in vision-based traffic monitoring systems (VTMS).

Vision based judgment is one of the common measures for comparison
purposes since most of the failures of the algorithms lead to visible defects in the
final detected background model. However, for a fairer comparison here a

quantitative scale is used additionally.

4.1 Ground Truth

This concept is used as base for the quantitative comparisons. Ground truths
are special kind of video sequences which contain only the desired moving objects of

the scene (ideal foreground detection).
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Here two video sequences are used along with their corresponding ground
truths. One of them include indoor scenes and the other one is recorded from outdoor
environment. These videos are recorded just from a scene without any foreground
objects and then animated moving objects are superimposed manually on the
recorded background scenes. Therefore the exact location of the pixels related to
foreground items are known, in other words the ground-truths of these sequences are
available.

Another advantage of using this kind of sequences is that since the super
imposed objects do not contain shadows, we can only focus on the performance of
background detection instead of dealing with shadow removal algorithms which at
this point, we are not interested in them.

For more clearance a typical frame and its corresponding ground-truth are

shown in figure (4.1):

(@) Original frame (b) Corresponding Ground-truth

Figure 20 : Typical frame of synthetic video-2 [47].

The created sequences are fed to the applied background estimation methods

and the extracted foreground of each is recorded frame by frame.
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The next step would be taking advantage of practical scales in order to help us
compare our achieved results with the ground-truths. One of the most well known

measures is called “Recall-Precision” scale.

4.2 Classification of Pixels

Prior to the details of recall and precision definitions, certain concepts should
be explained. These concepts include classifying pixels in 4 different groups:

1. True Positive (TP): which represents the number of foreground pixels
correctly detected by the algorithm.

2. False Positive (FP): is responsible for the number of pixels which are
incorrectly classified as foreground objects.

3. True Negative (TN): indicating the number of background pixels which are
correctly detected as background scene by the algorithm.

4. False Negative (FN): stands for the number of pixels corresponding to
foreground objects which are misclassified as part of background image (also
referred as misses) [44].

There are several other methods for quantifying a classifier’s performance
(background estimators) [44]:

1. Percentage correct classification

2. Jaccard coefficient

3. Yule coefficient

However, in this thesis the pre mentioned recall and precision measures are

applied.
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4.3 Recall

Recall is measure of completeness and is defined as number of true positives
divided by the total number of elements that actually belong to the foreground
objects. (i.e some of both true positives and false negatives).

TP (4.3.1)

Recall = TP-l-—F]V

In other words it can be rewritten as:

number of correctly identifiedforeground pixels (4.3.2)

Recall =
eca number of foreground pixels in ground truth

4.4 Precision

Precision can be considered as a measure of exactness or fidelity and is
evaluated through dividing the number of items (foreground objects) correctly
detected by the total number of pixels classified as foreground by algorithm.

In fact we are evaluating if the algorithm shows that a certain pixel is
foreground and how reliable that statement would be.

TP (4.4.1)

p . . -
recision TP + FP

number of correctly identified foreground pixels  (4.4.2)

Precision —
recision = — f foreground pixels detected by algorithm

4.5 Data Analysis

We have applied our implemented methods to two mentioned videos in
section (4.1). The outdoor sequence includes shaking leaves along with passing of

various objects from a small cat up to vehicle.
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It should be noted here that to keep the condition of the experiments almost
the same (real time performance) except the approximated median filtering method
(which is fast enough even while performing on colorful images) other algorithms
have been executed in gray-scale mode.

The results in both of the measures will increase while the color information

is added. The results are summarized in the table shown below:

Table 2: Average recall and precision results for five background estimation algorithms.

VIDEO 2 VIDEO 7
Estimation . Estimation .
Method Recall | Precision Method Recall | Precision
Group-based Group-based
histogram 99.25 93.19 histogram 86.18 74.42
(GBH) (GBH)
Progressive Progressive
estimation 90.58 99.21 estimation 12.30 60.92
(PM) (PM)
Mixture of Mixture of
Gaussians 81.84 91.22 Gaussians 85.38 77.96
(MoG) (MoG)
Approximated Approximated
Median 92.26 | 915 Median 8234 | 5819
Filtering(AMF) Filtering(AMF)
Temporal Temporal
Median 84.01 99.99 Median 77.88 49.65
Filtering(TMF) Filtering(TMF)

The simulation results prove that dealing with outdoor environments (video 7)
is a more challenging task. In the case of indoor scenes with real static background
(without any undesired movements) most of the algorithms have acceptable
performance (over 85% in both scales).

As it was mentioned before, vehicles often stop transiently due to traffic

signals. Hence, in this part we have compared the performance of algorithms in the

54



case of transient stops as well. The video sequence, which is used here, contains an
indoor scene showing students walk through the corridor, stop for a while, then
continue walking again. The simulation results suggest that the MoG Model is not
robust against these kind of stops in comparison with other tested methods. The

figures below demonstrate this problem more clearly:

(@) Original Frame (b)Generated background  (c) Generated background
using MoG using GBH

(d) Generated background  (e) Generated background  (f) Generated background
using PM using TMF using AMF

Figure 21: Comparing the adverse effect of transient stops

To test which one of the algorithms generate the background model faster, we
have applied them to a video sequence, which does not start with any empty frames.

