

Implementation and Performance Analysis of Black

Hole Attacks on AODV in MANETs

 Temitope Abiodun Ayoku

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
July 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu
 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Prof. Dr. Işık Aybay
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Asst. Prof. Dr. Gürcü Öz Assoc. Prof. Dr. Ali Hakan Ulusoy
 Co-Supervisor Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Assoc. Prof. Dr. Ahmet Rizaner

3. Assoc. Prof. Dr. Muhammed Salamah

4. Assoc. Prof. Dr. Ali Hakan Ulusoy

5. Asst. Prof. Dr. Gürcü Öz

iii

ABSTRACT

A Mobile Ad-hoc Network (MANET) is an infrastructureless network which consists

of different number of mobile nodes that are active to establish a temporary network

for the transmission of data from source to destination. MANETs are extensively

used, but security issues have become one of the main concerns in networking

environment. Black hole attack is one of the majority threats in network security.

Black hole utilizes the routing protocol to declare itself of having the shortest path to

the destination node, and drops the routing packets meant for the destination node,

instead of forwarding this packet to its appropriate neighbors.

In this thesis, we attempt to investigate the existing work about the black hole attacks

in MANETs with Ad-hoc On-demand Distance Vector (AODV) routing protocol.

For the purpose of study, firstly original AODV protocol with one and two black

holes is implemented in Network Simulator version 2 (NS-2). Then a modified

AODV protocol as a simple solution to the black hole attacks is implemented with

one back hole. Simulations are performed on the basis of Packet Delivery Ratio

(PDR) and End-to-End Delay (EED) and the effect is analyzed for the original and

modified AODV after adding the black hole nodes in the network. The simulation

results show that PDR drops from 98.31% to 19.30% and 8.77% with one and two

black holes respectively. However, by the use of modified AODV protocol PDR is

achieved as 39.19%. The results also show that there is a marginal increase in the

EED when black holes are included in the original AODV. By the use of modified

AODV, EED is dropped from 0.28 ms to 0.12 ms.

Keywords: MANET, AODV, Black Hole, Packet Delivery Ratio, End-to-End Delay

iv

ÖZ

Gezgin alt yapısız ağlar (MANETs) çok sayıda gezgin cihazdan oluşan ve bir

kaynaktan bir hedefe veri iletimi için alt yapıya ihtiyaç olmadan oluşturulan geçici

ağlardır. Günümüzde MANET yaygın olarak kullanılmakta olup güvenlik sorunları

başlıca problemlerden biri haline gelmiştir. Kara delik saldırıları, ağ güvenliğini

tehdit eden en önemli tehlikelerden bir tanesidir. Kara delik düğümleri yönlendirme

protokolünü kullanarak hedef düğüme en kısa yolun kendisi üzerinden geçtiğini ilan

eder ve hedefe gönderilmiş olan paketlerin kendisi üzerinden geçmesini sağlayarak

gelen paketleri hedefe yönlendirmek yerine imha eder.

Bu tez çalışmasında, kara delik saldırılarının AODV yönlendirme protokolü kullanan

MANET üzerindeki etkisi araştırılmış olup var olan çalışmalar incelemiştir. Tez

çalışmasının amacı doğrultusunda ilk önce orijinal AODV yönlendirme protokolü bir

ve iki kara delik içerecek şekilde Ağ Simülatörü NS-2 de uygulanmıştır. Daha sonra

kara delik saldırılarına çözüm olarak önerilmiş olan geliştirilmiş AODV yönlendirme

protokolü bir kara delik olduğu durumda uygulanmıştır. Orijinal ve geliştirilmiş

AODV yönlendirme protokolünü içeren benzetim çalışmaları, ağa kara delik

düğümleri eklenerek Paket Teslim Oranları (PDR) ve Noktalar Arası Gecikme

(EED) süreleri ile incelenmiştir. Benzetim çalışmaları kara delik bulunmadığı

ortamda %98.31 olan PDR’nin bir kara delik olduğu durumda %19.30, iki kara delik

olduğu durumda %8.77’ye düştüğünü göstermiştir. Geliştirilmiş AODV yönlendirme

protokolünün kullanılması ile PDR %39.19 olarak elde edilmiştir. Sonuçlar ayrıca

kara deliklerin mevcut olduğu durumda EED de çok az bir artış olduğunu

göstermiştir. Geliştirilmiş AODV yönlendirme protokolünün kullanılması ile EED

0.28 ms’den 0.12 ms’ye düşmüştür.

v

Anahtar kelimeler: MANET, AODV, Kara Delik, Paket Teslim Oranı, Noktalar

Arası Gecikme

vi

DEDICATION

We strive hard to earn a degree, struggle to pay for knowledge, but what happens, if

we have acquire the best knowledge, then we realize university has no value. People

say education is the best legacy, but people turn it to a competition between one

another. They forgot that, this world was discovered through a text book, the

knowledge we acquire has made us cynical. I hope could help everyone at once, but

greed has contaminate men’s consciousness and has barricaded the world with

hatred. “We want to live by each other’s happiness not by each other’s misery”.

Education becomes unaffordable.

I dedicated this research work to Almighty GOD who has given me the knowledge

and power to do everything within me, to my lovely mother Mrs. C. B. Ayoku, the

less privileged students’ who dropped out of school or have no money to register to a

standard university, to my brother and sisters (Abidemi Ayoku, Oyebanji Ayoku &

Temitayo Ayoku), and in memory of my late father, Muritala Adeleke Ayoku.

vii

ACKNOWLEDGEMENT

Praise be to Almighty GOD, earning a M.S. degree would be an impossible journey

without the support of my course professors and my loved ones. Special thanks to

two hard working professors, Assoc. Prof. Dr. Ali Hakan Ulusoy and Asst. Prof. Dr.

Gürcü Öz; for their collaborative effort, for believing in me throughout the research

work and their support for me academically. They are such an inspiration all rounds

of life, and I learn so much from them. They never yell or get angry at me whenever

I commit an error or never understood some topic, instead they bring light into the

topic. I would also like to extend my gratitude to teaching and non-teaching staff of

Department of Computer Engineering, Eastern Mediterranean University.

Secondly, my deepest gratitude goes to my lovely mother. For her humbleness,

patience, dedication and financial support. Love you mama bidemi. To my sisters

and brother (Abidemi Ayoku, Oyebanji Ayoku and Temitayo Ayoku). They are real

definition of “true blood” family, thanks for their tremendous love and support over

the years. To Odunukan families (Mr. Odunlami, Mr. Oniyide, Mr Babatunde

Odunukan, Iya Muyiwa, Aunty Dayo, Mummy Tunde, Aunty Ronke, Mr. Babatunde

Hassan Ambali etc.). Thanks for their prayers. Without forgetting one person, Samira

Rahmati. One advice for her, “life is a journey we need to fulfil; I understand your

pains and troubles, but never give up in what you do, because worst thing comes free

to us in life. You have been always supportive during this thesis work”.

Thirdly, to my longest serving friends in Cyprus, from Turkey (Selman and Özge

Özcan). I owe you guy from the bottom of my heart. You took me like your family,

thanks for your support. I extend my thanks to all friends and colleagues.

viii

Lastly, I know he is no more with us today, but we feel his presence. It has been nine

years I started this journey. He has been most supportive in all way before I left

Nigeria for study, but it is sad that he never witnesses today. I know he will be in

heaven smiling down. He has been my mentor from day one, and he wanted me to

achieve and go farther than him. May Almighty GOD, forgive his sins on earth and

grant him a place in his kingdom. Continue to rest in peace (Late Muritala Adeleke

Ayoku).

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION .. vi

ACKNOWLEDGEMENT ... vii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ... xiv

1 INTRODUCTION .. 1

 1.1 Problem Definition and Motivation ... 1

 1.2 Thesis Objectives ... 1

 1.3 Thesis Contributions .. 2

 1.4 Thesis Organization ... 2

2 BACKGROUND AND RELATED WORK .. 3

 2.1 Literature Review about Black Hole Attacks in MANETs................................ 3

 2.2 Routing Protocols in MANETs .. 8

 2.2.1 Categories of Routing Protocol in MANET ... 8

 2.3 Ad-hoc On-demand Distance Vector ... 10

 2.4 Black Hole Attacks in AODV Routing Protocol ... 12

 2.5 Black Hole Attacks in Modified AODV Routing Protocol 16

3 NETWORK SIMULATOR AND TOOLS ... 18

 3.1 NS-2 Network Simulator ... 18

 3.2 TCL Language Script in NS... 20

 3.3 AWK Script File .. 21

4 METHODOLOGY ... 22

x

 4.1 Implementing a New Routing Protocol with Black Hole 22

 4.2 System Requirement .. 25

 4.3 Basic Simulation Process ... 25

 4.4 Simulation Parameters ... 26

 4.4.1 Performance Metrics ... 28

 4.5 Testing and Evaluation Performance ... 31

 4.6 Analyzing the Trace File and Performance Metric Results 32

5 SIMULATION RESULTS ... 33

 5.1 Simulation of Original AODV ... 33

 5.1.1 Simulation of Original AODV without Black Hole 32

 5.1.2 Simulation of AODV with Single Black Hole .. 34

 5.1.3 Simulation of Original AODV with Two Black Holes 35

 5.2 Simulation of Modified AODV ... 37

 5.2.1 Simulation of Modified AODV without Black Hole 39

 5.2.2 Simulation of Modified AODV with One Black Hole 39

6 CONCLUSION AND FUTURE WORK ... 42

 6.1 Conclusion ... 42

 6.2 Future Work ... 43

REFERENCE ... 44

APPENDICES ... 49

 Appendix A: Script Files .. 50

 Appendix A.1: Original AODV Script (aodv.h) .. 50

 Appendix A2: Original AODV Script with Black Hole 55

 Appendix A.2.1: baodv.h ... 55

 Appendix A.2.2: baodv.cc.. 60

xi

 Appendix A.3: Modified AODV Script with Black Hole 64

 Appendix A.3.1: idsaodv.h ... 64

 Appendix A.3.2: idsaodv.cc .. 70

 Appendix B: TCL and Output Files .. 74

 Appendix B.1: BlackHoleAODV.tcl File .. 74

 Appendix B.2: Example of Mobility and Coordinate Generation 77

 Appendix B.3: Example of Trace File (out.tr) .. 80

 Appendix B.4: Description of Trace File ... 83

 Appendix B.5: AWK Script file (Calculation.awk) .. 86

 Appendix C: Simulation Results .. 92

 Appendix C.1: Sample Result for Original AODV with Two Black Holes 92

 Appendix C.2: Sample Result for Original AODV with One Black Hole 94

 Appendix C.3: Sample Result for Original AODV without Black Hole 97

 Appendix C.4: Sample Result for Modified AODV without Black Hole 99

 Appendix C.5: Sample Result for Modified AODV with one Black Hole 102

xii

LIST OF TABLES

Table 2.1: Modified routing protocols with black hole .. 6

Table 4.1: Parameters for simulation .. 28

Table 4.2: Formula and calculation for performance metric 29

Table 5.1: Average simulation results for AODV without black hole....................... 34

Table 5.2: Average simulation results of original AODV with one black hole (node

19) ... 35

Table 5.3: Average simulation results of original AODV with two black holes (nodes

18 and 19) ... 36

Table 5.4: Comparison of performance metrics for original AODV 36

Table 5.5: Average simulation results of modified AODV without black hole 39

Table 5.6: Average simulation results of modified AODV with one black hole (node

19) ... 40

Table 5.7: Comparison of performance metrics results for modified AODV 40

xiii

LIST OF FIGURES

Figure 2.1: Routing protocols levels .. 8

Figure 2.2: Route discovery in AODV .. 12

Figure 2.3: Black hole attack ... 14

Figure 2.4: Transmission of destination sequence numbers 16

Figure 3.1: NS-2 processes ... 19

Figure 4.1: bAODV protocol agent ... 23

Figure 4.2: bAODV code in the makefile .. 23

Figure 4.3: C++ code used by the malicious node to drop packet 24

Figure 4.4: C++ code format to modify the sequence number 24

Figure 4.5: A flow chart on how to implement and execute simulation in NS-2 26

Figure 4.6: PDR versus 1,000 s. simulation time in AODV without black hole 31

Figure 5.1: Code for creating both AODV and black hole nodes in TCL file script . 35

Figure 5.2: RREP method used in the “idsaodv.cc” file .. 38

xiv

LIST OF ABBREVIATIONS

ABR Associativity-Based Routing

AGT Agent

AODV Ad-hoc On-demand Distance Vector

AWK Alfred Weinberger Kernighan

CAODV Credit based Ad-hoc On-demand Distance Vector

CBR Constant Bit Rate

CBRP Cluster Based Routing Protocol

CDMA Code Division Multiple Access

CGSR Clusterhead Gateway Switch Routing

CRRT Collect Route Reply Table

DiffServ Differentiated Services

DRT Data Routing Table

DSDV Destination-Sequenced Distance-Vector

DSR Dynamic Source Routing

DoS Denial of Service

EED End-to-End Delay

FREP Further Reply

FREQ Further Request

FSR Fisheye State Routing

GSR Global State Routing

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

IfQ Interface Queue

xv

IntServ Integrated Services

LL Link Layer

MANET Mobile Ad-hoc Network

MAC Media Access Control

ms Milliseconds

NAM Network Animator

NS Network Simulator

OTCL Object Oriented Tool Command Language

PDR Packet Delivery Ratio

PHY Physical

PR Packets Received

PS Packets Sent

QoS Quality of Service

RERR Route Error

RREP Route Replay

RREQ Route Request

RSVP Resource Reservation Protocol

RPNS Reply Neighbor Set

RQNS Request Neighbor Set

s Seconds

SSR Scalable Source Routing

SAODV Secure Ad-hoc On-demand Distance Vector

TAT Total Arrival Time

TC Total Connection

TCL Tool Command Language

xvi

TCP Transmission Control Protocol

TTL Time To Live

TORA Temporally Ordered Routing Algorithm

TST Total Sent Time

UDP User Datagram Protocol

WRP Wireless Routing Protocol

ZRP Zone Routing Protocol

1

Chapter 1

INTRODUCTION

1.1 Problem Definition and Motivation

A group of devices or stations that are connected without a wire are referred as a

wireless network. The problem facing such connections are limited to open medium,

speed and bandwidth. There are two types of this system model which are wireless

Mobile Ad-hoc Networks (MANETs) and Fixed Backbone Wireless system [1]. In

MANETs which are also refer as infrastructureless or self-configuring networks,

nodes or mobile devices can establish a dynamic connection among themselves

without an access point. Each node can act as a router. Routing protocols transmit

packets from the source to its destination by using most efficient path and many

routing protocols have been standardized by Internet Engineering Task Force (IETF).

The security issues become one of the main concerns in MANETs since dynamic

connections make it vulnerable to many attacks such as spoofing, eavesdropping,

Denial of Service (DoS), black hole, etc. [2].

1.2 Thesis Objectives

In this thesis we will focus on Ad-hoc On-demand Distance Vector (AODV) routing

protocol with black hole attacks in MANETs. The objective of the thesis work is to

study the effect of black hole attacks on AODV protocol. The thesis also presents a

modified AODV protocol as a solution to the black hole problem to improve the

performance. The thesis also aims to perform accurate simulations with different

2

positioning and movement of nodes, to design and develop a suitable simulation

standard, analysis the result and evaluate the performance metric of the network.

1.3 Thesis Contributions

The research in this thesis depends mainly on the study in [3] and it presents:

 Implementation of AODV routing protocol in Network Simulator version 2

(NS-2),

 Implementation of the black hole attack in AODV routing protocol in NS-2,

 Implementation of the modified AODV routing protocol proposed in [3] in

NS-2 in the presence of black hole attack,

 Analyzing the performance metrics presented in [3] such as the Packet

Delivery Ratio (PDR) with and without the black hole attack, and loss

percentage at the black hole,

 Analyzing the End-to-End Delay (EED) performance with and without the

black hole attack.

1.4 Thesis Organization

The thesis is divided into six chapters. Chapter 1 focuses on the problem definition,

thesis objectives and thesis contributions. In Chapter 2, the overview of related work

done is explained with different methodology and performance metrics. We

furthermore discuss categories of the routing protocols, and explain in details, the

AODV and black hole attack in Chapter 2. Chapter 3 presents the details about NS-

2, the TCL file for designing the network topology and the AWK script file for

collecting results from the data generated from the trace file. Chapter 4 discusses the

implementation of a black hole for AODV routing protocol in NS-2. In Chapter 5,

the simulation results are presented. Finally, a conclusion is presented along with the

feature work in Chapter 6.

3

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Literature Review about Black Hole Attacks in MANETs

In black hole attacks, the malicious node utilizes the routing protocol to declare itself

as having the shortest path to the destination node, and drops the routing packets

meant for the destination node instead of forwarding the packets to its appropriate

neighbors.

In MANETs, different machanisms are proposed to tackle black hole attacks in

current years. Sanjay Ramaswamy et al. in [4] invented a technique to identify

multiple black hole nodes. These nodes work collaboratively as a unit in order to

perform the black hole attack. They propose a modified AODV routing protocol by

setting up a Data Routing Table (DRT), whereby every node entry is cross checked.

It is shown that the obtained results are better than earlier solutions presented.

Nital Mistry et al. in [2] modify the AODV routing protocol by adding a new table

that include MOS_WAIT_TIME, Cmg_RREP_Tab, and Mail_node entries. All new

Route Replies (RREPs) are stored in the new table. The MOS_WAIT_TIME is

adjusted to half of RREP_WAIT_TIME value – this identifies source node waiting

time value for RREP control message, before regenerating Route Request (RREQ)

control message. Stored RREPs in the Cmg_RREP_Tab table go through a checking

procedure by the source node. It removes any RREP with high destination sequence

4

number immediately. The Mail_node is used to observe and record malicious node,

then delete any of such record once identified. Any RREQ message generated from

this black hole is not forwarded. The performance metric, in terms of PDR, in a

normal AODV with black hole drop by 81.81% and the same result is presented for

their solution. However there is an increment of 13.28% in EED performance.

In [5], the authors explain an approach on how the source node waits for a request

from the neighboring nodes. This includes the next hop information from other

intermediate nodes for a fixed time. When this time expires, the source node checks

the Collect Route Reply Table (CRRT) for redundancies in the next hop node or not.

If the redundancies exist in next hop, it is assumed that these routes are ok and free

from any malicious attacks. The performance metrics such as PDR, EED and

overhead are calculated and it is shown that PDR is achieved as 90 – 100 % with a

black hole.

In [6], the authors explain protocol that allows all intermediate nodes to attach the

next hop information when sending the RREP message. While the source node

receives the RREP message, it investigates the reliabilty of the next hop if such path

exists between the intermdeiary node and destionation node by sending an RREQ

message. When such path is authenticated, the intermediary node receives the

Further Request (FREQ) and sends back a Further Reply (FREP) with the

information of source node that contains the check result. The source node receives

this information (i.e. FREP) and verifies the originality of the route. In this work, the

RREP control packet is modified to contain details of the next hop and the

intermediate node which have to send RREP message, two times with one route

request. The proposed solution increases delay and overhead.

5

Pooja Jaiswal et al. in [7] propose a solution to tackle black hole attack. They created

a mechanism to receive and record destination sequence number from the

neighboring node. Their idea is to compare the huge difference in the sequence

numbers between source node and neighboring node. The neighboring node is

declared malicious if there is a large difference, and its entry is discarded. In fact,

their results show a better performance metric in terms of PDR and EED.

