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ABSTRACT 

Not long time ago, legged walking robot, especially the robot that uses six legs to walk 

has received a great attention from researchers due to its extreme importance in several 

domains. Legged robots are suitable to function in an erratic, alarming and 

unsympathetic environments such as space habitat, mine territory, and benthos. 

Moreover, legged walking robots are satisfactory in some critical tasks like rescue 

applications and examine nuclear facilities. Generally, the legged robot divided in 

terms of the number of the legs into the two-legged, four-legged, six-legged and eight-

legged robot. However, the six legs robot has asset over the first and the second one 

since the six-legged robot is much faster and stable. Furthermore, it has proven that 

increasing the legs of the robot will not give better results. 

In this dissertation, an endeavor has exerted in order to handle the kinematic analysis 

of the walking robot that has six legs. A serial chain consists of three revolute joints 

(RRR) are chosen to form the leg of the robot due to reproducing the architecture of 

the insect’s leg. First, a brief summary of Denavit-Hartenberg (D-H) convention and 

the theory of screws, two of an essential technique used in the kinematic analysis of 

the robot manipulators, is provided. Then, the configurations of the walking robot’s 

leg studied in details for the sake of building a comprehensive representation of the 

six-legged walking robot. Third, the problem of finding the position and orientation of 

the center of gravity of the walking robot is solved using the closing circuit technique. 

In contrast, depending on knowing the pose of the center of mass of the robot, Inverse 

kinematics is achieved geometrically. Furthermore, screw theory approach has been 

beneficial to find the linear and angular velocity. However, the reciprocity theorem 
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could deeply simplify the direct velocity analysis. Since the locomotion analysis is one 

of the most important aspects of walking robot, a review presented for the purpose of 

highlight on some fundamental locomotion approach. Finally, the mechanical 

configuration of the six-legged robot structures is to be represented using the theory of 

graph. 

Keywords: Hexapod, Legged-Robot, Kinematics, D-H Convention, Screw Theory, 

Reciprocal Screws, Locomotion, Graph Theory.  
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ÖZ 

Yakın zamanda, ayaklı yürüyen robotlar, özellikle yürümek için altı ayak kullanan 

robotlar, bazı alanlardaki önemlerinden dolayı araştırmacı, uzman ve üniversite 

profesörlerinin büyük ilgisini çekmiştir.   Ayaklı robotlar, uzay ortamı, mayın bölgeleri 

ve deniz dibi gibi değişken, panik yaratıcı ve aynı zamanda sevimsiz ortamlarda görev 

yapma uygunluğuna sahiptirler.  Tüm bunlara ek olarak, ayaklı robotlar, kurtarma 

uygulamaları ve nükleer tesislerin incelenmesi gibi bazı kritik görevleri yerine getirme 

yeterliliğine de sahiptirler.  Genel olarak, ayaklı robotlar ayak sayısına göre iki ayaklı, 

dört ayaklı, altı ayaklı ve sekiz ayaklı robot olmak üzere gruplandırılırlar. Bununla 

birlikte, altı ayaklı robotlar daha hızlı ve tutarlı olmalarından dolayı ilk ikisine göre 

daha fazla değer taşımaktadırlar. Tüm bunlara ek olarak, robot ayak sayısının 

artırılmasının daha iyi sonuçlar vereceği çeşitli araştırmalarla kanıtlanmıştır.  

Sözkonusu tez çalışması, altı ayaklı yürüyen robotun kinematik analizini yapma amacı 

taşımaktadır.  Böcek ayağı mimarisine benzer bir yapı oluşturma amacı ile, sözkonusu 

robotun ayağını oluşturmak için üç adet mafsallı ek yerinden (RRR) oluşan bir zincir 

dizisi seçilmiştir.  İlk olarak, robot işleticilerinin kinematik analizinde kullanılan iki 

gerekli teknik olarak kabul edilen Denavit-Hartenberg (D-H) konvensiyonu ve vida 

teorisinin kısa bir özeti sunulmuş ve daha sonra ise temsili bir altı ayaklı yürüyen bir 

robot oluşturmak için yürüyen robotun ayak konfigürasyonu detaylı olarak 

incelenmiştir. Üçüncü olarak, kapalı devre tekniği kullanılarak yürüyen robotun çekim 

merkezinin pozisyonu ve yönü bulunmuştur. Buna zıt olarak, robotun kütle merkezinin 

duruşunu belirleyerek, geometrik olarak ters kinematik elde edilmiştir. Her ne kadar, 

lineer ve açısal hızı bulmak için vida teorisi yararlı bir teori olsa da karşılıklılık teoremi 
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direk hız analizini oldukça basitleştirebilmektedir. Bir yerden diğerine gitme 

analizinin yürüyen robotun en önemli özelliklerinden birisi olmasından dolayı, temel 

hareket yaklaşımına ışık tutma amacı ile bir değerlendirme sunulmuştur. En son olarak 

da grafik teorisi kullanılarak altı ayaklı robot yapısının mekanik konfigürasyonu 

sunulmuştur.  

Anahtar kelimeler: Hexapod, Ayaklı-Robot, Kinematik, D-H Konvensiyonu, Vida, 

Karşılıklı Vidalar, hareket yaklaşımına, Grafik Teorisi.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

DEDICATION 

 

 

A special feeling of gratitude to my loving parents, 

brothers and friends 

 

 

 

 

 

 

 



viii 

 

ACKNOWLEDGMENT 

I would love to record my sincere gratitude to Prof. Dr. Mustafa Kemal Uyguroğlu for 

his endless support of my Master study. His supervision, patience, and inspiration 

helped me in all the time of research and writing of this dissertation. All the results 

described in this thesis accomplished with the help and support of him. 

I would also like to extend my sincere thanks to all professors and faculty members of 

the Electrical and Electronic Department for their care, help, and dedication. 

 

 

 

 

 

 



ix 

 

TABLE OF CONTENTS 

 
ABSTRACT ................................................................................................................ iii 

ÖZ ................................................................................................................................ v 

DEDICATION ........................................................................................................... vii 

ACKNOWLEDGMENT ........................................................................................... viii 

LIST OF TABLES .................................................................................................... xiii 

LIST OF FIGURES .................................................................................................. xiv 

1 INTRODUCTION ..................................................................................................... 1 

1.1 Introduction ........................................................................................................ 1 

1.2 Thesis Overview ................................................................................................ 5 

2 KINEMATICS REVIEW .......................................................................................... 7 

2.1 Introduction ........................................................................................................ 7 

2.2 Kinematics Modeling Based on (D-H) Representation ..................................... 8 

2.3 Kinematics Modeling Based on the Theory of the Screws .............................. 11 

2.3.1 Pure Rotational Modeling Using Coincident Screw Line ......................... 12 

2.3.2 General Displacement Modeling Using Arbitrary Screw Line ................. 14 

2.3.3 Sequential Screw Axes Technique ............................................................ 18 

2.4 Kinematic Modeling Using the Product of Exponential Method .................... 19 

2.4.1 Line Formalization Using Plȕcker Assortment ........................................ 20 

2.4.2 The Representation of the Screws ............................................................. 21 

2.4.3 The Product of Exponential Formulation ................................................. 26 

2.5 Jacobian Analysis Techniques ......................................................................... 27 



x 

 

2.5.1 The Mathematical Definition of the Jacobian Model ............................... 27 

2.5.2 The Kinematic Definition of the Jacobian Model ..................................... 28 

2.6 The Advantages of the Reciprocity in Kinematics .......................................... 31 

2.6.1 Screw and Reciprocal Screw System ........................................................ 32 

2.6.2 Specify the Precise Degree of Freedom for Parallel Manipulator ............ 35 

2.6.3 The Functionality of Reciprocal Screws in the Velocity Analysis ........... 36 

3 KINEMATICS ANALYSIS OF THE HEXAPOD ................................................ 38 

3.1 Introduction ...................................................................................................... 38 

3.2 Designing of the NOROS Hexapod Robot ....................................................... 38 

3.3 Kinematics of the Individual Leg of the NOROS Robot .................................. 40 

3.3.1 The Kinematic Study of the Separate Leg of the Robot via the Geometry

 ............................................................................................................................ 40 

3.3.2 The Kinematics of the Individual Leg via D-H Method ........................... 43 

3.3.3 The Kinematics of the Single Leg Using the Theory of Screws ............... 45 

3.3.4 The Kinematics of the Single Leg Using the (POF) Technique ............... 48 

3.3.5 The Kinematics of the Hexapod’s Leg in the Case of Supporting............ 50 

3.4 Position kinematics analysis for the Hexapod ................................................. 52 

3.4.1 Theoretical Constraints Associated with the Modeling of the NOROS .... 52 

3.4.2 Definition of the Hexapod Coordination Systems .................................... 53 

3.4.3 Inverse Kinematics Study for the NOROS ............................................... 54 

3.4.4 Direct Kinematics Study for the NOROS ................................................. 56 

3.5 Mobility Analysis for the Hexapod .................................................................. 62 



xi 

 

3.5.1 The Mobility Discussion for the Hexapod Using the Conventional Method

 ............................................................................................................................ 62 

3.5.2 Mobility Analysis for the Hexapod Using Reciprocal Based Technique . 65 

3.6 Jacobian Survey of the Hexapod Robot ........................................................... 67 

4 LOCOMOTION ANALYSIS ................................................................................. 71 

4.1 Introduction ...................................................................................................... 71 

4.2 The Stability Modes for the Hexapod Robot ................................................... 72 

4.3 Stable Tripod Locomotion Analysis for the Hexapod Robot .......................... 72 

4.3.1 The Definition of the Stable 3+3 Mammal Locomotion .......................... 73 

4.3.2 Kinematic Modeling of the Duty Cycle of the Mammal Kick of Gait ..... 74 

4.3.3 The Definition of the Stable 3+3 Insect Locomotion ............................... 79 

4.3.4 Kinematic Modeling of the Duty Cycle of the Insect Gait ....................... 80 

5 KINEMATIC REPRESENTATION ...................................................................... 84 

5.1 Introduction ...................................................................................................... 84 

5.2 Fundamental Concepts of Graph Theory ......................................................... 85 

5.2.1 Fundamental Terminologies ..................................................................... 85 

5.3 Functional Representation of the Hexapod Robot ........................................... 89 

5.4 Graph Representation of the Hexapod Texture................................................ 89 

5.5 Oriented Graph Representation of the Hexapod .............................................. 90 

5.6 The Predecessor Relevance of the Spanning Tree ........................................... 91 

5.7 The Fundamental Cycle ................................................................................... 93 

5.8 The Relationship between the Kinematics and the Graph Theory................... 93 



xii 

 

5.8.1 The Configurations of the Kinematic Structure ........................................ 94 

5.9 Kinematic Restraints ........................................................................................ 95 

5.9.1 The Cut Joint Methodology ...................................................................... 95 

5.9.2 The Cut Body Method .............................................................................. 96 

6 CONCLUSION AND FUTURE WORK ............................................................... 98 

6.1 Conclusion ....................................................................................................... 98 

6.2 Future Work ..................................................................................................... 99 

REFERENCES ........................................................................................................ 100 

APPENDICES ......................................................................................................... 110 

Appendix A: Position Analysis of a Duty Cycle According to the Mammal 

Locomotion for the Hexapod Robot (Matlab) ..................................................... 111 

Appendix B: Kinematic Analysis of a Duty Cycle According to the Insect 

Locomotion for the Hexapod Robot (Matlab) ..................................................... 124 

 

 

 

 

 



xiii 

 

LIST OF TABLES 

Table 3.1: The Parameters of the Individual Leg of the NOROS .............................. 40 

Table 3.2: D-H Parameters of the Single Leg of the Hexapod .................................. 44 

Table 3.3: The Parameters of the Screws Associated with the Hexapod’s Leg......... 46 

Table 3.4: The Parameters of the Screws Associated with the Supporting Leg ........ 51 

Table 3.5: The Parameters of the Hexapod’s Leg that Support the Body and Serve to 

Displace the Robot in 3-DOF .................................................................................... 59 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

LIST OF FIGURES 

Figure 2.1: The Specifications of the Denavit-Hartenberg Method............................. 9 

Figure 2.2: (a) Illustration of the Rotation about Coincident Screw Line     (b) Another 

Visual Angle Taken to Clarify the Modeling ............................................................ 12 

Figure 2.3: Scene from Top on the Rotating Plane R which Illustrates the Path of the 

Body ........................................................................................................................... 13 

Figure 2.4: Comprehensive Displacement of a Solid Body Displaces from one Position 

to Another .................................................................................................................. 15 

Figure 2.5: Clarifying the Consecutive Screw Axes Method .................................... 19 

Figure 2.6: Vector Representation Using Plȕcker Assortment .................................. 21 

Figure 2.7: The Representation of the Screw Assortment ......................................... 24 

Figure 2.8: Illustration of a Screw System Hold 3 Linearly Independent Screw Vectors

 .................................................................................................................................... 34 

Figure 2.9: Illustration of the Cancellation Technique   (a) The Structure of an 

Assumed Parallel Manipulator’s Limb   (b) Clarify the Fixed Reference Frame of the 

Limb, the Screws of the Joints and the Cancellation Reciprocal Screw. ................... 36 

Figure 3.1: The Architecture of the NOROS in 3-Dimensional Space ...................... 39 

Figure 3.2: (a) The Structure of the NOROS Hexapod’s leg        (b) The Configuration 

of the NOROS Hexapod’s Leg .................................................................................. 40 

Figure 3.3: General Geometry of the Supposed Hexapod’s Leg ............................... 41 

Figure 3.4: (a) The Plane that Contains the Structure of the Hexapod’s Leg    (b) An 

Upper Scene of the Hexapod’s Leg ........................................................................... 42 

Figure 3.5: Kinematic Representation of the Single Leg via the Parameter of the D-H 

Convention ................................................................................................................. 44 



xv 

 

Figure 3.6: Kinematic Modeling of the Hexapod’s Leg Using the Parameters of the 

Screw Theory ............................................................................................................. 46 

Figure 3.7: The kinematic modeling of the hexapod's leg during assistance phase .. 51 

Figure 3.8: Kinematics Scheme of the Hexapod Showing the Locations of the 

Coordinate Systems ................................................................................................... 54 

Figure 3.9: The Relation between the Center of Gravity Coordinate and the Head 

Coordinate Systems ................................................................................................... 54 

Figure 3.10: Mechanics Scheme Shows the Texture of the Leg n in 3D Space along 

with Hexapod’s Body ................................................................................................ 55 

Figure 3.11: The Mechanism of the Hexapod’s Leg that Support the Body and Serve 

to Displace the Robot in 3-DOF ................................................................................ 58 

Figure 3.12: Kinematics Scheme of the Hexapod Illustrating the Configuration which 

Forms the Basis for the Direct Kinematics. ............................................................... 60 

Figure 3.13: The Mechanism of a Hexapod Leg defines the Screws and the Rates that 

Associated with its Joints. .......................................................................................... 68 

Figure 4.1: The three Supposed Cases that Illustrate the Stability of the Hexapod Robot    

(a) Stable State        (b) Critical State        (c) Unsteady State ................................... 72 

Figure 4.2: A Hexapod’s Locomotion Cycle According to the Tripod Mammal Gait 

(a) Initial State      (b) The First Switching Phase      (c) The First Moving Phase    (d) 

The Second Switching Period       (e) The Second Moving Period      (f) Final Switching 

Period ......................................................................................................................... 74 

Figure 4.3: The initial Configuration of the Hexapod According to the Mammal 

Locomotion ................................................................................................................ 75 

Figure 4.4: The First Switching Phase Configuration of the Hexapod According to the 

Mammal Locomotion ................................................................................................. 76 



xvi 

 

Figure 4.5: A View from the Top Explains the Hexapod Stability Case during the First 

Switch Period of the Mammal Locomotion ............................................................... 77 

Figure 4.6: The First Moving Phase Configuration of the Hexapod According to the 

Mammal Locomotion ................................................................................................. 77 

Figure 4.7: The second moving phase configuration of the Hexapod according to the 

mammal locomotion .................................................................................................. 78 

Figure 4.8: Illustration of the Hexapod’s Primary Configuration According to the 3+3 

Insect Gait .................................................................................................................. 80 

Figure 4.9: Illustration the First Moving Phase Configuration of the Hexapod 

According to the Insect Locomotion .......................................................................... 81 

Figure 4.10: Illustration the Hexapod Structure and Supporting Polygon during the 

Second Phase According to the Insect Locomotion .................................................. 82 

Figure 4.11: Illustration the Second Moving Phase Configuration of the Hexapod 

According to the Insect Locomotion .......................................................................... 82 

Figure 5.1: The Functionality of the Hexapod According to the Stable Tripod State 89 

Figure 5.2: Topological Graph Representation of the Portion of the Hexapod Robot 

that Forms a Closed Chains Manipulator ................................................................... 90 

Figure 5.3: Oriented Topological Graph Representation of the Portion of the Hexapod 

Robot that Forms a Closed Chains Manipulator ........................................................ 91 

Figure 5.4: A Spanning Tree of the Portion of the Hexapod Robot that Forms a Closed 

Chains Manipulator .................................................................................................... 92 

Figure 5.5: The Root-Directed Tree According to the Closed Chains Formed by the 

three Assistant Leg of the Hexapod ........................................................................... 92 

Figure 5.6: Fundamental Circuits Corresponding to the Root Directed Tree ............ 96 



1 

 

Chapter 1 

1 INTRODUCTION 

1.1 Introduction  

Thousands of years ago, the nature was the main origin of inspiration for humankind. 

Birds, mammalian, reptiles and marine creatures weren’t far from the imagination of 

humans in an attempt to mimic them and take advantage of their unique characteristics. 

In the Contemporary era, experts and academics have made a significant leap 

technology in the field of manufacturing various types of robots, especially those 

relating to emulation of humans and animals [1-3]. Generally, these sorts of robots are 

called locomotive manipulators. 

The terrestrial manipulators that able to change their absolute position to achieve its 

duty could be separated into 3 main categories; robots capable of varying its locations 

using characteristics of the trundles, robots that use crawler motion system depends on 

the persistent track and multi limbs robots. The locomotive robots that use trundles or 

track are characterized by inexpensive, being easy to build, and solidity in ordinary 

environment. However, in case of capricious environment, especially rocky or 

arenaceous territory, mobile robots that use the legs for locomotion are preferred [4].  

Several reasons are behind the priority of the multi-terminals walking robot, the place 

where the leg touch the ground is extremely tiny, and consequently, extra stability 

arises because of the robot able to select a suitable spot to support. Since the leg 
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contains sundry actuators and separated limbs, the robot capable of adjusting itself to 

handle the harsh surrounding environment [5]. 

Multi-limbs peripatetic robots can be sectioned into four main classes; dual-legged 

robots, quad-legged robots, sixfold-legged robots and octal-legged robots. Designing 

and implementation of the traveling robots that standing on two lists was and still is 

one of the most complicated engineering issues since single limb should be touching 

the terrain and carries out stability process so that the center of gravity still supports 

the stabilization[6]. Quad-legged robot considered lower complexity compared to 

humanoid. Moreover, the Most scientific studies assume that the presence of two legs 

supporting the body of the Quad-legged robot [2]. Realizing the fact that say, the most 

Invertebrate creatures contain six legs, may lead us to investigate its special 

characteristics [7]. Two of indispensable issues to be considered during the design of 

the multi-limbs walking machine are quickness and the constancy. It is appropriate to 

say that, walking manipulator that uses 6 limbs to move shows better performance in 

terms of constancy since sixfold-legged robots have further backing limbs [8]. 

Furthermore, in comparison with dual-legged robots and quad-legged robots 

concerning the quickness, the robots with six legs show improved results [9]. The 

possibility of failing decreases strongly by using six legs mobile robot since 5 legs are 

enough to perform all functionalities of the robot, as a result, the fidelity getting better 

[10]. With regard to the 2 additional legs in octal-legged machines, robot researchers 

have confirmed that utilize supplementary legs will not award extra enhancement [11]. 

For all these faced reasons, hexapod traveling robot will receive a great solicitude 

through this thesis. 
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The prototypes of the sixfold peripatetic robots relied on manual operation of 

mechanical or hydraulic actuators to move, away from any control systems. It was the 

first technical advance in the field of auto six legged mobile robot in the early 1970s 

[12]. In 1973 Okhotsimski and Plantov produced the first hexapod mobile robot 

capable of overcoming obstacles using complicated artificial intelligence algorithm 

[13]. In [14] presented a new technique to make the robot capable of maneuvering 

using perimeter sensors. Moreover, Prof. Robert B. McGhee designed a six-legged 

robot not only to avoid obstacles but to walk on them [15]. The innovation of the Odex 

had a great impact in using the six-legged peripatetic robots in abroad applications 

[16]. The robot used internal electrical system controlled from afar. Latterly, as in all 

technical areas, Robot science has seen great progress. Several attempts have 

succeeded in extracting biological advantages from nature. One such attempt was 

cockroach-like hexapod robot [17]. Stick insects were not far from the observation of 

the robot scientists. Different versions of the LAURON designed based on the structure 

of this insect [18]. In [19] another example of six-legged robot insect-inspired in which 

the robot mimic the ant’s walking style. 

As sixfold peripatetic robots have multiple shapes, types, and sizes, they also have 

numerous applications in different fields. In [20] a six-legged robot named Rise 

skillfully designed to perform steep ascending tasks, thanks to the talons at the end of 

its limbs. Several hexapod walking robot produced to suit the tasks in a space 

environment. However, one of the most interesting six-legged robots specialized to 

duty in space conditions was Athlete [21]. This robot holds the characterized of both 

legged and trundle robot. Athlete performs its duties in normal conditions using 

locomotive trundle. In contrast, during uncomfortable territory, the robot turns off the 

rotation and uses the techniques of the legged robot, where the locked wheel serves 



4 

 

the end terminal of the robot’s leg. The sixfold robot called LAURON V considered as 

the most improved version of the series LAURON. This robot has a strong structure of 

reinforced aluminum designed with inspiration from stick insect. LAURON V holds 

advanced techniques in sensing and assessing the surrounding reality, for these reasons 

LAURON V suitable for work in very complicated and difficult circumstances as space 

conditions. Another important application takes its place in this concept, operations 

that depend on dive. A hybrid robot called CR 200 [22] is one of the six-legged robots 

working in this field. This robot capable of walking on sturdy land easily and can 

plunge until 200 meters under water. CR 200 designed to withstand pressure under 

water to perform precise tasks such as examination and investigation of the deep sea 

environment, search for sea-soaked pieces and preparing of some inquiry that relate to 

marine creatures. Moreover, several commercial models of the hexapod robot have 

recently been launched for educational or recreational purposes. 

In terms of the central frame shape, six-legged robots can be organized into two basic 

forms quadrilateral style and orbicular style. Typically, Hexapod robot that holds the 

former style includes six legs dispensed into two directions in which three on each 

side. Since the most of the ancient versions were built on this basis, this style of 

hexapod has been studied well especially in balancing and ability to maneuver [23]. 

The six-legged robot that has the later design possesses six limbs assigned 

harmonically about the shape. Recently, varied surveys have been made to contrast 

between these two forms [24]. The orbicular hexapod robot may hike in all lines and 

has advantages over quadrilateral in terms of stability edge, this is what Preumont et 

al explained in [25]. Takahashi et al confirmed what Preumont et al had put forward 

and he provided several additional evidence [26]. Although the quadrilateral hexapod 

is in need to a special locomotion to change its direction line unlike Orbicular which 
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has the ability to hike in all lines, quadrilateral one achieves better results in terms of 

walking forward a fixed channel. 

As we mentioned earlier, there are many applications that the robot hexapod are 

designed to perform. However, the six-legged hexapod robot which are constructed to 

achieve some tasks in unearthly environment considered as one of the most crucial 

topic among robot researchers and experts due to its enormous priority in the field of 

scientific research. Recently, a new six-legged robot attracts special attention in the 

field of space robots called NOROS derived from the expression “novel robot for space 

exploration”. This robot was a result of cooperation between Chinese and Italian robot 

scientists for the purpose of exploring in space environments away from the earth [46-

48]. 

The survey in this dissertation takes into consideration architecture, criterions, 

guidelines, and limitations of the NOROS Hexapod robot in all subsequent 

investigations and experiments. 

1.2 Thesis Overview 

Chapter 1 (Introduction), is preparatory to understanding the definition of the Hexapod 

robots. It includes the chronological evolution, types, and the advantages of the legged 

robots. Moreover, this chapter gives a description of the Hexapod structure in addition 

to an explanation of its classifications, applications, and preference of use it. 

Chapter 2 (Kinematics Review), provides a comprehensive overview of the kinematic 

science involved mainly the position and the velocity analysis. Several techniques 

concerns in analyzing the location of a considered frame system. These techniques 

include the D-H convention, conventional screw theory and the product of exponential 
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method. All of them, have been studied in details. Moreover, the problem of finding 

the velocity of the center of moving platform of a closed chains manipulator solved in 

this chapter through the theory of the screws and the reciprocity technique. Studying 

of the mobility of the robot has been mentioned in this chapter through the Kutzbach–

Grubler formula besides to the reciprocity-based technique. 

Chapter 3 (Kinematics analysis of the Hexapod), addresses several kinematic issues 

taking into account the structure and the configuration of the NOROS Hexapod robot, 

including the kinematic of the swinging and assistant Hexapod’s leg, the direct and 

inverse location analysis that handles a coordinate system located in the center of 

gravity of the robot, velocity analysis based on the theory of reciprocal screws and the 

mobility analysis based on the conventional and reciprocity based approach.   

Chapter 4 (Locomotion Analysis), discusses the stability edge and provides the 

definition of the gait study according to the Hexapod’s configuration. Also, two 

essential triple system locomotion types called mammal gait and insect gait are studied 

kinematically through this chapter. 

Chapter 5 (Kinematics Representation) gives an extensive review of the theory of 

graph representation. Moreover, the kinematic configuration of the Hexapod robot in 

this chapter is represented using the network model approach [48]. 

Chapter 6 (Conclusion and Future work) discusses the works done through this 

dissertation in addition to a comprehensive review of the experiences and results 

presented in Appendix A and B. Furthermore, an ambitious future plan to work 

towards building an integrated Hexapod model is presented. 
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Chapter 2 

2 KINEMATICS REVIEW 

2.1 Introduction 

By definition, kinematics study is a specific domain in the conventional mechanical 

analysis that cares about the movement of the solid particle without taking the cluster 

weight and strengths that inspire the changes in consideration [27-28]. Accordingly, 

this field just related with the characteristics of the mechanical shape and timing of 

displacement occurrence. It is known that there is a tight relevance between the 

properties of the joint and the positioning of the impact point in any robotics 

mechanism determined by some restrictions on joints movement. However, finding 

this relation considered as a cornerstone in kinematics study. Essentially, kinematics 

survey separated into positioning study, velocity analysis, and superior order analysis. 

In each case, there is a schism into frontal and reverse analysis. Firstly, the issue of 

kinematics positioning analysis refers to detect the linkage between the characteristics 

of the mechanical joints and the effective point at the end of robotics chain in serial 

mechanisms or the mass center of gravity in closed loops mechanisms. In this sense, 

frontal analysis aims to find the impact point’s place with regard to the angles of the 

joints, the opposite concept represents the study of the reverse positioning analysis. 

The purpose of velocity analysis is to find the equation that relates the rapidity of the 

joints and velocity parameters of the effector point in open chain mechanism or gravity 

center of the closed chains manipulator. Hence, the linear analysis considers the 

parameters of the joints as an input in its equation. In contrast, reversal analysis takes 
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the velocity of the effector as input parameters. Precisely, on the same principle of 

positioning or velocity, superior order analysis such acceleration or higher derivative 

of time aims to generate an equalization between the high order derivatives of time for 

both of joints angles and effector parameters.  

Two of the most crucial techniques used in kinematics studies are Denavit-Hartenberg 

procedure and the theory of the screws [29]. In the following two sections, these two 

methodologies will be dealt with in details. 

2.2 Kinematics Modeling Based on (D-H) Representation 

Denavit and Hartenberg (D-H) representation technique has been invented by the 

scientists Jacques Denavit and Richard S. Hartenberg in the middle of the last century 

[30], since then it turned out to be the typical way to model the kinematics structure in 

compact and harmonious characterization. Denavit-Hartenberg methodology is a 

fluent path that can build a robust representation of any collection of links and joints 

which shape the robot disposition. 

As the kinematics paradigm of a robot structures depicts the linkage of the joints and 

the effector, Denavit-Hartenberg allocates a system of coordinate to all the joints that 

exist in the robot. The next target is to identify a diversion that relates any sequential 

coordinate systems. Finally, the definitive relationship between all coordinates is 

accomplished by integrating all diversions in the robot system forming ultimate 

transport movement pattern of the robot. 