Although AMF, processes each frame faster than other tested algorithms(less
than half a second per each frame), it takes longer time to create background model.
It is obvious from the following figure that a ghost (faded) effect of the present

objects in the initial frame is still visible after passing of 44 frames.
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Distortion made by incorrectly

detected Background model

After 43 frames ii

(a) Framesland 44 (b) Estimated background (c) Foreground mask

Figure 22: Adverse effect of late background generation, using AMF

Although the percentages from the table contain comparison information
about the ability of algorithms in handling multi-modal background scenes for the
sake of more clarity, the 380" frame is selected from synthetic video 7. This frame
includes bi-modal background scene (notice the shaking leaves of the trees in the
background). The simulation results are demonstrated along with the corresponding

foreground mask from the ground-truth sequence in the following figures:

@ Ffame 380 from video 7 (b) Ground-truth of frame 380
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(F) MoG (g) GBH

Figure 23: Visual comparison between algorithms in handling multi-modal scenes.

As it is obvious from the preceding figure MoG algorithm is able to suppress
the multi-modal background more effectively. The speed of algorithm in processing
each frame is an important issue for real-time applications; hence here these
algorithms are applied to a sample video sequence and average processing times are

computed for each of the methods.

Table 3: Performance comparison of algorithm with respect to time

Methods Average Processing
Time(frame/sec)

Group-based histogram 4.0214
(GBH)

Progressive estimation 2.7422
(PM)

Mixture of Gaussians 1.4152
(MoG)

Approximated Median Filtering 0.0490
(AMF)

Temporal Median Filtering 1.8570
(TMF)
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The algorithms are also compared from initialization point of view to see
which algorithm creates the background scene faster. To achieve this goal, a video
sequence recorded from a rather crowded highway which does not contain any empty
frames (foreground objects are always present in the scene) is used. The number of
frames required to pass in order to enhance an acceptable foreground mask is

recorded in the table below.

Table 4: Required number of frames to generate acceptable foreground masks

Methods Number of required frames

Group-based histogram 6
(GBH)

Progressive estimation 10
(PM)

Mixture of Gaussians 9
(MoG)

Approximated Median Filtering 44
(AMF)

Temporal Median Filtering 12
(TMF)
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The implementation results indicate that critical tradeoffs are always present
between the accuracy of estimated background model and the real time performance
of the method. The choice of algorithm for background modeling should be made
according to the desired application. For instance if it is desired to monitor an indoor
scene environment, one of the most suitable choices would be the Approximated
Median Filtering, however, the same algorithm (as shown in chapter 2) is not a
proper choice when it comes to outdoor scene surveillance. Due to the fact that it
cannot deal with multi-modal background scenes or cope with weather condition
changes. Mixture of Gaussian Model is one the most reliable background estimation
methods in the literature which is capable of handling multi-modal background
scenes. The application results from chapter 2 proved the same utter. However, these
kind of algorithms fail in the case of illumination changes and transient stops of
moving objects (in locations such as intersections).

Histogram based approaches seemed to be robust to transient stops but they

are still too sensitive to illumination changes and required larger storage spaces.
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5.2 Future Work

Most of the tested implemented algorithms suffer from variation of weather
conditions. It is intended to develop a new algorithm which combines the updating
procedure in progressive method with windowing technique in GBH method. Also it
is needed to add an illumination tracking process to the algorithm in order to make

the foreground segmentation part adaptive to the illumination changes.
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Abstract—In a conventional traffic lights controller, the lights
either change at constant cycle times or at times proportional to
the length of each leg of the intersection. Such approaches clearly
are not perfect for optimizing traffic flow. Waiting times
propartional to lane length mav work well for a single-lane road
but when roads with multiple lanes are considered the solution
would not be optimal. The authors believe that an adaptive
signaling based on fullness of each leg of the intersection would
be a hetter approach. This paper presents the segmentation of
foreground objects from frames of the surveillance video using
an adaptive K-Gaussian mixture model and describes an
approach for determining the lane occupancy rates for the north
leg of the intersections. Ta give an accurate fullness measure the
cast shadows that might be present in the segmented foregrounds
are removed using a combined probability map called the
shadow confidence score. Simulation results are provided for two
standard and one custom recorded sequence.