Hesiri Weerasinghe et al. in [8] also proposes a solution to black hole attack. They

discover that the source node can establish a secure path to the destination node by

discerning and separating one or more malicious node, so packets are delivered

securely. They modify some methods suggested by Sanjay Ramaswamy et al. in [4].

A new DRT is implemented using the FREQ and FREP to examine the incoming

packets.

Bo Sun et al. in [9] propose a neighborhood-based method. This method is used to

detect whether black hole attacks exist or not. They present a routing recovery

protocol to create a reliable path that is connected to the destination node, to collect

the neighboring nodes information. They suggest two control packets as Reply

Neighbor Set (RPNS) and Request Neighbor Set (RQNS). The RQNS consists of

{Src_Addr, Des_Addr, Request_Neighbor_Seq#, Next_Hop} where Src_Addr is the

delivery address for the source node, Dest_Addr is the delivery address for

destination node, and Request_Neighbor_Seq# is the sequence number of RQNS.

They explain further that an increment takes place in the Request_Neighbor_Seq# if

a node forwards an RQNS. The RPNS consists of {Src_Addr, Dest_Add,

Request_Neighbor_Seq#, Neighbor_Set} where the first three object corresponds to

the ones explained for RQNS, while the last object contains the current neighbor set

6

of the malicious node. This is used when a malicious node recieves a RQNS

message, and replies a RPNS message. The study shows that black hole attacks are

lessened by this method and a higher throughput, a lower detection time and a

detection probability can be obtained.

The comparisons of different researches about black hole attacks are presented in

Table 2.1.

 Table 2.1: Modified routing protocols with black hole

Routing

Protocol
Simulator

Detection

Type

Single Path /

Multi Path
Summary of Results

Neighborhood based and Routing Recovery [9]

AODV NS-2
Single
detection

Single Path
The chance of one attacker
identification is 93%.

Redundant Route and Unique Sequence Number Scheme [10]

AODV NS-2
Single
detection

Single Path
Verify 75% to 98% of the
routes.

DPRAODV [11]

AODV NS-2
Single
detection

Single Path
PDR is improved to 80 - 85%
for AODV
with black hole attack.

Next Hop Information Scheme [12]

AODV NS-2
Single
detection

Single Path
An improvement of 40-50%
in PDR and packet dropped
ratio is reduced to 75-80%.

Nital Mistry et al.’s Method [2]

AODV NS-2
Single
detection

Single Path
PDR is improved to
81.811% when network size
varies.

Deng’s solution [6]

AODV ---------
Single
detection

Single Path
Cooperative black hole attack
cannot be detected.

Distributed Cooperative Mechanism (DCM) [13]

AODV NS-2
Cooperative
detection

Single Path
PDR is improved from
64.14% to 92.93%.

DRT and Cross Checking Scheme [4,9]

7

AODV Qualnet
Cooperative
detection

Single Path
Increase in throughput
compare to original AODV.

Flow Conservation based approach [14]

AODV NS-2
Cooperative
detection

Single Path
This method does not need
different nodes to overhead
on each other’s packet.

SAODV Protocol [15]

Secure
AODV
(SAODV)

NS-2
Single
detection

Single Path
Improvement in PDR
compared to original AODV.

Mechanism Based on Judgment Process [16]

AODV NS-2
Cooperative
detection

Single Path
Time delay is not experienced
and very easy.

Algorithm based on Preprocessor [17]

AODV ----------
Single
detection

Single Path
It fails when two malicious
nodes collaborate.

Mechanism using recvReply() function[18]

AODV NS-2
Single
detection

Single Path
This improvement only
involves a minimum
modification.

Credit based on AODV (CAODV) [19]

Credit
based
AODV
(CAODV)

NS-2
Single
detection

Single Path
Improvement of 40% is
observed in throughput
compared to original AODV.

Neha Kaushik et al.’s Method [26]

AODV NS-2
Single
detection

Single Path
Improvement in PDR,
throughput and EED

IDSAODV [3]

AODV NS-2
Single and
Cooperative
detection

Single Path

Propose a solution to detect
malicious node. Increase in
PDR of 20% with two black
holes compare to normal
AODV with black hole.

Based on the survey, it is observed that black hole attacks are still a problem in

MANETs and they should be further investigated. After analyzing the results

8

presented in the above research studies, [3] is selected to be implemented in this

thesis since parameters used in the simulations are clearly presented, the obtained

results are reliable and it includes the detection of cooperative black hole attacks.

Some of the above closely related research papers such as [26] do not include the

detection of cooperative black hole attacks and the presented results are not found

reliable. That is why those studies are not implemented in this thesis.

2.2 Routing Protocols in MANETs

Routing can be defined as an exchange of data between two hosts in a network. The

method of routing is to forward the packet towards its destination node using the

optimal path. This route is measured in different metrics like traffic, security and so

on. Most protocols in MANET function efficiently over a broad range of networking

context from a medium of wireless ad-hoc group to a large mobile networks session.

2.2.1 Categories of Routing Protocol in MANET

As shown in Figure 2.1, routing protocols are categorized into three as proactive,

reactive, and hybrid.

Figure 2.1: Routing protocols levels.

Proactive protocols are also referred as table driven protocols [20]. Each node

broadcasts their routing data to the neighboring node to update its routing table

periodically. Every node has a routing table that consists of next hop node,

9

destination node and number of hops information about the network topology. Table

driven or proactive protocols have several complications which are repetition of path

entries to a particular destination node is unnecessarily taking place in the routing

tables, and when the routing tables are periodically updated, they keep the nodes

active and this exhausts each nodes batteries. Destination-Sequenced Distance-

Vector (DSDV), Global State Routing (GSR), Wireless Routing Protocol (WRP),

Fisheye State Routing (FSR) and Clusterhead Gateway Switch Routing (CGSR)

protocols are all examples of table driven routing protocols.

A reactive protocol is also referred as on demand protocol. This protocol is classified

as a lazy type of routing. The source node only sets up a path if there is a need to

forward the packet to the destination node [21]. It broadcasts the RREQ packet

towards the intermediate node. When the intermediate node receives this RREQ it

keeps forwarding this packet until it reaches to the destination node. Afterward, a

reply packet is sent to the target node in the shortest path. Each node’s routing tables

are not updated periodically. Scalable Source Routing (SSR), Cluster Based Routing

Protocol (CBRP), Temporally Ordered Routing Algorithm (TORA), AODV,

Dynamic Source Routing (DSR), Associativity-Based Routing (ABR) are the

examples of on demand routing protocols.

Hybrid protocols are the combination of both reactive and proactive approaches. The

main idea behind these protocols is to reduce the control overhead of proactive

routing protocol and decrease the latency caused by route discovery in reactive

routing protocols. Zone Routing Protocol (ZRP) is an example of hybrid routing

protocols [22, 23].

10

2.3 Ad-hoc On-demand Distance Vector

In AODV, routes are initiated by node for route discovery to the destination node

only during the data transmission session and disconnect when is not active [27, 28].

For a reactive routing protocol, there are two modules as route discovery and route

maintenance. AODV routing includes the following steps 1-6 for route discovery

module and step 7 for route maintenance module:

Step 1: The source node floods the network with the RREQ control messages which

contain the source address, request ID, source sequence number, destination address,

destination sequence no, and hop count, in order to seek a route to its target node for

the transmission of packets. The initialization of the variables and parameters is

given in the “aodv.h” script provided in Appendix A.1.

Step 2: The neighboring nodes receive the RREQ control messages, check from the

routing tables, and if no such route is found in the routing table, forward the RREQ

control to appropriate path to reach the destination.

Step 3: The destination node receives the RREQ control message, and generates the

RREP control message which consists of the source address, destination address,

destination sequence number, hop count, and life-time.

Step 4: The destination node then unicasts the RREP control back to the same route

used for the RREQ message. Source node receives the RREP control from all

intermediary nodes.

11

Step 5: Source node then compares the sequence numbers in the RREP control

messages to decide the fresh route which has the highest sequence number.

Step 6: A secure route is determined and packets are transmitted through this route.

Step 7: Both source node and destination node sends each other HELLO messages to

know the activeness of this link. If the link is broken, an error message is sent.

The route discovery and route maintenance modules are explined below with an

example.

Route Discovery Module: As shown in Figure 2.2, when node S wants to transmit a

packet to node D, it checks in its routing table if there is a valid entry available for

this path. But in case any path is not found in the routing table, node S broadcasts a

route discovery to the neighboring nodes. This broadcast message consists of the

address of node S and RREQ message. Any neighboring node which receives this

message checks its routing table for a fresh path to node D. The fresh route is

determined by the sequence number with the highest number. Thus when this route is

selected, node S receives an RREP control message which includes the route. But if

no such route is found in the routing table, the intermediate node updates its routing

table and then transmit a RREQ to neighboring nodes until the RREQ gets to node D.

When node D receives this message, it replies with a unicast RREP message via

same route it uses to receive the RREQ to node S. Node S receives so many RREP

from all the neighboring nodes, but it only picks the one which has the highest

sequence number.

12

Route Maintenance Module: HELLO messages are used to check if the source node

and destination node are active in connection-wise. From time to time, each node

transmits the HELLO message to its neighbor and waits for a reply. If these

messages are received in two ways (i.e. different direction), a symmetrical link is

maintained through this way. But if there is an interruption and cannot be repaired,

node S sends a Route Error (RERR) message.

Figure 2.2: Route discovery in AODV [26].

2.4 Black Hole Attacks in AODV Routing Protocol

Routing protocols for MANETs are vulnerable to a variety of attacks. Black hole

attack is one of these attacks. In [2, 27], black hole attacks are categorized as DoS

attack, which makes a malicious node take advantage of susceptible route discovery

packet of the routing protocol so as to broadcast itself of having the closest path to a

destination node. Since our study is focused on AODV protocol, we will simulate

and show how a malicious node can affect the performance on this protocol. The

black hole in AODV routing protocol is distinguished as internal or external attack.

Internal attack occurs when the source node forwards a packet to the destination node

S

1

2

3 4

D

RREPRREQ DATA

13

but the malicious node is in between these two nodes. It is difficult to manage this

attack because it becomes an active data route. For the external black hole attack, the

malicious nodes do not have previous route but seek to fit in the effective route

between source node and destination node. According to [5], there are no security

mechanisms in AODV protocol. Since malicious node uses the AODV protocol, it

can perform various attacks.

A black hole attack can work as a misbehaved node as well as a multiple misbehave

nodes. In [7], malicious node does not need to consult the routing table, its primary

function is to modify the routing protocol so that traffic flows through it. AODV

routing includes the following steps when there is a black hole:

Step 1: The source node floods the network with the RREQ control messages which

contain the source address, request ID, source sequence number, destination address,

destination sequence no, and hop count, in order to seek a route to its target node for

the transmission of packets. The initialization of the variables and parameters is

given in the “baodv.h” script provided in Appendix A.2.1

Step 2: The neighboring nodes receive the RREQ control messages, check from the

routing tables, and if no such route is found in the routing table, forward the RREQ

control to appropriate path to reach the destination.

Step 3: Once the malicious node receives RREQ control message, it immediately

generates a false RREP control message since it does not waste time to check the

routing table with the highest sequence number.

14

Step 4: Malicious node forwards the false RREQ control message to the source node

and claims to have the fresh route to the destination node.

Step 5: Source node then compares the sequence numbers in the RREP control

messages to selects the fresh route with the highest sequence number coming from

the malicious node. Source node trusts this route and believes it will forward the

packets to the destination node.

Step 6: Packets are transmitted through the malicious route.

Step 7: Malicious node drops these packets and never forwards the packets to the

destination.

Assume that node 1 in Figure 2.2 becomes a malicious node and named as node X,

node S is the source node, node D is the destination node and nodes 2, 3, 4 are the

intermediate nodes as shown in Figure 2.3. The source node transmits an RREQ

message to the closest nodes to get the fresher path to reach destination node D.

Figure 2.3: Black hole attack.

15

Immediately, the malicious node X responds to the source node. Since source node S

does not consult the routing table, it ignores every RREP message from its

neighboring node even they are reliable. With the assumption that route discovery

process is finished, it accepts the malicious route as a priority so as to send a data

packet through this route. How the malicious node X processes and responds to the

RREP control message are explained in the next session. Data packets are received

via the malicious node X and then dropped instead of forwarded to the destination

node D as the protocol requires.

In the implementation section, the sequence number is used. Figure 2.4 shows the

sequence number of each nodes (node X = [99856745689], node 2 = [24] and node D

= [34]). These destination sequence numbers are classified as a 32-bit integer related

to every route and are used to decide the clarity of a particular path. To determine the

fresher route depends on the larger the sequence number is [28]. The destination

sequence numbers are shown in square brackets in Figure 2.4. Node S broadcast an

RREQ control message to all neighboring nodes in network, in order to discover a

path to node D. Node 3, node X and node 2 do not have a direct route to node D.

Node 3 then re-broadcasts it RREQ control message in order to identity the path to

node D. Malicious node X receives the broadcast RREQ control message and then

creates a deceptive RREP control message and sends out to the node S by an

abnormal expected destination sequence number. Since, this is the highest

destination sequence number, node S considers it to be fresher, and sends a packet to

node X. An RREQ control message send by node 3 arrives at node D which creates a

RREP control message and routes it back. Since node S receives an RREP control

message from both malicious node X and intermediate node 3, source node S first

checks if there is an existing entry for destination node D in the table or not. If there

16

is an entry in table, a cross check of sequence number is done by source node S. It

reviews and selects the RREP message with the higher sequence number.

Immediately, a new RREP control message is updated by source node S. An RERR

control message is generated if there is any disconnection between the nodes during

packets transfer.

Figure 2.4: Transmission of destination sequence numbers.

2.5 Black Hole Attacks in Modified AODV Routing Protocol

In [3], the author observes that an early RREP control message arrives to source from

the malicious node, since malicious does not consult the routing table, while the

second RREP control message arrives from the original destination node. The

following algorithm presents the proposed solution (modified AODV) for the black

hole attacks.

Step 1: The source node floods the network with the RREQ control messages which

contain the source address, request ID, source sequence number, destination address,

destination sequence no, and hop count, in order to seek a route to its target node for

17

the transmission of packets. The initialization of the variables and parameters is

given in the “idsadov.h” script provided in Appendix A.3.1.

Step 2: The neighboring nodes receive the RREQ control messages, check from the

routing tables, and if no such route is found in the routing table, forward the RREQ

control to appropriate path to reach the destination.

Step 3: The destination node receives the RREQ control message, and generates the

RREP control message which consists of the source address, destination address,

destination sequence number, hop count, and life-time.

Step 4: The destination node then unicasts the RREP control back to the same route

used for the RREQ message. Source node receives the RREP control from all

intermediary nodes.

Step 5: The source uses the first RREP message to initiate the data transfer.

Step 6: If a second RREP message arrives then switches to the new route since it is

assume that the black hole does not waste time to check the routing table and RREP

message arrives from the black hole earlier than the actual destination.

18

Chapter 3

NETWORK SIMULATOR AND TOOLS

In this chapter, how NS-2 packages and programming language are used together

with Tool Command Language (TCL) and AWK script files used for writing a

network scenario and data collection are presented.

3.1 NS-2 Network Simulator

NS-2 is a freeware network simulation software, developed by the University of

California, Berkeley. The main idea is to analyze the improvement of wide-ranging

networks and present interactive behavior of network protocols. It is used to simulate

both wired and wireless networks, Transmission Control Protocol / Internet Protocol

(TCP/IP), routing, and multicast protocols studies. Researchers can find, examine

and modify its main source code easily. Additionally, researchers all over the world

expand and update on its features, and add new protocols. It is currently one of the

most widely used simulation software in the field of network. Since 1995, NS-2 has

been supported by Xerox Corporation which has joined VINT project [24]. NS-2 as a

discrete event-driven, and object-oriented network simulator can fully simulate the

entire network environment. As shown in Figure 3.1, as a first step for a NS-2

process, the network topology is declared, and component configurations are

designed in TCL script file that is programmed in object orientated language C++.

19

Figure 3.1: NS-2 processes.

 In the second step, a group of C++ class library is used for the vast majority of

common network protocols, and model the link layer. The Object Oriented Tool

Command Language (OTCL) interpreter is used as an intermediary between the TCL

script file and the C++ language. It has a high degree of simulation events, network

element object libraries and event scheduler. The event scheduler triggers an event in

the event queue and executes the event.

During the third step of interpretation process, where the TCL script file is

interpreted and simulated, NS generates two scripts which are used to analysis the

experiment results. Those two files are the trace file with an extension .tr which is

shown in Appendix B.3 and Network Animator (NAM) with extension .nam. NAM

displays the animated behavior of nodes in the simulation and the trace file shows the

digital information and behavior of all nodes in the simulation. For the purpose of

our studies, we used NS 2.29 version and installed on Oracle virtual box Windows

environment. In our studies, after identifying the number of nodes and parameters to

use, we design our network with C++ code but in TCL format as seen in Appendix

B.1. Then we analysis the trace file and obtain the network performance metric with

AWK script file as shown in Appendix B.5. To execute NS-2 for a particular case

such as AODV protocol with black hole, the steps given below are followed:

20

Step 1: Configure the network topology, by declaring and initializing the parameters

and variables using the TCL script file, and save this script file as

BlackHoleAODV.tcl shown in Appendix B.1 in a folder (exper1) on desktop.

Step 2: From the terminal, type “cd Desktop/exper1” and press enter. “Desktop” is

the root directory while “exper1” is the folder name.

Step 3: Type “ns BlackHoleAODV.tcl” and press enter to execute the file in NS-2.

After a while, the terminal shows the simulation is finished.

Step 4: Two files as trace file (.tr) and animation file (.nam) are generated in

“exper1” folder.

Step 5: Type nam followed by the name of the nam file (e.g. nam

BlackHoleAODV.nam) to view the animation and press enter.

3.2 TCL Language Script in NS-2

TCL was created by John Ousterhout in 1988 at University of California, Berkeley.

According to [29], TCL is classified to be very powerful C programming language. It

is used mostly by the programmer and computer related sector that includes the web,

networking, administration and desktop applications. TCL has a compatibility with C

programming language which can be embedded in a system platform. Appendix B.1

shows the TCL code that is used to design the network topology and the black hole

attack in the network. To run the TCL file in the terminal, we type “ns

BlackHoleAODV.tcl” command in the root folder “ns-allinone/ns-2.29”. NS

indicates the simulation software and BlackHoleAODV.tcl indicates the TCL file.

21

3.3 AWK Script File

AWK is another powerful interpreted programming language tool, mainly designed

for text processing, but its primary function is for data extraction. AWK, the

acronym that stands for Alfred Weinberger Kernighan, defines the last names of the

developers. AWK was developed at Bell Labs by 1970 with the help of Alfred Aho,

Peter Weinberger, and Brian Kernighan [25]. In our studies, a large volume of data

spaces are required with the generated trace files after the simulation. For collecting

these data from the trace files, we write a C code in AWK environment to process

this function. To execute the AWK script file, we open the terminal and then type

“AWK -f calculation.awk out.tr”, where out.tr is the trace file as shown in Appendix

B.3 and calculation.awk is the C++ code for calculating the performance metric as

shown in Appendix B.5. To save the results in a text file, the greater than (>) symbol

must be used followed by name of the file such as “AWK -f calculate.awk out.tr >

result”.