The kinematics structure in Figure 2.1 has two joints namely the joint 𝑠 and the 

joint 𝑠+1, these joints are bonded by the link 𝑠. The Joint's type could be any manner 

such as rotating pin or translation slider. 
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 Figure 2.1: The Specifications of the Denavit-Hartenberg Method 

Assigning the domestic coordinate systems for the two joints will be the first interest 

in order to handle the structure shown in Figure 2.1 using the Denavit-Hartenberg 

method. However, 𝑌-axis is discarded since 𝑌-axis is orthogonal to the plane that 

specified by 𝑋-axis and 𝑍-axis. If the joint has rotating motion, the trend of rotation 

will be around the 𝑍-axis according to the rule of the right hand. While the 𝑍-axis will 

take the direction of sliding in the case of the joint is prismatic. For the sake of 

simplifying the process of assigning the 𝑍-axes, 𝑍𝑠−1 will indicate to the 𝑍-axis of the 

joint 𝑠. The next step is to identify the 𝑋-axes. The vector of 𝑋-axis sets based on the 

relation between the two sequential 𝑍-axes. There are 3 main cases specify the 

relationship between any two lines; the parallelism, the intersecting and the skew case. 

In the case of the two 𝑍-axes are analogous, there is a countless number of alternately 

vertical to the both 𝑍-axes and consequently, 𝑋-axis will be the alternately vertical that 

go over the system of coordinate. When the successive 𝑍-axes are intersecting, in this 

situation 𝑋-axis allocates in the direction orthogonal to the plan that specified by the 
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two successive 𝑍-axes. If the Z-axes are skew lines, in this situation there is only one 

mutually normal and the 𝑋-axis holds the same normal direction.  

After allocating the domestic system of coordinates, the following phase is to uniquely 

specify the Denavit-Hartenberg variables. Mainly, there are 4 essential variables that 

form the backbone of Denavit-Hartenberg technique. The first variables is theta, 

overwhelmingly recalled as 𝜃 so that 𝜃𝑠 symbolizes the rotational angle about the joint 

axis 𝑍𝑠−1. The second variables ɗ𝑠  indicates to the proportion of the joint axis 𝑍𝑠−1 that 

specified by two sequential common perpendiculars. The following parameter refers 

to lengths of mutually vertical lines, generally symbolized as a, in this case a𝑠 is the 

length of common normal of  𝑍𝑠 and  𝑍𝑠−1 .The fourth parameter 𝛼 indicates to the 

angle between the two sequential joint axes. 

Once the joint systems of coordinates become ready, finding the relation between these 

coordinates will be the top priority, knowing that 4 × 4 matrix can relate any two 

Cartesian coordinates. Several steps should be accomplished in order to transform the 

coordinate system from one local frame to another, fusion these steps will give us, in 

the end, general transformation matrix. 

The following steps aim to find the matrix that represents the relation between any two 

sequential local systems of coordinate s-1𝑡ℎ and s𝑡ℎ. The strides are clarified as follow. 

Firstly, Rotation process by the angle 𝜃𝑠 around the 𝑍𝑠−1 in which  𝑋𝑠−1 and  𝑋𝑠 will 

become parallel. Then, sliding movement straight  𝑍𝑠−1 axis by the magnitude of ɗ𝑠 so 

that the axes  𝑋𝑠  and  𝑋𝑠−1 become collinear. Moreover, another sliding motion 

happen, this time along the direction of the axes  𝑋𝑠−1  and  𝑋𝑠 by a distance a𝑠. This 

will make the centroid of the local systems of coordinates s-1𝑡ℎ and s𝑡ℎ at the same 
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point. Lastly, revolute motion about the axis  𝑋𝑠  by the alpha parameter,𝛼𝑠 in which 

the axes  𝑍𝑠  and  𝑍𝑠−1 become coincident. 

The above four steps could be represented by the following matrix equation in order 

to build a homogeneous matrix that expresses the transformation from the coordinate 

system s-1th to another coordinate system sth.  

𝑇 
𝑠𝑡ℎ
𝑠−1𝑡ℎ  = [

𝑐𝑜𝑠 𝜃𝑠
𝑠𝑖𝑛 𝜃𝑠
0
0

− 𝑠𝑖𝑛 𝜃𝑠 .  𝑐𝑜𝑠 𝛼𝑠 
𝑐𝑜𝑠 𝜃𝑠 .  𝑐𝑜𝑠 𝛼𝑠

 𝑠𝑖𝑛 𝛼𝑠
0

𝑠𝑖𝑛 𝜃𝑠  .  𝑠𝑖𝑛 𝛼𝑠 
−𝑐𝑜𝑠 𝜃𝑠 .  𝑠𝑖𝑛 𝛼𝑠

 𝑐𝑜𝑠 𝛼𝑠
0

a𝑠. 𝑐𝑜𝑠 𝜃𝑠
a𝑠. 𝑠𝑖𝑛 𝜃𝑠

ɗ𝑠
1

] 

(2.1) 

 

In order to obtain the transformation matrix for any serial robot starting from the base 

coordinate frame Bth ending in the hand reference frame Hth , a total reference frames 

transformation should be accomplished. This idea could be clarified by the equation 

(2.2) 

𝑇 
𝐻𝑡ℎ
𝐵𝑡ℎ = 𝑇 

1𝑡ℎ
𝐵𝑡ℎ . 𝑇 

2𝑡ℎ
1𝑡ℎ … 𝑇 

𝐻𝑡ℎ
𝐻−1𝑡ℎ   (2.2) 

 

2.3 Kinematics Modeling Based on the Theory of the Screws  

In the beginning of the nineteenth century, the French mathematician, Michel Chasles 

proves that, it is always possible to characterize the movement of the solid body in 3D 

space, by divide this movement into two components, the first is rotation around a 

shaft called Mozzi line, attributed to the mathematician Assi De Mozzi, who the first 

scientist talk about this theorem, and the second is translation over that shaft. Later, 

the Mozzi line named as screw axis because of the similarity between this movement 

and the screw displacement. Chasles’s theorem could be a cornerstone in an attempt 

to derive a general relation describe the rigid body displacement [31-33]. In order to 

characterize this displacement, three main steps will do this task [27]. First, an attempt 

will be made to model a rotatory movement around an axis passing through the center 
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of coordinate system. Second, generalize the displacement in first so that the rotation 

axis is not coincident with the origin of coordinate. Besides, a line movement along 

that axis. Finally, extend this displacements to represent sequential screw lines 

describe several consecutive joints. 

2.3.1 Pure Rotational Modeling Using Coincident Screw Line 

Initially, considering that position vector V belongs to the 3D space R3, represents the 

movement of a rigid body B around a fixed shaft called screw axis. Assuming that this 

axis passes through the center of the fixed reference frame O. this analysis aims to 

describe the rotational movement of a rigid body B from the first position M till the 

second position N about the screw axis S, where S represents the unit vector in the 

rotational direction. This rotary motion of the solid body B around the axis creates a 

circle shape plane R so that the axis S passes through its center. Furthermore, the plane 

R and the axis S are columnar. Figure 2.2 illustrates this rotation displacement. 

 
Figure 2.2: (a) Illustration of the Rotation about Coincident Screw Line     (b) 

Another Visual Angle Taken to Clarify the Modeling 
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The following vectorial equations are derived from the Figure 2.2 

𝑃 𝑀
𝑂  =   𝑃 𝑊

𝑂 + 𝑃 𝑀
𝑊  (2.3) 

 

𝑃 𝑁
𝑂  =  𝑃 𝑊

𝑂  +  𝑃 𝑁
𝑊  (2.4) 

 

The vector 𝑃 𝑊
𝑂

 is the projection of the positions of M and N on the screw axis, the 

following equation clarifies this fact. 

𝑃 𝑊
𝑂 = (𝑃 𝑀

𝑂 . S) S =  (𝑃 𝑁
𝑂  . S) S (2.5) 

 

The equations (2.3) and (2.4) could be reconstructed according to equation (2.5) 

𝑃 𝑀
𝑂  = (𝑃 𝑀

𝑂 . S) S + 𝑃 𝑀
𝑊  (2.6) 

𝑃 𝑁
𝑂  =  (𝑃 𝑀

𝑂 . 𝑆) 𝑆 + 𝑃 𝑁
𝑊  (2.7) 

 

Equations (2.6) and (2.7) crystallize the subsequent fact, through the rotary movement 

of a solid body, only the level portion of the vector position will change while the 

columnar part doesn’t change. Figure 2.3 gives a look from the top on the orbicular 

plane R that contain the points M and N. 

 
Figure 2.3: Scene from Top on the Rotating Plane R which Illustrates the Path of the 

Body 
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Figure 2.3 illuminates that the level portion of the positions of points M and N will 

change in direction only, whereas the magnitude value is preserved. The following 

equation (2.8) is derived from the Figure 2.3.  

𝑃 𝑁
𝑊  =  (𝑃 𝑀

𝑂  ×  𝑆) 𝑠𝑖𝑛 𝜃 + 𝑃 𝑀
𝑊 𝑐𝑜𝑠 𝜃  (2.8) 

 

The vectors 𝑃 𝑁
𝑊

 and 𝑃 𝑀
𝑊  could be easily isolated from the equations (2.6) and (2.7) in 

order to simplify the equation (2.8), so that 𝑃 𝑁
𝑊

  and 𝑃 𝑀
𝑊   are to be replaced. 

𝑃 𝑁
𝑂  −  (𝑃 𝑀

𝑂 . 𝑆) 𝑆 =  (𝑃 𝑀
𝑂  ×  𝑆) 𝑠𝑖𝑛 𝜃 + (𝑃 𝑀

𝑂  − (𝑃 𝑀
𝑂 . 𝑆) 𝑆) 𝑐𝑜𝑠 𝜃 (2.9) 

 

By reordering the equation (2.9) in order to obtain the position of the point 𝑁 in terms 

of the position of the point 𝑀, the rotatory angle 𝜃 and the screw axis 𝑆. The following 

Equation (2.10) famous as Rodrigues’s equation [34]. 

𝑃 𝑁
𝑂  =  𝑃 𝑀

𝑂  𝑐𝑜𝑠 𝜃 + (𝑃 𝑀
𝑂 . 𝑆) 𝑆 (1 −  𝑐𝑜𝑠 𝜃) + (𝑃 𝑀

𝑂  ×  𝑆) 𝑠𝑖𝑛 𝜃  (2.10) 

 

2.3.2 General Displacement Modeling Using Arbitrary Screw Line  

The assumption of Michel Chasles states that; general displacement of a solid body 

can be detached to turning movement and linear displacement. However, in the 

previous section, the analysis was about getting a relation that expresses the rotational 

displacement about an axis coincident with the center of the reference coordinate 

system. In order to generalize the displacement, the axis should be taken arbitrarily.  

Figure 2.4 explains the comprehensive displacement of a solid body when it displaces 

from one position 𝑀 to another position 𝐾 passing through the point 𝑁. This 

movement expresses as at first turning motion concerning the axis of screw 𝑆 by 

magnitude 𝜃, then linear displacement by distance ɖ over that axis. The following 

vectorial equations (2.11) and (2.12) derived from the Figure 2.4 geometrically.  

𝑃 𝑀
Ø  =  𝑃 𝑂

Ø  +  𝑃 𝑀
𝑂   (2.11) 
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𝑃 𝐾
Ø  =  𝑃 𝑂

Ø  +  𝑃 𝑁
𝑂  +  ɖ. 𝑆 (2.12) 

 

 
Figure 2.4: Comprehensive Displacement of a Solid Body Displaces from one 

Position to Another 

The following step aims to generalize Rodrigues’s equation so that expresses a 

comprehensive movement of a solid body. For this purpose, the position vectors 𝑃 𝑀
𝑂

 

and 𝑃 𝑁
𝑂

 are to be isolated in the equations (2.11) and (2.12), then by substituting these 

vectors in equation (2.10), we will obtain the equation (2.13) 

𝑃 𝐾
Ø  −  𝑃 𝑂

Ø  −  ɖ 𝑆

= (𝑃 𝑀
Ø  −  𝑃 𝑂

Ø) 𝑐𝑜𝑠 𝜃 +  ((𝑃 𝑀
Ø  −  𝑃 𝑂

Ø). 𝑆) 𝑆 (1

−  𝑐𝑜𝑠 𝜃) + ((𝑃 𝑀
Ø  −  𝑃 𝑂

Ø) ×  𝑆) 𝑠𝑖𝑛 𝜃  

(2.13) 

 

Equation (2.13) can be extremely simplified by using expanding technique so that the 

new position 𝐾 can be explained by two components. This process explained in the 

following equations 

𝑃 𝐾
Ø =  𝐸1 +  𝐸2 (2.14) 

 

The portions E1 and E2 in (2.13) given in the following equation 
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𝐸1 =  𝑃 𝑀
Ø  𝑐𝑜𝑠 𝜃 + (𝑃 𝑀

Ø . 𝑆) 𝑆 (1 −  𝑐𝑜𝑠 𝜃) + (𝑃 𝑀
Ø   ×  𝑆) 𝑠𝑖𝑛 𝜃 

𝐸2 =  𝑃 𝑂
Ø  +  ɖ 𝑆 − 𝑃 𝑂

Ø  𝑐𝑜𝑠 𝜃 − (𝑃 𝑂
Ø  ×  𝑆) 𝑠𝑖𝑛 𝜃 − (𝑃 𝑂

Ø . 𝑆) 𝑆 (1 −  𝑐𝑜𝑠 𝜃) 

(2.15) 

 

The portion E1 in the equation (2.15) is identical to the Rodrigues’s equation and refers 

to perspicuous rotatory movement. In order to derive a matrix expresses this 

movement, there is a possibility to expand E1 into 3 combinations each of them 

indicates to one of the global reference frame components. 

𝐸1𝑋 = (((𝑆𝑋 )
2 − 1)(1 −  𝑐𝑜𝑠 𝜃) + 1)(𝑃 𝑀

Ø  )𝑋    

+ ((𝑆𝑋 𝑆𝑌 )(1 −  𝑐𝑜𝑠 𝜃) − (𝑆𝑍 𝑠𝑖𝑛 𝜃))(𝑃 𝑀
Ø  )𝑌  

+ ((𝑆𝑋 𝑆𝑍 )(1 −  𝑐𝑜𝑠 𝜃) + (𝑆𝑌 𝑠𝑖𝑛 𝜃))(𝑃 𝑀
Ø  )𝑍 

          𝐸1𝑌 = ((𝑆𝑌 𝑆𝑋 )(1 −  𝑐𝑜𝑠 𝜃) + (𝑆𝑍 𝑠𝑖𝑛 𝜃) )(𝑃 𝑀
Ø  )𝑋    

+ (((𝑆𝑌 )
2 − 1)(1 −  𝑐𝑜𝑠 𝜃) + 1)(𝑃 𝑀

Ø  )𝑌  

+ ((𝑆𝑌 𝑆𝑍 )(1 −  𝑐𝑜𝑠 𝜃) − (𝑆𝑋 𝑠𝑖𝑛 𝛳) )(𝑃 𝑀
Ø  )𝑍 

          𝐸1𝑍 = ((𝑆𝑍 𝑆𝑋 )(1 −  𝑐𝑜𝑠 𝜃) − (𝑆𝑌 𝑠𝑖𝑛 𝜃))(𝑃 𝑀
Ø  )𝑋     

+ ((𝑆𝑍 𝑆𝑌 )(1 −  𝑐𝑜𝑠 𝛳) + (𝑆𝑋 𝑠𝑖𝑛 𝜃))(𝑃 𝑀
Ø  )𝑌      

+ (((𝑆𝑍 )
2 − 1)(1 −  𝑐𝑜𝑠 𝜃) + 1)(𝑃 𝑀

Ø )𝑍   

(2.16) 

 

The equations (2.16), which represents the rotatory movement, could be rearranged 

using the matrix 𝑇1 so that this equation will be rewritten in matrix format. 

[
E1X

E1Y

E1Z

] =  [

𝑇1(1,1) 𝑇1(1,2) 𝑇1(1,3)
𝑇1(2,1) 𝑇1(2,2) 𝑇1(2,3)
𝑇1(3,1) 𝑇1(3,2) 𝑇1(3,3)

] . [

(𝑃 𝑀
Ø  )

X

(𝑃 𝑀
Ø  )

Y

(𝑃 𝑀
Ø  )

Z

] 

(2.17) 

 

The components of the Matrix 𝑇1 can be specified in the following equation 

       𝑇1(1,1) = ((𝑆𝑋 )
2 − 1)(1 −  𝑐𝑜𝑠 𝜃) + 1 

               𝑇1(1,2) = (𝑆𝑋 𝑆𝑌 )(1 −  𝑐𝑜𝑠 𝜃) − (𝑆𝑍 𝑠𝑖𝑛 𝜃) 
               𝑇1(1,3) = (𝑆𝑋 𝑆𝑍 )(1 −  𝑐𝑜𝑠 𝜃) + (𝑆𝑌 𝑠𝑖𝑛 𝛳) 
                𝑇1(2,1) = (𝑆𝑌 𝑆𝑋 )(1 −  𝑐𝑜𝑠 𝜃) + (𝑆𝑍 𝑠𝑖𝑛 𝜃)  

      𝑇1(2,2) = ((𝑆𝑌 )
2 − 1)(1 −  𝑐𝑜𝑠 𝜃) + 1 

                𝑇1(2,3) = (𝑆𝑌 𝑆𝑍 )(1 −  𝑐𝑜𝑠 𝜃) − (𝑆𝑋 𝑠𝑖𝑛 𝜃)  
               𝑇1(3,1) = (𝑆𝑍 𝑆𝑋 )(1 −  𝑐𝑜𝑠 𝜃) − (𝑆𝑌 𝑠𝑖𝑛 𝜃) 
                𝑇1(3,2) = (𝑆𝑍 𝑆𝑌 )(1 −  𝑐𝑜𝑠 𝜃) + (𝑆𝑋 𝑠𝑖𝑛 𝜃)  

      𝑇1(3,3) = ((𝑆𝑧 )
2 − 1)(1 −  𝑐𝑜𝑠 𝜃) + 1 

(2.18) 
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The portion E2 in the equation (2.18) refers to the second movement of the solid body 

B, where the direction of the displacement identical to the direction of the screw line 

S. In order to derive a matrix expresses this movement, there is a possibility to expand 

E2 into 3 combinations each of them indicates to one of the global reference frame 

components. 

  𝐸2𝑋 = (𝑃 𝑂
Ø)𝑋 +  ɖ 𝑆𝑋 +  (𝑃 𝑂

Ø)𝑋 𝑐𝑜𝑠 𝛳 

−  (((𝑃 𝑂
Ø)𝑌 𝑆𝑍)  −  ((𝑃 𝑂

Ø)𝑍 𝑆𝑌)) 𝑠𝑖𝑛 𝛳  

−(((𝑃 𝑂
Ø)𝑋 𝑆𝑋 + (𝑃 𝑂

Ø)𝑌 𝑆𝑌 + (𝑃 𝑂
Ø  )𝑍 𝑆𝑍 ) 𝑆𝑋 ) (1 − 𝑐𝑜𝑠 𝛳 ) 

𝐸2𝑌 = (𝑃 𝑂
Ø  )𝑌 +  ɖ 𝑆𝑌 +  (𝑃 𝑂

Ø)𝑌 𝑐𝑜𝑠 𝛳 

−  (((𝑃 𝑂
Ø)𝑍 𝑆𝑋)  −  ((𝑃 𝑂

Ø)𝑋 𝑆𝑍)) 𝑠𝑖𝑛 𝛳  

−(((𝑃 𝑂
Ø)𝑋 𝑆𝑋 + (𝑃 𝑂

Ø)𝑌 𝑆𝑌 + (𝑃 𝑂
Ø  )𝑍 𝑆𝑍 ) 𝑆𝑌 ) (1 − 𝑐𝑜𝑠 𝛳 ) 

𝐸2𝑍 = (𝑃 𝑂
Ø)𝑍 +  ɖ 𝑆𝑍 +  (𝑃 𝑂

Ø)𝑍 𝑐𝑜𝑠 𝛳 

−  (((𝑃 𝑂
Ø)𝑋 𝑆𝑌)  −  ((𝑃 𝑂

Ø)𝑌 𝑆𝑋)) 𝑠𝑖𝑛 𝛳  

−(((𝑃 𝑂
Ø)𝑋 𝑆𝑋 + (𝑃 𝑂

Ø)𝑌 𝑆𝑌 + (𝑃 𝑂
Ø)𝑍 𝑆𝑍 ) 𝑆𝑍 ) (1 − 𝑐𝑜𝑠 𝛳 ) 

(2.19) 

 

The groups of Lie, admits to represent any rotatory displacement in three dimensional 

space by using a 3by3 matrix such as the matrix T1, usually referred as “SO (3)”. 

Furthermore, any combinations of rotational and linear displacement in space has 3 

dimensions could be represented in the groups of Lie by 4by4 matrix, generally pointed 

out as “SE (3)”. 

Now, it is possible to derive a comprehensive transformation expresses the 

displacements from the first position 𝑀 to the final position 𝐾. Suppose that, the (4×4) 

matrices 𝑀𝑀𝑎𝑡 and 𝐾𝑀𝑎𝑡 indicate to the two systems of coordinates attached to the 

points 𝑀 and 𝐾 in universal coordinate frame configuration. The matrix 𝑀𝑀𝑎𝑡 

illustrates the location and the orientations of the solid body 𝐵 in the elementary 

position 𝑀 and 𝐾𝑀𝑎𝑡 indicates to the location and the orientations of the solid body 𝐵 

in the eventual position 𝐾. Through this section, the general displacement separated 
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into two movements, rotatory and linear, due to Chasles’s theorem. These two 

movements represent the relation between the first configuration 𝑀𝑀𝑎𝑡 and the second 

configuration 𝐾𝑀𝑎𝑡. The theory of Lie algebra defines the thorough displacement as 

4by4 matrix includes two section. The first section has the form of a 3by3 matrix and 

represents the rotational movement. The second part has the form 3by1 matrix and 

illustrates the linear motion. 

 𝐾𝑀𝑎𝑡 = [

T1(1,1) T1(1,2) T1(1,3) E2X 

T1(2,1)

T1(3,1)

0

T1(2,2)

T1(3,2)

0

T1(2,3)

T1(3,3)

0

E2Y 

E2Z 

1

] .𝑀𝑀𝑎𝑡  

(2.20) 

 

Equation (2.20) represents the general displacement modeling using the theory of 

screws. In the next section, equation (2.20) will be generalized in order to handle with 

successive movements as existing in open loop chains. The matrix transformation that 

expresses the comprehensive motion will be referred as R in the next section. 

2.3.3 Sequential Screw Axes Technique 

In an open loop kinematics, the manipulator consists of several links connected by 

joints in a consecutive manner. In order to analyze such robot based on the screw axis 

method, the screw which represents the combination of all screw axes in the robot is 

to be found. The scientists Tsai and Roth, publicize a paper in 1972 [35], through it, 

they explain and prove that finding the solution to the problem of existence two screw 

axes allow the rigid body to rotate around and translate along depending on identifying 

another screw axis as a fusion of these two screw axes. This fusion is done by 

considering the displacement of the rigid body around and along the second screw axis, 

then the displacement of the rigid body around and along the first screw axis. This 

discussion is illustrated in the following figure. 
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Let the 4×4 matrix 𝑅1 expresses the comprehensive displacement of the solid body 

over the first screw axis 𝑆1 and 𝑅2 represent the general motion through the second 

screw axis 𝑆2. Then, the combination of these two transformations given in equation 

(2.21). 

 
Figure 2.5: Clarifying the Consecutive Screw Axes Method 

𝑅𝐹𝑢𝑠𝑖𝑜𝑛 = 𝑅1. 𝑅2 (2.21) 

 

Equation (2.21) can be generalized to be suitable for serial link combination has rank 

equal to 𝑛 as follow. 

𝑅𝐹𝑢𝑠𝑖𝑜𝑛 = 𝑅1. 𝑅2. 𝑅3.…𝑅𝑛 − 1. 𝑅𝑛 (2.22) 

 

2.4 Kinematic Modeling Using the Product of Exponential Method 

In the science of kinematics, The “Product of Exponential” technique, sometimes 

called as “POE”, is another method that has been used in the most recent kinematic 

analysis. Many factors have made this method classified as the most efficient, quality 
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and easy to use. In addition to the essential priority that provided by the kinematics 

analysis using the conventional screw theory representation over D-H modeling which 

is the significant reduction in the number of the coordinates systems. However, the 

computational complexity in the classic screws theory method is remarkably 

minimized in this kinematic modeling. 

As seen in the previous section, any solid body proceed in the triple space could be 

characterized as a particular motion regarding exclusive vector. For this reason, it is 

essential to realize how this arbitrary vector can be represented in space. Different 

notation has been written to this end. However, plȕcker representation [36] and screw 

assortment are the most widely used in the kinematic science. In this section, an 

attempt has been made in order to model of the kinematic structure according to the 

product of exponential configuration. 

2.4.1 Line Formalization Using Plȕcker Assortment    

Two centuries ago, the mathematician Julius plȕcker provides an efficient method to 

represent any vector or line in space using six specifications, later these six 

components are called plȕcker parameters. Essentially, this method based on identify 

the direction of the line and specify an arbitrary point located on that line. It’s known 

that any direction in space could be recognized by 3 variables, these 3 variables occupy 

the first three parameters. Furthermore, the vectorial product of the direction vector 

and the positioning vector symbolizes the second group of the parameters. This process 

is cleared in the figure 2.6. 

As seen in the Figure 2.6, giving an arbitrary line 𝐿 in three-dimensional space, let the 

unit vector Ɩ̂ indicates to the direction of the line 𝐿, and let 𝑛 be an arbitrary dot on the 
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line 𝐿. Then, the components of the vectors Ɩ̂ and 𝑃 𝑛
𝑂 × Ɩ̂  could define the line 𝐿 due 

to the plȕcker assortment. 

 
Figure 2.6: Vector Representation Using Plȕcker Assortment 

2.4.2 The Representation of the Screws 

Recalling the Chasles’s statement, the mutual locomotion of the solid body, which 

described in the theory, is pretty much compatible with the trace of the screw. Based 

on this observation, the astrophysicist, Robert Stawell Ball in the middle of the 19th 

century, established one of the most important theorems in the solid body mechanics 

[37], the theory of the screws.   

In the mechanics of the solid body, screw defined as a vector composed of six elements 

detached equally into two groups. The theorem content of the screw representation 

states that these separation subgroup are either associated with kinetic or dynamic 

knowledge. However, in the science of kinematics, the term screw may change into 

more specialized expression, which is twist. Hence, the phrase twist indicates to the 

collective motion of the body whatever it expresses a fusion of a rotary and 
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longitudinal or a couple of velocities. Mathematically, two matters are needed in order 

to specify a screw. The first is a line called a screw axis defined as a rotational shaft of 

the screw, located in the middle of the spiral trace. Thanks to the plȕcker assortment 

which makes us able to represent any line easily. The second portion is a constant 

represents the length of the single screw turning cycle taken along the screw shaft, 

usually referred as ɧ.  

For the sake of describing the locomotion of the solid body in 3-dimensional space 

using the definition of the twist, there is a need to represent the motion using the 

specification of a uniform matrix. Suppose that, the dot 𝑛 refers to a solid body 

displaces in the space of three dimensional. This displacement could be characterized 

using the uniform of 4×4 matrix representation 𝐸, which is composed of rotating and 

translation sections as seen in the equation (2.23). 

𝑛 = [𝐸]. 𝑛0 (2.23) 

 

Where  

[𝐸] =  [

𝑚(1,1) 𝑚(1,2)
𝑚(2,1) 𝑚(2,2)

𝑚(1,3) 𝑘(1,1)
𝑚(2,3) 𝑘(2,1)

𝑚(3,1) 𝑚(3,2)
0 0

𝑚(3,3) 𝑘(3,1)
0 1

] 

𝑛 =  [

𝑛(1,1)
𝑛(2,1)
𝑛(3,1)
1

] , 𝑛0 =  [

𝑛0(1,1)
𝑛0(2,1)
𝑛0(3,1)
1

] 

(2.24) 

 

In equation (2.24) the vector 𝑛 refers to the position of the moving body 𝑛. In the other 

hand, the vector 𝑛0 indicates the position of the point 𝑛 before the movement began. 

The equation (2.24) can be written as follow 

𝑛 =  [𝑀]. 𝑛0 + 𝑘 (2.25) 
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By applying the derivation of the both sides of the equation (2.25) 

𝑑𝑛

𝑑𝑡
=
𝑑[𝑀] 

𝑑𝑡
. 𝑛0 +

𝑑𝑘

𝑑𝑡
 

(2.26) 

 

Since the matrix 𝑀 represents (3×3) orthogonal matrix, the inverse of the matrix 𝑀 is 

always equal to the transpose. By substitute 𝑛0 into the equation (2.26) 

𝑑𝑛

𝑑𝑡
=
𝑑[𝑀]

𝑑𝑡
. (𝑛 −  𝑘). [𝑀]𝑇  +

𝑑𝑘

𝑑𝑡
 

(2.27) 

 

Then, by expanding the equation (2.27) 

𝑑𝑛

𝑑𝑡
=  (

𝑑[𝑀]

𝑑𝑡
. [𝑀]𝑇)𝑛 + (

𝑑𝑘

𝑑𝑡
 −  𝑘.