Keywords-component; gaussian mixture meodel,cast shadow
removal, convex hull fitting, convex hull mask, lane occupancy
rates

1. INTRODUCTION

In visual surveillance applications, a common approach for
differentiating moving objects from the static part of the video
frames is detection by background subtraction. Background
subtraction involves caleulating a reference image, subtracting
this reference from each new frame and then thresholding the
result. The key issue in background subtraction is how fo
model the background and update the model in order to adapt
to the changes of the background. The changes include
variations in the intensity, inclination of the mcident light(s)
and physical changes such as the small motions of background
objects (swaying tree branches, moving clouds, rain or snow).
Over the years various statistical models have been proposed.
For example in [1]. Ridder modelled each pixel with a Kalman
filter and presented a more illumination robust system. In [2]
and [3] it was assumed that the series of infensity values of a
pixel can be modelled by a single unimodal distribution.
However in time it was shown that a single-mode model will
not handle multiple backgrounds well. For modelling of
complex and non-stationary backgrounds [4, 5 and 6] suggest
the use of generalized mixture of Gaussians (MoG) model.
During modelling the pixel distributions can be initialized

randomly, using the K-means approximation and the
expectation-maximisation (EM) algorithm [7]. Random
iitialization 1s known to result in slow learning and at times
would even result in instability. Initialization with the K-means
or the EM algorithm would give significantly better results.
The EM algorithm is computationally intensive and takes the
initialization process off-line. In this study since we would be
dealing with real time video from a busy plaza (many moving
humans and vehicles) the on-line K-means initialization was
adopted. In [8] Kim reported that for backgrounds with fast
variations, the MoG with multiple distributions will not be
accurate enough and suggested that for such situations non-
parametric techniques [9] are used. However in this study
since the observed location is an intersection no such fast
variations will be encountered (generally people slow down as
they approach the traffic lights, and when the light turns green
they start from stationary position and gradually speed up).

Various results presented in the literature point out that neither
motion segmentation nor change-detection algorithms can
distinguish between moving objects and moving shadows. In
order to guarantes accurate segmentation shadow suppression
must be administered. Shadows occur when objects partially
or fully block direct light coming from a source. They are
composed of self-shadow and cast shadow. The former is due
to the fact that a part of the object is not illuminated directly
by the light source and the latter is the region projected by the
object in the direction of light. Many shadow removal
algorithms exploiting the variations of the brightness and
chrominance distortion metries (BD, SBD, HBD, «;, CD), the
YUV or HSV colour spaces, and texture difference between
foreground and background exist. In this paper for the
detection of cast shadows the total shadow confidence score
proposed by Fung in [11] will be used.

II.  ADAPTIVE K-GAUSSIAN MIXTURE MODEL

As described 1n [4] and [5] each 3-tuple pixel vector i the
current scene is modeled by a separate mixture of K
Gaussians:
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In the adaptive K-MoG model X7, 1s the cwrent pixel value
vector which consists of Red, Green and Blue components,
W, is an estimate of the weight of the i® Gaussian in the

mixture at time #, g, and I;; are the mean value and the

covariance matrix of the i Gaussian in the mixture. P(X;y)
denotes the probability of observing the current pixel value
vector given the mixture of K Gaussian distributions and
f](X too bl Ly )is a Gaussian probability density function.
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Background/foreground  separation  consists  of  two
independent steps: 1) estimating the parameters of K
distributions: and 2) evaluating the likelithood of each
distribution to represent the background.

A.  Parameter Updating

Since at the start of modelling all the Gaussians have an equal
probability for representing the background the weights w;; .
1€ (1..K), are all set to the value 1/K and the variances are set
randomly to high values. Then every new pixel value vector
Xiy 1s checked against the existmg K Gaussian distributions
until a match is found (a match is defined as a pixel value
vector whose Euclidean distance is within 1.5 standard
deviations of a distribution). The parameters of the matched
component are then updated using the recursive equations
below:

Uig == p)-py oy +PX 4
L= (1_ p)'zi.f—l +
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i 1121 ]
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In equation (3) & represents the user-defined learning rate and
has a value in the range 0 < @ < 1. p on the other hand is a
learning rate for the parameters.

For the case when there are no matches the Gaussian
distribution with the least weight is replaced by a new
component with a mean equal to the current pixel vector. The
variance for this new distribution is set high and the weight is

set fo a low prior value. Finally, the weight of all the X

Gaussians (G; i € 1. K) at time f are updated and normalized
using equation (4)

W= (1 —a/)- Wt 'Mf:r

Wy =t @

E X

When there is a match M, is assumes as 1 and 0 otherwise.

B. Background Estimation

Onee the parameters for all the Gaussian distributions are
updated the ones that are most likely produced by background
processes are determined. First, the K Gaussians are sorted in
descending order by the value of w,/z,, and then the first B

distributions are chosen to be in the background model using
the value of B as given by (5)

[ b

B=argmin ¥ wp» T 5
) | 6

Here, T assumes a value between 0.5 and 1. Generally the
segmented foreground would contain some noise. It is possible
to get 11d of this noise by making use of morphological
operations and conmected component analysis [13].

[I. CAST SHADOW DETECTION AND REMOVAL

Ideally, background subtraction should detect real moving
objects with high accuracy. However in practice the detection
of cast shadows as foreground objects is very common. The
cast shadows that are projected on the road surface can change
in size based on the elevation of the illununating light source.
When cast shadows stretch, two or more independent objects
can appear to be connected together. Unavoidably, the
accuracy of segmentation and estimation of how full the
intersection legs are would be affected negatively. In order to
alleviate these problems the paper adopts a combined
probability map also known as the shadow confidence score
(SCS) [10,11]. The characteristies of the cast shadow in the
luminance, chrominance and gradient density domain dictates
that:
¢ Luminance values of the cast shadow pixels are
lower than those of the corresponding pixels in
the background image.
¢ The chrominance values of the cast shadow
pixels are identical or only slightly different
from those of the corresponding pixels in the
background
¢ The differsnce in gradient density values of the
cast shadow pixels and the corresponding
background pixels is relatively low. The
difference in gradient density values between
the wvehicle pixels and the corresponding
background pixels is relatively high
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Based on these observations, the luminance, the chrominance
and the gradient density scores for each blob in the foreground
mask can be computed using the equation defined in [11] and
a total shadow confidence score (SCS) can be obtained by
combining these three scores.

