

REG-EXPERT: A Knowledge-Based Intelligent

Agent for Course Registration

İmren Toprak

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February, 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Assoc. Prof. Dr. Zeki Bayram

 Supervisor

 Examining Committee

1. Prof. Dr. Marifi Güler

2. Assoc. Prof. Dr. Zeki Bayram

3. Asst. Prof. Dr. Önsen Toygar

iii

ABSTRACT

In this study, we present the design and implementation of a knowledge-based

intelligent software agent for helping advisors and students in the choice of courses

during the course registration period every semester in a university setting. The agent

has knowledge of university rules and regulations, the curricula in the university,

prerequisite information about courses, as well as information about students,

including their academic history. Once the courses are selected, the agent then finds

an optimal schedule that minimizes the number of clashes during the week by

considering different sections of the courses.

Keywords: University, Course Registration, Software Intelligent Agent, Knowledge-

Based.

iv

ÖZ

Bir üniversite ortamında, her yarı yıl başında ders kayıt dönemi sürecinde ders seçme

konusunda danışmanlara ve öğrencilere yardım amaçlı bir uygulama tasarladık. Bu

uygulama, bilgi tabanlı akıllı bir yazılım etmenidir. Bu etmen, üniversitenin kuralları

ve düzenlemeleri hakkında bilgiye sahiptir. Üniversitenin müfredatı, derslerin önkoşul

düzenlemesi bu kurallara örnek verilebilir. Ayrıca, etmenimiz akademik geçmişleri

dahil olmak üzere öğrenciler hakkında bilgiye de sahiptir. Dersler seçildikten sonra,

akıllı etmen bir derse ait diğer grupları ve aynı dönemde seçilmiş diğer ders gruplarını

göz önünde bulundurarak, mümkün olduğunca çakışmasız veya çakışan saat sayısı en

düşük seviyede olan ders programını bulmaktadır.

Anahtar Kelimeler: Üniversite, Ders Programı, Akıllı yazılım ajanı, Bilgi tabanlı.

v

DEDICATION

To My Father: Mustafa Toprak

To My Mother: Fatma Toprak

To My Sister: Semra Toprak

To My Sister: Meryem Toprak

To My Brother: Kader Toprak

To My Little Princess: Sude Toprak

vi

ACKNOWLEDGMENT

Foremost, I would like to express my special appreciation and thanks to my supervisor

Assoc. Prof. Dr. Zeki Bayram for his help, motivation, supervision, support and

guidance. He has enriched me with his huge knowledge and experience.

My sincere thanks to my family. Words cannot express how gratefull I am to my father

Mustafa Toprak, to my mother Fatma Toprak and to my sisters and to my brother for

their support throughout my whole life generally and for my education life specifically.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

1 INTRODUCTION .. 1

2 RULES AND REGULATIONS OF EMU RELEVANT TO REGISTRATION 4

2.1 Computer Engineering Curriculum .. 4

2.1.1 Turkish versus Foreign Students ... 6

2.1.2 Restricted Electives ... 6

2.1.3 Area Electives ... 6

2.1.4 Summer Training .. 7

2.1.5 Graduation Project .. 7

2.2 Grade Point Average (GPA) – Cumulative Grade Point Average (CGPA) 7

2.3 Prerequisite Courses ... 8

2.4 Course Load Rules ... 9

2.5 Student Status ... 9

2.6 Extra Course ... 11

2.7 Rules for Registration .. 11

2.8 Rules for Compulsory Transfer / Dismiss .. 12

3 BACKGROUND .. 13

3.1 Intelligent Agent... 13

viii

3.2 Knowledge-Based Systems and Artificial Intelligence (AI) 14

3.3 University Automation Systems .. 15

3.4 Flora-2 .. 15

4 IMPLEMENTATION ... 16

4.1 Architecture .. 16

4.2 Concept Definitions ... 17

4.2.1 Concepts Related to Students .. 17

4.2.3 Concepts Related to Courses ... 20

4.2.4 Concepts that are Also Instances of the CourseType Concept 21

4.2.5 Concepts Related to Syllabi .. 22

4.2.6 Concepts Related to the University Academic, Administrative and

Physical Structure... 23

4.2.7 Concepts Related to Registration .. 24

4.3 Classifying Grades ... 25

4.4 Representative Concept Instances .. 25

4.4.1 Representative Instances of CourseOpening ... 26

4.4.2 Representative Instances of Student.. 26

4.4.3 Representative Instances of Course .. 27

4.4.4 Representative Instance of Transcript ... 27

4.4.5 Representative Instance of Syllabus.. 28

4.4.6 Representative Instance of Address .. 28

4.4.7 Representative Instances of Classroom ... 29

4.4.8 Representative Instance of RegistrationStatus .. 29

4.4.9 Representative Instance of Student Status .. 29

ix

4.4.10 Representative Instance of University, Faculty, Department and Program

 .. 30

4.4.11 Representative Instance of Other Miscellaneous Concepts 30

4.5 High-Level Explanation of the Predicates Used in the Implementation 31

4.5.1 The Main Predicate ... 31

4.5.2 Predicates for Transcript Generation .. 32

4.5.3 Predicates for Registration Advisor .. 32

4.5.4 Predicates For Optimizing the Number of Clashes 35

5 SAMPLE RUNS ... 36

5.1 Sample Runs for Transcript Generator .. 36

5.2 Sample Runs for Course Finder – Regular Student ... 38

5.3 Registering the Student According to His/Her Status 50

5.3.1 Registering a Student Who is On Probation Status 50

5.3.2 Registering a Student Who is in Unsatisfactory Status 59

5.3.3 Case of a Dismissed Student ... 61

5.4 Special Cases .. 65

5.6 Sample Run for Optimization .. 70

6 RELATED WORK ... 73

7 CONCLUSION AND FUTURE WORK.. 75

REFERENCES ... 76

APPENDICES ... 79

Appendix A: Source Code for Concepts of REG-EXPERT Agent 80

Appendix B: Source Code for Modules of REG-EXPERT Agent 89

Appendix C: Source Code for the Instances .. 121

x

LIST OF TABLES

Table 1: Satisfactory / On Probation / Unsatisfactory ... 11

xi

 LIST OF FIGURES

Figure 2.1: First year curriculum information.. 4

Figure 2.2: Second year curriculum information ... 5

Figure 2.3: Third year curriculum information .. 5

Figure 2.4: Fourth year curriculum information .. 6

Figure 2.5: Example of GPA and CGPA Computation ... 8

Figure 4.1: Overall architecture of REG-EXPERT.. 17

Figure 4.2: Person, Student and Instructor Concepts ... 18

Figure 4.3: Rules defining the currentAcademicSemester, realAcademicTerm and

turkishOrForeign attributes of the Student ... 19

Figure 4.4: Concepts related to transcript .. 20

Figure 4.5: Concepts related to course ... 21

Figure 4.6: Hierarchy of concepts related to courses ... 21

Figure 4.7: Course type concepts ... 22

Figure 4.8: Concepts related to the syllabus of a program ... 23

Figure 4.9: University structure (administrative, academic and physical)................. 24

Figure 4.10: Concepts of registration ... 25

Figure 4.11 Classifying grades ... 25

Figure 4.12 Representative instances for CourseOpening concept 26

Figure 4.13 Representative instances of Student concept .. 27

Figure 4.14: Representative instance of Course concept ... 27

Figure 4.15: Representative instance of Transcript concept 28

Figure 4.16: Representative instance of Syllabus concept ... 28

Figure 4.17: Representative instance of Address concept ... 29

xii

Figure 4.18: Representative instances of Classroom ... 29

Figure 4.19: Representative instances of RegistrationStatus concept 29

Figure 4.20: Representative instance of Status concept ... 30

Figure 4.21: Representative instance of University, Faculty, Department and Program

concept ... 30

Figure 4.22: Representative instance of other miscellaneous concepts 31

Figure 4.23: Main predicate for course finder module .. 32

Figure 5.1: Transcript information for the first and second semester 37

Figure 5.2: GPA, CGPA and status for a given transcript information 38

Figure 5.3: Semester data for the first semester transcript ... 39

Figure 5.4: Suggested course list for the first semester ... 39

Figure 5.5: Transcript information for the first semester ... 40

Figure 5.6: Suggested course list for the second semester ... 41

Figure 5.7: Transcript information for the second ... 42

Figure 5.8: Suggested course list for the third semester .. 42

Figure 5.9: Transcript information for the third semester .. 43

Figure 5.10: Suggested course list for the fourth semester .. 44

Figure 5.11: Transcript information for the fourth semester 45

Figure 5.12: Suggested course list for the fifth semester ... 45

Figure 5.13: Transcript information for the fifth semester .. 46

Figure 5.14: Suggested course list for the sixth semester .. 47

Figure 5.15: Transcript information for the sixth semester 48

Figure 5.16: Suggested course list for the seventh semester 48

Figure 5.17: Transcript information for the seventh semester 49

Figure 5.18: Suggested course list for the eighth semester .. 50

xiii

Figure 5.19: Transcript information for the first semester to test on probation status51

Figure 5.20: Transcript information for the second semester to test on probation status

 .. 52

Figure 5.21: Transcript information for the third semester to test on probation status

 .. 52

Figure 5.22: Transcript information for the fourth semester to test on probation status

 .. 53

Figure 5.23: Status of the student is on probation .. 53

Figure 5.24: Transcript information for first semester (honor but status is on probation)

 .. 54

Figure 5.25: Transcript information for second semester (honor but status is on

probation) ... 55

Figure 5.26: Transcript information for third semester (honor but status is on

probation) ... 55

Figure 5.27: Transcript information for fourth semester (honor but status is on

probation) ... 56

Figure 5.28: Transcript information for fifth semester (honor but status is on probation)

 .. 56

Figure 5.29: Transcript information for sixth semester (honor but status is on

probation) ... 57

Figure 5.30: Cgpa and status for the first and second semesters 57

Figure 5.31: Cgpa and status for the third and fourth semesters 58

Figure 5.32: Cgpa and status for fifth and sixth semesters .. 59

Figure 5.33: High honor but status of the student is on probation 59

Figure 5.34: Transcript information for first semester to test unsatisfactory status .. 60

xiv

Figure 5.35: Transcript information for second semester to test unsatisfactory status

 .. 60

Figure 5.36 Transcript information for third semester to test unsatisfactory status... 61

Figure 5.37: Status of the student is unsatisfactory ... 61

Figure 5.38: Transcript information for first semester to test dismissed status 62

Figure 5.39: Transcript information for second semester to test dismissed status 63

Figure 5.40: Transcript information for third semester to test dismissed status 63

Figure 5.41: Transcript information for fourth semester to test dismissed status 64

Figure 5.42: CGP and status of the second and third semesters 64

Figure 5.43: Status of the student is dismissed .. 65

Figure 5.44: Transcript information to show failed courses for first semester 66

Figure 5.45: Repetition of the course(s) that failed or withdrawn 66

Figure 5.46: Transcript information for first semester (if course is not offered) 68

Figure 5.47: List of the suggested courses in case of a course not offered in that

semester .. 68

Figure 5.48: Transcript information for first semester-Honor 69

Figure 5.49: List of the suggested courses with one extra course 69

Figure 5.50: Transcript information for first semester-optimization module 71

Figure 5.51: Transcript information for second semester-optimization module........ 71

Figure 5.52: CGPA and status for the Table 8 ... 72

Figure 5.53: Optimized time table ... 72

1

Chapter 1

INTRODUCTION

Registering students to courses in a university setting without violating any of the

university rules is a significant challenge, given the complexity of those rules and

regulations as they evolve over time. In order to do the job of assigning courses to a

student in the proper way, advisors have to constantly consult curricula, documentation

about university rules and regulations, as well as specific students’ academic histories

of which courses they have taken and the grades with which they passed the courses

etc. Furthermore, once the courses have been decided upon, the number of clashes in

the students’ timetables should be minimized through consideration of different

sections opened for each course. It is clear that these activities place a heavy cognitive

burden on the advisor, and often mistakes happen inadvertently.

 In this thesis, we describe the design and implementation of an intelligent, Frame-

logic based software agent (REG-EXPERT) that can tackle this complex registration

problem in the computer engineering department at Eastern Mediterranean University

(North Cyprus) [1]. REG-EXPERT is designed to help advisors, as well as students in

the preregistration period in the task of course registration each semester. It is

implemented in Flora-2 [2], a sophisticated frame-logic based system with

transactional capabilities. All information needed for the operation of REG-EXPERT,

such as student data, curricula for programs taught in the department, specific course

information, as well as transcript data is stored in the internal knowledge base of Flora-

2

2 in the form of frame-based logic statements. Implicit information, such as student

grade point average (GPA) and cumulative grade point average (CGPA) are computed

automatically through logic rules defining attributes of objects.

 REG-EXPERT has three main components. The first component (transcript

computation) prepares a transcript for a student, given the raw data of the courses the

student has taken previously, as well as the grades obtained in these courses. This

module also determines a student’s status, which is a function of the student’s current

academic term and CGPA. The status determines how many new courses (if any) a

student can take. The second module (course finder) is the heart of the agent. It

considers the program in which the student is enrolled (which determines the

curriculum the student is following), the status of the student, the transcript of the

student, and the courses offered in the current semester, and makes a suggestion for a

full load of courses for the student, making sure that all relevant university rules and

regulations are applied. The last module (optimization) takes the suggestion of the

course finder module and finds a timetable with the minimum number of clashes by

considering different sections of each course the student should take.

The remainder of this thesis is organized as follows. In chapter 2, we describe the

relevant rules and registrations at Eastern Mediterranean University that must be

obeyed when registering a student, as well as the rules for determination of student

status and GPA/CGPA computations. Chapter 3 contains information about the Flora-

2 logic system and the course registration problem in general. The architecture, design

and relevant implementation details of REG-EXPERT are presented in chapter 4.

Chapter 5 contains a realistic registration scenario for a fictionary computer

engineering student that demonstrates the workings of the agent. Chapter 6 contains

3

related work (other course registration assistants, optimization, advising). Finally, in

chapter 7 we have the conclusion and future research directions for further

enhancement of REG-EXPERT. We also talk about the improvements that can be

made to REG-EXPERT in terms of user-interface and web connectivity to make it

usable on a large scale.

4

Chapter 2

RULES AND REGULATIONS OF EMU RELEVANT TO

REGISTRATION

In this chapter we give explanations of rules and regulations relevant to registration

and general information about curriculum of the department of computer engineering.

2.1 Computer Engineering Curriculum

There are forty three courses in computer engineering curriculum. Forty which have 3

or 4 credits (to be called full-credited courses from now on), one is one credited and

two are non credited courses. Curriculum of computer engineering contains eight

semesters. Five 3 or 4 credited courses appear in every semester. The summer training

course as well as the “introduction to computer engineering” course are zero credited.

The first part of the graduation project course has one credit. Details of the 4 year

curriculum are shown in the figures 2.1 to 2.4 [1].

Figure 2.1: First year curriculum information

5

Figure 2.2: Second year curriculum information

Figure 2.3: Third year curriculum information

6

Figure 2.4: Fourth year curriculum information

2.1.1 Turkish versus Foreign Students

The curriculum entry with reference code is 25726 has two options of courses. One of

them is history course (HIST280) and the second one is Turkish course (TUSL181).

Students who have nationality of Republic of Turkey and Turkish Republic of Nothern

Cyprus (TRNC) take the history course. Students from other countries have to take the

Turkish course.

2.1.2 Restricted Electives

There are three restricted elective courses whose reference codes are 25745, 25777 and

25784. For reference code of 25745 students can take only science courses such as

chemistry or biology. For reference code 25777 students can take only ethics courses.

For reference code of 25784 students can take only business courses that are offered

in that semester, such as economy and management.

2.1.3 Area Electives

Area elective courses offered by the computer engineering department are announced

by the department at the beginning of each semester. There are four reference codes

(25772, 25773, 25774 and 25782) that must be taken as area elective courses. Students

7

can take whatever course they want that are offered as a technical elective in that

semester.

2.1.4 Summer Training

Every student should do summer practice for 40 working days in a company in order

to graduate from computer engineering department. While doing summer training,

there are rules and regulations that every student should follow. Course code of

summer training is CMPE400 and it's reference code is 25771.

2.1.5 Graduation Project

Every student must do a graduation project in order to graduate from computer

engineering department. Graduation project is divided into two semesters that has

course codes of CMPE405 and CMPE406 which have reference codes of 25776 and

25785 respectively. CMPE405 is prerequisite of CMPE406 and it is one credited.

Therefore, every student can take CMPE405 course as a sixth course. However,

CMPE406 is three credited, so it cannot be taken as a sixth course.

2.2 Grade Point Average (GPA) – Cumulative Grade Point Average

(CGPA)

The Grade Point Average (GPA) is a student's academic achievement for each

semester and is expressed numerically by a real number. In order to compute GPA,

firstly, credits earned for each course should be calculated. It is computed by the

formula:

∑ 𝑐𝑖 𝑖 ∈ 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑡𝑎𝑘𝑒𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟 × 𝑔𝑖

∑ 𝑐𝑖𝑖 ∈ 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑡𝑎𝑘𝑒𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟

In the above formula, 𝑐𝑖 represents the credit of i-th course and 𝑔𝑖 represents the

numeric equivalent of the grade obtained for the i-th course. Numeric equivalents of

8

letter grades are as follows: A = 4, A- = 3.7, B+ = 3.3, B = 3, B- = 2.7, C+ = 2.3, C =

2, C- = 1.7, D+ = 1.3, D = 1, D- = 0.7 and F = 0.

The cumulative grade point average (CGPA) is a student's overall academic

achievement is expressed by a real number. It is given by the formula:

∑ 𝑐𝑖 𝑖 ∈ 𝑎𝑙𝑙 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑡𝑎𝑘𝑒𝑛 × 𝑔𝑖

∑ 𝑐𝑖𝑖 ∈ 𝑎𝑙𝑙 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑡𝑎𝑘𝑒𝑛

In the above formula, 𝑐𝑖 and 𝑔𝑖 have the same meaning as in the computation of the

GPA. Illustration of GPA and CGPA computations are given in figure 2.5. Suppose a

student complete two semester.