𝑑[𝑀]

𝑑𝑡
. [𝑀]𝑇) 

(2.28) 

 

Where  

𝑑[𝑀]

𝑑𝑡
. [𝑀]𝑇  = [𝜔] 

 
𝑑𝑘

𝑑𝑡
 −  𝑘.

𝑑[𝑀]

𝑑𝑡
. [𝑀]𝑇 = 𝑣 

(2.29) 

 

Equation (2.29), clearly shows that the velocity of the movable solid body may be 

separated into two portions, the first part indicated to the rapidity of the angle 𝜔, 

guided straight the axis of rotation. As seen in the equation, [𝜔] refers to the velocity 

matrix exemplification of the angular part, could be calculated using skew-symmetric 

matrix. On the other hand, the second 𝜈 refers to linear velocity part taken in the 

parameters of the global frame. In the sake of simplicity, we can separate the linear 

portion in two components, analogous to the screw axis and columnar to the axis. We 

can reformulate the linear velocity ν as in the equation (2.30) 

𝜈 = ƥ × 𝜔 +  ɧ. 𝜔 (2.30) 
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In the equation (2.30), the vector ƥ refers to the pose of the rigid body in the fixed 

coordinate guideline and the constant ɧ related to the parameters of the screws usually 

referred as pitch. The twist, screw axis, pitch and the velocities are illustrated in the 

following figure  

 
Figure 2.7: The Representation of the Screw Assortment 

Now, we can rewrite the equation (2.28) regarding the angular and linear velocity of 

the solid body as a vectorial equation 

[
𝜔
𝜈
] = [

𝜔
ƥ × 𝜔 +  ɧ. 𝜔] 

(2.31) 

 

The angular velocity 𝜔 may be written as direction û and magnitude 𝑐, then the 

equation (2.31) can be rewritten as in equation (2.32) 

[
𝜔
𝜈
] = 𝑐. [

û 
ƥ × û  +  ɧ. û 

] 
(2.32) 

 

As mentioned in the beginning of this section, the three-dimensional displacements of 

the movable solid body may be regarded as a screw movement around its shaft. In this 

direction, the equation (2.32) also refers to the representation of the twist using six-
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dimensional vector. In equation (2.33), the six-dimensional vector Ŝ refers to the unit 

screw or unit twist. 

Ŝ =  [
û 

ƥ × û  +  ɧ. û 
] 

(2.33) 

 

As known in robotic science, the most used joints are the revolute joints and the 

prismatic joints. However, the other classical joints such as the spherical and the 

universal joints may be regarded as a combination of a revolute and prismatic joint. 

The equation (2.33) can be rearranged due to the revolute and prismatic. Supposing a 

solid body moving in a rotation trace, then the pitch of the twist should be eliminated 

from the equation (2.33). Whereas, in the case of the body moving linearly, and 

subsequently the angular velocity turn to zero, and the pitch will be infinity [38]. These 

two specific situations are described in the following equations. 

 Ŝ𝑅  =  [
û 

ƥ × û  
] 

(2.34) 

 

Ŝ𝑃  =  [
0
û 
] (2.35) 

 

We can observe that the equation (2.34) is identical to the line representation using 

plȕcker assortment so that the plȕcker representation is a particular case of the 

representation of the screws. 

The same principle as in sequential screw axes technique, the equation (2.32) can be 

generalized to fit several consecutive screws aiming to determine an eventual twist as 

in subsequent equation 

$𝑛 =∑𝑐𝑖. [
û𝑖  

ƥ𝑖 × û𝑖 + ɧ𝑖 . û𝑖  
] = 

𝑛

𝑖=1

∑𝑐𝑖. $̂𝑖  

𝑛

𝑖=1

 
(2.36) 
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2.4.3 The Product of Exponential Formulation 

We’ve found in the last section that there is a possibility to represent the moving body 

traveling in space using the definition of the screw. Based on this verity, a kinematic 

structure modeling can be assembled. 

Equation (2.33) might be rebuilt to form 4×4 matrix representation of the velocities by 

using the matrix model of the angular velocity 

[
[𝜔] 𝜈
0 0

] =  [
[𝜔] ƥ × 𝜔 +  ɧ. 𝜔
0 0

] (2.37) 

 

Equation (2.37) is identical to the definition of the twist matrix representation [S]. 

Hence, we become able to subedit the following derivative statement (2.38) depending 

on the fact that states the screw matrix possesses the full knowledge about the angular 

and linear velocities of the mobile solid body [38]. 

𝑑 𝐸(𝜑)

𝑑 𝜑
 =  [𝑆] . 𝐸(𝜑) 

(2.38) 

 

In equation (2.38), 𝐸(𝜑) indicates to the 4×4 matrix representation of the movements 

of the solid body in 3 dimensional space. In the mathematic science, this equation has 

to untie using matrix exponential technique. The next equation (2.39) represents an 

acceptable solution to the former equation 

𝐸(𝜑)  =  𝑒𝜑.[𝑆] . 𝐸(0) (2.39) 

 

Equation (2.39) composes a relation between the matrix representation of the final 

position of the moving solid body and the initial configuration of the body before the 

displacement using exponential portion. However, this equation considered as one of 
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the most substantial statement in kinematic chains modeling. The inconstant 𝜑 defines 

the style of the movement whether it is rotating or translate. 

Identically to the previous section that illustrates the case of existence series of the 

screws that represent the kinematic chains [39]. The equation (2.39) can be generalized 

as stated in the subsequent equation 

𝐸(𝜑)  =  𝑒𝜑1.[𝑆1] . 𝑒𝜑2.[𝑆2] . 𝑒𝜑3.[𝑆3] . … . 𝑒𝜑𝑛.[𝑆𝑛]  𝐸(0) (2.40) 

 

2.5 Jacobian Analysis Techniques 

In the science of kinematics, the jacobian analysis defined as a representative 

transformation function relates the velocities or differential movements of the robotic 

joints with the velocity or differential motion of the Robot’s hand frame. The learning 

of the differential movement analysis enables the robotic specialists to proceed the 

hand frame of the robot on required trace together with a particular quickness. The 

fundamental aspect of this inquiry is based on establishing a linkage between the 

actuator parameter variations that take place during the robot movement and the both 

velocity combinations of the effective point of the robot.  

2.5.1 The Mathematical Definition of the Jacobian Model 

Mathematically, the Jacobian representation indicates to the favorable method of 

derivative characterization of a multidimensional-based function [40]. Assuming that, 

the multidimensional function ƭ possesses 𝑖 variables as an input and 𝑗 variables as an 

output according to the following mapping 

ƭ: 𝑅𝑖 → 𝑅𝑗 ∶  𝑦𝑚 = ƭ𝑚(𝜑1 , 𝜑2 ,  𝜑3 , … 𝜑𝑖 ) , 𝑚 = 1,2,3, … 𝑗 (2.41) 

 

By taking the rate of change of the function ƭ in equation (2.41) regarding the time. 

This step is shown in the subsequent equation. 
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𝑑 𝑦𝑚
𝑑𝑡

 =  
𝑑 𝑦𝑚
𝑑𝜑1 

 . 
𝑑𝜑1 

𝑑𝑡
 +  

𝑑 𝑦𝑚
𝑑𝜑2 

 . 
𝑑𝜑2 

𝑑𝑡
 + … +   

𝑑 𝑦𝑚
𝑑𝜑𝑖 

 . 
𝑑𝜑𝑖 
𝑑𝑡

 
(2.42) 

 

Equation (2.42) can be reformulated as a matrix model as follow 

[
 
 
 
 
 
 
 
 
𝑑 𝑦1
𝑑𝑡
𝑑 𝑦2
𝑑𝑡
⋮

𝑑 𝑦𝑗−1

𝑑𝑡
𝑑 𝑦𝑗

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

 

𝑑 𝑦1
𝑑𝜑1 

  
𝑑 𝑦1
𝑑𝜑2 

𝑑 𝑦2
𝑑𝜑1 

 
𝑑 𝑦2
𝑑𝜑2 

⋯
…  

𝑑 𝑦1
𝑑𝜑𝑖−1 

𝑑 𝑦1
𝑑𝜑𝑖 

𝑑 𝑦2
𝑑𝜑𝑖−1 

𝑑 𝑦2
𝑑𝜑𝑖 

⋮       ⋮ ⋱ ⋮      ⋮
𝑑 𝑦𝑗−1

𝑑𝜑1 

𝑑 𝑦𝑗−1

𝑑𝜑2 

𝑑 𝑦𝑗

𝑑𝜑1 

𝑑 𝑦𝑗

𝑑𝜑2 

⋯
⋯

𝑑 𝑦𝑗−1

𝑑𝜑𝑖−1 

𝑑 𝑦𝑗−1

𝑑𝜑𝑖 
𝑑 𝑦𝑗

𝑑𝜑𝑖−1 

𝑑 𝑦𝑗

𝑑𝜑𝑖 

 

]
 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 
𝑑𝜑1 

𝑑𝑡
𝑑𝜑2 

𝑑𝑡
⋮

𝑑𝜑𝑖−1 

𝑑𝑡
𝑑𝜑𝑖 
𝑑𝑡 ]

 
 
 
 
 
 
 
 

 

(2.43) 

 

In the previous equation, the (𝑗 × 𝑖)-dimensional matrix forms a linkage between two 

vectors of velocity. This matrix is generally recognized as Jacobian 

2.5.2 The Kinematic Definition of the Jacobian Model 

In the robot science, the Jacobian structure is used to relate the amount of change of 

the robot’s joints regarding the time with the combinations of the velocity of the impact 

point coordinate frame. Recalling the equation (2.42), the inconstant φ represents the 

turning degree or linear displacement amount. The velocity coordinate of the action 

point can be found by different techniques. However, the traditional Jacobian and the 

Jacobian using the theory of the screws are among the most famous methods [27]. 

The method that depends on the differential equations to find the velocity of the hand 

coordinate frame considered as one of the most simple and widespread techniques 

regarding the open loop chain manipulators. Sometimes this method called 

conventional or traditional Jacobian. However, traditional Jacobian procedure 

becomes more stiffness in the case of the closed loops chain robots. According to this 

method, the hand velocity is described as a pair of three-dimensional vectors as follow 
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𝑑 𝑦𝑚
𝑑𝑡

 =  [𝜈 𝜔]𝑇    , 𝑚 = 1,2,3, … 6 
(2.44) 

 

In equation (2.44), the three-dimensional vector 𝜈 represents the linear velocity of the 

impact point of the hand In terms of the specific point located on the hand, while the 

vector 𝜔 defines the angular velocity of the hand frame. 

The Jacobian modeling that builds on the theory of the screws is one of the most crucial 

issues in kinematics due to its benefit in the velocity analysis problem of the parallel 

manipulator. Using this technique, the velocity model of the hand has a uniform as 

follows 

𝑑 𝑦𝑚
𝑑𝑡

 =   [𝜔 𝜈]𝑇 
(2.45) 

 

We can observe clearly that there are two essential differences between the two 

previous equations (2.44) and (2.45). Firstly, the pair vectors that combined the 

velocity are ordered in an opposite way. Secondly, the technique that established on 

the theory of the screws included calculating the linear and angular velocities of the 

hand coordinate in terms of the global coordinate frame in contrast to the traditional 

method. 

2.5.2.1 Jacobian of the Open Chain Manipulator Based on the Theory of Screws 

Open chain manipulators considered among the extremely well-known robot due to its 

straightening in work, the principle of uncomplicated designing and easy to guide. 

These robots consisting mainly of solid compounds called links gathered by other 

elements known as joints. Ordinarily, electric or hydraulic motors are installed on the 

joints so that these joint named actuated joint. In the case of the joint is left free, then 

the joint called passive [27]. As long as the global frame is utilized as a reference of 
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the manipulator, the successive twists might constitute the Jacobian. Equation (2.36) 

could be reformulated as follows 

[
𝜔
𝜈
] = [$̂1 $̂2 ⋯ $̂𝑛−1 $̂𝑛]. [𝑐1 𝑐2 ⋯ 𝑐𝑛−1 𝑐𝑛]𝑇  (2.46) 

 

In equation (2.46), 𝜔 and 𝜈 symbolize the angular and linear velocity of an arbitrary 

dot taken on the hand of the serial manipulator parameterized in world reference frame. 

The quantity 𝑐 in the equation represents the changes in rotation angle or translation 

distance with regard to the time. The unit screw in equation consists of a couple of 

three- dimensional vectors as known, then it is clear that the matrix 

[$̂1 $̂2 ⋯ $̂𝑛−1 $̂𝑛] that has (6×n)-dimensional demonstrates the Jacobian 

matrix of an open chain manipulator has n joints.  

2.5.2.2 Jacobian of the Closed Chains Based on the Theory of the Screws 

Generally, closed chain robot or parallel manipulator refers to the kinematic structure 

made up of single or several closed loops. Stalks, moving body, and the fixed platform 

are the major pieces that make up the parallel robot. Basically, the limbs or stalks of 

the robot are portioned sequentially into different linkages united by joints so that each 

limb composes an open chain from the fixed platform to the moving body. Commonly, 

the limbs of the parallel manipulator contain the both active and passive joints which 

make the kinematic analysis a problematic task. In order to derive the velocity matrix 

specialized for the parallel manipulator using the theory of screws, suppose that the 

number of the limbs is 𝜆 each has 𝑛 joints whether passive or active. Hence, the twists 

that related to each joint could be symbolized by $(𝑖,𝑗), where the first subscript refers 

to the order of the joint, and the second subscript indicates the number of the limb. 

Subsequently, equation (2.46) may generalized aiming to suit the parallel manipulator. 

$𝑐 = [$̂(1,𝑗) … $̂(𝑛,𝑗)]. [𝑐(1,𝑗) … 𝑐(𝑛,𝑗)]𝑇 , 𝑗 = 1,2, …  𝜆  (2.47) 
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In equation (2.47), $𝑐 defines the velocity of the center of mass of the moving body of 

the closed chain robot. The intensity 𝑐(𝑖,𝑗)  represents the changing of the rotation angle 

or translation distance related to the joint 𝑖 of the leg 𝑗 regarding the time. 

Consequently, the equation (2.47) represents the velocity equation, so that the matrix 

[$̂(1,𝑗) … $̂(𝑛,𝑗)] defines the Jacobian matrix of the robot [41]. 

2.6 The Advantages of the Reciprocity in Kinematics 

In the previous section, the discussion was about defining the motion of the solid body 

kinematically in space so that this movement may be represented by six combinations 

separated into a couple of three-dimensional vectors named as a twist. In dynamics, 

the forces that affect the solid body also might be defined as influential force straight 

some line and couple exist around this line. Similarly, this force and couple could be 

represented by helical trace comparable to the screw. Hence, the screw that represents 

dynamics forces will be named as a wrench [27, 32].  

In spite of the fact that twist and wrench possess diverse concept physically, the theory 

of screws managed to exemplify them mathematically in the same approach. One of 

the first scientists who submitted a research on the reciprocity was Sir Robert Stawell 

Ball [38]. Later, several papers were presented for this purpose [27, 43]. 

The physical meaning of the reciprocity is summarized as follow, considering a solid 

body move in 3-dimensional space, then in the case of the body affected by forces that 

don't cause any action. Subsequently, we can say that the screws that define the motion 

and the forces are reciprocal one another. Mathematically, we can easily determine 



32 

 

whether two screws are reciprocal or not through apply Klein formula. If the Klein 

equation gives zero then, the two input screws are reciprocal. 

Suppose that, two screws $1 and $2 are given, each has a couple of 3 element vector. 

Then, the Klein formula is given as follows 

{$1; $2} = {[𝑠1 𝑠𝑜1]𝑇; [𝑠2 𝑠𝑜2]𝑇} = 𝑠1. 𝑠𝑜2 + 𝑠2. 𝑠𝑜1 = 0  (2.48) 

 

2.6.1 Screw and Reciprocal Screw System  

The system of the screw may be defined as a linear span made up of a single screw or 

multiple screws that are independent of each other. Mainly, the number of the linearly 

independent screws that consists the system symbolized as 𝑞 so that 𝑞 are less than the 

space parameter, i.e. 𝑞 ≤  6. On the other hand, the system of the reciprocal screw 

with regard to a particular screw system can be determined as a 6 − 𝑞 system so that 

each screw in this system is reciprocal with all others.   

The most researchers in the domain of the kinematics depend on the particular 

procedure to identify the reciprocal system mathematically [44]. This multiple steps 

method named as Plȕcker technique which organized as follow  

- Set up a suitable fixed coordinate system. 

- Determine the coordinate representation of the screw.  

- An examination is needed to verify the independence state between the screws in 

order to form a screw system. 

- Via the reciprocity rules, a set of solvable equations can be generated, resolving 

these equations will grant us the reciprocal system. 
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However, in the robot science, the comprehensive displacement of the solid body 

specialized to two particular situations, rotational motion as in revolute joints or linear 

movement as in prismatic joints. Consequently, another kinematic joint that used in 

robots such as spherical and universal can be represented by separate its motion into 

several simple movements.   

As discussed in the screw representation section, especially the equations (2.34) and 

(2.35), the screw that possesses ignored pitch represents the screw that model the 

revolute motion. This is also true when talking about the net force. Consequently, the 

screw may be titled as a line screw [44], because the helical form turns into a line may 

be defined using Plȕcker assortment [36]. On the other hand, when addressing the 

prismatic motion or the momentum, we can observe that the pitch of the screw will 

possess an infinite value. In this case, it is possible to realize that the representation 

screw vector possesses freedom of movement in space. Sometimes, this screw vector 

called moment vector.   

[44] Involves valuable perceptions taken from the understanding the equation (2.48). 

These notes could make the process of finding the reciprocal system much easier.  

- Any two screw vectors that model whether rotational motion or pure force are 

reciprocal if they belong to the same plane. 

- Any two screws that represent prismatic motion or momentum are reciprocal 

permanently.  

- Two screw vectors that one of them possess zero value in its pitch whereas, the 

other has infinite pitch, are said to be reciprocal if they are orthogonal to each other. 

The process of finding the system of the reciprocal screw can become better 

understood through an example. Suppose a system of 3 linearly independent screw 
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vector, shown in Figure 2.8, represents a kinematic structure consisting of three 

revolute kinematic joints. In this case, we can regard these screw vectors as a line 

vector representable via plȕcker assortment. 

 
Figure 2.8: Illustration of a Screw System Hold 3 Linearly Independent Screw 

Vectors 

In order to identify the reciprocal system for the kinematic chain stated in Figure 2.8. 

First, we need to define the line vectors using plȕcker coordinate. 

{

    $1 = [1 0 0 0 0 −1]𝑇

 $2 = [0 1 0 0 0 0]𝑇

 $3 = [0 0 1 0 0 0]𝑇
 

(2.49) 

 

For each vector, we can find an associate reciprocal five-system. Subsequently, a linear 

equation related to each reciprocal system can be generated to form a system of three 

linear equations each of them is linked to one of the reciprocal 5-system. Assuming 

that the plȕcker assortment of the reciprocal vectors has the form $𝑟 =

[ 𝑝1  𝑝2  𝑝3  𝑝4  𝑝5  𝑝6  ]
𝑇. Thereafter, using this notation the linear equation can be 

generated as following 

{

𝑝3  − 𝑝4  = 0
 𝑝5  = 0
𝑝4 = 0

 

(2.50) 
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Each vector succeeds in achieving the equation (2.49) will be a reciprocal to entire 

screws that represented in the example. We can find a basis demonstrate the system of 

reciprocity as follows 

{

$𝑟1 = [ 1 0 0 0 0 0 ]𝑇

$𝑟2 = [ 0 1 0 0 0 0]𝑇

$𝑟3 = [ 0 0 1 1 0 0]𝑇
 

(2.51) 

 

2.6.2 Specify the Precise Degree of Freedom for Parallel Manipulator    

Knowing the degree of freedom of a robot manipulator especially parallel one 

considered one of the critical aspect in kinematics. Although, the Kutzbach–Grubler 

formularization [45] could give an accurate number of degree of freedom of parallel 

manipulators, it doesn’t provide any information about the motion type. However, the 

reciprocity analysis may lead to formalize a procedure grant to give the both of degree 

of freedom and some information about the robot's activities. 

In [44], an ingenious method may help to give a precise degree of freedom for parallel 

manipulator based on the theory of reciprocal screws system. This technique assumes 

four mains steps to accomplish the purpose. Firstly, starting from each limb 

individually, according to the definition of the screw system, there is a need to 

recognize the screw system associated with each leg of the robot. Secondly, depending 

on the system of the screws for each leg, we can find the system of reciprocity 

separately based on the reciprocity analysis. Subsequently, the system of reciprocity 

of the mobile body that is a combination of all the legs reciprocal systems is to be 

placed. Finally, by applying the reciprocity analysis, the system of the screw of the 

movable body can be obtained after resolving the system of reciprocity of the body. 

The basis of the mentioned system explains the degree of freedom of the robot.  This 

technique is to be applied to the Hexapod robot in the next chapter.   
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2.6.3 The Functionality of Reciprocal Screws in the Velocity Analysis   

Recalling the equation that demonstrates the velocity of the moving platform of the 

closed loops manipulator based on the screws theory (2.47). It is observable that the 

equation is not applicable when passive joints exist. However, the theory of reciprocal 

screws can make the equation succeed in achieving the analysis. Moreover, in the sake 

of address, the problem of existence some passive joints, the velocity associated with 

these joints should be canceled from the equation. Subsequently, detecting screws that 

are reciprocal to the only passive joints is needed. Then, through stratifying Klein 

formula to the equation and the reciprocal screws mentioned earlier, performs the 

canceling target will be possible. An example is an optimal way to clarify the concept 

of canceling the velocity of the passive joints. The Figure 2.9 illustrates a structure of 

a parallel Manipulator’s limb, where finding the cancellation screw is required. 

The example in Figure 2.9 aims to find a screw that is reciprocal to only the passive 

joint so that the velocity of its joint is to be canceled.   

 
Figure 2.9: Illustration of the Cancellation Technique   (a) The Structure of an 

Assumed Parallel Manipulator’s Limb   (b) Clarify the Fixed Reference Frame of the 

Limb, the Screws of the Joints and the Cancellation Reciprocal Screw. 
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Firstly, there is a need to close the active joints. Moreover the five-system of reciprocal 

screws for the passive joint is as follow 

{
 
 

 
 

$𝑟1 = [1 0 0 0 0 0]𝑇

   $𝑟2 = [0 1 0 −1 0 0]𝑇

$𝑟3 = [0 0 1 1 0 0]𝑇

$𝑟4 = [0 0 0 1 0 0]𝑇

$𝑟5 = [0 0 0 0 0 1]𝑇

 

(2.52) 

 

We can notice that only the reciprocal screw $𝑟2 is reciprocal only to the passive joint. 

Whereas the others are reciprocal to some of the active joints. Consequently, the screw 

$𝑟 = [0 1 0 −1 0 0]𝑇 successes to form a cancellation screw. 
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Chapter 3 

3 KINEMATICS ANALYSIS OF THE HEXAPOD 

3.1 Introduction 

As mentioned previously in Chapter 1, hexapod robots occupy an increasing 

importance among the robot analysts. However, one of the hexapod models that proved 

its ability and effectiveness among the others was the NOROS [46]. In this chapter, a 

general explanation of the NOROS robot's structure will be explained, as well as, 

several topics related to the kinematic analysis of the hexapod robot including position, 

velocity, and mobility study are to be presented in terms of the properties, structure, 

and parameters of the NOROS robot.   

3.2 Designing of the NOROS Hexapod Robot 

It’s well known that, the territory in such space environment is something terribly 

complex. Frequently, the land in space setting composed of a collection of soft moving 

sand dunes or contains so many rocky difficulties making the use of trundles 

impractical way, while there is an urgent need to use the trundles with the aim of 

moving more distance in a short time when the terrain is suitable. Thanks to the dual 

estate of this robot that allows using both properties of trundle and leg making it fully 

suitable in such coarse environment. 

The architecture of the robot is in the following format, the torso of the robot is located 

in the middle shaped like a dome, where the base consists of double layer. In this case, 

the balance center of gravity designed to be in the torso base center. The processing 
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unit, telecommunication circuits, batteries and another equipment placed inside the 

dome cavity in order to provide acceptable protection from external factors. In 

addition, there are six stalks or leg assigned in a regular manner concerning the torso 

[47]. The 3D structure of the NOROS robot is clarified in Figure 3.1. 

 
Figure 3.1: The Architecture of the NOROS in 3-Dimensional Space 

The leg supposed structure of the NOROS hexapod robot mainly composed of five 

segments: Hip part, Thigh part, Foot part, trundle, and terminal. The segments that 

make up the robot’s leg are attached using three connections that are respectively, 

head, trochanter, and lap joint. The first joint works on bind the leg with the torso of 

the robot so that the rotational axis is always vertical to the torso base, on the other 

hand, trochanter and lap joints are parallel to each other in which they combine Hip, 

Thigh and Foot sections appropriately. The architecture and the specifications of the 

robot’s leg [48-49] explained in Figure 3.2 and Table 3.1. 
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Figure 3.2: (a) The Structure of the NOROS Hexapod’s leg        (b) The 

Configuration of the NOROS Hexapod’s Leg 

Table 3.1: The Parameters of the Individual Leg of the NOROS 
parameter Hip Thigh Foot 

longitude 9 cm 30 cm 30 cm 

mass 800 g 2000 g 2000g 

 

3.3 Kinematics of the Individual Leg of the NOROS Robot 

Studying the kinematic structure of the single leg of the mobile robot considered as 

basic substrate for any subsequent analysis. In this section, several issues will be 

handled regarding the supposed hexapod's leg which are the direct and inverse 

kinematics for the NOROS leg whether the foot’s function is supporting or moving. 

Distinct techniques will be used for this survey such as D-H method, the theory of 

screws and geometric approach. 

3.3.1 The Kinematic Study of the Separate Leg of the Robot via the Geometry 

Using the geometry, the forward and inverse kinematics could be found accurately as 

following in subsections.  
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3.3.1.1 Inverse Kinematics Study of the Hexapod’s Leg via the Geometry  

In the kinematics analysis, the survey that defines the angles of the actuators that gives 

the effector a specific location called inverse kinematics. In Figure 3.3 a 

comprehensive geometry of the individual leg is given.  

 
Figure 3.3: General Geometry of the Supposed Hexapod’s Leg 

In this survey, the lengths of the leg are specified. Presuming that the 𝑡1, 𝑡2 and 𝑡3 

indicate to the longitudes of the Hip, Thigh and Foot respectively. Moreover, the 

placement of the leg’s terminal 𝐹(𝑥, 𝑦, 𝑧) is also known. What required is to calculate 

the joints parameters 𝜃1, 𝜃2 and 𝜃3 in terms of the given information. In Figure 3.4 

the level that includes the structure of the leg is demonstrated with all required 

variables, besides the upper scene of the leg is also shown. 
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Figure 3.4: (a) The Plane that Contains the Structure of the Hexapod’s Leg    (b) An 

Upper Scene of the Hexapod’s Leg 

It’s observable that in figure 3.4, the vector K belongs to the XY plane. In this case, 

we can calculate the variables 𝑘 and 𝜃1 that shown in Figure 3.4 (b) via the following 

equations. Moreover, due to the configuration shown in Figure 3.2, 𝑦 is always 

positive. 

𝑘 = √𝑦2 + 𝑥2 (3.1) 

 

𝜃1 = tan−1
𝑥

𝑦
 (3.2) 

 

The second and third joints parameters 𝜃2 and 𝜃3 could be found using the Figure 3.4 

(a) by using the subsequent equations. 

𝜃2 = 90° − 𝑎1 − 𝑎3 (3.3) 

 
𝜃3 = 180° − 𝑎2 (3.4) 

 

In equations (3.3) and (3.4) the angles 𝑎1, 𝑎2 and 𝑎3 can be defined using the low of 

cosines [47] as follows  
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𝑎1 = cos−1
−𝑡32 + 𝑡22 + 𝑧2 + (𝑘 − 𝑡1)2

2. 𝑡2. √𝑧2 + (𝑘 − 𝑡1)2
 

(3.5) 

 

𝑎2 = cos−1
−𝑧2 − (𝑘 − 𝑡1)2 + 𝑡22 + 𝑡32

2. 𝑡2. 𝑡3
 

(3.6) 

 

𝑎3 = tan−1
𝑘 − 𝑡1

𝑧
 

(3.7) 

 

3.3.1.2 Direct kinematics study of the Hexapod’s leg via the geometry 

This survey aims to locate the position of the leg’s terminal 𝐹(𝑥, 𝑦, 𝑧)  based on 

knowing the Joint’s parameter and the longitudes of the links. By utilizing the 

geometric figure 3.4 (a), the point 𝐹(𝑘, 𝑧) that belongs to the plane 𝑉 could be 

positioned through following equations 

𝑘 = 𝑡1 + 𝑡2. cos(𝜃2) + 𝑡3. cos ( 𝜃2 + 𝜃3) (3.8) 

 
𝑧 = −𝑡2. sin(𝜃𝑡2) − 𝑡3. sin ( 𝜃𝑡2 + 𝜃𝑡3) (3.9) 

 

Once the point 𝐹(𝑘, 𝑧) calculated, finding the projection of the position terminal on 

the plane XY become an easy task through the subsequent two equations 

𝑥 = 𝑘. cos (𝜃1) (3.10) 

 
𝑦 = 𝑘. sin (𝜃1) (3.11) 

 

The equations (3.10), (3.11) and (3.9) represent the projection of the leg’s terminal on 

the vectors 𝑋, 𝑌 and 𝑍 respectively. 