22

Chapter 4

METHODOLOGY

4.1 Implementing a New Routing Protocol with Black Hole

In [30], the author discusses how to implement AODV routing protocol in NS-2. In

our study, we follow the same steps as mentioned in that paper. We have created a

node as a black hole in MANET. This malicious node uses our implemented AODV

routing protocol algorithm.

To proceed with our studies, we install the protocol in a directory named as “ns-

2.29”. We paste AODV protocol in the same directory in “ns-2.29” folder, and

rename the duplicated AODV folder as “bhaodv”. We now have the “bhaodv” folder,

and then we alter the name of all files with “aodv” in this particular folder to

“bhaodv” such as “aodv.cc” as “bhaodv.cc”, “aodv.h” as “bhaodv.h” and so on.

Furthermore, we rename all the functions and classes, structs, variable and constants

in the “bhaodv” directory. In our studies, we do not modify the “aodv_packet.h”. The

reason is that “AODV” and “bhaodv” exchange same AODV packets. So there is no

need for this modification in the “bhaodv” directory. After making all changes as

mentioned, we then start with the implementation by adding the name of the protocol

“bAODV” in the “\tcl\lib\ ns-lib.tcl” file directory as shown in Figure 4.1. This

modification is meant for the protocol agent. When any node behaves like a

malicious node, this code is scheduled and assigned from the start of the simulation

to this node.

23

Figure 4.1: bAODV protocol agent.

The next step after modifying the above file is to modify “\makefile” in the “ns-2.29”

directory. As shown in Figure 4.2, we need to make changes by copy and paste the

text below under the “aodv” protocol in the “makefile”. At this point, we have

implement a new protocol. In the next step we implement a black hole.

Figure 4.2: bAODV code in the makefile.

Figure 4.3 shows a code which we have to add in the “baodv/baodv.cc” file. With

this code, whenever a packet is sent to “recv” method in the “aodv/aodv.cc”, it

receives this packet and processes such packet based on its categories. If this packet

is AODV type, it forwards such packet to the “recAODV” method. In normal AODV

without any modification, it forwards any data packet to its destination, but if such

protocol is a black hole, this data packet is dropped. Figure 4.3 displays a C++ code

which is given in Appendix A.2.2, used by the malicious node, where in the “if

statement” it tells the node to receive the packets if it is the destination otherwise

drop them.

baodv/baodv_logs.o baodv/baodv.o \

baodv/baodv_rtable.o baodv/baodv_rqueue.o \

24

Figure 4.3: C++ code used by the malicious node to drop packet.

As explained in Chapter 2, when the black hole node receives the RREQ control

message, it replies with a false RREP without delay as a fresh route to the destination

node. For a node to act in this way, Figure 4.4 shows the code we modify presented

in Appendix A.2.2. We change the sequence number in the “recvRequest” message

to an unexpected number such as 99856745689 and we set the hop count to 1. After

all the steps explained are finished, we need to recompile all the files in NS-2 by

opening the terminal and typing the following commands followed by the enter

button.

Command 1: “cd/ns-allinone/ns-2.29”

Command 2: “make clean”

Command 3: “make”

If there is no error message after entering all these commands, the black hole

protocol is installed successfully.

Figure 4.4: C++ code format to modify the sequence number.

25

4.2 System Requirement

In our studies, we use a Toshiba laptop and installed a virtual machine box which

runs in a Windows 7 environment like a Linux operating system (Ubuntu 10.0

version). The laptop specifications are as follows: Processor: Intel(R) Core(TM) i7

CPU Q 720 @ 1.60GHz , RAM: 8.00 GB, system type: 32-bit. Due to large volume

of the trace file during each simulation, our system requires a 2 GB RAM of memory

and a large storage of hard disk in Windows operating system.

4.3 Basic Simulation Process

NS-2 has basic operation processes as shown in Figure 4.5. Throughout the

simulation, there are three main phases: The first phase is modifying the source code.

This is only possible if an implementation is applied to the protocol. The second one

is writing the TCL simulation script. This is the most important part and essential

component of the simulation. As described in Chapter 3, TCL script is written in

C++ code, in which we describe the network topology, properties, network

components, simulation event scheduling start and stop of the simulation. The third

one is the analysis of the trace file. It uses the AWK script file to collect results and

corresponding data that can be used to plot respective graphs.

26

Figure 4.5: A flow chart on how to implement and execute simulation in NS-2.

4.4 Simulation Parameters

In this session, we explain the parameter setup of the simulation we use in our

studies. To conduct a simulation in wireless network mode, some information about

the node components are required. NS-2 uses the default values if any component are

not declared or assigned. The mobile nodes in NS-2 components consist of Interface

Queue (IfQ), Media Access Control (MAC) layer, Link Layer (LL) and Physical

(PHY) layer. These components are used by the nodes to transmit and receive signals

in the wireless channel. From these components, each has a definition of different

27

parameter like the routing protocol, antenna type and the radio propagation model.

Examples of wireless parameters are as follows:

Routing protocol: AODV, DSR and TORA.

MAC: Code Division Multiple Access (CDMA), Institute of Electrical and

Electronics Engineers (IEEE) 802.xx.

PHY layer: Omnidirectional antenna and directional antenna.

Quality of Service (QoS): Differentiated Services (DiffServ), Integrated Services

(IntServ) and Resource Reservation Protocol (RSVP).

Radio propagation model: Two ray ground radio propagation channel.

Mobility model: Random mobility model.

For the purpose of this study, we used AODV routing protocol, IEEE 802.11 MAC

and omnidirectional antenna for PHY layer, DiffServ as QoS, two ray ground radio

propagation channel model and a random mobility model. Finally, we used User

Datagram Protocol (UDP) at the transport layer and all data packet are in Constant

Bit Rate (CBR). As shown in Appendix B.1, a UDP connection is integrated between

the even nodes and the odd nodes. So that 0, 2, 4, 6, 8, 10, 12, 14 and 16 are source

nodes while 1, 3, 5, 7, 9, 11, 13, 15 and 17 are destination nodes. The communicating

pairs are defined as 0 =>1, 2=>3, etc. in a total of 9 pairs. Node 18 and node 19 are

made standby without no connection with each other or to another node. They act as

an intermediate node. We attach UDP agent to the sending nodes while a NULL

28

agent are attached to the receiving nodes. We use a for loop statement to create the

communication between the nodes. But for the coordinates of each node we use

“./setdest” to get an accurate result. The third party application of NS to generate a

random movement and positions for each node we save each movement and position

of a particular simulation in the simulation directory root as “./move1”. A sample of

the movement and position file is shown in Appendix B.2. As shown in Table 4.1,

we configure our network topology with the following parameters and values. An

area of 750×750 m2, 20 nodes is generated using a “for loop” statement. A

simulation time of 500 seconds (s), which starts from begin to the end of the

simulation. In each scenario of our study, we configure the source node and

destination node to start packet transmission at the first seconds of each scenario.

The CBR parameter is set as a packet size of 512 bytes and the data rate of 10

Kbits/s. The UDP connection stops at 450 seconds of the simulation time.

 Table 4.1: Parameters for simulation.

Parameter Value

Routing Protocol AODV

Packet Type UDP

Traffic Application CBR

Pause Time 1 s

Simulation Time 500 s

Network Area 750×750 m2

Packet Size 512 Bytes

Data Rates 10 Kbits/s

Numbers of Malicious Node 1 (Node 19) 2 (Node 18 & 19)

Total Nodes 20

4.4.1 Performance Metrics

Analyzing the performance metric of our simulation is to measure the network

protocol and performance, which is divided into two: the qualitative and quantitative

29

metrics. Qualitative metrics describe the overall performance of the network in one

area such as security and distribution operation. For quantitative metric, it is

described in certain aspects of the performance of network such as PDR, EED,

packet loss rate, normalized routing overhead, network jitter and so on. Table 4.2

shows the parameters, performance metric and computations including the

definitions used in the analysis.

 Table 4.2: Formula and calculation of performance metrics.

Parameters /

Metric
Definition Computation

Packets Sent (PS)
Total number of packets
sent by source node

Extracted from trace
file

Packets Received
(PR)

Total number of packets
received by destination
node

Extracted from trace
file

Packet Delivery
Ratio (PDR)

Ratio of packets received to
packets sent

(PR⁄ PS)×100

Loss % Total loss in the system 100 - PDR

Black hole loss % Total loss at black hole
(Black hole dropped/
PS) × 100

Total Sent Time
(TST)

Total time needed to send
packets to destination nodes

Extracted from trace
file

Total Arrival
Time (TAT)

Total time it takes
destination node to receive
packet

Extracted from trace
file

Total Connection
(TC)

Total number of connection
Extracted from trace
file

End-to-End Delay
(EED)

Time spent on a packet to
deliver

(TAT - TST) / TC

30

EED is the average time taken for a packet to be transmitted from the source to

destination. It is in milliseconds (ms) and it includes data waiting on queue for

transimission and route discovery.

For the purpose of our studies, we use PDR and EED as performance metric. In

Table 4.2 , PS is the total number of packets sent by the source node, while PR is the

total number of packets received by destination node. To identify if a packet is sent

or received, depends first figure on column in the trace file as shown in the following

example.

s -t 1.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 232.25 -Ny 314.29 -Nz 0.00 -Ne -1.000000

-Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 1.0 -It cbr -Il 512 -If 0 -Ii 0 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 232.25 -Ny 314.29 -Nz 0.00 -Ne -1.000000

-Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 1.0 -It cbr -Il 512 -If 0 -Ii 0 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

The above example shows that packet is sent at 1.000000000 (-t) second by node 0

(–Hs) to node 2 (–Hd), node id (-Ni) = 0 is at x postion of 232.25 (-Nx) and y

position of 314.29 (-Ny) and z position of 0 (-Nz), the energy level is 1.000000 (-

Ne), trace level (-Nl) is Agent (AGT), no reason for this event (-Nw), duration (-Ma)

= 0, destination ethernet address (–Md) = 0, source ethernet address (–Ms) = 0,

ethernet type (-Mt) = 0, source address and port (-Is) = 0.0, destination adress and

port number (–Id) = 0.0, packet type (–It) = CBR, packet size (–Il) = 512, flow id (–

If) = 0, unique id (–Ii) = 0 Ii), Time To Live (TTL) (-Iv) value = 32, how many nodes

31

traversed (–Pn) = CBR, reply length (-Pi) = 0, numbers of times this packet was

forwarded (–Pf) = 0 and optimal number of forwards (-Po) = 16777215.

The total number of packets sent denoted by s on first column of the trace file is

assigned to PS, while total number of packets recieved denoted by r on first column

of the trace file is assigned to PR.

PDR is calculated as PR divded by PS multiply by 100. For ad-hoc network, the

higher the PDR, the better the result is. To get more accurate results we take the

average of 100 simulations for a particular event.

4.5 Testing and Evaluation Performance

To define the duration of the simulation time, several simulation tests on the system

are carried on for 1,000 seconds without a black hole. We use the parameters shown

in Table 4.1 with varying simulation time. Figures 4.6 shows a graph of PDR plotted

against simulation time of 1,000 seconds without black hole. Figure presents that

PDR fluctuates up to 20 seconds, and then remains almost constant at 100% from 20

seconds to the end of the simulation time. The experiment is repeated a number of

times and similar results are observed that the system becomes stable around 20

seconds. Therefore, in our simulations we use simulation time as 500 seconds and

repeat each set 100 times and use average values in our graph as it is done in [3].

32

Figure 4.6: PDR versus 1,000 s simulation time in AODV without black hole.

4.6 Analyzing the Trace File and Performance Metric Results

After implementing and execution of simulation parameter as in Chapter 3, the

output of the TCL script file produces an extension file that has .tr. In this trace file,

all data is available to analysis the performance of the network we simulate. In our

simulation output, we use the new trace file format which includes more details of

the event. A sample of the new trace files is shown in Appendix B.3. As shown in

Appendix B.4, we analysis each field in the trace file and explain each function.

33

Chapter 5

SIMULATION RESULTS

5.1 Simulation of Original AODV

We use the original code that is installed with the network simulation tool. However,

in this section we test and compare the black hole implemented protocol against the

original.

5.1.1 Simulation of Original AODV without Black Hole

With the absence of the malicious node, in this particular simulation 18 out 20 nodes

communicate with each other, leaving nodes 18 and 19 as free agents that act as any

intermediate node. The connections are done even against odd (node 0 is sender

while node 1 is the receiver etc.) as explained in Chapter 4. In the TCL script file,

there are two steps to configure an AODV routing protocol:

Step 1: Declare the routing protocol as variable “set rp AODV ;”

Step 2: Call this variable by reference “$ns_ node-config -adhocRouting $val (rp) \”.

We use a for loop statement to create nodes under this line. Nodes adapt to this

protocol without delay. We conducted 100 scenarios (runs) for original AODV

without a black hole. In each scenario, the coordinates and mobility of nodes change.

We explained on how to collect data from the trace file in Chapter 3. Table 5.1

shows an average of 98.31% as PDR. The table also displays the number of packets

sent and received for each node.

34

 Table 5.1: Average simulation results for AODV without black hole.

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets Loss %

Node 0 -> Node 1 1036.40 1019.71 1.61

Node 2 -> Node 3 1042.30 1027.16 1.45

Node 4 -> Node 5 1039.67 1014.30 2.44

Node 6 -> Node 7 1023.32 1010.82 1.22

Node 8 -> Node 9 1035.69 1021.93 1.33

Node 10 -> Node 11 1001.24 982.07 1.91

Node 12 -> Node 13 1013.53 998.68 1.47

Node 14 -> Node 15 1032.13 1010.47 2.10

Node 16 -> Node 17 1031.62 1014.70 1.64

TOTAL 9255.90 9099.84 1.69

5.1.2 Simulation of AODV with Single Black Hole

In the section, we include a malicious node in the network. It sends a false RREP,

absorbs the packet and never forwards this packet to the destination node. Figure 5.1

shows how we create a malicious node in the network by modifying the TCL script

file. All nodes assigned with “$ns_ node-config -adhocRouting blackholeAODV \”

code act as malicious nodes. For loop statement is used to create the node, which

counts from 18 to 19. By that way node 18 is made to behave as a malicious node.

We modify the properties of the malicious node by assigning a red color to identify it

during the animation. The simulation is conducted 100 times.

After executing the simulation and collecting data with the AWK script file we

evaluate the results on average of PDR. Appendix C.2 shows the first five rounds of

simulations. Table 5.2 shows that the average PDR is very low, which is 19.30%.The

results also show that most of the packets are absorbed by the malicious node. The

lost at the malicious node is 51.11% which is very high.

35

Figure 5.1: Code for creating both AODV and black hole nodes in TCL file script.

Table 5.2: Average simulation results of original AODV with one black hole (node
18).

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole Drop

Loss

%

Black Hole

Loss %

Node 0 -> Node 1 1061.53 185.26 545.83 82.55 51.42

Node 2 -> Node 3 1076.84 165.57 622.21 84.62 57.78

Node 4 -> Node 5 1056.66 247.85 509.49 76.54 48.22

Node 6 -> Node 7 1084.17 221.61 493.47 79.56 45.52

Node 8 -> Node 9 1054.57 265.77 509.22 74.80 48.29

Node 10 -> Node 11 1067.40 122.22 547.63 88.55 51.31

Node 12 -> Node 13 1081.49 208.64 548.34 80.71 50.70

Node 14 -> Node 15 1078.20 222.50 534.99 79.36 49.62

Node 16 -> Node 17 1054.15 216.74 602.43 79.44 57.15

TOTAL 9615.01 1856.16 4913.61 80.70 51.11

5.1.3 Simulation of Original AODV with Two Black Holes

In this section, we include two malicious nodes (node 18 and 19) in original AODV.

Appendix C.1 shows the outcomes of the simulation. Table 5.3 displays the

36

effectiveness of two malicious nodes on PDR. The total number of absorbed packets

by both malicious nodes is 65.4% which is very high, and PDR displays low result of

8.77%. These results show that malicious nodes are threat to the system. In the next

section, we implement a solution to increase the PDR in the presence of malicious

node.

 Table 5.3: Average results of original AODV with two black holes (nodes 18 and
19).

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

(18)

Black

Hole

Drop

(19)

Loss

%

Black

Hole

Loss

%

Node 0 -> Node 1 1055.29 123.19 365.87 293.26 88.33 62.46

Node 2 -> Node 3 1073.79 59.52 333.29 426.14 94.46 70.72

Node 4 -> Node 5 1038.91 78.55 342.77 354.61 92.44 67.13

Node 6 -> Node 7 1061.27 88.24 296.15 422.79 91.69 67.74

Node 8 -> Node 9 1064.62 133.02 325.80 363.43 87.51 64.74

Node 10-> Node 11 1057.22 91.87 402.17 288.52 91.31 65.33

Node 12-> Node 13 1077.22 122.25 255.95 367.13 88.65 57.84

Node 14-> Node 15 1049.74 60.02 323.93 401.81 94.28 69.14

Node 16-> Node 17 1084.71 81.98 343.80 346.91 92.44 63.68

TOTAL 9562.77 838.64 2989.73 3264.60 91.23 65.40

 Table 5.4: Comparison of performance metrics for original AODV.

Metric Without

Black Hole

With One Black

Hole (Node 19)

With Two Black

Hole (Nodes 18

& 19

PDR (%) 98.31 19.30 8.77

Black Hole Lost % - 51.11 65.40

EED (ms) 0.15 0.28 0.31

In Table 5.4, PDR, EED and lost percentage at the black hole results are presented

for the original AODV without and with one and two black holes. The results show

37

that the loss percentage increases as the number of black holes increase in the system

while there is a marginal increase in the EED.

5.2 Simulation of Modified AODV

In the previous section and Chapter, we explained how to simulate the original

AODV in NS-2, and then we obtained results from the trace file. We implemented

the original AODV in NS-2 with one and cooperative black hole. In this section, we

present the modifications on the original AODV to apply the solution (modified

AODV) for the black hole attacks.

To implement modified AODV, the steps given below are followed. Firstly, we copy

the entire folder of original AODV, and rename it as “idsaodv”, then follow the

explanations in Chapter 4 for implementation of new routing protocol. Before

executing the “make command” from the terminal, we implement the following

solution first, then execute the commands. In Chapter 4 to implement a black hole in

the system, the RREP method (recvRequest) is modified in “baodv.cc” file. For the

required solution implementation, we need to modify the RREP method (recvReply)

in the “idsaodv/idsaodv.cc” file.

Secondly, we need to create and implement a caching mechanism used by RREP

message control, which assigns an identification number on each RREP control

message, then focus on the second RREP message. Appendix A.3.2 shows the

caching mechanism used to capture the second message. Explanation for all methods

include in the caching mechanism for RREP control message (recvReply) as follows:

“rrep_insert”: Is used for adding incoming RREP message.

38

“rrep_lookup”: Is used for checking the table if there is any duplicated or

existing RREP control message.

“rrep_remove”: Is used to delete any RREP control message recieved from a

defined node.

“rrep_purge”: Is used periodically to delete expired time from the list.

Figure 5.2: RREP method used in the “idsaodv.cc” file.

Figure 5.2 displays the RREP control message used in the “idsaodv.cc” presented in

Appendix A.3 that consists of seven steps. We discuss these steps as follows:

Step 1: Triggers the “rrep_lookup” function to check if an RREP control already

exists, then assigns the result to variable r.