Figure 2.5: Example of GPA and CGPA Computation

2.3 Prerequisite Courses

Some courses have prerequisite course. When course X is a prerequisite of Y, student

cannot take course Y without obtaining at least a D- grade from X.

9

2.4 Course Load Rules

The semester course load is defined as the number of credit courses for which a student

is registered in a semester. The regular course load for computer engineering students

is 5 credited courses. This load can increase by at most one credited course, if he/she

has a GPA and CGPA that are greater than 3.00. This load can be decreased at most

two credited courses. If a student is in the last academic semester (graduation

semester), in other words if he/she is left with 7 courses in last semester, he/she can

register to all 7 credited courses with the approval his/her of advisor and chairman of

the department. A student can take at most 2 credited courses in the summer session.

2.5 Student Status

Student can pass a course successfully, if he/she gets a grade of A, A-, B+, B, B-, C+

,C , C-, D+, D or S. Otherwise, he/she will be unsuccessful from that course with grade

of D-, F or U and the student must repeat the course if it is offered the following

semester. If a student passes the course with grade of D, he/she may repeat the course

in some situations. A student may have different type of status according to his/her

CGPA.

There is a CGPA expectation from a student at every actual academic term excluding

the first two semesters. Actual academic term refers to the number of semesters that a

student has registered so far, excluding English preparatory school and summer

semesters.

There are four different type of status. First one is satisfactory which means that

student has sufficient success. In order to have satisfactory status, student’s CGPA

must be greater that 1.50 out of 4 from the end of second actual academic term until

10

the end of the fourth actual academic term. Also, CGPA must be greater than 1.80 out

of 4 from end of the fifth actual academic term until the end of the seventh actual

academic term to have satisfactory status. In addition to this, CGPA must be greater

than 2.0 out of 4 at the end of the the eight actual academic term and above to be in

satisfactory status. If a student’s status is satisfactory, he/she can register five new

credited courses in the following semester.

 Secondly, there is a status of on probation. A student’s status will be on probation if

his/her CGPA is between 1.50 and 1.0 in the end of second actual academic term until

the end of the fourth actual academic term, if his/her CGPA is between 1.80 and 1.50

at the end of the fifth actual academic term until the end of the seventh actual academic

term and if his/her CGPA is between 2.0 and 1.80 at the end of the eight actual

academic term and above. In on probation status, a student can register only two new

credited courses in the following semester.

Another status is unsatisfactory. A student’s status will be unsatisfactory if his/her

CGPA is between 1.0 and 0.0 at the end of the second actual academic term until the

end of the fourth actual academic term, if his/her CGPA is between 1.5 and 0.0 at the

end of the fifth actual academic term until the end of the seventh actual academic term

and if his/her CGPA is between 1.80 and 0.00 at the end of the eighth actual academic

term and above. If a student’s status is unsatisfactory, he/she cannot register to any

new credited courses in the following semester.

Finally, there is status of compulsory transfer, in other words dismiss which means

student should transfer to another department. If a student’s CGPA is between 1.0 and

11

0.0 after third actual academic term, his/her status will be compulsory transfer. These

rules are tabulated in table 1 [3].

Table 1: Satisfactory / On Probation / Unsatisfactory
End of
Actual

Academ
ic Term

Satisfactory (S)
Satisfactory
 Progress (Y)

On Probation (P) Unsatisfactory (U)
Compulsory

Transfer/DISMISS ©

2 4.00≥CGPA≥2.00 2.00>CGPA≥1.50 1.50>CGPA≥1.00 1.00>CGPA≥0.00 -----

3 4.00≥CGPA≥2.00 2.00>CGPA≥1.50 1.50>CGPA≥1.00 1.00>CGPA≥0.00 -----

4 4.00≥CGPA≥2.00 2.00>CGPA≥1.50 1.50>CGPA≥1.00 1.00>CGPA≥0.00 ***1.00>CGPA≥0.00

5 4.00≥CGPA≥2.00 2.00>CGPA≥1.80 1.80>CGPA≥1.50 1.50>CGPA≥0.00 ***1.00>CGPA≥0.00

6 4.00≥CGPA≥2.00 2.00>CGPA≥1.80 1.80>CGPA≥1.50 1.50>CGPA≥0.00 ***1.00>CGPA≥0.00

7 4.00≥CGPA≥2.00 2.00>CGPA≥1.80 1.80>CGPA≥1.50 1.50>CGPA≥0.00 ***1.00>CGPA≥0.00

≥8 4.00≥CGPA≥2.00 ----- 2.00>CGPA≥1.80 1.80>CGPA≥0.00 ***1.00>CGPA≥0.00

2.6 Extra Course

Generally, course load of every student is five full-credited courses in every semester.

However, this may vary in some situations. A student who obtains a GPA between 3.0

and 3.49 with a normal course load is designated an honor student. A student who

obtains a GPA between 3.50 and 4.00 with a normal course load is designated a high

honor student. If a student's GPA and CGPA is higher than 3.00, he/she can register to

one extra full-credited courses. Also, if a student left with seven credited courses in

the academic term, this means that this academic term is graduation term for this

student. Therefore, he/she can register to all seven credited courses with the approval

of his/her advisor and the chairman of the department.

2.7 Rules for Registration

A student who starts regularly to the department will register his/her courses as given

in the curriculum. Advisor of a student should be careful about rules of registering the

courses. If a student's status is sufficient, he/she may give the courses that appear in

the curriculum accordingly. Order of registering the courses as follows. Firstly, advisor

should register the courses that are failed if they offered in the new semester. Secondly,

the courses which are withdrawed in the last semester should be registered in the new

12

semester. Courses from previous academic semester should be registered. After these

have been taken care of, the advisor should be careful about status of the student. If a

student's status is satisfactory, new courses may be taken. However, if a student's status

is on probation, only two new courses may be taken and if a student's status is

unsatisfactory, no new courses can be taken.

2.8 Rules for Compulsory Transfer / Dismiss

At the end of fourth academic semester, if a student has CGPA below 1.00, he/she will

be dismissed from department of computer engineering. In this status, student should

transfer to another faculty or he/she can continue computer engineering department

with new student registration fees.

13

Chapter 3

BACKGROUND

In this chapter, we provide information about intelligent agents, knowledge-based

systems, university automation systems and Flora-2.

3.1 Intelligent Agent

Firstly, we should give definition of an agent in order to describe the intelligent agent.

There are many definitions for an agent. Basically, they meet at a common point. An

agent is “a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objectives” [4].

A software agent is “An artificial agent which operates in a software environment” [5].

An intelligent software agent is “a software agent that uses Artificial Intelligence (AI)

in the pursuit of the goals of its clients” [6]. An agent percepts the input from

environment by its sensors, decides on its action and gives output to the environment

by its effectors. It should exhibit some form of intelligence and independent action on

behalf of its user and owner. Also, it may be situated (embedded in some environment

which it can sense and act), reactive (has ability to respond the sensed input),

autonomous (independent and make its own decision), social (interacts with other

agents), and pro-active (it has one or more goals to achieve) [4]. Furthermore, it should

be rational while decide on its action and achieving its goals. It should have internal

architecture so that it can be understood in terms of mentalistic notions. We can give

example to mentalistic notions, beliefs, desires, intentions and obligations. Finally, an

14

agent is adaptive. In other words, we can update the agent according to new technology

or we can adapt the agent to new requirements of environment [7].

There are industrial control applications that are difficult to manage. In other words it

is hard to specify all cases. In such situations agents are desirable. Since they can think

and act like a human with rational mentality [8].

3.2 Knowledge-Based Systems and Artificial Intelligence (AI)

“Intelligence is the computational part of the natural ability to achieve desired goals in

the world” [9]. Generally, artificial intelligence is implemented on computers with

artificial simulations of human brain function. In other words, AI is a term to express

an area of science and engineering whose aim is to produce computational

understanding and intelligent behavior, resulting for example in robots and speaking

computers. Therefore, AI systems think and act like a human. Also, they think and act

rationally.

Although modern computers are highly developed computational devices,

unfortunately do not have the learning skill. The field of knowledge-based systems,

which is a branch of artificial intelligence, tries to change this phenomenon.

Researchers of AI try to gain two main abilities to knowledge-based systems. One of

them is the ability to mimic human reasoning system. Secondly, ability to learning.

Knowledge-based system is a computer system that is programmed to imitate the

ability of solving problem of human with help of artificial intelligence and reference

of knowledge base that is related with any issue [10]. For example, consider a system

that diagnose disease of patient. This system is formed with the rules of diagnosis for

15

that disease. If we can diagnose disease of patient with this system, then we can say

that this system is knowledge-based system [9].

3.3 University Automation Systems

University automation systems may contain different modules with functions that are

different but important individually. These modules may be an exam scheduling,

course registration, course time tabling or student information system etc. [11].

3.4 Flora-2

“Flora-2 is a knowledge base engine and a complete environment for developing

knowledge intensive applications” [12]. F-logic, Hilog and Transaction logic form the

language of the Flora-2 [13]. Mainly, it contains F-logic that “extends classical

predicate calculus with the concepts of objects, classes and types, which are adapted

from object-oriented programming” [12]. Hilog “is a programming logic with higher-

order syntax, which allows arbitrary terms to appear in predicate and function

position” [14]. “Transaction logic provides logical foundations for state changes and

side effects in a logic programming language” [15].

16

Chapter 4

IMPLEMENTATION

In this chapter we describe the design and implementation of REG-EXPERT in some

detail.

4.1 Architecture

Figure 4.1 depicts the overall architecture of REG-EXPERT. Raw student data in the

form of courses that have already been taken by the student (semester in which the

courses were taken and grades obtained) are fed into the transcript generator module

that computes the grade point average (GPA) and cumulative grade point average

(CGPA), as well as the status of the student determined by the university rules, for

each semester. The registration advisor module considers the student's transcript,

curriculum of the program the student belongs to, as well as the actual courses opened

during the semester to come up with a suggestion for courses to be taken by the student.

Various registration rules of the university are taken into account by this module when

it generates its suggestion. Finally, the optimizer module takes the output of the

registration advisor module (a list of courses) and finds a schedule consisting of course

openings with a minimal number of clashes.

17

Figure 4.1: Overall architecture of REG-EXPERT

4.2 Concept Definitions

In Flora-2, concepts are similar to classes in programming language terminology. They

define the internal structure of objects, and act as the knowledge-base schema.

Concepts can have attributes as in classes, however, in Flora-2, attribute values can be

defined by logic rules as opposed to being explicitly specified. We describe below the

Concepts utilized in the implementation of REG-EXPERT.

4.2.1 Concepts Related to Students

In figure 4.2 we have the Person, Student and Instructor concepts. The Student and

Instructor concepts are sub-concepts of the Person concept. The notation [| |] means

18

that a concept is inheritable. The notation attributeName => someType means that the

value in attributeName must be of type someType. Built-in types start with a backslash

(\), and other types are concept names, which by convention start with a capital letter.

The currentAcademicSemester attribute contains the number of academic terms in

which the student was enrolled, plus one, excluding leave of absences and summer

terms. The realAcademicTerm attribute is similar, except it includes the summer

semesters in which the student took courses. Both attributes are computed through the

rules given in figure 4.3. A student's current academic term is found in the student's

transcript, and is one more than the actual academic term in which s/he was registered.

The student's most recent “real” academic semester is also found in the student's

transcript. Also in figure 4.3 is the definition of the rule for determining the value of

the turkishOrForeign attribute. If a student is from Turkey or North Cyprus, he/she is

assumed to be Turkish; otherwise he/she is taken to be a foreigner. Foreigners take a

Turkish language course, however Turkish students take a Turkish history course

instead.

Figure 4.2: Person, Student and Instructor Concepts

19

Figure 4.3: Rules defining the currentAcademicSemester, realAcademicTerm and

turkishOrForeign attributes of the Student

4.2.2 Concepts Related to Transcripts

In figure 4.4 we have three concepts used in the description of a transcript. A transcript

has a hierarchical structure, whereby at the top level there is the Transcript concept,

containing references to Student, Syllabus, Transcript-Semester-Data and

Registration-Status concepts. The semester-Data attribute is multi-valued.

Instances of TransctiptSemesterData contain information about a specific semester.

Most of the TransctiptSemesterData concept attributes are computed. It has attributes

for the year, semester, transcript entry, GPA, CGPA, status of the student (satisfactory,

on probation or unsatisfactory) , registration status of the student (on leave of absence

or registered), actual academic term of the student (how many semesters he/she spent

in the university plus one, excluding the summer semesters) , real academic term (same

as actual academic term except the summer terms are now included), as well as other

auxiliary attributes for computing the GPA and CGPA. Its transcript-Entry attribute

is multivalued, and contains references to Transcript-Entry instances.

20

A Transcript-Entry instance contains information about the course the student has

taken, reference to the syllabus entry for the course, the grade obtained, and other

attributes used for computing the GPA/CGPA of the student.

Figure 4.4: Concepts related to transcript

4.2.3 Concepts Related to Courses

In figure 4.5 we have the concepts for defining courses and course openings. A Course

concept contains attributes for the course code, course name, prerequisite courses,

lecture hours, lab hours, credits, instruction language and European Credit Transfer

System (ECTS) credits. A CourseOpening concept has attributes for describing a

specific course offered in a specific semester. Its instances contain information about

the group (section) number, the course to which it belongs, year, semester and

times/places at which it is taught. RoomDayPeriodDuration is used to specify which

room is required to teach a course, as well as the day, period and duration for which

the room is required.

21

Figure 4.6 depicts the concepts related to various course types in a hierarchy. For

example, CmpeAreaElective is an AreaElective.

Figure 4.5: Concepts related to course

Figure 4.6: Hierarchy of concepts related to courses

4.2.4 Concepts that are Also Instances of the CourseType Concept

In figure 4.7 we have concepts that are also instances of the CourseType concept. Flora

2 permits this kind of usage, which is very useful in modeling certain structures. In our

22

case, concepts used for describing course types (such as CmpeEthicsCourse) also

appear as values of attributes inside a syllabus.

Figure 4.7: Course type concepts

4.2.5 Concepts Related to Syllabi

Figure 4.8 contains the concepts that are used to describe syllabus objects. At the top

level is the Syllabus concept with attributes forProgram and syllabusEntry (a multi-

valued attribute). The SyllabusEntry concept is used to describe individual entries in a

syllabus and has information such as the year (i.e. freshman, sophomore, junior or

senior), the semester (i.e. fall or spring), reference code, course and type of course.

The type of course determines the actual course the student is allowed to take. If the

course type is NormalCourse, the student should take the exact course specified in the

SyllabusEntry instance. Otherwise, s/he should take one of the courses that belong to

the courseType attribute (e.g. if the course type is CmpeFinanceCourse then the

student should take of of the courses in this category).

23

Figure 4.8: Concepts related to the syllabus of a program

4.2.6 Concepts Related to the University Academic, Administrative and Physical

Structure

In figure 4.9 we have the concepts for describing the hierarchical academic and

administrative structure of a university, as well as its physical structure. At the top

level, there is the University concept. Below it are faculties that house departments that

run various academic programs. Each academic program implements a syllabus (in

this thesis, the words “curriculum” and “syllabus” are used interchangeably, and they

are both taken to mean the order and types of courses the student should take).

24

Figure 4.9: University structure (administrative, academic and physical)

4.2.7 Concepts Related to Registration

Figure 4.10 contains the definition of RegistrationRequest and RegistrationResult

concepts. RegistrationRequest contains information about the student, year and

semester for which we need to make a registration. RegistrationResult contains

information about a specific course opening which the student has been registered to.

It is the job of the registration agent REG-EXPERT to recommend, given a request for

registration, a list of RegistrationResult instances that are appropriate under the

circumstances (i.e. the current status of the student, the courses the student has already

taken, the courses that have been opened in the current semester, and the courses that

remain). The recommendation must comply with all of the rules and regulations of the

university, as well as the program and its curriculum.

25

Figure 4.10: Concepts of registration

4.3 Classifying Grades

Figure 4.11 classifies grades according to whether they count as passing or failing,

and whether they contribute towards the GPA/CGPA computations or not. RealGrades

contribute towards the GPA/CGPA computations whereas grades that are not

RealGrade do not.

Figure 4.11 Classifying grades

4.4 Representative Concept Instances

Instance is a specific realization of any object. In our study, we create objects for

concepts. In this section, we show representative instances of concepts.

26

4.4.1 Representative Instances of CourseOpening

Figure 4.12 shows the instance of two CourseOpening conepts. All attribues of concept

of course opening are initialized.

Figure 4.12: Representative instances for CourseOpening concept

4.4.2 Representative Instances of Student

Figure 4.13 shows the instances of two Student concepts. All attribues of concept of

student are initialized.

27

Figure 4.13 Representative instances of Student concept

4.4.3 Representative Instances of Course

Figure 4.14 shows the instances of the Course concept.

Figure 4.14: Representative instance of Course concept

4.4.4 Representative Instance of Transcript

Figure 4.15 shows an instance of the Transcript concept.

28

Figure 4.15: Representative instance of Transcript concept

4.4.5 Representative Instance of Syllabus

Figure 4.16 shows an instance of the Syllabus concept. (In this thesis, we use the terms

syllabus and curriulum interchangeable).

Figure 4.16: Representative instance of Syllabus concept

4.4.6 Representative Instance of Address

Figure 4.17 shows an instance of the Address concept.

29

Figure 4.17: Representative instance of Address concept

4.4.7 Representative Instances of Classroom

Figure 4.18 shows the instances of the Classroom concept.

Figure 4.18: Representative instances of Classroom

4.4.8 Representative Instance of RegistrationStatus

Figure 4.19 shows the instances of the RegistrationStatus concept.

Figure 4.19: Representative instances of RegistrationStatus concept

4.4.9 Representative Instance of Student Status

Figure 4.20 shows the instances of the Status concept.

30

Figure 4.20: Representative instance of Status concept

4.4.10 Representative Instance of University, Faculty, Department and Program

Figure 4.21 shows instances of University, Faculty, Department and Program

concepts.

