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ABSTRACT 

Duality transformations have effective impacts on simplifying analysis and synthesis 

steps of systems, due to their additively topological richness in unification and 

generalization of theories. Duality between statics and kinematics of mechanical 

systems in general, and robotic manipulators in particular, aided the discoveries of 

novel dual structures which possess superiority among their topological types. 

According to the previous hypothesis, this thesis addresses topological dualities in 

engineering systems as a concept, and the duality between different structures 

(geometrical wise) of robotic manipulators in vivid. The latter duality was found 

naturally leading to the commonly known reciprocity between actively coordinated 

systems provided by the theory of screws. The major contribution of this thesis is 

represented by generalizing the geometrical reciprocity problem of having a set of 

screws which each of its elements is reciprocal to all the elements of another set of 

screws, except one. Accordingly, this generalization breaks the confines of duality 

from existing only between special cases of serial and parallel manipulators, and 

extended its boundaries to combine a wide range of structures. Moreover, the 

geometrical meaning for Moore-Penrosians’ pseudo inverses of Jacobians was 

clarified naturally by means of linear algebra. The latter resulted in a new insight for 

duality in robotic systems especially in terms of the usage of reciprocity leading to 

equivalency. 

Keywords: Duality, Electrical Mechanical Analogs, Robotic Equivalents, Kinematics, 

Statics, Graph Theory, Screw Theory and Reciprocal Screws.  
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ÖZ 

Teorilerin birleşimi ve genelleştirilmesi alanlarındaki topolojik zenginliklerinden 

dolayı ikisel değişimlerin, sistemlerin basitleştirilmiş analizi ve sentezi aşamalarında 

etkili rolleri bulunmaktadır. Genelde mekanik sistemlerin ve özelde robotik 

işleticilerin statik ve kinematikleri arasındaki ikisellik, kendi topolojik türleri arasında 

üstünlüğe sahip olan yeni ikili yapıların keşiflerine katkı koymuştur. 

Önceki hipoteze (kurama) göre, bu tez çalışması kavramsal olarak mühendislik 

sistemlerindeki topolojik ikiselliklere ve uygulamada robotik işleticilerin farklı 

yapılarındaki (geometrik yönden) ikiselliğe değinmektedir. Sonraki bahsedilen 

ikiselliğin, vida teorisi tarafından sağlanan aktif koordinasyonlu sistemler arasında 

gerçekleşen ve genelde bilinen karşılıklılığa doğal olarak yol açtığı bulunmuştur. 

Sözkonusu tezin en önemli katkısı her bir elementi, başka bir set vidanın tüm 

elementleriyle biri dışında karşılıklı olan bir set vidanın geometrik karşılıklılık 

probleminin genelleştirilmesi ile temsil edilmiştir. Buna göre, bu genelleme seri ve 

paralel işleticilerin özel durumları arasında var olan ikiselliğin sınırlarını bozmuş ve 

sınırlarını geniş yelpazeli yapıları birleştirecek şekilde genişletmiştir.  Buna ek olarak, 

Moore-Penrosian’ın Jacobians sözde ters matrisinin geometrik anlamı doğrusal cebir 

aracılığı ile açıklanmıştır. İkinci bahsedilen, robotik sistemlerdeki ikiselliğe ve 

özellikle denkliğe yol açan karşısallığın kullanımı bakımından yeni bir anlayış 

getirmiştir.  

Anahtar kelimeler: İkisellik, Elektriksel Mekanik Analoglar, Robotik Eşdeğerler, 

Kinematik, Statik, Grafik Teorisi, Vida Teorisi ve Karşılıklı Vidalar  
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Chapter 1 

1 INTRODUCTION 

1.1 Definition of Terms and Concepts: 

1.1.1 Duality Transformations: 

Duality between physical or mathematical systems is considered as one of the most 

useful tools in the hands of scientists, two systems are considered dual if there is a one 

to one correspondence between some of their physical or mathematical properties [1]. 

A useful duality analysis can give its performer a topological insight in his way to 

design or analyze a system by observing its dual behavior. The theory of dual coding 

(DCT) as an example took a remarkable place in the development of linguistic based 

search engines [2]. Besides, many indispensable transformations such as Fourier 

transformation, Fresnel’s vector and others were considered as dual transformations 

[3-4]. 

1.1.2 Comparison between Serial and Parallel Manipulators: 

Robots are classified in terms of their kinematic structures as: serial, parallel and 

hybrid (or composite) [26]. A robot is classified as serial if it possesses an open 

kinematic chain, in contrast; as parallel if it possesses a closed kinematic chain. Hence, 

the characteristics of serial and parallel manipulators exhibit remarkable differences 

as will be discussed hereafter. 
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1.1.3 Serial Manipulators: 

Serial manipulators are widely used in the industry due to their large workspace, 

simplicity in dynamic modelling, easy to solve forward kinematics and easy to control. 

Yet, they suffer from low accuracy, poor dynamic characteristics, low stiffness, 

difficulty solving inverse kinematics, and accumulated position errors. This is due to 

the open kinematic structure they possess. Therefore, the usage of serial manipulators 

in operations that requires highly precise procedures such as surgery and 3D printing, 

or operations that imply heavy load carrying actions such as flight or military 

equipment simulations is not possible due to aforementioned confrontations [28-31]. 

1.1.4 Parallel Manipulators: 

Parallel manipulators possess closed kinematic structures that allow the manipulators 

of this type to be characterized by: easy inverse kinematics, low position errors, high 

stiffness, very high dynamic characteristics, high speed and high acceleration. Yet, 

they suffer from very difficult forward kinematics, difficulty in calibration, 

complicated design procedure and small or complex workspace. Moreover, the number 

of passive (non-actuated) joints in a parallel manipulator is usually more than the 

actuated ones; in this manner the end effector (a platform usually) might possess an 

extra degree of freedom (DOF) at some position configuration called singular 

configurations. When a parallel manipulator is in one of its singular configurations, 

the moving lamina will be free to move with some direction under the influence of an 

external force, this phenomena known as Bricard-Borel phenomena requires high 

attention in the process of designing parallel manipulators [10]. The octahedron 

(known as General Stewart Gough Platform), is considered as one of the most 

successful designs for parallel manipulators. In fact, any small displacement for an 
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octahedron singular configuration breaks its singularity and return the platform into a 

nonsingular (safe) configuration [10]. 

1.1.5 Hybrid Manipulators: 

A robot is considered to have a hybrid structure if it possesses a general open kinematic 

structure in its outer loop, with some embedded closed kinematic structures within. 

These manipulators combine desired properties from both serial and parallel 

structures; especially in terms of the size of the workspace, accuracy and weight to 

load ratio [26]. 

In most general industrial purposes’ serial manipulators, the base joint is designed as 

rotary to give the Yaw movement about the vertical axis of the structure and facilitate 

the interaction with its surrounding environment. Actually, in most hybrid designs of 

industrial manipulators, the base joint is left to be rotary and independent from any 

parallelism to assure maximum reachability for its end effector (tool), along with 

considering the base usually fixed to a table (or ground) as a fact, which gives the 

ability of implementing high torque actuators without the necessity of using tendons 

or other kinematic pairs to connect actuators with the moving joints with far from base 

links that can be found for instance in the wrist of a humanoid [26]. On the other hand, 

embedded parallel structures (parallel subsystems) are implemented as not to exceed 

6 DOF to assure minimum singular configurations for the parallel structure, thus 

minimum Bricard-Borel phenomena. Both these facts will be dealt with carefully 

hereafter.  
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1.2 Organization of this thesis 

Chapter 1 (Introduction), is an introductory to some of the useful concepts regarding 

the work done in this thesis; it mainly discusses duality as a concept, and introduces 

some properties of types of manipulators in terms of their kinematic structure. 

Chapter 2 (Literature Review), regarding that graph theory will be used to facilitate 

the formulation for dual transformations both in electrical and mechanical systems, the 

required fundaments of dual graphs are first summarized, including planar connected 

graphs, tree analysis and dual graphs. Afterwards, commonly used duality in electrical 

circuits and the analogy between electrical and mechanical components will be 

summarized. Later in this chapter, the duality between statics and kinematics 

especially for robotic manipulators will be discussed; while fundamentals of screw 

theory were found to serve the topic of this work, only frequently used concepts in 

screw theory will be introduced to help moving on to the duality using Jacobian 

analysis of serial and parallel manipulators. By the end of this chapter, direct duality 

between serial and parallel manipulators via graph representations namely flow and 

potential line graphs is summarized with an example, as well as the common 

convention known as Denavit-Hartenberg (DH) will be briefed. 

Chapter 3 (General Reciprocity and Serial to Hybrid Actuation), considers the general 

reciprocal screw problem for having a screw that is reciprocal to a set of screws except 

one, an original contribution for what we call general matrix linear system of 

reciprocity will be discussed in detail and demonstrated with an example. Moreover, 

the discussion on the geometrical meaning of the pseudo inverse of the Jacobian of a 

manipulator will be introduced for the first time in a novel way to the literature. 
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Discussions on the ability of transforming a sub-section of a serial manipulator with 

its reciprocal dual will be demonstrated via examples. 

Chapter 4 (Equivalents in Electrical and Mechanical Systems), discusses the 

commonly used equivalents in electrical and robotic systems, and the ability of 

constructing a hybrid manipulator from an existing serial manipulator using the results 

obtained for general reciprocal screws in Chapter 3. 

Chapter 5 (Conclusion and Future Work), discusses results of the work done in both 

chapters 3 and 4; where a new definition for structural equivalent manipulators will be 

introduced in a way that separates between dual and equivalents robotic manipulators. 

Moreover, promising future for the work done in this thesis will be discussed. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Graph Theory: 

Graph theory is a part of discrete mathematics that aims to model relations between 

two or more interconnected objects of a system. Graph theory was established in the 

middle 18th century by the famous theoretician Leonhard Euler, where he was able to 

develop a systematic approach to solve one of the problems at that time known as the 

“Seven Bridges of Königsberg” using a graphical based theorem of what is currently 

called the “Eulerean Graphs” [20]. Later on, graph theory gained a remarkable 

popularity in modelling physical systems due to the simplicity that graphical 

representations offer to a physical or mathematical model [19]. Nowadays, the theory 

of graphs is deeply involved in many engineering applications. In fact, new graphical 

representations for engineering systems were developed in the past two decades that 

facilitated the way of modelling, designing and analyzing many engineering systems 

[11-12, 14-18]. 

2.1.1 Defining the Graph: 

A graph is defined as two sets as G = { V , E }, V is called the set of vertices and E is 

called the set of edges; where each edge in E represents a relation between two 

elements in V, i.e. given a graph G = { V , E }, let V = { V1 , V2 … Vn }, and E = { E1 , 

E2 … Em } where m,n ∈ N, ∀Ex where x ∈ [1, 2 … m], Ex represents a connection 

between the vertices Vy and Vz where y,z ∈ [1, 2 … n]. 
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A graph is said to be directed (oriented) if each of its edges represent a one way 

connection between two vertices of V, i.e. if Ex is an edge of an oriented graph 

represents a connection between Vy and Vz in the direction Vy → Vz, Ex = VyVz ≠ VzVy. 

While in non-oriented graphs, the order of the vertices is commutative in any edge, i.e. 

VyVz = VzVy. 

 
Figure 2.1: The Seven Bridges of Königsberg and its Graphical Representation [20] 

2.1.2 Connected Planar Graphs: 

In both electrical and mechanical circuits, the topological graphs that represent such 

systems are usually connected and planar [11-12, 16-20]. Connectivity of graphs 

requires the existence of a path from any vertex to any other vertex via the edges of 

the graph, where a path is defined by a sequence of edges that implies non repeating 

vertices, e.g. the graph in Figure 2.1 that represent a graphical representation of the 

Königsberg bridges problem is connected. Where a graph is considered a planar if it 

can be drawn on a plane without having any intersection between its edges [20], e.g. 

the aforementioned graph is also planar. Graphs possess both connected and planar 

properties will be further studied using what is known as tree analysis hereafter in this 

text. 
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2.1.3 Tree Analysis for Planar Connected Graphs: 

Let a graph G = { V , E } be a connected graph, and let n defines the number of elements 

of  the set V. A tree is a connected sub-graph of G that contains all the vertices of V 

and exactly (n-1) number of edges from E. 

