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ABSTRACT

The current research involves the ideas and principles about integral inequalities of
Gronwall type. It deals with the possibilities that we mathematicians use in order to
solve equations in various ways. The first case we adopted to solve equations is
Linear Generalization. The latter deals with equations that are different from those

treated with Non-Linear Generalization.

The research we conduct overlaps to study the relation between fractional and
Gronwall inequalities by analyzing how Gronwall inequalities are included and used

in fractional inequalities.

Keywords: Gronwall inequalities, Fractional inequalities, Linear generalizations and

Non-Linear generalizations.



0z

Mevcut arastirma Gronwall Cesidi integral esitsizlikler hakkinda fikir ve ilkeleri
icermektedir. Biz matematik¢iler cesitli sekillerde denklemleri ¢6zmek igin
kullanmak olasiliklar ile ilgilenir. Biz denklemleri ¢6zmek i¢in kabul edilen ilk vaka
Dogrusal Genelleme oldugunu. Dogrusal Olmayan Genelleme ile tedavi farklhidir

denklemler ile ikinci firsatlar.

Yaptigimiz arastirmalar Gronwall esitsizlikler dahil ve fraksiyonel esitsizliklerin
nasil kullanildigii analiz ederek fraksiyonel ve Gronwall esitsizlikler arasindaki

iligkiyi incelemek i¢in Ortiistir.

Anahtar Kelimeler: Gronwall esitsizlikler, Fraksiyonel esitsizlikler, lineer

genellemeler ve Dogrusal Olmayan genellemeler.



DEDICATION

To my family and my country



ACKNOWLEDGMENT

My sincere thanks go to my loving parents who supported and helped to realize this

thesis.

| cannot thank enough my most humble and understanding supervisor Prof Dr.

Nazim Mahmudov with whose advise, encouragement leads me where | am today.

| am grateful to Yves Yannick Yameni Noupoue, for the amazing time we had during

our Master program.

I would also like to appreciate my friends and colleagues who contributed to the

success of this thesis. May God bless you all.

Vi



TABLE OF CONTENTS

2 LINEAR INEQUALITY .ot 2
3 NONLINEAR INEQUALITY ...ttt e 13
4 GRONWALL TYPE INEQUALITY AND ITS APPLICATION TO A
FRACTIONAL INTEGRAL EQUATIONS. ...t 49

4.1 Fractional Integral Inequality..............cccoiiiiiiiiiiiii e 49

A 2APPIHCALION ..ttt e e 52
5 CONCLUSION

REFERENCES. .. ..o 67

vii



Chapter 1

INTRODUCTION

Gronwall inequalities are an important tool in the study of existence, boundedness,
uniqueness, stability, invariant manifolds and other qualitative properties of solution

of differential equation and integral equation.

As R. Bellman pointed out in 1953 in his book “Stability Theory of Differential
Equations”, McGraw Hill, New York, the Gronwall type integral inequalities of one
variable for real functions play a very important role in the Qualitative Theory of
Differential Equations. The main aim of the present thesis is to present (fractional)
Gronwall inequality and some natural applications of (fractional) Gronwall
inequalities to certain fractional integral equations. The work begins by presenting a
number of classical facts in the domain of Gronwall type inequalities. We collected
in a reorganized manner most of the above inequalities from the book “Inequalities
for Functions and Their Integrals and Derivatives”, Kluwer Academic Publishers,
1994, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink. Chapter 2 contains some
nonlinear generalization of the Gronwall inequalities. Chapter 3 contains some
fractional generalization of the Gronwall inequalities. These results are then
employed in this chapter to study some properties of fractional Volterra Integral

Equations.



Chapter 2

LINEAR INEQUALITY

In the qualitative theory of differential and Volterra integral equations, the Gronwall

type inequalities of one variable for the real functions play a very important role.

The first use of the Gronwall inequality to establish boundedness and stability is due
to R. Bellman. For the ideas and the methods of R. Bellman, see [R. BELLMAN,
Stability Theory of Differential Equations, McGraw Hill, New York, 1953.] where

further references are given.

