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ABSTRACT

Long Term Evolution (LTE) the 4" generation (4G) mobile broadband radio network
is designed with special attention given to security. In order to secure the
communication over the air radio network of LTE, three confidentiality and integrity
cryptographic algorithms are approved by 3™ Generation Partnership Project (3GPP).
ZUC, which is one of the algorithms is the third alternative to LTE. ZUC is designed
using inherited properties from SNOW3G cryptographic algorithm with some
improvements. However, it has been found that related keys, which are result of weak
key state exists in its predecessor. Moreover, from the view point of Security
Algorithms Group of Experts (SAGE) advancement in cryptanalysis may have effect
on both ZUC and its predecessor, due to their design similarity, and SNOW3G weak
key property. This thesis analyzed the latest version of ZUC; the analysis is to check
the existence of weak key state in ZUC at the end of initialization of Linear Feedback
Shift Register (LFSR) with key and initialization vector (IV). The analysis is done by
Boolean satisfiability problem solver (SAT solver) program, emerging logical
cryptographic algorithms analysis technique. For the analysis the key initialization
procedure equations of the algorithm are converted to SAT instance, which is special
input format for SAT solvers in Conjunctive Normal Form (CNF), and are fed to SAT
Solver. The result showed that the latest version of ZUC LFSR after the initialization
is not initialized with same value that indicates there is no weak key state problem in

the key generation procedure of ZUC algorithm.

Keywords: ZUC, weak key, Satisfiability, SAT solver, Logical cryptanalysis



Oz

Dordinct nesil mobil genis bant radyo agi olan Uzun Vadeli Doniisiim (LTE),
ozellikle giivenlik konusu dikkate alinarak tasarlanmistir. LTE’nin hava radyo agi
lizerinden iletisim saglamak iizere ii¢ sifreleme algoritmasi 3. Nesil Ortaklik Projesi
(3GPP) tarafindan onaylanmistir. Bu algoritmalardan biri olan ZUC, LTE nin ti¢iincii
alternatifidir. ZUC, SNOW3G sifreleme algoritmasindan bazi 6zellikleri alarak, ilgili
ozelliklerin gelistirilmesiyle tasarlanmistir. Ancak, ilgili anahtarlarla ilgili olarak,
oncili olan SNOW3G’de zayif anahtar durumunun mevcut oldugu gériilmiistiir. Buna
ek olarak, Giivenlik Algoritmalar1 Grubu Uzmanlari’nin (SAGE) bakis agisina gore
kripto analizi alanindaki iyilestirmelerin ZUC ve Onciilii lizerinde etkili olabilir. Bunun
nedeni ise tasarim benzerlikleri ve SNOW3G zayif anahtar 6zellikleridir. Bu ¢alisma,
ZUC’un son siiriimiinii analiz etmeyi amaglamistir. Analiz, anahtar ve baslatma
vektorii (IV) ile dogrusal geribesleme oteleme kaydinin (LFSR) baslatilmasinin
sonunda, zayif anahtar durumunu denetlemek amaciyla yapilmistir. Sifreleme
algoritmalarimin analizinde yiikselmekte olan bir yontem olarak Boolean
saglanabilirlik problem ¢oziicii (SAT ¢6ziicli) programi kullanilmistir. Algoritmanin
anahtar baslatma prosediirii denklemleri, Baglagli Normal Bi¢im’de (CNF) SAT
coziictileri icin 6zel bir girdi bicimi olan SAT Orneklerine doniistiiriilmiistiir ve
ardindan SAT Coziiclisii’'ne yerlestirilmistir. Sonuglara gére, ZUC LFSR’nin son
stirlimiiniin ayn1 degerlerle baslatilmadig: ortaya ¢ikmis ve ZUC algoritmasinda zayif

anahtar durumunun mevcut olmadigi anlagilmstir.

Anahtar Sozcukler: ZUC, zayif anahtar, Saglanabilirlik, SAT ¢6ziicli, Mantiksal

kripto analizi.
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Chapter 1

INTRODUCTION

Long Term Evolution (LTE) the 4" Generation (4G) mobile broadband radio
network technology designed by the 3" Generation Partnership Project (3GPP),
telecommunication standard and development body [1], to fulfill the growing
demands for huge broadband throughput, definite availability, wide coverage of
mobility, and variety of Quality of Service (QoS) levels, with special attention given
to security. Security is a critical issue for both 3G and 4G mobile networks, [2] and
in particular strict security as one of the design objectives for LTE [3]; therefore,
3GPP specifications recommend encrypted communication over the air interface of
LTE mobile network. Moreover, three confidentiality and data integrity

cryptographic algorithms are approved by 3GPP [4].

The approved confidentiality and data integrity cryptographic algorithms are
SNOWS3G, Advanced Encryption Standard (AES), and ZUC. SNOW3G have been
working for the 3G. The big expectation of strict security added AES as second
alternative. In 2010, new algorithm ZUC proposed as a third addition to LTE [4] and

the 2011 version of ZUC added to LTE Advanced [4, 2].

ZUC is stream cipher, which takes 128-bit keys to encrypt/decrypt blocks of data in
the range of 1 to 2%2 bits [5, 6]. The encryption/decryption is adding key stream bits

generated by ZUC into plain message or cipher message. ZUC algorithm involves



three logical layers first layer is Linear Feedback Shift Register (LFSR) that contain
16 stages shift registers, and second layer bit reorganization (BR) layer, and third
layer nonlinear transformation layer (F) [6]. Each of the layers of ZUC discussed

further in Chapter 3.

ZUC algorithm has design similarity to SNOW3G. SNOW3G cipher consists of a
combination of a LFSR and a Finite State Machine (FSM) where the LFSR also feeds
the next state function of the FSM. During evaluation, weaknesses were discovered
in SNOW 1.0 and the authors have developed a new version, version 2.0 of the cipher
that solves the weaknesses and improves the performance. During SAGE evaluation,
the design was further modified to increase its resistance against algebraic attacks
with the result named SNOWS3G. It has been found that related keys exist both for

SNOW 2.0 and SNOW3G [7].
1.1 Problem Definition

ZUC algorithm design requirement was to make it different from its predecessor
algorithms, so that an attack on either is unlikely on the others too. However, ZUC
architectural design is not fully different from the previous 3GPP approved algorithm
i.e. SNOW3G. Therefore, according to SAGE the design requirements not fully
fulfilled, because ZUC inherits properties from SNOW3G. Nonetheless, SAGE
considered that it was not only inherited some features, but also added strength too,
and hence accepted the design. However, SAGE had doubt that both algorithms

might be affected with advancement in cryptanalysis [4].

Unfortunately, the 2010 public evaluation found weakness, then again newer version

in 2011 released making amendment to flaws identified, followed by six-month



public evaluation which ended with no problem reported. Finally, SAGE approved
the 2011 version to 3GPP as confidentiality and integrity protection for LTE

Advanced mobile network [4].

ZUC considered resistant from different types of cryptanalytic attacks [4] among
them an attack related key used, which referred as weak key. Generally, weak key is
a key that leads to extraction of the key bits used for the encryption/decryption from
the input bits and output bits relationship of a cryptographic algorithm [8]. In context
to ZUC, keys considered weak if the Key and initialization Vector (V) used for the
initialization of the LFSR initializes all the cells of the LFSR with same value at the
end of initialization, which is called all-p state. The pair that leads to such state is

called weak (key 1V) pair and the Key is called weak key [4].

The strength of ZUC comes mainly from its nonlinear process during the key steam
generation that makes an attack complex and difficult. Though considering SAT
solver’s efficacy in solving complex problems [8] and SAGE’s initial idea that
advancement in cryptanalysis may affect ZUC and its predecessor as premise [4], the
objective of this thesis is to analyze ZUC with SAT solver, analyzing security
algorithms with different mechanisms exposes hidden weakness there by gives
direction for either amendment or replacement. SAT solvers alone cannot break
modern cryptographic algorithms; however, they are useful at enhancing
cryptanalysis, and their combination to other cryptanalytic techniques seems
promising [8]. The analysis mechanism of ZUC algorithm is specifically related to
key loading and initialization procedure to find, or prove the absence of, weak key

state on ZUC using SAT solver state of the are cryptanalysis method emerging.