 
Figure 2.2: A Graph with All of Its Combinatorial Choices of Trees 

After choosing a tree, the edges of the tree will be called as branches, where the 

remaining edges will be called as co-branches or simply chords. 

2.1.4 Cycles and Cut-sets of Connected Planar Graphs: 

A cycle is simply a loop, a closed path which all vertices occurs exactly once except 

of the first-last vertex which occurs exactly twice. Where a cut-set is defined by 

sequence of edges that removing them splits the graph into two connected sub-graphs 

[20]. As an example, consider the oriented graph given in Figure 2.3, one of its proper 

cut-sets (CS) is given by the sequence of the edges {e1 e2 e6 e7 e5} and one of its proper 

cycles (C) is given by the sequence of the edges {e2 e3 e6}. 
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Figure 2.3: An Example of a Cut-set and a Cycle Assigned for a Graph 

2.1.5 Fundamental Cut-sets and Fundamental Cycles: 

Simply, a fundamental cut-set is defined as a proper cut-set that contains exactly one 

tree branch, while a fundamental cycle is defined as a proper cycle that contains exactly 

one chord, e.g. consider the oriented graph shown in Figure 2.4, its tree branches are 

represented by heavy lines {e2 e4 e6}, where its chords are represented by dashed lines 

{e1 e3 e6}. Three fundamental cycles are accompanied by its chords and three 

fundamental cut-sets are accompanied by its branches as follows: 

Fundamental cut-sets: CS1 = {e1 e2 e3}, CS2 = {e3 e4 e5} and CS3 = {e5 e6}. And 

Fundamental cycles: C1 = {e1 e2}, C2 = {e2 e3 e4}, and C3 = {e4 e5 e6}. 
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Figure 2.4: A Connected Graph with a Tree and the Corresponding Fundamental 

Cycles and Cut-sets 

Fundamental cut-sets and cycles might be represented in matrices as follows: 

- Matrix of fundamental cycles: by taking the direction each cycle along the 

direction of its corresponding chord; edges contained in the cycle will take values 

(+1) / (-1) if they are directed with / opposite the cycle direction, where the edges 

that are not contained in the cycle will take the value of zero in the matrix 

representation [19-20], e.g. the matrix of fundamental cycles of the graph shown 

in Figure 2.4 is given in equation (2.1). 

𝐶𝑓 =  [
1 −1 0 0 0 0
0 −1 1 1 0 0
0 0 0 −1 1 1

]

(𝐶1)𝑒1
(𝐶2)𝑒3
(𝐶3)𝑒5

 

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 

 

(2.1) 

- Matrix of fundamental cut-sets: by taking the direction of each cut-set along the 

direction of its corresponding branch; edges contained in the cut-set will take the 

values (+1) / (-1) if they are directed with / opposite of the cut-set direction, where 

the edges that are not contained in the cut-set will take the value of zero in the 

matrix representation [19-20], e.g. the matrix of fundamental cut-sets of the graph 

shown in Figure 2.4 is given in equation (2.2). 
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𝐶𝑆𝑓 =  [
1 1 1 0 0 0
0 0 −1 1 1 0
0 0 0 0 −1 1

]

(𝐶𝑆1)𝑒2
(𝐶𝑆2)𝑒4
(𝐶𝑆3)𝑒6

 

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 

 

(2.2) 

2.2 Duality in Graph Theory: 

2.2.1 Correspondence by Equations: 

Two graphs are considered dual if there is one-one correspondence between all of the 

fundamental cut-sets / cycles of both graphs. This correspondence is from the type cut-

set → cycle / cycle → cut-set can be notices in the matrices as follows [19-20]. 

By arranging the columns of the fundamental cut-sets / cycles (matrices) as branches 

first and chords next, each matrix will be split into two matrices, one of each split will 

be a unity, where the other will carry more information about the structure of the graph. 

These meaningful matrices were found to exhibit duality and will be discussed next, 

e.g. the arranged matrices for equations (2.1) and (2.2) are found in equations (2.3) 

and (2.4) respectively. 

𝐶𝑎𝑓 =  [
1 0 0 −1 0 0
0 1 0 −1 1 0
0 0 1 0 −1 1

]

(𝐶1)𝑒1
(𝐶2)𝑒3
(𝐶3)𝑒5

 

  𝑒1 𝑒3 𝑒5 𝑒2 𝑒4 𝑒6 

 

(2.3) 

𝐶𝑆𝑎𝑓 =  [
1 1 0 1 0 0
0 −1 1 0 1 0
0 0 −1 0 0 1

]

(𝐶𝑆1)𝑒2
(𝐶𝑆2)𝑒4
(𝐶𝑆3)𝑒6

 

  𝑒1 𝑒3 𝑒5 𝑒2 𝑒4 𝑒6 

 

(2.4) 

By representing the splits of each matrix in equations (2.3) and (2.4) by a matrix for 

each, the representation will take the form shown in equations (2.5) and (2.6) 

respectively. 

𝐶𝑎𝑓 =  [𝐼 𝐴] 
 

(2.5) 

𝐶𝑆𝑎𝑓 =  [𝐵 𝐼] 
 

(2.6) 
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Where I is the unity in R3, and the matrices A and B are given as: 

𝐴 =  [
−1 0 0
−1 1 0
0 −1 1

] 

 

(2.7) 

𝐵 =  [
1 1 0
0 −1 1
0 0 −1

] 
(2.8) 

It is easy to show that 𝐴 = −𝐵𝑇. 

- The study of duality between fundamental cycles and fundamental cut-sets 

shows an ability of extracting the governing equations of the cycles using the 

cut-sets and vice versa.  

- Given a graph G, a dual graph G* is defined by the unique graph (in terms of 

isomorphism) that each fundamental cycle / cut-set in G corresponds to a 

fundamental cut-set / cycle in G* and vice versa. 

2.2.2 Direct Graphical Method for Finding Dual Graphs: 

The dual graph G* for a given connected planar graph G can be found using the simple 

following algorithm [20]: 

- Place a vertex for G* in the middle of each independent mesh of G. 

- Place a vertex for G* out of all the meshes of G. 

- Cross the edges of G to connect between the vertices of G* if the connection 

can be done by crossing only one edge of G. 

Further illustration can be seen in Figure 2.5; this graphical method is found to be 

similar to the method given by Shai et al. in [11-12] and will further addressed in this 

text.  
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Figure 2.5: Illustration for Direct Graphical Method of Finding Dual Graphs 

2.3 Duality in Electrical Circuits: 

Duality in electrical systems has been vividly studied in the literature. Similarly to the 

duality in graph theory, there exist both an analytical approach and a direct graphical 

method to find dual circuits [21]. 

In the following, the duality between two electrical circuits will be demonstrated via 

an example. 

Consider the two source free RLC circuits shown in Figure 2.6. 

    
Figure 2.6: (a) Parallel RLC Source Free           (b) Serial RLC Source Free 
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The governing equation of voltages and currents with respect to the circuits’ 

components for the circuits given in Figure 2.6 (a) and (b) are derived below. 

For the circuit shown in Figure 2.6 (a); at t = 0, the current of the inductor is given as 

the following: 

𝑖(0) =  
1

𝐿
∫ 𝑣 𝑑𝑡

0

−∞

=  𝐼0 

 

(2.9) 

Applying Kirchhoff Current low (KCL) at node v gives: 

𝑣

𝑅
+ 𝐶

𝑑𝑣

𝑑𝑡
+  

1

𝐿
 ∫ 𝑣 𝑑𝑡 

𝑡

−∞

= 0 

 

(2.10) 

For the circuit shown in Figure 2.6 (b); at t = 0, the voltage across the capacitance is 

given as the following: 

𝑣(0) =  
1

𝐶
∫ 𝑖 𝑑𝑡

0

−∞

=  𝑉0 

 

(2.11) 

Applying Kirchhoff Voltage Low (KVL) in loop i gives: 

𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+  

1

𝐶
 ∫ 𝑖 𝑑𝑡 

𝑡

−∞

= 0 

 

(2.12) 

Simply, equations (2.9) and (2.10) will be identical to equations (2.11) and (2.12) 

respectively, by interchanging what is known as dual pairs that are summarized for 

dual electrical circuits in Table 2.1. 

  



15 

Table 2.1: Dual Pairs in Electrical Circuits [21] 

Resistance R Conductance G 

Inductance L Capacitance C 

Voltage v Current i 

Voltage source  Current source 

Node Mesh 

Series path Parallel path 

Open circuit Short circuit 

KVL KCL 

Thévenin Norton 

2.3.1 Direct Graphical Method for Finding Dual Circuits: 

The graphical method to find dual circuits is very similar for the one seen in section 

2.2.2 previously in this chapter in finding dual graphs. A direct algorithm depending 

on the dual pairs given in Table 2.1 is identical to the algorithm for dual graphs after 

adding the following [21]: 

- The node (vertex) that was placed out of all the meshes of the circuit (graph) has 

to represent the ground node. 

- The polarity of the voltage and current sources will be determined using the rule: 

A voltage source will be polarized from the ground to the dual node if it produces 

a positive sense current in the direction of the mesh, otherwise away from the node 

and towards the ground. The same polarization rule can be determined for current 

sources by interchanging the rule of the mesh current and the voltage source 

direction. 

For further illustration, the aforementioned algorithm is demonstrated in Figure 2.7. 
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Figure 2.7: Demonstration for the Direct Graphical Method for Obtaining Dual 

Electrical Circuits [21] 

2.4 Analogous Electrical / Mechanical Systems: 

Originating a physical system as interconnection of components, then regarding the 

components that formulate electrical and mechanical circuits, one might find that the 

governing equations that relate the components of one system as similar to the 

governing equations governing another system [21]. This similarity has been 

witnessed by many researchers as an attempt to map theorems of electrical theory to 

be applied on mechanical domain [23]. 

Two types of analogy between electrical and mechanical systems were established, 

namely Mechanical-Electrical Analog (I) and Mechanical-Electrical Analog (II); these 

are more known as old and new analogies respectively. The new analogy as 

summarized in Table 2.2, studies the possibilities of applying electrical circuit 

theorems generally and Kirchhoff’s current and voltage lows especially on mechanical 

systems. Indeed, some researchers were able to apply these theorems successfully and 

reached to the same results that can be found using typical approaches in mechanical 

systems such as Davis in [25]. 
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Table 2.2: Electrical Mechanical Analog Pairs, Electrical / Mechanical Analog (II) 

[23] 

Electrical Quantity / Equation Mechanical Quantity / Equation 

Voltage e Force f 

Current i Velocity v 

Resistance R Friction B 

Capacitance C Compliance 1/K 

Inductance L Mass M 

Transformer N1:N2 Lever L1:L2 

e = iR f = vB 

e = L
di

dt
 

i =
1

L
∫e dt 

f = M
dv

dt
 

v =
1

M
∫ f dt 

e =
1

C
∫ i dt 

i = C
de

dt
 

f = K∫v dt 

v =
1

K
 
df

dt
 

power = e .  i power = f .  v 

Transformer 
e1

e2
=  

N1

N2
=  

i2

i1
 

Lever 
f1

f2
=  

L2

L1
=  

V2

V1
 

Capacitor Energy 
1

2
Ce2 

Spring Energy 
1

2
 
1

K
f2 

Inductor Energy 
1

2
Li2 

Mass Energy 
1

2
Mv2 

∑ voltages

loop

= 0 ∑ forces

object

= 0 

∑ currents

node

= 0 ∑ velocities

loop

= 0 

(Under equivalent distances) 
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As the duality in electrical circuits has been studied before in this chapter; the electrical 

quantities represented by voltage v and current i were found to be dual to each other in 

the dual circuits. These dual pairs, i.e. v and i, are mechanically analogous to the 

quantities force f and velocity v respectively. 

This conclusion is consistent with the work done on the duality in mechanical systems 

between statics and velocity kinematics that will be studied in the next section. 

2.5 Duality between Kinematics and Statics: 

The duality between kinematics and statics has been noticed by many researches in the 

literature. To serve the hereafter work of this thesis we select some of the topics that 

study the duality between statics and kinematics for robotic manipulators in 

accordance with the work done in this field in [5-14]. 

Statics and kinematics exhibits duality that was originated due what is known by the 

reciprocity (or orthogonality) between the representatives coordinates of velocity 

kinematics and statics. The theory of screws have been widely used to explain this 

duality and offered a solid platform in the way representing the coordinates of 

kinematics and statics that were named by the twist and wrench coordinates 

retrospectively. 