In 1919, T.H. Gronwall [T.H. GRONWALL, Note on the derivatives with respect to
a parameter of the solutions of a system of differential equations, Ann. Math., 20(2)
(1919), 293-296.] proved a remarkable inequality which has attracted and continues

to attract considerable attention in the literature.

Also we will present some other inequalities of Gronwall type that are known in the
literature and we will give various generalizations of Gronwall’s inequality involving

an unknown function of a single variable, by the recent reference [34].



Theorem 2.1(see [3]) Let g,y and y be a continuous mappings on[e«, g1and x(s) >0,

Vs ela, £]-

Moreover, assume that

S

o(s)<y(s)+ [x(e(t)dt  Vse[a, ] (2.1)
Then
qp(t)Sy/(s)+j.;((t)z//(t)expﬁg(u)du}dt vse[a,]. 2.2)

Proof Assume that y(s) = i;((u)go(u)du, sela, A]-

Then clearly y(«)=0 and

y'(s)=x(s)e(s).

From (2.1) we have

y'(s) S26(3)[1//(S)+j;g(t)go(t)dt}

= 7Sy (8)+2(s) [x ()t

=2y (s)+ x(5)y(s), se(a,p)-
Multiply both sides with exp(—j x()dt > Oj, we get
y’(s)exp[—j;{(t)dtjs;g(s)yx(s)exp[—.[;((t)dt}r;((s) y(s) exp(—f;((t)dt]

or

y’(s)exp{—iz(t)dtj—z(s)y(s)exp(—ix(t)dtj <2V () exp(—ix(t)dt}



and

%ly(s)exp(—_{[ﬂt)dt}} 7(S)w(s) exp[— £ Z(t)dtj .

Integrating on[e, s] , gives

y(s) exp(—iz(t)dtjﬁiw(U)z(U) exp(—zz(t)dtjdu.

Multiply both sides by [exp(j Z(t)dt)j ,we get

y(s)s_[;y(u);((u) exp[_[;((t)dt}du , sela, ] .

Since ¢(s) <w(s)+ y(s), then

p(t)< y/(s)+J.;g(t)y/(t)expﬁ;((u)du}dt ,

(o4

which completes the proof.

Corollary 1 Let iy be differentiable, by the inequality (2.1),

o) 2w (e eyt |+ oo [ e, v el ]

Proof: It is clear that,

—iw(t)%[expﬁz(u)du]]dt

B

=y (t)exp[i Z(u)duj

+j'epr. Z(u)du} w/'(t)dt

(24

(2.3)



S

=-y(s)+y(a) exp(j;((u)duj + jexp(jz(u)du]zy'(t)dt, vsela, fB].

a

Hence

S

w(s) +jy/(u);((u) exp(iz(t)dt]du

a

=y(a) exp( j ;((u)du}r j exp{ j ;{(u)duJy/’(t)dt, sele,f].

Then we get the desired inequality.

Corollary 2 If w R , then from

o(s) <y + [xOp(t)dt, (2.4)
it follows that
o(s) swexp(j';((u)du} (2.5)

Theorem 2.2(see [7], [3]) Assume that (01[0!,ﬁ]—>R+ iS a continuous mapping,

satisfying the following inequality:

p(6) <M+ [y Da(pO)t,  sela,f] 26

where M >0, l//i[O!,,B]—ﬂRi+ and®:R, > R, are continuous functions and @ is

increasing. Then the inequality
o(s) < X‘l[X(M) +jl//(t)dtj, sela, Al (2.7)

holds, where X: R — R is defined by



X(v)zjv.wi ., veR. (2.8)

Proof Let
y(s)= v (t)o(o(t))dt, sela, ],

clearly y(a)=0 and from (2.6), we get
Y'(s) Sy (s)oM+Y(s)), sela,pl

Integrating both sides on [a, s], we get

y(s) dt :
mg:!}//(t)dt+X(M), se[a.p]

0

that is,
X(y(s)+M )< [y (©)dt+ X (M), sela ],
apply X to both sides, we have
y(s)+M sX‘l[j'w(t)dtJrX(M)],
y(s)sx-lﬁw(t)dux(m)j_M,

sine ¢(s) <M+ y(s), then we get the proof.