Step 2: Checks if the RREP control message is received by the same destination node

(YES or NO).

Step 3: If Step 2 is NO forwards to approiate node.

Step 4: If Step 2 is YES checks the variable in Step 1 if it is empty (YES or NO).

Step 5: If Step 4 is NO assigns the variable in Step 1 to counter.

39

Step 6: If Step 4 is YES sets counter to zero, then triggers the “rrep_insert” function

to add incoming RREP control message.

Step 7: Updates the routing table.

5.2.1 Simulation of Modified AODV without Black Hole

In the TCL script, we configure the routing protocol to “idsAODV” by typing “$ns

node-config -adhocRouting idsAODV”. All nodes declared under the configuration

adapt to idsAODV routing algorithm as mentioned in previous chapter. The

coordinates and movements of all nodes are generated with a third party software as

mentioned in Chapter 4. Appendix B.2 shows an example of mobility and

coordinates of each node. Table 5.5 shows the average results of 100 simulations for

the modified AODV protocol without a black hole. The average PDR is achieved as

94.85%. Appendix C.4 only displays the first five simulation results.

 Table 5.5: Average simulation results of modified AODV without black hole.

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets Loss %

Node 0 -> Node 1 1006.15 982.06 2.39

Node 2 -> Node 3 1052.31 992.33 5.70

Node 4 -> Node 5 1031.84 980.65 4.96

Node 6 -> Node 7 1006.64 962.92 4.34

Node 8 -> Node 9 1059.61 992.50 6.33

Node 10 -> Node 11 1040.05 958.82 7.81

Node 12 -> Node 13 1051.34 1000.15 4.87

Node 14 -> Node 15 1068.43 1026.63 3.91

Node 16 -> Node 17 1025.72 965.13 5.91

TOTAL 9342.09 8861.19 5.15

5.2.2 Simulation of Modified AODV with One Black Hole

In this section, we include a malicious node and observe the performance of

modified AODV protocol. The simulation is conducted 100 times. Appendix C.5

40

shows the first five of the simulation results which include the number of packets

sent and received from source and destination node respectively. Table 5.6 displays

the average PDR results for the modified AODV with a black hole node. PDR is

39.19% which shows improvement compare to results of original AODV presented

in Table 5.2 where PDR is 19.3%. We also notice in Table 5.6 that the number of

packets absorbed and dropped by the malicious node is very low 34.95%.

Table 5.6: Average simulation results of modified AODV with one black hole (node
19).

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black Hole

Drop

Loss

%

Black Hole

Loss %

Node 0 -> Node 1 1022.02 456.47 327.57 55.34 32.05

Node 2 -> Node 3 1078.91 427.37 390.58 60.39 36.20

Node 4 -> Node 5 1064.88 391.67 341.63 63.22 32.08

Node 6 -> Node 7 1072.08 426.82 357.18 60.19 33.32

Node 8 -> Node 9 1084.34 480.00 316.27 55.73 29.17

Node 10 -> Node 11 1065.37 444.54 408.54 58.27 38.35

Node 12 -> Node 13 1056.82 361.89 410.27 65.76 38.82

Node 14 -> Node 15 1051.21 340.51 416.24 67.61 39.60

Node 16 -> Node 17 1067.79 418.18 373.95 60.84 35.02

TOTAL 9563.42 3747.45 3342.23 60.81 34.95

Table 5.7 shows the comparison of two different performance metrics (PDR and

EED) with and without black hole for modified AODV.

 Table 5.7: Comparison of performance metrics results for modified AODV

Metric Without Black

Hole

With One Black Hole

(Node 19)

PDR (%) 94.85 39.19

Black Hole Lost % - 34.95

EED (ms) 0.15 0.12

41

Finally, we investigate the same proposed work in [3] to detect black hole attacks

comparing the original AODV with one and two black hole respectively, and

modified AODV with one black. We observe that PDR of modified AODV with one

black hole that is 39.19%, quadruple the result of original AODV with one black

hole that is 8.77%.

42

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Due to security issues in MANETs, various implementations and propose

mechanisms have been conducted by many researchers to solve black hole attack

problem. In this thesis work, we summarized the categories of routing protocol,

AODV routing protocol and black hole attack. The results are presented for the

original AODV without black hole and with one and two black holes, the modified

AODV without black hole and with a black hole.

In our study, firstly PDR and EED results of original AODV without a black hole

attack are obtained. Then AODV protocol with one and two black holes is

implemented in NS-2 and results of PDR, EED and loss percentage at the black

hole(s) are obtained. It is concluded from the obtained results that PDR without a

black hole drops from 98.31% to 19.30% and 8.77% with one and two black holes

respectively. Additionally it is noticed that the black hole lost is 51.11% and 65.40%

for one and two black holes respectively. The results also show that there is a

marginal increase in the EED when black holes are included. Finally the proposed

AODV protocol in [3] is implemented with one black hole to improve PDR in NS-2.

The modified AODV protocol in [3] assumes that the black hole does not waste time

to check the routing table and returns the reply quickly to the source. Because of this

in the modified AODV protocol the source initially uses the first reply that is with a

43

high probability coming from the black hole to transfer the data but when a second

reply come it switches to the path defined by that reply. The results of the modified

AODV protocol show that PDR with one black hole is improved from 19.30% to

39.19% compared to the results of original AODV. On the other hand, PDR of

modified AODV drops slightly to 94.85% compared to the PDR of original AODV

which is 98.31% when there is no black hole attack. The results also show that by the

modified AODV protocol the loss at the black hole is dropped from 51.11% to

34.95% and EED is dropped from 0.28 ms to 0.12 ms.

In conclusion, we detect the effect of one and two black hole attack in MANETs by

analyzing the performance metrics in term of PDR and EED. Based on the existing

work and current survey, we see that the black hole problem is still a significant issue

in MANETs and more algorithms should be investigated to solve the black hole

problem.

6.2 Future Work

 In our future work, we plan to analysis more performance metric in terms of

throughput and routing overhead. Then we can further implement different methods

to deal with the black hole attacks.

44

REFERENCES

[1] Kushwah, V. S., & Sharma, G. (2010). Implementation of New Routing

Protocol for Node Security in a Mobile Ad Hoc Network. International

Journal of Computer Science and Security, 8(9), pp. 31-36.

[2] Mistry, N., Jinwala, D. C., & Zaveri, M. (2010). Improving AODV Protocol

against Blackhole Attacks. Proceedings of the International Multi Conference

of Engineers and Computer Scientists, 2.

[3] Dokurer, S., Erten, Y. M., & Acar, C. E. (2007). Performance Analysis of

Ad-hoc Networks under Black Hole Attacks. Proceedings of IEEE

SoutheastCon, pp. 148-153.

[4] Ramaswamy, S., Fu, H., Sreekantaradhya, M., Dixon, J., & Nygard, K. E.

(2003). Prevention of Cooperative Black Hole Attack in Wireless Ad Hoc

Networks. In International Conference on Wireless Networks, pp. 570-575.

[5] Tamilselvan, L., & Sankaranarayanan, V. (2007). Prevention of Blackhole

Attack in MANET. 2nd International Conference on Wireless Broadband

and Ultra Wideband Communications, pp. 21-21.

[6] Lundberg, J. (2000). Routing Security in Ad Hoc Networks. Helsinki

University of Technology, available http://web.informatik.uni-bonn.de/IV/

45

Mitarbeiter/mp/paper/secure_routing/routing%20security%20in%20ad%20ho

c%20networks%20-%20lundberg.pdf (last accessed on July 2015).

[7] Jaiswal, P., & Kumar, D. R. (2012). Prevention of Black Hole Attack in

MANET. International Journal of Computer Networks and Wireless

Communications, pp. 599-606.

[8] Weerasinghe, H., & Fu, H. (2007). Preventing Cooperative Black Hole

Attacks in Mobile Ad Hoc Networks: Simulation, Implementation and

Evaluation. Proceedings of the Future Generation Communication and

Networking, 2, pp. 362-367.

[9] Sun, B., Guan, Y., Chen, J., & Pooch, U. W. (2003). Detecting Black-hole

Attack in Mobile Ad Hoc Networks. 5th European Personal Mobile

Communications Conference, pp. 490- 495.

[10] Al-Shurman, M., Yoo, S. M., & Park, S. (2004). Black Hole Attack in Mobile

Ad Hoc Networks. Proceedings of the 42nd Annual Southeast Regional

Conference, pp. 96-97.

[11] Raj, P. N., & Swadas, P. B. (2009). DPRAODV: A Dynamic Learning

System against Blackhole Attack in AODV based MANET. International

Journal of Computer Sciences Issues, 2, pp. 54-59

46

[12] Jaisankar, N., Saravanan, R., & Swamy, K. D. (2010). A Novel Security

Approach for Detecting Black Hole Attack in MANET. Information

Processing and Management Communications in Computer and Information

Sciecnce, 70, pp. 217-223.

[13] Yu, C. W., Wu, T. K., Cheng, R. H., & Chang, S. C. (2007). A Distributed

and Cooperative Black Hole Node Detection and Elimination Mechanism for

Ad Hoc Networks. Emerging Technologies in Knowledge Discovery and

Data Mining Conference, pp. 538-549.

 [14] Gonzalez, O. F., Howarth, M., & Pavlou, G. (2007). Detection of Packet

Forwarding Misbehavior in Mobile Ad-hoc Networks. Wired/Wireless

Internet Communications, 4517, pp. 302-314.

[15] Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An Efficient Routing

Protocol for Wireless Networks. Mobile Networks and Applications, 1(2), pp.

183-197.

[16] Medadian, M., Mebadi, A., & Shahri, E. (2009). Combat with Black Hole

Attack in AODV Routing Protocol. 9th Malaysia International Conference

on Communications, pp. 530-535.

[17] Mandhata, S. C., & Patro, S. N. (2011). A Counter Measure to Black Hole

Attack on AODV-based Mobile Ad-hoc Networks. International Journal of

Computer & Communication Technology, 2(6), pp. 37-42.

47

[18] Jali, K. A., Ahmad, Z., & Ab Manan, J. L. (2011). Mitigation of Black Hole

Attacks for AODV Routing Protocol. International Journal of New Computer

Architectures and their Applications, 1(2), pp. 336-343.

[19] Saetang, W., & Charoenpanyasak, S. (2012). CAODV Free Blackhole Attack

in Ad Hoc Networks. International Conference on Computer Networks and

Communication Systems, pp. 58-63.

[20] Tseng, F. H., Chou, L. D., & Chao, H. C. (2011). A Survey of Black Hole

Attacks in Wireless Mobile Ad Hoc Networks. Human-centric Computing

and Information Sciences, 1(4), pp. 1-16.

[21] Misra, P. (1999). Routing Protocols for Ad Hoc Mobile Wireless Networks.

Courses Notes, available at http://www.cse.wustl.edu/~jain/cis788-99/ftp/

adhoc_routing/ (last accessed on July 2015).

[22] Bilandi, N., & Verma, H. K. (2012). Comparative Analysis of Reactive,

Proactive and Hybrid Routing Protocols in MANET. International Journal of

Electronics and Computer Science Engineering, 1(3), pp. 1660-1667.

[23] Jhaveri, R. H., Patel, S. J., & Jinwala, D. C. (2012). DoS Attacks in Mobile

Ad Hoc Networks: A Survey. In Second International Conference

on Advanced Computing & Communication Technologies, pp. 535-541.

48

[24] Virtual InterNetwork Testbed, available at http://www.isi.edu/nsnam/vint

(last accessed on July 2015).

[25] Aho, A. V., Kernighan, B. W., & Weinberger, P. J. (1979). AWK - A Pattern

Scanning and Processing Language. Software: Practice and Experience, 9(4),

pp. 267-279.

[26] Kaushik, N., & Dureja, A. (2013). Performance Evaluation of Modified

AODV against Black Hole Attack in MANET. European Scientific

Journal, 9(18), pp. 182-193.

[27] Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad Hoc On-demand

Distance Vector (AODV) Routing, No. RFC 3561.

[28] Kurosawa, S., Nakayama, H., Kato, N., Jamalipour, A., & Nemoto, Y.

(2007). Detecting Blackhole Attack on AODV-based Mobile Ad Hoc

Networks by Dynamic Learning Method. International Journal of Network

Security, 5(3), pp. 338-346.

[29] Tcl, Webopedia an Internet Dictionary, available at http://www.webopedia.

com/TERM/T/Tcl.html (last accessed on July 2015).

[30] Roopak, M., & Reddy, B. (2013). Black Hole Attack Implementation in

AODV Routing Protocol. International Journal of Scientific & Engineering

Research, 4(5), pp. 402-406.

http://www/

49

APPENDICES

50

Appendix A: Script Files

Appendix A.1: Original AODV Script (aodv.h)

#ifndef __aodv_h__
#define __aodv_h__
/#include <agent.h>
//#include <packet.h>
//#include <sys/types.h>
//#include <cmu/list.h>
//#include <scheduler.h>
#include <cmu-trace.h>
#include <priqueue.h>
#include <aodv/aodv_rtable.h>
#include <aodv/aodv_rqueue.h>
#include <classifier/classifier-port.h>
/*
 Allows local repair of routes
*/
#define AODV_LOCAL_REPAIR
/*
 Allows AODV to use link-layer (802.11) feedback in determining when
 links are up/down.
*/
#define AODV_LINK_LAYER_DETECTION
/*
Causes AODV to apply a "smoothing" function to the link layer feedback
 that is generated by 802.11. In essence, it requires that RT_MAX_ERROR
 errors occurs within a window of RT_MAX_ERROR_TIME before the link is
considered bad.
*/
#define AODV_USE_LL_METRIC
/*
Only applies if AODV_USE_LL_METRIC is defined.Causes AODV to apply
omniscient knowledge to the feedback received from 802.11. This may be flawed,
because it does not account for congestion.
*///#define AODV_USE_GOD_FEEDBACK
class AODV;
#define MY_ROUTE_TIMEOUT 10 // 100 seconds
#define ACTIVE_ROUTE_TIMEOUT 10 // 50 seconds
#define REV_ROUTE_LIFE 6 // 5 seconds
#define BCAST_ID_SAVE 6 // 3 seconds
// No. of times to do network-wide search before timing out for
// MAX_RREQ_TIMEOUT sec.

51

#define RREQ_RETRIES 3
// timeout after doing network-wide search RREQ_RETRIES times
#define MAX_RREQ_TIMEOUT 10.0 //sec
/* Various constants used for the expanding ring search */
#define TTL_START 5
#define TTL_THRESHOLD 7
#define TTL_INCREMENT 2
// This should be somewhat related to arp timeout
#define NODE_TRAVERSAL_TIME 0.03 // 30 ms
#define LOCAL_REPAIR_WAIT_TIME 0.15 //sec
// Should be set by the user using best guess (conservative)
#define NETWORK_DIAMETER 30 // 30 hops
// Must be larger than the time difference between a node propagates a route
// request and gets the route reply back.
//#define RREP_WAIT_TIME (3 * NODE_TRAVERSAL_TIME *
NETWORK_DIAMETER) // ms
//#define RREP_WAIT_TIME (2 * REV_ROUTE_LIFE) // seconds
#define RREP_WAIT_TIME 1.0 // sec
#define ID_NOT_FOUND 0x00
#define ID_FOUND 0x01
//#define INFINITY 0xff
// The followings are used for the forward() function. Controls pacing.
#define DELAY 1.0 // random delay
#define NO_DELAY -1.0 // no delay
// think it should be 30 ms
#define ARP_DELAY 0.01 // fixed delay to keep arp happy
#define HELLO_INTERVAL 1 // 1000 ms
#define ALLOWED_HELLO_LOSS 3 // packets
#define BAD_LINK_LIFETIME 3 // 3000 ms
#define MaxHelloInterval (1.25 * HELLO_INTERVAL)
#define MinHelloInterval (0.75 * HELLO_INTERVAL)
/*
Timers (Broadcast ID, Hello, Neighbor Cache, Route Cache)
*/
class BroadcastTimer : public Handler {
public:
 BroadcastTimer(AODV* a) : agent(a) {}
 void handle(Event*);
private:
 AODV *agent;
 Event intr;
};
class HelloTimer : public Handler {
public:
 HelloTimer(AODV* a) : agent(a) {}
 void handle(Event*);
private:

52

 AODV *agent;
 Event intr;
};
class NeighborTimer : public Handler {
public:
 NeighborTimer(AODV* a) : agent(a) {}
 void handle(Event*);
private:
 AODV *agent;
 Event intr;
};
class RouteCacheTimer : public Handler {
public:
 RouteCacheTimer(AODV* a) : agent(a) {}
 void handle(Event*);
private:
 AODV *agent;
 Event intr;
};
class LocalRepairTimer : public Handler {
public:
 LocalRepairTimer(AODV* a) : agent(a) {}
 void handle(Event*);
private:
 AODV *agent;
 Event intr;
};
/*
 Broadcast ID Cache
*/
class BroadcastID {
 friend class AODV;
 public:
 BroadcastID(nsaddr_t i, u_int32_t b) { src = i; id = b; }
 protected:
 LIST_ENTRY(BroadcastID) link;
 nsaddr_t src;
 u_int32_t id;
 double expire; // now + BCAST_ID_SAVE s
};
LIST_HEAD(aodv_bcache, BroadcastID);
/*
 The Routing Agent
*/
class AODV: public Agent {
 /*
 * make some friends first

53

 */
 friend class aodv_rt_entry;
 friend class BroadcastTimer;
 friend class HelloTimer;
 friend class NeighborTimer;
 friend class RouteCacheTimer;
 friend class LocalRepairTimer;
 public:
 AODV(nsaddr_t id);
 void recv(Packet *p, Handler *);
 protected:
 int command(int, const char *const *);
 int initialized() { return 1 && target_; }
 /*
 * Route Table Management
 */
 void rt_resolve(Packet *p);
 void rt_update(aodv_rt_entry *rt, u_int32_t seqnum,
 u_int16_t metric, nsaddr_t nexthop,
 double expire_time);
 void rt_down(aodv_rt_entry *rt);
 void local_rt_repair(aodv_rt_entry *rt, Packet *p);
 public:
 void rt_ll_failed(Packet *p);
 void handle_link_failure(nsaddr_t id);
 protected:
 void rt_purge(void);
 void enque(aodv_rt_entry *rt, Packet *p);
 Packet* deque(aodv_rt_entry *rt);
 /*
 * Neighbor Management
 */
 void nb_insert(nsaddr_t id);
 AODV_Neighbor* nb_lookup(nsaddr_t id);
 void nb_delete(nsaddr_t id);
 void nb_purge(void);
 /*
 * Broadcast ID Management
 */
 void id_insert(nsaddr_t id, u_int32_t bid);
 bool id_lookup(nsaddr_t id, u_int32_t bid);
 void id_purge(void);
 /*
 * Packet TX Routines
 */
 void forward(aodv_rt_entry *rt, Packet *p, double delay);
 void sendHello(void);