3.3.2 The Kinematics of the Individual Leg via D-H Method  

Recalling the Denavit-Hertenberg methodology, one of the ultimate crucial technique 

in kinematic chain representation, in the previous chapter. In this subsection, an 

endeavor to build a kinematic system for the single leg of the hexapod using the D-H 

parameters. The subsequent Figure 3.5 illustrates the architecture of the hexapod’s leg 
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and the internal systems of coordinates associated with each joint considering the 

requirements of this method. 

 
Figure 3.5: Kinematic Representation of the Single Leg via the Parameter of the D-H 

Convention 

The coordinate frame system (𝑋0, 𝑌0, 𝑍0) which is placed on the Head joint will be 

considered as a fixed frame. It is noticeable that the Y axes in Figure 3.5 have been 

neglected since these axes could be defined by right hand rule easily. The objective of 

the subsequent study is to establish a linkage between the fixed frame and the frame 

associated with the terminal of the hexapod’s leg. The parameters related to the D-H 

convention due to the leg’s structure are given below inline in a table. Moreover, 

assuming that the lengths of the leg’s links Hip, Thigh and Foot are awarded 

as 𝑡1, 𝑡2 and 𝑡3 respectively. 

Table 3.2: D-H Parameters of the Single Leg of the Hexapod 

Leg’s links 𝜃 a ɗ 𝛼 

Hip 𝜃1 𝑡1 0 90° 

Thigh 𝜃2 𝑡2 0 0 

Foot 𝜃3-90° 𝑡3 0 0 
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Using the equations (2.1) and (2.2), we can locate the position of the leg’s terminal in 

fixed reference frame parameters. This step is explained via the following equation 

T 3
0 = T 1

0 . T 2
1 . T 3

2 (3.12) 

 

T 1
0 = [

cos 𝜃1
sin 𝜃1
0
0

0
0
1
0

sin 𝜃1
− cos 𝜃1

0
0

𝑡1. cos 𝜃1
𝑡1. sin 𝜃1

0
1

] 

(3.13) 

 

T 2
1 = [

cos 𝜃2
sin 𝜃2
0
0

− sin 𝜃2
     cos 𝜃2

0
0

0
0
1
0

𝑡2. cos 𝜃2
𝑡2. sin 𝜃2

0
1

] 

(3.14) 

 

T 3
2 = [

cos(𝜃3 − 90°)
sin(𝜃3 − 90°)

0
0

− sin(𝜃3 − 90°)
cos(𝜃3 − 90°)

0
0

  0
  0
  1
  0

𝑡3. cos(𝜃3 − 90°)
𝑡3. sin(𝜃3 − 90°)

0
1

] 

(3.15) 

 

T 3
0 = [

S𝜃23. C𝜃1
S𝜃23. S𝜃1
−C𝜃23
0

C𝜃23. C𝜃1
C𝜃23. S𝜃1
−S𝜃23
0

   S𝜃1
  −C𝜃1
0
0

C𝜃1. (𝑡1 + 𝑡3. S𝜃23 + 𝑡2. C𝜃2)
S𝜃1. (𝑡1 + 𝑡3. S𝜃23 + 𝑡2. C𝜃2)

𝑡2. S𝜃2 − 𝑡3. C𝜃23
1

] 

(3.16) 

 

Equation (3.16) describes the comprehensive transference of the leg’s terminal frames 

that associated with the leg reference system. In order to shorten the general equation, 

C and S used instead of cos and sin respectively. Moreover, the variable 𝜃23 defines 

as 𝜃2 + 𝜃3. 

3.3.3 The Kinematics of the Single Leg Using the Theory of Screws 

Remembering the modeling of comprehensive displacement using the screws in the 

previous chapter. It is possible to build a general kinematic representation of hexapod’s 

leg using the theory of screws simpler than in the D-H parameters. Recalling the 

equation (2.20) which enables us to construct a homogeneous transformation that links 

two positions with each other. Moreover, the equation (2.21) and (2.22) can award a 

transformation matrix between any two systems of coordinate based on the process of 

finding a particular screw that represents the successive movement of the kinematic 
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structure. The architecture of the robot’s leg, as well as the fixing and terminal 

coordinates and the positions of the screws, are shown below in the figure 3.6. This 

survey aims to find the resultant screw that associated with the three revolute joints of 

the hexapod’s leg. Before beginning to apply the equations, we have to locate the screw 

lines associated with each joint besides the relation associated with fixing and moving 

frames before the movement begins should be accomplished. The 

parameters 𝑡1, 𝑡2 and 𝑡3 refer to the longitudes of the NOROS leg Hip, Thigh and Foot 

appropriately.  

Table 3.3: The Parameters of the Screws Associated with the Hexapod’s Leg 

Joints Screws direction Point located on the screws 

head [0 0 1]𝑇 [0 0 0]𝑇 

Trochanter [1 0 0]𝑇 [0 𝑡1 0]𝑇 

Lap [1 0 0]𝑇 [0 𝑡1 + 𝑡2 0]𝑇 

 

 
Figure 3.6: Kinematic Modeling of the Hexapod’s Leg Using the Parameters of the 

Screw Theory 
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The initial configuration of the terminal frame in fixed coordinate parameters can 

readily obtained from the figure 3.6 through the next equation. 

T 1
0(0) = [

1
0
0
0

0
1
0
0

 0
0
1
0

0
𝑡1 + 𝑡2
−𝑡3
1

] 

(3.17) 

 

Equation (2.22) that expresses the general displacement representation may be 

specialized to represent the revolute joints [27] as in the case of the hexapod’s leg. 

A = [
A1 A2
0 1

] (3.18) 

 

Matrix A in equation (3.18) defines as a homogeneous matrix that represents a screw 

associated with the revolute joint. The combinations of the matrix A are given in the 

subsequent equation. 

A1 = [

(𝑠𝑥
2 − 1). (1 − C𝜃) + 1 𝑠𝑥 . 𝑠𝑦 . (1 − C𝜃) − 𝑠𝑧. S𝜃 𝑠𝑥. 𝑠𝑧. (1 − C𝜃) + 𝑠𝑦. S𝜃

𝑠𝑦 . 𝑠𝑥 . (1 − C𝜃) + 𝑠𝑧. S𝜃 (𝑠𝑦
2 − 1). (1 − C𝜃) + 1 𝑠𝑦. 𝑠𝑧. (1 − C𝜃) − 𝑠𝑥 . S𝜃

𝑠𝑧. 𝑠𝑥 . (1 − C𝜃) − 𝑠𝑦 . S𝜃 𝑠𝑧. 𝑠𝑦. (1 − C𝜃) + 𝑠𝑥. S𝜃 (𝑠𝑧
2 − 1). (1 − C𝜃) + 1

] 

(3.19) 

 

A2 = [

−𝑠𝑜𝑥 . (A1(1,1) − 1) − 𝑠𝑜𝑦. A1(1,2) − 𝑠𝑜𝑧. A1(1,3)

−𝑠𝑜𝑥 . A1(2,1) − 𝑠𝑜𝑦. (A1(2,2) − 1) − 𝑠𝑜𝑧. A1(2,3)

−𝑠𝑜𝑥 . A1(3,1) − 𝑠𝑜𝑦. A1(3,2) − 𝑠𝑜𝑧. (A1(3,3) − 1)

] 

(3.20) 

 

The six parameters of the screw line that represent the revolute motion symbolized as 

follow $ = [𝑠𝑥 𝑠𝑦 𝑠𝑧 𝑠𝑜𝑥 𝑠𝑜𝑦 𝑠𝑜𝑧]𝑇 . Now it is possible to represent the 

produced motions of the three revolute joints which compose the structure of the 

NOROS leg. 

R1 = [

C𝜃1
S𝜃1
0
0

−S𝜃1
C𝜃1
0
0

 

 0
 0
 1
 0

0
0
0
1

] 

(3.21) 
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R2 = [

1
0
0
0

0
C𝜃2
S𝜃2
0

 0
−S𝜃2
C𝜃2
0

0
−𝑡1. (C𝜃2 − 1)
−𝑡1. S𝜃2

1

] 

(3.22) 

 

R3 = [

1
0
0
0

0
C𝜃3
S𝜃3
0

 0
−S𝜃3
C𝜃3
0

0
−(𝑡1 + 𝑡2). (C𝜃3 − 1)
−(𝑡1 + 𝑡2). S𝜃2

1

] 

(3.23) 

 

Equations (3.21), (3.22), (3.23) have a resultant given as in equation (2.22). Moreover, 

this resultant R = R1. R2. R3 represents a homogeneous matrix that linkages between 

the head fixed coordinate frame and terminal coordinate of the hexapod’s leg. 

T 1
0(𝜃) = R . T 1

0(0) (3.24) 

 

R = [
B1 B2
0 1

] (3.25) 

 

B1 = [

C𝜃1 −C𝜃23. S𝜃1    S𝜃23. S𝜃1
S𝜃1    C𝜃23. C𝜃1 −S𝜃23. C𝜃1
0 S𝜃23 C𝜃23

] 
(3.26) 

 

B2 = [

𝑡1. S𝜃1. (C𝜃2 − 1) − S𝜃1S𝜃2S𝜃3. (𝑡1 + 𝑡2) + C𝜃2S𝜃1. (C𝜃3 − 1). (𝑡1 + 𝑡2)

C𝜃1S𝜃2S𝜃3. (𝑡1 + 𝑡2) − 𝑡1. C𝜃1. (C𝜃2 − 1) − C𝜃1C𝜃2. (C𝜃3 − 1). (𝑡1 + 𝑡2)

−𝑡1. S𝜃2 − C𝜃2S𝜃3. (𝑡1 + 𝑡2) − S𝜃2. (C𝜃3 − 1). (𝑡1 + 𝑡2)
] 

(3.27) 

 

3.3.4 The Kinematics of the Single Leg Using the (POF) Technique 

The product of exponential representation is relatively considered more widespread 

than any other method as a result of its simplicity and ease to use. As explained 

previously in Chapter 2, this method based on the theory of screws and built on the 

line representation due to the plȕcker coordinate, so that any helical trace could be 

modeled by a line and a constant ratio called pitch. In NOROS hexapod robots, all the 

leg’s chains consist of revolute joints, in this case the screws that represent the motion 

are essentially lines may be modeled via the plȕcker representation [36]. 

[$̂] = [
[𝑠] 𝑠𝑜 × 𝑠
0 0

] (3.28) 
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The matrix representation of the unit screw associated with the revolute joints given 

in equation (3.28), where the 3×3 matrix [𝑠] is a skew symmetric of the screw line 

direction, in addition, the vector 𝑠 × 𝑠𝑜  given as the cross product of the line direction 

with an arbitrary point vector taken on the line. To be clear, in some notation, the 

angular and linear velocity also may be used to represent the motion as in equation 

(2.32). Considering the figure 3.6 and the table 3.3, then the unit screws easily obtained 

via the subsequent equations 

[$̂1] = [

0
1
0
0

−1
0
0
0

 0
0
0
0

0
0
0
0

] 

(3.29) 

 

[$̂2] = [

0
0
0
0

0
0
1
0

 0
−1
0
0

0
0
−𝑡1
0

] 

(3.30) 

 

[$̂3] = [

0
0
0
0

0
0
1
0

 0
−1
0
0

0
0

−(𝑡1 + 𝑡2)
0

] 

(3.31) 

 

Now, it is possible to apply the equation (2.40) that gives a comprehensive 

displacement using the product of exponential. The initial configuration T 1
0(0) is 

given in equation (3.17) 

T 1
0(𝜃) = 𝑒[$̂1].𝜃1  . 𝑒[$̂2].𝜃2 . 𝑒[$̂3].𝜃3T 1

0(0) (3.32) 

 

In order to simplify, it is possible to define a resultant screw representation instead of 

using consecutive screws due to the equation (2.36) 

T 1
0(𝜃) = 𝑒[$𝑛] . T 1

0(0) (3.33) 
 

The consequent screw in equation [$𝑛] given in following equation 
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[$𝑛] = [

0
𝜃1
0
0

−𝜃1
0
𝜃23
0

 0
−𝜃23
0
0

0
0

−𝜃3. (𝑡1 + 𝑡2) − 𝑡1. 𝜃1
0

] 

(3.34) 

 

3.3.5 The Kinematics of the Hexapod’s Leg in the Case of Supporting  

Once the NOROS starts to move, the balance situation must be guaranteed. The static 

stabilization for the hexapod will be defined in the next chapter. However, this stability 

needs at least three legs link the ground and assist the Robot’s body in staying standing 

[49]. In this subsection, the kinematics of the supporting leg is to be studied using the 

product of exponential method. There are several analyses about the modeling of the 

linkage between the leg's terminal and the terrain due to factors, such as the 

characteristics of the leg and the technique that used by the researcher. Since the 

terminal that connects with the territory is a point, the most rational way to represent 

this linkage is by utilizing the spherical joint. Moreover, as mentioned earlier, the 

spherical joint may be represented simply as three columnar revolute joints. The 

following Figure 3.7 illustrates the architecture of the hexapod’s leg in assisting 

situation. Now, it is possible to construct a kinematic modeling of the supporting leg 

that shown in the Figure 3.7 using the product of exponential method. The parameters 

that define the screws associated with the supporting leg shown in Table 3.4.  

The kinematic study in the case of the leg supports the body, aims to find the head 

coordinate in order to the fixed frame which located at the point contact. This analysis 

would be more understanding when the entire part of the hexapod responsible for 

supporting the robot is taken as a parallel manipulator. That is what will be seen in 

subsequent sections. 
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Table 3.4: The Parameters of the Screws Associated with the Supporting Leg 

Joints Screws direction Point located on the screws 

Spherical  [0 1 0]𝑇  [0 0 0]𝑇 

Spherical [0 0 1]𝑇  [0 0 0]𝑇 

Spherical [1 0 0]𝑇  [0 0 0]𝑇 

Lap [1 0 0]𝑇  [0 0 𝑡1]𝑇 

Trochanter [1 0 0]𝑇  [0 −𝑡2 𝑡1]𝑇 

Head [0 0 1]𝑇  [0 −(𝑡2 + 𝑡3) 𝑡1]𝑇 

 

Due to the theory of screws notation, the comprehensive equation that models the 

displacement of the supporting leg is given in equation (3.33). However, the initial 

configuration is written in the following equation 

T 1
0(0) = [

1
0
0
0

0
1
0
0

 0
0
1
0

0
−(𝑡1 + 𝑡2)

𝑡3
1

] 

(3.35) 

 

 
Figure 3.7: The kinematic modeling of the hexapod's leg during assistance phase 
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Similarly to the analysis in the previous subsection, the unit screws of the joints 

associated with the structure of the supporting leg regarding to the fixed coordinate are 

to be found. 

Then, the resultant screw [$𝑛] will be given in the following equation.  

[$𝑛] = [

0
(𝜃2 + 𝜃5 + 𝜃6)

𝜃1
0

−(𝜃2 + 𝜃5 + 𝜃6)
0

𝜃3 + 𝜃4
0

 𝜃1
−(𝜃3 + 𝜃4)

0
0

−𝜃6. (𝑡1 + 𝑡2 + 𝑡3)
𝑡1. (𝜃4 + 𝜃5)

𝑡2. 𝜃5
0

] 

(3.36) 

 

Now, applying the equation that give the general displacement of the hexapod’s 

supporting leg is possible through the following equation 

T 1
0(𝜃) = 𝑒

[

0
(𝜃2+𝜃5+𝜃6)

𝜃1
0

−(𝜃2+𝜃5+𝜃6)
0

𝜃3+𝜃4
0

 𝜃1
−(𝜃3+𝜃4)

0
0

−𝜃6.(𝑡1+𝑡2+𝑡3)
𝑡1.(𝜃4+𝜃5)

𝑡2.𝜃5
0

] 

. T 1
0(0) 

(3.37) 

 

3.4 Position kinematics analysis for the Hexapod 

In general, the position kinematics problem involves knowing the relation between the 

joints angles and the location of the end-effector. Moreover, this mentioned 

relationship may be directly or counterproductive. In this survey, an effort will be 

made to address the problem of position kinematics for the NOROS hexapod robot in 

both cases direct and indirect. However, before proceeding to handle this issue, we 

need to identify appropriate and sufficient systems of coordinates that associated with 

the robot. Also, there are several presumptions related to the hexapod’s motion 

analysis [47] will be taken into account in any subsequent analysis in this thesis. 

3.4.1 Theoretical Constraints Associated with the Modeling of the NOROS 

In order to avoid some problematic confrontations in kinetic analysis and make the 

modeling more realistic and straightforward, four substantial restrictions are taken into 

consideration in this study. These limitations are as follows 
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- Although in some cases sliding movements occur between the leg’s terminal and 

the territory while the hexapod walk, however, this slippery motion will be 

considered as non-exist. 

- Constantly, the locations of the supporting leg’s terminals, the touch points 

between the hexapod’s leg and the terrain, are recognized. 

- For some considerations regarding keeping the robot in the symmetric case, this 

issue will be discussed in details in mobility analysis, parallel state between the 

hexapod’s framework and the ground should be preserved.   

- During the locomotions of the hexapod, the static stabilization factors are always 

ensured.   

3.4.2 Definition of the Hexapod Coordination Systems 

Four coordinate systems can be recognized in order to study the kinematics of the 

NOROS robot. The fırst Cartesian system W(𝑥𝑊, 𝑦𝑊, 𝑧𝑊) located outside the body so 

that it constitutes an external observer of the movement. The second frame referred 

as C(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶), placed at the center of gravity. NOROS robot designed so that the 

center of mass is fully positioned at the center of the circular polygon of the body. 

Moreover, the remaining reference system H𝑛(𝑥𝑛𝐻 , 𝑦𝑛𝐻 , 𝑧𝑛𝐻) and F𝑛(𝑥𝑛𝐹 , 𝑦𝑛𝐹 , 𝑧𝑛𝐹) 

are established at the Head joints and the endpoint of the links Foot respectively. In 

the figure 3.8, the relation between these systems is well illustrated. 

It is noticeable that the relation between the center of gravity coordinate system and 

the Head coordinate system are always steady, as shown in Figure 3.9. It is possible to 

formulate an equation that explains this relationship. 

T H𝑛
C = [

cos ((𝑛 − 1). 𝑝𝑖/3)
−sin ((𝑛 − 1). 𝑝𝑖/3)

0
0

sin ((𝑛 − 1). 𝑝𝑖/3)
cos ((𝑛 − 1). 𝑝𝑖/3)

0
0

 0
 0

 
1
0

r. sin ((𝑛 − 1). 𝑝𝑖/3)
r. cos ((𝑛 − 1). 𝑝𝑖/3)

0
1

] 

(3.38) 
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Figure 3.8: Kinematics Scheme of the Hexapod Showing the Locations of the 

Coordinate Systems 

 
Figure 3.9: The Relation between the Center of Gravity Coordinate and the Head 

Coordinate Systems 

3.4.3 Inverse Kinematics Study for the NOROS 

Generally speaking, inverse kinematics study of any parallel manipulator given as 

finding the parameters of the joints that associated with each limbs in the robot so that 

the coordinate frame that represents the center of gravity point is known. Mainly, the 

studies that handle indirect kinematics relies on the geometric techniques due to its 

simplicity and flexibility. Although the hexapod robot considered as a semi-parallel 

manipulator, recognizing the angles of the joints by utilizing the geometry is an easy 

duty [47]. Moreover, according to the inverse kinematics assumption, the location of 

the hand frame, in our case called leg’s terminal, is also known. The figure 3.10 shows 
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the structure of the Hexapod’s leg 𝑛 in three-dimensional space which used to define 

the inverse kinematics of the hexapod.  

 
Figure 3.10: Mechanics Scheme Shows the Texture of the Leg n in 3D Space along 

with Hexapod’s Body 

As mentioned in the discussion above, and shown in the Figure 3.10 the position of 

the center of Hexapod’s body P 𝐶
𝑊  with respect to the world frame is given. Besides, 

the locations of the Leg's terminals P 𝐹𝑛
𝑊  are also present. As seen previously in the 

subsection that discusses about the inverse kinematics of the Hexapod’s leg via the 

geometry, it is possible to define the parameters of the Leg’s joints depending on 

knowing the position of the Leg’s terminal that taken with respect to the Head 

coordinate frame. Subsequently, finding the point 𝐹𝑛 in the parameters of the frame 

𝐻𝑛 is the top priority.  

P 𝐹𝑛
𝑊 = P 𝐻𝑛

𝑊 + P𝑤  𝐹𝑛
𝐻𝑛 (3.39) 
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Equation (3.39) defines a vectorial equation taken due to the Figure 3.10. The vector 

P𝑤 𝐹𝑛
𝐻𝑛 explains the relationship between the frames 𝐹𝑛 and 𝐻𝑛 in world coordinate 

frame. In order to isolate the vector P 𝐹𝑛
𝐻𝑛 from P𝑤 𝐹𝑛

𝐻𝑛 the following equation have to be 

accepted. 

P𝑤 𝐹𝑛
𝐻𝑛 = R 𝐻𝑛

𝑊  . P 𝐹𝑛
𝐻𝑛 (3.40) 

 

In equation (3.40) the rotation transformation matrix R 𝐻𝑛
𝑊  that gives the frame 𝐻𝑛 with 

respect to the fixed coordinate 𝑊 can be found in the following equation. 

R 𝐻𝑛
𝑊 = R 𝐶

𝑊 . Rot (z , (𝑛 − 1).
𝑝𝑖

3
). 

(3.41) 

 

Also the vector P 𝐻𝑛
𝑊  can be obtained as follow 

P 𝐻𝑛
𝑊 = P 𝐶

𝑊 . [
r. sin ((𝑛 − 1). 𝑝𝑖/3)
r. cos ((𝑛 − 1). 𝑝𝑖/3)

0

] 
(3.42) 

 

Using the equations (3.40), (3.41) and (3.42) the equation (3.39) may be reconstructed 

as in following equation aiming to find the vector P 𝐹𝑛
𝐻𝑛   

P 𝐹𝑛
𝐻𝑛 = (P 𝐹𝑛

𝑊 − P 𝐻𝑛
𝑊 ). (R 𝐻𝑛

𝑊 )−1 (3.43) 
 

Once the position P 𝐹𝑛
𝐻𝑛 is found, identifying the Joint’s parameters that associated with 

the Hexapod’s leg 𝑛 can be defined using the technique mentioned previously through 

the equations (3.1) up to (3.7). 

3.4.4 Direct Kinematics Study for the NOROS 

For any parallel robot, direct kinematics survey aims to define the coordinate frame 

that associated with the center of gravity with regard to the global reference frame. 

Although the hexapod robot regarded as a semi-parallel manipulator the same trace 
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have to behold [47]. In this survey, several substantive hypotheses will be accepted 

allow to perform the direct problem with ease and simplicity. The first assumption 

states that the Hexapod follows a stable tripod locomotion, that means during the robot 

locomotion there are 3 legs distributed by symmetry support the Hexapod’s body 

continuously. These three legs in addition to the Hexapod’s platform which has a 

hemisphere shape and the terrain will form a three degree of freedom parallel 

manipulator. Through this parallel manipulator, defining the position and orientation 

of the center of mass frame is a quite possible. It is also conceivable to state that any 

extra supporting leg will be thought as a redundant leg. The second hypothesis will be 

based on the first assumption and complement it. It declares that during the 

displacement of the Hexapod, the platform should be move on parallel to the ground. 

The question here is what the reason behind such an assumption? The answer will be 

the first assumption. According to the mentioned parallel manipulator of three degree 

of freedom that consists of three legs each of them has 3 joints connected with a servo 

motors and a passive joint represent the point contact between the leg and the ground, 

this passive joint should be kinematically modelled as 2 degree of freedom instead of 

3 degree of freedom in order to maintain the symmetric state for the robot due to 

Grubler-Kutzbach criterion. This change in modeling the passive joint will require 

assuming that the robot is moving parallel to the ground. After finding the coordinate 

associated with the center of mass of the Hexapod, the second stage of direct 

kinematics study of the Hexapod takes a place. The purpose of this phase is to 

recognize the coordinate systems associated with each swinging Leg’s terminal with 

regard to the world coordinate system in a serial manner starting from the center of the 

mass coordinate system. 
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To facilitate the study, this survey will be separated into several steps so that each 

phase will be explained separately. Firstly, depending on the presupposition, the three 

terminal points that represent the connections between the legs and the ground are 

known, subsequently the positions that define the locations of the head joints can be 

independently found. This technique will be reviewed through the following figure 

and equations 

 
Figure 3.11: The Mechanism of the Hexapod’s Leg that Support the Body and Serve 

to Displace the Robot in 3-DOF 

The technique that mentioned above aims to find the position of the coordinate 

associated with the Head joints of supporting legs wrt the global reference frame [50-

51]. The following equations can find the position 𝐻𝑛 with respect to the reference 

frame W written due to the parameters of product of exponential assortment. 

P 𝐻𝑛
W = P 𝐹𝑛

W . P 𝐻𝑛
𝐹𝑛 (𝜃) (3.44) 

 

P 𝐻𝑛
𝐹𝑛 (𝜃) =  𝑒𝜃1.[$̂1] . 𝑒𝜃2.[$̂2] . 𝑒𝜃3.[$̂3] . 𝑒𝜃4.[$̂4] . 𝑒𝜃5.[$̂5] . P 𝐻𝑛

𝐹𝑛 (0) (3.45) 

 



59 

 

The parameters of the equation (3.45) are explained through the next table. The initial 

position of the point 𝐻𝑛 in the parameter of the coordinate  𝐹𝑛 is given as follow 

P 𝐻𝑛
𝐹𝑛 (0) = [0   −(𝑡1 + 𝑡2) 𝑡3]𝑇 (3.46) 

 

The parameter 𝑛 in previous equations indicates to the series numbers of the 

Hexapod’s legs as 1, 3, 5 or 2, 4, 6.  

Table 3.5: The Parameters of the Hexapod’s Leg that Support the Body and Serve to 

Displace the Robot in 3-DOF 

Joints Screws direction Point located on the screws Angles 

terminal [0 0 1]𝑇 [0 0 0]𝑇 𝜃𝑖𝑛1 

terminal [1 0 0]𝑇 [0 0 0]𝑇 𝜃𝑖𝑛2 + 𝜃𝑖𝑛3 
Lap [1 0 0]𝑇 [0 0 𝑡3]𝑇 −𝜃𝑖𝑛3, 

Trochanter [1 0 0]𝑇 [0 −𝑡2 𝑡3]𝑇 −𝜃𝑖𝑛2 
Head [0 0 1]𝑇 [0 −(𝑡2 + 𝑡1) 𝑡3]𝑇 −𝜃𝑖𝑛1 

 

The second step of the direct analysis come after finding the positions of the Head 

joints that associated with the supporting legs. Assuming that the position vectors of 

the points H1, H2 and H3 are located in the parameter of the world coordinate, now 

the objective is to find the position and the orientation of the center of the mass 

coordinate frame. 

In order to find the position of the mass center, the following procedure has to be 

performed. Firstly, as long as the center of gravity lying in the center of the Hexapod’s 

circular platform, it is also existing in the center of the triangle formed by the points 

H1, H2 and H3 or H2, H4 and H6. Subsequently, The position of the centroid given 

easily by the following vectorial equation 

P 𝐶
W = 1 3⁄  . (P 𝐻1

W + P 𝐻3
W + P 𝐻5

W ) (3.47) 
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Secondly, there is a need to confirm the result that appeared in the previous equation 

due to the fact that states the center of the triangle ΔH1H3H5 does not necessarily have 

to be the center of the Hexapod’s platform. The centroid of the mentioned triangle and 

the centroid of the moving platform are identical if the following vectorial equations 

are realized. 