Figure 4.21: Representative instance of University, Faculty, Department and

Program concept

4.4.11 Representative Instance of Other Miscellaneous Concepts

Figure 4.22 shows instance of other concepts such as Nationality, Gender, Semester,

YearType, Day, Language and TurkishOrForeign. TurkishOrForeign is used to

separate turkish and foreign students.

31

Figure 4.22: Representative instance of other miscellaneous concepts

4.5 High-Level Explanation of the Predicates Used in the

Implementation

4.5.1 The Main Predicate

The main predicate is %run_registration(?Student, ?Year, ?Semester,

?RegistrationResult). The name of the predicate is run_registration. It has 4

parameters that are ?Student, ?Year, ?Semester, and ?RegistrationResult. Firstly, it

calls t_del and t_deleteall primitives to update the runtime database. Then, predicate

find_student_status is called to find status of the student. Finally, it calls

make_registration which finds the suggested course list and put them temporarily into

the run time knowledge base. ?RegistrationResult gives to us the list of courses, as

shown in figure 4.23.

32

Figure 4.23: Main predicate for course finder module

4.5.2 Predicates for Transcript Generation

There are no predicates used in the generation of transcripts. All computation is done

through rules that define the values of attributes, which were shown in section 4.2.2.

4.5.3 Predicates for Registration Advisor

%r2: Loads the separate program files into the Flora-2 environment.

%run(?RR): Executes the agent and returns in ?RR the courses recommended for the

student. The curriculum of the program to which the student is registered, the transcript

of the student, status of the student, as well as the courses that are opened for the

current semester are taken into account.

%run_registration(?Std, ?Year, ?Sem, ?RR): Called by %run to find the result for

a specific student, year and semester.

%find_student_status(?Std, ?StdStatu): Finds the student’s status based upon

his/her CGPA and actual academic semester. The status can be satisfactory, on

probation, unsatisfactory and dismissed.

%make_registration(?Std, ?Statu,?Year,?Sem): Finds a registration suggestion for

a student based upon his/her status.

33

%how_many_zero_one_credit(?LFC, ?H): Determines how many of the student’s

failed courses have zero or one credit.

%maxNumberOfCoursesStudentCanTake(?Std,?M): How many credited courses

a student can take. This depends upon the students current semester, GPA and how

many courses the student has remaining until graduation.

%make_registration_repeat_courses_list(?List, ?_Std,?_Year,?_Sem): Registers

a student to failed courses using the list of failed courses.

%make_registration_repeat_courses(?N, ?_Std,?_Year,?_Sem): Registers a

student to previously taken courses if the student needs to repeat courses due to his/her

status (on probation or unsatisfactory).

%make_registration_new_courses(?N, ?_Std,?_Year,?_Sem): Registers a student

to courses that have not been taken before.

%make_single_registration_specific_course(?SE,?Std, ?Year, ?Sem): Attempts a

registration for a specific course that was taken before.

%make_single_registration_repeat_courses(?Std, ?Year, ?Sem): Suggests

registration for non-failed courses that the student should take again.

%make_single_registration_new_courses(?Std, ?Year, ?Sem): Suggests

registration for new courses.

%courses_not_taken_by_student(?Std,?CNT): Finds the courses that have not yet

been taken by the student.

%failedCoursesStudentShouldTake(?Std, ?FC): Finds list of failed courses that the

student should take again.

%moveToFrontLowCreditCourses(?S, ?SList): Gives higher priority to zero or one

credit courses, but only if less than 12 courses remain. Used to enforce the selection of

the first part of the graduation project in the last year.

34

%studentTakenAllPrerequisites(?Std, ?Crs): Checks that the student has taken

with a passing grade all the prerequisites of a given course.

%takenCourseWithPassingGrade(?Std, ?Crs): Checks that the student has taken a

course with a passing grade.

%taken_SE_with_passing_grade(?Std, ?SE): Checks that the student has passed a

course belonging to a specific category in the curriculum (for example, a university

elective).

%taken_SE_with_failing_grade(?Std, ?SE): Checks that the student has not passed

any course belonging to a specific category in the curriculum (for example, a university

elective).

%find_course_opening(?Std, ?AS, ?Chck, ?CO): Finds a course opening for a

reference code which can be associated with more than one course (for example, area

elective). ?AS contains information about which courses can be taken for a specific

reference code.

%mostRecentGradeRealSem(?Std, ?Crs, ?G): Finds the most recent grade a

student obtained in a course, taking into account summer semesters as well.

%findMostRecentGradeRealSem(?T, ?Term, ?Crs, ?G): Utility predicate for

finding the most recent grade a student obtained in a course, taking into account

summer semesters as well. Called by %mostRecentGradeRealSem.

%mostRecentGradeSERealSem(?Std, ?SE, ?G): Finds the most recent grade a

student obtained in some course with a reference code which can be associated with

more than one course (for example, area elective), taking into account summer

semesters as well.

35

4.5.4 Predicates For Optimizing the Number of Clashes

%how_many_clashes_all(?Std, ?Year, ?Sem, ?CO): Finds a registration suggestion

for a given student, year and semester such that the number of clashes is minimized.

Prints a list of suggestions in increasing order of the number of clashes.

%how_many_clashes(?Std, ?Year, ?Seme, ?CP, ?HM): Returns how many clashes

a specific registration suggestion has.

%howManyClashesTwoCO(?CO1, ?CO2, ?HM): Returns how many clashes two

specific course openings have.

%courses_assigned_to_student(?Std,?Year, ?Sem,?CrsL): Returns the list of

courses that the student should take in the given year and semester.

%courseOpeningsForStudent(?Std, ?Year, ?Sem, ?COL): Returns the list of

course openings suggested by the registration advisor component.

%courseOpeningsForStudent0(?_Year, ?_Sem, ?Crslist, COP2): Helper predicate

called by the %courseOpeningsForStudent predicate.

%insertCourseOpeningsForStudent(?_Std,?_Year, ?_Sem, ?COP2): Utility

predicate called by %how_many_clashes. Inserts temporarily into the logic base

information about which courses should be taken by the student.

36

Chapter 5

SAMPLE RUNS

In this chapter, we present sample runs of our agent. Firstly, we run the module of

transcript generator. Second, we run the module of course finder. Third, we

demonstrate screen shot of results while running optimization module.

5.1 Sample Runs for Transcript Generator

In this section we show sample runs of transcript generator module. First, we give

sample of a transcript. We run transcript generator module according to the given

transcript. Figure 5.1 show us transcript information for first and second semester.

ayse_aa1 represents the first semester transcript information. ayse_aa2 represents the

second semester transcript information.

37

Figure 5.1: Transcript information for the first and second semester

Transcript generator module computes the GPA, CGPA and status according to these

two semester transcript information. Figure 5.2 shows the result of transcript generator

for its queries. First query is ayse_aa1[gpa -> ?GPA] that gives the GPA for first

semester. Second query is ayse_aa2[gpa -> ?GPA] thar gives the GPA for second

semester. Third query is ayse_aa2[cgpa -> ?CGPA] that gives the CGPA for two

semester. The last query is ayse_aa2[status -> ?Status] that gives status of the student.

38

Figure 5.2: GPA, CGPA and status for a given transcript information

5.2 Sample Runs for Course Finder – Regular Student

In this section we show sample runs of course finder which is a one of the modules of

REG-EXPERT to introduce this module of our agent to the user.

Normally, a student who is regular should finish the department in eight semesters. As

we described in chapter 2, there are forty courses that are four or three credited, one

course that is one credited and two courses that are non-credited. There are sample

runs of module of course finder for each semester of a regular student. We consider

student has satisfactory status for each semester.

In the first semester, student should be registered to five courses that are specified in

the department curriculum. Since this is first semester for a student there is no any

transcript yet. Figure 5.3 shows the semester data for a first semester. ayse_aa1

represents the first semester transcript. In figure 5.4 we can see suggestion of courses

that should be taken in the given year and semester. We give student number

39

(std066161), year (2014), semester (fall) to which we want to register the student and

query result (?SuggestedCourseList) as a input. Our agent checks the all constraints

and gives a list of courses according to department curriculum as a result.

Figure 5.3: Semester data for the first semester transcript

Figure 5.4: Suggested course list for the first semester

Figure 5.5 shows the first semester transcript information of the student. Figure 5.6

shows the CGPA and status of the student for the first semester. Also, it gives the list

of courses suggested according to the current transcript information. It is like a run of

first semester, we give same parameters as a input. Our agent gives courses of second

semester as a result.

40

Figure 5.5: Transcript information for the first semester

41

Figure 5.6: Suggested course list for the second semester

In addition to the first semester transcript, figure 5.7 shows the second semester

transcript information of a student. Figure 5.8 shows the CGPA and status of the

student for the second semester and gives the list of courses suggested according to the

current transcript information. It is like a run of first semester, we give same

parameters as a input. Our agent gives courses of third semester as a result.

42

Figure 5.7: Transcript information for the second

Figure 5.8: Suggested course list for the third semester

43

In addition to the first and second semester transcript, figure 5.9 shows the third

semester transcript information of a student. Figure 5.10 shows the CGPA and status

of the student for third semester and gives the list of courses suggested according to

the current transcript information. Input is like a run of first semester, we give same

parameters as a input. Our agent gives courses of fourth semester as a result.

Figure 5.9: Transcript information for the third semester

44

Figure 5.10: Suggested course list for the fourth semester

In addition to the first, second and third semester transcript, figure 5.11 shows the

fourth semester transcript information of a student. Figure 5.12 shows the CGPA and

status of the student for fourth semester and gives the list of courses suggested

according to the current transcript information. Input is like a run of first semester, we

give same parameters as a input. Our agent gives courses of fifth semester as a result.

45

Figure 5.11: Transcript information for the fourth semester

Figure 5.12: Suggested course list for the fifth semester

46

In addition to the first, second, third and fourth semester transcript, figure 5.13 shows

the fifth semester transcript information of a student. Figure 5.14 shows the CGPA and

status of the student for fifth semester and gives the list of courses suggested according

to the current transcript information. Input is like a run of first semester, we give same

parameters as a input. Our agent gives courses of sixth semester as a result.

Figure 5.13: Transcript information for the fifth semester

47

Figure 5.14: Suggested course list for the sixth semester

In addition to the first, second, third, fourth and fifth semester transcript, figure 5.15

shows the sixth semester transcript information of a student. Figure 5.16 shows the

CGPA and status of the student for sixth semester and gives the list of courses

suggested according to the current transcript information. Input is like a run of first

semester, we give same parameters as a input. Our agent gives courses of seventh

semester as a result.

48

Figure 5.15: Transcript information for the sixth semester

Figure 5.16: Suggested course list for the seventh semester

49

In addition to the first, second, third, fourth, fifth and sixth semester transcript, Figure

5.17 shows the seventh semester transcript information of a student. Figure 5.18 shows

the CGPA and status of the student for seventh semester and gives the list of courses

suggested according to the current transcript information. Input is like a run of first

semester, we give same parameters as a input. Our agent gives courses of eighth

semester as a result.

Figure 5.17: Transcript information for the seventh semester

50

Figure 5.18: Suggested course list for the eighth semester

5.3 Registering the Student According to His/Her Status

The student's success status are evaluated every semester. After second semester the

student's CGPA should be in some range as explained in chapter 2. If student's CGPA

is not in the given range, then his/her success status will change accordingly.

5.3.1 Registering a Student Who is On Probation Status

In this section, we will show sample runs for different types of status. Firstly, if a

student's status is on probation, then he/she can register only two new courses.

According to status table of Eastern Mediterranean University, if student's CGPA is

between 1.00 and 1.50 at the end of fourth semester then student will be in status of on

probation. Figure 5.19, 5.20, 5.21, and 5.22 contains the transcript of a student who is

on probation for the first, second, third and fourth semester respectively. In figure 5.13

student's CGPA is 1.40 at the end of fourth semester. Therefore, her status is on

probation. When we run our agent, it will give two new courses and three already taken

courses and passed with low grade such as D as an output. In our example, it gives

cmpe323 and cmpe343 whose reference codes are 25751 and 25752 respectively as

51

new courses from fifth semester. Also, it gives cmpe101, math163 and engl191 whose

reference codes are 25711, 25712 and 25713 respectively as an already taken courses.

If we check her transcript, we will see that she passed these courses with D grade.

Figure 5.19: Transcript information for the first semester to test on probation status

52

Figure 5.20: Transcript information for the second semester to test on probation

status

Figure 5.21: Transcript information for the third semester to test on probation status

53

Figure 5.22: Transcript information for the fourth semester to test on probation status

Figure 5.23: Status of the student is on probation

Sometimes student may be unsuccessful in some semesters. Then he/she may be

successful in other semester but this success is not affect his/her CGPA enough.

Suppose there is a student that her status is satisfactory for the first semester, on

probation for the second, third and fourth semester and unsatisfactory for the fifth

semester. Figure 5.24, 5.25, 5.26, 5.27, 5.28, and 5.29 contains the transcript

54

information of a student who is in such situation for the first, second, third, fourth, fifth

and sixth semester respectively. In the sixth semester, even if her CGPA is 3.84, her

status will not be satisfactory. It will arise from unsatisfactory to on probation.

Therefore, even if her GPA is greater than 3.00, she is not able to take an extra course

in the seventh semester. On the contrary, she will take only two new courses as well

as summer training course from seventh semester.

Figure 5.24: Transcript information for the first semester (honor but status is on

probation)

55

Figure 5.25: Transcript information for the second semester (honor but status is on

probation)

Figure 5.26: Transcript information for the third semester (honor but status is on

probation)

56

Figure 5.27: Transcript information for the fourth semester (honor but status is on

probation)

Figure 5.28: Transcript information for the fifth semester (honor but status is on

probation)

57

Figure 5.29: Transcript information for the sixth semester (honor but status is on

probation)

Figure 5.30 shows the CGPA and status of the first and second semester according to

the transcript given in the table 4. Her status is satisfactory for the first semester and

on probation for the second semester.

Figure 5.30: Cgpa and status for the first and second semesters

58

Figure 5.31 shows the CGPA and status of the third and fourth semester according to

the transcript given in the table 4. Her status is on probation for the both third and

fourth semester.

Figure 5.31: Cgpa and status for the third and fourth semesters

Figure 5.32 shows the CGPA and status of the fifth and sixth semester according to

the transcript given in table 4. Her status is unsatisfactory for the fifth semester and on

probation for the sixth semester. Also, it shows that the student’s GPA is 3.84. This

means that the student can take one extra course. However, her status is onprobation

so, she cannot take an extra course. Figure 5.33 shows the list of courses suggested for

this situation.

59

Figure 5.32: Cgpa and status for the fifth and sixth semesters

Figure 5.33: High honor but status of the student is on probation

5.3.2 Registering a Student Who is in Unsatisfactory Status

Another student status is unsatisfactory. In this status student cannot take any new

courses. Figure 5.34, 5.35, and 5.36 contains the transcript information of a student

who is in unsatisfactory status for the first, second and three semester respectively.

Figure 5.37 shows the student’s CGPA and status for the third semester. She has 0.92

CGPA at the end of the third semester. So, her status is unsatisfactory. Our agent gives

her five already passed courses with low grade in the last semesters.

60

Figure 5.34: Transcript information for first semester to test unsatisfactory status

Figure 5.35: Transcript information for second semester to test unsatisfactory status

61

Figure 5.36 Transcript information for third semester to test unsatisfactory status

Figure 5.37: Status of the student is unsatisfactory

5.3.3 Case of a Dismissed Student

Lastly, there is a status of dismissed. If a student has status of unsatisfactory in three

semesters consecutively, department administrator has the right to dismiss the student

from department. Detail of this rule is given in chapter 2. Figure 5.38, 5.39, 5.40, and

5.41 contains the transcript information of a student who is in dismissed status of the

first, second, third and fourth semester respectively. Figure 5.42 shows the CGPA and

62

student’s status that is unsatisfactory for the second and third semester. As shown in

figure 5.43 the student is at the end of fourth semester and her CGPA is 0.76 so, her

status is dismissed and our agent says no to her registration request because of her

status.

Figure 5.38: Transcript information for first semester to test dismissed status

63

Figure 5.39: Transcript information for second semester to test dismissed status

Figure 5.40: Transcript information for third semester to test dismissed status

64

Figure 5.41: Transcript information for fourth semester to test dismissed status

Figure 5.42: CGP and status of the second and third semesters

65

Figure 5.43: Status of the student is dismissed

5.4 Special Cases

There are rules and regulations that must be obeyed while registering the student to

his/her courses and some special cases. These are explained in chapter 2.

Firstly, if a student failed from course(s) or withdraw course(s), he/she must take this

failed or withdrawn course(s) with a preference. Figure 5.44 contains the first semester

transcript information. There are two courses with failing grade. Therefore, figure 5.45

shows the list of the suggested courses. There is a repetition of courses. Since one of

them is failed and one of them is withdrawn in previous semester. For this purpose,

first we run predicate of %failedCoursesStudentShouldTake with parameters of

student number (std066161) and result (ListOfFailedCourses). This predicate gives the

list of failed and withdrawn courses in the previous semester. The student failed from

a course (SE_25712) and withdraw a course (SE_25714). Moreover, the course that

has reference code of 25714 is prerequisite of course that has reference code of 25724.

Because of this, agent did not suggest the course that has reference code of 25724. As

66

a result, it suggests one failed course, one withdrawn course and three new courses

which are suitable from next semester.

Figure 5.44: Transcript information to show failed courses for the first semester

Figure 5.45: Repetition of the course(s) that failed or withdrawn

67

Secondly, if any course is not offered in the current semester, student cannot take that

course. Consider a course cmpe112 which has reference code of 25722 is not offered

in the current semester. We extract cmpe112 from course opening list for this sample.

Figure 5.46 contains the transcript information for the first semester. We consider that

the student passed all courses in the first semester. Figure 5.47 shows the suggested

course list for this situation. For a regular student, there are six courses, one of is non

credited in the second semester. However, the course cmpe112 is not offered in this

semester. Therefore, our agent could not suggest the course cmpe112 to the advisor.

Instead of cmpe112, it will give another suitable course from the next semester. In this

example, it suggests the course cmpe223 whose reference code is 25731.