The duality or more precisely the reciprocity between wrench and twist coordinates 

will be summarized in section 2.5.2 after defining the screw that represent these 

coordinates in the next section. 

Moreover, Shai et al. in [11] developed two graphical representations of mechanisms 

namely by flow line graph (FLGR) and potential line graph (PLGR) that were shown 
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to be dual to help investigating dual mechanisms. Furthermore, another graphical 

representation has been developed by Shai in [12] namely topological and constraint 

graphs, which duality was found to hold in the position domain under special 

configurations. 

For Davidson & Hunt in [10], they took the duality between statics and kinematics to 

the position domain and offered a systematic approach in finding what is known as 

instantaneously equivalent manipulators by means of reciprocal screws, this approach 

will be summarized in section 2.5.4 using screw theory, and will be used in the way 

finding hybrid structures in Chapter 3. 

2.5.1 Definition of a Screw / Ray and Axis Coordinate Representations: 

The common screw may represent either the vector quantities of first order kinematics 

(angular and linear velocities), or the vector quantities of statics (forces and moments). 

The common notation of a screw is given by $ = [ S ; So ], where S holds the vector of 

the angular velocity in kinematics or the force in statics, while So represents the 

resultant linear velocity or resultant moment in kinematics and statics respectively. 

In order to further explain the screw, we will study the general case of having a screw 

representation in kinematics as follows: 

Assume a body is experiencing two movements, rotating about an axis 𝑠̂ which 

represents the direction of the screw $, together with sliding along the direction of the 

screw 𝑠̂; assume further that the amount of translation is dependent on the amount of 

rotation with dependency parameter h which is called the pitch of the screw $ as shown 

in Figure 2.8. 
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Figure 2.8: A Body Screwing in the Direction of $ [10] 

Consider the point A in Figure 2.8; A is rotating with angular velocity that is equal to 

the angular velocity of the screw, i.e. 𝜔𝐴 = 𝜔, while the linear velocity of A has two 

components, the first component is the resultant linear velocity from the rotation about 

𝑠̂ with angular velocity 𝜔 which is equal to the vector cross product between the 

distance vector 𝑟 and the vector 𝜔, and the second component is equal to the amount 

of translation 𝜏 = ℎ𝜔 of the screw 𝑠̂. 

As the point A is at the origin of the reference coordinates, the screw $ is going to be 

exactly as $ = [𝜔𝐴;  𝑣𝐴], where 𝑣𝐴 = 𝑟 × 𝜔 +  ℎ𝜔. 

Now we can build a definition of the screw as: $ = [𝑆; (𝑟 × 𝑆 +  ℎ𝑆) ] in kinematics 

and an identical definition in statics interchanging the role of the angular velocity / 

linear velocity in kinematics with the role of the force / moment is statics respectively. 
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The screw $ is a combination of two vectors that are three dimensional which gives 

the screw 6 dimensions that usually are expressed in terms of what known as Plüker 

coordinates as: $ = [ L ; M ; N ; P ; Q ; R ]. 

The screw representing kinematics is called a twist, where a screw representing statics 

in called by a wrench. The aforementioned duality between statics and kinematics is 

depending on the orthogonality (or reciprocity) between these coordinates and will be 

further investigated in this chapter.  

The aforementioned representation of screws is known as Ray coordinate 

representation, while there exist another representation of screws known as Axis 

coordinate representation, the later takes the form: $ = [𝑆𝑜; S]; these two representation 

are dual to each other and will be used to investigate reciprocity of screws in the next 

section. 

2.5.2 Reciprocal Screw Axes: 

A screw from kinematics (a twist) is reciprocal to a screw from statics (a wrench) if 

the force or the torque applied by the wrench can do no work on the twist and vice 

versa. 

Given two screws $1 and $2, the condition of reciprocity between two screws 

represented in the Plüker coordinates as $1 = [L1; M1; N1; P1; Q1; R1] and $2 = [L2; M2; 

N2; P2; Q2; R2] can be expressed by equation (1.13). 

𝐿1 ∗ 𝑃2 + 𝑀1 ∗ 𝑄2 + 𝑁1 ∗ 𝑅2 + 𝑃1 ∗ 𝐿2 + 𝑄1 ∗ 𝑀2 + 𝑅1 ∗ 𝑁2 = 0 (1.13) 
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This reciprocity can be expressed as Euclidean product of the screws $1 and $2 equal 

to zero if one of the screws is represented in Ray coordinates and the other is 

represented in Axis coordinates as shown in equation (2.14). 

[𝐿1 𝑀1 𝑁1 𝑃1 𝑄1 𝑅1] ∗

[
 
 
 
 
 
𝑃2

𝑄2

𝑅2

𝐿2

𝑀2

𝑁2 ]
 
 
 
 
 

= 0 

 

(2.14) 

 

For demonstration on the reciprocity between two screws, we take the following 

example: 

Consider a body attached by two joints as in Figure 2.9, a revolute joint in the 

direction of $1 and a prismatic joint in the direction of $2 shown; the force applied by 

the wrench $2 can cause no angular velocity about the twist $1 and vice versa. Hence, 

the screws $1 and $2 are reciprocal. 

 
Figure 2.9: Reciprocal Screws, a Twist $1 and a Wrench $2 [10] 

As we can see from Figure 2.9, there are infinitely many screws that are reciprocal to 

the screw $1. As long as a screw is six dimensional, the uniqueness reciprocity is 

confined by reciprocal screw for 5 independent screws. This conclusion will be further 
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explained in Chapter 3 after mapping the problem of reciprocal screws into its linear 

system representation. 

2.5.3 Duality between Serial and Parallel Manipulators: 

In both statics and velocity kinematics, the usage of what is known as the Jacobian 

matrix is very popular to find resultant velocities (angular and linear) and resultant 

forces and moments that are applied on the tool of the mechanism with respect to a 

reference frame and vice versa, i.e. the Jacobian matrix maps between the Cartesian 

space velocities and the joint space velocities (known as joint rates) of a robotic 

manipulator, and its transpose maps between the Cartesian space forces and moments 

with joint space forces and moments (required or performed by the manipulator 

actuators) [26-28]. 

Although the entries of the Jacobian matrix can be extracted by means of 

differentiating the function that defines position and orientation relations between a 

reference frame and an observation frame respectively, usually it is not easy to find 

the Jacobian matrix without the existence of a systematic approach to simplify the 

procedure [27]. 

For all of consistency with this work, generality and preserving maximum geometrical 

meaning assigned with the Jacobian, we will use what is known as the screw based 

Jacobian hereafter in this text. 

The columns of a screw based Jacobian that relates between the velocity of the end 

effector (considered to be attached to the last screw) and the base coordinate frames of 

an n degree of freedom manipulator is simply formulated by the screws of the actuated 

joints with respect to the base coordinates as in equation (2.15). 
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𝐽𝑛
0 = [ $1 

0 $2
0 … $𝑛

0  ] (2.15) 

The problem of finding the end effector velocities given the actuators velocities for a 

robotic manipulator, known as the forward velocity problem is expressed as: 

[𝑤 ; 𝑣 ] =  𝐽𝑛
0 ∗ [ 𝑞𝑖 ] (2.16) 

Where [ 𝑞𝑖  ] is the vector representing the joint velocities (joint rates). 

On the other hand, the inverse problem represented by finding the actuators velocities, 

known (desired) velocities of the end effector with respect to the reference frame is 

known as the inverse velocity problem and expressed as: 

[ 𝑞𝑖 ]  =  (𝐽𝑛
0)−1 ∗ [ 𝑤 ; 𝑣] (2.17) 

In the same manner, dually in statics; the forward and inverse statics problems are 

expressed in equations (2.18) and (2.19) respectively [26-28]. 

[ 𝑓;𝑚 ] = (𝐽𝑛
0𝑇

)−1 ∗ [ 𝜏𝑖  ] (2.18) 

[ 𝜏𝑖 ] = 𝐽𝑛
0𝑇

∗ [ 𝑓 ;𝑚 ] (2.19) 

Where 𝑓 , 𝑚 and  𝜏𝑖 represent the resultant force vector on the end effector, the 

resultant moment vector on the end effector and the vector of torques / forces applied 

by the actuators respectively. 

It has been found in [5-10], that if the wrenches of a parallel manipulator are reciprocal 

to the twists in a serial manipulator and vice versa in a way that each wrench is 

reciprocal to all twists except one, the parallel and serial manipulators given will 
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exhibit duality in the sense of kinematics and statics. The dual pairs summarized in 

Table 2.3 are only true if the previous statement is true. 

Table 2.3: Dual Pairs for Serial and Parallel Robotic Manipulators [9] 

Parallel Serial 

Wrench Screw 

$ = [ 𝑓 ;𝑚 ] 
Twist Screw 

$ = [ 𝑤 ; 𝑣] 

Twist Screw 

$ = [ 𝑤 ; 𝑣] 
Wrench Screw 

$ = [ 𝑓 ;𝑚 ] 

Forward Statics Problem 

[ 𝑓 ;𝑚 ] = (𝐽𝑛
0𝑇

)−1 ∗ [ 𝜏𝑖 ] 

Forward Velocity Problem 

[ 𝑤 ; 𝑣] =  𝐽𝑛
0 ∗ [ 𝑞𝑖 ] 

Forces / Torques Angular / Linear Velocities 

Angular / Linear Velocities Forces / Torques 

Inverse Velocity Problem 

[ 𝑞𝑖  ]  =  (𝐽𝑛
0)−1 ∗ [ 𝑤 ; 𝑣] 

Inverse Statics Problem 

[ 𝜏𝑖 ] = 𝐽𝑛
0𝑇

∗ [ 𝑓 ;𝑚 ] 

The relation that leads to investigate further in the geometry of dual manipulators is 

the one related to the forward / inverse velocity problem with the forward / inverse 

statics problem for serial and parallel manipulators, and will be discussed later. 

In accordance with the work done in [10], finding the Jacobian matrix of a manipulator 

(serial or parallel), and trying to reconstruct the screws from its transpose inverse leads 

to the dual for the given manipulator. 

In the existing literature for finding dual manipulators by inverting the Jacobian matrix 

in [9-10], the method is confined to the existence of an inverse for the Jacobian; which 

in result confined the duality between manipulators that possess Jacobians that are 

square / reducible (or extendable) to square and invertible. 
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The following section will demonstrate an example of the duality between 3R serial 

planar and 3(RPR) parallel planar manipulators, then discuss the similarity in the 

obtained Jacobian matrix for one of the manipulators with the transposed version of 

the inverse of the Jacobian of the other. 

2.5.4 Dual 3DOF Planar Serial and Parallel Manipulators: 

For consistency with the aforementioned methodology of finding dual manipulators 

by investigating the similarities between the Jacobian matrices, illustration of the 

methodology is implemented as follows:  

Consider the serial 3R planar manipulator given in Figure 2.10 (a), the Jacobian of the 

manipulator expressed in terms of the screws given in equation (2.15) will be derived 

and inverted. Similarly, the Jacobian of the planar 3(RPR) manipulator given in Figure 

2.10 (b) will be derived and compared with the result found in the previous step. 

Discussion will be followed. 

 
 

Figure 2.10: (a) 3R Planar Serial                (b) 3(RPR) Planar Parallel 
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To guarantee maximum generality, the Jacobian derived will be in terms of the 

orthogonal components of the distances between the origin of the reference 

coordinates and the screw direction lines as shown in Figure 2.11. 

 
Figure 2.11: Planar 3R Manipulator Assigned with Screw Representation Parameters 

The Jacobian with respect to the reference frame for the manipulator given in Figure 

2.11 (a) is given by equation (2.20). 

𝐽3
0 = [ $1 

0 $2
0 $3

0] (2.20) 

Away from the formulation of the governing equations of forward kinematics; the 

Jacobian can be derived by considering each screw in the Jacobian as the result of a 

unit length angular velocity (if the screw represents velocity kinematics) or a unit 

length force (if the screw represents statics). 

