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ABSTRACT 

A COMPARATIVE STUDY OF BACKGROUND ESTIMATION 

ALGORITHMS 

 

Segmenting out mobile objects present in frames of a recorded video 

sequence is a fundamental step for many video based surveillance applications. A 

number of these applications can be listed as: detection and recognition, 

indoor/outdoor object classification, traffic flow monitoring, lane fullness analysis, 

accident detection etc. To achieve robust tracking of objects in the scene systems are 

required to have reliable and effective background estimation and subtraction units. 

There are many challenges in developing an all round good background subtraction 

algorithm. Firstly the method(s) chosen must be robust against illumination changes. 

Second then should avoid detection of non-stationary backgrounds (swaying grass, 

leaves, rain, snow etc.) and shadows cast by objects blocking sun light. Finally they 

should be quick in adapting to stop and start of vehicles in urban traffic. Therefore 

high precision and computational complexity issues are very important while trying 

to choose an algorithm for a particular environment.  

In this thesis we have focused on five different background subtraction 

algorithms. The methods which attracted considerable interest in the literature and 

seemed to have fairly good characteristics were selected and implemented. These 

were namely, approximated median filtering, mixture of Gaussians model, 

progressive background estimation method and histogram/group-based histogram 

approaches. These techniques were tested under different environments (using test 

sequences) and also compared in a quantitative way using some synthetic video.  
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Also the work entailed an effective shadow removal technique which is used to avoid 

detection of shadow pixels as part of the foreground mask.   

The results show some critical tradeoffs between precision and speed of the 

process. For instance, although approximated median filtering seems to be a suitable 

approach due to its simplicity in computation, it fails to detect foreground objects 

accurately when the background scene contains movements, in addition it is slow in 

the case of adapting to frame changes which makes this algorithm impractical for 

many outdoor applications.  

The results of progressive method indicate that the algorithm is able to handle 

the adaptation or deal more effectively than approximated median filtering with even 

better accuracy for foreground extracting in expense of slightly losing the 

performance speed. However, the background movement problem (shaking leaves, 

flag in the wind, flickering, etc) still stands.        

Mixture of Gaussians based results was promising in both adaptation and 

precision however the method’s sensitivity to transient stops and its heavier 

computational complexity were its main drawbacks. Finally although the group 

based histogram was still too sensitive to fluctuation of light it led to acceptable 

results introducing itself as a reliable background-foreground segmentation method 

for its ability to deal with transient stops.     

Keywords: Temporal Median Filtering,Background estimation,Mixture of 

Gaussians background estimation,  Median filtering, Histogram, Precision and recall, 

Shadow removal 
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ÖZET 

ARKA PLAN KESTİRİM ALGORİTMALARI ÜZERİNE 

KARŞILAŞTIRMALI BİR ÇALIŞMA 

 

Bir video dizinini oluşturan çerçevelerdeki hareketli nesnelerin bölütlenmesi 

birçok video tabanlı sistem için temel bir adım teşkil eder. Bu uygulamalardan 

bazıları aşagıdaki gibi sıralanabilir: kestirim ve tanıma, bina içi veya dışı ortamlarda 

nesne sınıflandırması, trafik akış hesaplaması, şerit doluluk analizi, kaza algılama vb.  

İzlenen alandaki nesnelerin sağlıklı takibi için güvenilir ve etkili arkaplan tahmin ve 

ayrıştırma üniteleri gerekmektedir. Bütün yönleri ile iyi bir algoritma geliştirmek 

hemen hemen imkansızı istemek gibidir. İlk olarak seçilen yöntemler aydınlatmada 

meydana gelebilecek değişikliklere karşı dayanıklı olmalıdır.  Daha sonra 

algoritmalar sabitliği devamlı değişen nesneleri (sallanan ot ve yapraklar, yağmur ve 

kar gibi) arka planın bir parçası olarak almamalıdırlar. Ayrıca algoritmalar güneş 

ışığının bloke edilmesinden oluşan hareketli gölgeleri de arka plandan 

ayırabilmelidirler. Son olarak şehir içi trafiğinde sıkça karşılaşılan durma ve hareket 

etmelere karşı arka planı hızlı bir şekilde adapte edebilmelidirler.  Bu yüzden yüksek 

doğruluk ve hesaplama karmaşıklığının gerçek zamanlı çalışacak kadar az olması 

önemli noktaları teşkil etmektedir. Bu tezde dört ayrı arkaplan çıkarma algoritmasına  

(background subtraction algorithms) odaklanılmıştır. Literatürde en çok referans 

almış ve iyi benzetim sonuçları veren yöntemler seçilmiş ve gerçekleştirilmiştir. Bu 

beş yöntem sırası ile  yaklaşık ortanca süzgeçleme yöntemi, Gauss fonksiyonları 

karışım modeli, aşamalı arka plan kestirim yöntemi ve histogram/grup-tabanlı 

histogram yöntemleridir. Bu teknikler farklı ortamlar için değişik test video dizinleri 
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kullanarak değerlendirilmiş ve ayrıca sentetik video dizinleri kullanılarak kıyaslamalı 

olarak karşılaştırılmıştır. Ayrıca, etkili bir gölge kaldırma tekniği tanıtılıp tahmini 

önplanlara uygulanmıştır. Sonuçlar işlemin kesinliği ve hızı arasında bazı kritik 

ödünleşimler göstermiştir. Örneğin approximated median filtering hesaplamadaki 

kolaylığı sebebiyle uygun bir yaklaşım olarak görülse de geri plandaki mekan 

hareket içerdiği taktirde önplandaki nesneleri doğru olarak tespit edememektedir. 

Ayrıca bu yöntem, çerçeve değişimlerine uyumu açısından da yavaştır ki bu durum 

sozkonusu algoritmayı birçok dış uygulama için kullanışsız kılmaktadır. Aşamalı 

arkaplan kestirim algoritmasıyla elde edilen sonuçlar göstermektedir ki bu 

algoritmanın adapte olma  becerisi yaklaşık ortanca süzgeçli yönteme göre daha 

etkilidir. Çok az hız kaybına rağmen önplan çıkartması daha kesin bir biçimde 

yapılabilmektedir. Buna rağmen geri plan hareket problemi hala (sallanan yapraklar, 

dalgalanan bayrak, titreme, vb) devam etmektedir.  

 

Gauss fonksiyonları karışımlı arkaplan kestirim yöntemi keskinlik ve 

adaptasyonda iyi olmasına rağmen geçici duraklama ve kalkışlara hassas ve işlem 

zamanı açısından daha uzun bir zaman aralığı gerektiren bir yöntemdir. Son olarak, 

grup temelli histogram yöntemi ışık dalgalanmalarına karşı çok hassas olmasına 

karşın duraklama ve kalkmalara karşı başarılı olması nedeni ile güvenilir ve başarılı 

bir önplan-arkaplan bölütleme yöntemi olarak kabul edilebilir.  

 

Anahtar kelimeler: zamansal ortanca süzgeçleme, aşamalı arkaplan kestirimi, 

Gauss fonksiyonları karışımlı arkaplan kestirimi, keskinlik ve hatırlama ölçekleri, 

gölge belirleme ve kaldırma 
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CHAPTER 1 

INTRODUCTION 

 

Video based surveillance systems (VBSS) employ machine vision 

technologies to automatically analyze traffic data collected by wired CCTV cameras 

and/or wireless IP camera systems. VBSS can be used to monitor highway 

conditions, intersections, and arterials for detection of accidents, it can be used to 

compute traffic flow, and for vehicle classification and/or identification. VBSS 

systems are of three different types: 

1) Tripwire Systems, 

2) Tracking Systems,  

3) Spatial Analysis based systems.   

In Tripwire systems the camera is used to simulate usage of a conventional 

detector by using small localized regions of the image as detector sites. Such a 

system can be used to detect the state of a traffic light (red, yellow, green) or check if 

a reserved section has been violated or not.  Tracking systems detect and track 

individual vehicles moving through the camera scene. They provide a description of 

vehicle movements (east bound, west bound, etc.) which can also reveal new events 

such as sudden lane changes and help detect vehicles travelling in the wrong 

direction. Tracking systems can also compute trajectories and conclude on accidents 
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when different trajectories cross each other and then motion stops. Spatial analysis 

based systems on the other hand concentrate on analyzing the two-dimensional 

information that video images provide. Instead of considering traffic on a vehicle-to-

vehicle basis, they attempt to measure how the visible road surface is being utilized.  

Conventional approaches of traffic surveillance include manual counting of 

vehicles, or counting vehicles using magnetic loops on the road. The main drawback 

of these methods, besides the fact that they are costly is that these systems can only 

count but they cannot differentiate or classify. 

Major part of the existing research and applications on traffic monitoring is 

dedicated to monitoring vehicles on highways which carry heavy traffic volumes and 

are incident prone. However, successful and efficient traffic monitoring at cross-

sections of the roads in crowded urban areas is also an important issue for road 

engineers who are to develop new roads that will ease up the traffic load of the city.  

Furthermore the traffic flow in the city can be displayed at a traffic control center by 

combining information from various video streams and this information can be 

exploited for re-directing flow of traffic intelligently. 

Background subtraction is a common approach for identifying the moving 

objects (foreground objects) in a video sequence. Each video frame from the 

sequence is compared against a reference or background model. Once the reference 

is computed (often called a background model), then it will be updated with each 

newly arriving frame by exploiting different algorithms.  Current frame pixels with 

considerable deviation from the background model are accounted to be moving 

objects.  

Although many background subtraction methods are listed in the literature, 

foreground detecting specially for outdoor scenes is still a very challenging problem. 
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The performance of VBSS will vary based on several environmental changes like the 

ones listed below:  

 Variable lighting conditions, during sunset and sunrise  

 Camera angle, height and position  

 Adverse weather conditions such as fog, rain, snow, etc 

 Presence of camera vibration due to wind and heavy vehicles 

Another important consideration while trying to choose an appropriate 

background estimation method is the time required for processing a frame. If a 

system has to run in real-time, its computational complexity should not be too high.  

The background modeling approach must also be robust against the transient stops of 

moving foreground objects and yet maintain a good accuracy.  