68

Figure 5.46: Transcript information for first semester (if course is not offered)

Figure 5.47: List of the suggested courses in case of a course not offered in that

semester

Figure 5.48 contains the transcript information for the first semester. The student’s

GPA is greater than 3.00 in this semester. Figure 5.49 shows that our agent suggests

courses of the second semester to the student. Furthermore, the student's GPA is

greater than 3.00. Because of this student can take one extra suitable course from next

semester. In this run, besides five credited courses and a non-credited course of the

69

seond semester, our agent suggests the course cmpe223 whose reference code is 25731

as an extra course.

Figure 5.48: Transcript information for first semester-Honor

Figure 5.49: List of the suggested courses with one extra course

70

5.6 Sample Run for Optimization

In this section we show sample runs of the optimization module which is another

module of REG-EXPERT to introduce our agent to the user.

Figure 5.50 and 5.51 contains the transcript information for the first and second

semester respectively. Figure 5.52 shows the CGPA and status for the transcript

information below. Figure 5.53 shows that we first run our course finder module and

our agent suggests the course list that student (std066161) should take in fall semester

of 2014. Secondly, we run our optimization module by giving query of

%how_many_clashes_all (std066161, 2014, fall, ?TimeTable). As shown in figure

5.31 our agent gives a time table which is course based. Our agent finds the optimal

solution which has 0 hour clash. There are two time table because cmpe211 has two

groups. Therefore, cmpe211 has two different period in both time table.

71

Figure 5.50: Transcript information for first semester-optimization module

Figure 5.51: Transcript information for second semester-optimization module

72

Figure 5.52: CGPA and status for the Table 8

Figure 5.53: Optimized time table

73

Chapter 6

RELATED WORK

In this chapter we focus on related works with our work. Our work is intelligent agent

system that has three modules: transcript computation, course finder and optimization.

There are other systems which are focused on course registration. Each has its own

strategy for implementing the course registration system and approach to course

registration problem in the universities. Some of these systems are “ Semantic Web

Services for University Course Registration” [16], “ A Framework for a WAP-Based

Course Registration System” [17] and “ Using Bayesian Network for Planning Course

Registration Model for Undergraduate Students” [18]. Firstly, we give information

about “ Semantic Web Services for University Course Registration [16]”. In this

system, they focused on semantic web services and give a semantic specification of a

course registration system with no actual implementation [16].

Second related work is “ A Framework for a WAP-Based Course Registration System”

[17]. They implement a system that is WAP-based course registration. They designed

this system to provide some facilities to students, while they are registering to their

courses. “ WAP-based system is an emerging technology aims to enable clients to

facilitate their daily business in more efficient way and in less consuming time” [17].

Also, this system gives an opportunity to students to register their course by themselves

[17].

74

Another related work to course registration is “ Using Bayesian Network for Planning

Course Registration Model for Undergraduate Students” [18]. In this work they use

Bayesian Network which is data mining technique. They try to help to students to plan

their enrollments. Bayesian Network is used to predict undergraduate student's

accomplishment. In this work they focused on helping the students according to their

skills and so that they will be successful in their department [18].

Furthermore, there is one more related work which is “ Optimization Algorithms for

Student Scheduling via Constraint Satisfiability” [19]. In this work they focused on

student scheduling problem which is a kind of constraint satisfiability problem. They

tried different type of optimization algorithms to solve this problem and they found

that best algorithm is offering ordering algorithm.

Also, there is a related work that is “ Assuring Quality Service in Higher Education:

Registration and Advising Attitudes in a Private University Lebanon” [11]. In this

work they focused on advising the students for their academic education life. “ This

study attempts to measure student attitudes of registration and academic advising

across different faculties to assure positive quality service complementing that of the

academic” [11].

Our work is different from all the above cited works because of its knowledge-based

nature and specificity in its aim, i.e. helping advisors make correct choice in the

registiration process in an intelligent manner.

75

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis we focused on the design and implementation of a REG-EXPERT, which

is an intelligent software agent implemented in the Flora-2 language. The main

function of this agent is to help advisors to register the courses of students according

to the rules of university. Specifically, REG-EXPERT obeys the rules and regulations

of the Eastern Mediterranean University and its curriculi in making its

recommendation. Also, it considers the status of the student because status of the

student affect how many courses will be loaded to student in the related semester.

REG-EXPERT has three modules. One of them is transcript generation. This module

contains information about transcript of the student. Also, it computes the GPA and

CGPA of the student. Secondly, REG-EXPERT has a module that makes course

registration suggestions, which is the heart of the agent. Finally, there is the module of

optimization. This module finds a timetable for the student which has as few clashes

as possible, given the currently opened courses in the semester.

In the future, we are planning to design graphical user interface that is user friendly

and functional of our intelligent agent. Also, we have some ideas on implementing

new module(s) to improve our agent's functionality. For example, currently there is no

interface to relational data about students, courses etc. So, data should be converted

manually into the knowledge base.

76

REFERENCES

[1] CMPE - EMU Department [Online]. Available: http://cmpe.emu.edu.tr/ [Accessed

November 2014].

[2] Kifer, M., Yang, G., Wan, H., & Zhao, C. (2013). Flora-2: User's Manual.

[3] EMU Regulations [Online]. Available: http://mevzuat.emu.edu.tr/content.htm

[Accessed November 2014].

 [4] Padgham, L., & Winikoff, M. (2004). Developing Intelligent Agent Systems, John

Wiley and Sons, (pp. 1-4).

[5] Wikimedia Foundation, Inc., Software agent,

http://en.wikipedia.org/wiki/Software_agent (Accessed on December 2014).

 [6] Croft, D., W. (1997). Intelligent Software Agents: Definitions and Applications,

Analytic Services, Inc. (ANSER).

[7] Wikimedia Foundation, Inc., Intelligent agent,

http://en.wikipedia.org/wiki/Intelligent_agent (Accessed on December 2014).

[8] Mouta, F., & Oliveira E. (1997). How an Agent Makes Decisions while Keeping

Responsiveness. IEEE International Conference on Intelligent Processing Systems,

154-158.

77

[9] Akerkar, R., A., & Sajja, P., S. (2010). Knowledge-Based Systems, David Pallai,

(pp. 1-19).

[10] Wikimedia Foundation, Inc., Knowledge-based systems,

http://en.wikipedia.org/wiki/Knowledge-based_systems (Accessed on January 2015).

[11] Abouchedid, K., & Nasser, R. (2002). Assuirng Quality Service in Higher

Education: Registration and Advising Attitudes in a Private University Lebanon,

Quality Assurance in Education, Vol. 10, No. 4, 198-203.

[12] Kifer, M. (2005). Nonmonotonic Reasoning in FLORA-2. Springer-Verlag Berlin

Heidelberg, 1-12.

[13] Wikimedia Foundation, Inc., Flora-2, http://en.wikipedia.org/wiki/Flora-2

(Accessed on December 2014).

 [14] Wikimedia Foundation, Inc., HiLog, http://en.wikipedia.org/wiki/HiLog

(Accessed on December 2014).

[15] Knowledge Representation & Reasoning with Flora-2, Transaction Logic

http://flora.sourceforge.net/aboutTR.html (Accessed December 2014).

 [16] Cobanoğlu, Ş., & Bayram, Z. (2014). Semantic Web Services for University

Course Registration. Lecture Notes in Computer Science, 3-16.

[17] Al-Bastaki, Y., & Al-Ajeeli, A.(2004). A Framework for a WAP-Based Course

Registration System. Computers & Education, Vol. 44, No. 3, 327-342.

78

 [18] Pumpuang, P., Sirivihok, A., Praneetpolgrang, P., & Numprasertchai, S. (2008).

Using Bayesian Network for Planning Course Registration Model for Undergraduate

Students, Digital Ecosystems and Technologies, 492-496.

 [19] Feldman, R., & Golumbic, M. C. (1990). Optimization Algorithms for Student

Scheduling via Constraint Satisfiability, The Computer Journal, Vol. 33, No. 4 356-

364.

79

APPENDICES

80

Appendix A: Source Code for Concepts of REG-EXPERT Agent

A1: Concepts for the Transcript Generator Module

Transcript[| student=>Student,

 syllabus => Syllabus,

 semesterData => TranscriptSemesterData,

 registrationStatus => RegistrationStatus|].

TranscriptEntry[| syllabusEntry=>SyllabusEntry,

 actualCourse=> Course,

 courseTaken=>Course,

 letterGrade=>Grade,

 numeric_contribution => \float,

 credit_counted => \integer,

 computed_credit_counted(\integer) => \integer,

 computed_numeric_contribution(\integer) => \integer |].

TranscriptSemesterData[| whichYear=> \integer,

 whichSemester=>Semester,

 transcriptEntry => TranscriptEntry,

 gpa=> \float,

 cgpa=> \float,

 status => Status,

 registrationStatus => RegistrationStatus,

 actualAcademicTerm => \integer,

 realAcademicTerm => \integer,

 numeric_contribution => \float,

 computed_credit_counted(\integer)=> \integer,

 computed_numeric_contribution(\integer) => \float,

 cumulative_credits => \float,

 cumulative_contribution => \float,

 how_many_courses_remaining => \integer,

81

 how_many_credited_courses_remaining => \integer|].

?X[mostRecentRealAcademicSemester ->?MRRAS]:-

 ?X: Student,

 ?Transcript[student->?X],

 ?MRRAS = max {?RAT |

 ?Transcript[semesterData-> ?TSD],

 ?TSD[realAcademicTerm->?RAT],

 ?TSD[registrationStatus->registered]},

 !.

?X[mostRecentRealAcademicSemester ->?MRRAS]:-

 ?X: Student,

 ?MRRAS=0.

?X[currentAcademicSemester->?CAS]:-

 ?X: Student,

 ?Transcript[student->?X],

 ?LastActualSemester = max {?AAT |

 ?Transcript[semesterData-> ?TSD],

 ?TSD[actualAcademicTerm->?AAT],

 ?TSD[registrationStatus->registered],

 ?TSD[whichSemester->?Semester],

 (?Semester = spring ; ?Semester = fall)},

 ?CAS \is ?LastActualSemester + 1,

 !.

?X[currentAcademicSemester->?CAS]:-

 ?X: Student,

 ?CAS=1.

?X[turkishOrForeign->turkish]:-

 ?X: Student,

 (?X[nationality->turkish] ; ?X[nationality->turkish_cypriot]),

82

 !.

?X[turkishOrForeign->foreign]:-

 ?X: Student.

83

A2: Concepts for the Course Finder Module

RegistrationRequest[|student => Student,

 year => \integer,

 semester => Semester|].

SingleRegistrationResult[|student=> Student,

 year=> \integer,

 semester => Semester,

 single_reg=> CourseOpening|].

RegistrationResult [|student=> Student,

 year=> \integer,

 semester => Semester,

 syllabusEntry => SyllabusEntry,

 courseOpening=> CourseOpening|].

Student[|yearEnrolled=>\integer,

 semesterEnrolled=>Semester,

 inProgram=>AcademicProgram,

 currentAcademicSemester => \integer,

 mostRecentRealAcademicSemester => \integer,

 turkishOrForeign => TurkishOrForeign|].

TurkishOrForeign[].

Day[].

Language[].

Course[|courseCode => string,

 courseName => string,

 hasPrerequisite => Course,

 lecture_hours => \integer,

 lab_hours => \integer,

 credits => \integer,

 instructionLanguage => Language,

84

 ects => \integer |].

CourseType[].

Syllabus[| forProgram=>AcademicProgram,

 syllabusEntry => SyllabusEntry|].

SyllabusEntry[| whichYear=>YearType,

 whichSemester=>Semester,

 referenceCode=> \string,

 course=>Course,

 courseType => CourseType|].

Person[| id => \string,

 gender => Gender,

 date_of_birth => \date,

 name => \string,

 lastName => \string,

 address => Address,

 nationality => Nationality|].

Nationality[].

Gender[].

Grade[||].

RegistrationStatus[].

AcademicProgram [| programName=> \string,

 programID=> \string,

 syllabus=> Syllabus,

 belongsTo=> Department|].

CourseOpening [| groupNo => \integer,

 ofCourse => Course,

 year => \integer,

 semester => Semester,

 teachingTimes => RoomDayPeriodDuration|].

85

Curriculum [| academicProgram=> AcademicProgram,

 refCode=> \string,

 courseName=> Course|].

TakesCourse [| courseOpening=> CourseOpening,

 student=> Student,

 grade=> \string|].

RoomDayPeriodDuration [| room => Classroom,

 day => Day,

 period => \integer,

 duration => \integer|].

Building[].

Semester[].

Student::Person.

UndergraduateProgram::AcademicProgram.

GraduateProgram:: AcademicProgram.

TurkishProgram:: AcademicProgram.

EnglishProgram:: AcademicProgram.

EnglishUndergraduateProgram:: EnglishProgram.

EnglishUndergraduateProgram::UndergraduateProgram.

LectureRoomDayPeriodDuration::RoomDayPeriodDuration.

LabRoomDayPeriodDuration::RoomDayPeriodDuration.

AreaElective :: Course.

CmpeAreaElective :: AreaElective.

CmseAreaElective :: AreaElective.

BlgmAreaElective :: AreaElective.

UniversityElective :: Course.

CmpeUniversityElective :: UniversityElective.

CmseUniversityElective :: UniversityElective.

BlgmUniversityElective :: UniversityElective.

86

ScienceCourse :: Course.

CmpeScienceCourse :: ScienceCourse.

CmseScienceCourse :: ScienceCourse.

BlgmScienceCourse :: ScienceCourse.

FinanceCourse :: Course.

CmpeFinanceCourse :: FinanceCourse.

CmseFinanceCourse :: FinanceCourse.

BlgmFinanceCourse :: FinanceCourse.

EthicsCourse :: Course.

CmpeEthicsCourse :: EthicsCourse.

CmseEthicsCourse :: EthicsCourse.

BlgmEthicsCourse :: EthicsCourse.

TurkishCourse: CourseType.

HistoryCourse: CourseType.

TurkishOrHistoryCourse: CourseType.

CmpeSummerTraining: CourseType.

NormalCourse: CourseType.

CmpeEthicsCourse: CourseType.

CmpeFinanceCourse: CourseType.

CmpeScienceCourse: CourseType.

CmpeUniversityElective: CourseType.

CmpeAreaElective: CourseType.

CmpeGraduationProject1 : CourseType.

CmpeGraduationProject2 : CourseType.

TurkishCourse:: TurkishOrHistoryCourse.

HistoryCourse:: TurkishOrHistoryCourse.

NormalSyllabusEntry::SyllabusEntry.

RestricredElectiveScienceSyllabusEntry:: SyllabusEntry.

RestricredElectiveFinanceSyllabusEntry:: SyllabusEntry.

87

AreaElectiveSyllabusEntry:: SyllabusEntry.

UniversityElectiveSyllabusEntry:: SyllabusEntry.

EthicsElectiveSyllabusEntry:: SyllabusEntry.

TurkishOrHistorySyllabusEntry:: SyllabusEntry.

TurkishUndergraduateProgram:: TurkishProgram.

TurkishUndergraduateProgram:: UndergraduateProgram.

RealGrade :: Grade.

PassingGrade :: Grade.

FailingGrade :: Grade.

88

A3: Concepts for the Optimization Module

CourseOpening [| groupNo => \integer,

 ofCourse => Course,

 year => \integer,

 semester => Semester,

 teachingTimes => RoomDayPeriodDuration|].

RoomDayPeriodDuration [| room => Classroom,

 day => Day,

 period => \integer,

 duration => \integer|].

89

Appendix B: Source Code for Modules of REG-EXPERT Agent

B1: Source Code for the Transcript Component

?X[how_many_credited_courses_remaining->?HM]:-

 ?X:TranscriptSemesterData,

 ?X[realAcademicTerm -> ?RAT],

 ?Transcript[semesterData -> ?X],

 ?Transcript[syllabus-> ?Syllabus],

 ?ListOfCreditedCoursesAlreadyPassed =

 setof { ?SE | ?Transcript[semesterData ->?TSD],

 ?TSD[transcriptEntry -> ?TE],

 ?TE[syllabusEntry -> ?SE,

 courseTaken -> ?Course

],

 ?Course[credits -> ?Credits],

 ?Credits>0,

 %findMostRecentGradeSERealSem(?Transcript, ?RAT, ?SE, ?LG),

 ?LG: PassingGrade},

 ?ListOfCreditedCoursesInTheSyllabus =

 setof { ?SE1 | ?Syllabus[syllabusEntry -> ?SE1],

 ?SE1[course->?Course1],

 ?Course1[credits -> ?Credits1],

 ?Credits1>0 },

 %setSubtract(?ListOfCreditedCoursesInTheSyllabus,

 ?ListOfCreditedCoursesAlreadyPassed,

 ?ListOfCreditedCoursesRemaining,

 ?ListOfCreditedCoursesRemaining[length->?HM]@\btp.

?X[how_many_courses_remaining->?HM]:-

 ?X:TranscriptSemesterData,

 ?X[realAcademicTerm -> ?RAT],

90

 ?Transcript[semesterData -> ?X],

 ?Transcript[syllabus-> ?Syllabus],

 ?ListOfCoursesAlreadyPassed =

 setof { ?SE | ?Transcript[semesterData ->?TSD],

 ?TSD[transcriptEntry -> ?TE],

 ?TE[syllabusEntry -> ?SE],

 %findMostRecentGradeSERealSem(?Transcript, ?RAT, ?SE, ?LG),

 ?LG: PassingGrade},

 ?ListOfCoursesInTheSyllabus =

 setof { ?SE1 | ?Syllabus[syllabusEntry -> ?SE1]},

 %setSubtract(?ListOfCoursesInTheSyllabus,

 ?ListOfCoursesAlreadyPassed,

 ?ListOfCoursesRemaining),

 ?ListOfCoursesRemaining[length->?HM]@\btp.

?X[status->satisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 (?Z=0;?Z=1),

 !.

?X[status->satisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 (?Z=2;?Z=3;?Z=4),

 ?X[cgpa->?Cgpa],

 ?Cgpa>=1.50 ,!.