For the screw $1 
0 = [ 𝑠̂1 ; 𝑆𝑜,1] , 𝑠̂1 is the direction of the screw $1 

0 , i.e. 𝑠̂1 = [0, 0, 1]T; 

where the vector 𝑆𝑜,1 = 𝑟1
0 × 𝑠̂1 and will be evaluated by representing the vector 𝑟1

0 by 
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its screw symmetric matrix with consistence with the methodology provided by Tsai 

in [26] as: 𝑆𝑜,1 = 𝑟1
0 × 𝑠̂1 = 𝑅1 ∗ 𝑠̂1, where: 𝑅1 = [

0 −𝑧1 𝑦1

𝑧1 0 −𝑥1

−𝑦1 𝑥1 0
]. 

As the manipulator is planar, z1 = 0 and the resultant screw $1 
0 is given by: 

 $1 
0 =

[
 
 
 
 
 

0
0
1
𝑦1

−𝑥1

0 ]
 
 
 
 
 

 , and similarly, $2 
0 =

[
 
 
 
 
 

0
0
1
𝑦2

−𝑥2

0 ]
 
 
 
 
 

 , $3 
0 =

[
 
 
 
 
 

0
0
1
𝑦3

−𝑥3

0 ]
 
 
 
 
 

 .Where x1 ,y1 , x2 ,y2 , x3 and y3 

are the orthogonal components of the vectors r1 , r2 and r3 respectively. 

Now we can construct the Jacobian of the planar 3R manipulator by combining the 

screws using equation (2.20) as follows: 

𝐽3
0 =

[
 
 
 
 
 

0
0
1
𝑦1

−𝑥1

0

0
0
1
𝑦2

−𝑥2

0

0
0
1
𝑦3

−𝑥3

0 ]
 
 
 
 
 

 

𝐿
𝑀
𝑁
𝑃
𝑄
𝑅

 

 

(2.21) 

The Jacobian matrix given in equation (2.21) is not square, but it can be reduced to 

square by deleting the zero rows, i.e. the rows of  𝐿 ,𝑀 and 𝑅; without forgetting what 

they represent in future. 

The reduced Jacobian will take the form: 

𝐽3
0 = [

1
𝑦1

−𝑥1

1
𝑦2

−𝑥2

1
𝑦3

−𝑥3

] 
𝑁
𝑃
𝑄

 

(2.22) 
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The transpose inverse of the Jacobian given in equation (2.22) can be expressed as: 

(𝐽3
0𝑇

)−1 =

[

𝑥2𝑦3 − 𝑥3𝑦2 𝑥3𝑦1 − 𝑥1𝑦3 𝑥1𝑦2 − 𝑥2𝑦1

𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1

𝑦3 − 𝑦2 𝑦1 − 𝑦3 𝑦2 − 𝑦1

]

det 𝐽3
0  

(2.23) 

Where det 𝐽3
0 = 𝑥1𝑦2 − 𝑥2𝑦1 + 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 . 

Now, we must conduct similar work on the manipulator given in Figure 2.10 (b) in 

order to demonstrate duality; the Jacobian of the 3(RPR) parallel planar will be derived 

in terms of the orthogonal components of the distances between the origin of the 

reference coordinates and the screw direction lines as shown in Figure 2.12. 

 
Figure 2.12: Planar 3(RPR) Manipulator Assigned with Screw Representation 

Parameters 

For the screw $1 
′ = [ 𝑠̂′1

𝑇
  ;  𝑆′𝑜,1

𝑇
] , 𝑠̂′1 is the direction of the screw $1 

′ , i.e. 𝑠̂′1 =

[𝑥𝐵 − 𝑥𝐴, 𝑦𝐵 − 𝑦𝐴, 0]T/√(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2; Where the vector 𝑆′𝑜,1 = 𝑟1
′ × 𝑠̂′1 
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and will be evaluated by representing the vector 𝑟1
′ by its screw symmetric matrix 

as 𝑆′𝑜,1 = 𝑟1
′ × 𝑠̂′1 = 𝑅′1 ∗ 𝑠̂′1, where: 𝑅′1 = [

0 −𝑧′1 𝑦′1
𝑧′1 0 −𝑥′1

−𝑦′1 𝑥′1 0

]. 

If we express the values (𝑥𝐵 − 𝑥𝐴)/√(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2 and (𝑦𝐵 − 𝑦𝐴)/

√(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2 by C1, 1 and C1, 2 respectively; the screw $1 
′ can be 

expressed as: $1 
′ = 

[
 
 
 
 
 

𝐶1,1

𝐶1,2

0
0
0

𝑥′1𝐶1,2 − 𝑦′1𝐶1,1]
 
 
 
 
 

, and similarly: the screws $2 
′ and $3 

′ are given 

by: $2 
′ =

[
 
 
 
 
 

𝐶2,1

𝐶2,2

0
0
0

𝑥′2𝐶2,2 − 𝑦′2𝐶2,1]
 
 
 
 
 

 , $3 
′ =

[
 
 
 
 
 

𝐶3,1

𝐶3,2

0
0
0

𝑥′3𝐶3,2 − 𝑦′3𝐶3,1]
 
 
 
 
 

 . 

Where: 𝐶2,1, 𝐶2,2, 𝐶3,1 and 𝐶3,2 represent (𝑥𝐶 − 𝑥𝐷)/√(𝑥𝐶 − 𝑥𝐷)2 + (𝑦𝐶 − 𝑦𝐷)2, 

(𝑦𝐶 − 𝑦𝐷)/√(𝑥𝐶 − 𝑥𝐷)2 + (𝑦𝐶 − 𝑦𝐷)2, (𝑥𝐸 − 𝑥𝐹)/√(𝑥𝐸 − 𝑥𝐹)2 + (𝑦𝐸 − 𝑦𝐹)2 , 

(𝑦𝐸 − 𝑦𝐹)/√(𝑥𝐸 − 𝑥𝐹)2 + (𝑦𝐸 − 𝑦𝐹)2 respectively. And 𝑥′2, 𝑦′2, 𝑥′3 and 𝑦′3 are the 

orthogonal components of the distance vectors 𝑟2
′ and 𝑟3

′ respectively. 

Now we can construct the Jacobian of the planar 3(RPR) manipulator by combining 

the screws using equation (2.20) as follows: 

𝐽3
0 =

[
 
 
 
 
 

𝐶1,1

𝐶1,2

0
0
0

𝑥′1𝐶1,2 − 𝑦′1𝐶1,1

𝐶2,1

𝐶2,2

0
0
0

𝑥′2𝐶2,2 − 𝑦′2𝐶2,1

𝐶3,1

𝐶3,2

0
0
0

𝑥′3𝐶3,2 − 𝑦′3𝐶3,1]
 
 
 
 
 

 

𝐿
𝑀
𝑁
𝑃
𝑄
𝑅

 

 

(2.24) 
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Again, to obtain a square Jacobian, we may delete the zero rows from the Jacobian in 

equation (2.24), i.e. the rows in 𝑁, 𝑃 and 𝑄 to obtain a squared Jacobian as given in 

equation (2.25). 

𝐽3
0 [

𝐶1,1

𝐶1,2

𝑥′1𝐶1,2 − 𝑦′1𝐶1,1

𝐶2,1

𝐶2,2

𝑥′2𝐶2,2 − 𝑦′2𝐶2,1

𝐶3,1

𝐶3,2

𝑥′3𝐶3,2 − 𝑦′3𝐶3,1

] 
𝐿
𝑀
𝑅

 

 

(2.25) 

 

The Jacobian given in equation (2.25) may be represented in Axis coordinate 

representation of the screw as given in 2.5.1 as: 

𝐽3
0 = [

𝑥′1𝐶1,2 − 𝑦′1𝐶1,1

𝐶1,1

𝐶1,2

𝑥′2𝐶2,2 − 𝑦′2𝐶2,1

𝐶2,1

𝐶2,2

𝑥′3𝐶3,2 − 𝑦′3𝐶3,1

𝐶3,1

𝐶3,2

] 
𝑅
𝐿
𝑀

 

(2.26) 

The similarity between the Jacobian found in equation (2.26) with the transposed 

version of the inverse Jacobian in equation (2.23) is an example of the dualities 

between serial and parallel manipulators summarized in Table 2.3. 

Further illustration for dual to equivalent manipulators will be conducted in Chapter 4 

for the 3R serial and 3(RPR) parallel planar manipulators. 

2.5.5 Geometrical Meaning of the Inverse of Jacobian, Serial to Parallel Actuation 

[9-10]: 

As we have seen in the previous section, the Jacobian of dual serial and parallel 

manipulators were assigned with similarities, these similarities between one of the 

Jacobians and the transpose inverse of the other are considered to be an analytical proof 

of the duality between serial and parallel manipulators. 
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In this section we discuss the geometrical meaning of the inverse of the Jacobian 

matrix, and the way to generate dual manipulators by investigating the rows of the 

inverse. Moreover an example will provided in extracting and reconstructing the 

screws from the inverse Jacobian geometrically. 

It has been shown by Davidson, & Hunt in [10] that using the typical inverse of the 

Jacobian by means of transposing the cofactor matrix and dividing by the determinant, 

leads to the same condition of reciprocity given for reciprocal screws between each 

column of the cofactor matrix and all the columns of the Jacobian except one, i.e. the 

rows of the inverse will be reciprocal to the columns of a given Jacobian. 

Further investigations on the validity and applicability of inverting the Jacobian matrix 

to construct dual manipulators will be discussed in Chapter 3. 

For illustration, a reconstruction for the directions of the screws in the result given in 

equation (2.23) of the inverse Jacobian of planar 3R serial manipulator is shown in 

Figure 2.13. 

The orthogonal components on x and y coordinates of the reconstructed screws will be 

the ones in the second and third row respectively according the procedure given by 

Davidson and Hunt in [10]. 
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Figure 2.13: Original with Reconstructed Reciprocal Screws for 3R Manipulator  

As we can see in Figure 2.13, the reconstructed screws are pairwise reciprocal, i.e. $’1 

is reciprocal to $2 and $3, $’2 is reciprocal to $1 and $3 and $’3 is reciprocal to $1 and 

$2.  

Hunt et al. in [10], discussed in the literature that dual manipulators are actually 

instantaneously equivalent, furthermore, mapping some of the workspace for one of 

them to the other we can have equivalent parallel actuated mechanism given a serial 

mechanism as vice versa. This result was only generalized for manipulators possessing 

a square Jacobian, i.e. 6 DOF general purpose manipulators. Further work will be 

conducted in turning serial manipulators into their equivalent hybrid manipulators in 

terms of the generalized reciprocity in Chapter 3 and Chapter 4 further in this text. 

2.6 Duality in Mechanical Systems Using Graph Representation: 

As it has been shown in section 2.3.1, there is a direct graphical approach in finding 

dualities in electrical circuits. Where also it has been shown in section 2.4 that there is 
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a remarkable analogy between electrical and mechanical quantities. Hence, a duality 

in mechanical systems using graphical procedures is not out of thought. 

Shai et al. in [11-12], established a systematic approach to find dual mechanical 

systems by extending the theory of graph to represent kinematics and statics of some 

mechanical structures. Two graph representation were introduced, namely: flow line 

graph representation and potential line graph representation referred to as FLGR and 

PLGR respectively. Potential Line Graph is used to represent kinematics, while Flow 

Line Graph is used to represent statics. 

These graphs can be used to give a direct graphical procedure in finding some dual 

serial / parallel manipulators in terms of duality in kinematics and statics. 

The procedure of constructing graph representations for kinematic and static systems 

by means of these graphs is given in the following section. 

2.6.1 Construction of Flow Line and Potential Line Representations [11]: 

Construction of Flow Line Graph for the statics of a parallel manipulator is given by 

the procedure:  

1- A vertex is placed to represent each platform in a parallel manipulator (the moving 

laminas), and a ground vertex to represent the fixed base. 

2- An edge is placed to represent a limb or an external force as follows: 

- Passive edge to represent the actuated or non-actuated limb. 

- Active edge that carries a flow source represents a force, directed from the 

ground vertex towards the non-reference vertex for an external force and vice 

versa for an internal force. 
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3- The linear component carried by each edge is a force, where the angular component 

carried by the edge is a moment. 

While the Construction of Potential Line Graph for the kinematics of a serial 

manipulator is given by:  

1- A vertex is placed to represent each link in a serial manipulator, and a ground 

vertex to represent the fixed base. 

2- An edge is placed to represent a joint (kinematic pair) or an external velocity as 

follows: 

- Passive edge to represent an actuated joint (all joints of a serial manipulator are 

actuated, in general). 