1.2 Methodology of Analysis

SAT solvers can help to analyze cryptographic algorithms key generation process
mechanism to verify its strength and weakness [8]. Therefore, the analysis is done
with SAT Solver program. For this thesis MiniSat SAT Solver available online at [9]
is used. SAT solver cryptanalysis requires representation of the algorithm or parts of
it into format that SAT solvers understand called SAT instance. SAT instance is
Conjunctive Normal Form (CNF) representation of the cryptographic algorithm
equations that involve ARX algorithms (i.e. operations based on NOT, XOR, AND,
OR, as well as addition modulo 2" and left rotation) [8]. In addition to ARX operators,

CNF of S-box also required for algorithms that involve S-box like ZUC.

The next stage is generating SAT instances while the algorithm is running, and stores
the CNF to file. Then feed to SAT solver and if the formed CNF equation is

satisfiable indicates possibility of weak key, else, weak key is not exit [8].
1.3 Organization of the thesis

In Chapter 1, we have covered introduction, problem definition and methodology of
analysis. The subsequent chapters are as follows:

Chapter 2 discuses Boolean satisfiability problem, the foundations of SAT solvers.
Chapter 3, discuses ZUC algorithm general structure and its operation

Chapter 4 discusses the implementation of ZUC algorithm followed by SAT instance
generation from the source code, and then SAT solver analysis on the generated SAT
instances.

Chapter 5 concludes the thesis.



Finally, at the end of appendices section experimental test parameters, test cases

sample codes, and instance generator sample codes are included.



Chapter 2

BOOLEAN SATISFIABILITY (SAT) PROBLEMS

This Chapter discussed SAT problems, followed by SAT problem solvers referred as
SAT Solvers. Then CNF, the standard input for most SAT solvers discussed. The
CNF input representation for SAT Solvers called Center for Discrete Mathematics
and Theoretical Computer Science (DIMACS) format and its syntax discussed.

Finally, practical examples are supplied.
2.1 Boolean Satisfiability problems

Boolean satisfiability problems are mathematical logical problems that try to find
possible solution that makes a given Boolean function result true. In other word we
are interested in getting values that satisfy Boolean equation as in equation (2.1)
shown bellow, so that the result becomes 1 i.e. TRUE. A Boolean expression result
becomes TRUE is referred as SATISFIABLE, meaning there are possible solution
that fulfil the given expression. Otherwise, it is called UNSATISFIABLE i.e. the
expression is always 0 indicates FALSE, i.e. there is no possible input for the problem

that make the result of it becomes TRUE [10, 13].

n m (2.1)
f= /\Ci, where C = \/Li, L e{0,1}
i=1 i=1

L (Litera_l) a propositional variable or its negation,

and C (Clause) is literal or disjunction of literals.


http://en.wikipedia.org/wiki/Propositional_variable

For example, let’s consider simple Boolean formula f which is conjunction between
two Boolean variables a, and b.

f=(a A-b)
fis SATISFIABLE i.e. (f =1 =(a A —b) ), because there are possible values that the
result f =(a A =b) = TRUE, when a = TRUE, and b = FALSE satisfy the formula.
In contrast, f =(a A —-a), fis UNSATISFIABLE i.e. (f = (a A -a) = FALSE), since
there is no possible value that makes the result f TRUE, in both cases when a = TRUE

and a = FALSE, f=(a A -a) is always FALSE, hence UNSATISFIABLE.

Let’s consider another example with number of Boolean variables increasing to 5
variables al,a2,a3,a4,a5 having the following clauses of the five Boolean variables:
(~a2 v ab)

(a4 v -ab)

(al v -a3 v a4)

(@l v a2)

To check the satisfiability we can create collectively combining each of them as a

Boolean formula as follows:

f=(-a2 v a5)A (a4 v -a5) A(al v ~a3 v ad) A (al v a2)
Now the objective is to find possible Boolean values that satisfy the formula, so that
f becomes TRUE (1).
1= (-a2vab)A(alv -a3Vvad)A(advVv -ad) A (alva2)
Possible values that satisfy the given equation substituted in each variable a; of the
Boolean equation are:
al=1 a2=0 a3=1 ad=1 a5=1

f=(1vI1AQLVO VIALVOA (VDO



SAT problems looks easy just as we are trying the possible values to get the result,
but the problem arises when the number of Boolean variable increase, and becomes
complex. Also SAT problems are NP-Complete. NP-Complete problems get harder
and harder as the problem becomes larger and will be difficult to solve. So we can
generalize it as follows for n variables at worst case we have 2" exhaustive search to

get the possible values that make the give Boolean equation TRUE [10].

For example for 10 variables, it needs 21° =1024 exhaustive search with possible

configuration values shown in Table 1.

Table 1: Possible values for 10 binary variables
219 Possible values

1 0000000000
2 0000000001
3 0000000010
4 0000000011

1024 111111111

Similarly increasing the variables to 1000 then we need to have:

21000 =1 07150860718626732094842504906e+301 Possible values.

Therefore, an efficient alternative required to solve these kind complex Boolean
equations. Satisfiability solvers in short SAT Solvers, deal in such problems and
decides whether the give equation is satisfiable or not [11]. SAT solvers and how

they work is explained in the subsequent sections.



2.2 SAT Solvers

SAT Solvers are programs that determine whether Boolean expression has solution
or not, using mathematical methods. SAT solver program tries to find all possible
values for the variables that can make the given expression as a whole true, and gives
the possible satisfiable values. During the search, if there are no values that make the
expression true it returns unsatisfiable . To find satisfying values for a given clause
of an expression SAT solver apply depth-first search algorithm based on
backtracking the details of how it work can be found in [12]. Mostly SAT Solvers
input is Boolean expressions in CNF with special input format called DIMACS
format [11]. CNF and DIMACS are explained in the next sections.

2.2.1 Conjunctive Normal Form

CNF Terminologies: CNF is formed from the following three basic blockes: term,
clause, and expression [11].

Term = A term is a Boolean variable like (a2) or the negation of it like (-a2). Term
also called literal.

Clause = A clause is the disjunction of terms, terms joined by OR. Clause can
contain single terms, and clause may not have repetition of Bboolean variables.

Expression = An expression is the conjunction of clauses, clauses joined by AND.

Definition: CNF is expression formed by conjunction of clauses, clauses connected
by AND as in (2.1), and each clause composed of disjunction of terms. As the
symbols indicate the disjunctions of the terms (Li) forms the clause C and the
conjunction of clauses(Ci) gives the final result of f in CNF.

Example: This expression (avbVvc) (-aVv bV -c)isin CNF since the conjunction

implicitly expressed by parenthesis. To satisfy the expression “SATISFIABLE”



(TRUE) results of every clause must be TRUE. Since it is conjunction of clauses any
one of the clauses is FALSE, the expression as a whole is “UNSATISFIABLE”
(FALSE) [11], which is the basics behind that SAT solvers use to find the possible
solutions.

2.2.2 DIMACS Format

The input format for SAT Solvers is the referred as DIMACS file format which is
normal text file. As SAT Solvers requirement the CNF of a given Boolean expression
is represented in DIMACS file. In DIMACS the variables are not directly written
rather each variable is assigned mapping decimal number as representation of the
variable and negation of it expressed by “-*“ and the two operators of CNF disjunction
and conjunction are represented by space and 0 respectively. The syntax for the

DIMACS in CNF is as follows [11]:

= p cnf <No_OF_VARIABLES> < No_OF_CLAUSE>
= First line must start with character “p” followed by space then “cnf” again
space the number of variables space at the end number of clauses.
= Character “c” to make comment
= In this format variables of the equation under consideration are given natural
number representation, and integers are assigned for literals. For example, the
variable a2 represented by 2 and —a2 by -2.

= The DIMACS in CNF operator disjunction represented by character space

= Number zero (0) indicates ends a clause and represents the conjunction.

The next examples show the DIMACS File format for Boolean equation.