?X[status->satisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 (?Z=5;?Z=6;?Z=7),

91

 ?X[cgpa->?Cgpa],

 ?Cgpa>=1.80 ,!.

?X[status->satisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?AAT],

 ?AAT>=8,

 ?X[cgpa->?Cgpa],

 ?Cgpa>=2.00 ,!.

?X[status->onProbation]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 (?Z=2;?Z=3;?Z=4),

 ?X[cgpa->?Cgpa],

 ?Cgpa<1.50 ,

 ?Cgpa>=1.00,!.

?X[status->onProbation]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 (?Z=5;?Z=6;?Z=7),

 ?X[cgpa->?Cgpa],

 ?Cgpa<1.80 ,

 ?Cgpa>=1.50,!.

?X[status->onProbation]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?AAT],

 ?AAT>=8,

 ?X[cgpa->?Cgpa],

 ?Cgpa<2.00 ,

 ?Cgpa>=1.80,!.

92

?X[status->unsatisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 (?Z=2;?Z=3),

 ?X[cgpa->?Cgpa],

 ?Cgpa<1.00, !.

?X[status->dismissed]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z],

 ?Z>=4,

 ?X[cgpa->?Cgpa],

 ?Cgpa<1.00, !.

?X[status->unsatisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?Z] ,

 (?Z=5;?Z=6;?Z=7),

 ?X[cgpa->?Cgpa],

 ?Cgpa<1.50, !.

?X[status->unsatisfactory]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm->?AAT],

 ?AAT>=8,

 ?X[cgpa->?Cgpa],

 ?Cgpa<1.80, !.

\udf num(A) := 4.

\udf num(A_MINUS) := 3.7.

\udf num(B_PLUS) := 3.3.

\udf num(B) := 3.

\udf num(B_MINUS) := 2.7.

93

\udf num(C_PLUS) := 2.3.

\udf num(C) := 2.

\udf num(C_MINUS) := 1.7.

\udf num(D_PLUS) := 1.3.

\udf num(D) := 1.

\udf num(D_MINUS) := 0.7.

\udf num(F) := 0.

\udf num(NG) := 0.

?X[courseTaken->?Course]:-

 ?X:TranscriptEntry,

 ?X[actualCourse->?Course],!.

?X[courseTaken->?Course]:-

 ?X:TranscriptEntry,

 ?X[syllabusEntry->?SE],

 ?SE[course->?Course].

?X[computed_credit_counted(?LastRealSemester)->0]:-

 ?X:TranscriptEntry,

 ?X[syllabusEntry->?SE],

 ?TSD[transcriptEntry->?X],

 ?TRANSCRIPT[semesterData->?TSD],

 ?TSD[realAcademicTerm -> ?RATprev],

 ?TRANSCRIPT[semesterData->?OtherTSD],

 ?OtherTSD[realAcademicTerm -> ?OtherRAT],

 ?OtherRAT > ?RATprev,

 ?OtherRAT =< ?LastRealSemester,

 ?OtherTSD[transcriptEntry -> ?OtherTranscriptEntry],

 ?OtherTranscriptEntry[syllabusEntry -> ?SE],

 !.

?X[computed_credit_counted(?_LastSemester)->?CCC]:-

94

 ?X:TranscriptEntry,

 ?X[credit_counted->?CCC].

?X[credit_counted->?CC]:-

 ?X:TranscriptEntry,

 ?X[letterGrade->?LG],

 ?LG:RealGrade,

 ?X[syllabusEntry->?SE],

 ?SE[course->?CRSE],

 ?CRSE[credits->?CC].

?X[credit_counted->0]:-

 ?X:TranscriptEntry,

 ?X[letterGrade->?LG],

 \+ ?LG:RealGrade.

?X[numeric_contribution->?NGrade]:-

 ?X:TranscriptEntry,

 ?X[letterGrade->?LG],

 ?LG:RealGrade,

 ?NumericGrade = num(?LG),

 ?X[syllabusEntry->?SE],

 ?SE[course->?CRSE],

 ?CRSE[credits->?CC],

 ?NGrade \is ?CC*?NumericGrade.

?X[numeric_contribution->0]:-

 ?X:TranscriptEntry,

 ?X[letterGrade->?LG],

 \+ ?LG:RealGrade.

?X[computed_numeric_contribution(?LastSemester)->?CNC]:-

 ?X:TranscriptEntry,

 ?X[letterGrade->?LG],

95

 ?LG:RealGrade,

 ?NumericGrade = num(?LG),

 ?X[computed_credit_counted(?LastSemester)->?CCC],

 ?CNC \is ?CCC*?NumericGrade.

?X[computed_numeric_contribution(?_LastSemester)->0]:-

 ?X:TranscriptEntry,

 ?X[letterGrade->?LG],

 \+ ?LG:RealGrade.

?X[numeric_contribution->?NCSemester]:-

 ?X:TranscriptSemesterData,

 ?NCSemester = sum{?Y| ?X[transcriptEntry->?TE],

 ?TE[numeric_contribution->?Y]}.

?X[computed_numeric_contribution(?LastSemester)->?NCSemester]:-

 ?X:TranscriptSemesterData,

 ?NCSemester = sum{?Y| ?X[transcriptEntry->?TE],

 ?TE[computed_numeric_contribution(?LastSemester)->?Y]}.

?X[credit_counted->?CCSemester]:-

 ?X:TranscriptSemesterData,

 ?CCSemester = sum{?Y| ?X[transcriptEntry->?TE],

 ?TE[credit_counted->?Y]}.

?X[computed_credit_counted(?LastSemester)->?CCSemester]:-

 ?X:TranscriptSemesterData,

 ?CCSemester = sum{?Y| ?X[transcriptEntry->?TE],

 ?TE[computed_credit_counted(?LastSemester)->?Y]}.

?X[gpa->?GPA]:-

 ?X:TranscriptSemesterData,

 ?X[numeric_contribution->?NC],

 ?X[credit_counted->?CC],

 ?GPA \is ?NC/?CC.

96

?X[cumulative_credits->?CumC]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm ->?AAT],

 ?AAT=1,

 !,

 ?X[credit_counted->?CC],

 ?CumC = ?CC.

?X[cumulative_credits->?CumC]:-

 ?X:TranscriptSemesterData,

 ?X[realAcademicTerm ->?RAT],

 ?Transcript[semesterData->?X],

 ?RAT>1,

 ?PrevSemesterCredits =

 sum{?CC| ?Transcript[semesterData->?Y],

 \+ ?X=?Y,

 ?Y[realAcademicTerm->?RAT2],

 ?RAT2 < ?RAT,

 ?Y[computed_credit_counted(?RAT)->?CC]},

 ?X[credit_counted->?CC2],

 ?CumC \is ?CC2+?PrevSemesterCredits.

?X[cumulative_contribution->?CumC]:-

 ?X:TranscriptSemesterData,

 ?X[actualAcademicTerm ->?AAT],

 ?AAT=1,

 !,

 ?X[numeric_contribution->?CC],

 ?CumC = ?CC.

?X[cumulative_contribution->?CumC]:-

 ?X:TranscriptSemesterData,

97

 ?X[realAcademicTerm ->?RAT],

 ?Transcript[semesterData->?X],

 ?RAT>1,

 ?PrevSemesterContribution =

 sum{?CC| ?Transcript[semesterData->?Y],

 \+ ?X=?Y,

 ?Y[realAcademicTerm->?RAT2],

 ?RAT2 < ?RAT,

 ?Y[computed_numeric_contribution(?RAT)->?CC]},

 ?X[numeric_contribution->?CC2],

 ?CumC \is ?CC2+?PrevSemesterContribution.

?X[cgpa->?CGPA]:-

 ?X:TranscriptSemesterData,

 ?X[cumulative_contribution->?CumC],

 ?X[cumulative_credits->?CC],

 ?CGPA \is ?CumC/?CC.

?X[actualAcademicTerm->?AAT]:-

 ?X:TranscriptSemesterData,

 ?X[whichYear-> ?Year, whichSemester -> ?Semester],

 (?Semester=fall; ?Semester=spring),

 ?TRANSCRIPT[semesterData->?X],

 ?AAT0 = count{ ?TSD |

 ?TRANSCRIPT[semesterData -> ?TSD],

 ?TSD[registrationStatus -> registered],

 ?TSD[whichYear-> ?Year1],

 ?TSD[whichSemester-> ?Semester1],

 (?Semester1 = fall ; ?Semester1 = spring),

 %semester_is_before(?Year1, ?Semester1, ?Year, ?Semester)

98

 },

 ?AAT \is ?AAT0 + 1.

 ?X[actualAcademicTerm->?AAT]:-

 ?X:TranscriptSemesterData,

 ?X[whichYear-> ?Year, whichSemester -> ?Semester],

 ?Semester=summer,

 ?TRANSCRIPT[semesterData->?X],

 ?AAT = count{ ?TSD |

 ?TRANSCRIPT[semesterData -> ?TSD],

 ?TSD[registrationStatus -> registered],

 ?TSD[whichYear-> ?Year1],

 ?TSD[whichSemester-> ?Semester1],

 (?Semester1 = fall ; ?Semester1 = spring),

 %semester_is_before(?Year1, ?Semester1, ?Year, ?Semester)

 }.

?X[realAcademicTerm->?AAT]:-

 ?X:TranscriptSemesterData,

 ?X[whichYear-> ?Year, whichSemester -> ?Semester],

 ?TRANSCRIPT[semesterData->?X],

 ?AAT0 = count{ ?TSD |

 ?TRANSCRIPT[semesterData -> ?TSD],

 ?TSD[registrationStatus -> registered],

 ?TSD[whichYear-> ?Year1],

 ?TSD[whichSemester-> ?Semester1],

 %semester_is_before(?Year1, ?Semester1, ?Year, ?Semester)

 },

 ?AAT \is ?AAT0 + 1.

99

 B2: Source Code for the Registration Component

%r2:- [+'D://Flora//transcript'],

 [+'D://Flora//student_instances'],

 [+'D://Flora//regular_transcript_instances'],

 [+'D://Flora//syllabus_instances'],

 [+'D://Flora//classroom_instances'],

 [+'D://Flora//Concepts'],

 [+'D://Flora//address_instances'],

 [+'D://Flora//course_instances'],

 [+'D://Flora//room_day_period_instances'],

 [+'D://Flora//instances'],

 [+'D://Flora//CourseCodes'],

 [+'D://Flora//utilities'],

 [+'D://Flora//regular_transcript_instances'],

 [+'D://Flora//constraints'],

 ['D://Flora//empty'>>m1],

 [+'D://Flora//course_opening_instances'>>m1],

 ['D://Flora//empty'>>m2].

%run(?RegistrationResult):-

 ?_RegReq[student->?Student,

 year->?Year,

 semester->?Semester]:RegistrationRequest,

 %run_registration(?Student, ?Year, ?Semester, ?RegistrationResult).

%run_registration(?Student, ?Year, ?Semester, ?RegistrationResult):-

 %t_del(m2, ?_),

 t_deleteall{course_assigned(?,?,?,?,?)@m2},

 %find_student_status(?Student, ?StudentStatus),

 %make_registration(?Student, ?StudentStatus, ?Year, ?Semester),

 !,

100

 ?RegistrationResult =

 setof{?SE_Course | ?RR[?_->?_]:RegistrationResult@m2,

 ?RR[courseOpening->?CO]@m2,

 ?CO[ofCourse->?Course]@m1,

 ?RR[syllabusEntry->?SE]@m2,

 ?SE_Course = (?SE,?Course)}.

%find_student_status(?Student, ?StudentStatus):-

 ?Student[currentAcademicSemester-> ?CAS],

 \if (?CAS=1)

 \then

 (?StudentStatus=satisfactory)

 \else (

 ?Student[mostRecentRealAcademicSemester -> ?MRRAS],

 ?_Transcript[student -> ?Student,

 semesterData -> ?_TSD[realAcademicTerm -> ?MRRAS,

 status -> ?StudentStatus

]]).

%make_registration(?Student, unsatisfactory,?Year,?Semester):-

 %make_registration_repeat_courses(5, ?Student,?Year,?Semester).

%make_registration(?Student, satisfactory,?Year,?Semester):-

 ?Student[currentAcademicSemester->?CAS],

 ?CAS=1,

 !,

 ?HowManyNewCourses = 5,

 %make_registration_new_courses(?HowManyNewCourses,

?Student,?Year,?Semester).

%make_registration(?Student, satisfactory,?Year,?Semester):-

 %failedCoursesStudentShouldTake(?Student, ?ListOfFailedCourses),

 ?ListOfFailedCourses[length->?HowManyFailedCourses]@\btp,

 %maxNumberOfCoursesStudentCanTake(?Student,?MaxCourses),

101

 ?HowManyNewCourses \is ?MaxCourses - ?HowManyFailedCourses,

 %make_registration_repeat_courses_list(?ListOfFailedCourses,

?Student,?Year,?Semester),

 %make_registration_new_courses(?HowManyNewCourses,

?Student,?Year,?Semester).

%make_registration(?Student, onProbation,?Year,?Semester):-

 %failedCoursesStudentShouldTake(?Student, ?ListOfFailedCourses),

 ?ListOfFailedCourses[length->?HowManyFailedCourses0]@\btp,

 %how_many_zero_one_credit(?ListOfFailedCourses,

?HowManyZeroOneCreditCourses),

 ?HowManyFailedCourses \is ?HowManyFailedCourses0 -

?HowManyZeroOneCreditCourses,

 %maxNumberOfCoursesStudentCanTake(?Student,?MaxCourses),

 ?HowManyNewCourses \is ?MaxCourses - ?HowManyFailedCourses,

 \if (?HowManyNewCourses>2)

 \then (?HowManyNewCoursesX = 2, ?HowManyOtherRepeatedCourses \is

?HowManyNewCourses-2)

 \else (?HowManyNewCoursesX = ?HowManyNewCourses,

?HowManyOtherRepeatedCourses = 0),

 %make_registration_repeat_courses_list(?ListOfFailedCourses,

?Student,?Year,?Semester),

 %make_registration_repeat_courses(?HowManyOtherRepeatedCourses,

?Student,?Year,?Semester),

 %make_registration_new_courses(?HowManyNewCoursesX,

?Student,?Year,?Semester).

%how_many_zero_one_credit(?ListOfFailedCourses,

?HowManyZeroOneCreditCourses):-

 ?ListOfFailedCourses=[],

 !,

 ?HowManyZeroOneCreditCourses = 0.

%how_many_zero_one_credit(?ListOfFailedCourses,

?HowManyZeroOneCreditCourses):-

 ?ListOfFailedCourses= [?SE|?RestSE],

 ?SE[course->?Course],

102

 ?Course[credits->?CR],

 (?CR=0 ; ?CR=1),

 !,

 %how_many_zero_one_credit(?RestSE, ?Temp),

 ?HowManyZeroOneCreditCourses \is ?Temp+1.

%how_many_zero_one_credit(?ListOfFailedCourses,

?HowManyZeroOneCreditCourses):-

 ?ListOfFailedCourses = [?SE|?RestSE],

 ?SE[course->?Course],

 ?Course[credits->?CR],

 ?CR>1,

 %how_many_zero_one_credit(?RestSE, ?HowManyZeroOneCreditCourses).

%maxNumberOfCoursesStudentCanTake(?Student,?M):-

 ?Student[currentAcademicSemester -> ?CAS],

 ?CAS = 1,

 !,

 ?Student[inProgram -> ?Program:AcademicProgram],

 ?Program[syllabus -> ?Syllabus: Syllabus],

 ?FirstYearFallSemesterSEs = setof { ?SE |

 ?Syllabus[syllabusEntry->?SE:SyllabusEntry],

 ?SE[whichYear -> freshman],

 ?SE[whichSemester -> fall] },

 ?FirstYearFallSemesterSEs[length->?M]@\btp.

%maxNumberOfCoursesStudentCanTake(?Student,?M):-

 %find_student_status(?Student, ?StudentStatus),

 ?Student[currentAcademicSemester -> ?CAS],

 ?PrevAcademicSemester \is ?CAS-1,

 ?Transcript[student -> ?Student],

 ?Transcript[semesterData ->?_TSD1[actualAcademicTerm ->

?PrevAcademicSemester,

103

 how_many_credited_courses_remaining ->

?HowManyCreditedCoursesRemaining,

 gpa -> ?GPA,

 cgpa -> ?CGPA

]: TranscriptSemesterData

],

 \if (?StudentStatus=satisfactory, ?HowManyCreditedCoursesRemaining =<7)

 \then (?M=?HowManyCreditedCoursesRemaining)

 \else (

 \if (?StudentStatus=satisfactory,(?CGPA>=3 ; ?GPA>=3))

 \then (?M=6)

 \else (

 ?M=5

)).

%make_registration_repeat_courses_list(?List, ?_Student,?_Year,?_Semester):-

?List=[],!.

%make_registration_repeat_courses_list([?SE_for_failed_course|

?RemainingFailedCourses], ?Student,?Year,?Semester):-

 %make_single_registration_specific_course(?SE_for_failed_course,?Student,

?Year, ?Semester),

 %make_registration_repeat_courses_list(?RemainingFailedCourses,

?Student,?Year,?Semester).

%make_registration_repeat_courses(?N, ?_Student,?_Year,?_Semester):-

 ?N=0.

%make_registration_repeat_courses(?N, ?Student,?Year,?Semester):-

 ?N=1,

 %make_single_registration_repeat_courses(?Student, ?Year, ?Semester).

%make_registration_repeat_courses(?N, ?Student,?Year,?Semester):-

 ?N>1,

 %make_single_registration_repeat_courses(?Student, ?Year, ?Semester),

104

 ?N1 \is ?N-1,

 %make_registration_repeat_courses(?N1, ?Student,?Year,?Semester).

%make_registration_new_courses(?N, ?_Student,?_Year,?_Semester):-

 ?N=0.

%make_registration_new_courses(?N, ?Student,?Year,?Semester):-

 ?N=1,

 %make_single_registration_new_courses(?Student, ?Year, ?Semester).

%make_registration_new_courses(?N, ?Student,?Year,?Semester):-

 ?N>1,

 %make_single_registration_new_courses(?Student, ?Year, ?Semester),

 ?N1 \is ?N-1,

 %make_registration_new_courses(?N1, ?Student,?Year,?Semester).