54

 void sendRequest(nsaddr_t dst);
 void sendReply(nsaddr_t ipdst, u_int32_t hop_count,
 nsaddr_t rpdst, u_int32_t rpseq,
 u_int32_t lifetime, double timestamp);
 void sendError(Packet *p, bool jitter = true);
 /*
 * Packet RX Routines
 */
 void recvAODV(Packet *p);
 void recvHello(Packet *p);
 void recvRequest(Packet *p);
 void recvReply(Packet *p);
 void recvError(Packet *p);
 /*
 * History management
 */
 double PerHopTime(aodv_rt_entry *rt);
 nsaddr_t index; // IP Address of this node
 u_int32_t seqno; // Sequence Number
 int bid; // Broadcast ID
 aodv_rtable rthead; // routing table
 aodv_ncache nbhead; // Neighbor Cache
 aodv_bcache bihead; // Broadcast ID Cache
 /*
 * Timers
 */
 BroadcastTimer btimer;
 HelloTimer htimer;
 NeighborTimer ntimer;
 RouteCacheTimer rtimer;
 LocalRepairTimer lrtimer;
 /*
 * Routing Table
 */
 aodv_rtable rtable;
 /*
 * A "drop-front" queue used by the routing layer to buffer
 * packets to which it does not have a route.
 */
 aodv_rqueue rqueue;
 /*
 * A mechanism for logging the contents of the routing
 * table.
 */
 Trace *logtarget;
 /*
 * A pointer to the network interface queue that sits

55

 * between the "classifier" and the "link layer".
 */
 PriQueue *ifqueue;
 /*
 * Logging stuff
 */
 void log_link_del(nsaddr_t dst);
 void log_link_broke(Packet *p);
 void log_link_kept(nsaddr_t dst);
 /* for passing packets up to agents */
 PortClassifier *dmux_;
};
#endif /* __aodv_h__ */

Appendix A.2: Original AODV Script with Black Hole

Appendix A.2.1: baodv.h

#ifndef __blackholeaodv_h__
#define __blackholeaodv_h__
//#include <agent.h>
//#include <packet.h>
//#include <sys/types.h>
//#include <cmu/list.h>
//#include <scheduler.h>
#include <cmu-trace.h>
#include <priqueue.h>
#include <blackholeaodv/blackholeaodv_rtable.h>
#include <blackholeaodv/blackholeaodv_rqueue.h>
#include <classifier/classifier-port.h>
/*
Allows local repair of routes
*/
#define blackholeAODV_LOCAL_REPAIR
/*
 Allows AODV to use link-layer (802.11) feedback in determining when
 links are up/down.
*/
#define blackholeAODV_LINK_LAYER_DETECTION
/*Causes AODV to apply a "smoothing" function to the link layer feedback that is
generated by 802.11. In essence, it requires that RT_MAX_ERROR errors occurs
within a window of RT_MAX_ERROR_TIME before the link is considered bad.
*/
#define blackholeAODV_USE_LL_METRIC

56

/*
 Only applies if AODV_USE_LL_METRIC is defined. Causes AODV to apply
omniscient knowledge to the feedback received from 802.11. This may be flawed,
because it does not account for congestion.
*/
//#define AODV_USE_GOD_FEEDBACK
class blackholeAODV;
#define MY_ROUTE_TIMEOUT 10 // 100 seconds
#define ACTIVE_ROUTE_TIMEOUT 10 // 50 seconds
#define REV_ROUTE_LIFE 6 // 5 seconds
#define BCAST_ID_SAVE 6 // 3 seconds
// No. of times to do network-wide search before timing out for
// MAX_RREQ_TIMEOUT sec.
#define RREQ_RETRIES 3
// timeout after doing network-wide search RREQ_RETRIES times
#define MAX_RREQ_TIMEOUT 10.0 //sec
/* Various constants used for the expanding ring search */
#define TTL_START 5
#define TTL_THRESHOLD 7
#define TTL_INCREMENT 2
// This should be somewhat related to arp timeout
#define NODE_TRAVERSAL_TIME 0.03 // 30 ms
#define LOCAL_REPAIR_WAIT_TIME 0.15 //sec
// Should be set by the user using best guess (conservative)
#define NETWORK_DIAMETER 30 // 30 hops
// Must be larger than the time difference between a node propagates a route
// request and gets the route reply back.
//#define RREP_WAIT_TIME (3 * NODE_TRAVERSAL_TIME *
NETWORK_DIAMETER) // ms
//#define RREP_WAIT_TIME (2 * REV_ROUTE_LIFE) // seconds
#define RREP_WAIT_TIME 1.0 // sec
#define ID_NOT_FOUND 0x00
#define ID_FOUND 0x01
//#define INFINITY 0xff
// The followings are used for the forward() function. Controls pacing.
#define DELAY 1.0 // random delay
#define NO_DELAY -1.0 // no delay
// think it should be 30 ms
#define ARP_DELAY 0.01 // fixed delay to keep arp happy
#define HELLO_INTERVAL 1 // 1000 ms
#define ALLOWED_HELLO_LOSS 3 // packets
#define BAD_LINK_LIFETIME 3 // 3000 ms
#define MaxHelloInterval (1.25 * HELLO_INTERVAL)
#define MinHelloInterval (0.75 * HELLO_INTERVAL)
/*
Timers (Broadcast ID, Hello, Neighbor Cache, Route Cache)
*/

57

class BlackHoleBroadcastTimer : public Handler {
public: BlackHoleBroadcastTimer(blackholeAODV* a) : agent(a) {}
 void handle(Event*);
private:
 blackholeAODV *agent;
 Event intr;
};
class BlackHoleHelloTimer : public Handler {
public:
 BlackHoleHelloTimer(blackholeAODV* a) : agent(a) {}
 void handle(Event*);
private:
 blackholeAODV *agent;
 Event intr;
};
class BlackHoleNeighborTimer : public Handler {
public:
 BlackHoleNeighborTimer(blackholeAODV* a) : agent(a) {}
 void handle(Event*);
private:
 blackholeAODV *agent;
 Event intr;
};
class BlackHoleRouteCacheTimer : public Handler {
public:
 BlackHoleRouteCacheTimer(blackholeAODV* a) : agent(a) {}
 void handle(Event*);
private:
 blackholeAODV *agent;
 Event intr;
};
class BlackHoleLocalRepairTimer : public Handler {
public:
 BlackHoleLocalRepairTimer(blackholeAODV* a) : agent(a) {}
 void handle(Event*);
private:
 blackholeAODV *agent;
 Event intr;
};
/*
 Broadcast ID Cache
*/
class BlackHoleBroadcastID {
 friend class blackholeAODV;
 public:
 BlackHoleBroadcastID(nsaddr_t i, u_int32_t b) { src = i; id = b; }
 protected:

58

 LIST_ENTRY(BlackHoleBroadcastID) link;
 nsaddr_t src;
 u_int32_t id;
 double expire; // now + BCAST_ID_SAVE s
};
LIST_HEAD(blackholeaodv_bcache, BlackHoleBroadcastID);
/*
 The Routing Agent
*/
class blackholeAODV: public Agent {
 /*
 * make some friends first
 */
 friend class blackholeaodv_rt_entry;
 friend class BlackHoleBroadcastTimer;
 friend class BlackHoleHelloTimer;
 friend class BlackHoleNeighborTimer;
 friend class BlackHoleRouteCacheTimer;
 friend class BlackHoleLocalRepairTimer;
 public:
 blackholeAODV(nsaddr_t id);
 void recv(Packet *p, Handler *);
 protected:
 int command(int, const char *const *);
 int initialized() { return 1 && target_; }
 /*
 * Route Table Management
 */
 void rt_resolve(Packet *p);
 void rt_update(blackholeaodv_rt_entry *rt, u_int32_t seqnum,
 u_int16_t metric, nsaddr_t nexthop,
 double expire_time);
 void rt_down(blackholeaodv_rt_entry *rt);
 void local_rt_repair(blackholeaodv_rt_entry *rt, Packet *p);
 public:
 void rt_ll_failed(Packet *p);
 void handle_link_failure(nsaddr_t id);
 protected:
 void rt_purge(void);
 void enque(blackholeaodv_rt_entry *rt, Packet *p);
 Packet* deque(blackholeaodv_rt_entry *rt);
 /*
 * Neighbor Management
 */
 void nb_insert(nsaddr_t id);
 blackholeAODV_Neighbor* nb_lookup(nsaddr_t id);
 void nb_delete(nsaddr_t id);

59

 void nb_purge(void);
 /*
 * Broadcast ID Management
 */
 void id_insert(nsaddr_t id, u_int32_t bid);
 bool id_lookup(nsaddr_t id, u_int32_t bid);
 void id_purge(void);
 /*
 * Packet TX Routines
 */
 void forward(blackholeaodv_rt_entry *rt, Packet *p, double delay);
 void sendHello(void);
 void sendRequest(nsaddr_t dst);
 void sendReply(nsaddr_t ipdst, u_int32_t hop_count,
 nsaddr_t rpdst, u_int32_t rpseq,
 u_int32_t lifetime, double timestamp);
 void sendError(Packet *p, bool jitter = true);
 /*
 * Packet RX Routines
 */
 void recvblackholeAODV(Packet *p);
 void recvHello(Packet *p);
 void recvRequest(Packet *p);
 void recvReply(Packet *p);
 void recvError(Packet *p);
 /*
 * History management
 */
 double PerHopTime(blackholeaodv_rt_entry *rt);
 nsaddr_t index; // IP Address of this node
 u_int32_t seqno; // Sequence Number
 int bid; // Broadcast ID
 blackholeaodv_rtable rthead; // routing table
 blackholeaodv_ncache nbhead; // Neighbor Cache
 blackholeaodv_bcache bihead; // Broadcast ID Cache
 /*
 * Timers
 */
 BlackHoleBroadcastTimer btimer;
 BlackHoleHelloTimer htimer;
 BlackHoleNeighborTimer ntimer;
 BlackHoleRouteCacheTimer rtimer;
 BlackHoleLocalRepairTimer lrtimer;
 /*
 * Routing Table
 */
 blackholeaodv_rtable rtable;

60

 /*
 * A "drop-front" queue used by the routing layer to buffer
 * packets to which it does not have a route.
 */
 blackholeaodv_rqueue rqueue;
 /*
 * A mechanism for logging the contents of the routing
 * table.
 */
 Trace *logtarget;
 /*
 A pointer to the network interface queue that sits
 * between the "classifier" and the "link layer".
 */
 PriQueue *ifqueue;
 /*
 * Logging stuff
 */
 void log_link_del(nsaddr_t dst);
 void log_link_broke(Packet *p);
 void log_link_kept(nsaddr_t dst);
 /* for passing packets up to agents */
 PortClassifier *dmux_;
};
#endif /* __blackholeaodv_h__ */

Appendix A.2.2: baodv.cc

void
blackholeAODV::recvRequest(Packet *p) {
struct hdr_ip *ih = HDR_IP(p);
struct hdr_aodv_request *rq = HDR_AODV_REQUEST(p);
blackholeaodv_rt_entry *rt;
 /*
 * Drop if:
 * - I'm the source
 * - I recently heard this request.
 */
 if(rq->rq_src == index) {
#ifdef DEBUG
 fprintf(stderr, "%s: got my own REQUEST\n", __FUNCTION__);
#endif // DEBUG
 Packet::free(p);
 return;
 }
 if (id_lookup(rq->rq_src, rq->rq_bcast_id)) {

61

#ifdef DEBUG
 fprintf(stderr, "%s: discarding request\n", __FUNCTION__);
#endif // DEBUG
 Packet::free(p);
 return;
 }
 /*
 * Cache the broadcast ID
 */
 id_insert(rq->rq_src, rq->rq_bcast_id);
/*
 * We re either going to forward the REQUEST or generate a
 * REPLY. Before we do anything, we make sure that the REVERSE
 * route is in the route table.
 */
 blackholeaodv_rt_entry *rt0; // rt0 is the reverse route
 rt0 = rtable.rt_lookup(rq->rq_src);
 if(rt0 == 0) { /* if not in the route table */
 // create an entry for the reverse route.
 rt0 = rtable.rt_add(rq->rq_src);
 }
 rt0->rt_expire = max(rt0->rt_expire, (CURRENT_TIME + REV_ROUTE_LIFE));
 if ((rq->rq_src_seqno > rt0->rt_seqno) ||
 ((rq->rq_src_seqno == rt0->rt_seqno) &&
 (rq->rq_hop_count < rt0->rt_hops))) {
 // If we have a fresher seq no. or lesser #hops for the
 // same seq no., update the rt entry. Else don't bother.
rt_update(rt0, rq->rq_src_seqno, rq->rq_hop_count, ih->saddr(),
 max(rt0->rt_expire, (CURRENT_TIME + REV_ROUTE_LIFE)));
 if (rt0->rt_req_timeout > 0.0) {
 // Reset the soft state and
 // Set expiry time to CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT
 // This is because route is used in the forward direction,
 // but only sources get benefited by this change
 rt0->rt_req_cnt = 0;
 rt0->rt_req_timeout = 0.0;
 rt0->rt_req_last_ttl = rq->rq_hop_count;
 rt0->rt_expire = CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT;
 }
 /* Find out whether any buffered packet can benefit from the
 * reverse route.
 * May need some change in the following code - Mahesh 09/11/99
 */
 assert (rt0->rt_flags == RTF_UP);
 Packet *buffered_pkt;
 while ((buffered_pkt = rqueue.deque(rt0->rt_dst))) {
 if (rt0 && (rt0->rt_flags == RTF_UP)) {

62

 assert(rt0->rt_hops != INFINITY2);
 forward(rt0, buffered_pkt, NO_DELAY);
 }
 }
 }
 // End for putting reverse route in rt table
 /*
 * We have taken care of the reverse route stuff.
 * Now see whether we can send a route reply.
 */
 rt = rtable.rt_lookup(rq->rq_dst);
 // First check if I am the destination ..
 if(rq->rq_dst == index) {
#ifdef DEBUG
 fprintf(stderr, "%d - %s: destination sending reply\n",
 index, __FUNCTION__);
#endif // DEBUG
 // Just to be safe, I use the max. Somebody may have
 // incremented the dst seqno.
 seqno = max(seqno, rq->rq_dst_seqno)+1;
 if (seqno%2) seqno++;
 sendReply(rq->rq_src, // IP Destination
 1, // Hop Count
 index, // Dest IP Address
 99856745689, // Highest Dest Sequence Num
 MY_ROUTE_TIMEOUT, // Lifetime
 rq->rq_timestamp); // timestamp
 Packet::free(p);
 }
 // I am not the destination, but I may have a fresh enough route.
 else if (rt && (rt->rt_hops != INFINITY2) &&
 (rt->rt_seqno >= rq->rq_dst_seqno)) {
 //assert (rt->rt_flags == RTF_UP);
 assert(rq->rq_dst == rt->rt_dst);
 //assert ((rt->rt_seqno%2) == 0); // is the seqno even?
 sendReply(rq->rq_src,
 1,
 rq->rq_dst,
 99856745689,
 // rt->rt_seqno,
 (u_int32_t) (rt->rt_expire - CURRENT_TIME),
 // rt->rt_expire - CURRENT_TIME,
 rq->rq_timestamp);
 // Insert nexthops to RREQ source and RREQ destination in the
 // precursor lists of destination and source respectively
 rt->pc_insert(rt0->rt_nexthop); // nexthop to RREQ source
 rt0->pc_insert(rt->rt_nexthop); // nexthop to RREQ destination

63

// #ifdef RREQ_GRAT_RREP
//
// sendReply(rq->rq_dst,
// rq->rq_hop_count,
// rq->rq_src,
// rt->rt_seqno,
// (u_int32_t) (rt->rt_expire - CURRENT_TIME),
// // rt->rt_expire - CURRENT_TIME,
// rq->rq_timestamp);
// #endif
// TODO: send grat RREP to dst if G flag set in RREQ using rq->rq_src_seqno, rq-
>rq_hop_counT
// DONE: Included gratuitous replies to be sent as per IETF aodv draft specification. As
of now, G flag has not been dynamically used and is always set or reset in aodv-packet.h
--- Anant Utgikar, 09/16/02.
 Packet::free(p);
 }
 /*
 * Can't reply. So forward the Route Request
 */
else {
 /*
 ih->saddr() = index;
 ih->daddr() = IP_BROADCAST;
 rq->rq_hop_count += 1;
 // Maximum sequence number seen en route
 if (rt) rq->rq_dst_seqno = max(rt->rt_seqno, rq->rq_dst_seqno);
 forward((blackholeaodv_rt_entry*) 0, p, DELAY);
*/
 sendReply(rq->rq_src, // IP Destination
 1, // Hop Count
 rq->rq_dst, // Dest IP Address
 99856745689, // Highest Dest Sequence Num that is largest 32-bit integers
 MY_ROUTE_TIMEOUT, // Lifetime
 rq->rq_timestamp); // timestamp
Packet::free(p);
}
}

void
blackholeAODV::recv(Packet *p, Handler*) {
struct hdr_cmn *ch = HDR_CMN(p);
struct hdr_ip *ih = HDR_IP(p);
assert(initialized());
 //assert(p->incoming == 0);

64

 // XXXXX NOTE: use of incoming flag has been depracated; In order to track direction
of pkt flow, direction_ in hdr_cmn is used instead. see packet.h for details.
if(ch->ptype() == PT_AODV) {
 ih->ttl_ -= 1;
 recvblackholeAODV(p);
 return;
 }
//If destination address is itsself
if ((u_int32_t)ih->saddr() == index)
 forward((blackholeaodv_rt_entry*) 0, p, NO_DELAY);
else
// For blackhole attack in the wireless adhoc network, after taking the path over itself,
misbehaving node drops all packets
 drop(p, DROP_RTR_ROUTE_LOOP);
}

Appendix A.3: Modified AODV Script with Black Hole

Appendix A.3.1: idsaodv.h

#ifndef __idsaodv_h__
#define __idsaodv_h__
//#include <agent.h>
//#include <packet.h>
//#include <sys/types.h>
//#include <cmu/list.h>
//#include <scheduler.h>
#include <cmu-trace.h>
#include <priqueue.h>
#include <idsaodv/idsaodv_rtable.h>
#include <idsaodv/idsaodv_rqueue.h>
#include <classifier/classifier-port.h>
/*
 Allows local repair of routes
*/
#define idsAODV_LOCAL_REPAIR
/*
Allows AODV to use link-layer (802.11) feedback in determining when links are
up/down.
*/
#define idsAODV_LINK_LAYER_DETECTION
/*
Causes AODV to apply a "smoothing" function to the link layer feedback that is
generated by 802.11. In essence, it requires that RT_MAX_ERROR errors occurs
within a window of RT_MAX_ERROR_TIME before the link is considered bad.