SATISFIABLE Example

f=(al b) & (ra | b) & (=b | a)

10



Each clause independently re-written as follows, it contains two variables a, and b

and three clauses:

(a | b)é&
(-a | b)&
(=b | a)

Convert the variables into the mapped SAT variables a=1 and b=2 and feed to SAT

solver as shown in the Figure 1.

MiniSat in javascript

penf 23
1268

-1 28
210

V.

Figure 1: Satisfiable input for MinSat SAT Solver [9]

As shown in Firure 2. from the execution of the expression f possible values that
make the it SATISFIABLE are a=1, and b=2. Positive result implies true; a=true,

and b=true.
f=al| b) &« (—a | b) & (-b | a)

true = (true | true) & (-true | true) & (-true | true)

11



is MiniSat 2.@ beta

| Number of variables: 2 |

| Number of clauses: 3

| Parsing time: 8.80 s |

| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |

erified 3 original clauses.

estarts : 1

onflicts : 1 (1 /sec)

decisions : 2 (9.0 % random) (2 /sec)
propagations : 3 (3 /[sec)

onflict literals : 1 (0.0 % deleted)
PU time : 1 s

[SATISFIABLE

Figure 2: SATISFIABLE output of MinSat SAT Solver [9]

UNSATISFIABLE Example
f=[-b& (-al|l -c) &« (al| b) & (b lc)]

Each clause independently re-written as follows, it contains three variables a, b, and

¢ and four clauses:

-b &

(-a | -c) &
(a | b) &
(b |c)

Convert the variables into mapped SAT variables a=1, b=2, and ¢=3. Then feed to

SAT solver as shown in the Figure 3.

12



MiniSat in javascript

¢ DIMACS File format Example
c eg2.cnf SAT represented decimal: a=1,b=2,c-3

| Number of variables: 3 |

| Number of clauses: 4 |

| Parsing time: ©.00 s |
Solved by unit propagation
UNSATISFIABLE

Figure 3: UNSATISFIABLE input and output of MinSat SAT Solver [9]

From the execution of the expression f There is no possible value that will make the

given expression f true, hence UNSATISFIABLE.

13



Chapter 3

ZUC ALGORITHM STRUCTURE

In this Chapter, the general structure and execution of ZUC algorithm in briefly
presented for further details refer [4, 5, 6, 13], official 3GPP specifications. The new
stream cipher ZUC is a world—oriented stream cipher, takes a 128-bit secret key and
a 128-bit IV as input, and outputs keystreams of 32-bit words, which are used to
encryption/decryption [5].

3.1 Structure of ZUC

As shown in the Figure 4. The general structure of ZUC algorithm involves three
logical layers: LFSR, BR, and F [6]. Each logical layer of the algorithm briefly

discussed bellow.

© 9 9

= wvTm o

| <<z 16

Figure 4: Structure of ZUC Algorithm [6]

14



3.1.1LFSR
LFSR has 16 cells each having 31-bits denoted by (so, si...., S14515) €ach can take
values 1.2.3...,2%-1. LFSR involves two modes of operation initialization and
working modes.
1) Initialization mode
In this mode for the initialization of LFSR values, (so, S1...., S14515), it takes a 31-bit input
from output of F discarding 1 right most bit u=W>>1, details shown below:
LFSRWithlInitialisationMode (u) {

v = 2815+ 2Ys134 2285304+ 2%%4 + (1+2%)so mod (2%%-1) (3.1)

S15= U+ Vv mod (23-1) (3.2

if s16= 0 then set s362°1-1

(51, S2,.. . 315,516) — (So, S1,.. 4, 514,315)

}
2) Working mode
In this mode the initialization of LFSR values (so, Si,..., S12515) it takes no input details
shown below:
LFSRWithWorkMode () {
v = 2%s15+ 2Y513+ 22510+ 2204 + (1+2%)somod (2°1-1)
if s16= 0 then set s162%!-1

(Sl, S2,. .., $15,516)—> (S0, S1,- .-, 514,815)

}

3.1.2 Bit Reorganization (BR):

The BR cells denoted by X0, X1, X2 and X3 in the second logical layer. Each of the
BR cells takes 32 bit from LFSR Cells Left half (H) or Right Half (L). Then X0, X1,
X2 will be input for F (nonlinear function) and X3 will be input for key stream

production.
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Bitreorganization (){
X0 = S15H || S14L
X1 =S11L || S9OH
X2 =S7L || S5H

X3 = S2L || SOH
¥
3.1.3 Non-linear function (F)
The non-linear function denoted by F in the logical layer has 32-bits cells R1 and R2.
As it mentioned above the first three words, X0, X1, X2 formed in the BR stage are
input to F and then F output 32-bit (W). The equations shown below are under the F.

F(X0, X1, X2) {

W= (X0 @ Ry) I R2 (3.3)
W1=R1 [ X1 (3.4)
W2 = R2 @X2 (3.5)
R1=S (L1 (WIL || W2H)) (3.6)
R2 =S (L2 (W2L || W1H)) 3.7)

}

In the equations (3.6) and (3.7) S is S-box and L is linear transformer. Linear transformer
(L) defined bellow in (3.8), and (3.9), and S-box defined in (3.10).
1) The linear transforms L1 and L2

According to the definition below, it transforms the input to X

L1(X) =X (X<<<322) P (X<<<310) P (X<<<3,18) P (X<<<3,24) (3.8
Lo(X) =X (X<<<3:8) P (X<<<3:14) P (X<<<3,22) P (X<<<3,30) (3.9
2) S-Boxes
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The S-box S The 32x32 S-box S is composed of 4 juxtaposed 8x8 S-boxes, i.e.,

S=(S0,51,52,S3),whereSo=Sz, S1=S3 S-Boxes 0, S-Boxes defined in [6].

For example

For an 8-bit input x in hex as x=h||I, the first hex half (h) represents row and the
second hex half (I) column of So (or S1).

So (0x24) =0xE4 and S1 (0x68)=0x23.

Similarly for 32-bit input x divide it into four 8-bits (4 bytes) and apply the same as
above for each.

X=Xo|| X1 || X2]| X3, Y =vyol||y1|l y2]|ys where xiand yiare all bytes, i=0, 1, 2, 3. Then
we have yi=Si (xi), i=0, 1, 2, 3

Let X=0x2468ACES8 be a 32-bit input, and Y its 32-bit output. Then divide each byte get
from the output from the appropriate S-box then it will give as follows:

Y=S(X) =So (0x24) ||Sz (0x68) ||Sz (0XAC) ||Ss (OXE8) = OXE423E17B.

In general for S-Boxes 0 and 1
Y =Si(x), i=0,1 (3.10)
3.2 Execution

ZUC execution has two stages: the initialization and working stage.
3.2.1 Initialization stage
The initialization starts by key loading and cells Ri1and Rz initialized to be all 0. The 16
cells of LFSR each with 31-bit is initialized by expanding the 128-bit Key and IV
into 16 each having one byte, and constant value 240-bit expanded into 16 having 15-
bit each then it loads to LFSR as follows:

k = kol| k1 [|k2 |...||ks and

IV =ivo|| ive [ Iv2 []...]| V15

D= do||d1]]...]|d1s, Constant value
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si = ki|| di |]ivi where ki and ivi, 0<i<15, are all bytes.

Then it runs the following functions for 32 rounds:

1. Bitreorganization ()

2. W=F (Xo, X1, X2)

3. LFSRWithlInitialisationMode (w>> 1)
3.2.2 Working stage
Following the initialization stage the working stage. First, it runs the following only
once: it discards the output of W nonlinear function F:

1. Bitreorganization ()

2. F (Xo, X1, X2)

3. LFSRWithlInitialisationMode ()
3.2.3 Keystream Generation
Then 32-bit key stream (Z) production commences the key stream generation
involves the following:

1. Bitreorganization ()

2. Z=F (Xo, X1, X2) @ X3

3. LFSRWithlInitialisationMode ()
For the encryption/decryption of a message with LENGTH bits, it generates
L=[ LENGTH/32 ] words.
3.2.4 Encryption/Decryption
Both encryption/decryption perform by exclusive-OR message M and cipher
message C by the keystream Z generated in the above step.