- Active edge that carries a potential source represents an angular velocity, 

directed from the ground vertex towards the non-reference vertex for an external 

velocity and vice versa for an internal velocity. 

3- The linear component carried by each edge is angular velocity that is measured 

relatively between the incident vertices. 

For demonstration, the graphs shown in Figure 2.14 (b), (d) are proper isomorphic 

versions of the FLGR of the Stewart platform and the PLGR of the General Lobster 

arm shown in Figure 2.14 (a) and (c) respectively. 
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Figure 2.14: (a) Stewart Platform  (b) FLGR of Stewart Platform 

(c) General Lobster Arm (d) PLGR of the Generalized Lobster Arm [11] 

The duality between statics and kinematics using PLGR and FLGR is conducted by 

building the corresponding graph representation (G) for a given serial or parallel 

manipulator, i.e. FLGR or PLGR respectively, then finding the dual graph (Gd) using 

the same graphical algorithm provided in section 2.3.1 for electrical circuits by 

replacing analogous pairs current / voltage sources by flow / potential sources; the 

corresponding manipulator for the dual graph (Gd) will be the dual manipulator for the 

original manipulator represented by (G). 

A demonstration for the aforementioned graphical based method is shown in Figure 

2.15. 
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Figure 2.15: Demonstration of Finding Serial / Parallel Manipulators Using FLGR 

and PLGR [11] 

2.7 Denavit-Hartenberg Convention: 

Denavit-Hartenberg convention (DH) is one effective tool representing sequential 

coordinates of robotic manipulators. This convention facilitate the procedure of 

formulating forward and inverse kinematic equations for robotic manipulators in 

general, especially when the manipulators are fully in-serial. 

Assigning DH coordinates has to be done via a systematic approach that relates 

between each two sequential joints by a matrix known by DH matrix, this mapping 

can be easily done after assigning proper DH coordinates using the following 

procedure [28]: (for simplicity we will use the terms old and new for each two 

sequential coordinate frames respectively) [28]: 

- The convention starts with assigning z axis for each revolute joint about its 

rotational direction, and for each prismatic joint along its sliding direction. 
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- Then assigning x axes takes place regarding the following cases: 

 For the first joint (usually the base), the direction of its x axis is optional as 

long as it is orthogonal on the direction of its z axis. 

 For the remaining joints, the x axis should lie on the common normal between 

each two non-coincident z axes, or along the normal on the plane of two 

coincident z axes. 

- Assigning y axes is accomplished using the common notation known by the “right 

hand rule” for orthogonal coordinates. 

- Last frame coordinates (end effector) is taken parallel to its previous at the point 

of observation (the center) of the end effector. 

Assigning DH coordinates characterizes each link with the following four parameters: 

- 𝜃𝑖 represents the angle between two x axes measured about the old z axis, 

following the direction x old to x new. 

- 𝑑𝑖 represents the distance between two sequential frames’ origins measured along 

the direction of the old z axis. 

- ∝𝑖 represents the angle between two sequential z axes measures about the new x 

axis following the direction z old to z new. 

- 𝑎𝑖 represents the distance between two sequential frames’ origins measured along 

the direction of the new x axis. 

For illustration, representation of the coordinates of joint (i +1) with respect to the 

coordinates of joint (i) is shown in Figure 2.16. 
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Figure 2.16: Assignation of DH Joint Coordinates and Link Parameters [26] 

Substituting DH link parameters for each frame in the DH matrix given in equation 

(2.27) gives the matrix representation of the new frame with respect to the old frame 

for each sequential frames. 

𝐴𝑖
𝑖−1 = [

cos 𝜃𝑖 −sin 𝜃𝑖 cos ∝𝑖 sin 𝜃𝑖 sin ∝𝑖 𝑎𝑖cos 𝜃𝑖

sin 𝜃𝑖 cos 𝜃𝑖 cos ∝𝑖 −cos 𝜃𝑖 sin ∝𝑖 𝑎𝑖sin 𝜃𝑖

0 sin ∝𝑖 cos ∝𝑖 𝑑𝑖

0 0 0 1

] 

(2.27) 

For n degree of freedom serial manipulators, the matrix representation of the last frame 

with respect to the base frame is the usual matrix product between the matrices 

representing sequential coordinate frames as in equation (2.28). 

𝑇𝑛
0 = 𝐴1

0 ∗ 𝐴2
1 ∗ … ∗ 𝐴𝑛

𝑛−1  (2.28) 
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Chapter 3 

3 GENERALIZED RECIPROCITY AND SERIAL TO 

HYBRID ACTUATUION 

3.1 Introduction: 

It has been shown, in Chapter 2, that duality between parallel and serial manipulators 

is originated to the orthogonality (or reciprocity) between wrench and twist 

coordinates of statics and kinematics respectively, provided by the theory of screws. 

Moreover, this duality transformation was based on finding the inverse of the screw 

based Jacobian matrix of a given manipulator and reconstructing the resultant screws. 

The method of inverting the Jacobian was confined with the existence of a square or 

reducible to square Jacobians [9-10]. Yet, Hunt el al. in [10], performed one example 

on inverting a deficient Jacobian by adding what he named by Dummy columns to the 

columns of the deficient Jacobian in order to invert it. The method of adding Dummy 

columns was done by inspection using the experience in the geometry of mechanics, 

and it was not generalized. 

Other researchers such as Dai et al. in [33], provided a linear algebraic procedure in 

finding the reciprocal screws for a set of n screws by what he named Augmenting and 

Shifting the Jacobian matrix, these reciprocal screws are from the form reciprocal to 

all cannot be used to express duality between parallel and serial manipulators, yet they 

can be used to construct a basis for mobility analysis by observing the null space 

represented by these reciprocals. 
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In the following section, the reciprocity leading to duality will be further investigated 

by formulating a new general matrix equation and discussing its solutions. 

3.2 Generalized Reciprocity by Means of Linear Algebra: 

The first contribution in the theory of screws was established in its version for statics 

By Poinsot (1806), while the kinematic version was established by Chasles (1832). 

Robert Ball in (1873) combined and extended both versions in the nowadays known 

as screw theory [10]. 

What is worth mentioning to introduce and justify the work done and discussed in the 

current section, is that the foundation of what is known as matrix was not conceived 

till early 1850’s. Indeed, the book written by Sir Robert Ball in (1900) named “A 

Treatise on the Theory of Screws” [15], did not mention the word matrix once. Yet, all 

the theorems and discussions were expressed in terms of the geometry of mechanics 

without the addressing what is known as the four fundamental subspaces assigned with 

the matrices representing linear systems. 

In this work, the formulation and solutions of the linear system governing the problem 

of reciprocal screws is discussed in detail with an example. This formulation in despite 

of its simplicity is nowhere discussed before in the literature and is considered as an 

original contribution of this thesis. 

Consider the n screw system given by the set of screws $= {$1, $2 … $n}. The problem 

of finding a set of screws $’= { $’1, $’2 … $’n} in such a way that each screw in $’ should 

be reciprocal to all screws in $ except one, can be expressed as next: 
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Say $’1 is desired to be reciprocal to the screws $2 … $n while not reciprocal to $1; the 

system can be constructed by generalizing equation (2.14) as: 

[
 
 
 
 
𝐿1 𝑀1 𝑁1 𝑃1 𝑄1 𝑅1

𝐿2 𝑀2 𝑁2 𝑃2 𝑄2 𝑅2

. . . . . .

. . . . . .
𝐿𝑛 𝑀𝑛 𝑁𝑛 𝑃𝑛 𝑄𝑛 𝑅𝑛]

 
 
 
 

∗

[
 
 
 
 
 
 
𝑃′

1

𝑄′
1

𝑅′
1

𝐿′
1

𝑀′
1

𝑁′
1]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑋1

0
0
0
0
0 ]

 
 
 
 
 

  

 

(3.1) 

Where X1 can take any value except of zero in order not to have $1 and $’1 reciprocal 

to each other. 

Similarly, say $’2 is desired to be reciprocal to the screws $1, $3 … $n while not 

reciprocal to $2; the linear system for this problem is given by: 

[
 
 
 
 
𝐿1 𝑀1 𝑁1 𝑃1 𝑄1 𝑅1

𝐿2 𝑀2 𝑁2 𝑃2 𝑄2 𝑅2

. . . . . .

. . . . . .
𝐿𝑛 𝑀𝑛 𝑁𝑛 𝑃𝑛 𝑄𝑛 𝑅𝑛]

 
 
 
 

∗

[
 
 
 
 
 
 
𝑃′

2

𝑄′
2

𝑅′
2

𝐿′
2

𝑀′
2

𝑁′
2]
 
 
 
 
 
 

=

[
 
 
 
 
 
0
𝑋2

0
0
0
0 ]

 
 
 
 
 

  

 

(3.2) 

Continuing this formulation by induction, then combining the equations leads to: 

[
 
 
 
 
𝐿1 𝑀1 𝑁1 𝑃1 𝑄1 𝑅1

𝐿2 𝑀2 𝑁2 𝑃2 𝑄2 𝑅2

. . . . . .

. . . . . .
𝐿𝑛 𝑀𝑛 𝑁𝑛 𝑃𝑛 𝑄𝑛 𝑅𝑛]

 
 
 
 

∗

[
 
 
 
 
 
 
𝑃′

1

𝑄′
1

𝑅′
1

𝐿′
1

𝑀′
1

𝑁′
1

 

𝑃′
2

𝑄′
2

𝑅′
2

𝐿′
2

𝑀′
2

𝑁′
2

… 

𝑃′
𝑛

𝑄′
𝑛

𝑅′
𝑛

𝐿′
𝑛

𝑀′
𝑛

𝑁′
𝑛]
 
 
 
 
 
 

=

[
 
 
 
 
𝑋1

0
.
.
0

 

0
𝑋2

.

.
0

… 

0
0
.
.

𝑋𝑛]
 
 
 
 

  

 

(3.3) 

It is obvious that the most left matrix in equation (3.3) is the transpose of the Jacobian 

matrix discussed in 2.5.4 expressed in Ray coordinate representation of screws and 

will be abbreviated by JT, while the matrix of reciprocal screws is similar to a Jacobian 
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expressed in Axis coordinate representation of screws and will be abbreviated by Jr, 

where the screws in Jr does not possess unit lengths in this general case.  

We can also discuss that the scalars X1, X2 … Xn can take random values except of zero, 

if we are interested in the direction lines of the reciprocal screws, where their values 

will effect only the lengths and not related to directions if all were selected positively. 

For simplicity all these scalars will be chosen to take the value X1 = X2 = … = Xn = 1. 

Equation (3.3) now can be simplified to: 

𝐽𝑇 ∗ 𝐽𝑟 = 𝐼  (3.4) 

Where I is the unity n × n matrix. 

Equation (3.4) is known as the generalized matrix equation in linear algebra [32], 

where the generalized matrix equation with its solutions are given by equations (3.5) 

and (3.6) respectively. 

𝐴𝑚×𝑛 ∗ 𝑋𝑛×𝑘 = 𝐵𝑚×𝑘 (3.5) 

𝑋𝑛×𝑘 = 𝐴+ ∗ 𝐵 + (𝐼 − 𝐴+ ∗ 𝐴) ∗ 𝑌, where 𝑌 ∈  𝑅𝑛×𝑘 is arbitrary (3.6) 

Now, the set of solutions for the non-normalized screws in Jr can be found by: 

𝐽𝑟 = 𝐽𝑇+
+ (𝐼 − 𝐽𝑇+

𝐽𝑇) ∗ 𝑌, where 𝑌 ∈  𝑅𝑛×𝑘 is arbitrary (3.7) 

In the case (𝐼 − 𝐽𝑇+
𝐽𝑇)  ≠ 0 , i.e. JT has a non-empty null space, the values Y can take 

are restricted by the first assumption that the set $’= { $’1, $’2 … $’n} is a set of proper 

screws expressed in Axis coordinate representation. 
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In the special case of J is 6 × 6 and invertible, the general solution given in equation 

(3.7) will be an alternative analytical proof of what was provided before in the 

literature for the geometrical meaning of the inverse of Jacobian provided in section 

2.5.5. 