65

*/
#define idsAODV_USE_LL_METRIC
/*
Only applies if AODV_USE_LL_METRIC is defined. Causes AODV to apply
omniscient knowledge to the feedback received from 802.11. This may be flawed,
because it does not account for congestion.
*///#define AODV_USE_GOD_FEEDBACK

class idsAODV;
#define MY_ROUTE_TIMEOUT 10 // 100 seconds
#define ACTIVE_ROUTE_TIMEOUT 10 // 50 seconds
#define REV_ROUTE_LIFE 6 // 5 seconds
#define BCAST_ID_SAVE 6 // 3 seconds
// No. of times to do network-wide search before timing out for
// MAX_RREQ_TIMEOUT sec.
#define RREQ_RETRIES 3
// timeout after doing network-wide search RREQ_RETRIES times
#define MAX_RREQ_TIMEOUT 10.0 //sec
/* Various constants used for the expanding ring search */
#define TTL_START 5
#define TTL_THRESHOLD 7
#define TTL_INCREMENT 2
// This should be somewhat related to arp timeout
#define NODE_TRAVERSAL_TIME 0.03 // 30 ms
#define LOCAL_REPAIR_WAIT_TIME 0.15 //sec
// Should be set by the user using best guess (conservative)
#define NETWORK_DIAMETER 30 // 30 hops
// Must be larger than the time difference between a node propagates a route
// request and gets the route reply back.
//#define RREP_WAIT_TIME (3 * NODE_TRAVERSAL_TIME *
NETWORK_DIAMETER) // ms
//#define RREP_WAIT_TIME (2 * REV_ROUTE_LIFE) // seconds
#define RREP_WAIT_TIME 1.0 // sec
#define ID_NOT_FOUND 0x00
#define ID_FOUND 0x01
//#define INFINITY 0xff
// The followings are used for the forward() function. Controls pacing.
#define DELAY 1.0 // random delay
#define NO_DELAY -1.0 // no delay
// think it should be 30 ms
#define ARP_DELAY 0.01 // fixed delay to keep arp happy
#define HELLO_INTERVAL 1 // 1000 ms
#define ALLOWED_HELLO_LOSS 3 // packets
#define BAD_LINK_LIFETIME 3 // 3000 ms
#define MaxHelloInterval (1.25 * HELLO_INTERVAL)
#define MinHelloInterval (0.75 * HELLO_INTERVAL)
/*

66

 Timers (Broadcast ID, Hello, Neighbor Cache, Route Cache)
*/
class idsBroadcastTimer : public Handler {
 public:
 idsBroadcastTimer(idsAODV* a) : agent(a) {}
 void handle(Event*);
 private:
 idsAODV *agent;
 Event intr;
};
class idsHelloTimer : public Handler {
 public:
 idsHelloTimer(idsAODV* a) : agent(a) {}
 void handle(Event*);
 private:
 idsAODV *agent;
 Event intr;
};
class idsNeighborTimer : public Handler {
 public:
 idsNeighborTimer(idsAODV* a) : agent(a) {}
 void handle(Event*);
 private:
 idsAODV *agent;
 Event intr;
};
class idsRouteCacheTimer : public Handler {
 public:
 idsRouteCacheTimer(idsAODV* a) : agent(a) {}
 void handle(Event*);
 private:
 idsAODV *agent;
 Event intr;
};
class idsLocalRepairTimer : public Handler {
public:
idsLocalRepairTimer(idsAODV* a) : agent(a) {}
 void handle(Event*);
 private:
 idsAODV *agent;
 Event intr;
};
/*
 Broadcast ID Cache
*/
class idsBroadcastID {
 friend class idsAODV;

67

 public:
 idsBroadcastID(nsaddr_t i, u_int32_t b) { src = i; id = b; }
 protected:
 LIST_ENTRY(idsBroadcastID) link;
 nsaddr_t src;
 u_int32_t id;
 double expire; // now + BCAST_ID_SAVE s
};
LIST_HEAD(idsaodv_bcache, idsBroadcastID);
/*
 RREP Cache
*/
class idsBroadcastRREP {
 friend class idsAODV;
 public:
 idsBroadcastRREP(nsaddr_t i) { dst = i; }
 protected:
 LIST_ENTRY(idsBroadcastRREP) link;
 nsaddr_t dst;
 u_int32_t count;
 double expire; // now + BCAST_ID_SAVE s
};
LIST_HEAD(idsaodv_rrepcache, idsBroadcastRREP);
/*
 The Routing Agent
*/
class idsAODV: public Agent {
 /*
 * make some friends first
 */
 friend class idsaodv_rt_entry;
 friend class idsBroadcastTimer;
 friend class idsHelloTimer;
 friend class idsNeighborTimer;
 friend class idsRouteCacheTimer;
 friend class idsLocalRepairTimer;
 public:
 idsAODV(nsaddr_t id);
 void recv(Packet *p, Handler *);
 protected:
 int command(int, const char *const *);
 int initialized() { return 1 && target_; }
 /*
 * Route Table Management
 */
 void rt_resolve(Packet *p);
 void rt_update(idsaodv_rt_entry *rt, u_int32_t seqnum,

68

 u_int16_t metric, nsaddr_t nexthop,
 double expire_time);
 void rt_down(idsaodv_rt_entry *rt);
 void local_rt_repair(idsaodv_rt_entry *rt, Packet *p);
 public:
 void rt_ll_failed(Packet *p);
 void handle_link_failure(nsaddr_t id);
 protected:
 void rt_purge(void);
 void enque(idsaodv_rt_entry *rt, Packet *p);
 Packet* deque(idsaodv_rt_entry *rt);
 /*
 * Neighbor Management
 */
 void nb_insert(nsaddr_t id);
 idsAODV_Neighbor* nb_lookup(nsaddr_t id);
 void nb_delete(nsaddr_t id);
 void nb_purge(void);
 /*
 * Broadcast ID Management
 */
 void id_insert(nsaddr_t id, u_int32_t bid);
 bool id_lookup(nsaddr_t id, u_int32_t bid);
 void id_purge(void);
 /*
 * RREP Management for IDS
 */
 void rrep_insert(nsaddr_t id);
 idsBroadcastRREP *rrep_lookup(nsaddr_t id);
 void rrep_remove(nsaddr_t id);
 void rrep_purge(void);
 /*
 * Packet TX Routines
 */
 void forward(idsaodv_rt_entry *rt, Packet *p, double delay);
 void sendHello(void);
 void sendRequest(nsaddr_t dst);
 void sendReply(nsaddr_t ipdst, u_int32_t hop_count,
 nsaddr_t rpdst, u_int32_t rpseq,
 u_int32_t lifetime, double timestamp);
 void sendError(Packet *p, bool jitter = true);
 /*
 * Packet RX Routines
 */
 void recvidsAODV(Packet *p);
 void recvHello(Packet *p);
 void recvRequest(Packet *p);

69

 void recvReply(Packet *p);
 void recvError(Packet *p);
 /*
 * History management
 */
 double PerHopTime(idsaodv_rt_entry *rt);
 nsaddr_t index; // IP Address of this node
 u_int32_t seqno; // Sequence Number
 int bid; // Broadcast ID
 idsaodv_rtable rthead; // routing table
 idsaodv_ncache nbhead; // Neighbor Cache
 idsaodv_bcache bihead; // Broadcast ID Cache
 idsaodv_rrepcache rrephead; // RREP Cache
 /*
 * Timers
 */
 idsBroadcastTimer btimer;
 idsHelloTimer htimer;
 idsNeighborTimer ntimer;
 idsRouteCacheTimer rtimer;
 idsLocalRepairTimer lrtimer;
 /*
 * Routing Table
 */
 idsaodv_rtable rtable;
 /*
 * A "drop-front" queue used by the routing layer to buffer
 * packets to which it does not have a route.
 */
 idsaodv_rqueue rqueue;
 /*
 * A mechanism for logging the contents of the routing
 * table.
 */
 Trace *logtarget;
 /*
 * A pointer to the network interface queue that sits
 * between the "classifier" and the "link layer".
 */
 PriQueue *ifqueue;
 /*
 * Logging stuff
 */
 void log_link_del(nsaddr_t dst);
 void log_link_broke(Packet *p);
 void log_link_kept(nsaddr_t dst);
 /* for passing packets up to agents */

70

 PortClassifier *dmux_;
};
#endif /* __idsaodv_h__ */

Appendix A.3.2: idsaodv.cc

void
idsAODV::recvReply(Packet *p) {
//struct hdr_cmn *ch = HDR_CMN(p);
 struct hdr_ip *ih = HDR_IP(p);
 struct hdr_aodv_reply *rp = HDR_AODV_REPLY(p);
 idsaodv_rt_entry *rt;
 char suppress_reply = 0;
 double delay = 0.0;
 int count;
 idsBroadcastRREP *r = rrep_lookup(rp->rp_dst);
#ifdef DEBUG
 fprintf(stderr, "%d - %s: received a REPLY\n", index, __FUNCTION__);
#endif // DEBUG
#if 0
if (ih->daddr() == index) {
 if (r == NULL) {
 rrep_insert(rp->rp_dst);
 Packet::free(p);
 return;
 } else
 rrep_remove(rp->rp_dst);
 }
#endif
 if (r == NULL) {
 count = 0;
 rrep_insert(rp->rp_dst);
 } else {
 r->count++;
 count = r->count;
}
 /*
 * Got a reply. So reset the "soft state" maintained for
 * route requests in the request table. We don't really have
 * have a separate request table. It is just a part of the
 * routing table itself.
 */
 // Note that rp_dst is the dest of the data packets, not the
 // the dest of the reply, which is the src of the data packets.
 rt = rtable.rt_lookup(rp->rp_dst);

71

/*
 * If I don't have a rt entry to this host... adding
 */
 if(rt == 0) {
 rt = rtable.rt_add(rp->rp_dst);
 }
 /*
 * Add a forward route table entry... here I am following
 * Perkins-Royer AODV paper almost literally - SRD 5/99
 */
 if (count > 1 ||
 (rt->rt_seqno < rp->rp_dst_seqno) || // newer route
 ((rt->rt_seqno == rp->rp_dst_seqno) &&
 (rt->rt_hops > rp->rp_hop_count))) { // shorter or better route
 // Update the rt entry
 rt_update(rt, rp->rp_dst_seqno, rp->rp_hop_count,
 rp->rp_src, CURRENT_TIME + rp->rp_lifetime);
 // reset the soft state
 rt->rt_req_cnt = 0;
 rt->rt_req_timeout = 0.0;
 rt->rt_req_last_ttl = rp->rp_hop_count;
 if (ih->daddr() == index) { // If I am the original source
 // Update the route discovery latency statistics
 // rp->rp_timestamp is the time of request origination

rt->rt_disc_latency[(unsigned char)rt->hist_indx] = (CURRENT_TIME - rp-
>rp_timestamp)
 / (double) rp->rp_hop_count;
 // increment indx for next time
 rt->hist_indx = (rt->hist_indx + 1) % MAX_HISTORY;
 }
 /*
 * Send all packets queued in the sendbuffer destined for
 * this destination.
 * XXX - observe the "second" use of p.
 */
 Packet *buf_pkt;
 while((buf_pkt = rqueue.deque(rt->rt_dst))) {
 if(rt->rt_hops != INFINITY2) {
 assert (rt->rt_flags == RTF_UP);
 // Delay them a little to help ARP. Otherwise ARP
 // may drop packets. -SRD 5/23/99
 forward(rt, buf_pkt, delay);
 delay += ARP_DELAY;
 }
 }
 } else {

72

 suppress_reply = 1;
 }
 /*
 * If reply is for me, discard it.
 */
 if(ih->daddr() == index || suppress_reply) {
 Packet::free(p);
 return;
 }
 /*
 * Otherwise, forward the Route Reply.
 */
 // Find the rt entry
 idsaodv_rt_entry *rt0 = rtable.rt_lookup(ih->daddr());
 // If the rt is up, forward
 if(rt0 && (rt0->rt_hops != INFINITY2)) {
 assert (rt0->rt_flags == RTF_UP);
 rp->rp_hop_count += 1;
 rp->rp_src = index;
 forward(rt0, p, NO_DELAY);
 // Insert the nexthop towards the RREQ source to
 // the precursor list of the RREQ destination
 rt->pc_insert(rt0->rt_nexthop); // nexthop to RREQ source
 } else {
 // I don't know how to forward .. drop the reply.
#ifdef DEBUG
 fprintf(stderr, "%s: dropping Route Reply\n", __FUNCTION__);
#endif // DEBUG
 drop(p, DROP_RTR_NO_ROUTE);
 }
}

void
idsAODV::rrep_insert (nsaddr_t id) {
idsBroadcastRREP *r = new idsBroadcastRREP(id);
assert(r);
r->expire = CURRENT_TIME + BCAST_ID_SAVE;
r->count ++;
LIST_INSERT_HEAD(&rrephead, r, link);
}
idsBroadcastRREP *
idsAODV::rrep_lookup(nsaddr_t id) {
idsBroadcastRREP *r = rrephead.lh_first;
for(; r; r = r->link.le_next) {
if (r->dst == id)
return r; }

73

return NULL; }
void
idsAODV::rrep_remove(nsaddr_t id) {
idsBroadcastRREP *r = rrephead.lh_first;
for(; r; r = r->link.le_next) {
if (r->dst == id)
LIST_REMOVE(r,link);
delete r;
break;
}
}
void
idsAODV::rrep_purge() {
idsBroadcastRREP *r = rrephead.lh_first;
idsBroadcastRREP *rn;
double now = CURRENT_TIME;
for(; r; r = rn) {
rn = r->link.le_next;
if(r->expire <= now) {
LIST_REMOVE(r,link);
delete r;
}}}

74

Appendix B: TCL and Output Files

Appendix B.1: BlackHoleAODV.tcl File

set s 1

set val(chan) Channel/WirelessChannel ;#Channel Type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC typeset

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 150 ;# max packet in ifq

set val(nn) 20 ;# total number of mobilenodes

set val(nnaodv) 18 ;# number of AODV mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 750 ;# X dimension of topography

set val(y) 750 ;# Y dimension of topography

set val(cstop) 451 ;# time of connections end

set val(stop) 500 ;# time of simulation end

set val(cp) "./Scene$s/move$s" ;#Connection Pattern

Initialize Global Variablesset

set ns_ [new Simulator]

$ns_ use-newtrace

set tracefd [open ./Scene$s/1bscene$s.tr w]

$ns_ trace-all $tracefd

set namtrace [open ./Scene$s/1bscene$s.nam w]

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

set up topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(

Create God

create-god $val(nn)

Create channel #1 and #2

75

set chan_1_ [new $val(chan)]

set chan_2_ [new $val(chan)]

configure node, please note the change below.

$ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace ON \

 -movementTrace ON \

 -channel $chan_1_

Creating mobile AODV nodes for simulation

puts "Creating nodes..."

create nodes

for {set i 0} {$i < 19} {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 1;

}

$ns_ node-config -adhocRouting blackholeAODV

for {set i 19} {$i<20 } {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 1;

 $ns_ at 0.01 "$node_($i) label \"blackhole node\""

 $node_($i) color red

 $ns_ at 0.01 "$node_($i) color red"

}

puts "Loading random connection pattern..."

set god_ [God instance]

source $val(cp)

76

set start 1

set dist 450

set j 0

set cnt 0

 for {set i 1} {$i < $val(nnaodv)} {incr i} {

 set udp($cnt) [new Agent/UDP]

 $ns_ attach-agent $node_($j) $udp($cnt)

 set null($cnt) [new Agent/Null]

 $ns_ attach-agent $node_($i) $null($cnt)

 set cbr($cnt) [new Application/Traffic/CBR]

 $node_($j) color green

 $ns_ at 0.01 "$node_($j) color green"

 $ns_ at 0.01 "$node_($j) label Source"

 $node_($i) color blue

 $ns_ at 0.01 "$node_($i) color blue"

 $ns_ at 0.01 "$node_($i) label Destination"

 $cbr($cnt) set packet_size_ 512

 $cbr($cnt) set interval_ 1

 $cbr($cnt) set rate_ 10kb

 $cbr($cnt) set random_ flase

 $cbr($cnt) attach-agent $udp($cnt)

 $ns_ connect $udp($cnt) $null($cnt)

 $ns_ at $start "$cbr($cnt) start"

 $ns_ at $dist "$cbr($cnt) stop"

 set j [expr $j+2]

 set cnt [expr $cnt+1]

 set i [expr $i+1]

}

Define initial node position

for {set i 0} {$i < $val(nn) } {incr i} {

77

 $ns_ initial_node_pos $node_($i) 30

 }

Tell all nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $val(stop).000000001 "$node_($i) reset";

 }

Ending nam and simulation

$ns_ at $val(stop) "finish"

$ns_ at $val(stop).0 "$ns_ trace-annotate \"Simulation has ended\""

$ns_ at $val(stop).00000001 "puts \"NS EXITING...\" ; $ns_ halt"

proc finish {} {

 global ns_ tracefd namtrace

 $ns_ flush-traceclose $tracefd

 close $namtrace

 #exec nam scene1.nam &

 exit 0

 }

puts "Starting Simulation..."

$ns_ run

Appendix B.2: Example of Mobility and Coordinate Generation

nodes: 20, pause: 1.00, max speed: 1.00, max x: 750.00, max y: 750.00

$node_(0) set X_ 232.245575475292

$node_(0) set Y_ 314.290070760142

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 633.918694827028

$node_(1) set Y_ 491.357131791833

$node_(1) set Z_ 0.000000000000

$node_(2) set X_ 377.580872629029

$node_(2) set Y_ 339.309594902768

$node_(2) set Z_ 0.000000000000

78

$node_(3) set X_ 713.199041573191

$node_(3) set Y_ 18.601581249183

$node_(3) set Z_ 0.000000000000

$node_(4) set X_ 350.474453391201

$node_(4) set Y_ 299.013370809793

$node_(4) set Z_ 0.000000000000

$node_(5) set X_ 398.078531446013

$node_(5) set Y_ 646.377943094497

$node_(5) set Z_ 0.000000000000

$node_(6) set X_ 187.781969855691

$node_(6) set Y_ 95.901853101697

$node_(6) set Z_ 0.000000000000

$node_(7) set X_ 53.691641583075

$node_(7) set Y_ 93.170057313836

$node_(7) set Z_ 0.000000000000

$node_(8) set X_ 8.497448118280

$node_(8) set Y_ 475.643628494319

$node_(8) set Z_ 0.000000000000

$node_(9) set X_ 366.191499090714

$node_(9) set Y_ 211.811588741096

$node_(9) set Z_ 0.000000000000

$node_(10) set X_ 693.677513228013

$node_(10) set Y_ 662.251243367386

$node_(10) set Z_ 0.000000000000

$node_(11) set X_ 54.387649535814

$node_(11) set Y_ 112.250339728331

$node_(11) set Z_ 0.000000000000

$node_(12) set X_ 234.892862291940

$node_(12) set Y_ 347.225251775899

$node_(12) set Z_ 0.000000000000

$node_(13) set X_ 677.899740462458

$node_(13) set Y_ 658.190027904586

$node_(13) set Z_ 0.000000000000

$node_(14) set X_ 380.120630100158

$node_(14) set Y_ 212.897807134489

$node_(14) set Z_ 0.000000000000

$node_(15) set X_ 648.728024897964

$node_(15) set Y_ 742.683988525129

$node_(15) set Z_ 0.000000000000

79

$node_(16) set X_ 616.820145351484

$node_(16) set Y_ 458.606435775324

$node_(16) set Z_ 0.000000000000

$node_(17) set X_ 154.795378958210

$node_(17) set Y_ 442.591062935288

$node_(17) set Z_ 0.000000000000

$node_(18) set X_ 693.497863714014

$node_(18) set Y_ 331.948754562843

$node_(18) set Z_ 0.000000000000

$node_(19) set X_ 168.730894533458

$ns_ at 1.000000000000 "$node_(0) setdest 201.923575310526 461.762494360236

0.268432082104"

$ns_ at 1.000000000000 "$node_(1) setdest 19.471923890561 84.742710373011

0.708753422001"

$ns_ at 1.000000000000 "$node_(2) setdest 732.061315914326 470.082281571141

0.326838902892"

$ns_ at 1.000000000000 "$node_(3) setdest 333.863727211406 323.434743104602

0.569461934140"