M=MI0] [M[2] [M[2] ||... M [LENGTH-1] be the input bit stream of

length LENGTH and
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c =[] ||cia] |c2] ||--- | CILENGTH-1] be the corresponding output bit
stream of length LENGTH, where M[i] and C[i] are bits, i=0,1,2,...,LENGTH-1.
Then

C[i] = M[i]® Z[i],i=0,1,2,...,LENGTH-1.

MI[i] = C[i] @ z[i],i=0,1,2,...,LENGTH-1.
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Chapter 4

IMPLEMENTATION AND EXPERIMENTAL
RESULTS

First, ZUC Confidentiality algorithm written in C programming language is taken
from 3GPP specification documentations [5, 6]. Then the CNF generators added to
the source code without affecting the encryption decryption process. CNF generators
can be prepared converting each operator in the algorithm [8]. The ZUC
Confidentiality algorithm is composed of different operators exclusive OR, modular
addition 2™, and rotation — K bit cyclic shift. When the operators execute the method
defined for the particular operator appends the CNF of the operator into DIMACS
file. In addition to operators CNF for S-Boxes is also generates during the S-Boxes

execution.
4.1 Building CNF

The conversion of Boolean equations into CNF format done based on truth table of
given equation or applying De’morgans laws. General case how to generate CNF
from truth table mentioned is discussed in this section, so that it can be applied for
all similar cases in the implementation. To build CNF from truth table we need to
consider all the possible inputs and outputs of the Boolean equation [16]. For
instance, let us take an arbitrary example of a Boolean function with three variables
f (x, y, z), variables x and y represent the two operands and z the result of the
operations, like (z = x @ y) and the function output is either true “1” or false “0”. Let

us also assume the function in consideration have the truth Table 2.
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Table 2: Truth table Boolean function

Row No. f(x,y. 2)

X
<

0w ~No A WN R
P PP P OO oo
B P, OO R PP OO
P O OFRr OF ON
O L, P OPRFP OO

To generate CNF from truth table, first, check the result of the function with the given
variables for each row. When the result of the function is “0” from the same row of
the corresponding variables will be connected by disjunction (logical OR), if the
value of the truth table is “1” the negation of the variable will be taken this makes
what is known clause of the CNF. Similarly for the rest of the rows and connect each
clause of the rows by conjunction (logical AND) this finally gives the CNF of the
equation.

f=(xVyVvVZAX Vy VZIA(X VYy VZIA(x VY V 2)
For all the equations similar approach will be applied to generate the CNF of
cryptographic equations of ZUC algorithm containing cryptographic equations:
(3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), and (3.10), and having the
operators exclusive OR, modular addition 2™, S-Box, and rotation - K bit cyclic shift.
The CNF of each operators is defined using truth table.
4.2.1 Exclusive OR CNF

To build the Exclusive OR CNF Table 3 is used with similar method is applied above.
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Table 3: Truth table Exclusive OR

Rows No. X Y z z=xX@y
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 1
8 1 1 1 0

CNFofz=x@ yis:
XVYVazZ)AXVAaYVZA(XVYVZ)A(-XV-yV-2z) (4.1)

4.2.2 Modular addition 2™

Modular addition is part of many cryptographic algorithms, for instance SNOW 3G,
and ZUC. Specifically two operands modular addition is the focus of this thesis as
the cryptographic equations of ZUC involve fixed length two operand modular
additions. Modular addition is based on Galois field GF (2™) i.e. addition n operands
having m-bit and values can only be {0, 1}. As Figure 5 (left) depicts to perform two
operands modular addition it is important to have three operands (x, y, and Carryln),
i.e. the two operands plus the carry bit, and the expected outputs (Sum, CarryOut)
result sum and the carry bit output. Similarly, for n bit operands as Figure 5 (right)
shows it can be generalized as the addition for each bit as (i, yi, and Carrylni) and

its result outputs are (Sumi, CarryOuti) [15,16].
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Symbol

Carryln

I~
. () (g (0 {0} '-.ﬂj--i— ('Elrr}.-]n {I#
I
I i—"]nputﬁ
I

Sum: 0 @l 0 ol

1
ol 0 )@l P> Outputs

CarryQOut CarryOut (Zi+1)
Figure 5: Boolean addition of two 1-bit operands with carry bits [15]

4.2.3 Modular addition 2™ CNF
Base on the above addition method we can generalize and represent the result for two

operands all possible inputs and outputs of the modular addition as shown in Table

4.

Table 4: Truth table Boolean addition of two 1-bit operands with carry bits
Rows No. CarryIn Operandl Operand2 Carry Out Sum

Zi Xi Vi Zi+1 Si
1 0 0 0 0 0
2 0 0 1 0 1
3 0 1 0 0 1
4 0 1 1 1 0
5 1 0 0 0 1
6 1 0 1 1 0
7 1 1 0 1 0
8 1 1 1 1 1

From the above truth table, representation of the Modular addition in CNF is as
follows:

ST(@VXVY)A(ZVXVAY)A(ZiVXVAY)A(-ZiVxiVy)  (4.2)
Zitn=(ZiVXi VYi) A(Zi VX VAYi) A(zZi V=X V) A (RZi VX Vi) (4.3)

The final modular addition in CNF is the CNF of (4.2) A (4.3).
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Addition 2"enr = [(4.2) A (4.3)] (4.4)
4.2.4 S-Box CNF

The CNF generated based on truth table of the s-boxes Table 5 (It shows partial view
of the 256 rows), which are representation of the S-Boxes Soand S1. The truth tables
have 256 rows that constructed from the 16x16 s-box, that are directly taken from
the 3@ Generation Partnership Project (3GPP) ZUC specification document [6], and
its equivalent binary that is necessary for the generation of the CNF made from the
input and output of the s-boxes. The 8-bit outputs of the truth table is represented
by variables y1, y2, y3, y4, y5, y6, y7, y8 similarly 8-bit input also represented by
variables x1, x2, X3, x4, x5, x6, X7, x8. The CNF representation for each of the eight
output variables made according to truth Table 5 of the s-box CNF generated by
traversing through each 256 row of the output variable. According to CNF rule from
truth table, during the traverse when the output variable truth table value is “0” from
the same row of the corresponding 8-bit input variables connected by disjunction
(logical or) when the value is “1” it negation is taken. Finally the generated
disjunction variables connected by conjunction (logical and) to the next one. Let us
consider the first output (y1) variable CNF automatically generated shown below by
(4.5), similarly for rest of output variables y2, y3, y4, y5, y6, and y7, y8 their CNF
constructed and joined by conjunction to get the final CNF of the S-box0 as shown
in (4.6). Due to the big size of the CNF of S-boxes Table 6 shows partial view of S-

box 0 and same method applied on the others y2, y3, y4, y5, y6, and y7, y8.
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Table 5: Partial view truth table ZUC S-Boxes SO / S1 input and output

S-Box S0/S1 S-Box SO S-Box S1
No Input Output Output
X1 X2 X3 X4 X5 X6 X7 X8 yl y2 y3 y4 y5 y6 y7 y8 yl y2 y3 y4 y5 y6 y7 y8

1 0x00 00000000 o0x3e 00111110 o0x55 01010101
2 0x01 00000001 ox72 01110010 o0oxc2 11000010
3 0x02 00000010 oOx5b 01011011 o0x63 01100011

Rows omitted

Rows omitted

255 Oxfe 11111110 0x34 00110100 Oxe2 11100010
256 Oxff 11111111 O0x60 01100000 Oxf2 11110010

Table 6: Partial view of S-box 0 first output column CNF
yl=[(x1 v x2 VX3V x4V X5V X6V X7V X8)A (4.5)

X1 vx2Vvx3Vx4vVvx5Vx6V X7V x8)A

(XL vXx2VvXx3VXx4V X5V X6V X7V Xx8)A
Clauses omitted

(-x1 Vv -x2 VvV -x3 V =x4 V =x5 V =x6 V X7V x8) A

(XL Vv X2 V =x3 V =x4 V =x5 V =x6 V =X7 V -x8)]

f s-Boxeso one = AS_, (yi) defined based on (4.5) and all outputs (4.6)

By applying similar method, we can generate CNF for S-Box 1 we finally get:

f sBoxest onF = AP~y (D) (4.7)
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4.2.5 Rotation — K bit cyclic shift CNF
The K bits cyclic shift also called rotation. CNF generated based on De Morgan’s

law implication and double implication.