%sorted_grades([NG,F,D_MINUS,D,D_PLUS,C_MINUS,C,C_PLUS,B_MINUS,B,

B_PLUS,A_MINUS,A]).

%make_single_registration_specific_course(?SE_for_failed_course,?Student, ?Year,

?Semester):-

 %find_course_opening(?Student, ?SE_for_failed_course, no_check, ?CO1),

 ?CO1[ofCourse -> ?Course1]@m1,

 \+ course_assigned(?Student, ?Year, ?Semester, ?SE_for_failed_course, ?_Course

)@m2,

 \+ course_assigned(?Student, ?Year, ?Semester, ?_SE_for_failed_course,

?Course1)@m2,

 newoid{?RegResultID},

 t_insert{?RegResultID[student->?Student:Student,

 year-> ?Year,

 semester -> ?Semester:Semester,

 syllabusEntry -> ?SE_for_failed_course,

 courseOpening->?CO1:CourseOpening]:RegistrationResult}@m2,

 t_insert{course_assigned(?Student, ?Year, ?Semester, ?SE_for_failed_course,

?Course1)}@m2.

105

%make_single_registration_repeat_courses(?Student, ?Year, ?Semester):-

 %sorted_grades(?SG),

 %member3(?PrevGrade, ?SG),

 ?_Transcript[student -> ?Student,

 semesterData -> ?_TSD1[transcriptEntry -> ?_TE1[syllabusEntry ->

?SE1,

 letterGrade -> ?PrevGrade

]: TranscriptEntry

]

],

 %find_course_opening(?Student, ?SE1, no_check, ?CO1),

 ?CO1[ofCourse-> ?Course1]:CourseOpening@m1,

 \+ course_assigned(?Student, ?Year, ?Semester,?SE1, ?_Course1)@m2,

 \+ course_assigned(?Student, ?Year, ?Semester,?_SE1, ?Course1)@m2,

 newoid{?RegResultID},

 t_insert{?RegResultID[student->?Student:Student,

 year-> ?Year,

 semester -> ?Semester:Semester,

 syllabusEntry -> ?SE1,

 courseOpening->?CO1:CourseOpening]:RegistrationResult}@m2,

 t_insert{course_assigned(?Student, ?Year, ?Semester,?SE1, ?Course1)}@m2,

 ?Course1[credits -> ?Credits],

 \if (?Credits=0 ; ?Credits=1) \then

%make_single_registration_new_courses(?Student, ?Year, ?Semester).

%courses_not_taken_by_student(?Student,?CNT):-

 ?Student[mostRecentRealAcademicSemester-> ?MRRAS],

 ?MRRAS = 0,

 !,

 ?Student[inProgram -> ?Program]:Student,

106

 ?Program[syllabus-> ?Syllabus]:AcademicProgram,

 ?CNT = setof{ ?SE(asc) | ?Syllabus[syllabusEntry -> ?SE],

 \+(

 course_assigned(?Student, ?_Year, ?_Semester,?SE,

?_Course)@m2

)

 }.

%courses_not_taken_by_student(?Student,?CNT):-

 ?Student[mostRecentRealAcademicSemester-> ?MRRAS],

 ?Student[inProgram -> ?Program]:Student,

 ?Program[syllabus-> ?Syllabus]:AcademicProgram,

 ?Transcript[student -> ?Student]:Transcript,

 ?CNT = setof{ ?SE(asc) | ?Syllabus[syllabusEntry -> ?SE],

 \+ (

 ?Transcript[semesterData -> ?TSD:TranscriptSemesterData],

 ?TSD[transcriptEntry -> ?TE:TranscriptEntry],

 ?TSD[realAcademicTerm -> ?RAT],

 ?RAT =< ?MRRAS,

 ?TE[syllabusEntry -> ?SE]

),

 \+(

 course_assigned(?Student, ?_Year, ?_Semester,?SE,

?_Course)@m2

)

 }.

 %failedCoursesStudentShouldTake(?Student, ?ListOfFailedCourses):-

 ?Transcript[student -> ?Student]:Transcript,

 ?ListOfFailedCourses = setof { ?SE |

 ?Transcript[semesterData -> ?_TSD1[transcriptEntry ->

?_TE1[syllabusEntry -> ?SE

]: TranscriptEntry

107

]: TranscriptSemesterData

],

 %taken_SE_with_failing_grade(?Student, ?SE),

 %find_course_opening(?Student, ?SE, no_check, ?_CO)

 }.

%make_single_registration_new_courses(?Student, ?Year, ?Semester):-

 %courses_not_taken_by_student(?Student, ?SyllabusEntryList),

 ?SyllabusEntryList=[],

 !.

%make_single_registration_new_courses(?Student, ?Year, ?Semester):-

 %courses_not_taken_by_student(?Student, ?SyllabusEntryList0),

 %moveToFrontLowCreditCourses(?SyllabusEntryList0, ?SyllabusEntryList),

 %member3(?ASyllabusEntry, ?SyllabusEntryList),

 %find_course_opening(?Student, ?ASyllabusEntry, check, ?CO1),

 ?CO1[ofCourse-> ?Course1]:CourseOpening@m1,

 \+ course_assigned(?Student, ?Year, ?Semester,?_SE1, ?Course1)@m2,

 %studentTakenAllPrerequisites(?Student, ?Course1),

 newoid{?RegResultID},

 t_insert{?RegResultID[student->?Student:Student,

 year-> ?Year,

 semester -> ?Semester:Semester,

 syllabusEntry -> ?ASyllabusEntry,

 courseOpening->?CO1:CourseOpening]:RegistrationResult}@m2,

 t_insert{course_assigned(?Student, ?Year, ?Semester,?ASyllabusEntry,

?Course1)}@m2,

 ?Course1[credits -> ?Credits],

 \if (?Credits=0 ; ?Credits=1) \then

%make_single_registration_new_courses(?Student, ?Year, ?Semester).

%moveToFrontLowCreditCourses(?SyllabusEntryList0, ?SyllabusEntryList):-

 ?SyllabusEntryList0[length->?HowManyCoursesRemaining]@\btp,

108

 ?HowManyCoursesTakenThisSemester = count{?RR |

?RR:RegistrationResult@m2},

 (?HowManyCoursesRemaining+?HowManyCoursesTakenThisSemester)>12,

 !,

 ?SyllabusEntryList = ?SyllabusEntryList0.

%moveToFrontLowCreditCourses(?SyllabusEntryList0, ?SyllabusEntryList):-

 ?LowCreditCourseSEs = setof{ ?SE | %member3(?SE,?SyllabusEntryList0),

 ?SE[course->?Course],

 ?Course[credits->?Credits],

 ?Credits <2},

 %setSubtract(?SyllabusEntryList0, ?LowCreditCourseSEs, ?Temp),

 %appX(?LowCreditCourseSEs, ?Temp, ?SyllabusEntryList).

%studentTakenAllPrerequisites(?Student, ?Course):-

 ?Prerequisites = setof { ?Pre | ?Course[hasPrerequisite -> ?Pre]},

 %takenCoursesWithPassingGrade(?Student, ?Prerequisites).

%takenCoursesWithPassingGrade(?_Student,?Prerequisites):- ?Prerequisites=[],!.

%takenCoursesWithPassingGrade(?Student,[?Pre| ?OtherPrerequisites]):-

 %takenCourseWithPassingGrade(?Student, ?Pre),

 %takenCoursesWithPassingGrade(?Student,?OtherPrerequisites).

%takenCourseWithPassingGrade(?Student, ?Course):-

 %mostRecentGradeRealSem(?Student, ?Course, ?Grade),

 ?Grade : PassingGrade.

%find_course_opening(?Student, ?ASyllabusEntry, ?CheckPrevFlag, ?CO):-

 ?ASyllabusEntry[courseType -> TurkishOrHistoryCourse],

 \if (?Student[turkishOrForeign -> turkish])

 \then (

 ?Course : HistoryCourse,

 \if (?CheckPrevFlag = check)

 \then (

109

 \+ %takenCourseWithPassingGrade(?Student, ?Course)

)

)

 \else (?Course : TurkishCourse,

 \if (?CheckPrevFlag = check)

 \then (

 \+ %takenCourseWithPassingGrade(?Student, ?Course)

)

),

 ?CO[ofCourse -> ?Course]@m1.

%find_course_opening(?Student,?ASyllabusEntry, ?CheckPrevFlag, ?CO):-

 ?ASyllabusEntry[courseType -> CmpeAreaElective],

 !,

 ?Course : CmpeAreaElective,

 \if (?CheckPrevFlag = check)

 \then (\+ %takenCourseWithPassingGrade(?Student, ?Course)),

 \+ course_assigned(?Student, ?_Year, ?_Semester,?_ASyllabusEntry,

?Course)@m2,

 ?CO[ofCourse -> ?Course]@m1.

 %find_course_opening(?Student,?ASyllabusEntry,?CheckPrevFlag, ?CO):-

 ?ASyllabusEntry[courseType -> CmpeUniversityElective],

 !,

 ?Course : CmpeUniversityElective,

 \if (?CheckPrevFlag = check)

 \then (\+ %takenCourseWithPassingGrade(?Student, ?Course)),

 \+ course_assigned(?Student, ?_Year, ?_Semester,?_ASyllabusEntry,

?Course)@m2,

 ?CO[ofCourse -> ?Course]@m1.

 %find_course_opening(?Student,?ASyllabusEntry,?CheckPrevFlag, ?CO):-

 ?ASyllabusEntry[courseType -> ?CourseType],

110

 \if (?CourseType = NormalCourse)

 \then (?ASyllabusEntry[course -> ?Course],

)

 \else (?Course : ?CourseType,

),

 \if (?CheckPrevFlag = check)

 \then (\+ %takenCourseWithPassingGrade(?Student, ?Course)),

 ?CO[ofCourse -> ?Course]@m1.

%taken_SE_with_failing_grade(?Student, ?SE):-

 %mostRecentGradeSERealSem(?Student, ?SE, ?Grade),

 ?Grade: FailingGrade.

%taken_SE_with_passing_grade(?Student, ?SE):-

 %mostRecentGradeSERealSem(?Student, ?SE, ?Grade),

 ?Grade: PassingGrade.

%mostRecentGradeRealSem(?Student, ?Course, ?Grade):-

 ?Student[mostRecentRealAcademicSemester -> ?MRRAS],

 ?Transcript[student -> ?Student]:Transcript,

 %findMostRecentGradeRealSem(?Transcript, ?MRRAS, ?Course, ?Grade).

%findMostRecentGradeRealSem(?Transcript, ?Term, ?Course, ?Grade):-

 ?Transcript[semesterData -> ?TSD:TranscriptSemesterData],

 ?TSD[realAcademicTerm -> ?Term,

 transcriptEntry -> ?TE:TranscriptEntry],

 ?TE[courseTaken -> ?Course1,

 letterGrade -> ?Grade1],

 ?Course1 = ?Course,

 ?Grade = ?Grade1,

 !.

%findMostRecentGradeRealSem(?Transcript, ?Term, ?Course, ?Grade):-

 ?Term > 0,

111

 ?Term1 \is ?Term -1,

 %findMostRecentGradeRealSem(?Transcript, ?Term1, ?Course, ?Grade).

%mostRecentGradeSERealSem(?Student, ?SE, ?Grade):-

 ?Student[mostRecentRealAcademicSemester -> ?MRRAS],

 ?Transcript[student -> ?Student]:Transcript,

 %findMostRecentGradeSERealSem(?Transcript, ?MRRAS, ?SE, ?Grade).

%findMostRecentGradeSERealSem(?Transcript, ?Term, ?SE, ?Grade):-

 ?Transcript[semesterData -> ?TSD:TranscriptSemesterData],

 ?TSD[realAcademicTerm -> ?Term,

 transcriptEntry -> ?TE:TranscriptEntry],

 ?TE[syllabusEntry -> ?SE,

 letterGrade -> ?Grade], !.

%findMostRecentGradeSERealSem(?Transcript, ?Term, ?SE, ?Grade):-

 ?Term > 0,

 ?Term1 \is ?Term -1,

 %findMostRecentGradeSERealSem(?Transcript, ?Term1, ?SE, ?Grade).

112

 B3: Source Code for the Optimization Component

%r3:-

 [+'D://Flora//transcript'],

 [+'D://Flora//registration'],

 [+'D://Flora//student_instances'],

 [+'D://Flora//regular_transcript_instances'],

 [+'D://Flora//syllabus_instances'],

 [+'D://Flora//classroom_instances'],

 [+'D://Flora//Concepts'],

 [+'D://Flora//address_instances'],

 [+'D://Flora//course_instances'],

 [+'D://Flora//course_opening_instances'>>m1],

 [+'D://Flora//room_day_period_instances'],

 [+'D://Flora//instances'],

 [+'D://Flora//CourseCodes'],

 [+'D://Flora//utilities'],

 [+'D://Flora//demet_transcript_instances'],

 [+'D://Flora//regular_transcript_instances'],

 [+'D://Flora//constraints'],

 [+'D://Flora//empty'>>m1],

 [+'D://Flora//course_opening_instances'>>m1],

 [+'D://Flora//empty'>>m2],

 [+'D://Flora//empty'>>m3].

%how_many_clashes_all(?Student, ?Year, ?Semester, ?CO_list_all_sorted):-

 ?CO_list_all = setof { ?P |

 %how_many_clashes(?Student,?Year,?Semester,

?Course_CO_pair_list, ?HM),

 ?P = (?Course_CO_pair_list, ?HM)

 },

 %isort(?CO_list_all, ?CO_list_all_sorted),

113

 \if (mode(debug2)) \then (writeln (sorted - ?CO_list_all_sorted)@\prolog),

 %showCOsList(?CO_list_all_sorted).

%how_many_clashes(?Student, ?Year, ?Semester, ?Course_CO_pair_list, ?HM):-

 %courseOpeningsForStudent(?Student,?Year, ?Semester, ?Course_CO_pair_list),

 t_deleteall{CO_assigned_to_student(?Student,?Year, ?Semester, ?_CO)@m3},

 %insertCourseOpeningsForStudent(?Student,?Year,

?Semester,?Course_CO_pair_list),

 ?HM0 = sum { ?HMClashes |

 CO_assigned_to_student(?Student,?Year, ?Semester, ?CO1)@m3,

 CO_assigned_to_student(?Student,?Year, ?Semester, ?CO2)@m3,

 \+ (?CO1 = ?CO2),

 %howManyClashesTwoCO(?CO1, ?CO2, ?HMClashes)

 },

 ?HM \is ?HM0/2.

%howManyClashesTwoCO(?CO1, ?CO2, ?HM):-

 ?HM = sum { ?Z | ?CO1:CourseOpening@m1,

 ?CO1[teachingTimes -> ?RDPD1]@m1,

 ?RDPD1:RoomDayPeriodDuration@m1,

 ?RDPD1[day -> ?Day1, period -> ?Period1]@m1,

 ?CO2:CourseOpening@m1,

 ?CO2[teachingTimes -> ?RDPD2]@m1,

 ?RDPD2:RoomDayPeriodDuration@m1,

 ?RDPD2[day -> ?Day2, period -> ?Period2]@m1,

 ?Day1 = ?Day2,

 ?Period1 = ?Period2,

 ?Z=1}.

%courses_assigned_to_student(?Student,?Year, ?Semester,?Course_list):-

 ?Course_list = setof{ ?Course |

 ?RR:RegistrationResult@m2,

 ?RR[student -> ?Student,

114

 year -> ?Year,

 semester -> ?Semester,

 courseOpening -> ?CO]@m2,

 ?CO[ofCourse->?Course]@m1 }.

%courseOpeningsForStudent(?Student, ?Year, ?Semester, ?CO_list):-

 %courses_assigned_to_student(?Student,?Year, ?Semester,?Course_list),

 %courseOpeningsForStudent0(?Year, ?Semester,?Course_list, ?CO_list).

%courseOpeningsForStudent0(?_Year,?_Semester,?Course_list,

?Course_CO_pair_list):-

 ?Course_list =[],

 ?Course_CO_pair_list=[].

%courseOpeningsForStudent0(?Year,?Semester,[?Course|?Course_list],

?Course_CO_pair_list):-

 ?CO[ofCourse -> ?Course, year->?Year, semester->?Semester]@m1,

 ?Course_CO_pair_list = [(?Course,?CO) | ?Rest_CO_List],

 %courseOpeningsForStudent0(?Year, ?Semester, ?Course_list, ?Rest_CO_List).

%insertCourseOpeningsForStudent(?_Student,?_Year,?_Semester,

?Course_CO_pair_list):-

 ?Course_CO_pair_list = [].

%insertCourseOpeningsForStudent(?Student,?Year,?Semester,

[?Course_CO_pair|?Course_CO_pair_list]):-

 ?Course_CO_pair = (?_Course, ?CO),

 t_insert{ CO_assigned_to_student(?Student,?Year, ?Semester, ?CO) }@m3,

 %insertCourseOpeningsForStudent(?Student,?Year,?Semester,

?Course_CO_pair_list).