Figure 2 depicts the effect of SCS based shadow removal for
frame #1590 of the custom video. From the SCS depicted in
part (d) it can be seen that the pixels representing the
foreground objects in comparison to the cast shadows have
lower intensities. To distinguish between the two a threshold
may be applied and as depicted in Figure 2(e) sometimes parts
of the objects can be misclassified as shadows (incorrect
decisions led to undesired erosion on the foreground mask). To
fix this problem a convex hull can be fitted to the remaining
shadow free foreground mask and then inside the hull is filled
to create a new more complete foreground mask. Finally the
convex hull based new mask can be used to segment the
foreground objects from the input frame.

A. Convex Hull Fitting

Generating a polygon that completely and closely surrounds a
given set of points in 2D is called convex hull fitting. In the
literature there are many algorithms for convex hull
generation. Some well-known ones include incremental, gift
wrapping, divide and conquer and quick hull algorithms. In
this paper we describe the incremental algorithm. The
processing starts with a single point and then using two more
points a triangle is created. Next a new point is selected. If the
new point is inside the hull there is nothing to do. Otherwise
one must delete all the edges that the new point can see and
add two new edges to connect the new point to the remainder
of the old hull. This process is then repeated for all the
remaining new poinfs.

B. Convex Hull Mask

As mentioned earlier while trying to separate objects from
their cast shadows some pixels belonging to the actual
vehicles can be misclassified as shadow and this would cause
partial erosion or holes to appear on the foreground objects
mask. Creating a new mask by using the set of points
included in the convex-hull would bring a solution for this
problem. As can be seen from Figure 1 every two points in the
convex hull (red stars) can define a line and when all the lines
are considered we have a closed polygon. The new mask will
be composed of all the points that fall inside this polygon.

Figure 1 — Creation bf convex-hull mask

Figure 2(g) and 2(h) shows the newly created convex hull
mask and the segmented RGB foreground objects based on
this new mask.

IV. TEST SEQUENCES

The background estimation and shadow removal algorithms
discussed above were tested using two standard sequences
(Highwav-I and Highway-II) and one custom recorded video
sequence. Highway-I sequence has a frame rate of 25 samples
per second and a resolution of 352 » 288. Highway-II which is
obtained from VISOR image lab [14] has a frame rate of 15
samples per second and a resolution of 320 » 240. The custom
sequence was recorded by a Fuji Film Fine Pix S6000fd
camera. The recording speed was set at 30 frames per second
and the resolution was 680 x 480.

V.  SIMULATION RESULTS

In this study the adaptive K-Gaussian mixture modeling
was not applied to every single pixel in the input frame. Instead
we looked at the difference between the current frame and a
previous reference frame and if the difference was less than a
previously defined threshold (35 in this study) the tested pixel
was assumed to be part of the background. The adaptive model
was only applied for the locations where the difference was
more than the selected threshold. It was found that this would
greatly speed up the processing.

For all video sequences K=7, ¢=0.05, f=1.5, and T =0.83
were used in the adaptive K-MoG model. The thresholds used
by the SCS calculator have also been summarized in Table 1.
While for the higher resolution custom video a separate set of
threshold values were required for the standard sequences
same set of values was sufficient.

TABIE L SHADOW DETECTION ALGORITHM PARAMETERS
Yeni-Tzmir TL=180 TC1=05 TC2=19 TG1=03 TG2=06
Junction
Highway-I TL=200 TC1=75 TC2=15 TG1=035 TG2=10
Highway-II TL=200 TC1=73 TC2=15 TGl=03 TG2=10

-

As pointed out in section 3 the first set of results were
obtained using the Yeni-fzmir custom sequence. These results
are presented in Figure 2. The second set of simulations were
carried out using the standard Highway-I sequence. Figure 3
shows the results of background estimation, subtraction. and
shadow removal steps as applied to frame #1230. Figure 3(c)
depicts the extracted foreground with some shadow, (e) is the
computed shadow confidence score. (f) shows the remaining
foreground after shadow is removed, (g) is the convex hull
based new mask and (h) is the foreground objects with
minimal shadow.

In [12]. an edge-based moving shadow removal algorithm
composed of many steps (high computational complexity) had
been proposed and the authors had claimed that their approach
would give better results than the ones obtained in the HSV
domain or than by using the SCS based map. This statement
would only be true if the foreground segmentation is done
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right after SCS is thresholded. If after the application of the
threshold a convex hull is fitted to the partly deformed
foreground and a new mask based on the points defining the
convex hull is created then the segmented foregrounds using
this new mask would be as good as the ones obtained in [12].
Simulation results shown in Figures 2. 3 and 4 all indicate that
segmentation with a convex hull based mask works quite well.