€« (a<<<z:K) (4.8)
a—b=(@—b)A(b—a) DeMorgan’s law of double implication (4.9)
(a—b)==-avhb De Morgan’s law of implication (4.10)
€ — (a<<<3k) A (a<<<szk) — C applying by (4.8)

CNF Rotation: (=c v (a<<<z2k)) A ((a<<<3z2K) C)) applying by (4.9)  (4.11)
4.3 Generating ZUC SAT instance CNF

CNF is generated for each key IV input; during execution of the program the CNF
generator for each operator in the program takes operands (variables) of the operation
convert them into binary. Then for bit values of 1 it sends positive and for 0 negative
of the SAT variables, which are tracked with numbers [8]. For example the execution
of the exclusive OR operator defined in (4.1) for a single occurrence in the algorithm
it generates 32x4 clauses composed of the logical variables xi, yi, zi represented
interms of the SAT variable numbers. These SAT variables start from 1 and
increments for every logical operator execution in a bit level. Then the CNF variables

are stored into DIMACS file appending on the previous.

next Table 7 taken from the first round execution of exclusive OR operator executing
equation defined by (3.1) for particular input values x,y,z given in the table. It shows
the input variables in binary and the corresponding SAT variables as decimal number.
In SAT variables mapping binary 1 represented with positive and 0 with negative

decimal numbers.
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Table 7: Mapping operand to SAT variable

Inputs
X
Xi binary

xi SAT variable

Y
yi binary

yi SAT variable

z
zi binary

zi SAT variable

X=e08f9a00, y=0, z= e08f9a00

e08f9a00
11100000100011111001101000000000
123-4-5-6-7-89-10-11-121314151617-18-192021
-22 23 -24 -25 -26 -27 -28 -29 -30 -31 -32

0

00000000000000000000000000000000
-1-2-3-4-5-6-7-8-9-10-11-12-13-14 -15-16 -17 -18
-19-20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32
e08f9a00
11100000100011111001101000000000
123-4-5-6-7-89-10-11-121314151617-18-192021

-22 23 -24 -25 -26 -27 -28 -29 -30 -31 -32

Now let us apply the SAT variables and generate SAT instance for equation (4.1) for

32 times as follows:

fo one = AP (xiVyi Vazi) AV Ayl Vzi) A (axiVyi Vzi) A(=xiVayiv

ﬂZi)

Applying the SAT variables, it will give as shown in Table 8. The table shows

partially not all the 32x4 clauses.
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Table 8: Partial view of Exclusive OR CNF generation
@v-1v-D)AQ V--1VDA(ELV-IVIA(RLV -1V al)

2V-2V-2)AQR V=-2VC)A(-2V-2V2)A(=2V =2V =2)

Bv-31v-3)ABVa-3V3)A(-3V-3V3)A(-3V-3V-3)

Clauses omitted

We have seen sample representation for exclusive or operator similarly, all operators

defined by (4.4), (4.6), and (4.10) according to shown below:

fmone=A2, (Zi V xi V yi) A (zi V =xi V =yiD) A (=zi V xi Vi)

A(—zi VaxiVv yi)(zi V xi Vyi)A (zi V xi V —ayi) A

(zi V =xi V yi) A (—zi V xi V yi)

f s-Boxes cnF = Defined by equations (4.6) and (4.6) for S-box 0 and S-Box 1
respectively.
f <<akone= AFZ,(ci V ma(i + kmod32)) A (mai V c(i + k mod32))
After traversing through the Initialization procedures of ZUC for three rounds
including the last state of the initialization we will have DIMACS CNF with 3584

SAT variables and 48128 clauses generated Table 9 shows parts of the CNF

instances generated.
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Table 9: Partial views of generated DIMACS file

p cnf 3584 48128 c3 c5

¢ XOR Start 3-3-30 -5-550
cl 3330 -55-50
1-1-10 -3-330 5-5-50
1110 -33-30 5550
-1-110 c4 c6
-11-10 -4-440 -6-660
c2 -44-40 -66-60
2-2-20 4-4-40 6-6-60
2220 4440 6660
-2-220

-22-20...

48092 Clauses Omitted

3582 358235820  -3583-358335830  -3584 3584 3584 0
3582 3582 -3582 0 -3583-3583-35830 -3584 3584 -3584 0
3582 -3582 35820 -3583 3583 3583 0 -3584 -3584 3584 0
-3582 3582 35820 3583 -3583 3583 0 3584 3584 3584 0

Next S-box specifically taken out of the above-generated DIMACS file and shown
below in Table 10 for specific input given, the SAT variable takes eight inputs by
mapping to SAT variable, in this case from current position of SAT variable counter
from 641 to 648 and generates the CNF clause shown in Table 11. Based on the rules

defined for S-box 0 above in (4.5), and (4.6).
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Table 10: Mapping s-box inputs to SAT variable
Inputs hex x=9d

X binary 10011101

X SAT variable 641 -642 -643 644 645 646 -647 648

Table 11: Partial view of generated DIMACS of S-Box 0
c yl Start
641 -642 -643 644 645 646 -647 648 0
641 -642 -643 644 645 646 -647 -648 0
641 -642 -643 644 645 646 647 648 0

Clauses omitted

-641 642 643 -644 -645 -646 -647 -648 0
-641 642 643 -644 -645 -646 647 648 0
-641 642 643 -644 -645 -646 647 -648 0
c yl End Clauses : 128

c y2 Start

641 -642 -643 644 645 646 -647 648 0
641 -642 -643 644 645 -646 647 648 0
641 -642 -643 644 645 -646 647 -648 0

-641 642 643 -644 645 -646 647 648 0
-641 642 643 -644 -645 646 647 648 0
-641 642 643 -644 -645 -646 647 648 0
c y2 End Clauses : 128

c y8 Start

641 -642 -643 644 645 646 -647 648 0
641 -642 -643 644 645 646 -647 -648 0
641 -642 -643 644 645 -646 -647 648 0

-641 642 643 -644 -645 -646 -647 -648 0
-641 642 643 -644 -645 -646 647 648 0
-641 642 643 -644 -645 -646 647 -648 0
c y8 End Clauses : 128
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4.4 Experiment conducted

The test of availability of weak key state on ZUC algorithm is performed by
generating CNF representation of the equations of the key initializations represented
in DIMACS format, then executed with Online SAT solver available in [9]. Based
on the weak sate definition in [8, 4] and explained above in Chapter 1 section 1.3.
The CNF is generated for each round of the initialization and the final state assumed
as weak key state appended to the CNF DIMACS file, and finally the SAT instance
executed with SAT solver. The existence possible solution is indication of the
availability of weak key, else if SAT solver returns UNSATISFIABLE indicates

there is no weak key state.

Therefore, ZUC algorithm is implemented as per the requirement in [5,6], and for the
key initialization procedure the ARX operators SAT instance generator is added to
the code without affecting the operation of the encryption decryption process. Then
according to the above weak key definition for each ARX operators key initialization
procedure with key IV SAT instance is generated considered as input, and the final
status of the key IV initialization SAT instance as output of the initialization. Then
generated SAT instance execute with SAT Solver. SAT solver tries to get possible
solution for this relation from the given input output relation if there is possible
solution it implies the key is weak; otherwise, the key is not weak.

4.4.1 User manual to the program

The first step of the analysis is generating SAT instance. The SAT instance
generation  process  simultaneously  proceeds  while  performing the

encryption/decryption process. Therefore, all the parameters of ZUC algorithm those
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are necessary for the encryption/decryption need to be properly assign. The following

steps summarize the process:

1. Assignment of the confidentiality keys, IV, and the other variables of ZUC
algorithm like COUNT, BEARER, DIRECTION, and LENGTH. In addition,
during encryption supply the plain text M, and during decryption supply the
cipher message C. all values used are found in implementer’s test data in [13],
and partially supplied in appendix A Table A1 — Table A4. Sample
assignment taken from the source code shown in Appendix B the complete

view can be found in the source code from CD of the thesis.