115

B4: Source Code for the Utilities and Constraints

load_instances:-

 [+'D://Flora//classroom_instances'],

 [+'D://Flora//address_instances'],

 [+'D://Flora//course_instances'],

 [+'D://Flora//room_day_period_instances'],

 [+'D://Flora//instances'],

 [+'D://Flora//course_opening_instances'],

 [+'D://Flora//CourseCodes'],

 [+'D://Flora//course_opening_requests'],

 [+'D://Flora//syllabus_instances'].

pp_COs :-

 ?_x = setof{ ?Y | ?Y = 1,

 ?CO[year->?Year,

 groupNo->?GroupNo,

 ofCourse->?OfCourse,

 semester->?Semester]:CourseOpening@m1,

 pp_CO(?CO, ?Year, ?GroupNo, ?OfCourse, ?Semester)

 }.

pp_CO(?CO, ?Year, ?GroupNo, ?OfCourse, ?Semester):-

 writeln('\#:CourseOpening[')@\prolog,

 write(' groupNo ->')@\prolog, write(?GroupNo)@\prolog, writeln(',')@\prolog,

 write(' ofCourse -> ')@\prolog, write(?OfCourse)@\prolog, writeln(',')@\prolog,

 write(' year -> ')@\prolog, write(?Year)@\prolog, writeln(',')@\prolog,

 write(' semester -> ')@\prolog, write(?Semester)@\prolog, writeln(',')@\prolog,

 ?_X = setof{ ?Y | ?Y = 1,

 ?CO[teachingTimes->?TT]@m1,

 ?TT[room->?Room, day->?Day, period->?Period,

 duration->?Duration]@m1,

116

 write(' teachingTimes ->')@\prolog, writeln('\#[')@\prolog,

 write(' room -> ')@\prolog,

write(?Room)@\prolog, write(',')@\prolog, nl@\prolog,

 write(' day -> ')@\prolog, write(?Day)@\prolog,

write(',')@\prolog, nl@\prolog,

 write(' period -> ')@\prolog,

write(?Period)@\prolog, write(',')@\prolog, nl@\prolog,

 write(' duration -> ')@\prolog,

write(?Duration)@\prolog, writeln('],')@\prolog,

 nl@\prolog,

 nl@\prolog },

 writeln('].')@\prolog.

member2(?X,[?Y|?_A]):-?X=?Y.

member2(?X,[?_H|?R]):-member2(?X,?R).

%member3(?X,[?Y|?_A]):-?X=?Y.

%member3(?X,[?_H|?R]):-%member3(?X,?R).

member5(?X,[(?_,?Y, ?_2, ?_3, ?_4)|?_A]):-?X=?Y,!.

member5(?X,[(?_,?_1, ?Y, ?_3, ?_4)|?_A]):-?X=?Y,!.

member5(?X,[(?_,?_1, ?_2, ?Y, ?_4)|?_A]):-?X=?Y,!.

member5(?X,[(?_,?_1, ?_2, ?_3, ?Y)|?_A]):-?X=?Y,!.

member5(?X,[?_H|?R]):-member5(?X,?R).

%printlist([]):- nl@\prolog.

%printlist([?H|?T]):- writeln(?H)@\prolog, %printlist(?T).

app([],?L,?L2):-?L2=?L.

app([?H1|?T],?L,[?H2|?T2]):- ?H1=?H2 , app(?T,?L,?T2).

%appX([],?L,?L2):-?L2=?L.

%appX([?H1|?T],?L,[?H2|?T2]):- ?H1=?H2 , %appX(?T,?L,?T2).

%setSubtract(?L1, [],?L2):- ?L2=?L1, !.

%setSubtract(?L1, [?H|?T], ?Result):- ?L1[delete(?H)-> ?Temp]@\btp,

 %setSubtract(?Temp, ?T, ?Result).

117

%semester_is_before(?Year1, ?_Semester1, ?Year2, ?_Semester2):-

?Year1 < ?Year2, !.

%semester_is_before(?Year1, ?Semester1, ?Year2, ?Semester2):- ?Year1 = ?Year2,

 ?Semester1=spring,

 (?Semester2 = summer ; ?Semester2 = fall),

 !.

%semester_is_before(?Year1, ?Semester1, ?Year2, ?Semester2):- ?Year1 = ?Year2,

 ?Semester1=summer,

 ?Semester2 = fall.

%year_semester_subtract(?Y1,?S1,?Y2,?S2, ?R):- ?Y1=?Y2, ?S1=?S2, ?R=0, !.

%year_semester_subtract(?Y1,?S1,?Y2,?S2, ?R):-

%semester_is_before(?Y2,?S2,?Y1,?S1),

 %get_sem_before(?Y1,?S1, ?PrevYear, ?PrevSem),

 %year_semester_subtract(?PrevYear,?PrevSem, ?Y2,

?S2, ?Temp),

 ?R \is ?Temp + 1.

%get_sem_before(?Y1,?S1, ?PrevYear, ?PrevSem):- ?S1=fall,

 !,

 ?PrevSem = spring,

 ?PrevYear = ?Y1.

%get_sem_before(?Y1,?S1, ?PrevYear, ?PrevSem):- ?S1=spring,

 !,

 ?PrevSem = fall,

 ?PrevYear \is ?Y1-1.

%showCOs(?Course_CO_pair_list):- ?Course_CO_pair_list = [],

writeln(' ')@\prolog.

%showCOs(?Course_CO_pair_list):-

 ?Course_CO_pair_list = [?CourseCOPair|?CourseCOPair_list],

 ?CourseCOPair = (?Course, ?CO),

 ?CO:CourseOpening@m1,

118

 ?TeachingTimes = setof {?TT | ?CO[teachingTimes -> ?TT]@m1},

 write(?Course - ' ')@\prolog,

 %showTeachingTimes(?TeachingTimes),

 writeln(' ')@\prolog,

 %showCOs(?CourseCOPair_list).

%showCOsList(?X):- ?X=[], nl@\prolog.

%showCOsList([?First|?Rest]):-

 ?First = (?Course_CO_pair_list , ?HM_Clashes),

 %showCOs(?Course_CO_pair_list),

 writeln([with,?HM_Clashes, clashes])@\prolog,

 writeln('**********************************')@\prolog,

 %showCOsList(?Rest).

%showTeachingTimes(?TT_list):- ?TT_list = [], writeln(' ==== ')@\prolog.

%showTeachingTimes([?TT|?TT_list]):-

 ?TT: RoomDayPeriodDuration@m1,

 ?TT[day -> ?Day, period -> ?Period]@m1,

 write(?Day - ?Period - ' ')@\prolog,

 %showTeachingTimes(?TT_list).

%showAllCOs(?COs):-

 ?COs = setof {?X | ?CO:CourseOpening@m1,

 ?CO[ofCourse->?Course]@m1,

 ?X= (?Course, ?CO)}, %showCOs(?COs).

%isort([],?R):- ?R=[], !.

%isort([?H|?T], ?Result):-

 %isort(?T,?Temp),

 %insert(?H, ?Temp, ?Result).

%insert(?X,[],?R):- ?R = [?X], !.

%insert(?X,[?H|?T],?R):- %is_smaller_or_equal(?X,?H),

 !,

119

 ?R = [?X, ?H | ?T].

%insert(?X,[?H|?T],?R):- %insert(?X, ?T, ?Temp),

 ?R = [?H | ?Temp].

%is_smaller_or_equal(?F,?S):- ?F=(?_CO_LIST1, ?HM1),

 ?S=(?_CO_LIST2, ?HM2),

 ?HM1 =< ?HM2.

%alreadyTakenRDPD(?Room, ?Day, ?Period):-

 ?_RDPD[room->?Room, day->?Day,

 period->?Period]:RoomDayPeriodDuration@m1,!.

%onWednesdayAfternoon(?Day,?Period):-

 ?Day=wednesday,

 (?Period = 7 ; ?Period = 8).

%clashesWithSameYearCourse(?Program, ?Course1,?Day1, ?Period1):-

 ?_CourseOpening[ofCourse->?Course2, teachingTimes->?_RDPD[day-

>?Day2,period->?Period2]]:CourseOpening@m1,

 ?Course1 \= ?Course2,

 \+(?Course1[hasPrerequisite->?Course2]),

 \+(?Course2[hasPrerequisite->?Course1]),

 ?Day1 = ?Day2,

 ?Period1 = ?Period2,

 ?Program: AcademicProgram,

 ?Program[syllabus -> ?Syllabus],

 %courseInSyllabus(?Syllabus, ?_SyllabusEntry1, ?Course1, ?Year1,

?Semester1,?CourseType1),

 %courseInSyllabus(?Syllabus, ?_SyllabusEntry2, ?Course2, ?Year2,

?Semester2,?CourseType2),

 ((?Year1 = ?Year2,?Semester1 = ?Semester2, ?CourseType1 = NormalCourse,

?CourseType2=NormalCourse) ;

 (3=4, ?CourseType1 = CmpeAreaElective, ?CourseType2 = CmpeAreaElective);

 (3=4, ?CourseType1 = CmpeAreaElective, ?Year2 = senior);

 (3=4, ?CourseType2 = CmpeAreaElective, ?Year1 = senior)),

120

 !.

%courseInSyllabus(?Syllabus, ?SyllabusEntry, ?Course, ?Year,

?Semester,?CourseType):-

 ?Syllabus:Syllabus,

 ?Syllabus[syllabusEntry -> ?SyllabusEntry],

 ?SyllabusEntry[course -> ?Course,

 whichYear -> ?Year,

 whichSemester -> ?Semester,

 courseType -> ?CourseType],

 !.

121

Appendix C: Source Code for the Instances

C1: Instances of the Transcript Knowledge Base

ayse_transcript: Transcript.

ayse_transcript[student-> std066161,

 syllabus -> cmpeUndergraduateSyllabus,

 semesterData -> ayse_aa1,

 semesterData -> ayse_aa2,

 semesterData -> ayse_aa3,

 semesterData -> ayse_aa4,

 semesterData -> ayse_aa5,

 semesterData -> ayse_aa6,

 semesterData -> ayse_aa7,

 semesterData -> ayse_aa8,

 registrationStatus -> registered

].

ayse_aa1 : TranscriptSemesterData.

ayse_aa1[

 whichYear->2006,

 whichSemester->fall,

 registrationStatus -> registered

].

ayse_aa1 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25711,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25712,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25713,

 letterGrade-> D]:TranscriptEntry,

122

 \#[syllabusEntry-> SE_25714,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25715,

 letterGrade-> D]:TranscriptEntry

 }

].

ayse_aa2 : TranscriptSemesterData.

ayse_aa2[

 whichYear->2007,

 whichSemester->spring,

 registrationStatus -> registered

].

ayse_aa2 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25721,

 letterGrade-> S]:TranscriptEntry,

 \#[syllabusEntry-> SE_25722,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25723,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25724,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25725,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25726,

 actualCourse->hist280,

 letterGrade-> A]:TranscriptEntry

 }

].

123

ayse_aa3 : TranscriptSemesterData.

ayse_aa3[

 whichYear->2007,

 whichSemester->fall,

 registrationStatus -> registered

].

ayse_aa3 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25731,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25732,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25733,

 letterGrade-> D_PLUS]:TranscriptEntry,

 \#[syllabusEntry-> SE_25734,

 letterGrade-> C_MINUS]:TranscriptEntry,

 \#[syllabusEntry-> SE_25735,

 letterGrade-> C]:TranscriptEntry

 }

].

ayse_aa4 : TranscriptSemesterData.

ayse_aa4[

 whichYear->2008,

 whichSemester->spring,

 registrationStatus -> registered

].

ayse_aa4 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25741,

124

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25742,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25743,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25744,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25745,

 actualCourse->chem101,

 letterGrade-> A]:TranscriptEntry

 }

].

ayse_aa5 : TranscriptSemesterData.

ayse_aa5[

 whichYear->2008,

 whichSemester->fall,

 registrationStatus -> registered

].

ayse_aa5 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25751,

 letterGrade-> C]:TranscriptEntry,

 \#[syllabusEntry-> SE_25752,

 letterGrade-> D]:TranscriptEntry,

 \#[syllabusEntry-> SE_25753,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25754,

 letterGrade-> C_MINUS]:TranscriptEntry,

 \#[syllabusEntry-> SE_25755,

125

 letterGrade-> B_PLUS]:TranscriptEntry

 }

].

ayse_aa6 : TranscriptSemesterData.

ayse_aa6[

 whichYear->2009,

 whichSemester->spring,

 registrationStatus -> registered

].

ayse_aa6 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25761,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25762,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25763,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25764,

 letterGrade-> A_MINUS]:TranscriptEntry,

 \#[syllabusEntry-> SE_25765,

 actualCourse->nutd121,

 letterGrade-> B_PLUS]:TranscriptEntry

 }

].

ayse_aa7 : TranscriptSemesterData.

ayse_aa7[

 whichYear->2009,

 whichSemester->fall,

 registrationStatus -> registered].

126

ayse_aa7 [

 transcriptEntry-> {

 \#[syllabusEntry-> SE_25772,

 actualCourse->cmpe418 ,

 letterGrade-> B_PLUS]:TranscriptEntry,

 \#[syllabusEntry-> SE_25773,

 actualCourse->cmpe466,

 letterGrade-> B]:TranscriptEntry,

 \#[syllabusEntry-> SE_25774,

 actualCourse->cmpe415,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25775,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25776,

 letterGrade-> A]:TranscriptEntry

 }

].

ayse_aa8 : TranscriptSemesterData.

ayse_aa8[

 whichYear->2010,

 whichSemester->spring,

 registrationStatus -> registered

].

ayse_aa8 [

 transcriptEntry-> { \#[syllabusEntry-> SE_25781,

 actualCourse->cmpe423,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25782,

127

 actualCourse->cmpe416,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25783,

 actualCourse->soc101,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25784,

 actualCourse->psy101,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25785,

 letterGrade-> A]:TranscriptEntry,

 \#[syllabusEntry-> SE_25771,

 letterGrade-> S]:TranscriptEntry,

 \#[syllabusEntry-> SE_25777,

 actualCourse->ieng355,

 letterGrade-> B]:TranscriptEntry

 }

].

128

C2: Instances of the Registration Knowledge Base

cmpe100:Course[

 courseCode->"cmpe100",

 courseName->"Introduction to Computer Engineering",

 // hasPrerequisite->none,

 lecture_hours->2,

 lab_hours->0,

 credits->0,

 instructionLanguage->english,

 ects->2].

cmpe101: Course [

 courseCode->"cmpe101",

 courseName->"Foundations of Computer Engineering",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

cmpe108: Course [

 courseCode->"cmpe108",

 courseName->"Algorithms and Programming",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

129

cmpe110: Course [

 courseCode->"cmpe110",

 courseName->"Fundamentals of Programming",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

math163: Course [

 courseCode->"math163",

 courseName->"Discrete Mathematics",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->5].

engl191: Course [

 courseCode->"engl191",

 courseName->"Communication in English I",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->4].

130

math151: Course [

 courseCode->"math151",

 courseName->"Calculus I",

 // hasPrerequisite->none,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

phys101: Course [

 courseCode->"phys101",

 courseName->"Physics I",

 // hasPrerequisite->none,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

cmpe112: Course [

 courseCode->"cmpe112",

 courseName->"Programming Fundamentals",

 hasPrerequisite->cmpe101,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

131

engl192: Course [

 courseCode->"engl192",

 courseName->"Communication in English II",

 hasPrerequisite->engl191,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->4].

math152: Course [

 courseCode->"math152",

 courseName->"Calculus II",

 hasPrerequisite->math151,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

phys102: Course [

 courseCode->"phys102",

 courseName->"Physics II",

 hasPrerequisite->phys101,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

132

tusl181: Course [

 courseCode->"tusl181",

 courseName->"Turkish as a second language",

 // hasPrerequisite->none,

 lecture_hours->2,

 lab_hours->0,

 credits->2,

 instructionLanguage->english,

 ects->3].

hist280: Course [

 courseCode->"hist280",

 courseName->"History of Turkish Reforms",

 // hasPrerequisite->none,

 lecture_hours->2,

 lab_hours->0,

 credits->2,

 instructionLanguage->turkish,

 ects->3].

cmpe223: Course [

 courseCode->"cmpe223",

 courseName->"Digital Logic Design",

 hasPrerequisite->math163,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

133

cmpe231: Course [

 courseCode->"cmpe231",

 courseName->"Data Structures",

 hasPrerequisite->cmpe112,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

cmpe211: Course [

 courseCode->"cmpe211",

 courseName->"Object-Oriented Programming",

 hasPrerequisite->cmpe112,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

engl201: Course [

 courseCode->"engl201",

 courseName->"Communication skills",

 hasPrerequisite->engl192,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->4].

134

math241: Course [

 courseCode->"math241",

 courseName->"Linear Algebra and Ordinary Diff. Equations",

 hasPrerequisite->math151,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe224: Course [

 courseCode->"cmpe224",

 courseName->"Digital Logic System",

 hasPrerequisite->cmpe223,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

cmpe226: Course [

 courseCode->"cmpe226",

 courseName->"Electronics for Computer Engineers",

 hasPrerequisite->math241,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

135

cmpe242: Course [

 courseCode->"cmpe242",

 courseName->"Operating Systems",

 hasPrerequisite->cmpe112,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

math373: Course [

 courseCode->"math373",

 courseName->"Numerical Analysis for Engineers",

 hasPrerequisite->math241,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

biol124: Course [

 courseCode->"biol124",

 courseName->"Introduction to Molecular Biology & Genetics ",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

136

chem101: Course [

 courseCode->"chem101",

 courseName->"General Chemistry",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

biol105: Course [

 courseCode->"biol105",

 courseName->"Biological Basis of Behavior",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

biol316: Course [

 courseCode->"biol316",

 courseName->"Environmental Management",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->6].