Eliminating the cast shadows as undesired parts of the detected foreground 

mask has become a standard pre-processing step in many applications since moving 

shadows would affect the detection and identification processes in a negative 

manner. In this work only the HSV color space based shadow removal algorithm will 

be mentioned as an example.  

1.1 Literature Review  

In the literature there are many proposed background modeling algorithms. 

This is mainly because no single algorithm is able to cope with all the challenges in 

this area. There are several problems that a good background subtraction algorithm 

must resolve. First, it must be robust against changes in illumination. Second, it 

should avoid detecting non-stationary background objects such as swaying leaves, 

grass, rain, snow, and shadows cast by moving objects. Finally, the background 
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model should be developed such that it should react quickly to changes in 

background such as starting and stopping of vehicles.  

 Background modeling techniques could be classified into two broad 

categories as: 1) Non-Predictive Modeling, and 2) Predictive Modeling.  The former 

tries to model the scene as a time series and creates a dynamic model at each pixel to 

consider the incoming input using the past observations and utilizes the magnitude of 

deviation between the actual observation and the predicted value to categorize pixels 

as part of the foreground or background. However, the latter one neglects the order 

of the input observations and develops a statistical (probabilistic) model such as PDF 

at each pixel.  

According to Cheung and Kamath [2], background adaptation techniques 

could also be categorized as: 1) non-recursive and 2) recursive.  A non-recursive 

technique estimates the background based on a sliding-window approach. The L 

observed video frames are stored in a buffer, considering the existing pixel variations 

in the buffer the background image will be estimated. Since in practice the buffer 

size is fixed as time passes and more video frames come along the initial frames of 

the buffer are discarded which makes these techniques adaptive to scene changes 

depending on their buffer size. However, in the case of adapting to slow moving 

objects or coping with transient stops of certain objects in the scene the non-recursive 

techniques require large amount of memory for storing the appropriate buffer. With a 

fixed buffer size this problem can partially be solved by reducing the frame rate as 

they are stored. 

On the contrary the recursive techniques instead of maintaining a buffer to 

estimate the background they try to update the background model recursively using 

either a single or multiple model(s) as each input frame is observed. Therefore, even 
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the very first input frames are capable to leave an effect on new input video frames 

which makes the algorithm adapt with periodical motions such as flickering, shaking 

leaves, etc. Recursive methods need less storage in comparison with non-recursive 

methods but possible errors stay visible for longer time in the background model. 

The majority of schemes use exponential weighting or forgetting factors to determine 

the proportion of contribution of past observations. 

In this thesis we tried to neglect the methods which require a long period of 

initialization such as the ones described in [3] which is characterized by eigen-

images and [4] using temporal maximum-minimum filtering along with maximum 

inter-frame differencing for entire background model, and focused more on adaptable 

background models. 

1.1.1 Non-Recursive Techniques 

The sub-sections below give a brief summary of some non-recursive 

techniques.  

1.1.1.1 Frame Differencing 

This technique is probably one of the simplest among the background 

subtraction algorithms. In the literature it is also referred to as the temporal 

differencing approach.  Simply, the previous frame is considered as the estimate for 

the background at each time interval and foreground objects are detected by taking 

the difference of the current input frame and the current reference. Since this method 

uses only one frame to estimate the background it is quite sensitive to transient stops 

[5,6], and can easily be affected by camera noise and illumination changes[7]. This 

method also fails in correctly segmenting foreground objects if the size of the object 

is large and its color is uniformly distributed. In the literature this problem is referred 
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 to as the aperture problem. 

1.1.1.2 Average Filtering 

Average filtering approach creates the background model by averaging the 

input frames over time. This is based on the assumption that since the foreground is 

moving its presence is transient, therefore after averaging, the proportion of object in 

the estimated background will become small. If one considers intensity of a certain 

pixel over time and assumes that the object intensity is visible for just a specific 

period of time (for instance 3 video frames) then the effective object intensity in the 

background model based on that pixel will be 3/n, where n is the total number of 

averaged frames. 

Hence if the objects are large in size or if they move slowly their contribution 

becomes more and more significant. Also shadows in same position(s) where the 

object was detected in the previous frame(s) will appear in the background model. 

They are generally referred to as ghosts in the literature. Furthermore, average 

filtering is also known to show poor performance in the crowded scenes where lots 

of moving objects or bi-modal backgrounds (flickering, shaking leaves, flag in the 

wind, etc) has to be dealt with [8]. 

Koller et al. [15] has tried to improve the robustness to illumination changes 

by means of implementing a moving-window average algorithm along with an 

exponential forgetting factor. This trick may be helpful in suppressing some errors 

due to illumination changes but it will obviously fail in the case of slow moving 

objects and other shortcomings which were mentioned in prior to this method, since 

background is updated using both the information from the previous background and 

foreground.  
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Keeping these drawbacks in mind, indoor applications with little illumination 

changes and fast moving objects with limited sizes will be the most suitable 

environments for applying the average filtering method. The last step to modify this 

algorithm is to exclude identified foreground pixels based on our estimated 

background model in the updating procedure. 

1.1.1.3 Median Filtering 

Median filtering is widely used in many applications and has been extensively 

discussed in the literature [9],[10],[15],[17]. In this approach, the background 

estimate is computed as the median of all the pixel values stored in a buffer at each 

pixel location. Here an assumption is made based on the fact that the pixels 

belonging to the background scene are going to be sighted more than half of the 

length of the entire video frames in the buffer which will result in slow updating 

procedure due to the fact that if a static object is added to the scene it takes time at 

least half of the entire stored frames to become part of the background.  

Replacing median by its color counterpart “medoid” can lead to color 

background estimation [10]. In spite of average filtering the median filtering is 

capable of saving boundaries and existing edges in the frame without any blurring, 

therefore gives a sharper background in comparison to the previous method.  

1.1.1.4 Minimum-Maximum Filter 

This method uses three different values to decide whether a certain pixel 

belongs to background or not. These three values are minimum intensity of each 

pixel during a specific time period while assuming no foreground objects are 

available in the scene (training sequence), the maximum intensity of each pixel and 

the maximum possible change based on the maximum intensity difference between 

every two consecutive frames [13]. 
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1.1.1.5 Linear Predictive Filter 

Toyama et al. [14] estimates the background model through applying linear 

predictive filters to predict the values corresponding to the background based on the 

available k pixel-samples stored in a buffer. Wiener filter is one of the most 

commonly used filters in such algorithms.  If the accumulated pixel errors exceed the 

predicted value too much (several times) those pixels will then be considered as part 

of the foreground. The coefficients of the filter are computed at each frame time due 

to covariance of the samples, therefore this algorithm is not applicable in real-time 

procedures. Linear prediction using the Kalman filter was also used in [15], [16], 

[17].  

Monnet et al. [18] has used an autoregressive form of filtering for predicting 

the newly added input frame. In [18] two different steps have been used to create and 

preserve the background model. One of the steps was responsible to update the states 

incrementally and the other one replaced the states of variation by means of the latest 

observation map. Other methods can also be considered for prediction. For instance, 

principal component analysis [19], [20] refers to a linear transformation of variables 

that keeps from n operators the most significant magnitude of variation among the 

training data in hand. Computing the basis vectors from the available data set is done 

using singular value decomposition concept.  

Unfortunately evaluation of these basis components for vectors containing 

many data values is very time consuming computation. One solution to this problem 

is by downsizing the procedure to block level and perform the computations on each 

block of the image independently. 
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1.1.1.6 Non-Parametric (NP) Modeling 

In NP modeling, the main interest is focused on estimating the corresponding 

probability density function (pdf) at each pixel. Nonparametric methods compute the 

density function directly from the observed data and there is no prior assumption or 

knowledge regarding the underlying distribution. Therefore unlike its other 

counterparts, there will be no model selection and distribution parameter estimation. 

 

𝑓(𝐼𝑡  = 𝑢) =
1

𝐿
  𝐾(𝑢 − 𝐼𝑖 )

𝑡−1

𝑖=𝑡−𝐿

 

(1.1.1.6.1) 

In the above equation K(.) is the kernel estimator which most of the time is 

assumed to be Gaussian. The pixels from the newly input video frame named 𝐼𝑡  is 

considered as foreground related pixels when the probability of such occurrence f (𝐼𝑡) 

is below a specified threshold. It has been shown by [21] and [22] that Kernel density 

estimators are able to converge asymptotically to practically any pdf.  In fact, [18] 

explains that all other existing non-parametric density estimation techniques can be 

shown to be a variants of the kernel method.  For example histogram based 

algorithms which will be detailed in this thesis also are some of these techniques. 

As mentioned before kernel density estimator algorithm does not include any 

assumption for the general shape of the underlying distribution and it owns the 

flexibility to reach any type of distribution for as long as it is fed with enough data 

samples. Theoretical proof of this issue can be found in [21]. 

Flexibility to converge to almost any pdf makes this method appropriate to 

estimate the areas containing color-distributions. Unlike the Gaussian Mixture Model 

which is a parametric model which tries to fit Gaussian distribution(s) to each pixel, 

the kernel density estimation is a more general technique with no fixed parameters. 
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In addition, the adaptation is performed by only observing the newly added data 

instead of going through complex computation procedures hence it is simpler and 

less time consuming. However, it should also be mentioned here that while 

implementing kernel density estimation method, special care should be taken in 

selecting appropriate kernel bandwidth (scale). The choice of kernel bandwidth is a 

very critical task. If the bandwidth is chosen too small it will lead to rough or even 

misleading density estimation, while if the kernel is chosen too wide it will result in 

an over-smoothed density estimate [21]. 

Since different pixels have different intensity variations over time it’s not 

practical to implement a single window for all pixels. A different kernel should be 

used for each pixel. Even different kernel bandwidths are required for separate color 

channels. Although wide range of kernel functions have been implemented in the 

literature, the majority of the algorithms use Gaussian kernel due to its specific 

characteristics such as continuity, differentiability, and locality. In practice selecting 

a kernel shape (function) has nothing to do with fitting a distribution and kernel 

Gaussian is only responsible to weight the data samples according to its shape.  