(2 ()

Figure 2 — Foreground segmentation and shadow removal for Yeni-Tzmir
Junction

(a) input frame (b) estimated background (c) RGB foreground with shadows
(d) total SCS (e) shadow free foreground mask (f)bounding box cropped FG
(g) new convex hull mask (f) FG objects cropped by new convex hull mask.

A.  Analysis of Lane Fullness

Assuming that in real life each leg of an intersection is being
monitored simultaneously by fixed surveillance cameras this
section suggests a way for computing the fullness of a single
leg of an intersection. In systems using fuzzy logic each leg
houses two sensors behind traffic lights separated by a
distance D. The sensor at distance D from the light counts the
number cars coming to the intersection and the second counts
the cars passing the traffic light. The amount of cars between
the sensors is determined by the difference of the readings.
However, this approach can not differentiate between a truck,
a bus or a car. Hence determining what percent of the road is
full based on size becomes fairly difficult.

(® ()

Figure 3— Segmentation and shadow removal for Highway-I

(® ()
Figure 4— Segmentation and shadow removal for Highway-II
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A better approach that would not require any information on
the type of cars present behind the traffic lights would be the
use of the foreground mask(with shadows removed) together
with two lane masks for determining how much each lane and
the detected foreground overlap outside a designated region 4
(ref to Figure 5(e)) . Afterwards we test to see if any of the
foreground objects fall in this designated region. If region 4
confains no moving objects it is assumed 100% full.
Otherwise the overlap between the exfracted FG over region A
and the ground truth mask of region A is computed. The
application of the fullness analysis fo the north leg of the
intersection for frame #1890 is depicted in Figure 5.

(€

Figure 5- Lane masks and fullness analysis

VI CONCLUSIONS

The paper proposed an adaptive signaling technique based on
fullness analysis of the different legs of an infersection and
gave an example for the north leg of Yeni-Fzmir Junction of
Famagusta. It also introduced the concept of applying a
convex hull on the output obtained from shadow removal
routines operating in HSV domain or using a combined
probability map known as SCS. Various examples were
provided using standard and custom sequences to show the
advantage of applying the convex hull before segmentation.
Future work will include the collection of all the fullness
measures for the four different legs and signaling of the
control device to switch the lights based on the analysis of the
collected data.
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Ozetce

Bu makalede sabit bir girsel gizetim sistemi tarafindan
gozetlenmekte olan herhangi bir cadde, kavsak veya
secilmis bolgedeki hareketli nesnelerin uvarlanr Gauss
Fonksiyonlart  Karisim  (GFK)  yéntemi  kullamlarak
arkaplandan aynstirimasi ve kavsak kollarindaki doluluk
oram analizleri sunulmaktadir. Kavsak kollarmda veya
caddelerdeki doluluk oranlarim dogru kestivebilmek icin
dncelikle  dn-plandaki ~ gélgelerin - miimkiin  oldugunca
elimine edilmesi  gerekmektedir. Bu calismada gilge
wzavi (HSV) kullamlarak gerceklestivilmistir. Benzetimler
PETS 2001 Camera 1 dizini ve KKTC-Magusa sehrinde
kaydedilen bir dizinin kullanmiyla gerceklestirilmistir.
Kavsak bacaklarmm sag ve sol seritlenin yiizde cinsinden
doluluk hesaplamast igin yeni bir yintem dnerilmis ve bu
oranlar secilmis cerceve iizerine islenmistir.

Abstract

Based on adaptive Gaussian mixture modelling this article
presenis the separation of foreground objects from frames
of surveillance video ftaken at avenues and/or
intersections. The paper also describes an approach for
determining the lane fullness of a dedicated leg of an
intersection. In order fo give an accurate fullness measure
the cast shadows that might be present in the segmented
foregrounds must be eliminated. In this study the detection
and removal of shadows have been carried out using the
HSV color space. The simulations were carried out using
the Camera | sequence from PETS 2001 database and a
custom sequence recorded in TRNC-Famagusia. A new
method for computing right and lefi lane fullness in each
leg of the intersection has been proposed and values
computed have been recorded on the botiom lefi corner of
the frame wnder study.