Where the case that J is not 6 × 6 will be further discussed in the following example: 

Consider the 3R planar serial manipulator given in Figure 10 (a), the 6 × 3 screw based 

Jacobian of the manipulator as given by equation (2.21) will be used to discuss the 

general matrix equation solutions of reciprocal screws given in equation (3.7) as: 

𝐽𝑟 =

[
 
 
 
 
 

0
0
1
𝑦1

−𝑥1

0

0
0
1
𝑦2

−𝑥2

0

0
0
1
𝑦3

−𝑥3

0 ]
 
 
 
 
 
𝑇+

+

(

 
 
 
 

𝐼6×6 −

[
 
 
 
 
 

0
0
1
𝑦1

−𝑥1

0

0
0
1
𝑦2

−𝑥2

0

0
0
1
𝑦3

−𝑥3

0 ]
 
 
 
 
 
𝑇+

[
 
 
 
 
 

0
0
1
𝑦1

−𝑥1

0

0
0
1
𝑦2

−𝑥2

0

0
0
1
𝑦3

−𝑥3

0 ]
 
 
 
 
 
𝑇

)

 
 
 
 

∗ 𝑌 

This solution can be simplified to: 

𝐽𝑟 =

[
 
 
 
 
 

0 0 0
0 0 0

𝑥2𝑦3 − 𝑥3𝑦2 𝑥3𝑦1 − 𝑥1𝑦3 𝑥1𝑦2 − 𝑥2𝑦1
𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1
𝑦3 − 𝑦2 𝑦1 − 𝑦3 𝑦2 − 𝑦1

0 0 0 ]
 
 
 
 
 

/𝐷 +

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1]

 
 
 
 
 

∗ 𝑌,  

 

(3.8) 

Where: 𝐷 = 𝑥1𝑦2 − 𝑥2𝑦1 + 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 . 

Depending on Y value, we may have infinitely many options for constructing 

reciprocal screws. 

For illustration, consider the planar 3R manipulator assigned with the constructed 

reciprocal screws in Figure 2.12, take $’1 as an example, we can have another choice 
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for a screw that is reciprocal to $2 and $3 keeping the restriction that it is not reciprocal 

to $1 as shown in Figure 3.1, there exist a plane that all directions of the screws 

contained in it, can actually be reciprocal to $2 and $3 without being reciprocal to $1; 

this result is imbedded in the last column of the matrix that represents the null space 

of the system of reciprocal screws, i.e. the most right matrix in equation (3.8) . 

So far, we discussed that constructed reciprocal screws are screws of pure force, while 

other combinations from the null space of the system of reciprocal screws give a 

possibility to apply a moment, in the direction of the constructed screws that is 

reciprocal to all original screws without breaking the aforementioned condition for 

pairwise reciprocity. 

 
Figure 3.1: Plane of Reciprocal Screws on $2 and $3 not Reciprocal to $1 
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Combinations from the first two columns of the null space matrix given in equation 

(3.8) should be restricted to the form h*S which represents the depended translation or 

moment if the screw is representing kinematics or statics respectively, i.e. the values 

Y can take are not completely random. 

The screws that have combinations from the type h*S represent joints that are called 

screw joints. In parallel actuated devices, the limbs correspond to screws that have 

such combinations are called wrench applicators, while the ones that have only 

translational or rotational movements are called force applicators and hinge applicators 

respectively [10]. 

Combining the obtained results, we can say that the parallel dual manipulator for the 

3R serial planar can have limbs that are not restricted to just being force applicators, 

but they might be wrench applicators. 

3.3 Geometrical Meaning of Pseudo-Inverse of the Jacobian: 

In this section, the geometrical meaning of the pseudo inverse of the Jacobian matrix 

will be discussed for the first time in consistence with the work done for the 

generalized matrix equation of reciprocal screws. 

Initially, we will discuss two concepts: the screw that is reciprocal to itself and the 

pseudo inverse in abstract mathematics. 

- A screw that represent pure force or pure couple, or there analogous quantities in 

velocity kinematics is said to be self-reciprocal (self-dual), i.e. representing the screw 

itself in both Ray and Axis coordinate representations, then performing Euclidean 

product between these representations will give zero as an outcome. On the other hand, 
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the screws that represent helical movements, i.e. screws with non-zero nor infinity 

pitches, are not self-reciprocal or self-dual [10]. 

- The common linear system 𝐴𝑥 = 𝑏, assuming that it is solvable, i.e. the vector b 

belongs to the range of A, have only one solution that is pure from any linear 

combinations of the vectors of its null space, and this solution is given by 𝐴+𝑏. On the 

other hand, if the system 𝐴𝑥 = 𝑏 is not solvable, i.e. the vector b does not belong to 

the range of A, the vector given by 𝐴+𝑏 is the solution for what is commonly known 

as the least square errors problem [32]. In this manner, we can conclude that using the 

pseudo inverse of the Jacobian to express reciprocity as shown early in this chapter, 

can find directions of screws that either are reciprocal to the screws in the original 

Jacobian, pure from all non-necessary combinations from the null space of the 

solution, or a set of screws that are close to reciprocal in terms of minimum square 

errors. 

Consider a twist (screw in kinematics) that represents a pure rotation about the x axis 

of the reference frame at zero distance from the origin, i.e. a unit screw with Ray 

representation given as $ = [1 0 0 0 0 0] T, the pseudo inverse of $T is given by $+ = 

[1 0 0 0 0 0] T and it should be thought of in Axis coordinates. Simply, we can re-

represent $+ in Ray coordinates as $+ = [0 0 0 1 0 0] T. Indeed, $+ is the self-dual 

screw of $ pure from any linear combination of the directions of the other 4 screws 

that are reciprocal to $. 

3.4 Serial to Hybrid Actuation by Inverting Subsections: 

It has been shown early in section 2.5.5, that serial to parallel actuation and vice versa 

can be conceived by means of reciprocal screws for 6 DOF general purpose 

manipulators. 
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Consider the elbow manipulator shown in Figure 3.2, it is a serial manipulator with 6 

revolute joints, hence 6 DOF. 

 
Figure 3.2: Elbow Manipulator Assigned with Screw Coordinates [26] 

The screw based Jacobian of the elbow manipulator will be constructed; to simplify 

this work with a more systematic procedure, we will use the algorithm given by Tsai 

[26] for the screw based Jacobians, together with using Denavit-Hartenberg 

convention as in the following. 
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Figure 3.3: Elbow Manipulator Assigned with DH Coordinates [26] 

The DH parameters assigned with the coordinates represented in Figure 3.3 are given 

in Table 3.1. 

Table 3.1: DH Parameters for the Elbow Manipulator 

Link / DH Parameter Ɵi di αi ai 

1 Ɵ1 0 π/2 0 

2 Ɵ2 0 0 a2 

3 Ɵ3 0 0 a3 

4 Ɵ4 0 - π/2 a4 

5 Ɵ5 0 π/2 0 

6 Ɵ6 d6 0 0 

 

The correspondent matrices that connect between the sequential coordinates of the 

links of the elbow manipulator using DH convention are given by: 

𝐴1
0 = [

cos 𝜃1 0 sin 𝜃1 0
sin 𝜃1 0 −cos 𝜃1 0

0 1 0 0
0 0 0 1

]              𝐴2
1 = [

cos 𝜃2 −sin 𝜃2 0 𝑎2 cos 𝜃2

sin 𝜃2 cos 𝜃2 0 𝑎2sin 𝜃2

0 0 1 0
0 0 0 1

] 
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𝐴3
2 = [

cos 𝜃3 −sin 𝜃3 0 𝑎3 sin 𝜃3

sin 𝜃3 cos 𝜃3 0 𝑎3 cos 𝜃3

0 0 1 0
0 0 0 1

]𝐴4
3 = [

cos 𝜃4 0 − sin 𝜃4 𝑎4 cos 𝜃4

sin 𝜃4 0 cos 𝜃4 𝑎4 sin 𝜃4

0 −1 0 0
0 0 0 1

] 

𝐴4
3 = [

cos 𝜃5 0 sin 𝜃5 0
sin 𝜃5 0 −cos 𝜃5 0

0 1 0 0
0 0 0 1

]               𝐴6
5 = [

cos 𝜃6 −sin 𝜃6 0 0
sin 𝜃6 cos 𝜃6 0 0

0 0 1 𝑑6

0 0 0 1

] 

The corresponding Jacobian of the elbow manipulator is given by equation (3.9). (The 

derivation of the screw based Jacobian by implementing Tsai algorithm can be found 

in Appendix (A).) 

𝐽0 =

[
 
 
 
 
 
0 𝑠1 𝑠1 𝑠1 −𝑠234𝑐1 𝑐5𝑠1 + 𝑐234𝑐1𝑠5

0 −𝑐1 −𝑐1 −𝑐1 −𝑠234𝑠1 𝑐234𝑠1𝑠5 − 𝑐1𝑐5

1 0 0 0 𝑐234 𝑠234𝑠5

0 0 𝑎2𝑐1𝑐2 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2) 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2) + 𝑎4𝑐234𝑐1 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2) + 𝑎4𝑐234𝑐1

0 0 𝑎2𝑐2𝑠1 𝑠1(𝑎3𝑐23 + 𝑎2𝑐2) 𝑠1(𝑎3𝑐23 + 𝑎2𝑐2) + 𝑎4𝑐234𝑠1 𝑠1(𝑎3𝑐23 + 𝑎2𝑐2) + 𝑎4𝑐234𝑠1

0 0 𝑎2𝑠2 𝑎3𝑠23 + 𝑎2𝑠2 𝑎3𝑠23 + 𝑎2𝑠2 + 𝑎4𝑠234 𝑎3𝑠23 + 𝑎2𝑠2 + 𝑎4𝑠234 ]
 
 
 
 
 

 

(3.9) 

Where the s and c are abbreviations for sin () and cos () functions respectively, and 

the subscripts used below represent the sum of the angles of the corresponding 

subscripts, e.g. 𝑠234 represents sin (𝜃2 + 𝜃3 + 𝜃3). 

To proceed further aiming to design an equivalent hybrid manipulator for the elbow 

manipulator by replacing a section, we may attempt to take a sequential section from 

the columns of the Jacobian, represent it in a matrix, then solve the generalized 

reciprocal system discussed early in this chapter. 

Let the first three columns from 𝐽0 in equation (3.9) be represented in the matrix J1-3 

as in equation (3.10). 
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𝐽1−3 =

[
 
 
 
 
 
0 𝑠1 𝑠1

0 −𝑐1 −𝑐1

1 0 0
0 0 𝑎2𝑐1𝑐2

0 0 𝑎2𝑐2𝑠1

0 0 𝑎2𝑠2 ]
 
 
 
 
 

 

 

(3.10) 

The generalized matrix of reciprocal screws given in equation (3.4) has the following 

form and solution given in equations (3.11) and (3.12) respectively. 

[
 
 
 
 
 
0 𝑠1 𝑠1

0 −𝑐1 −𝑐1

1 0 0
0 0 𝑎2𝑐1𝑐2

0 0 𝑎2𝑐2𝑠1

0 0 𝑎2𝑠2 ]
 
 
 
 
 
𝑇

∗ 𝐽𝑟
1−3 = 𝐼  

 

(3.11) 

𝐽𝑟
1−3 =

[
 
 
 
 
 
0 𝑠1 0

0 −𝑐1 0

1 0 0

0 −𝑐1𝑐2/𝑎2 𝑐1𝑐2/𝑎2

0 −𝑠1𝑐2/𝑎2 𝑠1𝑐2/𝑎2

0 −𝑠2/𝑎2 −𝑠2/𝑎2 ]
 
 
 
 
 

+ 

[
 
 
 
 
 
 

𝑠1
2 s( 2𝜃1) /2 0 0 0 0

s( 2𝜃1) /2 𝑐1
2 0 0 0 0

0 0 1 0 0 0

0 0 0 𝑐1
2𝑐2

2 𝑠1𝑐1𝑐2
2 𝑐1𝑠2𝑐2

0 0 0 𝑠1𝑐1𝑐2
2 𝑠1

2𝑐2
2 𝑠1𝑠2𝑐2

0 0 0 𝑐1𝑠2𝑐2 𝑠1𝑠2𝑐2 𝑠2
2 ]

 
 
 
 
 
 

∗ 𝑌 

 

(3.12) 

 

Although the screws of the pseudo inverse of the Jacobian matrix 𝐽𝑟
1−3 given in 

equation (2.12) are not normalized, yet it is possible to reconstruct the directions of the 

screw as follows. 