Computational cost is one of the most notable shortcomings of the Kernel 

density estimation algorithm. Also, it has serious challenges when the training 

sequences are disturbed by the presence of foreground objects and takes quite long 

for algorithm to estimate the real background. [23] 

In [24], Elgammal explained that for a given new pixel, background model 

updating process can be performed in two different ways; either by selective 

updating or blind updating. In the former technique, the observed sample from the 

input frame is added to the model if and only if it belongs to the estimated 

background. However, in the latter one, simply every new sample is added regardless 
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of its assigned category. Both of these approaches have their advantages and 

disadvantages. 

The selective updating method raises the ability of algorithm in detecting the 

foreground objects more accurately, due to the fact that object related pixels are 

excluded from the updating procedure. However in the case of any wrong decisions, 

it will lead to persistent errors in future decisions. This undesired situation in the 

literature is referred to as the deadlock situation. 

The blind updating approach is not affected by such a problem because it does 

not differentiate between samples as it updates the background model however this 

will result in poor detection of the targets (more false negatives). This problem can 

partially be solved by including less proportion of foreground-object related pixels 

through increasing the time window of sampling process [24].  When the time 

window is made wider, the adaptation process will be slowed down and therefore 

more false positives will be visible in foreground representation.  

1.1.2 Recursive Techniques 

What follows below is a summary of the recursive techniques that can be used 

for background estimation and subtraction.  

1.1.2.1 Approximated Median Filter 

Shortly after the non-recursive median filtering became popular among the 

background subtraction algorithms, McFarlane and Schofield presented in [25] a 

simple recursive filter for estimating the median of each pixel over time. This 

method has been adopted by some for background subtraction for urban traffic 

monitoring due to its considerable speed. This method is explained in the following 

chapter and will be examined along with the other selected methods for evaluation of 
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 its pros and cons. 

1.1.2.2 Single Gaussian 

As mentioned earlier, calculating the average image of a sequence of frames 

and then subtracting each new input frame and checking the difference values against 

a predefined threshold is one of the simplest background removal techniques. In [26] 

Wren presents an algorithm to assign a normal distribution with a certain mean and 

standard deviation to each estimated background pixel using a color space named  

YUV color space. 

This algorithm requires t frames to estimate the mean µ and the standard 

deviation σ in each color component separately: 

𝜇 𝑥,𝑦, 𝑡 =  
𝑝 𝑥 ,𝑦 ,𝑖 

𝑡
    

𝑡

𝑖=1

 

 

(1.1.2.2.1) 

 

𝜍 𝑥,𝑦, 𝑡 = 𝑠𝑞𝑟𝑡   
𝑝2 𝑥 ,𝑦 ,𝑖 

𝑡
 −  

𝑡

𝑖=1

𝜇2 𝑥,𝑦, 𝑡   

 

(1.1.2.2.2) 

Here, p(x,y,t) is the pixel’s current intensity value at the location ( x,y ) at a 

given time t. After computing the parameters, a pixel is considered as a part of the 

foreground object based on the following formula: 

 

 𝜇 𝑥, 𝑦, 𝑡 − 𝑝(𝑥,𝑦, 𝑡) > 𝑐.𝜍 (𝑥,𝑦, 𝑡) (1.1.2.2.3) 

where c is a constant. Even though this method is capable of adapting   to indoor 

environments with gradual illumination changes, it’s not able to handle moving 

background objects like trees, flags, etc. 
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1.1.2.3 Kalman Filtering 

This technique is one the most well known recursive methods specifically for  

situations where noise is known to be Gaussian. If we assume the intensity values of 

the pixels in the image follow a normal distribution such as 𝑁(𝜇,𝜍2), where simple 

adaptive filters are responsible for updating the mean and variance of the background 

model to compensate for the illumination changes and include objects with long 

stops in the background model. Background estimation using Kalman filtering has 

been explained in [25] and [27]. 

 Various algorithms can be found in literature that uses Kalman filtering. The 

main difference between them is the state space they use for tracking. The simplest 

ones are those which are based only on the luminance [26],[28],[29],[30]. 

In [31] Kalman and von Brandt added information achieved by temporal derivatives 

to intensity values to get better results. The following is a summary of this procedure 

demonstrating the general steps that should be taken to implement this method.  

The internal state of the system is shown by 𝐵𝑡  the background intensity while 𝐵𝑡
′  , is 

temporal derivative. Updates are done recursively through: 

 
𝐵𝑡
𝐵𝑡
′  = 𝐴 .  

𝐵𝑡−1

𝐵𝑡−1
′  +  𝐾𝑡  . 𝐼𝑡 −  𝐻 .𝐴 .  

𝐵𝑡−1

𝐵𝑡−1
′   

 

(1.1.2.3.1) 

Matrix A describes the background dynamics and H is the measurement 

matrix. The particular values used in [31] are as follows: 

                             𝐴 =   
1 0.7
0 0.7

      ,    𝐻 =   1 0                                       (1.1.2.3.2) 

The Kalman gain matrix 𝐾𝑡  fluctuates between a slow adaptation rate 𝛼1 and a fast 

adaptation rate 𝛼2 > 𝛼1. 𝐾𝑡  will be assigned according to whether 𝐼𝑡−1 is related to 

foreground or not, based on the following formula:  
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𝐾𝑡   =    

𝛼1

𝛼1
 

𝐾𝑡   =    
𝛼2

𝛼2
 

  

if 𝐼𝑡−1 is foreground 

otherwise 

 

(1.1.2.3.3) 

1.1.2.4 Hidden Markov Models 

All of the previously mentioned models are able to adapt to gradual changes 

in lighting. However, if considerable amount of intensity changes occur, they all 

encounter serious challenges. Another approach which is capable of modeling a wide 

range of variations in the pixel intensity is known as Markov Model and it tries to 

model these variations as discrete states based on modes of the environment, for 

instance lights on/off or cloudy/sunny skies etc. In [32], a three-state HMM has been 

represented for modeling the intensity of a pixel in traffic-monitoring applications. In 

[33], as the algorithm is trying to estimate the background model, the topology of the 

HMM regarding global image intensity is learned.  

The main problem in implementing HMMs in real world applications is 

twofold: the processing is not real-time since it requires long training periods, and 

the topology modification to address non-stationary is also computationally intense. 

1.2 Thesis Review 

In chapter 2, five different algorithms for background modeling will be 

discussed in detail. These techniques are chosen from the two major classes of 

background modeling; recursive and non-recursive techniques. Approximated 

Median filtering and Mixture of Gaussians model are selected from the former group 

while the progressive background generation, Temporal Median Filtering and group-

based histogram approaches belong to the latter group. 
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Although, two out of three techniques from non-recursive algorithms are 

based on histograms, there are significant differences between them in data storage 

and updating procedures. Chapter 3 is dedicated to shadow removal algorithm which 

is based on HSV color space. The simulation results of applying these background 

estimation methods on different video sequences, which are mostly outdoor traffic 

scenes, have been provided in chapter 4. The same sets of video sequences were used 

while testing each individual method in order to understand the advantages and 

disadvantages of each method. Two quantitative scales called recall and precision 

have been used to compare the performance of each algorithm. In addition, the 

performances of algorithms in time domain are compared with respect to each other. 

Finally the last chapter includes conclusion and future works. 

1.3 Previous Departmental Works and Thesis Related Publications 

As a result of the work carried out under this thesis two conference 

publications were made; one in SIU 2009 and the other in ISCIS 2009. A copy of 

these papers can be found in appendix A.  

Earlier works done by H. Kusetoullari which was about speed 

measurements using surveillance camera would create the reference frame by 

averaging 10 consecutive frames of the video sequence when there were no 

vehicles or moving objects in the scene. However, in this thesis five different state 

of art background estimation techniques have been implemented to obtain the 

reference frame. In addition in this work the HSV color space has been used to 

detect and remove shadows that constitute part of the foreground image.  
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CHAPTER 2 

BACKGROUND ESTIMATION ALGORITHMS 

 

In this chapter the structure and implementation details of five different 

background model estimators are presented. The first two are based on the median 

operator and are statistical approaches, the third method which is also known as 

mixture of Gaussians model (MoG) tries to combine a number of Normal 

distributions to model the 3-tuple pixel vectors and the last two methods use 

histogram analysis techniques for background modeling. 

2.1 Temporal and Approximated Median Filtering: 

As it has been mentioned earlier there are two types of background-

foreground segmentation algorithms which use median operator: 

1. Temporal Median Filtering (TMF) 

2. Approximated Median Filtering (AMF) 

Both of these methods are based on the assumption that pixels related to the 

background scene would be present in more than half the frames of the entire video 

sequence. This is true in most of the situations unless in case of heavy traffic flow 

during the rush hours. 

TMF computes the median intensity for each pixel from all the stored frames 

in the buffer. Considering the computation complexity and storage limitations it is 
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not practical to store all the incoming video frames and make the decision 

accordingly. Hence the frames are stored in a limited size buffer. Admittedly the 

estimated background model will be closer to the real background scene as we grow 

the size of the buffer. However, speed of the process will reduce and also higher 

capacity storage devices will be required. 

In some cases the number of stored frames is not large enough (buffer 

limitations), therefore the basic assumption will be violated and the median will 

estimate a false value which has nothing to do with the real background model. An 

example where temporal median filtering algorithm fails to extract a proper 

foreground mask is shown in figure 1 below: 

 
                                       (a) Original frame 

 

               
          (b) Estimated background       (c) The mask of extracted foreground 

  

Figure 1: Foreground-Background detection using temporal median filtering [46]. 
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As can be seen from figure 1, the detected foreground is not acceptable. This 

problem is partly due to the poor background estimation since the median is not 

correctly detected from the frames in the buffer and partly the incapability to handle 

the multi-modal scenes (shaking leaves are incorrectly detected as foreground).     

AMF was first introduced by McFaralane and Schofield [25] which uses a 

simple recursive filter to estimate the median. This filter acts as a running estimate of 

the median of intensities coming to the view of each pixel. 

AMF apply the filtering procedure by simply incrementing the background 

model intensity by one, if the incoming intensity value (in the new input frame) is 

larger than the previous existing intensity in the background model. The reverse is 

also true, meaning that when the intensity of the new input is smaller than 

background model the corresponding intensity will be decreased by one. It has been 

proved by [25] that this trend will converge to the median of the observed intensities 

over time. Therefore unlike TMF, this approach does not require storing any frames 

in a buffer and tries to update the estimated background model online. Hence it is 

extremely fast and suitable for real time applications. 