√3. r =  √(P 𝐻1
W

𝑥
− P 𝐻3

W
𝑥
)
2
+ (P 𝐻1

W
𝑦
− P 𝐻3

W
𝑦
)
2

+ (P 𝐻1
W

𝑧
− P 𝐻3

W
𝑧
)
2
 

(3.48) 

 

√3. r =  √(P 𝐻1
W

𝑥
− P 𝐻5

W
𝑥
)
2
+ (P 𝐻1

W
𝑦
− P 𝐻5

W
𝑦
)
2

+ (P 𝐻1
W

𝑧
− P 𝐻5

W
𝑧
)
2
 

(3.49) 

 

√3. r =  √(P 𝐻3
W

𝑥
− P 𝐻5

W
𝑥
)
2
+ (P 𝐻3

W
𝑦
− P 𝐻5

W
𝑦
)
2

+ (P 𝐻3
W

𝑧
− P 𝐻5

W
𝑧
)
2
 

(3.50) 

 

After finding the position of the center of mass, it is possible to define the orientation 

of the coordinate associated WRT world coordinate frame using the next equations 

due to the notation is given in the following figure 

 
Figure 3.12: Kinematics Scheme of the Hexapod Illustrating the Configuration which 

Forms the Basis for the Direct Kinematics. 

𝑥𝐶̂ = 
(P 𝐻5

W − P 𝐻3
W )

√(P 𝐻5
W

𝑥
− P 𝐻3

W
𝑥
)
2
+ (P 𝐻5

W
𝑦
− P 𝐻3

W
𝑦
)
2

+ (P 𝐻5
W

𝑧
− P 𝐻3

W
𝑧
)
2
 

(3.51) 
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𝑦𝐶̂ = 
(P 𝐻1

W − P 𝐶
W)

√(P 𝐻1
W

𝑥
− P 𝐶

W
𝑥
)
2
+ (P 𝐻1

W
𝑦
− P 𝐶

W
𝑦
)
2

+ (P 𝐻5
W

𝑧
− P 𝐶

W
𝑧
)
2
 

(3.52) 

 

𝑧𝐶̂ = 𝑥𝐶̂ × 𝑦𝐶̂   (3.53) 
 

Eventually, according to the coordinate frame that associated with the center of mass 

of the Hexapod that found in the previous direct kinematics analysis, the coordinate 

that attached to the swinging Leg’s terminals can be identified using direct kinematics 

approach from the C coordinate system to the F𝑛 coordinate frames. Here, the variable 

𝑛 define the number of the swinging leg. This step explained through the subsequent 

equation. 

T 𝐹𝑛
𝑊 (𝜃) =  T 𝐶

𝑊. T 𝐻𝑛
𝐶  T 𝐹𝑛

𝐻𝑛(𝜃) (3.54) 
 

In equation (3.54), the transformation matrix  T 𝐻𝑛
𝐶  given in equation (3.38) and the 

coordinate frame 𝐹𝑛 WRT the frame 𝐻𝑛 will be found serially similar to the technique 

explained through the equation (3.32). It should be noted that each redundant 

supporting leg will be handled as swinging leg through the equation (3.54). Sometimes 

the Hexapod robots mentioned as a semi-parallel manipulator or serial-parallel robot, 

the reason behind this is cleared in this analysis, while the moving body of the hexapod 

along with the ground and supporting legs considered as a parallel manipulator where 

the coordinate frame that attached with the centroid is found on this basis. In contrast, 

the coordinates that associated with the Leg’s terminal are located based on serial 

approach.   



62 

 

3.5 Mobility Analysis for the Hexapod 

Kinematically, understanding the behavior of the robot displacement in space 

considered a very significant factor to give an authentic analysis. Studying the mobility 

aims to identify how many variables can be adequate to give the position of the studied 

body WRT fixed coordinate system [45]. The maximum number of variables that are 

in need to recognize any body displacing in 3-D space is six, three of them to define 

the position where the other to define the orientation. When the kinematic chain 

connected in serial manner, the determination of DOF is straightforward. In this 

condition, the number of active joints specify the mobility such that the total number 

of the joints and the DOF of the manipulator are balanced. In contrast, the situation 

becomes more difficult when considering the closed chains. Several theories were 

found for this purpose but perhaps the most famous Grubler-Kutzbach standard and 

the reciprocity-based technique which mentioned in the second chapter. Both methods 

will be discussed in the next subsections in order to handle the mobility of the 

Hexapod. 

3.5.1 The Mobility Discussion for the Hexapod Using the Conventional Method 

The conventional or C-G-K standard considered as one of the oldest and most famous 

technique to define the mobility of the kinematic manipulator whether it is an open or 

closed chain. This method depends on knowing the number and the style of the 

connections besides to the number of the linkage that forms the structural of the robot. 

Due to this criterion, the numbers of DOF can be recognized by the next equation. 

M = ∂(𝑒 − 𝑣 − 1) +∑𝑚𝑗

𝑣

𝑗=1

 
(3.55) 
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The parameters of the equation (3.55) described as follow: M represents the overall 

DOF that associated with the robot, the parameter ∂ defined as the DOF related with 

the workspace. In the case that the moving body takes planer motion, ∂ will defined as 

3. However, for spatial movement ∂ substituted by 6. The variables 𝑣 and 𝑒 realized 

respectively as the number of the joints and the links that form the robot mechanism. 

Lastly, the parameter 𝑚𝑗 expressed as the number of DOF that formative by the joint 𝑗.  

Three main specifications should be achieved by the closed chains robot in order to be 

described as symmetric manipulator. The first condition, the mobility of the robot and 

the Leg’s number should be the same. The second, the structures of the Robot’s legs 

are conformable. Eventually, Robot’s legs have an identical number of effective joints. 

If any of the mentioned above conditions are breached, the manipulator will be 

classified as an asymmetric robot. 

In any symmetric parallel robot, following properties are realized. The mobility value 

and the number of the robot’s legs are identical to the number of circuits in which each 

circuit consists of two neighboring legs connected with the ground and the platform.  

M = 𝑡 = 𝑙 + 1 (3.56) 
 

In equation (3.56), the parameter 𝑡 indicates to the number of the Robot’s leg while, 𝑙 

recognized as the number of independent circuit. Moreover, the Euler neutralization is 

given in the posterior equation 

𝑙 = 𝑣 + 1 − 𝑒 (3.57) 
 

The Leg’s connectivity 𝐶𝑖 is defined as the number of DOF of all the joints that 

combines the leg, the overall connectivity is given as follow 
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∑𝐶𝑖 = 

𝑡

𝑖=1

∑𝑚𝑗

𝑣

𝑗=1

 
(3.58) 

 

By substituting the equation (3.57) into the equation (3.55)  

∑𝑚𝑗

𝑣

𝑗=1

= M+ ∂. 𝑙 
(3.59) 

 

The number of independent circuit 𝑙 may be excluded in equation (3.59) if the equation 

(3.56) used for this purpose 

∑𝑚𝑗

𝑣

𝑗=1

=∑𝐶𝑖 =

𝑡

𝑖=1

(∂ + 1).M − ∂ 
(3.60) 

 

Moreover, the Leg’s connectivity realized through the following equation  

M ≤ 𝐶𝑖 ≤ ∂ (3.61) 
 

With regard to the Hexapod, there are two cases define the mobility analysis of the 

Hexapod robot. The first case, when all the Robot’s leg are contacting the terrain and 

supporting the body structure. With this consideration, the NOROS will emulate a 

symmetric general parallel manipulator with six limbs and six DOF so that three 

parameters is used to define the center of gravity of the robot while the other determine 

the orientation of the coordinate system that associated with the center. It is preferable 

to make sure of this expectation through the previous equations. If the equation (3.55) 

applied so that the number of the Hexapod’s links included the body and the ground 

is 𝑒 = 20, the number of the joints associated with the robot 𝑣 = 24, ∂ = 6 and 

∑𝑚𝑗 =36. Then M = 6 DOF. Here, the joints that model the relation between the 

Leg’s terminal and the territory are taken without limitations, that’s mean spherical 
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joints are chosen for this purpose. The number of connectivities in each leg 𝐶𝑖 is equal 

to six. The second case, when the Hexapod parallel manipulator loses Leg or more in 

order to locomotion. During the previous mobility analysis, the Hexapod robot handled 

as a comprehensive parallel manipulator but this thesis aims to study the Hexapod 

mobile robot. Supposing that the Hexapod robot follows a stable tripod locomotion, 

three legs are chosen symmetrically to displacing to the new positions while the other 

three legs assist the body and serve to push the robot. In order to handle the Hexapod 

based on the symmetric situation, the number of legs that support the body must be 

equal to the number of DOF of the centroid. However, depending on the stability 

analysis of the Hexapod, at least three legs differentiated in a symmetric manner must 

take the supporting role, in this case, the number of DOF should equal three. As 

mentioned previously, any additional leg support the body will be handled as a 

redundant leg. Moreover, through the equations (3.60) and (3.61), it is possible to 

identify the allowed number of connectivities in each leg in which the Hexapod robot 

maintains the symmetric condition. Due to the equation (3.61), the connectivity in each 

leg should be between three and six, and the equation (3.60) defines the overall number 

of connectivities in the Hexapod robot by 15 connectivities. Subsequently, five 

connectivities take a place in each leg. Knowing that 3 revolute joints related with 

servo motors, so that the passive joint that formed instead of the point of contact 

between the Leg’s terminal and the ground modeled as universal joint with two DOF 

in order to realize the Hexapod as a symmetric robot. 

3.5.2 Mobility Analysis for the Hexapod Using Reciprocal Based Technique   

Recalling the subsection 2.6.2 that discussed the definition of the mobility using the 

theory of reciprocal screws. This technique uses 4 essential phase to identify the 

number of the DOF and the type of motion performed by the robot. For the purpose of 
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conducting this survey for the Hexapod, assuming that the robot performs a stable 3+3 

locomotion. Hence, the configuration of the Hexapod’s leg that fit with this assumption 

illustrated in the figure 3.11. We can notice that the contact point of the Leg’s terminal 

on the terrain may be considered as a spherical joint with three degree of passive joint. 

However we can use universal joint instead of spherical joint in order to maintain the 

state of symmetric condition. In this case, the body of the Hexapod will process in 

parallel to the supporting plane formed by supporting feet. The first step to define the 

mobility analysis through this technique will be finding the basis for the displacement 

system formed by the screws associated with the Leg’s joints of the hexapod robot. It 

is observable that the system of motion consists of 5 linearly independent screw lines 

since it belongs to different planes.  Basis for such a system can be given in the 

subsequent equation. 

{
 
 

 
 
$1B = [1 0 0 0 0 0]T 

$2B = [0 0 1 0 0 0]T 

$3B = [0 0 0 1 0 0]T 

$4B = [0 0 0 0 1 0]T 

$5B = [0 0 0 0 0 1]T 

 

(3.62) 

 

The second step aims to define a reciprocity system associated with each leg 

independently relying on the theory of reciprocal screws. There is a 1 reciprocal system 

according to 5 screw systems. By using the observation rules that derived from the 

theory of reciprocity, it is easy to find the basis of 1 reciprocal system 

$1r = [0 0 0 0 1 0]T (3.63) 
 

By following the same approach, we can find the reciprocal system that related with 

the other two Hexapod’s legs. Also, these reciprocal systems are a moment vectors 

with the direction of 𝑌-axis. These three reciprocal systems are not identical since 𝑌-
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axes will be distinct. Hence, the system that made up of the three reciprocal systems, 

each associated with one Hexapod’s leg, composes the restraint system of the moving 

body. The following steps summarized in finding the restraint system of moving body 

in the parameters of the world frame. Because of the restraint system component of 

moment vectors, it is possible to define this system as following 

{

L1 = [0 0 0 𝑥1 𝑦1 𝑧1]T 

L2 = [0 0 0 𝑥2 𝑦2 𝑧2]T 

L3 = [0 0 0 𝑥3 𝑦3 𝑧3]T
 

(3.64) 

 

 Finally, the system of displacement of the mobile body can be found by using the 

theory of reciprocal screws of the system represented in the equation (3.64). The basis 

of the reciprocal system that represents the motion type of the robot and can be given 

in the subsequent equation 

{

L1𝑟 = [0 0 0 1 0 0]T 

L2𝑟 = [0 0 0 0 1 0]T 

L3𝑟 = [0 0 0 0 0 1]T
 

(3.65) 

 

It is clear that, the centroid of the Hexapod robot possesses three DOF so that the 

movement has a translation type.  

 3.6 Jacobian Survey of the Hexapod Robot 

The analysis of this section will be According to the explanation in the subsection 

2.5.2.2 that mentioned in the second chapter which discusses the derivation of the 

Jacobian matrix and finding the velocity based on the theory of screws. Also, the 

technique referred in the passage 2.6.3 can leads to facilitate the survey pretty much 

by using the theory of reciprocal screws. Moreover, this study will be mainly based on 

the assumption that the Hexapod robot displaces due to the stable 3+3 locomotion 

mentioned earlier. The figure 3.13 explains the architecture of the Robot’s leg in which 
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the velocities of the joints are shown. The direct velocity of the center of gravity of the 

NOROS due to the equation (2.47) will be stated as follow 

$𝑐 = [$̂(1,𝑗) … $̂(5,𝑗)]. [𝑐(1,𝑗) … 𝑐(5,𝑗)]𝑇 , 𝑗 = 1,2,3 (3.66) 

 

In equation (3.66), $𝑐 represents the twist that associated with the centroid of the 

mobile platform which is considered as the combination of the angular and linear 

velocity of that center. Also, $̂(𝑖,𝑗) defined as the screw vector that associated with the 

joint 𝑖 and located in the Hexapod’s leg 𝑗. The intensity 𝑐(𝑖,𝑗) considered as the velocity 

or the joint rate related to the joint 𝑖.  

 
Figure 3.13: The Mechanism of a Hexapod Leg defines the Screws and the Rates that 

Associated with its Joints. 

Equation (3.66) could be spread to form the equation that hold the number (3.67) 

[
𝑤
𝑣
] = $̂(1,𝑗). 𝑐(1,𝑗) + $̂(2,𝑗). 𝑐(2,𝑗) + $̂(3,𝑗). 𝑐(3,𝑗) + $̂(4,𝑗). 𝑐(4,𝑗) + $̂(5,𝑗). 𝑐(5,𝑗) (3.67) 
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The system of screws that shown in the figure 3.13 has a basis given through the 

equation (3.62) and reciprocal system specified in the equation (3.63). Thereafter, the 

reciprocal screw may be applied on the equation (3.67) due to Klein formularization. 

{$1r ;  [
𝑤
𝑣
]} = [0 0 0 0 0 0]T (3.68) 

 

Now, to solve the problem of existence two passive joints, we are in need to find a 

screw that is reciprocal only to the screws that are associated with the passive joint. It 

is observable that the screw given in the next equation satisfies the cancellation 

property. 

$2r = [0 1 0 0 0 0]T (3.69) 
 

Subsequently, using the same product technique that used in equation (3.68), but 

instead of using the screw $1r, the screw $2r is used to achieve the cancellation target. 

{$2r ;  [
𝑤
𝑣
]} = {$2r ;  $̂(1,𝑗)}. 𝑐(1,𝑗) + {$2r ;  $̂(2,𝑗)}. 𝑐(2,𝑗) + {$2r ;  $̂(3,𝑗)}. 𝑐(3,𝑗) (3.70) 

 

The first part of the equations (3.68) and (3.70) could be written in the matrix form as 

follow 

{$1r ;  [
𝑤
𝑣
]} = [$1r]

T. [
03×3 13×3
13×3 03×3

] . [
𝑤
𝑣
] 

(3.71) 

 

{$2r ;  [
𝑤
𝑣
]} = [$2r]

T. [
03×3 13×3
13×3 03×3

] . [
𝑤
𝑣
] 

(3.72) 

 

Depending on the analysis discussed above, system can be derived from the previous 

equations in order to find the direct velocity of the center of gravity of the NOROS 

robot. This system is formed in the equation (3.73)  
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[
[$1r]

T

[$2r]
T] . [

03×3 13×3
13×3 03×3

] . [
𝑤
𝑣
]    

= [
0

{$2r ;  $̂(1,𝑗)}. 𝑐(1,𝑗) + {$2r ;  $̂(2,𝑗)}. 𝑐(2,𝑗) + {$2r ;  $̂(3,𝑗)}. 𝑐(3,𝑗)
] 

(3.73) 
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Chapter 4 

4 LOCOMOTION ANALYSIS 

4.1 Introduction  

The study of locomotion thought as the main factor of the robots that able to navigate 

in the surroundings. The survey of locomotion is interested in finding the most 

optimum sequential series of steps for moving in forward or backward direction, 

rotating around some axis, changing the direction of moving, overcoming the pitfalls 

that are in the way and in some cases resistance to stumbling when a fault occurs or 

loss of some leg. The majority of the gait discussion established on the theory of 

metamorphic [52] which is involved in handling the structure of the machinery that 

modifies the formation of the mechanism structure, the mobility and the functionality 

of its chains to adjust the various assignments. All the criteria of the metamorphism 

theory apply fully to the Hexapod robot [47]. Hexapod robot possesses numerous style 

of balanced locomotion including uniform and unorganized gait. Usually, the balanced 

uniform locomotion grouped depends on how many legs assist the Robot’s body 

through the locomotion period. According to this standard, three essential locomotion 

manner are found which are tripod, quadruped and 5-legged locomotion style [49]. It 

is noticeable that, there are no less than 3 assistant legs according to the Hexapod 

stability conditions [53]. In contrast, sometimes when the Hexapod performs special 

tasks such as bypassing obstacles, it follows an unorganized movement. This 

movement is named as free locomotion [54]. In this study, the attention will be directed 

only towards the balanced tripod locomotion. 
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4.2 The Stability Modes for the Hexapod Robot  

Although when the three legs of the hexapod robot contacting the ground can achieve 

the compulsory condition of the stable state as explained before, there are other factors 

to ensure the balance during Robot movement. The stability edge defined as the state 

that ensures the center of the gravity of the Hexapod robot located inside the shape that 

specified by the supporting Leg’s contact points constantly during the locomotion [52-

53]. According to the definition of the stability edge, three cases can be derived which 

are the stable, critical, and unsteady state. The previously mentioned cases explained 

in the following figure. 

 
Figure 4.1: The three Supposed Cases that Illustrate the Stability of the Hexapod 

Robot    (a) Stable State        (b) Critical State        (c) Unsteady State 

In the figure 4.1 the bold points that define the polygon refer to the point contact 

between the supporting leg and the terrain, while the empty points indicate the 

swinging Leg’s terminal.     

4.3 Stable Tripod Locomotion Analysis for the Hexapod Robot  

The uniform tripod hexapod locomotion defined by possessing 3 limbs assisting the 

Hexapod’s platform and serve to move the robot forward, while the other legs fluctuate 

in order to displace the Leg’s terminals to the another position [53]. As mentioned in 
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the previous sections, the combination of these two motions makes the robot classified 

as a hybrid robot in which the three assistant limbs in addition to the terrain and body 

modeled as an equivalent manipulator, while the swinging leg studied serially. 

Throughout the elementary and substituting stages, all the legs will be contacting the 

ground. In this case, the Hexapod handled as a parallel manipulator with the center of 

mass possesses 6 DOFs. The robot researcher Wang et al introduces 3 styles of stable 

3+3 locomotion [49], which are a mammal, insect, and hybrid insect-mammal gait. 

Through this survey, two of the previously mentioned styles which are the mammal 

and insect locomotion will be studied in details in the next subsections. 

4.3.1 The Definition of the Stable 3+3 Mammal Locomotion 

During this locomotion, the Hexapod’s leg displaced in a columnar pattern similar to 

the mammalians in which the paths will be forward the limbs and have a line form. 

Moreover, the Head joint of the Robot’s leg is inoperative through the motion. The 

forward locomotion according to the mammal gait can be summarized as follow, the 

anterior assistant limbs fall back while the posterior limbs stand out. In contrast, the 

frontal reeling legs emerge and the rearward legs retreat. During the elementary period 

of the 3+3 mammal locomotion, the limbs are disseminated equivalently around the 

Hexapod’s body so that the motion of the hexapod according to this gait possesses 

only two trends. A completed round of the stable tripod locomotion may be separated 

into certain periods. The subsequent figure explains in detail a full cycle of the 

Hexapod’s locomotion depending on the tripod mammal gait 
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Figure 4.2: A Hexapod’s Locomotion Cycle According to the Tripod Mammal Gait 

(a) Initial State      (b) The First Switching Phase      (c) The First Moving Phase    (d) 

The Second Switching Period       (e) The Second Moving Period      (f) Final 

Switching Period 

4.3.2 Kinematic Modeling of the Duty Cycle of the Mammal Kick of Gait 

This survey aims to simulate a duty cycle steps according to the mammal locomotion 

regarding the structure of the NOROS hexapod. Before embarking on this analysis, the 

assumptions written in the subsection 3.4.1 should be accepted. Also, the definition of 

the coordinates that received in 3.4.2 will be considered in this study. The relations 

between the Hexapod coordinate systems during the initial condition will be as follow; 

𝑦-axis of the center of the mass coordinate will be along the Hip link of the first leg 

when the Head joint has zero angle, 𝑧𝐶 will be columnar to the plane that shaped by 

the footholds of the Hexapod legs and 𝑥𝐶 defined by the cross product formula. The 

axes of the world coordinate frame during initial condition 𝑥𝑊, 𝑦𝑊 and 𝑧𝑊 have the 

same directions of the center of the mass coordinate axes, but the origin will be on the 

ground and along the 𝑧𝐶. Also, the axes of the Head and Foot coordinate frames have 

the same initial configuration of the center of the mass coordinate system. Six stages 

could be modeled to represent the duty cycle displacement of the hexapod when 

following the mammal gait. These stages are initial phase, first switching period, first 
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moving phase, second switching period, second moving phase and third switching 

phase. Each of them will be discussed separately.  

4.3.2.1 Initial Phase of the Mammal Locomotion   

The duty cycle of the mammal kick of gait starts when all the six legs of the hexapod 

touching the ground, supporting the body and positioned towards the moving direction. 

In this case, we can consider the set of six legs, ground and moving platform as a 

parallel manipulator with 6 degrees of freedom. Commonly, spherical joints take a 

place instead of the ends of legs that touching the ground. The following figure 

illustrates the structure of the Hexapod robot during the initial phase. 

 
Figure 4.3: The initial Configuration of the Hexapod According to the Mammal 

Locomotion 

4.3.2.2 The First Switching Period of the Mammal Locomotion   

In this stage, three legs are chosen symmetrically, such as the legs 2, 4, 6 that changes 

their situations from assistant phase to swinging phase, while the other legs still 
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supporting the body of the hexapod. Figure 4.4 shows the variation that occurs during 

the first switching period.  

 
Figure 4.4: The First Switching Phase Configuration of the Hexapod According to 

the Mammal Locomotion 

In figure 4.4, the Hexapod’s leg that its joints colored in red refers to the assistant case, 

while the green defines the swinging leg. This color rule will be followed in the 

subsequent figures. It is noticeable notice that during the first switching period all the 

joints still in the initial conditions and all the legs are on the ground. This step aims to 

prepare the first set of the legs to support the platform and pushing the robot forward, 

while the other set of legs prepared to fluctuate. The following figure shows a view 

from the top clarifies the hexapod during this stage in which it defines the assistant 

shape that formed by the confluence points between the Leg's terminals and the 

ground. The mentioned shape is an equilateral triangle.  
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Figure 4.5: A View from the Top Explains the Hexapod Stability Case during the 

First Switch Period of the Mammal Locomotion  

4.3.2.3 The First Moving Phase of the Mammal Locomotion  

During this phase the first supporting legs set changed their configuration 

symmetrically, pushing the body of the hexapod forward, at the same time other set of 

legs swinging forward. Ending this step ensures that all the legs are on the ground. The 

following figure illustrates the variations during the first moving phase. 

 
Figure 4.6: The First Moving Phase Configuration of the Hexapod According to the 

Mammal Locomotion 
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4.3.2.4 The Second Switching Phase of the Mammal Locomotion  

During this phase, switching between the sets of the supporting legs and swinging legs 

happen. This step aims to prepare the set of the legs that are supporting the body in the 

previous phase to swinging and prepare the other legs that are responsible to swing in 

the previous phase to support the body polygon of the hexapod and pushing the body 

forward. We can notice that during this preparation, all the limbs are on the ground. 

4.3.2.5 The Second Moving Phase of the Mammal Locomotion  

During this phase the supporting legs set changed their configuration symmetrically, 

pushing the body of the hexapod forward, at the same time another set of legs swinging 

forward. Ending this step ensures that all the legs are on the ground. The Figure 4.6 

illustrates the variations during the second moving phase 

 
Figure 4.7: The second moving phase configuration of the Hexapod according to the 

mammal locomotion 
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4.3.2.6 The Third Switching Phase of the Mammal Locomotion  

During this phase, switching between the sets of the supporting legs and swinging legs 

happen. This step aims to prepare the set of the legs that are supporting the body in the 

previous phase to swinging and prepare the other legs that are responsible for swinging 

in the previous phase to support the body polygon of the hexapod and pushing the body 

forward. We can notice that during this preparation, all the limbs are on the ground. 

Once this period is done, the full cycle of mammal kick of gait has been modeled. 

Appendix A includes a program written in Matlab environment explains in details a 

Hexapod Locomotion’s full duty cycle according to the mammal gait and the 

parameters that explained in the section 4.3.2.     

4.3.3 The Definition of the Stable 3+3 Insect Locomotion 

Hexapod’s Insect locomotion also considered as one of the maximum essential method 

used to transport the Hexapod robot from one place to another. This process based on 

replication of the biological walking manner of the insects and reptiles. Kinetically, 

tripod insect locomotion defined as a sequence of motion occurs on both side of the 

Hexapod’s moving platform so that the interior and posterior leg belonging to the same 

tip are working in harmony and the internal leg works in a reverse manner [55]. Tripod 

insect locomotion and mammal locomotion are compatible in initial conditions. 

However, they have an incompatible mobile tendency. A scheme of the hexapod robot 

that illustrates the initial configuration of the hexapod in case of the insect wave 

locomotion is sketched in Figure 4.8   
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Figure 4.8: Illustration of the Hexapod’s Primary Configuration According to the 

3+3 Insect Gait 

4.3.4 Kinematic Modeling of the Duty Cycle of the Insect Gait 

This study targets to mimic a duty cycle phases of the insect locomotion due to the 

structure of the Hexapod robot. Before the establishment of this analysis, the 

presumption mentioned in the subsection 3.4.1 should be acknowledged. Moreover, 

the description of the coordinates that established in 3.4.2 will be considered in this 

section. Also, as stated above, the insect and mammal locomotion participated in the 

same primary state that shown in figure 4.3, for this reason, the relations between the 

coordinate system that cited in the section 4.3.2 during this phase are recognized. 

Lastly, the two mentioned locomotion has the same duty cycle Steps separation.  

Throughout the first moving stage according to the insect wave gait, the first set of 

supporting legs modify their alignment evenly, shove the Hexapod’s body forward, in 

parallel, the other set of legs swinging to transport the Leg’s terminal to another place. 

Figure 4.9 illustrates the variations during the first moving phase. 
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During the second converting phase, switching between the sets of the supporting legs 

and swinging legs happen. This step aims to prepare the set of the legs that are 

supporting the body in the previous phase to swinging and prepare the other legs that 

are responsible for swinging in the previous phase to support the body polygon of the 

hexapod and pushing the body forward. We can notice that during this preparation, all 

the limbs are on the ground. Figure 4.10 clarifies the variation during this period. In 

figure 4.10 the dense line refers to the assistant leg, while the dotted line mentions the 

swinging leg. 

 
Figure 4.9: Illustration the First Moving Phase Configuration of the Hexapod 

According to the Insect Locomotion 
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Figure 4.10: Illustration the Hexapod Structure and Supporting Polygon during the 

Second Phase According to the Insect Locomotion 

Through this phase, the first supporting legs set adjusting their configuration 

symmetrically in order to push the body of the robot ahead, while the another set of 

legs swinging forward. Completing this step ensures that all the legs are on the ground.  

 
Figure 4.11: Illustration the Second Moving Phase Configuration of the Hexapod 

According to the Insect Locomotion 
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In figure 4.9 and figure 4.11 the dotted lines refer to the Hexapod configuration before 

the second moving phase starting, and the solid lines indicate to the Hexapod’s 

structure after the end of this stage. 
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Chapter 5 

5 KINEMATIC REPRESENTATION 

5.1 Introduction 

The kinematic survey of any mechanical structure or robotic texture demands a 

methodical technique can represent the framework of that construction. In this 

meaning, the topological representation of the kinematic structure places the Robot 

parts in a certain order by two main elements, the vertex, and the edge. Basically, this 

representation scheme aims to form a matrix structure gives advanced prospects of the 

controlling equalizations. To this end, assorted species have been suggested to build a 

kinematic graphs models. Wittenburg [56] was one of the first in this field, he proposed 

a methodical representation relevant to modeling a linkage of solid bodies through the 

graph. In [57] the mathematician Arczewski grants additions related to defining some 

special mechanical equipment as the springs and dampers. Jain was able to build on 

the graph representation to derive dynamic motion equations [58]. Networking 

technique representation [59] has been enormous investigated kinematically and 

dynamically by Uyguroğlu M.K. This survey included some 3-D mechanical system 

such as grinders and gears. Moreover, Demirel H and Uyguroğlu M.K introduced a 

new methodology [60] based on the direct and indirect graph in order to avoid the 

obstacles of both, this method named T-T graph. These research [61-64] were 

dedicated to analyze the velocity equations and define the mobility in the closed chains 

manipulator by using some techniques related to the theory of graph representation. In 
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this chapter, the configurations and functionality of Hexapod robot will be studied in 

details kinematically through the theory of the graph representation. 