1. Giris

Gorsel gozetlemede harcketli nesneleni arka plandan
ayirmanin yaygin yolu arkaplan kestirimi ve miitakiben

arkaplan ¢ikarmmdir. Bazi yontemler bir pikselin zamana
vaytlmus seri halindeki yeginlik degerlerinin tek doruklu bir
dagihm fonksiyonu kullamlarak modellenebilecegini
varsaymaktadir [1], [2]. Bununla birlikte tek doruklu bir
model sallanan aga¢ dallan  veya savrulan kar
zerreciklerinin neden verecegi coklu arkaplanlarla baga
cikamamaktadir. Genellikle, karmagik ve duragan olmayan
arkaplanlarin modellenmesi isinde genellestirilmis Gauss
Fonksiyonlar: Kansimi (GFK) kullamlmaktadir [3],[4],[5].
Modelleme esnasinda ilklendirme ve parametre giincelleme
beklenti enbiiyiitme yontemi (EM) [6] veya K-ortalama
yontemi ile gergeklestirilebilir. M ilklendirmesi kullanan
yontemlerin daha iyi sonug verdigi bilinse de bu yaklagimin
karmasikhg ve baslangicta cevrimdisi olmasindan dolay:
bu caliymada K-ortalama ilklendirmesi kullanilmugtur.
Modelleme esnasinda zeminde hizhi degisimler oluyorsa
GFK'min bile 3-5 adet Gauss fonksiyonu ile yeterince
dogru bir sonug¢ vermeyecedi [7] de belirtilmektedir. Bu
problemleri ¢ozecek parametrik olmayan ve c¢ekirdek
yogunluk kestirimi kullanan bir yontem [8] de sunulmustur.
Bu galiymada gorsel sistemin kaydettigi gergevelerdeki
zeminde hizh ve ani degisiklikler olmadigindan parametrik
olmayan yontemlerin kullammina ihtivag olmamugtr.

Bildiri diizeni asagdaki gibidir. Tkinei kisim Gauss
Fonksiyonlan Karigim Modeli ve bu modeldeki parametre
giincelleme detaylarmi anlatmaktacir. Daha sonra 3.
kisimda onplan/arkaplan ayrigtrma islemi sonunda on
planm bir pargast olarak bulunan gdlgelerin FISV uzayinda
kestirimi ve silinmesi anlatilmistir.  Dérdiincti  bolim
kullanilan video test dizinlerini ve bu dizinlerin
ozelliklerini  belirtmig, besinci kisimda ise benzetim
sonuglar! sunulmustur.

2. Gauss Fonksiyonlar: Karisim Modeli

Uyarlamr Gauss fonksiyonlar karism modeli [3] ve [4] de
belirtildigi {izere her gokuzlu piksel vektoriinii K-adet
Gauss  dagihmi  kansimmdan  olusacak  sekilde
modellemektedir. Cokuzlu piksel vektorii X, kirmiz, yesil
ve mavi bilesenlerden olugan bir yeginlik degerler
vektorini, w;, belirli bir zamanda karigimdaki her Gauss
dagilim fonksiyonu igin kestirilmis bir katsaywy, g4, ve £,
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ise karisimdaki her dagilim fonksiyonunun avaraj deger ve
ortak degisinti matrisini temsil etmektedir.

On/arka plan  aynstuma islemi esasen iki bagimsiz
problem olarak gériilebilir. Bunlardan ilki K elemanh
karisimdaki Gauss fonksiyonlan ile ilgili parametrelerin
kestirimi, ikincisi ise her dagilmin arkaplan temsil etme
olasihfimin degerlendirilmesidir.

21 Parametre Giincellenmesi

Baslangigta tiim Gauss fonksiyonlart esit olasilikl oldugu
igin tiim katsayilar, wy, , 1/K degerine esitlenmekte ve
degisinti degerleri de rastgele yitksck degerler olarak
alinmaktadir. Daha sonra her ¢okuzlu piksel vektorii eldeki
K-adet Gauss fonksiyonu ile karsthstinlmaktadir. Bir
cakisma durumunda (cokuzlu piksel vektdrii X/nin
herhangi bir dagilimdan 2.5 standart sapmadan daha yakin
olma durumu) ilgili dagihm ve/veya dagilimlarin
parametreleri giincellenmektedir.

Tarama sonucunda bir ¢akisma bulunmamasi durumunda
katsayist en diisiik olan Gauss dagihmi bir  yenisi ile
degistirilir. Bu yeni dagihmin katsayist diisiik, degisintisi
yitksek ve avaraj deger vektorii ise X, ye esit tutulur. Gauss
dagilimina ait katsayilar ise her gozlemleme zamam igin
degistirilmektedir. Cakisma var ise M ;¢ | dider durumlar

icin (0 olarak kabul edilmektedir.

2.2 Arkaplan Kestirimi
Her cokuzlu piksel vektori igin  parametre gilincellemesi
yapildiktan sonra dagilimlar w, /‘Tk degerlerine  gore
siralanmakta ve tist tarafta kalan B adet dagilimin zemini en
iyl temsil eden dagilimlar oldugu kabul edilmektedir.
b
B =argmin Zwﬁ' > T (hH
L

Denklem (1Ydeki T egik degeri 0.5 ile 1 arasinda
degisebilmektedir.

23 Morfolojik Islemler

Uzerinde ¢aligilan gergeve én  ve arkaplan olarak
ayristinldiktan sonra genelde 6n-planda harcketli nesneler
ile birlikte bazi giriiltiiler de bulunur. Bu giiriiltiler:
miimkiin  oldufunca azaltmak igin bazi morfolojik
operatorlerden yararlamlmaktadir. Sekil 1 de aynstirma
sonrast elde edilen bir 6n plan goriintiistindeki giirtiltiintin
nastl minimize edildigini gosterilmistir.  Giiriiltiiden
kurtulmak i¢in hem kapama ve agma islemleri hem de
baglantilhl bilesen analizi uygulanmis ve piksel sayisi
toplamu belli bir esik degerin altinda olan bilesenler
giiriiltii kabul edilip 6n plan ¢ergeveden silinmistir.