The background estimate and the corresponding foreground mask shown in 

figure 2 have been obtained by applying AMF to the same video sequence used while 

testing the TMF technique. 

 

 



19 

 

             
          (a) Estimated background                 (b) The mask of extracted foreground 

 

Figure 2: Foreground-Background detection using AMF [46]. 

 

It can be seen that foreground mask generated by AMF has improved (note 

the nearest car) since our background quality has become much better, but still the 

problem related to non-stationary backgrounds remained. In fact this approach is 

most suitable for indoor applications. 

2.2 Mixture of Gaussians Model 

The Mixture of Gaussians technique was first introduced by Stauffer and 

Grimson in [8]. It sets out to represent each pixel of the scene by using a mixture of 

normal distributions so that the algorithm will be ready to handle multimodal 

background scenes. 

In this thesis, we tried to present and implement the latest version of this 

technique taking advantage of the available modified versions in the literature. 

However, the main structure is still the MoG model presented in [8]. 

The MoG model is designed such that the foreground segmentation is done by 

modeling the background and subtracting it out of the current input frame, and not by 

any operations performed directly on the foreground objects (i.e. directly modeling 

the texture, color or edges). Second the processing is done pixel by pixel rather than 
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by region based computations, and finally the background modeling decisions are 

made based on each frame itself instead of benefiting from tracking information or 

other feedbacks from previous steps. 

In the mixture model each pixel is modeled as a mixture of K Normal 

distributions. Typically values for K varies from 3 to 7. For 𝐾 < 3, the mixture 

model is not so helpful since it cannot adapt to multimodal environments and if K is 

selected a value over 5, often the disadvantage of processing speed reduction  (not 

able to be performed in real time) outweighs the improvement in quality of 

background model. At any time t, K Gaussian distributions are fitted to the intensities 

seen by each pixel up to the current time t. 

If each pixel intensity would result from specific lighting or from single mode 

background intensities then it would be feasible to represent the pixel value samples 

over time with a single distribution but unfortunately in real situation often multiple 

surfaces along with different illumination conditions appear in the pixel view. 

Hence if it’s desired to model the background using Gaussian distributions 

there should be mixture of distributions assigned to each pixel instead of a single 

one. To illustrate the occurrence of bimodal distributions, (R,G) scatter plots of  

single pixel at the same location in all frames over time have been shown in figure 3: 

 

 

 

 



21 

 

       
(a) 

       
(b) 

 

Figure 3: (R,G) scatter plots of red and green values of a single pixel[8]. 

 

The values of a certain pixel over time are called “pixel process”. If the gray 

scale intensities are used for background modeling then pixel process is going to 

have 1D values (only a series of scalars between 0-255 ), 2D is also possible while 

using normalized color spaces or intensity-plus-range and in the case of standard 

color spaces (RGB, HSI, YUV, etc)  triple vectors are going to form our per pixel 

history. Pixel process can be mathematically described as: 

 𝑋1,… ,𝑋𝑡 =   𝐼 𝑥0,𝑦0 , 𝑖 : 1 ≤ 𝑖 ≤ 𝑡  (2.2.1) 

Where (𝑥0, 𝑦0) indicates the location of the pixel in the image at any time t, I 

represents the image sequence and X ’s are the intensities of each pixel over time. 

Therefore there would be scalars in gray-scale or triple vectors in color spaces.  

The algorithm should perform in a way that if a foreground object stops for a 

long period of time consider it as a part of background or while the pixels intensities 

of the scene under study are affected by illumination changes be able to adapt to the 

new situation .These requirements indicate that more recent observations may be 
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more vital for background subtraction hence, the distributions assigned to the pixels 

should not be weighted equally.  

Therefore the observed data samples which are more likely to be a part of 

background are weighted more than the less probable distributions. 

A pixel process X is assumed to be modeled by a mixture of K Gaussian 

distributions with parameters set 𝜃𝑘 , one for each distribution as states in equation 

2.2.2. 

𝑓 𝑋 𝑘  𝑋 𝑘, 𝜃𝑘 =
1

 2𝜋 
𝑛

2  ∑𝑘  
1

2 
𝑒−

1
2
 𝑋−𝜇𝑘 

𝑇  ∑𝑘  
−1(𝑋−𝜇𝑘)

 
(2.2.2) 

Where 𝜇𝑘  representing the mean of 𝑘𝑡distribution and 𝛴𝑘 indicates the covariance of 

the  𝑘𝑡  density. 

In the MoG model theory, two assumptions have been made. Firstly it has 

been assumed that dimensions of X are considered independent. This constraint 

forces the covariance matrix to be diagonal (hence more easily invertible) having 𝜍𝑘
2 

as its variance along its diagonal components. 

The second assumption is that the variances of each channel of the color 

space, are identical. It should be noted here that single 𝜍𝑘
2 may be reasonable in 

linear color spaces as RGB but in non-linear cases, such as HSV, special care should 

be taken since this excessive simplification may not work. 

Due to the fact that the K occurring events are disjoint, if we want to 

formulate the combined distribution of X, we can simply sum up the members of the 

Gaussian mixtures. Therefore the general formula would be: 

𝑓𝑋 𝑋 𝜑 =   𝑃(𝑘)𝑓𝑋|𝑘 𝑋 𝑘,𝜃𝑘 

𝐾

𝑘=1

 
(2.2.3) 

Here, the density parameter set is 𝜃𝑘 =   𝜇𝑘 ,𝜍𝑘  for a given k and the total set 

of parameters is  𝜑 =  𝑤1,… ,𝑤𝑘 ,𝜃1 ,… ,𝜃𝑘 . 𝑃(𝑘) is the probability of occurrence 
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for the 𝑘𝑡  distribution and it represents the amount of contribution by that 

distribution in the mixture model. Hence 𝑃 𝑘  is the weight assigned to that 

distribution (𝑃 𝑘 = 𝑤(𝑘)).  

Figure 4 below provides an example for a mixture model with three 

distributions where 𝑤𝑘= 0.2,0.2,0.6 , 𝜇𝑘= {80,100,200} and 𝜍𝑘 = {20,5,10}:  

 

 

Figure 4: The 1D pixel value probability 𝒇𝑿 𝑿 𝝋  [36]. 

 

During the processing, the MoG model has to estimate both the parameters 

and the hidden (unknown) state k given the observation X. This estimation problem 

which is referred to as the “maximum likelihood parameter estimation from 

incomplete data” can be solved by the use of an expectation maximization (EM) 

algorithm [34]. The EM algorithm works iteratively and has two main steps: 

      1. E-step which is responsible for finding the expected value with 

respect to the complete data in hand (observed data and current estimation of 

parameters). 

      2. M-step which is the calculation of maximum likelihood values for 

parameters based on the available observations. 
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2.2.1 Current State Estimating  

Firstly the model has to distinguish which of the K distributions is more likely 

to describe the new data; that is, it has to estimate the distribution from which X,  has 

most probably come from. 

Comparing the posterior probabilities P 𝒌 𝒙,𝝋  which indicate likelihood of 

the current sample X belonging to the 𝒌𝒕𝒉 distribution, will lead us to achieve this 

goal. A plot of posterior probabilities obtained using equation 2.2.4 and Bayes 

theorem has been provided in figure 5:  

𝑃 𝑘 𝑥,𝜑 =
𝑝 𝑘 𝑓 𝑥 k   x k, θk 

𝑓𝑥(𝑥|𝜑)
 

(2.2.4) 

Here the value of k which maximizes 𝑃 𝑘 𝑥,𝜑  will determine the correct 

distribution from which X had come from. 

𝑘  = arg max𝑘 𝑃 𝑘 𝑥,𝜑 = arg max𝑘 𝑤𝑘 𝑓 𝑋 𝑘   𝑋 𝑘,𝜃𝑘  (2.2.5) 

The preceding equation is true as long as the current input has been generated 

by one of the distributions in the mixture.  

 

Figure 5: The posterior probabilities 𝑷 𝒌 𝒙,𝛗  plotted as functions of X for 

Dddddf    each k=1, 2, and 3 using the same parameters as in figure 4[36]. 
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Obviously there may be certain points (intensities), which are not covered by 

any of the existing distributions. For instance if we consider that the new input 

intensity is X=150 after computing the posterior probabilities depicted in figure 5 the 

algorithm considers first distribution (k=1) to be fully (almost 100%) responsible for 

generating the observed value. However it is clear from figure 4 that the value 150 

does not belong to any of the three different distributions. This is only due to the fact 

that only three distributions are considered to cover the whole range of intensities (0-

255). This type of challenge would be faced when a previously unseen foreground 

object steps in the scene. The solution lies in adding an extra distribution with weight 

wk+1 , considering current pixel value as its mean and assigning a high variance to 

this newly added distribution. 

2.2.2 Approximating Posterior Probabilities 

As mentioned before the EM algorithm needs much iteration to reach the final 

result, hence implementing an exact EM algorithm on each pixel of every frame 

would be a complicated and time costly procedure. In [8], Stauffer and Grimson 

developed a method to approximate the posterior probability in a fast and more 

sensible way through defining matching criteria. 

A match is defined as a pixel value falling within 2.5 times the standard 

deviation of the distribution’s mean. To compute the distance (d) from the mean (𝜇𝑘) 

of a certain distribution at time t, the following formulas are applied [36]:  

𝑑𝑘 ,𝑡 = (𝜍𝑘 ,𝑡𝐼)
−1 𝑋𝑡 − 𝜇𝑘 ,𝑡  (2.2.6) 

𝑑𝑘 ,𝑡
𝑇 𝑑𝑘 ,𝑡 < 𝜆2 (2.2.7) 

The parameter 𝑀𝑘 ,𝑡  in equation 2.2.8 has been chosen to show if a match is found: 
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                  𝑀𝑘 ,𝑡 =  
1            𝑚𝑎𝑡𝑐
0     𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

≅ 𝑃  𝑘 𝑋𝑡 ,𝜑  (2.2.8) 

 

This is based on the assumption that 𝑃 𝑘 𝑋𝑡 ,𝜑  is 0 or 1 for most of the 𝑋𝑡  

values and also it is almost one for only one choice of k at a time, since distributions 

are far enough from each other (refer to figure 4). In other words, when 𝑃 𝑘 𝑋𝑡 ,𝜑  

has a value of one at time t for one distribution, the probabilities for other K-1 

remaining distributions are zero.   