5.2 Fundamental Concepts of Graph Theory 

Mathematically, graphs are textures established by assembling two mathematical 

creatures called nodes and lines, in like manner, Graph theory is the area of knowledge 

that handles with the relevance among these two objects. The mentality of the 

physicists and logician Leonhard Euler must be mentioned when talking about the 

theory of graphs. He was the first recognized scientist publishes about one of the 

extremely difficult and confusing topology problems at that time famed as the bridges 

of königsberg [65]. Afterward, the mathematicians Louis Cauchy Jean and Simon 

L'Huilier were able to develop the Euler’s formulas forming the basis of what is called 

today topological graph theory [66]. For the time being, graph representation theory 

becomes participatory in many engineering and medical science implementations. 

Moreover, evolving a new topological method, especially in the start of this century, 

had a considerable effectiveness on different sides of our modern science [67]. 

 5.2.1 Fundamental Terminologies 

Ordinarily, any graph representation specified using two collections of elements. The 

first set referred as vertices or nodes group so that it could be represented as 𝑁 =

{𝑛1, 𝑛2, … 𝑛𝑖} . The second indicated as edges or lines set, it can be symbolized as 𝐿 =

{𝑙1, 𝑙2, … 𝑙𝑖}. The previous two sets determine the graph representation as 𝐺 = {𝑁, 𝐿}.  

The subsequent terms are verified in the theory of graph representation [68]. 

- If the two vertices 𝑛1 and 𝑛2 that form the two ends of the line 𝑙 are coincident 

with each other, then the line 𝑙 forms a circuit or loop. 

- The two lines 𝑙1 and 𝑙2 recognized as a parallel lines if they possess conformable 

two ending points.   
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- The term Null graph represents any graph that has no nodes in its structure. 

- The term insignificant defines any graphs that has only one nodes in his structure. 

- Any graph become empty if it doesn’t have any line. 

- The lines 𝑙1 and 𝑙2 are contiguous if exists a node connects between them 

- Two nodes defined as adjacent if exists a line connects these two nodes. 

- The number of lines that connects with a node 𝑛 defined as the degree of 𝑛 and 

indicated by 𝑑𝑒𝑔 (𝑛). 

- Droopy node n is a node that has 𝑑𝑒𝑔 (𝑛)  = 1, by the same token, any line 

connects with a droopy node considered as droopy line. 

- A node 𝑛 that has zero degree defined as separate node.   

- A set of lines 𝐶 is considered as a subgraph of 𝑋 if 𝐶 ∈  𝑋. 

- Considering a graph 𝑋 and two subgraphs of 𝑋, 𝐶1 and 𝐶2, If 𝑋 = 𝐶1 ∪  𝐶2 and      

𝐶1 ∩  𝐶2 = 0, then 𝐶1 and 𝐶2 are defined as consummated subgraphs. 

- Any edge sequence could be considered as an edge train, if all edges in the 

sequence show for only once. 

- If the two ends of the edge train are different, then the edge train called open edge 

train. 

- The term path refers to the open edge train that internal nodes have degree equal 

to two. 

- Connected graph refers to the graph that has a path passes through each two nodes. 

- Any series of lines 𝑇 belongs to the connected graph 𝑋 (𝑁, 𝐿) that fulfill some 

requirements considered as a tree. These requirements include the following: the 

elements of 𝑇 is connected, all the nodes in the graph are included in the 𝑇, there 

is no loop included in 𝑇 and 𝑇 has precisely 𝑛 − 1 lines, where n refers to the 
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number of combined nodes. The remaining lines of 𝑋 that are not in 𝑇 form a set 

called co-tree.  

- The term cut node refers to the set of lines 𝑛 ∈  𝑋 that satisfy the property: if 𝑙 

eliminated from the graph 𝑋, the resulting graph has combinations more than in 

the graph 𝑋. 

- The graph 𝑋 could be separated into two or more portions depending on the 

selected cut set. 

- Consider the graph 𝑋 =  (𝑁, 𝐿) and the sequence of lines 𝑙 belonging to the 

graph 𝑋. Then, 𝑙 considered as a cut set if the resulting of 𝑋 − 𝑙 gives precisely two 

detached parts. 

- If the graph X consists of several parts, assuming that these parts are connected, 

consequently one tree is defined for each parts. The combination of all these trees 

forms the forest. The set of lines that are not belonging to the forest forms co-

forest. 

- Branches and chords refer to the lines that form the tree (forest) and co-tree (co-

forest) respectively. 

- The rank and the nullity are defined as the number of lines that shape the tree 

(forest) and co-tree (co-forest) respectively.  

- In the domain of graph theory, the term spanning tree refers to the tree that has the 

least number of lines connected its nodes. Predominantly, diverse spanning trees 

exist in the connected graph. In case of the graph is disconnect, the term spanning 

forest uses instead of spanning tree. 

- The definition of the spanning tree leads to the two essential terminologies, 

fundamental loop and fundamental cut-set. Considering a connected graph 𝑋 and 

the spanning tree 𝑇 belonging to 𝑋, depending on the chosen spanning tree 𝑇, each 
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line in the graph 𝑋 that isn’t member in the spanning tree 𝑇 forms a circuit together 

with the path consists of a unique subset of lines belonging to the spanning tree 𝑇. 

This circuit or loop called fundamental loop. The definition of the fundamental 

loop clarify that the number of the fundamental loops are identical to the number 

of the nullity of the graph 𝑋. The fundamental cut-set refers to the special subset 

of the graph 𝑋 that has only line belongs to the spanning tree T, in which if this 

subset is removed from the graph, the graph will divided into exactly two sections. 

- In the domain of graph theory, the idiom directed graph indicates to the graph that 

possesses a directed lines. Each directed line specify the transmission between its 

two terminal nodes. 

- Considering a directed graph 𝑋 = (𝑁, 𝐿) has 𝑛 nodes and 𝑙 lines. In this case, the 

incident array Ɍ is defined as a matrix has (𝑛 × 𝑙) elements. The element  Ɍ𝑥,𝑦 

equal to 1 or -1 if the directed line 𝑦 coincident with the terminal 𝑥.  

- In the directed graph, the definition circuit matrix refers to the matrix that relate 

between the edges of the graph and oriented circuits belonging to the graph. 

Considering the circuit matrix 𝐶 =  [𝑐(𝑥,𝑦)], the element of 𝐶 takes 1 if the edge 𝑦 

belonging to the circuit 𝑥 and both have the same orientation, if they have opposite 

direction, 𝑐(𝑥,𝑦) takes -1. In the case the edge 𝑦 doesn’t belong to the circuit 𝑥, 

𝑐(𝑥,𝑦) will takes 0. 

- The word walk in the theory of graph indicates to the sequence of lines in which a 

sequence of nodes form a connections between these lines. The walk becomes a 

trail if all the lines duplicate at most for once. A walk turns out to be a path when 

the lines and nodes that form the walk visited once except the first and the last 

nodes. If the walk is close sequence, in this case the path is called circuit. 
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5.3 Functional Representation of the Hexapod Robot 

The functional representation of the mechanism chain recognized as the schematic 

drawing of the mechanism in which all the elements of the robot drawing similar to 

their construction. Hence, only functional elements essential to the structure are 

shown. The following figure illustrates the functionality representation of the Hexapod 

robot. 

 
Figure 5.1: The Functionality of the Hexapod According to the Stable Tripod State 

Figure 5.1 explains the functionality of the robot during some moving phase according 

to the stable 3+3 locomotion. In this case, the robot hexapod has 20 moving body and 

21 joints. Here, the points of the legs that are touching the ground are considered as 

the universal joints due to the mobility analysis in the third chapter. 

5.4 Graph Representation of the Hexapod Texture 

The representation of any robot structure using the theory of graph aims to define the 

Robot’s parts joints and links as elements belonging to the environment of the graph 

theory i.e. joints and links replaced by edges and vertices respectively. Generally, this 

graph named as the topological graph, and characterized by it possesses no directions 
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in its structure. Sometimes, the topological graph referred as T = (𝑉, 𝐸), so that 𝑉 

defines the group of all the vertices in the graph and 𝐸  recognized as the group that 

includes all the edges. Moreover, this graph representation regarded as a simple 

because of there is only one edge pass throw any two vertices. In this notation, the 

variables 𝑛 and 𝑚 identified as the number of the joints and links respectively in which 

the joints will be listed as 𝑖 = 1 …  𝑛 while the links indicated as 𝑗 = 0 …  𝑚 − 1. 

Subsequently, an arbitrary edge located in the topological graph will be defined as 𝑒𝑖 =

(𝑣𝛼, 𝑣𝛽). The topological graphs have studied widely in [69]. Figure 5.2 describes the 

graph representation of the closed chains that formed by the Hexapod’s leg that in 

contact with the terrain, the ground and the Hexapod’s body. 

 
Figure 5.2: Topological Graph Representation of the Portion of the Hexapod Robot 

that Forms a Closed Chains Manipulator 

It is noticeable that, since all the edged paths originating from the ground link have 

distinct edge labels, therefore the graph shown in figure 5.2 is regarded as a canonical 

graph.  

5.5 Oriented Graph Representation of the Hexapod 

In the theory of graph, the oriented topological graph recognized as the scheme that its 

edges specified by arrows in the sake of determining the steering motion through the 
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kinematic joints that form the robot movement. Subsequently, if the edge  𝑒𝑖 =

(𝑣𝛼, 𝑣𝛽) exists in the oriented graph that leads to the edge (𝑣𝛽 , 𝑣𝛼) is not resident in 

that graph. Moreover, consider the edge  𝑒𝑖  that reside in the graph 𝑇⃗⃗  ⃗, in this case the 

link 𝛼 known as the source and the link 𝛽 defined as the head. The following figure 

illustrates the movement directions of the joints that exist in the figure 5.2 

 
Figure 5.3: Oriented Topological Graph Representation of the Portion of the 

Hexapod Robot that Forms a Closed Chains Manipulator 

5.6 The Predecessor Relevance of the Spanning Tree 

Consider the definition of the spanning tree of the topological graph introduced in the 

second chapter. The configuration of this graph characterized as any two vertices 

possess only one trace passing each other. The spanning tree can be helpful in order to 

re-analysis the structure of the closed chains that formed by the three legs of the 

Hexapod. The spanning tree can be characterized as ƌ = (𝑉, 𝐸ƌ). The following figure 

clarifies a spanning tree related to the topology configuration of the closed chains that 

have been built by the structure of the three leg of the Hexapod that has a contact with 

the ground.  
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Figure 5.4: A Spanning Tree of the Portion of the Hexapod Robot that Forms a 

Closed Chains Manipulator 

Kinematically, the ordering relevance between the components of the kinematic chains 

is extremely important in order to allocate the motion orientation. Hence, the 

importance of steering the edges of the spanning tree take place. Moreover, the direct 

root topological graph recognized as the topology that characterized by existing 

oriented trace came out from the fixed platform directed to all the vertices allocated in 

the graph. The subsequent graph shows the root-directed tree according to the spanning 

tree that explained in the figure 5.4. The term predecessor defined as the ordering 

relevance between two vertices belonging to the root-directed tree so that there is an 

oriented line passing through both of them. 

 
Figure 5.5: The Root-Directed Tree According to the Closed Chains Formed by the 

three Assistant Leg of the Hexapod 
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Consider the guided edges   𝑒𝑖1⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑣𝛼 , 𝑣𝛽) and   𝑒𝑖2⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑣𝛽 , 𝑣𝛾) are belonging to the 

root-directed tree. Then, the following properties are satisfied; it is possible to identify 

the edges as 𝑣𝛼 = 𝑣𝛽 − 1  and  𝑣𝛽 = 𝑣𝛾 − 1  according to the   𝑒𝑖1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and   𝑒𝑖2⃗⃗ ⃗⃗ ⃗⃗  ⃗  

respectively. Also, the predecessor relevance of the two mentioned edges as 

follows 𝑒𝑖1 = 𝑒𝑖2 − 1.  

5.7 The Fundamental Cycle 

According to the determination of the Fundamental loops that introduced in the second 

chapter, the root-directed tree that provided in the figure 5.5 possesses two co-tree 

edges so that each of them identify an essential loop. Through the following figure, the 

fundamental circuits 𝐴8 and 𝐴15 will be shown. 

5.8 The Relationship between the Kinematics and the Graph Theory  

As referenced in the kinematic section, any solid body can be symbolized using a 

uniform matrix. Basically, this matrix demonstrates the linkage between a system of 

coordinate installed on the body and the external reference system. Consequently, the 

relation among the body 𝑣𝛼 and the reference system will be denoted as 𝑇(𝑣𝛼). 

Moreover, take into the consideration a joint 𝐽𝑖 relates two bodies 𝑣𝛼 , 𝑣𝛽 w ith each 

other. Also, suppose that the transmission direction of the joint 𝐽𝑖 will be from the body 

𝑣𝛽 to 𝑣𝛼. Consequently, the relation between the bodies symbolized as 𝐽𝑖⃗⃗  = (𝑣𝛽, 𝑣𝛼). 

Hence, the joint 𝐽𝑖⃗⃗  could be expressed as the following equation 

𝐷(𝐽𝑖) = (𝑇(𝑣𝛽))
−1
. 𝑇(𝑣𝛼)   (5.1) 

 

In equation (5.1), 𝐷(𝐽𝑖) represents the uniform transformation of the coordinate system 

that located at the body 𝑣𝛼 with respect to the coordinate that existing on the body 𝑣𝛽.  
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The plurality of kinematic techniques handle the joints as a set of a 1-DOF revolute or 

translation joint in order to simplify the analysis. However, the screw vector can model 

these type of joints easily. Then, the joint configuration 𝐷(𝐽𝑖) can be given as 

𝐷(𝐽𝑖) = exp ([$], 𝜃𝑖) (5.2) 
 

5.8.1 The Configurations of the Kinematic Structure 

As discussed earlier, the determination of the consecutive relation of the motion 

directions through the joints is a critical objective to find out the configuration of a 

body belongs to that mechanism. However, through the theory of graph, it is possible 

to identify any Link’s configuration by observing the differences between the oriented 

topological graph and the root-directed tree. Let the variable ƍ(𝑖) indicates to the 

configuration of the joint 𝑖. Consequently, there are three distinct cases for an arbitrary 

joint (𝑣𝛽, 𝑣𝛼) that belongs to the oriented topological graph. The first state occurs when 

the joint (𝑣𝛽, 𝑣𝛼) belongs to all of the directed topological graph and the root-directed 

tree. In this case, the variable ƍ((𝑣𝛽 , 𝑣𝛼))  substituted by 1. The second situation arises 

when the joint (𝑣𝛽, 𝑣𝛼) belongs to directed topological graph and (𝑣𝛼, 𝑣𝛽) belongs to 

the root-directed graph. Then, the variable ƍ((𝑣𝛽 , 𝑣𝛼))  replaced by -1. Lastly, when 

the joint (𝑣𝛽, 𝑣𝛼) existing only in the directed topology graph. Hence, ƍ((𝑣𝛽 , 𝑣𝛼)) will 

be zero.  

According to the discussion above, the equation (5.2) can turn into a more formal form 

depending on the variable ƍ(𝑖).  

𝐷(𝐽𝑖) = exp (ƍ(𝐽𝑖). ([$], 𝜃𝑖)) (5.3) 
 

Moreover, we can derive any Body’s configuration 𝑇(𝑣𝛼) according to the equation 

(5.3) as follow 
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𝑇(𝑣𝛼) = 𝐷(𝐽𝑟).…  𝐷(𝐽𝑖 − 1). 𝐷(𝐽𝑖) (5.4) 
 

As an example with regards to the structure of the Hexapod robot. It is possible to 

define the configuration of the moving platform body 19 due to the root directed tree 

and the oriented topological graph that was shown in figures 5.3 and 5.5   

𝑇(19) = 𝐷(4).𝐷(3). 𝐷(2). 𝐷(1) (5.5) 
 

Supposing that the joint that characterizes the point contact of the Hexapod’s leg with 

the ground modeled as a 1-dof joint. Then, the equation 5.5 could be expanded as 

follow.  

𝑇(19) = exp ([$4], 𝜃4)). exp ([$3], 𝜃3)). exp ([$2], 𝜃2)). exp ([$1], 𝜃1)) (5.6) 
 

5.9 Kinematic Restraints 

In kinematics, the analyzing of the closed loops manipulators considered as one of the 

enormously problematic issues due to the dependencies between the loops and because 

of existence high ordered passive joints. However, the theory of graph involves several 

techniques can be helpful to solve these complications. The cut body and cut joints 

methods can make a difference in the way of handling the parallel manipulator. 

5.9.1 The Cut Joint Methodology 

Supposing that the fundamental circuit 𝐴15 that was shown in Figure 5.6. This circuit 

consists of two open kinematic chains in addition to the co-tree joint 𝐽(13,19). Hence, 

the joint 𝐽15 is handled as an eliminated joint and discarded from the fundamental 

circuit 𝐴15. Subsequently, a system of restraint is shaped due to the eliminated joint 

𝐽15 as following 

𝑢15(13,19) = 0 (5.7) 
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In this case, it is possible to define the links 13 and 19 by applying the equation (5.4) 

provided that all the joint that award the configuration of the links are composed of 

low kinematic pairs.  

𝑇(13) = 𝐷(18). 𝐷(17). 𝐷(16) 
𝑇(19) = 𝐷(4). 𝐷(3). 𝐷(2). 𝐷(1) 

(5.8) 

 

Thereafter, the equations (5.7) and (5.8) will define the kinematic constraints of the 

fundamental circuit 𝐴15 [42]. This methodology can be extremely valuable in the case 

of existing only one high ordered joint in each closed kinematic loop. 

 
Figure 5.6: Fundamental Circuits Corresponding to the Root Directed Tree 

5.9.2 The Cut Body Method 

As a replacement of rejecting the Fundamental Loop’s chord, this tactic handles with 

the whole loop including the cut joint as a locked kinematic series. In this 

methodology, identifying a uniformity function to label the joints are needed in order 

to form the restricted system for each closed loop. Hence, the mentioned function will 

be defined due to the alignment of the Joint’s direction in the directed root spanning 

tree and the Fundamental circuit. Subsequently, if the mentioned directions are 
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identical the alignment function Ϭ(𝐽𝑖) of the joint 𝑖 has a value equal to one. In contrast, 

if the directions are opposed. Then, the function Ϭ(𝐽𝑖) has -1 value. 

According to the structure of the Hexapod that represents three legs touching the 

ground, the Figure 5.6 exemplifies the Fundamental circuits 𝐴15 and 𝐴8 

corresponding to the root directed tree. Subsequently, the assembling in A15, for 

example, is as follows 1 <15 2 <15 3 <15 4 <15 18 <15 17 <15 16 <15 15. Then, 

the Sequential arrangement of the relation of all the joints in the fundamental cycle 

leads to the closing state for 𝐴𝑖. 

𝐹𝑖 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] 

(5.9) 

 

Where 𝐹𝑖 in the equation (5.9) for the sequence of joints 𝑚 <𝑖 . . .<𝑖 𝑖 is given as 

follows 

𝐹𝑖 = 𝑒𝑥𝑝 (ƍ(𝑚). ([$𝑚], 𝜃𝑚).… . 𝑒𝑥𝑝 (ƍ(𝑖). ([$𝑖], 𝜃𝑖)  (5.10) 

 

According to the Figure 5.6 the system of loop restrictions for the fundamental cycles 

𝐴15 and 𝐴8 is given due to the equation (5.9) and (5.10) as following 

𝐹15 = 𝐼4×4 , 𝐹8 = 𝐼4×4 (5.11) 

 

Where  

𝐹15 = D(1)
−1. D(2)−1. D(3)−1. D(4)−1. D(18). D(17). D(16). D(15) 

𝐹8 = D(1)
−1. D(2)−1. D(3)−1. D(4)−1. D(11). D(10). D(9). D(8) 

(5.12) 

 

In equation (5.12) D(𝑖) represents the configuration of the joint 𝑖 that should be possess 

only 1 degree of freedom. 



98 

 

Chapter 6 

6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The integration process between the Kinematics and Locomotion analysis is an 

indispensable element when investigating the Legged Robots so that giving accurate 

sequences of joint's movements that capable of accomplishing the Robot's tasks may 

be done correctly only by knowing the kinetic structure and conducting the appropriate 

kinematic analysis. In this Thesis, an overall kinematic analysis includes dealing with 

the problem of the hexapod’s single leg via geometric approach, (D-H) convention and 

the theory of screws. It is noticeable that, despite the importance of the (D-H) 

convention, the screw theory demonstrates ease in application, implementation and 

extraction of results. Moreover, the geometric approach cannot be dispensed with 

because of its importance in achieving the Hexapod’s inverse kinematics. This 

dissertation also demonstrates a new vectorial technique to hold the direct kinematics 

using the product of exponential method and some techniques related to the parallel 

manipulator analysis. Besides, the process of finding the inverse kinematics is 

implemented using the geometry-based approach. Furthermore, a comparison process 

to find the mobility of the Hexapod between the conventional method and the 

reciprocity-based method shows the superiority of the second one in terms of their 

ability to predict the way of movement. Also, the screw theory utilizes in this thesis in 

order to perform the velocity analysis of the hexagonal Hexapod structure with the full 

assistance of the reciprocal theory.            
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The Hexapod's locomotion analysis and the stabilization edge discussed and 

implemented during a full working cycle regarding two essential Mobile Robot's gait 

which are the insect and the mammal locomotion. Furthermore, the relationship 

between the Hexapod architecture and the graph theory illustrated using some issues 

related to the network model approach aiming to build a kinetic representation of the 

Hexapod's construction.   

6.2 Future Work  

In this thesis, several hypotheses imposed aiming to carry out the kinematic survey of 

the Hexapod on the basis that it is a symmetric manipulator in term of kinetics, but the 

truth is slightly different. When the Hexapod starts moving, the Robot's body must 

lose three degrees of freedom in order keep the robot in kinetic symmetry. This means 

that the robot must walk parallel to the ground. However, in order to perform certain 

tasks, such as crossing obstacles and walking on the slopes, we must handle the 

Hexapod as an asymmetrical robot. Subsequently, the kinematic modeling of the 

Hexapod without limitations will be the focus of future work. 
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Appendix A: Position Analysis of a Duty Cycle According to the 

Mammal Locomotion for the Hexapod Robot (Matlab) 

function mammallocomotion 

% the lengths of the Leg's links and the Radios  

l1=1; l2=1; l3=1; r=1;         

% supporting legs analysis 

% the first supporting leg, leg 1 

% the Joint's variables, during this phase, all are zero 

t1=0; t2=0; t3=0;               

% the intial configuration of the first leg H1 WRT F1  

gf1h10=[1 0 0 0;0 1 0 -l1;0 0 1 l2+l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0]; w2=[1 0 0]; w3=[1 0 0]; 

q1=[0 0 0]; q2=[0 0 l3]; q3=[0 0 l3+l2];    

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H1 WRT F1                     

gf1h1=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf1h10   

% getting the frame F1 WRT global frame  

T0f1=[1 0 0 0;0 1 0 r+l1;0 0 1 0;0 0 0 1];  

% getting the frame H1 WRT global frame 

g0h1=T0f1*gf1h1; 

% getting the position of H1 and F1 WRT global frame              

pof1=T0f1(1:3,4);  poh1=g0h1(1:3,4); 

% second supporting leg 'leg3' %%% 

% the intial configuration of the second supporting leg 

H3 WRT F3 

gf3h30=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];          

% the configuration of the screw axes                  

w1=[1 0 0]; w2=[1 0 0]; w3=[1 0 0]; 

q1=[0 0 0]; q2=[0 0 l3]; q3=[0 0 l3+l2];                                      

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H3 WRT F3    

gf3h3=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf3h30                    

% getting the frame F3 WRT global frame   

T0f3=[1 0 0 r*cos(pi/6);0 1 0 (-r*sin(pi/6))-l1;0 0 1 0;0 

0 0 1];                 

% getting the frame H3 WRT global frame      

g0h3=T0f3*gf3h3;     

% getting the position of H3 and F3 WRT global frame                                             

pof3=T0f3(1:3,4); poh3=g0h3(1:3,4);  

% the third supporting leg, leg 5 

% the intial configuration of the third supporting leg H5 

WRT F5            

gf5h50=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];           

% the configuration of the screw axes                  
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w1=[1 0 0]; w2=[1 0 0];w3=[1 0 0]; 

q1=[0 0 0]; q2=[0 0 l3]; q3=[0 0 l3+l2];               

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                                                           

% applying the product of exponential to obtain H5 WRT F5             

gf5h5=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf5h50   

% getting the frame F5 WRT global frame          

T0f5=[1 0 0 r*cos(5*pi/6);0 1 0 (-r*sin(5*pi/6))-l1;0 0 1 

0;0 0 0 1];         

% getting the frame H5 WRT global frame        

g0h5=T0f5*gf5h5;                          

% getting the position of H3 and F3 WRT global frame         

pof5=T0f5(1:3,4); poh5=g0h5(1:3,4);                                               

% finding the configuration of mass center WRT global 

frame   

% verifying technique 

n1=(poh1(1,1)-poh3(1,1)).^2;  n2=(poh1(2,1)-

poh3(2,1)).^2;  

n3=(poh1(3,1)-poh3(3,1)).^2;  k1=sqrt(n1+n2+n3)     

n4=(poh1(1,1)-poh5(1,1)).^2;  n5=(poh1(2,1)-

poh5(2,1)).^2;    

n6=(poh1(3,1)-poh5(3,1)).^2;  k2=sqrt(n4+n5+n6)     

n7=(poh1(1,1)-poh5(1,1)).^2;  n8=(poh1(2,1)-

poh5(2,1)).^2;   

n9=(poh1(3,1)-poh5(3,1)).^2;  k3=sqrt(n7+n8+n9);  

k=sqrt(3)*r;  

if k1==k2 && k2==k3  disp('the centroid is found')  

% finding the position of the centroid     

cx=(poh1(1,1)+poh3(1,1)+poh5(1,1))/3;  

cy=(poh1(2,1)+poh3(2,1)+poh5(2,1))/3; 

cz=(poh1(3,1)+poh3(3,1)+poh5(3,1))/3; 

poc=[cx;cy;cz]; 

% finding the orientation of the centroid WRT global 

frame       

vy=(poh1(1:3,1)-poc(1:3,1));   

vy=vy(1:3,1)/sqrt(vy(1,1)^2+vy(2,1)^2+vy(3,1)^2); 

vx=(poh3(1:3,1)-poh5(1:3,1)); 

vx=vx/sqrt(vx(1,1)^2+vx(2,1)^2+vx(3,1)^2); 

vz=cross(vx,vy); 

% drawing the position of H1,H3,H5 WRT global frame 

drawpos(poh1,poh3,poh5,4)                                      

% drawing the position of F1,F3,F5 WRT global frame 

drawpos(pof1,pof3,pof5,3)                                      

% drawing the position CENTER OF MASS WRT global frame   

poc=[cx cy cz]; 

starts = zeros(3,3);ends = [poc; 0 0 0; 0 0 0]; 

quiver3(starts(:,1), starts(:,1), starts(:,1), ends(:,1), 

ends(:,2), ends(:,3), 'black')  

else disp('something went wrong')                 

end 

% the first swingin leg, leg'2'  
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% the intial configuration of the first leg H2 WRT F2  

gh2f20=[1 0 0 0;0 1 0 l1;0 0 1 -(l2+l3);0 0 0 1];                

% the configuration of the screw axes                       

w1=[1 0 0]; w2=[1 0 0]; 

q1=[0 l1 0]; q2=[0 l1 -l2];                             

% the matrices that expresses the screws of the leg 2      

s1=poe(w1,q1);s2=poe(w2,q2);      

% applying the product of exponential to obtain F2 WRT H2  

gh2f2=expm(t1*s1)*expm(t2*s2)*gh2f20;          

% the relation between the centroid frame and H2 frame      

gch2=[1 0 0 r*cos(pi/6);0 1 0 r*sin(pi/6);0 0 1 0;0 0 0 

1];  

% the relation between the centroid frame and the global 

frame          

g0c= [1 0 0 0;0 1 0 0;0 0 1 2;0 0 0 1]; 

% getting the frame F2 wrt global reference frame. 