$ns_ at 1.000000000000 "$node_(4) setdest 7.805661152484 189.263944890560

0.398749908651"

$ns_ at 1.000000000000 "$node_(5) setdest 656.672426985545 80.686576788502

0.996182751657"

$ns_ at 1.000000000000 "$node_(6) setdest 447.919743407356 168.552644448110

0.679967921328"

$ns_ at 1.000000000000 "$node_(7) setdest 352.954521580725 65.790704436243

0.420723361548"

$ns_ at 1.000000000000 "$node_(8) setdest 513.551981146171 701.504498816313

0.911410194489"

$ns_ at 1.000000000000 "$node_(9) setdest 648.144479215623 685.541384874985

0.063313737551"

$ns_ at 1.000000000000 "$node_(10) setdest 80.478845278174 288.541640391727

0.187802970890"

$ns_ at 1.000000000000 "$node_(11) setdest 475.038555464246 261.043341317450

0.574643549399"

$ns_ at 1.000000000000 "$node_(12) setdest 362.165381801408 674.870439659118

0.037147867197"

$ns_ at 1.000000000000 "$node_(13) setdest 340.741058316580 73.777145961217

0.185023620372"

80

$ns_ at 1.000000000000 "$node_(14) setdest 97.936021832445 199.062686158586

0.541822746792"

$ns_ at 1.000000000000 "$node_(15) setdest 397.377086431820 312.182337030286

0.018767026463"

$ns_ at 1.000000000000 "$node_(16) setdest 740.650742502267 397.493577080002

0.959047417967"

$ns_ at 1.000000000000 "$node_(17) setdest 521.467925797992 478.956611331779

0.554128814316"

$ns_ at 1.000000000000 "$node_(18) setdest 447.609067802012 586.151280712678

0.739634109392"

$ns_ at 1.000000000000 "$node_(19) setdest 325.812844738614 45.985200864943

0.573155597136"

$ns_ at 12.690939855417 "$god_ set-dist 4 6 1"

$ns_ at 12.690939855417 "$god_ set-dist 4 7 2"

$ns_ at 12.690939855417 "$god_ set-dist 4 11 2"

$ns_ at 20.527336894145 "$god_ set-dist 8 9 2"

$ns_ at 20.527336894145 "$god_ set-dist 8 12 1"

$ns_ at 20.527336894145 "$god_ set-dist 8 14 2"

$ns_ at 20.732974046963 "$god_ set-dist 5 19 16777215"

$ns_ at 24.068723342675 "$god_ set-dist 6 8 2"

$ns_ at 24.068723342675 "$god_ set-dist 6 12 1"

$ns_ at 24.068723342675 "$god_ set-dist 7 8 3"

$ns_ at 24.068723342675 "$god_ set-dist 7 12 2"

$ns_ at 24.068723342675 "$god_ set-dist 8 11 3"

$ns_ at 24.068723342675 "$god_ set-dist 11 12 2"

$ns_ at 29.723923691356 "$god_ set-dist 1 5 1"

$ns_ at 29.723923691356 "$god_ set-dist 5 10 2"

Appendix B.3: Example of Trace File (out.tr)

s -t 1.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 232.25 -Ny 314.29 -Nz 0.00 -Ne -1.000000 -Nl

AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 1.0 -It cbr -Il 512 -If 0 -Ii 0 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 232.25 -Ny 314.29 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 1.0 -It cbr -Il 512 -If 0 -Ii 0 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 16777215

81

s -t 1.000000000 -Hs 2 -Hd -2 -Ni 2 -Nx 377.58 -Ny 339.31 -Nz 0.00 -Ne -1.000000 -Nl

AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 2.0 -Id 3.0 -It cbr -Il 512 -If 0 -Ii 1 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 2 -Hd -2 -Ni 2 -Nx 377.58 -Ny 339.31 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 2.0 -Id 3.0 -It cbr -Il 512 -If 0 -Ii 1 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 16777215

s -t 1.000000000 -Hs 4 -Hd -2 -Ni 4 -Nx 350.47 -Ny 299.01 -Nz 0.00 -Ne -1.000000 -Nl

AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 4.0 -Id 5.0 -It cbr -Il 512 -If 0 -Ii 2 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 4 -Hd -2 -Ni 4 -Nx 350.47 -Ny 299.01 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 4.0 -Id 5.0 -It cbr -Il 512 -If 0 -Ii 2 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 16777215

s -t 1.000000000 -Hs 6 -Hd -2 -Ni 6 -Nx 187.78 -Ny 95.90 -Nz 0.00 -Ne -1.000000 -Nl

AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 6.0 -Id 7.0 -It cbr -Il 512 -If 0 -Ii 3 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 1

r -t 1.000000000 -Hs 6 -Hd -2 -Ni 6 -Nx 187.78 -Ny 95.90 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 6.0 -Id 7.0 -It cbr -Il 512 -If 0 -Ii 3 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 1

s -t 1.000000000 -Hs 8 -Hd -2 -Ni 8 -Nx 8.50 -Ny 475.64 -Nz 0.00 -Ne -1.000000 -Nl

AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 8.0 -Id 9.0 -It cbr -Il 512 -If 0 -Ii 4 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 3

r -t 1.000000000 -Hs 8 -Hd -2 -Ni 8 -Nx 8.50 -Ny 475.64 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 8.0 -Id 9.0 -It cbr -Il 512 -If 0 -Ii 4 -Iv 32 -Pn

cbr -Pi 0 -Pf 0 -Po 3

s -t 1.000000000 -Hs 10 -Hd -2 -Ni 10 -Nx 693.68 -Ny 662.25 -Nz 0.00 -Ne -1.000000 -

Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 10.0 -Id 11.0 -It cbr -Il 512 -If 0 -Ii 5 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 10 -Hd -2 -Ni 10 -Nx 693.68 -Ny 662.25 -Nz 0.00 -Ne -1.000000 -

Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 10.0 -Id 11.0 -It cbr -Il 512 -If 0 -Ii 5 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

82

s -t 1.000000000 -Hs 12 -Hd -2 -Ni 12 -Nx 234.89 -Ny 347.23 -Nz 0.00 -Ne -1.000000 -

Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 12.0 -Id 13.0 -It cbr -Il 512 -If 0 -Ii 6 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 12 -Hd -2 -Ni 12 -Nx 234.89 -Ny 347.23 -Nz 0.00 -Ne -1.000000 -

Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 12.0 -Id 13.0 -It cbr -Il 512 -If 0 -Ii 6 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

s -t 1.000000000 -Hs 14 -Hd -2 -Ni 14 -Nx 380.12 -Ny 212.90 -Nz 0.00 -Ne -1.000000 -

Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 14.0 -Id 15.0 -It cbr -Il 512 -If 0 -Ii 7 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 14 -Hd -2 -Ni 14 -Nx 380.12 -Ny 212.90 -Nz 0.00 -Ne -1.000000 -

Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 14.0 -Id 15.0 -It cbr -Il 512 -If 0 -Ii 7 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

s -t 1.000000000 -Hs 16 -Hd -2 -Ni 16 -Nx 616.82 -Ny 458.61 -Nz 0.00 -Ne -1.000000 -

Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 16.0 -Id 17.0 -It cbr -Il 512 -If 0 -Ii 8 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

r -t 1.000000000 -Hs 16 -Hd -2 -Ni 16 -Nx 616.82 -Ny 458.61 -Nz 0.00 -Ne -1.000000 -

Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 16.0 -Id 17.0 -It cbr -Il 512 -If 0 -Ii 8 -Iv

32 -Pn cbr -Pi 0 -Pf 0 -Po 16777215

s -t 1.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 232.25 -Ny 314.29 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.255 -Id -1.255 -It AODV -Il 48 -If 0 -Ii 0 -

Iv 30 -P aodv -Pt 0x2 -Ph 1 -Pb 1 -Pd 1 -Pds 0 -Ps 0 -Pss 4 -Pc REQUEST

s -t 1.000000000 -Hs 2 -Hd -2 -Ni 2 -Nx 377.58 -Ny 339.31 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 2.255 -Id -1.255 -It AODV -Il 48 -If 0 -Ii 0 -

Iv 30 -P aodv -Pt 0x2 -Ph 1 -Pb 1 -Pd 3 -Pds 0 -Ps 2 -Pss 4 -Pc REQUEST

s -t 1.000000000 -Hs 4 -Hd -2 -Ni 4 -Nx 350.47 -Ny 299.01 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 4.255 -Id -1.255 -It AODV -Il 48 -If 0 -Ii 0 -

Iv 30 -P aodv -Pt 0x2 -Ph 1 -Pb 1 -Pd 5 -Pds 0 -Ps 4 -Pss 4 -Pc REQUEST

83

s -t 1.000000000 -Hs 6 -Hd -2 -Ni 6 -Nx 187.78 -Ny 95.90 -Nz 0.00 -Ne -1.000000 -Nl

RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 6.255 -Id -1.255 -It AODV -Il 48 -If 0 -Ii 0 -

Iv 30 -P aodv -Pt 0x2 -Ph 1 -Pb 1 -Pd 7 -Pds 0 -Ps 6 -Pss 4 -Pc REQUEST

Appendix B.4: Description of Trace File

Event type: In the traces above, the first field (as in the older trace format) describes the

type of event taking place at the node and can be one of the four types:

s = send r = receive d = drop f = forward

 General tag: The second field starting with "-t" may stand for time or global setting

-t = time -t * = (global setting)

Node property tags: This field denotes the node properties like node-id, the level at

which tracing is being done like agent, router or MAC. The tags start with a leading "-N"

and are listed as below:

-Ni: node id

-Nx: node’s x-coordinate

-Ny: node’s y-coordinate

-Nz: node’s z-coordinate

-Ne: node energy level

-Nl: trace level, such as AGT, RTR, MAC

-Nw: reason for the event. The different reasons for dropping a packet are given below:

"END" DROP_END_OF_SIMULATION

"COL" DROP_MAC_COLLISION

"DUP" DROP_MAC_DUPLICATE

"ERR" DROP_MAC_PACKET_ERROR

"RET" DROP_MAC_RETRY_COUNT_EXCEEDED

84

"STA" DROP_MAC_INVALID_STATE

"BSY" DROP_MAC_BUSY

"NRTE" DROP_RTR_NO_ROUTE i.e no route is available.

"LOOP" DROP_RTR_ROUTE_LOOP i.e there is a routing loop

"TTL" DROP_RTR_TTL i.e TTL has reached zero.

"TOUT" DROP_RTR_QTIMEOUT i.e packet has expired.

"CBK" DROP_RTR_MAC_CALLBACK

"IFQ" DROP_IFQ_QFULL i.e no buffer space in IFQ.

"ARP" DROP_IFQ_ARP_FULL i.e dropped by ARP

"OUT" DROP_OUTSIDE_SUBNET i.e dropped by base stations on receiving routing

updates from nodes outside its domain.

Packet information at IP level: The tags for this field start with a leading "-I" and are

listed along with their explanations as following:

-Is: source address.source port number

-Id: dest address.dest port number

-It: packet type

-Il: packet size

-If: flow id

-Ii: unique id

-Iv: ttl value

Next hop info: This field provides next hop info and the tag starts with a leading "-H".

85

-Hs: id for this node

-Hd: id for next hop towards the destination.

Packet info at MAC level: This field gives MAC layer information and starts with a

leading "-M" as shown below:

-Ma: duration

-Md: dst’s ethernet address

-Ms: src’s ethernet address

-Mt: ethernet type

Packet info at "Application level": The packet information at application level consists

of the type of application like ARP, TCP, the type of adhoc routing protocol like DSDV,

DSR, AODV etc being traced. This field consists of a leading "-P" and list of tags for

different application is listed as below:

-P arp Address Resolution Protocol. Details for ARP is given by the following tags:

-Po: ARP Request/Reply

-Pm: src mac address

-Ps: src address

-Pa: dst mac address

-Pd: dst address

-P dsr This denotes the adhoc routing protocol called Dynamic source routing.

Information on DSR is represented by the following tags:

-Pn: how many nodes traversed

-Pq: routing request flag

-Pi: route request sequence number

-Pp: routing reply flag

-Pl: reply length

86

-Pe: src of src routing-> dst of the source routing

-Pw: error report flag?

-Pm: number of errors

-Pc: report to whom

-Pb: link error from link a->link b

-P cbr Constant bit rate.

Information about the CBR application is represented by the following tags:

-Pi: sequence number

-Pf: how many times this pkt was forwarded

-Po: optimal number of forwards

-P tcp Information about TCP flow is given by the following subtags:

-Ps: seq number

-Pa: ack number

-Pf: how many times this pkt was forwarded

-Po: optimal number of forwards

This field is still under development and new tags shall be added for other applications

as they get included along the way.

Appendix B.5: AWK Script file (Calculation.awk)

BEGIN {
#print("\n\n******** Network Statistics ********\n");

Change array size from 50 to any number of nodes for which u are doing simulation.
i.e. change values of arrays packet_sent, packet_drop, packet_recvd,
packet_forwarded, energy_left,
packet_sent[20] = 0;

87

packet_drop[20] = 0;
packet_recvd[20] = 0;
packet_forwarded[20] = 0;
packet_blackhole[20] = 0;
packet_recvd2[20] = 0;
packet_sent2[20] = 0;
num_recv=0

Change energy assigned to initial node (as per your simulation tcl file)
Initial Energy assigned to each node in Joules

energy_left[20] = 10000.000000;
total_pkt_sent=0;
total_pkt_sent_node=0;
total_pkt_recvd=0;
total_pkt_drop=0;
total_pkt_forwarded=0;
pkt_delivery_ratio = 0;
total_hop_count = 0;
avg_hop_count = 0;
overhead = 0;
start = 0.000000000;
end = 0.000000000;
packet_duration = 0.0000000000;
recvnum = 0;
delay = 0.000000000;
sum = 0.000000000;
i=0;
total_energy_consumed = 0.000000;

}

{
state = $1;
time = $3;

For energy consumption statistics see trace file
node_num = $5;
energy_level = $7;

energy = $17;

node_id = $9;
level = $19;
pkt_type = $35;
packet_id = $41;
no_of_forwards = $49;

88

format = $21;
blackhole = 19;
source = $31;
dest = $33;
#Jitter Calculation

if ($2 == "-t") {
 event = $1
 time = $3
 node_id = $5
 flow_id = $39
 pkt_id = $41
 pkt_size = $37
 flow_t = $45
 level = $19
 }

if (level == "AGT" && sendTime[pkt_id] == 0 && (event == "+" || event == "s") &&
pkt_size >= 512) {
 sendTime[pkt_id] = time
 }
 # Store packets arrival time
 if (level == "AGT" && event == "r" && pkt_size >= 512) {
 recvTime[pkt_id] = time
 num_recv++
 }
if((pkt_type == "cbr") && (state == "s") && (level=="AGT")) {
 for(i=0;i<20;i++) {
 if(i == node_id) {
 packet_sent[i] = packet_sent[i] + 1; }
}
}else if((pkt_type == "cbr") && (state == "r") && (level=="AGT")) {
 for(i=0;i<20;i++) {
 if(i == node_id) {
 packet_recvd[i] = packet_recvd[i] + 1; }
}
}else if((pkt_type == "cbr") && (state == "d")) {
 for(i=0;i<20;i++) {
 if(i == node_id) {
 packet_drop[i] = packet_drop[i] + 1; }
}
}else if((pkt_type == "cbr") && (state == "f")) {
 for(i=0;i<20;i++) {
 if(i == node_id) {
 packet_forwarded[i] = packet_forwarded[i] + 1; }
}
}

89

#My Line of Code

if ((pkt_type == "cbr") && (state == "d") && (level == "RTR") && (format ==
"LOOP")) {
 for(i=0;i<20;i++) {
 j=i+1
 if((i == $31) && (19 == node_id)) {
 packet_blackhole[i] = packet_blackhole[i] + 1; }
}
}

if((pkt_type == "cbr") && (state == "s") && (level=="MAC")) {
 for(i=0;i<20;i++) {
 j=i+1;
 if ((i == $31) && (j == $33) && (i == node_id)) {
 packet_sent2[i] = packet_sent2[i] + 1; }
}
}

if((pkt_type == "cbr") && (state == "r") && (level=="MAC")) {
 for(i=0;i<20;i++) {
 j=i+1;
 if((j == dest) && (j == node_id) && (i == source)) {
 packet_recvd2[j] = packet_recvd2[j] + 1; }
}
}

 To calculate total hop counts
if ((state == "r") && (level == "RTR") && (pkt_type == "cbr")) { total_hop_count =
total_hop_count + no_of_forwards; }

Routing Overhead
if ((state == "s" || state == "f") && (level == "RTR") && (pkt_type == "message" ||
pkt_type == "AODV")) { overhead = overhead + 1; }

Calculating Average End to End Delay

#if (start_time[packet_id] == 0) { start_time[packet_id] = time; }

if ((state == "s") && (pkt_type == "cbr") && (level == "AGT")) {
start_time[packet_id] = time; }

 if ((state == "r") && (pkt_type == "cbr") && (level == "AGT")) {
end_time[packet_id] = time; }
 else { end_time[packet_id] = -1; }

To Calculate Average Energy Consumption

90

Change number of nodes in this for loop also

if(state == "N") {
 finalenergy[node_id] = energy
 for(i=0;i<20;i++) {
 if(i == node_num) {

 energy_left[i] = energy_left[i] - (energy_left[i] -
energy_level);

 }

 }
}
}
In this for loop also change
 END {
 # Compute average jitter
 jitter1 = jitter2 = tmp_recv = 0
 prev_time = delay = prev_delay = processed = 0
 prev_delay = -1
 for (i=0; processed<num_recv; i++) {
 if(recvTime[i] != 0) {
 tmp_recv++
 if(prev_time != 0) {
 delay = recvTime[i] - prev_time
 e2eDelay = recvTime[i] - sendTime[i]
 if(delay < 0) delay = 0
 if(prev_delay != -1) {
 jitter1 += abs(e2eDelay - prev_e2eDelay)
 jitter2 += abs(delay-prev_delay)
 }
 prev_delay = delay
 prev_e2eDelay = e2eDelay
 }
 prev_time = recvTime[i]
 }
 processed++
 }
 }
function abs(value) {
 if (value < 0) value = 0-value
 return value
 }
END {

91

z=100;
for(i=0;i<20;i++) {

printf("%d %d \n",i, packet_drop[i]) > "./Scene"z"/1bH_Packet_Dropped-"z".txt";
printf("%d %d \n",i, packet_forwarded[i]) > "./Scene"z"/1bH_Packet_Forwarded-
"z".txt";
printf("%d %.6f \n",i, energy_left[i]) > "./Scene"z"/1bH_Energy_Level-"z".txt";

total_pkt_drop = total_pkt_drop + packet_drop[i];
total_pkt_forwarded = total_pkt_forwarded + packet_forwarded[i];
total_energy_consumed = total_energy_consumed + energy_left[i];

}
for(i=1;i<20;i++) {

printf("%d %d \n",i, packet_recvd[i]) > "./Scene"z"/1bH_Packet_Received-"z".txt";
#printf("%d %d \n",i, packet_recvd2[i]) > "1bHpacket_Received2.txt";

total_pkt_recvd = total_pkt_recvd + packet_recvd2[i];
i = i + 1;
}

for(i=0;i<20;i++) {
printf("%d %d \n",i, packet_sent[i]) > "./Scene"z"/1bH_Packet_Sent-"z".txt";
printf("%d %d \n",i, packet_blackhole[i]) > "./Scene"z"/1bH_Packet_Blackhole-"z".txt";
printf("%d %d \n",i, packet_sent2[i]) > "./Scene"z"/1bH_Packet_Sent2-"z".txt";

total_pkt_sent = total_pkt_sent + packet_sent[i];
total_pkt_sent_node = total_pkt_sent_node + packet_sent2[i];
i = i + 1;