In cases when an observed value is located in a position such that it is close to 

more than one distribution, more than one match may be detected. In this case, the 

distribution with the highest rank would be selected (Details of rank information can 

be found in section 2.2.5). 

2.2.3 Estimating Parameters 

If samples have been observed then the complete data likelihood function is 

calculated as: 

𝑃 𝑋1,𝑋2,… ,𝑋𝑁 ,𝑘 𝜑 =  𝑤𝑘

𝑁

𝑡=1

𝑓 𝑋 𝑘   𝑋𝑡 𝑘,𝜃𝑘  
 

(2.2.9) 

 

Parameters of 𝜑 defined in equation 2.2.3 can be updated by maximizing the 

expected value of the previous formula with respect to k. The details of derivation of 

such a procedure are too long and complicated but it can be found in [35]. 

If we assume that processes are stationary and the number of observations (N) 

is fixed, then we have: 

𝑤𝑘 =  
1

𝑁
 𝑃 𝑘 𝑋𝑡 ,𝜑 

𝑁

𝑡=1

 

 

(2.2.10) 
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𝜇𝑘 =
∑ 𝑋𝑡  𝑃 𝑘 𝑋𝑡 ,𝜑 
𝑁
𝑡=1

∑ 𝑃 𝑘 𝑋𝑡 ,𝜑 
𝑁
𝑡=1

 
(2.2.11) 

𝜍𝑘 
2 =

∑ ((𝑋𝑡 − 𝜇𝑘 )°(𝑋𝑡 − 𝜇𝑘 ))𝑃 𝑘 𝑋𝑡 ,𝜑 
𝑁
𝑡=1

∑ 𝑃 𝑘 𝑋𝑡 ,𝜑 
𝑁
𝑡=1

 
(2.2.12) 

where in equation (2.2.12), ° indicates Hadamard (element by element) 

multiplication. 

2.2.4 Online Updating 

The equations (2.2.10) to (2.2.12) are weighted averages of observations by 

𝑃 𝑘 𝑋𝑡 ,𝜑 , however, if we want to update our estimated parameters as the program 

is executed and new samples (inputs) step in, we should convert these averages to an 

on-line cumulative average by defining a time varying gain 𝛼𝑡  = 1 𝑡  and update the 

algorithm as follows: 

𝑤𝑘 ,𝑡 =   1 − 𝛼𝑡 𝑤𝑘 ,𝑡−1 + 𝛼𝑡  𝑃 𝑘 𝑋𝑡 ,𝜑       𝑓𝑜𝑟 𝑘 = 1,2, . .𝐾 , 𝑡 = 1,2,… , 𝑡   (2.2.13) 

Note that for each K, at any time t, 𝑤𝑘 ,𝑡would be a scalar variable. 

Considering that the method should be capable to adapt to the recent changes 

of the scene such as illumination variations, the latest observations should be 

emphasized more. Therefore just using the equation (2.2.13) will cause problems due 

to the fact that while the time is passing, t is increasing and consequently 𝛼𝑡  will 

decrease. The depletion of 𝛼 leads to canceling the contribution of 𝑃 𝑘 𝑋𝑡 ,𝜑  which 

is related to the current time t. Hence the process is getting more and more 

insensitive to recent scene variations. 

One practical solution is to define a lower bound 𝛼𝑡 =  𝛼   to make the 

procedure leaky and as soon as the lower bound is reached, the accumulator would 

start to compute the new values with an exponentially decreasing emphasis [36]. This 
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part of the algorithm differs from what was presented by Stauffer and Grimson in [8], 

since they had assumed a fixed 𝛼 for all time [37]. 

Also the mean and variance values could be updated using the equations provided 

below:  

                              𝜇𝑘 =  1 − 𝜌𝑘 ,𝑡 𝜇𝑘 ,𝑡 + 𝜌𝑘 ,𝑡  𝑋𝑡  (2.2.14) 

       𝜍𝑘 ,𝑡 2 =   1 − 𝜌𝑘 ,𝑡 𝜍𝑘 ,𝑡
2 +  𝜌𝑘 ,𝑡   𝑋𝑡 − 𝜇𝑘 ,𝑡  ° 𝑋𝑡 − 𝜇𝑘 ,𝑡    (2.2.15) 

 𝜌𝑘 ,𝑡 =
𝛼𝑡𝑃 𝑘 𝑋𝑡 ,𝜑 

𝑤𝑘 ,𝑡 
 (2.2.16) 

Here the newly introduced  𝜌𝑘 ,𝑡  [36] is also different from the one defined in 

[8] by a factor of 𝑓𝑋(𝑋𝑡|𝑘,𝜃𝑘) which results in impractical values for  𝜌𝑘 ,𝑡  if it is 

going to be implemented directly. 

In [8], full computational benefit of the approximation is not obtained since, 

𝑃 𝑘 𝑋𝑡 ,𝜑  is not used in computing  𝜌𝑘 ,𝑡  which affects the estimation of 𝜇𝑘 ,𝑡  and  

𝜍𝑘 ,𝑡  . 

In rare situations when there is a surface with low probability of occurrence  

𝑤𝑘 ,𝑡 ≤  𝛼𝑡  the value of  𝜌𝑘 ,𝑡  may exceed one. There are other techniques available to 

evade such a problem. For instance by setting 𝜌𝑘 ,𝑡 = 𝛼𝑡 , and also keeping the latest 

matching 𝑋𝑡  for each distribution and then updating the parameters using the stored 

𝑋𝑡[36]. 

2.2.5 Foreground Segmentation 

The mixture model contains both the distributions of the background model 

 and the foreground model. That’s why the minimum logical value for the number of 

distributions is 3, so that 2 of them can be assigned to handle bimodal background 

scenes and leave one for describing the foreground. 
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Once the current state k is estimated, a scale should be defined to separate the 

distributions belonging to the background model from the ones that represent the 

foreground. The distributions which are likely to be a part of the background are the 

ones with high weights, and also low variances. 

To combine these two factors for each pixel, all the existing distributions are 

ranked by a criterion 
𝑤𝑘

𝜍𝑘
. This factor reaches its peak while 𝑤𝑘  is large and on the 

contrary 𝜍𝑘  is small. Therefore higher ranked components are the ones with low 

variances (intensities do not vary much) and high occurrence probabilities. After the 

distributions are ranked based on the factor 𝑤𝑘/ 𝜍𝑘 , the weights of the corresponding 

distributions are summed up and the result is checked against a predefined threshold: 

𝑏 = arg𝑚𝑖𝑛𝑏 ( 𝑤𝑘

𝐵

𝑘=1

> 𝑇) 
(2.2.17) 

Here b indicates the minimum number of distributions which belong to the 

background among the K available distributions at each pixel. 

Figure 6 provides an example of the above described steps being applied to a 

custom video sequence taken at Yeni İzmir Junction of Famagusta in order to 

estimate the background in the scene. During the simulations the value for K and T 

were taken as 5 and 0.85 respectively. 
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(a) Original Frame 

             
          (b) Background estimation                    (c) Foreground mask of the left lane 

 

Figure 6: Background estimation using MoG Model with K=5, T=0.85 

 

2.3 Progressive Background Estimation Method 

This method was first introduced by Y.Chung in [42]. A progressive 

background image is generated by utilizing the histogram to record the changes in 

intensity for each pixel of the image, however, unlike its other histogram based 

background generator counterparts, progressive method does not directly use the 

input frames to create the histogram. The progressive method constructs the 

histograms from the preprocessed images also referred to as the partial backgrounds. 

Each partial background is obtained using two consecutive input frames (for details 

see section 2.3.1). This method is applicable to both gray scale and color images and 
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is capable of generating background in rather short period of time and does not need 

large space for storing the image sequences. 

2.3.1 Partial backgrounds 

In order to generate the partial backgrounds, the progressive method follows 

the following steps.  First, the current frame I(t) at time t of an input video sequence 

S(t) is captured into the system and this image is compared with the previous frame 

image, I(t-1) to generate a current partial background B(t). Each pixel at location i at 

time t of the corresponding partial background is called 𝑏𝑖 𝑡  and is computed using 

equation below [42]: 

    𝑏𝑖 𝑡 =  
𝑏𝑔                          𝑝𝑖 𝑡 − 𝑏𝑖(𝑡 − 1) < 𝜀
𝑛𝑜𝑛 − 𝑏𝑔                         𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒          

  
(2.3.1) 

As can be seen from equation (2.3.1), the partial background pixels are 

divided into two categories. 𝑏𝑔 stands for pixels related to the background image 

whose  intensity value difference from the previous partial background 𝑏𝑖 𝑡 − 1  

does not exceed a small predefined threshold 𝜀. 

If the incoming intensity varies from the partial background more than the 

selected threshold, the corresponding pixel will be classified as 𝑛𝑜𝑛 − 𝑏𝑔. There 

are several possible ways to assign value to  𝑏𝑔 pixels; one is to take the minimum 

intensity between the new 𝑏𝑖(𝑡) and 𝑏𝑖(𝑡 − 1), another way is to average these 

two values and yet another is by simply taking the new value as 𝑏𝑖(𝑡). In this 

thesis we have chosen the last approach since it needs less computation and is 

more suitable for real time application. 

For 𝑛𝑜𝑛 − 𝑏𝑔 pixels a specific value should be assigned, so that it will be 

possible to distinguish them since we are not interested in them. To separate them 

from 𝑏𝑔 pixels, usually they are assigned 0 or -1. After all the pixels have been 
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classified and the numbers are assigned to them, the whole partial background at 

time t is created as [42]: 

𝐵𝑖(𝑡) =   𝑏𝑖(𝑡)

𝑖∈𝐼(𝑡)

 (2.3.2) 

By creating the partial background images, the moving objects are 

discarded due to their intensity differences from the background and only the 

pixels which are more likely to be a part of background will be kept. 