2. Then build the solution to make the compilation from the environment of
development in this case visual Studio 2012 and run the program. The
program dose the encryption/decryption for the given input as shown bellow

in Figure 6.

B '| C\Users\empesource\documents\visual studio 2012\Projects\ZucApplicati...|.i‘E‘£—hJ

.
Initial Message

m| »

B6cfB5340 T35552ab c¢3752fa 6f9025fe bd675d9 587Sb2 00
Key

17 3d 14 ba 50 03 73 1d Ta 60 04 94 7O fO Ga 29
Intial Uector (IV)

66 O3 54 92 78 00 0O 00 66 03 5S4 92 78 0O 0O 0O

Cipher Message

aBc85fcé 6afb8533 aafc2518 dfeT8494 eeledbl 30238cc8 104b5a43
Decrypted from cipher message

6cfB5340 T35552ab c9752fa 6f9025fe bd6T5d9 587Sh2 00

4 Te 2

Figure 6: Encryption/decryption test case 1
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3. Simultaneously the program generates the SAT instances and save in

DIMACS file in the specified location in this case c drive, with the given file

name in this case DIMACS as shown in Figure 7.

4. Open the DIMACS file from the saved location copy all contains of the file

that you want to test.

& » Computer » local Disk (C) »

ize ¥ -;r] Open ~ Print

sorites
esktop
ownloads

ecent Places

raries
ocuments
lusic
ictures

ideos

mputer

ycal Disk (C)

scal Disk (D:)

D-ROM Drive (H:) V52012_PRO_ENU

twork

Burn

New folder

Name

DIMACSCNF-5-5-3
DIMACSCNF-5-5-2
DIMACSCNF-5-5-1
DIMACSCNF-4-4-2
DIMACSCNF-4-4-3
DIMACSCNF-4-4-1
DIMACSCNF-3-3-3
DIMACSCNF-3-3-2
DIMACSCNF-3-3-1
DIMACSCNF-2-2-3
DIMACSCNF-2-2-2
DIMACSCNF-2-2-1
DIMACSCNF-1-1-3
DIMACSCNF-1-1-2
DIMACSCNF-1-1-1
Persi0.sys

dfinstall

@ vnoviewer

LW nA e

Figure 7: Saved DIMACS files

:

=49 ][ se

| DIMACSCNF-5-5-3 - Notepad [ (8]

File Edit Format View Help

m »

5. Then open the online SAT solver as shown in Figure 8 past it to SAT solver

execution window and click solve.
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= C < www.ms00s.0rg/2013/09/minisat-in-your-browser/

MiniSat in javascript

gnf 3584 4B128
XOR Start

1
=1

b B Y ED

-
-

-

e B R R
R & @ @ 9@ @

-

>
-~

Figure 8: Input to online SAT Solver [9]

6. The result of execution of the SAT Solver shall be as follows shown in Figure
9. The output of the SAT solver interpreted if SATISFIABLE it returns the
possible values, else UNSATISFIABLE implies no possible value(s) that
satisfy the given SAT instance input that is indication that there is no weak

key state.
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MiniSat in javascript

p cnf 3584 48128
¢ XOR Start

c 1

1-1
11

W e w MRNON e @ e

ERL-~I -~ o D @ L=~ @ oo <@

F S
-
TS

N ¢

This is MiniSat 2.0 beta

[ Problem Statistics ]
I
| Number of variables: 3584 |

| Number of clauses: 48128 |

| Parsing time: ©.00 s |

Solved by unit propagation
UNSATISFIABLE

Figure 9: Output of online SAT Solver [9]

4.4.2 Experment results analysis

The experiment done with different key and IV combinations. The five keys shown
in Table 12 taken from [13], implementers test data document. The Keys are given
directly and the IV constructed from the IV building block variables. These Keyes
are used during the SAT instance generation. In addition, 50 more randomly
generated keys are used. For readability purpose each key is assigned labels: keyl,
key2, key3, key4, and key5, similarly the initialization vectors are also labeled as

IV1,1V2,1V3,IV4,and V5.
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Table 12: Different Key and IV for test scenarios
Key/lV No Values(hex)
Key 1 Test Key 1 from [13], Implementer’s Test Data

v 1 660354927800 0000660354 9278000000
Key 2  TestKey 2 from [13] , Implementer’s Test Data
v 2 000568 23c4 000000000568 23 c4 000000
Key 3  Test Key 3 from [13] , Implementer’s Test Data
v 3 76452ecl14000000 7645 2ecl 14000000
Key 4  Test Key 4 from [13] , Implementer’s Test Data
v 4 e4850fel 84000000 e4850fel 84000000
Key 5 Test Key 5 from [13] , Implementer’s Test Data
v 5 2738 cdaad0 00000027 38 cd aa d0 00 00 00

The SAT instances are generated for the initialization procedure of the ZUC
algorithm with different key and IV. The SAT instances generated during the
initialization procedure for one round, two rounds, and three rounds initializations.
For each round the last state of the initialization appended as weak key state. Tables
13 to 17 summarizes the SAT instance generated for initialization of one round 1792
SAT variable having 24064 clauses, for two rounds of initialization 2688 SAT
variable having 36096 clauses, and for three rounds of initialization 3584 SAT
variable having 48128 clauses generated. Then the CNF generated stored in
DIMACS file executed with SAT solver the existence of possible solution is
indication of the availability of weak key. In the test conducted for all cases, SAT
solver returns UNSATISFIABLE indicates there is no weak key state in ZUC

algorithm.

Table 13: Experimental result key 1 and IV 1
Rounds Key IV No.Variables No.Clauses  Satisfiability

1 1 1 1792 24064  UNSATISFIABLE
2 1 1 2688 36096  UNSATISFIABLE
3 1 1 3584 48128  UNSATISFIABLE
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Table 14: Experimental result key 2 and IV 2

Rounds Key IV No.Variables No.Clauses
1 2 2 1792 24064
2 2 2 2688 36096
3 2 2 3584 48128

Table 15: Experimental result key 3 and IV 3

Rounds Key IV No.Variables No.Clauses
1 3 3 1792 24064
2 3 3 2688 36096
3 3 3 3584 48128

Table 16: Experimental result key 4 and 1V 4

Rounds Key IV No.Variables No.Clauses
1 4 4 1792 24064
2 4 4 2688 36096
3 4 4 3584 48128

Table 17: Experimental result key 5 and IV 5

Rounds Key IV No.Variables No.Clauses
1 5 5 1792 24064
2 5 5 2688 36096
3 5 5 3584 48128
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Chapter 5

CONCLUSION

In this thesis ZUC the LTE Advanced confidentiality and integrity cryptographic
algorithm recommended by SAGE to be the third alternative algorithm, in addition
to SNOW3G, and AES investigated for the existence of weak key. Weak key state in
general is a key that leads to extraction of the key bits used for the
encryption/decryption. Specifically to ZUC, keys considered weak if the Key and
initialization Vector (IV) used for the initialization of the LFSR initializes all the
cells of the LFSR with same value at the end of initialization. In this analysis,
existence of weak key in ZUC is checked with the help of SAT solver that is the state
of the art cryptanalysis tool which is emerging. For the test SAT instance for different
Key and IV combination, test parameters are provided by 3GPP ZUC implementers
test data documentation and in addition fifty keys were randomly generated. The SAT
instance generated for three rounds of the initialization procedure and the last round
of the initialization state of LFSR were considered as weak key. Then for each
scenario of the Key IV combination, SAT instance results were generated and then
executed with SAT solver. The result for the entire test return UNSATISFIABLE
that means LFSR is not initialized with the same values therefore weak key does not
exist in the key generation procedure of ZUC algorithm. Hence, ZUC is a strong

algorithm and the right choice for the high security demand of the 4G network.
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Appendix A: Test parameters