}
printf("Total Packets Sent : %d\n",total_pkt_sent);
printf("Total Packets Sent by Node : %d\n",total_pkt_sent_node);
printf("Total Packets Received : %d\n",total_pkt_recvd);
printf("Total Packets Dropped : %d\n",total_pkt_drop);
printf("Total Packets Forwarded : %d\n", total_pkt_forwarded);

pkt_delivery_ratio = (total_pkt_recvd/total_pkt_sent)*100;
pkt_delivery_ratio_node = (total_pkt_recvd/total_pkt_sent_node)*100;

printf("Packet Delivery Ratio(%) : %.2f\n",pkt_delivery_ratio);

printf("Packet Delivery Ratio By Node(%) : %.2f\n",pkt_delivery_ratio_node);

}

92

Appendix C: Simulation Results

Appendix C.1: Sample Result for Original AODV with Two Black Holes

Simulation Result of Scenario 1 for Two Black Holes AODV (Nodes 18 & 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

(18)

Black

Hole

Drop

(19)

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1097 0 949 0 100.00 86.51

Node 2 -> Node 3 1096 758 0 337 30.84 30.75

Node 4 -> Node 5 1051 0 1049 1 100.00 9.91

Node 6 -> Node 7 1094 3 0 652 99.73 59.60

Node 8 -> Node 9 1110 0 0 714 100.00 64.32

Node 10 -> Node 11 1096 265 0 831 75.82 75.82

Node 12 -> Node 13 1097 0 0 264 100.00 24.07

Node 14 -> Node 15 1096 2 0 520 99.82 47.45

Node 16 -> Node 17 1097 0 0 264 100.00 24.07

TOTAL 9834 1028 1998 3583 89.55 56.75

Simulation Result of Scenario 2 for Two Black Holes AODV (Nodes 18 & 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

(18)

Black

Hole

Drop(19)

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1102 0 1097 0 100.00 99.55

Node 2 -> Node 3 1097 0 0 1097 100.00 100.00

Node 4 -> Node 5 673 0 72 0 100.00 10.70

Node 6 -> Node 7 628 0 628 0 100.00 100.00

Node 8 -> Node 9 1098 0 0 1097 100.00 99.91

Node 10 -> Node 11 1097 0 576 0 100.00 52.51

Node 12 -> Node 13 1098 1097 0 0 0.09 0.00

Node 14 -> Node 15 1100 579 517 0 47.36 47.00

Node 16 -> Node 17 1139 1 0 729 99.91 64.00

TOTAL 9032 1677 2890 2923 81.43 64.36

93

Simulation Result of Scenario 3 for Two Black Holes AODV (Nodes 18 & 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

(18)

Black

Hole

Drop(19)

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1093 1 1043 49 99.91 99.91

Node 2 -> Node 3 1097 0 1097 0 100.00 100.00

Node 4 -> Node 5 1096 1 164 931 99.91 99.91

Node 6 -> Node 7 1096 0 894 202 100.00 100.00

Node 8 -> Node 9 1136 2 986 14 99.82 88.03

Node 10 -> Node 11 1097 0 1097 0 100.00 100.00

Node 12 -> Node 13 1096 5 1090 1 99.54 99.54

Node 14 -> Node 15 1095 1 24 1070 99.91 99.91

Node 16 -> Node 17 1049 0 0 883 100.00 84.18

TOTAL 9855 10 6395 3150 99.90 96.85

 Simulation Result of Scenario 4 for Two Black Holes AODV (Nodes 18 & 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

(18)

Black

Hole

Drop(19)

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1200 0 967 0 100.00 80.58

Node 2 -> Node 3 1100 0 139 957 100.00 99.64

Node 4 -> Node 5 1105 774 320 0 29.95 28.96

Node 6 -> Node 7 1128 0 11 1078 100.00 96.54

Node 8 -> Node 9 1096 652 444 0 40.51 40.51

Node 10 -> Node 11 939 0 869 0 100.00 92.55

Node 12 -> Node 13 1099 1 604 491 99.91 99.64

Node 14 -> Node 15 989 1 974 0 99.90 98.48

Node 16 -> Node 17 1096 0 459 139 100.00 54.56

TOTAL 9752 1428 4787 2665 85.36 76.42

94

Simulation Result of Scenario 5 for Two Black Holes AODV (Nodes 18 & 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

(18)

Black

Hole

Drop(19)

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1096 706 0 390 35.58 35.58

Node 2 -> Node 3 1097 2 185 0 99.82 16.86

Node 4 -> Node 5 1097 0 1097 0 100.00 100.00

Node 6 -> Node 7 1127 1 477 617 99.91 97.07

Node 8 -> Node 9 1095 184 0 581 83.20 53.06

Node 10 -> Node 11 1101 1 166 18 99.91 16.71

Node 12 -> Node 13 1097 1 1096 0 99.91 99.91

Node 14 -> Node 15 559 0 419 0 100.00 74.96

Node 16 -> Node 17 1095 0 1095 0 100.00 100.00

TOTAL 9364 895 4535 1606 90.44 65.58

Appendix C.2: Sample Result for Original AODV with One Black Hole

Simulation Result of Scenario 1 for One Black Hole AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop Loss %

Black

Hole

Loss

%

Node 0 -> Node 1 978 0 128 100.00 13.09

Node 2 -> Node 3 979 0 979 100.00 100.00

Node 4 -> Node 5 1004 38 939 96.22 93.53

Node 6 -> Node 7 1097 1097 0 0.00 0.00

Node 8 -> Node 9 1096 143 953 86.95 86.95

Node 10 -> Node 11 979 0 43 100.00 4.39

Node 12 -> Node 13 979 0 979 100.00 100.00

Node 14 -> Node 15 978 0 978 100.00 100.00

Node 16 -> Node 17 998 1 143 99.90 14.33

TOTAL 9088 1279 5142 85.93 56.58

95

Simulation Result of Scenario 2 for One Black Hole AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole

Loss

%

Node 0 -> Node 1 1112 623 114 43.98 10.25

Node 2 -> Node 3 1097 0 1086 100.00 99.00

Node 4 -> Node 5 1100 147 452 86.64 41.09

Node 6 -> Node 7 1084 168 132 84.50 12.18

Node 8 -> Node 9 944 879 0 6.89 0.00

Node 10 -> Node 11 1106 653 39 40.96 3.53

Node 12 -> Node 13 181 181 0 0.00 0.00

Node 14 -> Node 15 983 1 7 99.90 0.71

Node 16 -> Node 17 966 0 12 100.00 1.24

TOTAL 7461 2652 1842 64.46 24.69

Simulation Result of Scenario 3 for One Black Hole AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole

Loss

%

Node 0 -> Node 1 1117 0 231 100.00 20.68

Node 2 -> Node 3 1094 0 102 100.00 9.32

Node 4 -> Node 5 1097 0 1097 100.00 100.00

Node 6 -> Node 7 1096 85 1008 92.25 91.97

Node 8 -> Node 9 1099 595 501 45.86 45.59

Node 10 -> Node 11 1096 82 220 92.52 20.07

Node 12 -> Node 13 1097 270 826 75.39 75.30

Node 14 -> Node 15 1109 391 629 64.74 56.72

Node 16 -> Node 17 1099 1 1091 99.91 99.27

TOTAL 9904 1424 5705 85.62 57.60

96

Simulation Result of Scenario 4 for One Black Hole AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole

Loss

%

Node 0 -> Node 1 1097 1097 0 0.00 0.00

Node 2 -> Node 3 1145 679 413 40.70 36.07

Node 4 -> Node 5 1090 130 580 88.07 53.21

Node 6 -> Node 7 1105 41 200 96.29 18.10

Node 8 -> Node 9 1096 475 7 56.66 0.64

Node 10 -> Node 11 1097 1097 0 0.00 0.00

Node 12 -> Node 13 1083 302 775 72.12 71.56

Node 14 -> Node 15 1096 1 445 99.91 40.60

Node 16 -> Node 17 1097 1097 0 0.00 0.00

TOTAL 9906 4919 2420 50.34 24.43

Simulation Result of Scenario 5 for One Black Hole AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole

Loss

%

Node 0 -> Node 1 1097 1 894 99.91 81.49

Node 2 -> Node 3 1096 0 1096 100.00 100.00

Node 4 -> Node 5 1097 0 1097 100.00 100.00

Node 6 -> Node 7 1098 0 1070 100.00 97.45

Node 8 -> Node 9 777 1 419 99.87 53.93

Node 10 -> Node 11 1096 0 276 100.00 25.18

Node 12 -> Node 13 1097 0 894 100.00 81.49

Node 14 -> Node 15 1097 0 575 100.00 52.42

Node 16 -> Node 17 1099 0 990 100.00 90.08

TOTAL 9554 2 7311 99.98 76.52

97

Appendix C.3: Sample Result for Original AODV without Black Hole

Simulation Result of Scenario 1 for AODV

Sending Node ->

Receiving Node Sent Packets Received Packets Loss %

Node 0 -> Node 1 1100 1089 1.00

Node 2 -> Node 3 1096 1095 0.09

Node 4 -> Node 5 1096 1094 0.18

Node 6 -> Node 7 1097 1097 0.00

Node 8 -> Node 9 1097 1095 0.18

Node 10 -> Node 11 1089 1086 0.28

Node 12 -> Node 13 1096 1096 0.00

Node 14 -> Node 15 1097 1096 0.09

Node 16 -> Node 17 1096 1096 0.00

TOTAL 9864 9844 0.20

Simulation Result of Scenario 2 for AODV

Sending Node ->

Receiving Node Sent Packets Received Packets Loss %

Node 0 -> Node 1 1117 1089 2.51

Node 2 -> Node 3 1095 1093 0.18

Node 4 -> Node 5 1096 1092 0.37

Node 6 -> Node 7 1097 1096 0.09

Node 8 -> Node 9 845 834 1.30

Node 10 -> Node 11 1062 1044 1.70

Node 12 -> Node 13 1156 1092 5.54

Node 14 -> Node 15 1067 918 13.96

Node 16 -> Node 17 1118 1096 1.97

TOTAL 9653 9354 3.10

98

Simulation Result of Scenario 3 for AODV

Sending Node ->

Receiving Node Sent Packets Received Packets Loss %

Node 0 -> Node 1 1097 1094 0.27

Node 2 -> Node 3 1096 1094 0.18

Node 4 -> Node 5 1095 1095 0.00

Node 6 -> Node 7 1097 1094 0.27

Node 8 -> Node 9 1096 1096 0.00

Node 10 -> Node 11 1095 1093 0.18

Node 12 -> Node 13 847 780 7.91

Node 14 -> Node 15 1097 1097 0.00

Node 16 -> Node 17 1097 1095 0.18

TOTAL 9617 9538 0.82

Simulation Result of Scenario 4 for AODV

Sending Node ->

Receiving Node Sent Packets Received Packets Loss %

Node 0 -> Node 1 1097 1091 0.55

Node 2 -> Node 3 1095 1095 0.00

Node 4 -> Node 5 1066 1042 2.25

Node 6 -> Node 7 1127 1093 3.02

Node 8 -> Node 9 1097 1097 0.00

Node 10 -> Node 11 1097 1097 0.00

Node 12 -> Node 13 1097 1096 0.09

Node 14 -> Node 15 1097 1097 0.00

Node 16 -> Node 17 1095 1095 0.00

TOTAL 9868 9803 0.66

99

Simulation Result of Scenario 5 for AODV

Sending Node ->

Receiving Node Sent Packets Received Packets Loss %

Node 0 -> Node 1 1097 1097 0.00

Node 2 -> Node 3 147 147 0.00

Node 4 -> Node 5 1095 1091 0.37

Node 6 -> Node 7 1095 1093 0.18

Node 8 -> Node 9 625 577 7.68

Node 10 -> Node 11 1111 1084 2.43

Node 12 -> Node 13 1104 1094 0.91

Node 14 -> Node 15 1103 1088 1.36

Node 16 -> Node 17 1097 1097 0.00

TOTAL 8474 8368 1.25

Appendix C.4: Sample Result for Modified AODV without Black Hole

Simulation Result of Scenario 1 for Modified AODV

Sending Node ->

Receiving Node Sent Packets

Received

Packets Loss %

Node 0 -> Node 1 1089 1069 1.84

Node 2 -> Node 3 1078 632 41.37

Node 4 -> Node 5 1110 1079 2.79

Node 6 -> Node 7 1083 1082 0.09

Node 8 -> Node 9 964 747 22.51

Node 10 -> Node 11 1131 1081 4.42

Node 12 -> Node 13 813 598 26.45

Node 14 -> Node 15 1097 1097 0.00

Node 16 -> Node 17 1081 1025 5.18

TOTAL 9446 8410 10.97

100

Simulation Result of Scenario 2 for Modified AODV

Sending Node ->

Receiving Node Sent Packets

Received

Packets Loss %

Node 0 -> Node 1 1097 847 22.79

Node 2 -> Node 3 978 894 8.59

Node 4 -> Node 5 1094 1088 0.55

Node 6 -> Node 7 1081 1041 3.70

Node 8 -> Node 9 996 796 20.08

Node 10 -> Node 11 1097 1092 0.46

Node 12 -> Node 13 1088 1085 0.28

Node 14 -> Node 15 1096 929 15.24

Node 16 -> Node 17 1089 862 20.84

TOTAL 9616 8634 10.21

Simulation Result of Scenario 3 for Modified AODV

Sending Node ->

Receiving Node Sent Packets

Received

Packets Loss %

Node 0 -> Node 1 1097 1096 0.09

Node 2 -> Node 3 1097 1096 0.09

Node 4 -> Node 5 1097 1095 0.18

Node 6 -> Node 7 1029 1028 0.10

Node 8 -> Node 9 1064 1009 5.17

Node 10 -> Node 11 1094 1073 1.92

Node 12 -> Node 13 1085 1064 1.94

Node 14 -> Node 15 1097 1094 0.27

Node 16 -> Node 17 1096 1082 1.28

TOTAL 9756 9637 1.22

101

Simulation Result of Scenario 4 for Modified AODV

Sending Node ->

Receiving Node Sent Packets

Received

Packets Loss %

Node 0 -> Node 1 1097 1096 0.09

Node 2 -> Node 3 1097 1096 0.09

Node 4 -> Node 5 1097 1095 0.18

Node 6 -> Node 7 1029 1028 0.10

Node 8 -> Node 9 1064 1009 5.17

Node 10 -> Node 11 1094 1073 1.92

Node 12 -> Node 13 1085 1064 1.94

Node 14 -> Node 15 1097 1094 0.27

Node 16 -> Node 17 1096 1082 1.28

TOTAL 9756 9637 1.22

Simulation Result of Scenario 5 for Modified AODV

Sending Node ->

Receiving Node Sent Packets

Received

Packets Loss %

Node 0 -> Node 1 1102 1018 7.62

Node 2 -> Node 3 1090 1088 0.18

Node 4 -> Node 5 1096 1095 0.09

Node 6 -> Node 7 1022 1020 0.20

Node 8 -> Node 9 1095 1034 5.57

Node 10 -> Node 11 169 141 16.57

Node 12 -> Node 13 962 753 21.73

Node 14 -> Node 15 1091 1052 3.57

Node 16 -> Node 17 1088 1068 1.84

TOTAL 8715 8269 5.12

102

Appendix C.5: Sample Result for Modified AODV with one Black Hole

Simulation Result of Scenario 1 for One Black Hole Modified AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 978 160 434 83.64 44.38

Node 2 -> Node 3 1088 229 303 78.95 27.85

Node 4 -> Node 5 1052 0 296 100.00 28.14

Node 6 -> Node 7 1091 741 106 32.08 9.72

Node 8 -> Node 9 1096 997 97 9.03 8.85

Node 10 -> Node 11 860 1 168 99.88 19.53

Node 12 -> Node 13 1094 0 1023 100.00 93.51

Node 14 -> Node 15 628 0 628 100.00 100.00

Node 16 -> Node 17 1089 39 588 96.42 53.99

TOTAL 8976 2167 3643 75.86 40.59

Simulation Result of Scenario 2 for One Black Hole Modified AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1094 1090 4 0.37 0.37

Node 2 -> Node 3 1097 1096 1 0.09 0.09

Node 4 -> Node 5 1098 0 1097 100.00 99.91

Node 6 -> Node 7 1093 716 8 34.49 0.73

Node 8 -> Node 9 1044 6 135 99.43 12.93

Node 10 -> Node 11 1102 79 1015 92.83 92.11

Node 12 -> Node 13 1100 19 1075 98.27 97.73

Node 14 -> Node 15 1097 0 1097 100.00 100.00

Node 16 -> Node 17 1121 408 7 63.6 0.62

TOTAL 9846 3414 4439 65.33 45.08

103

Simulation Result of Scenario 3 for One Black Hole Modified AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1099 27 2 97.54 0.18

Node 2 -> Node 3 1114 465 76 58.26 6.82

Node 4 -> Node 5 980 973 6 0.71 0.61

Node 6 -> Node 7 1131 226 36 80.02 3.18

Node 8 -> Node 9 1096 1089 7 0.64 0.64

Node 10 -> Node 11 1097 1096 1 0.09 0.09

Node 12 -> Node 13 1097 7 300 99.36 27.35

Node 14 -> Node 15 993 719 151 27.59 15.21

Node 16 -> Node 17 1096 29 1 97.35 0.09

TOTAL 9703 4631 580 52.27 5.98

Simulation Result of Scenario 4 for One Black Hole Modified AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1097 1097 0 0.00 0.00

Node 2 -> Node 3 1145 679 413 40.7 36.07

Node 4 -> Node 5 1090 130 580 88.07 53.21

Node 6 -> Node 7 1105 41 200 96.29 18.10

Node 8 -> Node 9 1096 475 7 56.66 0.64

Node 10 -> Node 11 1097 1097 0 0.00 0.00

Node 12 -> Node 13 1083 302 775 72.11 71.56

Node 14 -> Node 15 1096 1 445 99.91 40.60

Node 16 -> Node 17 1097 1097 0 0.00 0.00

TOTAL 9906 4919 2420 50.34 24.43

104

Simulation Result of Scenario 5 for One Black Hole Modified AODV (Node 19)

Sending Node ->

Receiving Node

Sent

Packets

Received

Packets

Black

Hole

Drop

Loss

%

Black

Hole Loss

%

Node 0 -> Node 1 1097 1 894 99.91 81.49

Node 2 -> Node 3 1096 0 1096 100.00 100.00

Node 4 -> Node 5 1097 0 1097 100.00 100.00

Node 6 -> Node 7 1098 0 1070 100.00 97.45

Node 8 -> Node 9 777 1 419 99.87 53.93

Node 10 -> Node 11 1096 0 276 100.00 25.18

Node 12 -> Node 13 1097 0 894 100.00 81.49

Node 14 -> Node 15 1097 0 575 100.00 52.42

Node 16 -> Node 17 1099 0 990 100.00 90.08

TOTAL 9554 2 7311 99.98 76.52