However, in some cases slow moving objects or similarity among 

foreground objects and background scene may cause some parts of moving 

objects to be misclassified as background related pixels. One solution to such a 

problem is to add color information in our decision making. Then equation (2.3.1) 

will turn to [42]: 

           𝑏𝑖 𝑡  = 
𝑏𝑔           𝑝𝑖

𝑐 𝑡 − 𝑏𝑖
𝑐(𝑡) < 𝜀𝑐𝑐

𝑛𝑜𝑛 − 𝑏𝑔                    𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
                                  (2.3.3) 

 

where c is the different components of the RGB. In other words the classification is 

done separately for each color channel and then their intersection is obtained in order 

to set aside the pixels that vary in all channels in comparison to previous partial 

background. 

It is worth mentioning that usage of partial backgrounds instead of the 

original video frames directly has two advantages. Firstly foreground objects cannot 

interfere with background values since they are removed in partial backgrounds 

creation. Secondly it helps overcome the problems caused by camera vibrations that 

may occur due to heavy vehicles passing by or strong wind.  

An example for partial background generation is shown in figure 7 below: 
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Figure 7: Generation of Partial Backgrounds 

 

2.3.2 Histogram of Pixels 

The next step of the progressive background estimation method would be 

generating a histogram called 𝑝(𝑡) using the partial backgrounds obtained from the 

previous step. The index p indicates that there is a histogram for every pixel of the 

image and t stands for time. For each pixel at time t a certain number of generated 

partial background depending on the size of our buffer are processed and then the 

histograms are created per pixel location in time. 

  
  (a) Partial background sequence for 𝑝𝑖(𝑡)        (b) Histogram for a typical pixel 𝑝𝑖  

 

Figure 8 : The partial backgrounds and histograms 
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2.3.2.1 Histogram Updating 

The updating procedure is done simultaneously with the generation of 

histograms. For each pixel the incoming intensity from partial background is checked 

by the algorithm to discover whether the new intensity is within the local 

neighborhood of the previous background intensities or not. If the mentioned 

condition is satisfied (the intensity belongs to the neighborhood) then the frequency 

of that intensity is incremented by a constant factor, unlike conventional histograms 

this factor is more than one (flexible in general).  If the constraint is violated and the 

newly gained intensity is located outside the boundaries of our neighborhood 

domain, the recorded frequency for corresponding pixel in the histogram will be 

decreased by a factor less than mentioned incrementing factor. The preceding 

discussion can be summarized by the following equations: 

𝑣 = 𝑣 + 𝐴 𝛿 𝑏𝑖 𝑡 ,𝑎 − 𝐷 (2.3.4) 

where, v is the count (frequency) of the intensity index a, in the histogram. 𝐴 

represents the rising factor while on the contrary 𝐷 is the descending factor and in 

general 𝐷 < 𝐴. The 𝛿 function in equation 2.3.4 can further be defined as: 

                                        𝛿 𝑙, 𝑟 =  
1              𝑙 − 𝑟 < 𝜆
0             𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (2.3.5) 

 When the newly seen intensity (𝑏𝑖 𝑡 ) is a member of local neighborhood of 

( (𝑏𝑖 𝑡 − 𝑎 <  𝜆) then 𝛿 𝑏𝑖 𝑡 ,𝑎  will become one and frequency of that intensity 

will be incremented by A-D (keep in mind that 𝐷 < 𝐴) and on the other hand for the 

reverse case counts will be decremented by 𝐷 since in this case delta function would 

be zero. 



35 

 

Because the updating process is accumulative, to avoid large numbers  and to 

be able to cope with changes in the environment the method defines an upper bound 

to limit the max value the  frequency of each pixel could attain [42]. 

Hence the histogram values will be raised if they have not already reached to 

a certain threshold. For a typical pixel location (𝑥,𝑦) the curve of frequency value 

for certain intensity over time would be as depicted in figure 9.  

 

Figure 9: The counts value for a certain intensity index k of a pixel, 𝒑𝒊 [42]. 

 

When observed for many frames, if the observed samples at the same location 

belongs to the local neighborhood of the previous background intensities, its 

frequency will be incremented till an upper limit K is reached. After that if the same 

intensity keeps coming to the view of the considered pixel, the frequency will not 

grow anymore but stay at this saturated value K. The situation would remain the 

same until at time 𝑑𝑖 , for a certain reason; a new intensity starts to come to the pixel 

view. Therefore the frequency will be decremented by factor 𝐷 for as long as this 

newly value is observed.  

2.3.3 Histogram Table 

After the histograms are generated and updated, the maximum frequency of 

each histogram along with its corresponding intensity for each pixel in the image are 

recorded in a table. The histogram table can be utilized as a reference for intensities 
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which are responsible for background generation at any time. Whenever the 

background image is required, the recently updated intensity values in the table are 

used to generate the desired background. 

However, at the beginning of the process some cells of the table may not have 

a value and hence the background image contains leakages (undesired black dots). 

This problem occurs because the histograms are built over partial backgrounds which 

include black parts in the position of moving objects but as time passes, intensities 

related to the background image come to the pixel view more and more. Therefore 

this leakage effect will be gradually removed.   

 As stated in [42], a stable background image would be possible when the 

counts recorded in the histogram table are approximately 75-80% of a pre-

determined upper limit. The higher the frequency values, the better the image quality 

will become. Figure 10 depicts an example where leakage problem is resolved after 5 

frames of the video sequence. Also figure 11 provides a sample frame from 

Highway-I sequence of VISOR and the corresponding foreground mask obtained 

after background subtraction process. 

 

                
(a) Existence of leakage                            (b) Leakages removed after 5 frames 

Figure 10: Estimated background using Progressive method. 
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       (a) Original Frame                               (b) Extracted foreground mask 

Figure 11: Extracting foreground objects using progressive method 

 

2.4 Group-Based Histogram 

The group-based histogram (GBH) algorithm constructs background models 

by using histogram of intensities come to the view of each pixel on the image. 

However, unlike the other histogram based methods, group based histogram is forced 

to follow a Gaussian shaped trend which as it will be demonstrated later, this 

technique will improve the quality of the background-foreground segmentation [38]. 

In a video sequence taken by a fixed (static) camera the intensity of the pixels 

related to background scene is the most frequently recorded intensity at each pixel 

location (𝑥,𝑦). Hence many histogram approaches have been presented in the 

literature [39], [40], [41].  

Since in histogram approaches at each pixel location the most frequent 

intensity is proportional (by a factor of N) to its occurrence probability, the 

maximum frequency from the histogram is considered as background model intensity 

in that location. 

The background intensities can therefore be determined by analyzing the 

intensities of histogram at each pixel. However, sensing variation and noise from 

image acquisition devices or pixels having complex distributions may result in 
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erroneous estimates. This may cause a foreground object to have the maximum 

intensity frequency in the histogram.  

Since the maximum count (amplitude) of the histogram is much greater in 

comparison to frequencies of intensities related to the moving objects , there will not 

be any effects of slow moving objects or transient stops in the detected foreground. 

However, the maximum peak of the conventional histogram of each pixel will 

not necessarily locate the intensity of background model at that specific pixel. In 

some cases this maximum may not be unique so further processing may be required 

to compensate this loss which will affect the real time tracking. 

Although the histogram approach is robust to transient stops of moving 

foreground objects, the estimation is still less accurate than MoG model in the case of 

non-static backgrounds (i.e. swaying grass, shaking leaves, rain, etc). Note that the 

frequency or probability of conventional histogram is updated by using a single 

intensity; while the probability of GMM is constructed from a group of intensities. 

Thus the GMM possesses more admirable capabilities than simple histogram to 

represent intensity distribution of the background image [38]. 

In group based histogram, each of the individual intensities is considered 

along with its neighboring intensity levels and forms an accumulative frequency. The 

frequency of coming intensity is summed up with its neighboring frequency to create 

a Gaussian shape histogram. 

The accumulation can be done by using an average filter of width 2w+1 

where w stands for half width of the window. The output 𝑛𝑢 ,𝑣
∗ (𝑙) of the average filter 

at level l can be expressed as: 

                    𝑛∗𝑢 ,𝑣 𝑙 =  𝑛𝑢 ,𝑣 𝑙 + 𝑟 

𝑤

𝑟=−𝑤

 
 

0 ≤ 𝑙 + 𝑟 ≤  𝐿 − 1  
 

(2.4.1) 



39 

 

Here 𝑛𝑢 ,𝑣 𝑙 + 𝑟  is the count of the pixel having the intensity 𝑙 + 𝑟 at the 

location (𝑢, 𝑣), and 𝐿 is the total number of possible intensity levels. The maximum 

probability density 𝑝∗
𝑢 ,𝑣

 of a pixel can be computed through a simple division of the 

occurrence for a pixel by the total frequency of the GBH (𝑁∗). 

𝑝∗
𝑢 ,𝑣

=
𝑚𝑎𝑥0≤𝑙≤𝐿−1{𝑛∗𝑢 ,𝑣 𝑙 }

𝑁∗
 

(2.4.2) 

Since the filter smoothens the histogram curve, if the width of the averaging 

window is chosen to be less than a preset value, the location of the maximum will be 

closer to the center of the Gaussian model (which corresponds to background value) 

than the normal histograms (more details are given in the following section). 

Therefore the mean intensity of the background model will be: 

µ
𝑢 ,𝑣

= arg𝑚𝑎𝑥𝑙{𝑛
∗
𝑢 ,𝑣 𝑙 } (2.4.3) 

Choice of the window size is a critical task since a smaller window width can 

save the processing time (due to fewer computations), while a larger window will 

lead to smoother GBH and therefore more accurate estimation of the real value of the 

pixel related to the background model. 

2.4.1 Window Size Selection 

To describe the determination of the window width more clearly, an example 

has been shown here [38]. In this case 13 Gaussian densities have been generated 

randomly. The mean was chosen to be 205 and standard deviations varying from 3 

to15. From the generated data, histograms are created then from each of them the 

corresponding GBH are constructed using different window sizes from 3 to 7. 

 

 

 

 



40 

 

Table 1: Estimation of error rate of Gaussian mean using histogram and GBH [38]. 

 
 

The results prove the superiority of implementing GBH method to 

conventional histograms. Considering the results, it can be concluded that a greater 

width of average filter will be required for high-accuracy performance as the 

standard deviation increases. Keeping the error rate of mean estimation within ± 2%, 

and according to the simulation result, the width can be determined as follows [38]:   

 

(2.4.4) 

where,  represents the standard deviation of the original Gaussian. 