137

cmpe323: Course [

 courseCode->"cmpe323",

 courseName->"Microprocessors",

 hasPrerequisite->cmpe224,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

cmpe343: Course [

 courseCode->"cmpe343",

 courseName->"Systems Programming",

 hasPrerequisite->cmpe242,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe371: Course [

 courseCode->"cmpe371",

 courseName->"Analysis of Algorithms",

 hasPrerequisite->cmpe231,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

138

cmpe321: Course [

 courseCode->"cmpe321",

 courseName->"Basics of Signals and Systems",

 hasPrerequisite->cmpe226,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

math322: Course [

 courseCode->"math322",

 courseName->"Probability and Statistical Methods",

 hasPrerequisite->math151,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->5].

cmpe324: Course [

 courseCode->"cmpe324",

 courseName->"Computer Architecture and Organization",

 hasPrerequisite->cmpe224,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

139

cmpe344: Course [

 courseCode->"cmpe344",

 courseName->"Computer Networks",

 hasPrerequisite->cmpe343,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

cmpe354: Course [

 courseCode->"cmpe354",

 courseName->"Database Management Systems",

 hasPrerequisite->cmpe231,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe318: Course [

 courseCode->"cmpe318",

 courseName->"Principles of Programming Languages",

 hasPrerequisite->cmpe211,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

140

cmpe400: Course [

 courseCode->"cmpe400",

 courseName->"Summer Training",

 // hasPrerequisite->none,

 lecture_hours->0,

 lab_hours->0,

 credits->0,

 instructionLanguage->english,

 ects->1].

cmpe418: Course [

 courseCode->"cmpe418",

 courseName->"Internet Programming",

 hasPrerequisite->cmpe354,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe415: Course [

 courseCode->"cmpe415",

 courseName->"Visual Programming",

 hasPrerequisite->cmpe354,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

141

cmpe411: Course [

 courseCode->"cmpe411",

 courseName->"Information Security",

 hasPrerequisite->cmpe354,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe416: Course [

 courseCode->"cmpe416",

 courseName->"Object-Oriented Programming & Graphical User Interfaces",

 hasPrerequisite->cmpe354,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe423: Course [

 courseCode->"cmpe423",

 courseName->"Embedded Systems",

 hasPrerequisite->cmpe354,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

142

cmpe466: Course [

 courseCode->"cmpe466",

 courseName->"Computer Graphics",

 hasPrerequisite->cmpe354,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe471: Course [

 courseCode->"cmpe471",

 courseName->"Automata Theory",

 hasPrerequisite->math163,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->6].

cmpe405: Course [

 courseCode->"cmpe405",

 courseName->"Graduation Project I",

 // hasPrerequisite->none,

 lecture_hours->0,

 lab_hours->0,

 credits->1,

 instructionLanguage->english,

 ects->3].

143

ieng355: Course [

 courseCode->"ieng355",

 courseName->"Ethics in Engineering",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->4].

phil401: Course [

 courseCode->"phil401",

 courseName->"Ethics in Professional Life",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->4].

phil215: Course [

 courseCode->"phil215",

 courseName->"Applied Ethics",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->4].

144

econ101: Course [

 courseCode->"econ101",

 courseName->"Introduction to Economics I",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->4].

fina301: Course [

 courseCode->"fina301",

 courseName->"Financial Management",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->4].

ieng450: Course [

 courseCode->"ieng450",

 courseName->"Management",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->5].

145

ieng420: Course [

 courseCode->"ieng420",

 courseName->"Engineering Economy",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->5].

nutd121: Course [

 courseCode->"nutd121",

 courseName->"Healthy Living and Nutrition",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->0,

 credits->3,

 instructionLanguage->english,

 ects->4].

soc101: Course [

 courseCode->"soc101",

 courseName->"Sociology",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->4].

146

psy101: Course [

 courseCode->"psy101",

 courseName->"psychology",

 // hasPrerequisite->none,

 lecture_hours->3,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->4].

cmpe406: Course [

 courseCode->"cmpe406",

 courseName->"Graduation Project II",

 hasPrerequisite->cmpe405,

 lecture_hours->0,

 lab_hours->1,

 credits->3,

 instructionLanguage->english,

 ects->7].

cmpe405: CmpeGraduationProject1.

cmpe406: CmpeGraduationProject2.

cmpe400: CmpeSummerTraining.

cmpe466: CmpeAreaElective.

cmpe423: CmpeAreaElective.

cmpe416: CmpeAreaElective.

cmpe415: CmpeAreaElective.

cmpe411: CmpeAreaElective.

cmpe418: CmpeAreaElective.

cmse321: CmpeAreaElective.

cmse326: CmpeAreaElective.

147

cmse323: CmpeAreaElective.

biol316: CmpeScienceCourse.

biol105: CmpeScienceCourse.

biol124: CmpeScienceCourse.

chem101: CmpeScienceCourse.

econ101: CmpeFinanceCourse.

fina301: CmpeFinanceCourse.

ieng450: CmpeFinanceCourse.

ieng420: CmpeFinanceCourse.

nutd121: CmpeUniversityElective.

psy101: CmpeUniversityElective.

soc101: CmpeUniversityElective.

ieng355: CmpeEthicsCourse.

phil401: CmpeEthicsCourse.

phil215: CmpeEthicsCourse.

hist280: HistoryCourse.

tusl181: TurkishCourse.

cmse321: Course [

 courseCode->"cmse321",

 courseName->"Software Requirements Analysis and Specifications",

 // hasPrerequisite->none,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

148

cmse323: Course [

 courseCode->"cmse323",

 courseName->"Human Computer Interaction",

 // hasPrerequisite->none,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

cmse326: Course [

 courseCode->"cmse326",

 courseName->"Software Quality Assurance & Testing",

 // hasPrerequisite->none,

 lecture_hours->4,

 lab_hours->1,

 credits->4,

 instructionLanguage->english,

 ects->7].

std066161 : Student [id->"066161",

 gender->female,

 date_of_birth->"1987-11-13"^^\date,

 name->"Ayse",

 lastName->"Demir",

 address->\#[street->"Meydan", city->"Magosa", country-

>"Turkey"]:Address

].

std066161 : Student [yearEnrolled->2006,

 inProgram->cmpeUndergraduateProgram,

 semesterEnrolled->fall,

 nationality-> turkish].

149

C3: Instances of the Curriculum (syllabus and curriculum are used

interchangeably)

cmpeUndergraduateSyllabus: Syllabus [

 forProgram -> cmpeUndergraduateProgram,

 syllabusEntry -> { SE_25711[whichYear->freshman,

 whichSemester->fall,

 referenceCode->"25711",

 course->cmpe101,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25712[whichYear->freshman,

 whichSemester->fall,

 referenceCode->"25712",

 course->math163,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25713[whichYear->freshman,

 whichSemester->fall,

 referenceCode->"25713",

 course->engl191,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25714[whichYear->freshman,

 whichSemester->fall,

 referenceCode->"25714",

 course->math151,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25715[whichYear->freshman,

 whichSemester->fall,

 referenceCode->"25715",

 course->phys101,

 courseType-> NormalCourse]:NormalSyllabusEntry,

150

 SE_25721[whichYear->freshman,

 whichSemester->spring,

 referenceCode->"25721",

 course->cmpe100,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25722[whichYear->freshman,

 whichSemester->spring,

 referenceCode->"25722",

 course->cmpe112,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25723[whichYear->freshman,

 whichSemester->spring,

 referenceCode->"25723",

 course->engl192,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25724[whichYear->freshman,

 whichSemester->spring,

 referenceCode->"25724",

 course->math152,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25725[whichYear->freshman,

 whichSemester->spring,

 referenceCode->"25725",

 course->phys102,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25726[whichYear->freshman,

 whichSemester->spring,

 referenceCode->"25726",

 course->{tusl181,hist280},

151

 courseType->

 TurkishOrHistoryCourse]:TurkishOrHistorySyllabusEntry,

 SE_25731[whichYear->sophomore,

 whichSemester->fall,

 referenceCode->"25731",

 course->cmpe223,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25732[whichYear->sophomore,

 whichSemester->fall,

 referenceCode->"25732",

 course->cmpe231,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25733[whichYear->sophomore,

 whichSemester->fall,

 referenceCode->"25733",

 course->cmpe211,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25734[whichYear->sophomore,

 whichSemester->fall,

 referenceCode->"25734",

 course->engl201,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25735[whichYear->sophomore,

 whichSemester->fall,

 referenceCode->"25735",

 course->math241,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25741[whichYear->sophomore,

 whichSemester->spring,

152

 referenceCode->"25741",

 course->cmpe224,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25742[whichYear->sophomore,

 whichSemester->spring,

 referenceCode->"25742",

 course->cmpe226,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25743[whichYear->sophomore,

 whichSemester->spring,

 referenceCode->"25743",

 course->cmpe242,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25744[whichYear->sophomore,

 whichSemester->spring,

 referenceCode->"25744",

 course->math373,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25745[whichYear->sophomore,

 whichSemester->spring,

 referenceCode->"25745",

 courseType->

 CmpeScienceCourse]:RestrictedElectiveScienceSyllabusEntry,

 SE_25751[whichYear->junior,

 whichSemester->fall,

 referenceCode->"25751",

 course->cmpe323,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25752[whichYear->junior,

153

 whichSemester->fall,

 referenceCode->"25752",

 course->cmpe343,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25753[whichYear->junior,

 whichSemester->fall,

 referenceCode->"25753",

 course->cmpe371,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25754[whichYear->junior,

 whichSemester->fall,

 referenceCode->"25754",

 course->cmpe321,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25755[whichYear->junior,

 whichSemester->fall,

 referenceCode->"25755",

 course->math322,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25761[whichYear->junior,

 whichSemester->spring,

 referenceCode->"25761",

 course->cmpe324,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25762[whichYear->junior,

 whichSemester->spring,

 referenceCode->"25762",

 course->cmpe344,

 courseType-> NormalCourse]:NormalSyllabusEntry,

154

 SE_25763[whichYear->junior,

 whichSemester->spring,

 referenceCode->"25763",

 course->cmpe354,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25764[whichYear->junior,

 whichSemester->spring,

 referenceCode->"25764",

 course->cmpe318,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25765[whichYear->junior,

 whichSemester->spring,

 referenceCode->"25765",

 courseType->

 CmpeUniversityElective]:UniversityElectiveSyllabusEntry,

 SE_25771[whichYear->senior,

 whichSemester->fall,

 referenceCode->"25771",

 course->cmpe400,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25772[whichYear->senior,

 whichSemester->fall,

 referenceCode->"25772",

 courseType-> CmpeAreaElective]:AreaElectiveSyllabusEntry,

 SE_25773[whichYear->senior,

 whichSemester->fall,

 referenceCode->"25773",

 courseType-> CmpeAreaElective]:AreaElectiveSyllabusEntry,

 SE_25774[whichYear->senior,

155

 whichSemester->fall,

 referenceCode->"25774",

 courseType-> CmpeAreaElective]:AreaElectiveSyllabusEntry,

 SE_25775[whichYear->senior,

 whichSemester->fall,

 referenceCode->"25775",

 course->cmpe471,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25776[whichYear->senior,

 whichSemester->fall,

 referenceCode->"25776",

 course->cmpe405,

 courseType-> NormalCourse]:NormalSyllabusEntry,

 SE_25777[whichYear->senior,

 whichSemester->fall,

 referenceCode->"25777",

 courseType->CmpeEthicsCourse]:EthicsElectiveSyllabusEntry,

 SE_25781[whichYear->senior,

 whichSemester->spring,

 referenceCode->"25781",

 courseType-> CmpeAreaElective]:AreaElectiveSyllabusEntry,

 SE_25782[whichYear->senior,

 whichSemester->spring,

 referenceCode->"25782",

 courseType-> CmpeAreaElective]:AreaElectiveSyllabusEntry,

 SE_25783[whichYear->senior,

 whichSemester->spring,

 referenceCode->"25783",

 courseType->

156

 CmpeUniversityElective]:UniversityElectiveSyllabusEntry,

 SE_25784[whichYear->senior,

 whichSemester->spring,

 referenceCode->"25784",

 courseType->

 CmpeFinanceCourse]:RestrictedElectiveFinanceSyllabusEntry,

 SE_25785[whichYear->senior,

 whichSemester->spring,

 referenceCode->"25785",

 course->cmpe406,

 courseType-> NormalCourse]:NormalSyllabusEntry

 }].

SE_25772[course -> ?C]:- ?C:CmpeAreaElective.

SE_25773[course -> ?C]:- ?C:CmpeAreaElective.

SE_25774[course -> ?C]:- ?C:CmpeAreaElective.

SE_25781[course -> ?C]:- ?C:CmpeAreaElective.

SE_25782[course -> ?C]:- ?C:CmpeAreaElective.

SE_25745: RestricredElectiveScienceSyllabusEntry.

SE_25745[course->?C]:- ?C:CmpeScienceCourse.

SE_25784: RestricredElectiveFinanceSyllabusEntry.

SE_25784[course->?C]:- ?C:CmpeFinanceCourse.

SE_25765: UniversityElectiveSyllabusEntry.

SE_25765[course -> ?C]:- ?C:CmpeUniversityElective.

SE_25783: UniversityElectiveSyllabusEntry.

SE_25783[course -> ?C]:- ?C:CmpeUniversityElective.

SE_25777: EthicsElectiveSyllabusEntry.

SE_25777[course -> ?C]:- ?C:CmpeEthicsCourse.

SE_25726: TurkishOrHistorySyllabusEntry.

157

C4: Other Related Instances

A:Grade.

A_MINUS:Grade.

B_PLUS:Grade.

B:Grade.

B_MINUS:Grade.

C_PLUS:Grade.

C:Grade.

C_MINUS:Grade.

D_PLUS:Grade.

D:Grade.

D_MINUS:Grade.

F:Grade.

W:Grade.

NG:Grade.

I:Grade.

S:Grade.

U:Grade.

A:RealGrade.

A_MINUS:RealGrade.

B_PLUS:RealGrade.

B:RealGrade.

B_MINUS:RealGrade.

C_PLUS:RealGrade.

C:RealGrade.

C_MINUS:RealGrade.

D_PLUS:RealGrade.

D:RealGrade.

D_MINUS:RealGrade.

158

F:RealGrade.

NG:RealGrade.

W:FailingGrade.

F:FailingGrade.

NG:FailingGrade.

U:FailingGrade.

D_MINUS:FailingGrade.

A:PassingGrade.

A_MINUS:PassingGrade.

B_PLUS:PassingGrade.

B:PassingGrade.

B_MINUS:PassingGrade.

C_PLUS:PassingGrade.

C:PassingGrade.

C_MINUS:PassingGrade.

D_PLUS:PassingGrade.

D:PassingGrade.

S:PassingGrade.

registered: RegistrationStatus.

leaveOfAbsence: RegistrationStatus.

graduated: RegistrationStatus.

unsatisfactory: Status.

onProbation: Status.

satisfactory: Status.

dismissed: Status.

turkish: Nationality.

turkish_cypriot: Nationality.

nigerian: Nationality.

iranian: Nationality.

159

turkish: TurkishOrForeign.

foreign: TurkishOrForeign.

male: Gender.

female: Gender.

fall:Semester.

spring:Semester.

summer:Semester.

freshman:YearType.

sophomore: YearType.

junior: YearType.

senior:YearType.

monday:Day.

tuesday:Day.

wednesday:Day.

thursday:Day.

friday:Day.

turkish: Language.

english: Language.

before(monday,wednesday):-\true.

before(monday,thursday):-\true.

before(tuesday,thursday):-\true.

before(tuesday,friday):-\true.

before(wednesday,friday):-\true.

before(wednesday,thursday):-\true.

before(monday,friday):-\true.

before(monday,tuesday):-\true.

before(tuesday,wednesday):-\true.

before(thursday,friday):-\true.

160

emu: University

 [locatedAt -> emu_address].

engineering_faculty: Faculty

 [facultyName -> "Faculty of Engineering",

 atUniversity -> emu].

cmpe_building: Building.

ieng_building: Building.

cmpe_department: Department[

 deptName-> "Computer Engineering",

 inFaculty-> engineering_faculty].

period(1):-\true.

period(2):-\true.

period(3):-\true.

period(4):-\true.

period(5):-\true.

period(6):-\true.

period(7):-\true.

period(8):-\true.

doublePeriod(1,2):-\true.

doublePeriod(3,4):-\true.

doublePeriod(5,6):-\true.

doublePeriod(7,8):-\true.

duration(1).

duration(2).

cmpeUndergraduateProgram: EnglishUndergraduateProgram.

blgmUndergraduateProgram: TurkishUndergraduateProgram.

cmseUndergraduateProgram: EnglishUndergraduateProgram.

161

cmpeUndergraduateProgram[programID -> "025",

 belongsTo -> cmpe_department,

 syllabus -> cmpeUndergraduateSyllabus

].

162

C5: Instances of the CourseOpening

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> cmse321,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe131,

 day -> thursday,

 period -> 1,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe131,

 day -> thursday,

 period -> 2,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe128,

 day -> friday,

 period -> 5,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe128,

 day -> friday,

 period -> 6,

 duration -> 1].

].

163

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> cmpe223,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe025,

 day -> monday,

 period -> 5,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe025,

 day -> monday,

 period -> 6,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe033,

 day -> tuesday,

 period -> 5,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe033,

 day -> tuesday,

 period -> 6,

 duration -> 1].

].

164

\#:CourseOpening[

 groupNo ->2,

 ofCourse -> cmpe423,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe128,

 day -> monday,

 period -> 3,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe128,

 day -> monday,

 period -> 4,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe026,

 day -> tuesday,

 period -> 3,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe026,

 day -> tuesday,

 period -> 4,

 duration -> 1].

].

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> math373,

165

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe129,

 day -> tuesday,

 period -> 3,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe129,

 day -> tuesday,

 period -> 4,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe026,

 day -> friday,

 period -> 8,

 duration -> 1].

].

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> cmpe100,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe025,

 day -> tuesday,

 period -> 7,

 duration -> 1].

 teachingTimes ->\#[

166

 room -> cmpe025,

 day -> tuesday,

 period -> 8,

 duration -> 1].

].

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> ieng450,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe131,

 day -> monday,

 period -> 5,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe131,

 day -> monday,

 period -> 6,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe129,

 day -> tuesday,

 period -> 7,

 duration -> 1].

].

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> cmse326,

167

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe131,

 day -> wednesday,

 period -> 5,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe131,

 day -> wednesday,

 period -> 6,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe129,

 day -> thursday,

 period -> 7,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe129,

 day -> thursday,

 period -> 8,

 duration -> 1].

].

\#:CourseOpening[

 groupNo ->1,

 ofCourse -> math152,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

168

 room -> cmpe129,

 day -> thursday,

 period -> 1,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe129,

 day -> thursday,

 period -> 2,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe128,

 day -> friday,

 period -> 1,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe128,

 day -> friday,

 period -> 2,

 duration -> 1].

].

\#:CourseOpening[

 groupNo ->3,

 ofCourse -> cmpe423,

 year -> 2014,

 semester -> fall,

 teachingTimes ->\#[

 room -> cmpe128,

 day -> monday,

 period -> 1,

169

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe128,

 day -> monday,

 period -> 2,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe026,

 day -> tuesday,

 period -> 1,

 duration -> 1].

 teachingTimes ->\#[

 room -> cmpe026,

 day -> tuesday,

 period -> 2,

 duration -> 1].

].

170