g0f2= g0c*gch2*gh2f2;pof2=g0f2(1:3,4);     

% getting the position of H2 wrt global reference frame.  

g0h2=g0c*gch2; p0h2=g0h2(1:3,4);       

% the second swingin leg, leg'4'          

% the intial configuration of the first leg H4 WRT F4        

gh4f40=[1 0 0 0;0 1 0 -l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0]; w2=[1 0 0]; 

q1=[0 -l1 0];q2=[0 -l1 -l2]; 

% the matrices that expresses the screws of the leg 4                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F4 WRT H4  

gh4f4=expm(t1*s1)*expm(t2*s2)*gh4f40;            

% the relation between the centroid frame and H4 frame  

gch4=[1 0 0 0;0 1 0 -r;0 0 1 0;0 0 0 1];  

% getting the frame F4 wrt global reference frame.     

g0f4=g0c*gch4*gh4f4;pof4=g0f4(1:3,4);   

% getting the position of H4 wrt global reference frame.   

g0h4=g0c*gch4; p0h4=g0h4(1:3,4);   

% the third swingin leg, leg'6'          

% the intial configuration of the first leg H6 WRT F6        

gh6f60=[1 0 0 0;0 1 0 l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];q1=[0 l1 0];q2=[0 l1 -l2]; 

% the matrices that expresses the screws of the leg 6                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F6 WRT H6  

gh6f6=expm(t1*s1)*expm(t2*s2)*gh6f60            

% the relation between the centroid frame and H6 frame  

gch6=[1 0 0 -r*cos(pi/6);0 1 0 r*sin(pi/6); 0 0 1 0;0 0 0 

1];  

% getting the frame F6 wrt global reference frame.     

g0f6=g0c*gch6*gh6f6;pof6=g0f6(1:3,4);   

% getting the position of H6 wrt global reference frame.   

g0h6=g0c*gch6;p0h6=g0h6(1:3,4);      
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% drawing the position of F2,F4,F6 WRT global frame 

drawpos(pof2,pof4,pof6,2);                                   

% drawing the position of H2,H4,H6 WRT global frame  

drawpos(p0h2,p0h4,p0h6,1);                                   

  

%%%%%% first moving stage 

clear all; 

figure; 

% the lengths of the Leg's links and the Radios  

l1=1; l2=1; l3=1; r=1;  

% supporting legs analysis 

% the first supporting leg, leg 1 

% the Joint's variables, during this phase 

t1in=-pi/6; t2in=0; 

t1=-t1in;t2=-t2in;t3=t1in+t2in;                            

% the intial configuration of the first leg H1 WRT F1  

gf1h10=[1 0 0 0;0 1 0 -l1;0 0 1 l2+l3;0 0 0 1]; 

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];         

q1=[0 0 0];q2=[0 0 l3];q3=[0 0 l3+l2];    

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H1 WRT F1                     

gf1h1=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf1h10   

% getting the frame F1 WRT global frame  

T0f1=[1 0 0 0;0 1 0 r+l1;0 0 1 0;0 0 0 1];  

% getting the frame H1 WRT global frame 

g0h1=T0f1*gf1h1 

% getting the position of H1 and F1 WRT global frame              

pof1=T0f1(1:3,4);  poh1=g0h1(1:3,4); 

% second supporting leg 'leg3' %%% 

% the intial configuration of the second supporting leg 

H3 WRT F3 

gf3h30=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];          

% the configuration of the screw axes                  

w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];                  

q1=[0 0 0];q2=[0 0 l3];q3=[0 0 l3+l2];                                                       

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H3 WRT F3    

gf3h3=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf3h30;                    

% getting the frame F3 WRT global frame   

T0f3=[1 0 0  r*cos(pi/6);0 1 0 (-r*sin(pi/6))-l1; 0 0 1 

0;0 0 0 1];                 

% getting the frame H3 WRT global frame      

g0h3=T0f3*gf3h3;     

% getting the position of H3 and F3 WRT global frame                                             

pof3=T0f3(1:3,4); poh3=g0h3(1:3,4);  

% the third supporting leg, leg 5 

% the intial configuration of the third supporting leg H5 

WRT F5            
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gf5h50=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];           

% the configuration of the screw axes                  

w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];                       

q1=[0 0 0];q2=[0 0 l3];q3=[0 0 l3+l2];               

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                                                           

% applying the product of exponential to obtain H5 WRT F5             

gf5h5=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf5h50;   

% getting the frame F5 WRT global frame          

T0f5=[1 0 0 r*cos(5*pi/6);0 1 0 (-r*sin(5*pi/6))-l1;0 0 1 

0;0 0 0 1];         

% getting the frame H5 WRT global frame        

g0h5=T0f5*gf5h5;                          

% getting the position of H3 and F3 WRT global frame         

pof5=T0f5(1:3,4); poh5=g0h5(1:3,4);                                               

% finding the configuration of mass center WRT global 

frame   

% verifying technique 

n1=(poh1(1,1)-poh3(1,1)).^2;  n2=(poh1(2,1)-

poh3(2,1)).^2;  

n3=(poh1(3,1)-poh3(3,1)).^2;  k1=sqrt(n1+n2+n3)     

n4=(poh1(1,1)-poh5(1,1)).^2;  n5=(poh1(2,1)-

poh5(2,1)).^2;    

n6=(poh1(3,1)-poh5(3,1)).^2;  k2=sqrt(n4+n5+n6)     

n7=(poh1(1,1)-poh5(1,1)).^2;  n8=(poh1(2,1)-

poh5(2,1)).^2;   

n9=(poh1(3,1)-poh5(3,1)).^2;  k3=sqrt(n7+n8+n9);  

k=sqrt(3)*r;  

if k1==k2 && k2==k3  disp('the centroid is found')  

% finding the position of the centroid     

cx=(poh1(1,1)+poh3(1,1)+poh5(1,1))/3;   

cy=(poh1(2,1)+poh3(2,1)+poh5(2,1))/3; 

cz=(poh1(3,1)+poh3(3,1)+poh5(3,1))/3; 

poc=[cx;cy;cz]; 

% finding the orientation of the centroid WRT global 

frame       

vy=(poh1(1:3,1)-poc(1:3,1));   

vy=vy(1:3,1)/sqrt(vy(1,1)^2+vy(2,1)^2+vy(3,1)^2) 

vx=(poh3(1:3,1)-poh5(1:3,1)); 

vx=vx/sqrt(vx(1,1)^2+vx(2,1)^2+vx(3,1)^2) 

vz=cross(vx,vy); 

% drawing the position of H1,H3,H5 WRT global frame 

drawpos(poh1,poh3,poh5,4); 

% drawing the position of F1,F3,F5 WRT global frame 

drawpos(pof1,pof3,pof5,3); 

% drawing the position CENTER OF MASS WRT global frame   

poc=[cx cy cz]; 

starts = zeros(3,3);ends = [poc; 0 0 0; 0 0 0]; 

quiver3(starts(:,1), starts(:,1), starts(:,1), ends(:,1), 

ends(:,2), ends(:,3), 'black')  

else disp('something went wrong')                 
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end 

% the first swingin leg, leg'2'  

t1=pi/6; t2=0; 

% the intial configuration of the first leg H2 WRT F2  

gh2f20=[1 0 0 0;0 1 0 l1;0 0 1 -(l2+l3);0 0 0 1];                

% the configuration of the screw axes                       

w1=[1 0 0];w2=[1 0 0];q1=[0 l1 0];q2=[0 l1 -l2];                            

% the matrices that expresses the screws of the leg 2      

s1=poe(w1,q1);s2=poe(w2,q2);      

% applying the product of exponential to obtain F2 WRT H2  

gh2f2=expm(t1*s1)*expm(t2*s2)*gh2f20;          

% the relation between the new centroid frame and H2 

frame      

gcnewh2=[1 0 0 r*cos(pi/6);0 1 0 r*sin(pi/6);0 0 1 0;0 0 

0 1];  

% the relation between the new centroid frame and the 

global frame          

g0cnew= [1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F2 wrt global reference frame. 

g0f2=g0cnew*gcnewh2*gh2f2;pof2=g0f2(1:3,4)     

% getting the position of H2 wrt global reference frame.  

g0h2=g0cnew*gcnewh2; p0h2=g0h2(1:3,4);       

% the second swingin leg, leg'4' 

t1=pi/6;t2=0; 

% the intial configuration of the first leg H4 WRT F4        

gh4f40=[1 0 0 0;0 1 0 -l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];q1=[0 -l1 0];q2=[0 -l1 -l2]; 

% the matrices that expresses the screws of the leg 4                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F4 WRT H4  

gh4f4=expm(t1*s1)*expm(t2*s2)*gh4f40            

% the relation between the new centroid frame and H4 

frame  

gcnewh4=[1 0 0 0;0 1 0 -r;0 0 1 0;0 0 0 1]; 

% the relation between the new centroid frame and global 

frame 

g0cnew=[1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F4 wrt global reference frame.     

g0f4=g0cnew*gcnewh4*gh4f4; pof4=g0f4(1:3,4)   

% getting the position of H4 wrt global reference frame.   

g0h4=g0cnew*gcnewh4;  p0h4=g0h4(1:3,4);   

% the third swingin leg, leg'6'          

% the intial configuration of the first leg H6 WRT F6        

gh6f60=[1 0 0 0;0 1 0 l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];q1=[0 l1 0];q2=[0 l1 -l2]; 

% the matrices that expresses the screws of the leg 6                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F6 WRT H6  

gh6f6=expm(t1*s1)*expm(t2*s2)*gh6f60;            
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% the relation between the centroid frame and H6 frame  

gcnewh6=[1 0 0 -r*cos(pi/6);0 1 0 r*sin(pi/6);0 0 1 0 ;0 

0 0 1];  

% getting the frame F6 wrt global reference frame.     

g0f6=g0cnew*gcnewh6*gh6f6; pof6=g0f6(1:3,4);   

% getting the position of H6 wrt global reference frame.   

g0h6=g0cnew*gcnewh6;p0h6=g0h6(1:3,4);      

% drawing the position of F2,F4,F6 WRT global frame 

drawpos(pof2,pof4,pof6,2)  

% drawing the position of H2,H4,H6 WRT global frame  

drawpos(p0h2,p0h4,p0h6,1) 

  

% the second moving phase 

clear all; 

figure; 

% the lengths of the Leg's links and the Radios  

l1=1; l2=1; l3=1; r=1;  

% supporting legs analysis 

% the first supporting leg, leg 2 

% the Joint's variables, during this phase 

t1in=-pi/6;t2in=0;     

t1=-t1in;t2=-t2in;t3=t1in+t2in;                              

% the intial configuration of the first supporting leg H2 

WRT F2  

gf2h20=[1 0 0 0; 0 1 0 -l1-(l2+l3)*sin(pi/6)                                

        0 0 1 (l1+l2)*cos(pi/6);0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];w3=[1 0 0]; 

q1=[0 0 0];q2=[0 -l3*sin(pi/6) l3*cos(pi/6)];                

q3=[0 -(l3+l2)*sin(pi/6) (l3+l2)*cos(pi/6)];  

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H2 WRT F2                     

gf2h2=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf2h20;  

% getting the frame F2 WRT global frame  

T0f2=[1 0 0 0.8661;0 1 0 3.5000;0 0 1 0.0000;0 0 0 1];  

% getting the frame H2 WRT global frame 

g0h2=T0f2*gf2h2; 

% getting the position of H2 and F2 WRT global frame              

pof2=T0f2(1:3,4);   

poh2=g0h2(1:3,4); 

% second supporting leg 'leg4' %%% 

% the intial configuration of the second supporting leg 

H4 WRT F4 

gf4h40=[1 0 0 0                              

         0 1 0 -l1+(l2+l3)*sin(pi/6)         

         0 0 1 (l2+l3)*cos(pi/6)            

         0 0 0 1];           

% the configuration of the screw axes                  

w1=[1 0 0]; w2=[1 0 0];w3=[1 0 0];         

q1=[0 0 0];q2=[0 -l3*sin(pi/6) l3*cos(pi/6)];                
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q3=[0 -(l3+l2)*sin(pi/6) (l3+l2)*cos(pi/6)];                                                         

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H4 WRT F4    

gf4h4=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf4h40                    

% getting the frame F4 WRT global frame   

T0f4=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];                 

% getting the frame H4 WRT global frame      

g0h4=T0f4*gf4h4    

% getting the position of H4 and F4 WRT global frame                                             

pof4=T0f4(1:3,4); 

poh4=g0h4(1:3,4);  

% the third supporting leg, leg 6 

% the intial configuration of the third supporting leg H6 

WRT F6            

gf6h60=[1 0 0 0        

        0 1 0 -l1-(l2+l3)*sin(pi/6)        

        0 0 1 (l1+l2)*cos(pi/6)       

        0 0 0 1];          

% the configuration of the screw axes                  

w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];         

q1=[0 0 0];q2=[0 -l3*sin(pi/6) l3*cos(pi/6)];               

q3=[0 -(l3+l2)*sin(pi/6) (l3+l2)*cos(pi/6)];               

% the matrices that expresses the screws of the 

supporting leg 6 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                                                           

% applying the product of exponential to obtain H6 WRT F6             

gf6h6=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf6h60   

% getting the frame F6 WRT global frame          

T0f6=[1 0 0 -0.8661;0 1 0 3.5000;0 0 1 0;0 0 0 1];         

% getting the frame H6 WRT global frame        

g0h6=T0f6*gf6h6;                          

% getting the position of H6 and F6 WRT global frame         

pof6=T0f6(1:3,4); 

poh6=g0h6(1:3,4);                                               

% finding the configuration of mass center WRT global 

frame   

% verifying technique 

n1=(poh4(1,1)-poh2(1,1)).^2; n2=(poh4(2,1)-poh2(2,1)).^2; 

n3=(poh4(3,1)-poh2(3,1)).^2; k1=sqrt(n1+n2+n3) 

n4=(poh4(1,1)-poh6(1,1)).^2; n5=(poh4(2,1)-poh6(2,1)).^2; 

n6=(poh4(3,1)-poh6(3,1)).^2; k2=sqrt(n4+n5+n6) 

n7=(poh2(1,1)-poh6(1,1)).^2; n8=(poh2(2,1)-poh6(2,1)).^2; 

n9=(poh2(3,1)-poh6(3,1)).^2; k3=sqrt(n7+n8+n9); 

k=sqrt(3)*r 

if k1==k2 && k2==k3  disp('the centroid is found')  

% finding the position of the centroid     

cx=(poh2(1,1)+poh4(1,1)+poh6(1,1))/3   

cy=(poh2(2,1)+poh4(2,1)+poh6(2,1))/3 

cz=(poh2(3,1)+poh4(3,1)+poh6(3,1))/3 

poc=[cx; cy ;cz]; 
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% finding the orientation of the centroid WRT global 

frame       

vy=(poc(1:3,1)-poh4(1:3,1));   

vy=vy(1:3,1)/sqrt(vy(1,1)^2+vy(2,1)^2+vy(3,1)^2) 

vx=(poh2(1:3,1)-poh6(1:3,1)); 

vx=vx/sqrt(vx(1,1)^2+vx(2,1)^2+vx(3,1)^2) 

vz=cross(vx,vy)  

else disp('something went wrong')                 

end 

% the first swingin leg, leg'1'  

t1=pi/6; t2=0; 

% the intial configuration of the first leg H1 WRT F1  

gh1f10=[1 0 0 0;0 1 0 0;0 0 1 -1.7321;0 0 0 1];               

% the configuration of the screw axes                       

w1=[1 0 0];w2=[1 0 0];    

q1=[0 l1 0];q2=[0 l1-l2*sin(pi/6) -l2*cos(pi/6)];                            

% the matrices that expresses the screws of the leg 1      

s1=poe(w1,q1);s2=poe(w2,q2);      

% applying the product of exponential to obtain F1 WRT H1  

gh1f1=expm(t1*s1)*expm(t2*s2)*gh1f10          

% the relation between the new centroid frame and H1 

frame      

gcnewh1=[1 0 0 0;0 1 0 r;0 0 1 0;0 0 0 1];  

% the relation between the new centroid frame and the 

global frame          

g0cnew= [1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F1 wrt global reference frame. 

g0f1=g0cnew*gcnewh1*gh1f1;pof1=g0f1(1:3,4)     

% getting the position of H1 wrt global reference frame.  

g0h1=g0cnew*gcnewh1;p0h1=g0h1(1:3,4); 

% the second swingin leg, leg'3' 

t1=pi/6;t2=0 ; 

% the intial configuration of the first leg H3 WRT F3        

gh3f30=[1 0 0 0;0 1 0 -2;0 0 1 -1.7321;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];      

q1=[0 -l1 0];q2=[0 -l1+(l2*sin(pi/6)) -l2*cos(pi/6)]; 

% the matrices that expresses the screws of the leg 3                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F3 WRT H3  

gh3f3=expm(t1*s1)*expm(t2*s2)*gh3f30            

% the relation between the new centroid frame and H3 

frame  

gcnewh3=[1 0 0 r*cos(pi/6);0 1 0 -r*sin(pi/6);0 0 1 0;0 0 

0 1]; 

% the relation between the new centroid frame and global 

frame 

g0cnew=[1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F3 wrt global reference frame.     

g0f3=g0cnew*gcnewh3*gh3f3; pof3=g0f3(1:3,4);   

% getting the position of H3 wrt global reference frame.   
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g0h3=g0cnew*gcnewh3;  p0h3=g0h3(1:3,4);  

% the third swingin leg, leg'5'          

% the intial configuration of the first leg H5 WRT F5        

gh5f50=[1 0 0 0;0 1 0 -2;0 0 1 -1.7321;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];     

q1=[0 -l1 0];q2=[0 -l1+(l2*sin(pi/6)) -l2*cos(pi/6)]; 

% the matrices that expresses the screws of the leg 5                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F5 WRT H5  

gh5f5=expm(t1*s1)*expm(t2*s2)*gh5f50;            

% the relation between the centroid frame and H5 frame  

gcnewh5=[1 0 0 -r*cos(pi/6);0 1 0 -r*sin(pi/6);0 0 1 0;0 

0 0 1];  

% getting the frame F5 wrt global reference frame.     

g0f5=g0cnew*gcnewh5*gh5f5; pof5=g0f5(1:3,4);   

% getting the position of H5 wrt global reference frame.   

g0h5=g0cnew*gcnewh5;p0h5=g0h5(1:3,4);       

% drawing the position of H1,H3,H5 WRT global frame  

drawpos(p0h1,p0h3,p0h5,4) 

% drawing the position of F1,F3,F5 WRT global frame 

drawpos(pof1,pof3,pof5,3) 

% drawing the position of F2,F4,F6 WRT global frame 

drawpos(pof2,pof4,pof6,2) 

% drawing the position of H2,H4,H6 WRT global frame 

drawpos(poh2,poh4,poh6,1) 

% drawing the position CENTER OF MASS WRT global frame   

starts=zeros(3,3); ends = [[cx cy cz]; 0 0 0; 0 0 0]; 

quiver3(starts(:,1), starts(:,1), starts(:,1), ends(:,1), 

ends(:,2), ends(:,3), 'black') 

end 

function pof=poe(w1,q1) 

ww1=[0     -w1(3)   w1(2);... 

w1(3)   0     -w1(1);... 

-w1(2)   w1(1)   0  ]; 

v1=transp(cross(q1,w1)); 

pof=[ww1(1:3,1:3) v1(1:3,1);0 0 0 0]; 

end 

function drawpos(p1,p2,p3,color) 

pb1 = [p1(1,1) p1(2,1)  p1(3,1)];  

pb2 = [p2(1,1) p2(2,1)  p2(3,1)]; 

pb3 = [p3(1,1) p3(2,1)  p3(3,1)];  

starts = zeros(3,3); ends = [pb1; pb2; pb3]; 

if color==1 

quiver3(starts(:,1),starts(:,1),starts(:,1),ends(:,1),end

s(:,2),ends(:,3),'yellow') 

else if color==2 

quiver3(starts(:,1),starts(:,1),starts(:,1),ends(:,1),end

s(:,2),ends(:,3),'red')  

else if color==3 
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quiver3(starts(:,1),starts(:,1),starts(:,1),ends(:,1),end

s(:,2),ends(:,3),'blue') 

else if color==4 

quiver3(starts(:,1),starts(:,1), 

starts(:,1),ends(:,1),ends(:,2),ends(:,3),'green') 

hold on;axis equal 

  

    end 

    end 

    end 

end 

end 
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Figure A.1: Position kinematic analysis of the Hexapod robot according to the first 

switching period of the mammal Locomotion 

 
Figure A.2: Position kinematic analysis of the Hexapod robot according to the first 

moving period of the mammal Locomotion 
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Figure A.3: Position kinematic analysis of the Hexapod robot according to the 

second moving period of the mammal Locomotion 
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Appendix B: Kinematic Analysis of a Duty Cycle According to the 

Insect Locomotion for the Hexapod Robot (Matlab) 

function insectlocomotion 

% the lengths of the Leg's links and the Radios  

l1=1; l2=1; l3=1; r=1;         

% supporting legs analysis 

% the first supporting leg, leg 1 

% the Joint's variables, during this phase, all are zero 

t1=0; t2=0; t3=0;               

% the intial configuration of the first leg H1 WRT F1  

gf1h10= [1 0 0 0;0 1 0 -l1;0 0 1 l2+l3;0 0 0 1];  

% the configuration of the screw axes 

w1= [1 0 0]; w2= [1 0 0]; w3= [1 0 0]; 

q1= [0 0 0]; q2= [0 0 l3]; q3= [0 0 l3+l2];    

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H1 WRT F1                     

gf1h1=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf1h10   

% getting the frame F1 WRT global frame  

T0f1= [1 0 0 0;0 1 0 r+l1;0 0 1 0;0 0 0 1];  

% getting the frame H1 WRT global frame 

g0h1=T0f1*gf1h1; 

% getting the position of H1 and F1 WRT global frame              

pof1= T0f1(1:3,4);  poh1=g0h1(1:3,4); 

% second supporting leg 'leg3' %%% 

% the intial configuration of the second supporting leg 

H3 WRT F3 

gf3h30= [1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];          

% the configuration of the screw axes                  

w1= [1 0 0]; w2= [1 0 0]; w3= [1 0 0]; 

q1= [0 0 0]; q2= [0 0 l3]; q3= [0 0 l3+l2];                                      

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                   

% applying the product of exponential to obtain H3 WRT F3    

gf3h3=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf3h30                    

% getting the frame F3 WRT global frame   

T0f3=[1 0 0 r*cos(pi/6);0 1 0 (-r*sin(pi/6))-l1;0 0 1 0;0 

0 0 1];                 

% getting the frame H3 WRT global frame      

g0h3=T0f3*gf3h3;     

% getting the position of H3 and F3 WRT global frame                                             

pof3=T0f3(1:3,4); poh3=g0h3(1:3,4);  

% the third supporting leg, leg 5 

% the intial configuration of the third supporting leg H5 

WRT F5            

gf5h50=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];           

% the configuration of the screw axes                  
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w1=[1 0 0]; w2=[1 0 0];w3=[1 0 0]; 

q1=[0 0 0]; q2=[0 0 l3]; q3=[0 0 l3+l2];               

% the matrices that expresses the screws of the first leg 

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);                                                           

% applying the product of exponential to obtain H5 WRT F5             

gf5h5=expm(s1*t3)*expm(s2*t2)*expm(s3*t1)*gf5h50   

% getting the frame F5 WRT global frame          

T0f5=[1 0 0 r*cos(5*pi/6);0 1 0 (-r*sin(5*pi/6))-l1;0 0 1 

0;0 0 0 1];         

% getting the frame H5 WRT global frame        

g0h5=T0f5*gf5h5;                          

% getting the position of H3 and F3 WRT global frame         

pof5=T0f5(1:3,4); poh5=g0h5(1:3,4);                                               

% finding the configuration of mass center WRT global 

frame   

% verifying technique 

n1=(poh1(1,1)-poh3(1,1)).^2;  n2=(poh1(2,1)-

poh3(2,1)).^2;  

n3=(poh1(3,1)-poh3(3,1)).^2;  k1=sqrt(n1+n2+n3)     

n4=(poh1(1,1)-poh5(1,1)).^2;  n5=(poh1(2,1)-

poh5(2,1)).^2;    

n6=(poh1(3,1)-poh5(3,1)).^2;  k2=sqrt(n4+n5+n6)     

n7=(poh1(1,1)-poh5(1,1)).^2;  n8=(poh1(2,1)-

poh5(2,1)).^2;   

n9=(poh1(3,1)-poh5(3,1)).^2;  k3=sqrt(n7+n8+n9);  

k=sqrt(3)*r;  

if k1==k2 && k2==k3  disp('the centroid is found')  

% finding the position of the centroid     

cx=(poh1(1,1)+poh3(1,1)+poh5(1,1))/3;  

cy=(poh1(2,1)+poh3(2,1)+poh5(2,1))/3; 

cz=(poh1(3,1)+poh3(3,1)+poh5(3,1))/3; 

poc=[cx;cy;cz]; 

% finding the orientation of the centroid WRT global 

frame       

vy=(poh1(1:3,1)-poc(1:3,1));   

vy=vy(1:3,1)/sqrt(vy(1,1)^2+vy(2,1)^2+vy(3,1)^2); 

vx=(poh3(1:3,1)-poh5(1:3,1)); 

vx=vx/sqrt(vx(1,1)^2+vx(2,1)^2+vx(3,1)^2); 

vz=cross(vx,vy); 

% drawing the position of H1,H3,H5 WRT global frame 

drawpos(poh1,poh3,poh5,4)                                      

% drawing the position of F1,F3,F5 WRT global frame 

drawpos(pof1,pof3,pof5,3)                                      

% drawing the position CENTER OF MASS WRT global frame   

poc=[cx cy cz]; 

starts = zeros(3,3);ends = [poc; 0 0 0; 0 0 0]; 

quiver3(starts(:,1), starts(:,1), starts(:,1), ends(:,1), 

ends(:,2), ends(:,3), 'black')  

else disp('something went wrong')                 

end 

% the first swingin leg, leg'2'  
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% the intial configuration of the first leg H2 WRT F2  

gh2f20=[1 0 0 0;0 1 0 l1;0 0 1 -(l2+l3);0 0 0 1];                

% the configuration of the screw axes                       

w1=[1 0 0]; w2=[1 0 0]; 

q1=[0 l1 0]; q2=[0 l1 -l2];                             

% the matrices that expresses the screws of the leg 2      

s1=poe(w1,q1);s2=poe(w2,q2);      

% applying the product of exponential to obtain F2 WRT H2  

gh2f2=expm(t1*s1)*expm(t2*s2)*gh2f20;          

% the relation between the centroid frame and H2 frame      

gch2=[1 0 0 r*cos(pi/6);0 1 0 r*sin(pi/6);0 0 1 0;0 0 0 

1];  

% the relation between the centroid frame and the global 

frame          

g0c= [1 0 0 0;0 1 0 0;0 0 1 2;0 0 0 1]; 

% getting the frame F2 wrt global reference frame. 

g0f2= g0c*gch2*gh2f2;pof2=g0f2(1:3,4);     

% getting the position of H2 wrt global reference frame.  

g0h2=g0c*gch2; p0h2=g0h2(1:3,4);       

% the second swingin leg, leg'4'          

% the intial configuration of the first leg H4 WRT F4        

gh4f40=[1 0 0 0;0 1 0 -l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0]; w2=[1 0 0]; 

q1=[0 -l1 0];q2=[0 -l1 -l2]; 

% the matrices that expresses the screws of the leg 4                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F4 WRT H4  

gh4f4=expm(t1*s1)*expm(t2*s2)*gh4f40;            

% the relation between the centroid frame and H4 frame  

gch4=[1 0 0 0;0 1 0 -r;0 0 1 0;0 0 0 1];  

% getting the frame F4 wrt global reference frame.     

g0f4=g0c*gch4*gh4f4;pof4=g0f4(1:3,4);   

% getting the position of H4 wrt global reference frame.   

g0h4=g0c*gch4; p0h4=g0h4(1:3,4);   

% the third swingin leg, leg'6'          

% the intial configuration of the first leg H6 WRT F6        

gh6f60=[1 0 0 0;0 1 0 l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[1 0 0];w2=[1 0 0];q1=[0 l1 0];q2=[0 l1 -l2]; 

% the matrices that expresses the screws of the leg 6                        

s1=poe(w1,q1);s2=poe(w2,q2);  

% applying the product of exponential to obtain F6 WRT H6  

gh6f6=expm(t1*s1)*expm(t2*s2)*gh6f60            

% the relation between the centroid frame and H6 frame  

gch6=[1 0 0 -r*cos(pi/6);0 1 0 r*sin(pi/6); 0 0 1 0;0 0 0 

1];  

% getting the frame F6 wrt global reference frame.     

g0f6=g0c*gch6*gh6f6;pof6=g0f6(1:3,4);   