2.4.2 Mean Estimation  

As mentioned before the mean intensity can be computed by selecting the 

maximum frequency of the smoothened histogram. When a new intensity l is 

captured, the algorithm does not process all the possible intensities, just the new one 

and its adjacent intensities which fall in the selected window will be affected. 

The steps of the mean estimation procedure include: first recording the 

current intensity l of the pixel. Second step contains incrementing the frequency of 

occurrence of observed intensity (l) and all the neighboring intensities from l-w to 

Estimation result of GBH 
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l+w by unity. Final step is checking whether the new achieved numbers (frequencies) 

are greater than the previously estimated maximum of counts or not. If the condition 

is satisfied then replacement of the former mean with the new one is done and then 

the algorithm will return to the first step. 

2.4.3 Variance Estimation 

After computing the mean intensity of the Gaussian shaped histogram the 

variance could be estimated using the following expression: 

        𝜍𝑢 ,𝑣
2 =

1

∑  𝑛𝑢 ,𝑣 𝑥 
𝑥=µ𝑢 ,𝑣+3𝜍 ′

𝑥=µ𝑢 ,𝑣−3𝜍 ′

×   (𝑥 − µ𝑢 ,𝑣)2𝑛𝑢 ,𝑣 𝑥 
𝑥=µ𝑢 ,𝑣+3𝜍 ′

𝑥=µ𝑢 ,𝑣−3𝜍 ′
 

 

(2.4.5) 

where, 𝜍 ′ is the maximum standard deviation of the Gaussians. 

Figure 12 demonstrates the histogram smoothing after the implementation of 

average filtering window for a certain traffic sequence. From Figure 2.1(a) one can 

conclude that it would be possible to model the results with a Gaussian distribution 

technique over a histogram of a certain pixel in a video sequence. If it is desired to fit 

a Gaussian distribution model to the data in hand, the center of the Gaussian would 

be 203.65 with a standard deviation of 3.88 [43]. 

However, since several peaks with similar frequencies are in the histogram, 

selecting the mean is not straightforward. By applying the windowing technique 

proposed in GBH, the histogram will be smoothed and this multiple peak problem 

will be resolved. In figure 12 the estimated mean and standard deviation are 205 and 

4 respectively, which indicates acceptable error rates of 0.67% and 3.17% for mean 

estimation and standard deviation respectively.  
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      (a) Histogram                                 (b) GBH 

 

Figure 12: Statistic analysis of pixel intensity [38]. 

 

To cope with illumination changes of the environment, the histogram can be 

re-built every 15 minutes. 

2.4.4 Foreground Segmentation 

A Gaussian distribution is fitted to smoothed histogram of each pixel in the 

image. Based on tolerance intervals in statistical issues pixel intensity is considered 

as a part of foreground while its intensity is outside ±3𝜍 the mean of the background 

Gaussian distribution. 

If the current pixel intensity is represented by I(u,v) where (u,v) corresponds 

to the location of pixel on the image, then foreground objects are extracted by using 

equation 2.4.6: 

𝐹 𝑢, 𝑣 =  
1,  𝑚𝑜𝑣𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡𝑠            𝑖𝑓 𝐼 𝑢, 𝑣 − 𝜇 𝑢, 𝑣 > 3𝜍(𝑢, 𝑣) 

0,                                                            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
   

(2.4.6) 

where, 𝜇 𝑢, 𝑣 , 𝜍(𝑢, 𝑣) represent mean and standard deviation of the background 

model at location (u,v). 

Figure 13 provides an example for background estimation by applying the GBH 

approach on a video sequence at a junction. The segmented foreground objects are 
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vehicles and pedestrians with their corresponding cast shadows. On segmented 

foreground objects shadow removal algorithms are applied in order to get vehicles 

without cast shadows.  

                              
              (a) Original Frame                                  (b) Extracted Foreground 

Figure 13: Estimated Background using GBH method 

 

Figure 14 gives another example where the video sequence is recorded from 

one of the streets of Famagusta.  

 

 
(a) Original frame 

                                                                                                                            
cfbv(b) Estimated background                       (c) Extracted foreground mask 

 

Figure 14: Extracting foreground objects using GBH method 
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CHAPTER 3 

SHADOW REMOVAL 

 

As it was mentioned in previous chapters video-surveillance and traffic 

analysis systems can be heavily improved using vision-based techniques that could 

detect objects such as vehicles, people, etc., monitoring the trajectory of foreground 

items in the scene. However, although extracting foreground objects out of frames of 

a video sequence is an essential task and in fact is the basic step in almost all of the 

related applications, in some cases the execution of background subtraction won’t be 

enough by itself. 

In this chapter one of the algorithms for removing the undesired shadows 

which are often misclassified by foreground segmentation algorithms is presented. 

This unwanted phenomenon should be removed as much as possible due to its 

adverse effects on quality of detected background model.        

Incorrect detection of shadows as foreground objects will cause serious 

problems in many applications. Some of these applications are listed below: 

1. Classifying segmented objects 

2. Computing the area occupied by an object on the road (lane fullness 

analysis) 

3. Recognition procedures 
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4. Evaluating the centroid of specified items or motion variation of 

foreground objects (tracking). 

In general there are two types of shadows present in a scene while a video 

sequence is being recorded. First group is static shadows which do not move with the 

displacement of moving objects while the other type of shadows is referred to as the 

cast shadows. The second group is generated due to occlusion of sun light by moving 

objects. The resultant shadow is the projected area on the scene which moves along 

side of the moving object, therefore has the same trajectory. An example of 

incorrectly detected shadows is shown in figure 15 [14]: 

 

Figure 15: Object merging due to shadows 

 

It is apparent from the figure that some of the marked blobs contain more 

than a single moving object due to the existence of cast shadows. Hence it is 

impossible to detect the number of objects or perform any classification.  

The intensities of pixels related to the cast shadows are significantly different 

from the corresponding pixels in the background model. Also, since they appear in 

the recorded frames as frequently as the foreground objects, the background 

estimation algorithms cannot differentiate them from real moving objects. Therefore 



46 

 

these pixels will be misclassified as foreground objects. This problem is referred to 

as “under-segmentation” in the literature [14]. 

When a shadow occurs, the intensities of the surface (pixels) which shadow is 

projected on becomes significantly less, however, the color information of that 

surface is preserved. This feature is the key factor of the algorithm presented in [14]. 

Human visual system is able to distinguish the colors of objects located in 

shaded areas. Therefore to remove the cast shadows the Hue-Saturation-Value (HSV) 

color space has been used. The HSV color space corresponds closely to the human 

perception of color, and it has been proven to be more accurate in distinguishing 

shadows in comparison to the RGB space [45]. 

In HSV color space Hue varies between zero and one representing the color 

(from red through yellow, green, cyan, blue, magenta, and back to red) Saturation 

indicates the purity of the color. In other words S shows how much that color is 

diluted by white. When 𝑆 = 1 the color is 100% pure and no white is mixed with it. 

The reverse is also true while 𝑆 = 0. Finally the V component is a measure for 

brightness (intensity). H and S are used to describe chrominance information while V 

represents luminance. The following figure shows the same discussion graphically:  

 

Figure 16: HSV color space 
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3.1 Shadow Removal Algorithm 

The luminance of a point at location (𝑥, 𝑦) which belongs to cast shadow at 

instant k can be described as [45]: 

𝑆𝑘 𝑥,𝑦 = 𝐸𝑘 𝑥,𝑦  𝜌𝑘(𝑥,𝑦) (3.1.1) 

where 𝜌𝑘(𝑥, 𝑦) represents reflection of the surface, 𝐸𝑘 𝑥,𝑦  indicates irradiance and 

can be formulated as: 

                     𝐸𝑘 𝑥,𝑦 =  
𝐶𝐴 + 𝐶𝑃 cos(𝑁 𝑥,𝑦 ,𝐿)

𝐶𝐴
  

illuminated 

shadowed 

(3.1.2) 

where 𝐶𝐴 and 𝐶𝑃 are the intensity of the ambient light and of the light source, 

respectively, 𝐿 is the direction of the light source and N(x,y) the object surface 

normal [14]. 

If a static background point is covered by a shadow, then we have: 

𝑅𝑘 𝑥,𝑦 =
𝐶𝐴

𝐶𝐴 + 𝐶𝑃 cos(𝑁 𝑥,𝑦 , 𝐿)
 

(3.1.3) 

Since the angle between 𝑁 𝑥, 𝑦  and 𝐿 varies from −  
𝜋

2
  to  

𝜋

2
 for shadow 

points the denominator is greater than numerator. Hence 𝑅𝑘 𝑥,𝑦  would be less than 

one. Taking advantage of equation (3.1.3) and considering the key feature mentioned 

above, the following constraint can be used to classify the shadow points [45]: 

𝑆𝑃𝑘 𝑥,𝑦 =  

 
 
 

 
  1                                                    𝑖𝑓 𝛼 ≤

𝐼𝑘
𝑉 𝑥, 𝑦 

𝐵𝑘
𝑉(𝑥,𝑦)

≤ 𝛽 

                                    ∧  𝐼𝑘
𝑆 𝑥, 𝑦 −  𝐵𝑘

𝑆 𝑥,𝑦  ≤ 𝜏𝑆  

                                    ∧ |𝐼𝑘
𝐻 𝑥,𝑦 −  𝐵𝑘

𝐻 𝑥,𝑦 | ≤ 𝜏𝐻
0                                                                     𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (3.1.4) 

 

The first condition considers the variation of the luminance (the V-

component). Some background points which are affected by noise may have not 

exactly the same value. Hence when the luminance ratio is computed the result will 
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be less than one. To compensate this loss, an upper bound 𝛽(less than one) is used to 

avoid the incorrect identification of the regular pixels as shaded ones. The lower 

bound 𝛼 is defined to take strength of the light source into account, (i.e. stronger and 

higher the sun the lower will be that ratio, and lower value of α must be chosen). 

Since H and S components are responsible for chrominance information, the 

variation of these values should not exceed predefined thresholds (𝜏𝐻  , 𝜏𝑆). However, 

the choice of the parameters 𝜏𝐻 and 𝜏𝑆 is less straightforward and is done empirically 

with the assumption that the chrominance of shadowed and non-shadowed points 

even if could vary, does not vary too much [14]. 