Considering what the general solution of equation (3.4) represents, each of the columns 

of the transposed version of pseudo inverse Jacobian is a non-normalized screw 

represented in Axis coordinates. For consistency with the work done in [9-10], we will 

only reconstruct the screws from the solution given in equation (3.12) for the special 
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case Y = 0, other discussions for the general case will be similar to the work done in 

section 3.2. 

The first column of 𝐽1−3
+𝑇

 is a pure moment (pure couple) about z axis, and will be 

represented by a hinge applicator. Where the second column represents a pure force 

along a vector direction that possesses orthogonal components on all of the x, y and z 

coordinates, yet it only intersects z axis (moment is zero about z axis). Finally, the last 

column represents a force applicator that is also possesses similar orthogonal 

components to its previous (symmetric), yet it intersects all of x, y and z axes (moment 

is zero about x, y and z axes). Figure 3.4, shows a proper sketch of the directions and 

the types of the constructed screws. 

 
Figure 3.4: Sketch of the Constructed Reciprocal Screws from Pseudo Inverse of 

Jacobian 𝐽𝑟
1−3 

Another sequential section of the Jacobian 𝐽0 in equation (3.9) can be taken as the 

second, third and fourth columns of 𝐽0, and will be represented in the matrix J2-4 as 

given in equation (3.13). 
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𝐽2−4 =

[
 
 
 
 
 

𝑠1 𝑠1 𝑠1

−𝑐1 −𝑐1 −𝑐1

0 0 0
0 𝑎2𝑐1𝑐2 𝑐1(𝑎3𝑐23 + 𝑎2𝑐2)
0 𝑎2𝑐2𝑠1 𝑠1(𝑎3𝑐23 + 𝑎2𝑐2)
0 𝑎2𝑠2 𝑎3𝑠23 + 𝑎2𝑠2 ]

 
 
 
 
 

 

 

(3.13) 

In equation (3.13), 𝜃1 plays the role of representing the screws with respect to the 

reference frame after a rotation about the base with an angle equal to 𝜃1. For simplicity, 

we can substitute 𝜃1 with any possible value within its space limit, e.g. if 𝜃1 was 

substituted with the value π/2, the valued version for 𝐽2−4, denoted by 𝐽2−4
𝑣 , is given 

in equation (3.14). 

𝐽2−4
𝑣 =

[
 
 
 
 
 
1 1 1
0 0 0
0 0 0
0 0 0
0 𝑎2𝑐2 𝑎3𝑐23 + 𝑎2𝑐2

0 𝑎2𝑠2 𝑎3𝑠23 + 𝑎2𝑠2]
 
 
 
 
 

 

 

(3.14) 

The matrix 𝐽2−4
𝑣  given in equation (3.14) is very similar to the Jacobian matrix of a 3R 

serial planar manipulator given in equation (2.22). Indeed, the 2nd, 3rd and 4th joints of 

the elbow manipulator have the same structure of a 3R serial planar manipulator shown 

in Figure 2.10 (a). In this manner, the same results obtained previously in equation 

(3.8) with all discussions followed, are applicable to this case. Further discussions 

about a possible implementation of the aforementioned substructures will be carried 

on in Chapter 4.  
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Chapter 4 

4 EQUIVALENCES IN ELECTRICAL AND 

MECHANICAL SYSTEMS 

4.1 Introduction: 

In many engineering applications, designers or analyzers tend to replace a section of a 

system with its equivalent, to improve certain characteristics of the overall system; or 

maybe to simplify analysis steps of the system without effecting input / output 

parameters. These equivalents are very popular in electrical systems and were vividly 

studied for one-phase and multi-phase systems [20-21] which is known by tear and 

reconstruction of circuits. 

As has been studied in section 2.5.5 and will be discussed in this chapter, the dual 

mechanism of a given one can be found structurally equivalent under special 

conditions. 

In this chapter, we seek to design structural equivalents for a serial subsection of a 

manipulator from its dual parallel structure, to improve the stiffness and accuracy of 

the serial manipulator by embedding a parallel actuated section, together with keeping 

some of the desired properties of the original serial manipulator. Running design 

improvements can simplify the work done on the contact between the end effector and 

the surrounding environment via the previous successful design of the serial 

manipulator. 
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One might think of a successful design of a fully in serial manipulator then try to locate 

the weaknesses in the given structure that might be further improved. 

As initial study, we will demonstrate some validated equivalent subsystems for some 

robotic manipulators in the next section. 

Table 4.1: Some Equivalent Pairs in Electrical Circuits 

 

Delta Connection (Δ) 

 

Star Connection (Y) 

 

Serial RX 

 

Parallel RX 

 

T Connection (T) 

 

Pi Connection (Π) 

 

Thévenin 

 

Norton 



56 

Usually in electrical systems, equivalent pairs such as the pairs given in Table 4.1, are 

used to replace a section (subsystem) of the overall circuit. In this work, we try to adapt 

the aforementioned concept into its mechanically analog, i.e. replacing a subsystem of 

the mechanical structure in general and a robotic manipulator in particular is desired 

to improve or inherit the overall structure with some specific characteristics. 

4.2 Equivalent 6 SPS and 6 SRS Stewart Platforms: 

The typical 6 DOF Stewart platform consist of a base, a moving platform (lamina) and 

6 actuated limbs. These limbs are usually from the form SPS (spherical - prismatic – 

spherical), where in each limb the spherical joints are passive and the prismatic joint 

is actuated. 

Usually, the implementation of prismatic joints is found to be more difficult than 

revolute ones [26]. This is for the difficulty in finding sliding based actuators, i.e. 

actuated prismatic joints is usually conceived by hydraulic cylinders or an equivalent 

mechanisms which are more difficult to implement than rotational based actuators 

(motors). On the other hand, prismatic motion is usually easier to analyze and design 

by engineers; for this purpose, we may tend to design and analyze prismatic actuated 

limbs then map the governing equations from position analysis to be implemented 

using revolute actuators. 

As demonstration, see the equivalent 6 SPS and 6 SRS Stewart platforms given in 

Figure 4.1 (a) and (b) respectively. The motion equations that are used to control the 

6 SPS platform represented by the inverse kinematics will be derived and discussed in 

the following, then the equations will be further adapted to represent the motion 

equations of the 6 SRS platform. 
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Figure 4.1: (a) 6 SPS Stewart Platform [26]  (b) 6 SRS Stewart Platform 

For the 6 SPS Stewart Platform shown in Figure 4.1 (a), the inverse kinematics (inverse 

position) equations are usually used to control the platform, these equations are derived 

from the linearly independent loops, corresponding to each limb as follows: 

Suppose that the desired position and orientation of the moving platform is given with 

respect to the base; a usual representation of two orthogonal coordinate is conceived 

via a matrix (T) known as the general transformation matrix [26-31]; this 

transformation matrix consists of an orthogonal matrix that represents the projections 

of the observation frame coordinates onto the reference frame coordinates and will be 

represented as 𝑅𝑝
0, and a vector 𝑝𝑝

0 that represents the position of the platform with 

respect to the base as follows: 

𝑇𝑝
0  =  (

𝑅𝑝
0 𝑝𝑝

0

03𝑥3 1
) 

(4.1) 

The orthogonal matrix 𝑅𝑝
0 expresses a rotation about an arbitrary axis; or by 

superposition: three rotations about x, y and z axes by angles 𝜃𝑥, 𝜃𝑦 and 𝜃𝑧 respectively 

which are known as the Roll-Pitch-Yaw angles as in the following. 
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𝑅𝑝
0 = 𝑅𝑧(𝜃𝑧) ∗  𝑅𝑦(𝜃𝑦) ∗  𝑅𝑥(𝜃𝑥) (4.2) 

𝑅𝑝
0 = (

cos 𝜃𝑧 −sin 𝜃𝑧 0
sin 𝜃𝑧 cos 𝜃𝑧 0

0 0 1

) ∗ (

cos 𝜃𝑦 0 sin 𝜃𝑦

0 1 0
− sin 𝜃𝑦 0 cos 𝜃𝑦

) ∗ (

1 0 0
0 cos 𝜃𝑥 −sin 𝜃𝑥

0 sin 𝜃𝑥 cos 𝜃𝑥

) 
(4.3) 

𝑅𝑝
0

= (

cos 𝜃𝑧 cos 𝜃𝑦 −sin 𝜃𝑧 cos 𝜃𝑥 + cos 𝜃𝑧 sin 𝜃𝑦 sin 𝜃𝑥 sin 𝜃𝑧 sin 𝜃𝑥 + cos 𝜃𝑧 sin 𝜃𝑦 cos 𝜃𝑥

sin 𝜃𝑧 cos 𝜃𝑦 cos 𝜃𝑧 cos 𝜃𝑥 + sin 𝜃𝑧 sin 𝜃𝑦 sin 𝜃𝑥 −cos 𝜃𝑧 sin 𝜃𝑥 + sin 𝜃𝑧 sin 𝜃𝑦 cos 𝜃𝑥

−sin 𝜃𝑦 cos 𝜃𝑦 sin 𝜃𝑥 cos 𝜃𝑦 cos 𝜃𝑥

)  

 

(4.4) 

Where 𝑝𝑝
0 the position vector is given by 𝑝𝑝

0 = [𝑝𝑥 𝑝𝑦 𝑝𝑧]T, supposed to be known 

(desired). 

Let ai’s and bi’s represent the attachment vectors of each limb i on the base and the 

moving lamina respectively. Where ai’s are represented with respect to the base and 

bi’s are represented with respect to the moving lamina; and let di’s represent the length 

of each limb. 

A vector loop equation can be written for each limb as [26]: 

𝑑𝑖 + 𝑎𝑖 = 𝑝 + 𝑅𝑝
0 ∗ 𝑏𝑖 (4.5) 

Isolating 𝑑𝑖 from equation (4.5) as the only unknown, gives the length of each actuated 

limb for a desired position and orientation of the lamina. 

𝑑𝑖 = 𝑝 + 𝑅𝑝
0 ∗ 𝑏𝑖 − 𝑎𝑖 (4.6) 

The inverse kinematic problem for the 6 SPS Stewart platform is the solution of the 

system of equations in (4.6). Now we will map this solution to its equivalent 6 SRS 

Stewart platform shown in Figure 4.1 (b) as follows: 
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A virtual distance di can be added to the loop i in the 6 SRS Stewart platform as shown 

in Figure 4.2. Hence, the solution of the inverse kinematic problem for this equivalent 

manipulator can be expressed as in equation (4.8). 

 
Figure 4.2: Illustration of Loop i of the SRS Stewart Platform 

It appears to be possible to find the equations for the loop i directly by the cosine 

formula for the angles 𝜃𝑖’s as in equation (4.7). 

cos 𝜃𝑖 = 
(𝑙1

𝑖 )2 + (𝑙2
𝑖 )2 − (𝑑𝑖)

2

2 ∗ (𝑙1
𝑖 ) ∗ (𝑙2

𝑖 )
 

(4.7) 

While each 𝜃𝑖 can be determined by the inverse of the cosine function as: 

𝜃𝑖 = cos−1
(𝑙1

𝑖 )2 + (𝑙2
𝑖 )2 − (𝑑𝑖)

2

2 ∗ (𝑙1
𝑖 ) ∗ (𝑙2

𝑖 )
 

(4.8) 

Taking only the positive solution for equation (4.8), and mapping the interval of di to 

an interval for 𝜃𝑖; the mathematical formulation for the equivalent Stewart platforms 

is completed. 
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It’s worth mentioning that during the period of preparing this thesis, an implementation 

of another equivalent structure for the Stewart platform namely 6 RSS parallel 

manipulator, took place in collaboration between the Department of Electrical and 

Electronic Engineering and the Department of Mechanical Engineering in Eastern 

Mediterranean University. The designed structure was controlled by mapping 

equations (4.6) into its equivalents, and controlled by the means of inverse kinematics. 

A representative picture of the implemented Stewart platform is attached in Figure 4.3. 

 
Figure 4.3: Implemented RSS Stewart Platform, EMU 

4.3 Equivalent Manipulators by Active Support: 

In this section, we extend the concept of non-reciprocal screws that are usually found 

to be dual in the sense of parallel-serial duality, to support one of the joints of a serial 

manipulator by an additive parallel section to improve its stiffness and to increase its 

workload-tolerance. 