Table Al: Testl parameters

Key
Count
Bearer
Direction
Length

Plaintext:

Ciphertext:

(hex) 17 3d 14 ba 50 03 73 1d 7a 60 04 94 70 f0 0a 29
(hex) 66035492

(hex) f

(hex) 0

193 bits

(hex) 6¢f65340 735552ab 0c9752fa 6f9025fe 0bd675d9 005875b2
00000000

(hex) a6¢85fc6 6afb8533 aafc2518 dfe78494 Oeele4b0 30238cc8
00000000

Table A2: Test 2 parameters

Key
Count
Bearer
Direction
Length

Plaintext:

Ciphertext:

(hex) e5 bd 3e a0 eb 55 ad e8 66 c6 ac 58 bd 54 30 2a
(hex) 56823

(hex) 18

(hex) 1

800 bits

(hex) 14a8ef69 3d678507 bbe7270a 7f67ff50 06c3525b 9807e467
c4e56000 ba338f5d 42955903 67518222 46¢80d3b 38f07f4b
€2d8ff58 0551322 29bde93b bbdcaf38 2bflee97 2fbfo977
bada8945 847a2a6c 9ad34a66 7554e04d 1f7fa2c3 3241bd8f
01ba220d

(hex) 131d43e0 dealbe5c¢ 5albfd97 1d852chf 712d7b4f 57961fea
3208afa8 bca433f4 56ad09c7 417e58bc 69cf8866 d1353f74
865e8078 1d202dfb 3ecff7fc bc3b190f e82a204e d0e350fc 062613
b2f2bca6 df5a473a 57a4a00d 985ebad8 80d6f238

64a07b01
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Table A3: Test 3 parameters

Key (hex) d4 55 2a 8f d6 e6 1c ¢8 1a20 09 14 1a 29 c¢1 Ob
Count (hex) 76452ecl

Bearer (hex) 2

Direction (hex) 1

Length 1570 bits

(hex) 38f07f4b e2d8ff58 0551322 29bde93b bbdcaf38 2bflee97
2fbf9977 bada8945 847a2a6¢ 9ad34a66 7554e04d 1f7fa2c3
3241bd8f 01ba220d 3cadec4l e074595f 54ae2b45 4fd97143
20436019 65cca85¢ 2417ed6¢ bec3bada 84fc8ab57 9aea7837
b0271177 242a64dc 0a9de71a 8edee86¢ a3d47d03 3d6bf539
804eca86 c584a905 2de46ad3 fced6554 3bd90207 372b27af
b79234f5 ff43ea87 0820e2c2 b78a8aae 61cce52a 05156348
d196664a 3456b182 a07c406e 4a207912 71cfedal 65d535ec
Plaintext: 5ea2d4df 40000000

(hex) 8383b022 9fccOb9d 2295ec41 c977e9c2 bb72e220 3781419
€8318f3a 270dfbcd ee6411c2 h3044f17 6dc6e00f 8960f97a
facd131a d6a3b49b 16b7babc f2a509eb b16a75dc ab14ff27
5dbeeeal a2b155f9 d52¢2645 2d0187c3 10adee55 beaa78ab
4024615b a9fs5d5ad ¢7728f73 5606710 13e5e550 085d3291
df7d5fec edded559 641b6c2f 585233bc 71€9602b d2305855
bbd25ffa 7f17ecbc 042daae3 8c1f57ad 8e8ebd37 346f71be
fdbb7432 e0eObb2c fc09bcd9 6570ch0c 0c39df5e 29294682
Ciphertext: 703a637f 80000000
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Table A4: Test 4 parameters

Key
Count
Bearer
Direction
Length

Plaintext:

Ciphertext:

(hex) db 84 b4 fb cc da 56 3b 66 22 7b fe 45 6f 0f 77
(hex) e4850fel

(hex) 10

(hex) 1

2798 hits

(hex) e539f3b8 973240da 03f2b8aa 05ee0a00 dbafcOel 82055dfe
3d7383d9 2cef40e9 2928605d 52d05f4f 9018a1fl 89ae3997
ce19155f b1221db8 bb0951a8 53ad852¢ e16¢ff07 382c93al
57de00dd b125c753 9fd85045 e4ee07e0 c43f9e9d 6f414fca
d1¢62917 813f74c0 0fc83f3e 2ed7c45b a5835264 h43e0b20
afda6b30 53bfb642 3b7fce25 479ff5f1 39dd9b5b 99555862
a56be18d d581cd01 7¢735e6f 0d0d97¢c4 ddcldida 70c6dbda
12cc9277 8e2fbbd6 f3ba52af 91¢9c6h6 4e8dadf7 a2¢266d0
2d001753 df089603 93c5d568 88bf49eb 5¢16d9a8 0427a416
bch597df 5bfe6f13 890a07ee 1340e647 6b0d9aa8 f822ab0f
d1ab0d20 4f40b7ce 6f2e136e b67485e5 07804d50 4588ad37
ffd81656 8b2dc403 11dfb654 cdead47e 2385¢343 6203dd83
6f9c64d9 7462ad5d fa63b5cf e08ach95 32866f5¢ a787566f
ca93e6b1 693eel5c¢ f6f7a2d6 89d97417 98dc1c23 8elbe650
733b18fb 34ff880e 16bbd21b 47ac0000

(hex) 4bbfa91b a25d47db 9a9f190d 962a19ab 323926b3 51fbd39%e
351e05da 808925e3 Oblcce0d 12211010 95815¢cc7 ¢h631950
9ec0d679 40491987 e13f0aff ac332aab aa64626d 3e9a1917
519e0b97 b655c6al 65e44ca9 feac0790 d2a321ad 3d86b79¢c
5138739f a38d887e c7def449 ce8abdd3 e7f8dc4c a%e7b733
14ad310f 9025e619 46b3a56d c649ec0d a0d63943 dff592cf
962a7efb 2¢8524e3 5a2a6e78 79d62604 ef268695 fa400302
7e22e608 30775220 64bd4asb 906b5f53 1274235 ed506¢ff
0154c754 928a0ce5 476f2ch1 020a1222 d32¢1455 ecaefle3
68fh344d 1735bfbe deb71d0a 33a2a54b 1da5a294 e679144d
dfllebla 3de8cfOc c0619179 74f35c1d 9calac81 807f8fcc
€6199a6¢ 7712da86 5021b04c 0439516 fla526¢c da9fd9ab
bd53c3a6 84f9aele 7ee6hlld al38ea82 6¢5516b5 aadflabb
e36fa7ff f92e3a1l 76064e8d 95f2e488 2b5500b9 3228b219
4a475cla 27f63fof fd264989 albc0000
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Appendix B: Test cases variables assignment

#include <stdio.h>
#include "zuc.c"

typedef unsigned char u8;
typedef unsigned int u32;

void testCasel()
{
//Test Set 1
//Confidentiality Key - CK
u8 CK[KEY_SIZE]={0x17 ,0x3d ,0x14 ,0xba ,0x50 ,0x03 ,0x73 ,0x1d
,0x7a ,0x60 ,0x04 ,0x94 ,0x70 ,0xfO ,0xPa ,0x29};
//IV parameters
u32 COUNT = 0x66035492;
u32 BEARER =0xf;
u32 DIRECTION = 0x0;
u32 LENGTH = 193;
//Plaintext - M
//MESSAGE_SIZE = 7;
u32 M[MESSAGE_SIZE] = {0x6cf65340 ,0x735552ab ,0x0c9752fa
,0x6f9025fe ,0x0bd675d9 ,0x005875b2 ,0x00000000} ;
//ciphertext - C
u32 C[MESSAGE_SIZE] = {0xa6c85fc6 ,0x6afb8533 ,0Oxaafc2518
,0xdfe78494 ,0x0eeledbd ,0x30238cc8 ,0x00000000};

void testCase2()