3. Golgesizlestirme

Giiniin degisik saatlerinde cadde {izerinde hareketli haldeki
nesneler belli agidan vuran 15181 bloke edecegi igin yol
tizerinde gdlgeler olusacaktir. Bu golgeler 151k kaynagmn
yiikseklifine gére uzayabilmekte veya daralabilmektedir.
Galgelerin uzamast durumunda birbirinden bagimsiz iki
nesne birlesebilmekte ve bu hem arag sayimint hem de serit
doluluk orani hesaplarm olumsuz yoénde etkilemektedir.
Bu yiizden ¢alismamuzda [10] da belirtilen renk oz,
doygunlugu ve yeginligi uzayim kullanan bir gélge nokta
maskesi (GNM) ve deneysel olarak elde edilen bazi esik
degerleri  gdlgesizlestirme amach  kullamlmistir.  Bu
galismada golge sezim finitesince ‘ht'ya. duyulan a, f, %
ve 7y degerleri sirast ile 048, 0.95, 0.4 ve 0.7 olarak
alinmuslardir.

1 Iwr}

{r} B ) r} <f N
GNM, (x.y)=1 (% B (xy)<n. N ()

‘I ( }] B g{r}]‘_ﬁl

0 aksi takdirde
Denklem (2) de [, (x,v)ve By(x,y) girs video dizini

ve arkaplan modellerinin K'inei  cercevesindeki  (x,)
koordinatl piksel degerlerini temsil etmektedir.

(b)
Sekil 1: Magosa Yeni_Izmir Kavsag, gergeve 2100 de
glirtiltiistizlestirme ve gélgesizlestimme.

4, Video Test Dizinleri

Yapilan ¢alismalarin performans deferlendirmesi igin
PETS 2001 [11] veri tabanindan Kamera 1 ve Kamera 2
dizinleri ile Magosa Yeni Izmir kavsaginda AVI olarak
kaydedilmis “Magosa_Yeni_[zmir Kuzey” dizini
kullantlmistir.  Fuji S6500 marka kamera ile kaydedilen
dizin 640=480 coziintrlik ve saniyede 30 cerceve
icermektedir. Kamera kayit yaparken harcketli JPEG
stkigtrmas1  uyguladigindan ~ gergevelerin - MATLAB
ortamma okunabilmesi igin sikastirmayr agacak bir kod
goziiclisi yiiklenmistir.

5. Benzetim Sonuglari

Bu calismada video dizinlerindeki her cergeveye Gauss
fonksiyonlan kansim modeli uygulanmadan once bir
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esikleme  uygulanmigtir.  Giincel gergevedeki  (x,y)
koordinatlarindaki piksel gegmisle kiyaslandiginda oldukga
uzun  bir siire  degismemigse bu piksel  sabit
varsayllmaktadir. Bir bagka deyisle giincel gergeve ile
onceki bir referans cergevesindeki deger farki deneysel
olarak secilmis bir esik degerinin (minDiff) altinda ise bu
piksel arkaplanin bir pargast olarak kabul edilmekte ve
uyarlanir stire¢ atlanmaktadir. Bu yaklagim sadece kisith
sayidaki koordinatta uyarlanir stireci kullanacag igin hem
cerceve hem de dizinin ¢ok daha hizli islenmesine neden
vermektedir.

Onceki boliimde belittilen test video dizinleri igin bu
calijmada segilen esik degeri 35dir. S-bilesenli GFK
modelinde a=0.05, f=2.6 ve T= 0.85 olarak alinmugtur.
flk deneme PETS-2001 veritabanindan Kamera 1 test
dizinine uygulanmig ve gelistirilen algoritma arkaplan
kestirimi ve ayristirmay1 basaryla gergeklestirmistir. Sekil
2 bu dizinin 960'mec1 gerevesi icin - ayristirma,
golgesizlestirme ve hareketli nesnelerin  belirlenmesi
islerini gostermektedir. Hareketli nesnelerin birbiriyle fiziki
olarak ortiistiigli durumlarda nesneleri ayima islemine
gidilmemistir.

Ikinci deneme Magosa schrinde Yeni Izmir kavsaginda
cekilen bir video dizini kullanilarak gerceklestirilmistir. Bu
dizin  yakin  ¢ekimle kavsagin  kuzey  bacagim
goriintiilemektedir. Giinesli bir giinde ve ogle vaktinden
once gekilen bu dizinde hareketli cisimlerin 15181 bloke
etmesiyle yol tizerinde olugmus degisik boylarda golgeler
meveuttur. Bu  golgeler hem nesnelerin  6n  planda
birlesmesine hem de harcketli nesneleri belirlerken yanhs
kabullere neden verebilmektedir. Golge sezim finitesinde a,
L, 15 ve 1 degerleri sirast ile 0.48, 0.95, 0.4 ve 0.7 olarak
alindiginda Sekil 3 deki sonuglar elde edilmistir. Caligma
yanls kabulleri minimize etmek amach olarak hareketli
nesne bulundugu varsayilan bolge ile arkaplan resmindeki
ayni bolge arasindaki ilinti degerlerini de hesaplamis ve bu
degerin yiiksek oldugu durumlar icin o bolgeyi segmekten
kaginmugtir.