Consider the 3R serial manipulator given in Figure 2.10 (a), assume further that we 

desire to support the base joint by some parallel structure without losing the overall 

simplicity for the serial design. 
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One possibility to perform this improvement regarding the aforementioned constraints 

is by attaching a force actuated limb to the first link that can do a work only on the 

base joint considering all position configurations of the manipulator. This can only be 

done by an attachment to the first link of the 3R manipulator as shown in Figure 4.4. 

 
Figure 4.4: 3R Serial Planar Manipulator Connected with a Virtual Parallel Limb 

If we express the angle of attachment by β, then the values of β are restricted by 𝛽 ≠

{ 0 , 𝜋 } in order not to have reciprocity (orthogonality) between the base and the 

additive screws, this is consistent with the physical axiom of transferring linear 

movement to rotational. 

Consider the triangle given in Figure 4.5, the distance L is constant as both the additive 

limb and the base of the serial manipulator are fixed, and the constant offset angle is 

given by 𝜃0; using the trigonometric cosine expression, we can relate d1 with 𝜃1 as in 

equations (4.9) to (4.11). 



62 

cos(𝜃1 + 𝜃0) =  
𝑎12

2 + 𝐿2 − 𝑑1
2

2𝑎12 ∗ 𝐿
 

(4.9) 

𝑑1 = √𝑎12
2 + 𝐿2 − 2𝑎12 ∗ 𝐿 ∗ cos(𝜃1 + 𝜃0)   (4.10) 

𝜃1 = cos−1(
𝑎12

2 + 𝐿2 − 𝑑1
2

2𝑎12 ∗ 𝐿
) − 𝜃0 

(4.11) 

  

 
Figure 4.5: Triangle of Transformation from Revolute to Prismatic 

Now, a possible equivalent implementation can be done by actuating the prismatic 

limb and keeping the base joint passive. 

In the following, we may discuss performing forward and inverse kinematic analysis 

for the 3R serial manipulator neglecting the added parallel limb, then adapting the 

equations for the hybrid overall structure as follows. 

First we assign Denavit-Hartenberg (DH) coordinates for the 3R manipulators in 

accordance with [28], as shown in Figure 4.6 
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Figure 4.6: 3R Planar Manipulator with DH Coordinates 

The transformation matrix between the first coordinate frame (the base) and the end 

effector are given in equation (4.12), from the outcome of substituting the 

correspondent DH parameters given in Table 4.2 into correspondent DH matrix 

representation and performing common matrix-matrix multiplications in a sequential 

manner as demonstrated below. 

Table 4.2: DH Parameters for 3R Serial Planar Manipulator 

Link / DH Parameter Ɵi di αi ai 

1 Ɵ1 0 0 a12 

2 Ɵ2 0 0 a23 

3 Ɵ3 0 0 h 

 

𝑇𝑒
0

= (

cos 𝜃1 −sin 𝜃1 0 𝑎12 cos 𝜃1

sin 𝜃1 cos 𝜃1 0 𝑎12 sin 𝜃1

0 0 1 0
0 0 0 1

) ∗ (

cos 𝜃2 −sin 𝜃2 0 𝑎23 cos 𝜃2

sin 𝜃2 cos 𝜃2 0 𝑎23 sin 𝜃2

0 0 1 0
0 0 0 1

)

∗ (

cos 𝜃3 −sin 𝜃3 0 ℎ cos 𝜃3

sin 𝜃3 cos 𝜃3 0 ℎ sin 𝜃3

0 0 1 0
0 0 0 1

)

= (

cos(𝜃1+𝜃2 + 𝜃3) − sin(𝜃1+𝜃2 + 𝜃3) 0 𝑎12 cos 𝜃1 + 𝑎23 cos(𝜃1+𝜃2) + ℎ cos(𝜃1+𝜃2 + 𝜃3)

sin(𝜃1+𝜃2 + 𝜃3) cos(𝜃1+𝜃2 + 𝜃3) 0 𝑎12 sin 𝜃1 + 𝑎23 sin(𝜃1+𝜃2) + ℎ sin(𝜃1+𝜃2 + 𝜃3)
0 0 1 0
0 0 0 1

) (4.12) 
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Now by substituting Ɵ1 with its equivalent d1 from equation (4.11), we obtain a 

platform for both direct and inverse position problems for the hybrid manipulator given 

in Figure 4.4. 

4.4 Instantaneously Equivalent Serial / Parallel Manipulators: 

As has been shown in Chapter 2, there is a remarkable duality between a planar 3R 

serial manipulator and a planar 3(RPR) parallel manipulator shown in Figure 2.10 (a) 

and (b) respectively. This duality is not only in the sense of kinematics and statics, yet 

it is obvious in the position domain as well. Indeed, Murthy & Waldron in [5], showed 

that the dual serial and parallel manipulators have the same complexity while solving 

inverse and forward position problems respectively. Moreover, Davidson and Hunt in 

[10], suggested serial to parallel actuation as duality leads to equivalent as the method 

proposed in reconstructing the reciprocal screws from the inverse of the Jacobian 

matrix. In late (2015), Shai et al. in [12], showed that Stewart platform has very similar 

position configurations with an over constraint Bircard mechanism. 

Up to today, there is no complete match between two dual manipulators in the position 

domain. Yet, the similarities between many of their position configurations and 

possessing the same degree of freedom was used to justify this equivalency. 

For instance, picture a 3R serial manipulator attached with 3 force applicators along 

each of the directions of its reciprocal screws in the same plane of movement as shown 

in Figure 4.7. 
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Figure 4.7: 3R Serial Planar with Its Dual 3(RPR) Parallel Planar at a Special 

Reciprocal Configuration 

Although the similarity between the aforementioned dual manipulators is very obvious 

in terms of the workspace, degree of freedom, planarity and others; yet, they are only 

instantaneously equivalent, i.e. at the instant the sliding movement starts along one of 

its limbs, the direction of the screw of movement (the line) is reciprocal to two of the 

screws while non-reciprocal to the third, after an infinitesimal time, the reciprocity 

condition will be broken as shown in Figure 4.8. 

 
Figure 4.8: 3R Serial Planar and 3(RPR) Parallel Planar Manipulators at a Non-

Reciprocal Position Configuration 
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In despite of the fact that two manipulators cannot be equivalent in terms of one to one 

in real time, they might be able to perform identical operations within very similar 

workspace limits; further discussion will be continued in Chapter 5. 

4.5 Serial to Hybrid Actuation: 

As discussed in the previous section, serial to parallel actuation via reciprocal screws 

is considered convenient for researchers that are interested in duality in the position 

domain in [5-7, 10, and 12]. This section proceeds further in the discussion established 

in Chapter 3 on the transformation from serial to hybrid actuation by replacing a sub 

section from a serial manipulator with its reciprocal-dual parallel section to inherit 

some of the properties of the overall manipulator. 

Consider the elbow manipulator shown in Figure 3.3, a sequential serial sections of 

the manipulator will be replaced by their parallel dual, discussions will be followed. 

A subsection represented by the first three joints and the links in between (the arm) 

from the Jacobian of the elbow manipulator was derived and inverted as given in 

equation 3.12, a proper sketch of the constructed screws are shown in Figure 3.4, an 

implementation of the subsection that has similar screws is shown in Figure 4.9. 
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Figure 4.9: Equivalent Mechanism for the Arm of Elbow Manipulator 

Figure 4.10 shows the elbow manipulator after replacing the arm with its dual structure 

provided in Figure 4.9  

 
Figure 4.10: Skethch of Elbow Manipulator After Replacing the Arm with its Dual 

Structure 

Where the subsection represented by the second, third and fourth joints and the links 

in between were found to be very similar to the 3 RPR parallel planar manipulator 

shown in Figure 2.10 (b). A replacement of the aforementioned sequence with its dual 

structure can be shown in Figure 4.11. 
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Figure 4.11: Skethch of Elbow Manipulator After Replacing the Sequence of the 

Joints 2, 3 and 4 with the Links in between with Their Dual Structure 

It has been shown, that sequential subsection replacement of a serial manipulator by 

its reciprocal-dual, results in a hybrid-actuated mechanism that has instanteneos 

equivalce with the original manipulator in tems of the degree of freedom, type of 

geometriccal displacement, purpose of usage and others. 

This similarity or moreover, “equivalency” worths further investigations as it leads to 

novel hybrid actuated mechanisms’ designs.  
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Chapter 5 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

There exist a remarkable analogy between electrical and mechanical systems in terms 

of the similarity in assembly components (such as dumpers and resistors, masses and 

capacitors etc…), and the similarity in the governing equations that relates analogous 

input / output parameters (voltages and currents with forces and velocities). On the 

other hand, some of the frequently used concepts in electrical systems such as 

equivalents, do not have mechanical analogs in the existing literature. In this thesis, 

we emphasized on the existence of equivalent structures that can be obtained both by 

inspection in the geometry of mechanics or by accepting instantaneously equivalent 

manipulators that are found dual in terms of common duality between twist and wrench 

coordinates in kinematics and statics respectively, as real time equivalents if they equip 

the design with some desired characteristics together with preserving some of the 

properties of the previous design such as degree of freedom, effective workspace and 

purpose of usage. 

Furthermore, in this work, duality between statics and kinematics in terms of the 

reciprocity (orthogonality) between their corresponding coordinates was generalized 

by means of linear algebra, where a new insight on the geometrical meaning of the 

pseudo inverse of the Jacobian matrix has been discussed for the first time as an 

outcome of aforementioned general reciprocity solutions. The geometrical meaning of 
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pseudo inverse has been persuaded to aid the design of hybrid manipulators from 

existing serial manipulators by subsection replacement via reciprocal screws 

constructed from the pseudo inverse of sequential columns of serial manipulators’ 

Jacobians, which correspond to sections of desired improvements. 

5.2 Future Work 

A promising future for the work done in this thesis can be conceived by further 

adapting the improved structures and generalizing a scalar of comparison between old 

and improved designs from the outcome of serial to hybrid transformations, by 

thresholding the necessity of subsection replacement in terms of the new to old 

stiffness, new to old design complexity and new to old effective workspace for original 

and improved manipulators’ designs.  
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Appendix A: Jacobian of Elbow manipulator (Matlab script) 

%% Elbow manipulator Example, screw based jacobian 

syms t d al a 

syms a2 a3 a4 d6 % all constants  

syms t1 t2 t3 t4 t5 t6 % all variables 

A=trotz(t)*transl(a,0,d)*trotx(al); 

A1=subs(A,[al a d t],[pi/2 0 0 t1]); 

A2=subs(A,[al a d t],[0 a2 0 t2]); 

A3=subs(A,[al a d t],[0 a3 0 t3]); 

A4=subs(A,[al a d t],[-pi/2 a4 0 t4]); 

A5=subs(A,[al a d t],[pi/2 0 0 t5]); 

A6=subs(A,[al a d t],[0 0 d6 t6]); 

%% finding the reference wrt the base frame (to find 

the duality easily) 

A1=simplify(A1); 

A12=simplify(A1*A2); 

A123=simplify(A12*A3); 

A1234=simplify(A123*A4); 

A12345=simplify(A1234*A5); 

A123456=simplify(A12345*A6); 

%% finding ri for all frames: 

r1=[0;0;0]; 

r2=[a2;0;0]; 

r3=[a3;0;0]; 

r4=[a4;0;0]; 

r5=[0;0;0]; 

%% Screw axis using algorithm page 194 Tsai 

s1=[0; 0; 1];   so1=[0;0;0]; 

s2=A1(1:3,3);   so2=simplify(so1+A1(1:3,1:3)*r1); 

s3=A12(1:3,3);  so3=simplify(so2+A12(1:3,1:3)*r2); 

s4=A123(1:3,3);  so4=simplify(so3+A123(1:3,1:3)*r3); 

s5=A1234(1:3,3);  so5=simplify(so4+A1234(1:3,1:3)*r4); 

s6=A12345(1:3,3);  

so6=simplify(so5+A12345(1:3,1:3)*r5); 

J=[s1 s2 s3 s4 s5 s6; so1 so2 so3 so4 so5 so6] 
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Appendix B: Hybrid Equivalents of Elbow Manipulator -3D Sketches 

 

Figure B.1: Hybrid Equivalent Elbow Manipulator via Subsection Dual Replacement 

of the Arm 

 

 

Figure B.1: Hybrid Equivalent Elbow Manipulator via Subsection Dual Replacement 

of the Second to the Fourth Joints and Connecting Links 