{
//Test Set 2
//Confidentiality Key - CK
u8 CK[KEY_SIZE]={0xe5, Oxbd, ©x3e, 0xa@, Oxeb, 0x55, ©Oxad,
oxe8, Ox66, Oxc6, Oxac, Ox58, Oxbd, ©x54, ©Ox30, Ox2a};
//IV parameters
u32 COUNT = 0x56823;
u32 BEARER =0x18;
u32 DIRECTION = 0Ox1;
u32 LENGTH = 800;
//Plaintext - M
//MESSAGE_SIZE = 25;
u32 M[MESSAGE_SIZE]={0@x14a8ef69, 0x3d678507, Oxbbe7270a,
Ox7f67ff50, 0x06Cc3525b, Ox9807e467, 0Oxc4e56000, ©xba338f5d,
0x42955903, 0x67518222, 0x46c80d3b, ©x38f07f4b, Oxe2d8ff58,
0x05f51322, 0x29bde93b, ©xbbdcaf38,
ox2bflee97, Ox2fbf9977, ©xbada8945, ©x847a2a6c, ©x9ad34a66,
0x7554e04d, Ox1f7fa2c3, 0x3241bdsf,
0x01ba220d };
//ciphertext - C
u32 C[MESSAGE_SIZE]={0x131d43e0, ©xdealbe5c, ©x5albfd97,
0x1d852cbf, 0x712d7b4f, 0x57961fea, ©x3208afa8, Oxbcad33f4,
0x56ad@9c7, 0x417e58bc, 0x69cf8866, ©xd1353f74, 0Ox865e8078,
0x1d202dfb, @x3ecff7fc, ©xbc3bloef,
0xe82a204e, 0xdee350fc, Ox0f6f2613, Oxb2f2bca6, ©xdf5a473a,
Ox57a4a00d, 0x985ebad8, 0x80d6f238,
0x64a07b01 };
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Appendix C: Sample XOR CNF Generator Code

void xORCNFGenerator(u32 a, u32 b,u32 c)

{

u32 i,xORCNFClauseCount=0;
CNFVariable();

decimalToBinary(a,32);
for(i=0;i<32;i++)

if(binaryResult[i]==0)
CNFVariable_a[i]

decimalToBinary(b,32);

for(i=0;i<32;i++)
if(binaryResult[i]==0)
CNFVariable_b[i]

decimalToBinary(c,32);

for(i=0;i<32;i++)
if(binaryResult[i]==0)
CNFVariable c[i]

//CNF of ¢ © (a @ b)

writeCharToDIMACSCNF('c');
writeCharToDIMACSCNF(" ');
writeCharToDIMACSCNF('X");
writeCharToDIMACSCNF('0");
writeCharToDIMACSCNF('R");
writeCharToDIMACSCNF("' ');
writeCharToDIMACSCNF('S");
writeCharToDIMACSCNF('t");
writeCharToDIMACSCNF('a');
writeCharToDIMACSCNF('r'");
writeCharToDIMACSCNF('t");
writeCharToDIMACSCNF("' ');
writeCharToDIMACSCNF('\n");

for (i =0; i < 32; i++)

{
writeCharToDIMACSCNF('c');
writeCharToDIMACSCNF(' ');
writeNoToDIMACSCNF (++XxORCNFClauseCount);
writeCharToDIMACSCNF('\n');
writeNoToDIMACSCNF(CNFVariable_a[i]);
writeCharToDIMACSCNF(" ");
writeNoToDIMACSCNF(CNFVariable b[i]);
writeCharToDIMACSCNF(" ');
writeNoToDIMACSCNF(-1*CNFVariable_c[i]);
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF('0");
writeCharToDIMACSCNF('\n");
CNFTotalClausesCount++;

writeNoToDIMACSCNF(CNFVariable_a[i]);
writeCharToDIMACSCNF(' ');
writeNoToDIMACSCNF (-1*CNFVariable b[i]);
writeCharToDIMACSCNF(' ');

47

CNFVariable_a[i]*-1;

CNFVariable b[i]*-1;

-1* CNFVariable_c[i];



writeNoToDIMACSCNF (CNFVariable c[i]);
writeCharToDIMACSCNF(' ");
writeCharToDIMACSCNF('0");
writeCharToDIMACSCNF('\n');
CNFTotalClausesCount++;

writeNoToDIMACSCNF(-1*CNFVariable_a[i]);
writeCharToDIMACSCNF(' ");
writeNoToDIMACSCNF (CNFVariable_b[i]);
writeCharToDIMACSCNF(' ');
writeNoToDIMACSCNF (CNFVariable_c[i]);
writeCharToDIMACSCNF(' ");
writeCharToDIMACSCNF('0"');
writeCharToDIMACSCNF('\n");
CNFTotalClausesCount++;

writeNoToDIMACSCNF(-1*CNFVariable_a[i]);
writeCharToDIMACSCNF(' ');
writeNoToDIMACSCNF(-1*CNFVariable_b[i]);
writeCharToDIMACSCNF(" ');
writeNoToDIMACSCNF(-1*CNFVariable_c[i]);
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF('0");
writeCharToDIMACSCNF('\n");
CNFTotalClausesCount++;

}

writeCharToDIMACSCNF('c');
writeCharToDIMACSCNF(" ');
writeCharToDIMACSCNF('X");
writeCharToDIMACSCNF('0");
writeCharToDIMACSCNF('R");
writeCharToDIMACSCNF("' ');
writeCharToDIMACSCNF('e");
writeCharToDIMACSCNF('n');
writeCharToDIMACSCNF('d");
writeCharToDIMACSCNF(" ');
writeCharToDIMACSCNF('\n");
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Appendix D: Sample S-Box SO CNF Generator Code

void sBox@CNFGenerator(u32 sBoxinput)

{

u32 i,j,k,CNFClausePerColumnCount=0;
CNFSBoxVariable();

decimalToBinary(sBoxinput,8);

//makes the variable Format cnf variable according to the the binary

//input of the box.
for(i=0;i<8;i++)

//8 CNF for representing each output columns of S-Box truth table

if(binaryResult[i]==0)

CNFVariable_SBox[i] = -1*CNFVariable_SBox[i];

for ((j =0; j < 8; j++)

{

CNFClausePerColumnCount=0;

writeCharToDIMACSCNF('c");
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF('0");
writeNoToDIMACSCNF(j+1);
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF('S");
writeCharToDIMACSCNF('t');
writeCharToDIMACSCNF('a');
writeCharToDIMACSCNF('r");
writeCharToDIMACSCNF('t");
writeCharToDIMACSCNF(" ');
writeCharToDIMACSCNF('\n");
//traverse through the column
for (1 =0; i< 256; i++)

{
//if only the value of the output column = @ Generate
//the CNF
if(Se_Binary[i][j]=="0@")
{

// 8 input columns of the of S-Box truth table

for ( k = 8; k < 16; k++)
{

//if the value of the input column

//negate the //variable Format
if(Se_Binary[i][k]=="1")
{

writeNoToDIMACSCNF(-1*CNFVariable_SBox[k-8]);

}

else

{

//if the value of the input column = @ do

//nothing the variable Format

writeNoToDIMACSCNF(CNFVariable _SBox[k-8]1);

}
writeCharToDIMACSCNF(' ');

}
writeCharToDIMACSCNF('0');
writeCharToDIMACSCNF('\n');

CNFTotalClausesCount++; //total number of cluses
CNFClausePerColumnCount++; // clauses per column
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}
}
writeCharToDIMACSCNF('c");
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF('0");
writeNoToDIMACSCNF(j+1);
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF('E");
writeCharToDIMACSCNF('n");
writeCharToDIMACSCNF('d");
writeCharToDIMACSCNF(' ");
writeCharToDIMACSCNF('C");
writeCharToDIMACSCNF('1');
writeCharToDIMACSCNF('a");
writeCharToDIMACSCNF('u');
writeCharToDIMACSCNF('s"');
writeCharToDIMACSCNF('e");
writeCharToDIMACSCNF('s"');
writeCharToDIMACSCNF(' ');
writeCharToDIMACSCNF(':");
writeCharToDIMACSCNF(' ');
writeNoToDIMACSCNF(CNFClausePerColumnCount);
writeCharToDIMACSCNF('\n");
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