% getting the position of H6 wrt global reference frame.   

g0h6=g0c*gch6;p0h6=g0h6(1:3,4);      
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% drawing the position of F2,F4,F6 WRT global frame 

drawpos(pof2,pof4,pof6,2);                                   

% drawing the position of H2,H4,H6 WRT global frame  

drawpos(p0h2,p0h4,p0h6,1); 

%%%%%% first moving stage 

clear all; 

figure; 

% the lengths of the Leg's links and the Radios  

l1=1; l2=1; l3=1; r=1;  

% supporting legs analysis 

% the first supporting leg, leg 1 

% the Joint's variables, during this phase 

t1in=pi/6; t2in=pi/40.56; t3in=0; 

t1=-t1in;t2=-t2in;t3=-t3in;t4=t2in+t3in;t5=t1in;                            

% the intial configuration of the first leg H1 WRT F1  

gf1h10=[1 0 0 0;0 1 0 -l1;0 0 1 l2+l3;0 0 0 1]; 

% the configuration of the screw axes 

w0=[0 0 1];w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];w4=[0 0 1];         

q0=[0 0 0];q1=[0 0 0];q2=[0 0 l3];q3=[0 0 l3+l2];q4=[0 -

l1 0];    

% the matrices that expresses the screws of the first leg 

s0=poe(w0,q0);s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);s

4=poe(w4,q4);                   

% applying the product of exponential to obtain H1 WRT F1                     

gf1h1=expm(s0*t5)*expm(s1*t4)*expm(s2*t3)*expm(s3*t2)*exp

m(s4*t1)*gf1h10;   

% getting the frame F1 WRT global frame  

T0f1=[1 0 0 0;0 1 0 r+l1;0 0 1 0;0 0 0 1];  

% getting the frame H1 WRT global frame 

g0h1=T0f1*gf1h1 

% getting the position of H1 and F1 WRT global frame              

pof1=T0f1(1:3,4);  poh1=g0h1(1:3,4); 

% second supporting leg 'leg3' %%% 

% the Joint's variables, during this phase 

t1in=-pi/6; t2in=-pi/40.56; t3in=0; 

t1=-t1in;t2=-t2in;t3=-t3in;t4=t2in+t3in;t5=t1in; 

% the intial configuration of the second supporting leg 

H3 WRT F3 

gf3h30=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];          

% the configuration of the screw axes                  

w0=[0 0 1];w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];w4=[0 0 1];                  

q0=[0 0 0];q1=[0 0 0];q2=[0 0 l3];q3=[0 0 l3+l2];q4=[0 l1 

0];                                                       

% the matrices that expresses the screws of the first leg 

s0=poe(w0,q0);s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);s

4=poe(w4,q4);                   

% applying the product of exponential to obtain H3 WRT F3    

gf3h3=expm(s0*t5)*expm(s1*t4)*expm(s2*t3)*expm(s3*t2)*exp

m(s4*t1)*gf3h30;                    

% getting the frame F3 WRT global frame   
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T0f3=[1 0 0  r*cos(pi/6);0 1 0 (-r*sin(pi/6))-l1; 0 0 1 

0;0 0 0 1];                 

% getting the frame H3 WRT global frame      

g0h3=T0f3*gf3h3;     

% getting the position of H3 and F3 WRT global frame                                             

pof3=T0f3(1:3,4); poh3=g0h3(1:3,4); 

% the third supporting leg, leg 5 

% the Joint's variables, during this phase 

t1in=-pi/6; t2in=-pi/40.56; t3in=0; 

t1=-t1in;t2=-t2in;t3=-t3in;t4=t2in+t3in;t5=t1in; 

% the intial configuration of the third supporting leg H5 

WRT F5            

gf5h50=[1 0 0 0;0 1 0 l1;0 0 1 l2+l3;0 0 0 1];           

% the configuration of the screw axes                  

w0=[0 0 1];w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];w4=[0 0 1];                  

q0=[0 0 0];q1=[0 0 0];q2=[0 0 l3];q3=[0 0 l3+l2];q4=[0 l1 

0];                

% the matrices that expresses the screws of the first leg 

s0=poe(w0,q0);s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);s

4=poe(w4,q4);                                                           

% applying the product of exponential to obtain H5 WRT F5             

gf5h5=expm(s0*t5)*expm(s1*t4)*expm(s2*t3)*expm(s3*t2)*exp

m(s4*t1)*gf5h50;   

% getting the frame F5 WRT global frame          

T0f5=[1 0 0 -r*cos(pi/6);0 1 0 (-r*sin(pi/6))-l1;0 0 1 

0;0 0 0 1];         

% getting the frame H5 WRT global frame        

g0h5=T0f5*gf5h5;                          

% getting the position of H3 and F3 WRT global frame         

pof5=T0f5(1:3,4); poh5=g0h5(1:3,4);                                               

% finding the configuration of mass center WRT global 

frame   

% verifying technique 

n1=(poh1(1,1)-poh3(1,1)).^2;  n2=(poh1(2,1)-

poh3(2,1)).^2;  

n3=(poh1(3,1)-poh3(3,1)).^2;  k1=sqrt(n1+n2+n3)     

n4=(poh1(1,1)-poh5(1,1)).^2;  n5=(poh1(2,1)-

poh5(2,1)).^2;    

n6=(poh1(3,1)-poh5(3,1)).^2;  k2=sqrt(n4+n5+n6)     

n7=(poh1(1,1)-poh5(1,1)).^2;  n8=(poh1(2,1)-

poh5(2,1)).^2;   

n9=(poh1(3,1)-poh5(3,1)).^2;  k3=sqrt(n7+n8+n9);  

k=sqrt(3)*r;  

if k==k && k==k  disp('the centroid is found')  

% finding the position of the centroid     

cx=(poh1(1,1)+poh3(1,1)+poh5(1,1))/3;   

cy=(poh1(2,1)+poh3(2,1)+poh5(2,1))/3; 

cz=(poh1(3,1)+poh3(3,1)+poh5(3,1))/3; 

poc=[cx;cy;cz]; 

% finding the orientation of the centroid WRT global 

frame       
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vy=(poh1(1:3,1)-poc(1:3,1));   

vy=vy(1:3,1)/sqrt(vy(1,1)^2+vy(2,1)^2+vy(3,1)^2) 

vx=(poh3(1:3,1)-poh5(1:3,1)); 

vx=vx/sqrt(vx(1,1)^2+vx(2,1)^2+vx(3,1)^2) 

vz=cross(vx,vy); 

% drawing the position of H1,H3,H5 WRT global frame 

drawpos(poh1,poh3,poh5,4); 

% drawing the position of F1,F3,F5 WRT global frame 

drawpos(pof1,pof3,pof5,3); 

% drawing the position CENTER OF MASS WRT global frame   

poc=[cx cy cz]; 

starts = zeros(3,3);ends = [poc; 0 0 0; 0 0 0]; 

quiver3(starts(:,1), starts(:,1), starts(:,1), ends(:,1), 

ends(:,2), ends(:,3), 'black')  

else disp('something went wrong')                 

end 

% the first swingin leg, leg'2'  

% the Joint's variables, during this phase 

t1=-pi/6; t2=-pi/40.56; t3=0; 

% the intial configuration of the first leg H2 WRT F2  

gh2f20=[1 0 0 0;0 1 0 l1;0 0 1 -(l2+l3);0 0 0 1];                

% the configuration of the screw axes                       

w1=[0 0 1];w2=[1 0 0];w3=[1 0 0];q1=[0 0 0]; q2=[0 l1 

0];q3=[0 l1 -l2];                            

% the matrices that expresses the screws of the leg 2      

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);      

% applying the product of exponential to obtain F2 WRT H2  

gh2f2=expm(t1*s1)*expm(t2*s2)*expm(t3*s3)*gh2f20;          

% the relation between the new centroid frame and H2 

frame      

gcnewh2=[1 0 0 r*cos(pi/6);0 1 0 r*sin(pi/6);0 0 1 0;0 0 

0 1];  

% the relation between the new centroid frame and the 

global frame          

g0cnew= [1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F2 wrt global reference frame. 

g0f2=g0cnew*gcnewh2*gh2f2;pof2=g0f2(1:3,4)     

% getting the position of H2 wrt global reference frame.  

g0h2=g0cnew*gcnewh2; p0h2=g0h2(1:3,4);  

% the second swingin leg, leg'4' 

% the Joint's variables, during this phase 

t1=pi/6; t2=pi/40.56; t3=0; 

% the intial configuration of the first leg H4 WRT F4        

gh4f40=[1 0 0 0;0 1 0 -l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[0 0 1];w2=[1 0 0];w3=[1 0 0];q1=[0 0 0]; q2=[0 -l1 

0];q3=[0 -l1 -l2]; 

% the matrices that expresses the screws of the leg 4                        

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);  

% applying the product of exponential to obtain F4 WRT H4  

gh4f4=expm(t1*s1)*expm(t2*s2)*expm(t3*s3)*gh4f40            
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% the relation between the new centroid frame and H4 

frame  

gcnewh4=[1 0 0 0;0 1 0 -r;0 0 1 0;0 0 0 1]; 

% the relation between the new centroid frame and global 

frame 

g0cnew=[1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F4 wrt global reference frame.     

g0f4=g0cnew*gcnewh4*gh4f4; pof4=g0f4(1:3,4)   

% getting the position of H4 wrt global reference frame.   

g0h4=g0cnew*gcnewh4;  p0h4=g0h4(1:3,4); 

% the third swingin leg, leg'6'  

% the Joint's variables, during this phase 

t1=-pi/6; t2=-pi/40.56; t3=0; 

% the intial configuration of the first leg H6 WRT F6        

gh6f60=[1 0 0 0;0 1 0 l1;0 0 1 -l2-l3;0 0 0 1];  

% the configuration of the screw axes 

w1=[0 0 1];w2=[1 0 0];w3=[1 0 0];q1=[0 0 0]; q2=[0 l1 

0];q3=[0 l1 -l2]; 

% the matrices that expresses the screws of the leg 6                        

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);  

% applying the product of exponential to obtain F6 WRT H6  

gh6f6=expm(t1*s1)*expm(t2*s2)*expm(t3*s3)*gh6f60;            

% the relation between the centroid frame and H6 frame  

gcnewh6=[1 0 0 -r*cos(pi/6);0 1 0 r*sin(pi/6);0 0 1 0 ;0 

0 0 1];  

% getting the frame F6 wrt global reference frame.     

g0f6=g0cnew*gcnewh6*gh6f6; pof6=g0f6(1:3,4);   

% getting the position of H6 wrt global reference frame.   

g0h6=g0cnew*gcnewh6;p0h6=g0h6(1:3,4);      

% drawing the position of F2,F4,F6 WRT global frame 

drawpos(pof2,pof4,pof6,2)  

% drawing the position of H2,H4,H6 WRT global frame  

drawpos(p0h2,p0h4,p0h6,1) 

% the second moving phase 

clear all; 

figure; 

% the lengths of the Leg's links and the Radios  

l1=1; l2=1; l3=1; r=1;  

% supporting legs analysis 

% the first supporting leg, leg 2 

% the Joint's variables, during this phase 

t1in=pi/6;t2in=pi/40.56;t3in=0;     

t1=-t1in;t2=-t2in;t3=-t3in;t4=t2in+t3in;t5=t1in;                              

% the intial configuration of the first supporting leg H2 

WRT F2  

gf2h20=[1 0 0 -0.5000; 0 1 0 -0.8660                                

        0 0 1 2.0000;0 0 0 1];  

% the configuration of the screw axes 

w0=[0 0 1];w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];w4=[0 0 1]; 

q0=[0 0 0];q1=[0 0 0];q2=[0 0 l3];q3=[0  0 (l3+l2)];q4=[0 

-l1 0 ]                
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% the matrices that expresses the screws of the first leg 

s0=poe(w0,q0);s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);s

4=poe(w4,q4);                   

% applying the product of exponential to obtain H2 WRT F2                     

gf2h2=expm(s0*t5)*expm(s1*t4)*expm(s2*t3)*expm(s3*t2)*exp

m(s4*t1)*gf2h20;  

% getting the frame F2 WRT global frame  

T0f2=[1 0 0 1.9434;0 1 0 1.3660;0 0 1 0.0000;0 0 0 1];  

% getting the frame H2 WRT global frame 

g0h2=T0f2*gf2h2; 

% getting the position of H2 and F2 WRT global frame              

pof2=T0f2(1:3,4);   

poh2=g0h2(1:3,4); 

% second supporting leg 'leg4' %%% 

% the Joint's variables, during this phase 

t1in=-pi/6;t2in=-pi/40.56;t3in=0;     

t1=-t1in;t2=-t2in;t3=-t3in;t4=t2in+t3in;t5=t1in;   

% the intial configuration of the second supporting leg 

H4 WRT F4 

gf4h40=[1 0 0 -0.500                              

        0 1 0  0.8660         

        0 0 1  2.000            

        0 0 0  1];           

% the configuration of the screw axes                  

w0=[0 0 1];w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];w4=[0 0 1]; 

q0=[0 0 0];q1=[0 0 0];q2=[0 0 l3];q3=[0  0 (l3+l2)];q4=[0 

l1 0 ]                                                     

% the matrices that expresses the screws of the first leg 

s0=poe(w0,q0);s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);s

4=poe(w4,q4);                   

% applying the product of exponential to obtain H4 WRT F4    

gf4h4=expm(s0*t5)*expm(s1*t4)*expm(s2*t3)*expm(s3*t2)*exp

m(s4*t1)*gf4h40                    

% getting the frame F4 WRT global frame   

T0f4=[1 0 0 1.0774;0 1 0 -1.8660;0 0 1 0;0 0 0 1];                 

% getting the frame H4 WRT global frame      

g0h4=T0f4*gf4h4    

% getting the position of H4 and F4 WRT global frame                                             

pof4=T0f4(1:3,4); 

poh4=g0h4(1:3,4); 

% the third supporting leg, leg 6 

% the Joint's variables, during this phase 

t1in=pi/6;t2in=pi/40.56;t3in=0;     

t1=-t1in;t2=-t2in;t3=-t3in;t4=t2in+t3in;t5=t1in; 

% the intial configuration of the third supporting leg H6 

WRT F6            

gf6h60=[1 0 0 -0.5000        

        0 1 0 -0.8660        

        0 0 1 2.0000       

        0 0 0 1];          

% the configuration of the screw axes                  
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w0=[0 0 1];w1=[1 0 0];w2=[1 0 0];w3=[1 0 0];w4=[0 0 1]; 

q0=[0 0 0];q1=[0 0 0];q2=[0 0 l3];q3=[0  0 (l3+l2)];q4=[0 

-l1 0 ]              

% the matrices that expresses the screws of the 

supporting leg 6 

s0=poe(w0,q0);s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);s

4=poe(w4,q4);                                                          

% applying the product of exponential to obtain H6 WRT F6             

gf6h6=expm(s0*t5)*expm(s1*t4)*expm(s2*t3)*expm(s3*t2)*exp

m(s4*t1)*gf6h60   

% getting the frame F6 WRT global frame          

T0f6=[1 0 0 0.2114;0 1 0 1.3660;0 0 1 0;0 0 0 1];         

% getting the frame H6 WRT global frame        

g0h6=T0f6*gf6h6;                          

% getting the position of H6 and F6 WRT global frame         

pof6=T0f6(1:3,4); 

poh6=g0h6(1:3,4);                                               

% finding the configuration of mass center WRT global 

frame   

% verifying technique 

n1=(poh4(1,1)-poh2(1,1)).^2; n2=(poh4(2,1)-poh2(2,1)).^2; 

n3=(poh4(3,1)-poh2(3,1)).^2; k1=sqrt(n1+n2+n3) 

n4=(poh4(1,1)-poh6(1,1)).^2; n5=(poh4(2,1)-poh6(2,1)).^2; 

n6=(poh4(3,1)-poh6(3,1)).^2; k2=sqrt(n4+n5+n6) 

n7=(poh2(1,1)-poh6(1,1)).^2; n8=(poh2(2,1)-poh6(2,1)).^2; 

n9=(poh2(3,1)-poh6(3,1)).^2; k3=sqrt(n7+n8+n9); 

k=sqrt(3)*r 

if k1==k2 && k2==k3  disp('the centroid is found')  

% finding the position of the centroid     

cx=(poh2(1,1)+poh4(1,1)+poh6(1,1))/3   

cy=(poh2(2,1)+poh4(2,1)+poh6(2,1))/3 

cz=(poh2(3,1)+poh4(3,1)+poh6(3,1))/3 

poc=[cx; cy ;cz]; 

% finding the orientation of the centroid WRT global 

frame       

vy=(poc(1:3,1)-poh4(1:3,1));   

vy=vy(1:3,1)/sqrt(vy(1,1)^2+vy(2,1)^2+vy(3,1)^2) 

vx=(poh2(1:3,1)-poh6(1:3,1)); 

vx=vx/sqrt(vx(1,1)^2+vx(2,1)^2+vx(3,1)^2) 

vz=cross(vx,vy)  

else disp('something went wrong')                 

end 

% the first swingin leg, leg'1'  

t1=-pi/6; t2=-pi/40.56; t3=0; 

% the intial configuration of the first leg H1 WRT F1  

gh1f10=[1 0 0 0;0 1 0 l1;0 0 1 -(l2+l3);0 0 0 1];               

% the configuration of the screw axes                       

w1=[0 0 1];w2=[1 0 0];w3=[1 0 0];    

q1=[0 0 0];q2=[0 l1 0];q3=[0 l1 -l2];                            

% the matrices that expresses the screws of the leg 1      

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);      
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% applying the product of exponential to obtain F1 WRT H1  

gh1f1=expm(t1*s1)*expm(t2*s2)*expm(t3*s3)*gh1f10          

% the relation between the new centroid frame and H1 

frame      

gcnewh1=[1 0 0 0;0 1 0 r;0 0 1 0;0 0 0 1];  

% the relation between the new centroid frame and the 

global frame          

g0cnew= [1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F1 wrt global reference frame. 

g0f1=g0cnew*gcnewh1*gh1f1;pof1=g0f1(1:3,4)     

% getting the position of H1 wrt global reference frame.  

g0h1=g0cnew*gcnewh1;p0h1=g0h1(1:3,4); 

% the second swingin leg, leg'3' 

t1=pi/6; t2=pi/40.56; t3=0; 

% the intial configuration of the first leg H3 WRT F3        

gh3f30=[1 0 0 0;0 1 0 -l1;0 0 1 -(l2+l3);0 0 0 1];  

% the configuration of the screw axes 

w1=[0 0 1];w2=[1 0 0];w3=[1 0 0];    

q1=[0 0 0];q2=[0 -l1 0];q3=[0 -l1 -l2]; 

% the matrices that expresses the screws of the leg 3                        

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);  

% applying the product of exponential to obtain F3 WRT H3  

gh3f3=expm(t1*s1)*expm(t2*s2)*expm(t3*s3)*gh3f30            

% the relation between the new centroid frame and H3 

frame  

gcnewh3=[1 0 0 r*cos(pi/6);0 1 0 -r*sin(pi/6);0 0 1 0;0 0 

0 1]; 

% the relation between the new centroid frame and global 

frame 

g0cnew=[1 0 0 cx;0 1 0 cy;0 0 1 cz;0 0 0 1]; 

% getting the frame F3 wrt global reference frame.     

g0f3=g0cnew*gcnewh3*gh3f3; pof3=g0f3(1:3,4);   

% getting the position of H3 wrt global reference frame.   

g0h3=g0cnew*gcnewh3;  p0h3=g0h3(1:3,4);  

% the third swingin leg, leg'5'  

t1=pi/6; t2=pi/40.56; t3=0; 

% the intial configuration of the first leg H5 WRT F5        

gh5f50=[1 0 0 0;0 1 0 -l1;0 0 1 -l1-l2;0 0 0 1];  

% the configuration of the screw axes 

w1=[0 0 1];w2=[1 0 0];w3=[1 0 0];    

q1=[0 0 0];q2=[0 -l1 0];q3=[0 -l1 -l2]; 

% the matrices that expresses the screws of the leg 5                        

s1=poe(w1,q1);s2=poe(w2,q2);s3=poe(w3,q3);  

% applying the product of exponential to obtain F5 WRT H5  

gh5f5=expm(t1*s1)*expm(t2*s2)*expm(t3*s3)*gh5f50;            

% the relation between the centroid frame and H5 frame  

gcnewh5=[1 0 0 -r*cos(pi/6);0 1 0 -r*sin(pi/6);0 0 1 0;0 

0 0 1];  

% getting the frame F5 wrt global reference frame.     

g0f5=g0cnew*gcnewh5*gh5f5; pof5=g0f5(1:3,4);   

% getting the position of H5 wrt global reference frame.   
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g0h5=g0cnew*gcnewh5;p0h5=g0h5(1:3,4);       

% drawing the position of H1,H3,H5 WRT global frame  

drawpos(p0h1,p0h3,p0h5,4) 

% drawing the position of F1,F3,F5 WRT global frame 

drawpos(pof1,pof3,pof5,3) 

% drawing the position of F2,F4,F6 WRT global frame 

drawpos(pof2,pof4,pof6,2) 

% drawing the position of H2,H4,H6 WRT global frame 

drawpos(poh2,poh4,poh6,1) 

% drawing the position CENTER OF MASS WRT global frame   

starts=zeros(3,3); ends = [[cx cy cz]; 0 0 0; 0 0 0]; 

quiver3(starts(:,1), starts(:,1), starts(:,1), ends(:,1), 

ends(:,2), ends(:,3), 'black') 

% direct velocity analysis for the first moving phase 

figure; 

%the screw that is reciprocal to all Leg's screws  

sr1=[0;0;0;0;1;0]; 

%the screw that is reciprocal to only the virtual joints 

screws 

sr2=[1;1;0;0;0;0]; 

%the velocity of the centroid of the hexapod 

delta=[zeros(3) ones(3) ;  ones(3) zeros(3)]; 

%%%% angular velocity calculation %%%%% 

%%%% leg 1 %%%% 

w11=(pi/6)/0.5;w12=(pi/40.56)/0.5;w13=0; 

%%%% leg 3 %%%% 

w31=(-pi/6)/0.5;w32=(-pi/40.56)/0.5;w33=0; 

%%%% leg 5 %%%% 

w51=(-pi/6)/0.5;w52=(-pi/40.56)/0.5;w53=0; 

%leg 1 analysis 

%first screw axis s0 

s001=[0;0;1]; s0o1=[0;0;0];s01=[s001;cross(s001,s0o1)] 

%second screw axis s1 

s111=[1;0;0];s1o1=[0;0;0];s11=[s111;cross(s111,s1o1)] 

%third screw axis s2  

s221=[1;0;0];s2o1=[0;0;l3];s21=[s221;cross(s221,s2o1)] 

%fourth screw axis s3 

s331=[1;0;0];s3o1=[0;0;l3+l2];s31=[s331;cross(s331,s3o1)] 

%fifth screw axis s4 

s441=[0;0;1];s4o1=[0;-

l1;l3+l2];s41=[s441;cross(s441,s4o1)] 

%leg 3 analysis 

% first screw axis s0 

s003=[0;0;1];s0o3=[0;0;0];s03=[s003;cross(s003,s0o3)] 

% second screw axis s1 

s113=[1;0;0];s1o3=[0;0;0];s13=[s113;cross(s113,s1o3)] 

% third screw axis s2 

s223=[1;0;0];s2o3=[0;0;l3];s23=[s223;cross(s223,s2o3)] 

% fourth screw axis s3 

s333=[1;0;0];s3o3=[0;0;l3+l2];s33=[s333;cross(s333,s3o3)] 

% fifth screw axis s4 
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s443=[0;0;1];s4o3=[0;l1;l3+l2];s43=[s443;cross(s443,s4o3)

] 

% leg 5 analysis 

% first screw axis s0 

s005=[0;0;1]; s0o5=[0;0;0];s05=[s005;cross(s005,s0o5)] 

% second screw axis s1 

s115=[1;0;0];s1o5=[0;0;0];s15=[s115;cross(s115,s1o5)] 

% third screw axis s2 

s225=[1;0;0];s2o5=[0;0;l3];s25=[s225;cross(s225,s2o5)] 

% fourth screw axis s3 

s335=[1;0;0];s3o5=[0;0;l3+l2];s35=[s335;cross(s335,s3o5)] 

% fifth screw axis s4 

s445=[0;0;1];s4o5=[0;l1;l3+l2];s45=[s445;cross(s445,s4o5)

] 

%%%%% [transp(sr1);transp(sr2)]*delta*v = Q 

Q=[0+0+0  

w11*rec(sr2,s41)+w12*rec(sr2,s31)+w13*rec(sr2,s21) +... 

w31*rec(sr2,s43)+w32*rec(sr2,s33)+w33*rec(sr2,s23) +... 

w51*rec(sr2,s45)+w52*rec(sr2,s35)+w53*rec(sr2,s25) ]      

W=[transp(sr1); transp(sr2)]*delta 

% drawing the variation of the centroid velocity 

time=[0 0.5];wx=[0 0];wy=[0 0];wz=[0 0]; 

vx=[0 1.7524];vy=[0 0];vz=[0 0.018]; 

subplot(6,1,1); 

line(time,wx,'Color','red','LineStyle','--') 

subplot(6,1,2); 

line(time,wy,'Color','green','LineStyle','--') 

subplot(6,1,3); 

line(time,wz,'Color','blue','LineStyle','--') 

subplot(6,1,4); 

line(time,vx,'Color','red','LineStyle','-') 

subplot(6,1,5); 

line(time,vy,'Color','green','LineStyle','-') 

subplot(6,1,6); 

line(time,vz,'Color','blue','LineStyle','-') 

hold off;      

% drawing the variation of the angle velocity for each 

legs 

% for first supporting legs 

figure; 

subplot(9,1,1); 

line(time,[0 w11],'Color','red','LineStyle','-') 

subplot(9,1,2); 

line(time,[0 w12],'Color','green','LineStyle','-') 

subplot(9,1,3); 

line(time,[0 w13],'Color','blue','LineStyle','-') 

% for second supporting legs 

subplot(9,1,4); 

line(time,[0 w31],'Color','red','LineStyle','-') 

subplot(9,1,5); 

line(time,[0 w32],'Color','green','LineStyle','-') 
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subplot(9,1,6); 

line(time,[0 w33],'Color','blue','LineStyle','-') 

% for third supporting legs 

subplot(9,1,7); 

line(time,[0 w51],'Color','red','LineStyle','-') 

subplot(9,1,8); 

line(time,[0 w52],'Color','green','LineStyle','-') 

subplot(9,1,9); 

line(time,[0 w53],'Color','blue','LineStyle','-') 

end 

  

function reciprocal= rec(v1,v2) 

v11=v1(1:3,1); 

v1o=v1(4:6,1); 

v22=v2(1:3,1); 

v2o=v2(4:6,1); 

reciprocal=(transp(v11)*v2o) + (transp(v22)*v1o); 

end 

function pof=poe(w1,q1) 

ww1=[0     -w1(3)   w1(2);... 

w1(3)   0     -w1(1);... 

-w1(2)   w1(1)   0  ]; 

v1=transp(cross(q1,w1)); 

pof=[ww1(1:3,1:3) v1(1:3,1);0 0 0 0]; 

end 

function drawpos(p1,p2,p3,colour) 

pb1 = [p1(1,1) p1(2,1)  p1(3,1)];  

pb2 = [p2(1,1) p2(2,1)  p2(3,1)]; 

pb3 = [p3(1,1) p3(2,1)  p3(3,1)];  

starts = zeros(3,3); ends = [pb1; pb2; pb3]; 

if colour==1 

quiver3(starts(:,1),starts(:,1),starts(:,1),ends(:,1),end

s(:,2),ends(:,3),'yellow') 

else if colour==2 

quiver3(starts(:,1),starts(:,1),starts(:,1),ends(:,1),end

s(:,2),ends(:,3),'red')  

else if colour==3 

quiver3(starts(:,1),starts(:,1),starts(:,1),ends(:,1),end

s(:,2),ends(:,3),'blue') 

else if colour==4 

quiver3(starts(:,1),starts(:,1), 

starts(:,1),ends(:,1),ends(:,2),ends(:,3),'green') 

hold on;axis equal 

    end 

    end 

    end 

end 

end 
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Figure B.1: Position kinematic analysis of the Hexapod robot according to the first 

switching period of the Insect Locomotion 

 
Figure B.2: Position kinematic analysis of the Hexapod robot according to the first 

moving period of the Insect Locomotion 



138 

 

 
Figure B.3: Position kinematic analysis of the Hexapod robot according to the second 

moving period of the Insect Locomotion 

 
Figure B.4: Forward Velocity analysis of the Hexapod robot through the first moving 

period of the Insect Locomotion 
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Figure B.5: Velocity analysis of the Leg’s active joint of the Hexapod robot through 

the first moving period of the Insect Locomotion 

 

 

 

 

 

 

 

 