Figure 17 shows the same scene in figure 15, however, this time the shadows 

are correctly detected and removed. One can easily notice how shadow suppression 

allows the correct identification of all the objects in the scene. 

 

Figure 17: The correct identification of objects after shadow removal [14]. 
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3.2 Simulation Results  

We have also applied the HSV color space based shadow removal technique 

to some custom recorded and standard video sequences. In the figures below same 

sample frames are given to show that the algorithm would perform fairly well on all 

the different test sequences used.  

      
        (a) Original frame           (b) Extracted foreground      (c) After shadow removal 

Figure 18:  Custom video recorded at Yeni-İzmir Junction 

      

        
(a) Original frame (b) Foreground mask (c) After shadow removal 

Figure 19: Video sequence Highway II 
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CHAPTER 4 

SIMULATION RESULTS AND PERFORMANCE 

ANALYSIS 

 

Up to this point several algorithms have been selected from literature and are 

implemented. It has been tried here to mention the algorithms which are 

fundamentally different from each other but most of the existing methods suffer from 

a common problem. As they strive to deal with multi-modal scenes they become 

more and more sensitive to slow moving objects and transient stops which are often 

the case in intersections due to the traffic signals. Therefore these algorithms become 

less likely to be implemented in vision-based traffic monitoring systems (VTMS).  

Vision based judgment is one of the common measures for comparison 

purposes since most of the failures of the algorithms lead to visible defects in the 

final detected background model. However, for a fairer comparison here a 

quantitative scale is used additionally. 

4.1 Ground Truth 

This concept is used as base for the quantitative comparisons. Ground truths 

are special kind of video sequences which contain only the desired moving objects of 

the scene (ideal foreground detection). 
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Here two video sequences are used along with their corresponding ground 

truths. One of them include indoor scenes and the other one is recorded from outdoor 

environment. These videos are recorded just from a scene without any foreground 

objects and then animated moving objects are superimposed manually on the 

recorded background scenes. Therefore the exact location of the pixels related to 

foreground items are known, in other words the ground-truths of these sequences are 

available. 

 Another advantage of using this kind of sequences is that since the super 

imposed objects do not contain shadows, we can only focus on the performance of 

background detection instead of dealing with shadow removal algorithms which at 

this point, we are not interested in them. 

For more clearance a typical frame and its corresponding ground-truth are 

shown in figure (4.1): 

 

                
    (a) Original frame                                 (b) Corresponding Ground-truth 

 

Figure 20 : Typical frame of synthetic video-2 [47]. 

 

The created sequences are fed to the applied background estimation methods 

and the extracted foreground of each is recorded frame by frame. 
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The next step would be taking advantage of practical scales in order to help us 

compare our achieved results with the ground-truths. One of the most well known 

measures is called “Recall-Precision” scale. 

4.2 Classification of Pixels 

 Prior to the details of recall and precision definitions, certain concepts should 

be explained. These concepts include classifying pixels in 4 different groups: 

1. True Positive (TP): which represents the number of foreground pixels 

correctly detected by the algorithm. 

2. False Positive (FP): is responsible for the number of pixels which are 

incorrectly classified as foreground objects. 

3. True Negative (TN): indicating the number of background pixels which are 

correctly detected as background scene by the algorithm. 

4. False Negative (FN): stands for the number of pixels corresponding to 

foreground objects which are misclassified as part of background image (also 

referred as misses) [44]. 

There are several other methods for quantifying a classifier’s performance 

(background estimators) [44]: 

1. Percentage correct classification 

2. Jaccard coefficient 

3. Yule coefficient  

However, in this thesis the pre mentioned recall and precision measures are 

applied. 
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4.3 Recall 

Recall is measure of completeness and is defined as number of true positives  

divided by the total number of elements that actually belong to the foreground 

objects. (i.e some of both true positives and false negatives). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.3.1) 

In other words it can be rewritten as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡 
 

(4.3.2) 

4.4 Precision 

Precision can be considered as a measure of exactness or fidelity and is 

evaluated through dividing the number of items (foreground objects) correctly 

detected by the total number of pixels classified as foreground by algorithm. 

In fact we are evaluating if the algorithm shows that a certain pixel is 

foreground and how reliable that statement would be. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4.4.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑚
 

 

(4.4.2) 

4.5 Data Analysis 

We have applied our implemented methods to two mentioned videos in 

section (4.1). The outdoor sequence includes shaking leaves along with passing of 

various objects from a small cat up to vehicle. 
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It should be noted here that to keep the condition of the experiments almost 

the same (real time performance) except the approximated median filtering method 

(which is fast enough even while performing on colorful images) other algorithms 

have been executed in gray-scale mode. 

The results in both of the measures will increase while the color information 

is added. The results are summarized in the table shown below: 

 

Table 2: Average recall and precision results for five background estimation algorithms. 

 

The simulation results prove that dealing with outdoor environments (video 7) 

is a more challenging task. In the case of indoor scenes with real static background 

(without any undesired movements) most of the algorithms have acceptable 

performance (over 85% in both scales). 

As it was mentioned before, vehicles often stop transiently due to traffic 

signals. Hence, in this part we have compared the performance of algorithms in the 

VIDEO  2  VIDEO 7 

Estimation 

Method 
Recall Precision 

 Estimation 

Method 
Recall Precision 

Group-based 

histogram 

(GBH) 

99.25 93.19 

 Group-based 

histogram 

(GBH) 

86.18 74.42 

Progressive 

estimation 

(PM) 

90.58 99.21 

 Progressive 

estimation 

(PM) 

72.30 60.92 

Mixture of 

Gaussians 

(MoG) 

81.84 91.22 

 Mixture of 

Gaussians 

(MoG) 

85.38 77.96 

Approximated 

Median 

Filtering(AMF) 

92.26 91.5 

 Approximated 

Median 

Filtering(AMF) 

82.34 58.19 

Temporal 

Median 

Filtering(TMF) 

84.01 99.99 

 Temporal 

Median 

Filtering(TMF) 

77.88 49.65 
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case of transient stops as well. The video sequence, which is used here, contains an 

indoor scene showing students walk through the corridor, stop for a while, then 

continue walking again. The simulation results suggest that the MoG Model is not 

robust against these kind of stops in comparison with other tested methods. The 

figures below demonstrate this problem more clearly:     

 

           
(a) Original Frame (b)Generated background 

using MoG 

(c) Generated background 

using GBH 

 

     
(d) Generated background 

using PM 

(e) Generated background 

using TMF 

(f) Generated background 

using AMF 

 

Figure 21: Comparing the adverse effect of transient stops 

 

To test which one of the algorithms generate the background model faster, we 

have applied them to a video sequence, which does not start with any empty frames.     

Although AMF, processes each frame faster than other tested algorithms(less 

than half a second per each frame), it takes longer time to create background model. 

It is obvious from the following figure that a ghost (faded) effect of the present 

objects in the initial frame is still visible after passing of 44 frames.  
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   (a) Frames1and 44                     (b) Estimated background  (c) Foreground mask 

 

Figure 22: Adverse effect of late background generation, using AMF 

 

Although the percentages from the table contain comparison information 

about the ability of algorithms in handling multi-modal background scenes for the 

sake of more clarity, the 380
th

 frame is selected from synthetic video 7. This frame 

includes bi-modal background scene (notice the shaking leaves of the trees in the 

background). The simulation results are demonstrated along with the corresponding 

foreground mask from the ground-truth sequence in the following figures: 

 

       
(a) Frame 380 from video 7 (b) Ground-truth of frame 380 
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(c) TMF (d) AMF (e) PM 

 

                                 
                               (f) MoG                    (g) GBH 

                         

Figure 23:  Visual comparison between algorithms in handling multi-modal scenes. 

 

As it is obvious from the preceding figure MoG algorithm is able to suppress 

the multi-modal background more effectively. The speed of algorithm in processing 

each frame is an important issue for real-time applications; hence here these 

algorithms are applied to a sample video sequence and average processing times are 

computed for each of the methods. 

Table 3: Performance comparison of algorithm with respect to time 

Methods Average Processing 

Time(frame/sec) 

Group-based histogram 

(GBH) 

4.0214 

Progressive estimation 

(PM) 

2.7422 

Mixture of Gaussians 

(MoG) 

1.4152 

Approximated Median Filtering 

(AMF) 

0.0490 

Temporal Median Filtering 

(TMF) 

1.8570 
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The algorithms are also compared from initialization point of view to see 

which algorithm creates the background scene faster. To achieve this goal, a video 

sequence recorded from a rather crowded highway which does not contain any empty 

frames (foreground objects are always present in the scene) is used. The number of 

frames required to pass in order to enhance an acceptable foreground mask is 

recorded in the table below. 

Table 4: Required number of frames to generate acceptable foreground masks 

Methods Number of required frames 

Group-based histogram 

(GBH) 

6 

Progressive estimation 

(PM) 

10 

Mixture of Gaussians 

(MoG) 

9 

Approximated Median Filtering 

(AMF) 

44 

Temporal Median Filtering 

(TMF) 

12 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion  

The implementation results indicate that critical tradeoffs are always present 

between the accuracy of estimated background model and the real time performance 

of the method. The choice of algorithm for background modeling should be made 

according to the desired application. For instance if it is desired to monitor an indoor 

scene environment, one of the most suitable choices would be the Approximated  

Median Filtering, however, the same algorithm (as shown in chapter 2) is not a 

proper choice when it comes to outdoor scene surveillance. Due to the fact that it 

cannot deal with multi-modal background scenes or cope with weather condition 

changes. Mixture of Gaussian Model is one the most reliable background estimation 

methods in the literature which is capable of handling multi-modal background 

scenes. The application results from chapter 2 proved the same utter. However, these 

kind of algorithms fail in the case of illumination changes and transient stops of 

moving objects (in locations such as intersections).  

Histogram based approaches seemed to be robust to transient stops but they 

are still too sensitive to illumination changes and required larger storage spaces. 
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5.2 Future Work 

Most of the tested implemented algorithms suffer from variation of weather 

conditions. It is intended to develop a new algorithm which combines the updating 

procedure in progressive method with windowing technique in GBH method. Also it 

is needed to add an illumination tracking process to the algorithm in order to make 

the foreground segmentation part adaptive to the illumination changes.              
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