5.1 Serit Doluluk Analizi

Gelencksel trafik 151k sistemleri ya esit ya da her seridin
uzunlugu ile orantih bekleme peryotlart gerektirmektedir.
Bu tiir sistemler ve uyguladiklan mantik ile trafik akisinin
optimize edilmesi yetersiz kalmaktadir. Dértyollarin
degisik  bacaklarinda  bekleyen  araclara  uyarlamir
isaretlesmeye dayalt yol vermenin (ihtiyaca ve doluluk
oranina bagh olarak) tiim yonlerdeki trafik akigini optimize
edecegi diistiniilmektedir.

Denetim altindaki kavsagin tiim bacaklannin tek bir
giivenlik kamerasi ile izlenmesi miimkiin olmadigindan bu
caligmada sadece kavsagin kuzey bacagi igin doluluk oram

Current Frame EstimstedBackcround

Foreground Foreground with Shadow Removed

(b)

Sekil 2: PETS 2001 Kamera I dizininin 960 mnci
cercevesi

EstmatedBackground

Foreground Fereground with Shadow Removed

Frame # 1590

(b)
Sekil 3: Magosa_Yenilzmir Kuzey dizinindeki 1590 nci
cer¢evede dnplan ayrigtirma , golgesizlestirme ve hareketli
nesne tesbiti.
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hesaplamalart verilmistir. Sekil 4(a) 'daki serit maskeleri ile
golgesizlestirilmis Onplandaki hareketli nesnelerin yiizde

kag ortiistigiindl (serit doluluk oranr) tespit edilerck her

seridin yiizde doluluk oram bulunabilmektedir. Trafik
siklarma  yakm 6n bélgede smmrlarnt belli bir alan
segilmekte (alan-A4), ve 6n/arka plan ayristirmasindan sonra
hareketli nesnelerden herhangi birinin bu alan iginde olup
olmadign sorgulanmaktadir. Segilmis bélge igerisine
herhangi bir hareketli nesne diismezse bu bolge 100 % dolu
kabul edilmekte geriye kalan yol yiizeyinin doluluk orant
ise dnplan ve yol maskelerinin 6rtiisme orammna gére
hesaplanmaktadur.

Inceleme altindaki bacagin her ki seridinin de doluluk
orant 1890"mne1 gerceve igin Sekil 4 de verilmistir.  Tiim
yonlerdeki trafik akigim bu mantikla kontrol edebilmek igin
dortyolun her bacagmda ayni analiz e zamanli olarak

yapilmali ve kiyaslamalar sonunda kontrol cihazina bir
sinyal gonderilmesi gerekmektedir. Es zamanli analiz her

bacagn ayri bir /P-kamerasiyla izlenmesini sart kosacaktir.

Serit doluluk analizi yaparken trafik 1siklarina yakm olan,
on bélgede belirlenen alan-4'min derinlidi, bu ¢ahsmada
sabit tutulmustur, Fakat video dizininin her 5 dakikalik
aralif taramp trafik akis hizi belidenirse bu derinligin
uyarlamal sekilde degistirilmesi miimkiin olacaktir. Bu da
giinin farkh zamanlarnda yapilan doluluk tahminlerinin
daha gergekel olmasmi saglayacaktir.

Sekil 4: Yeni Izmir kavsagimn kuzey bacagindaki sag ve
sol seritlerdeki doluluk oram analizi,

6. Varg ve ileriki Calismalar
Bu calgmada ana caddeler veya herhangi bir kavsak
iizerindeki nesnelerden  hareketli  olanlarn  arkaplan

kestirimi ve on/arka plan aynstirmasi, giiriiltiistizlegtirme
ve golgesizlestirme islemleri sonras belirlenmesi ve trafik
igiklarmmn — akilh - kontrolu  igin  kavsagin  degisik
bacaklarindaki doluluk analizinin nasil yapilabilecedi
konular: islenmistir.  Segilmis bazi  video dizinlerinye
vapilan  benzetimler sonrast  yontemlerin - basanyla
uygulandigim - gostermek  amaciyla makalede  Grnekler
sunulmugtur. Golgesizlestirme islemi higbir zaman 100 %
dogru olmadig1 i¢in 6n plan goriintiisinde hareketli nesne
diye belirlenen bazi bolgeler vanlis kabul ¢ikmaktadir. Bu
yiizden serit doluluk oranlannda 5% lik bir hata payi
olabilecegini kabul etmek gerekir. Projenin devammnda
aynstinlan 6n plandaki nesnelerin dzellik ¢ikarim, nesne
smiflandirma ve kirmizi 11k ihlalleri tizerinde arastirmalar
yiirfittilecektir.
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