Theorem 2.3 (see [9])Assume ¢:[«, #]1 — R be a continuous mapping and satisfies

the inequality:

S0 ()= 20+ (Do) selap], 29)



Where ¢ € R and w >0 are continuous non-negative. Then the inequality

|(p(s)| <|@y| +J.l//(t)dt, sela, ]
holds true.

Proof Let

S

yg(s):%(gooz+52)+J.1//(t)go(t)dt, sefa. A],
where 6 > 0. From (2.9), we have
9’ (5)<Y;(s), se[a Bl
Because Y;(S) =y (3)|¢(s)], s €[a, B], we get
Y, (5) < \2yn(@) + fw (1), se[a, f]

Integrating on[a, s] , we can deduce that

J2y5(5) <2y, (a) +jy/(t)dt, sela,f].
From (2.11), gets
|¢(S)| < |(00|+5+_[1//(t)dt, sela, p].

Hence V& >0, (2.10) holds.

(2.10)

(2.11)

Theorem 2.4 (see [16]) Suppose that ¢(s) > 0 is a continuous function such that

p(s)< a+j[ﬂ+ﬂgp(t)] dt, for s>s,,

So

where >0, #>0, A>0. Then fors>s,, ¢(s) satisfies



o(s)< (éjexp(ﬂ(s =5, ))-D+aexpA(s—s,).

Theorem 2.5 (see [55) Assume ¢(s) be a continuous function and satisfy

S

o (s)| <[5 )|exp(-a(s—5,)) + [ (|o(t) + B)exp(-a(s—t))dt,

So

where o >0, >0, a>0, are any real numbers. Then

|(p(s)| < |(o(so)| exp (—OL(S—SO))+ﬂ(a—0{)71 (1—exp(—(a—a)(s _So))) -

Theorem 2.6(see [55]) Assume ¢(s) is a continuous mapping satisfying

Vs, T € (a, ), Where x(s) >0 and continuous, then

gp(so)exp[_jx(t)dtjs(p(s)s(p(so)exp[jx(t)dt], vszs,.

So So

Theorem 2.7 (see [11]) Assume (s) >0 be a continuous on[o,v], and satisfy the

following inequality:

S

o(s) < x(s)+_|'[x1 ()e(t)+y(t)]dt,

0

where ¥,(5)20 and y(s) > 0are integrable mapping on[O,V] and x(s) is a bounded

there. Then, on [0, V] we have

p(s)< _[y (t)dt +Os<l:£3h|x(s)|exp(_|.x1 (t) dtj.



Theorem 2.8(see [11]) Assume that ¢(s) e C[0,%0) and nonnegative such that

@(s) < As” +ms” (DTt)dt ,

O Sy 0

where 2 >0, o >0, B>0.Then

o(s) < As” (1+ 3 m"s™” J
ma(a+p)+--+(a+(n-1)p)

Theorem 2.9 (see [4]) Let ¢ and wbe a continuous and x andy be a Riemann

integrable mappings on 1| =[a,b]Jwith y>0 andy >0.

(i) If
o(5)=x(s)y(S) Jp oar. et (2.12)

then
o) =x(3)y(6) el o [yl (aw e, st @13

Furthermore, equality holds in (2.13) for |,= [a,b1]€| if equality holds in (2.12)

for s € I,.

(i1) In both (2.12) and (2.13) the result remainders valid if < is changed by >.

s b s
(iiii) Together (i) and (ii) still useable ifj is changed byj and j byj

t
t N

Proof Suppose that

E(s)= Jy (t)p(t)dt suchthat E(a)=0,

a

where

E'(s) =y (s)o(s) -



Since

E'(t) < x@®)w (1) + yOw (OE(Q) -

Multiplying byepry(K)y/(K)dKj and integrating on (a,t) we get

E(s)gix(t)y/(t) exp[j.y(lc)z//(lc)dlcjdt, sel. (2.14)

Sincey>0, substituting of (2.14) into (2.12) leads to (2.13). The equality

requirements are clear and proof of the equation (ii) can be written by transformation

of variables s — —s.

Theorem 2.10 (see [17]) If
p(s)< X(S)+X1(S)J.yl(t)¢)(t)dt+xz(S)Z/lnj.yn (t)e(t)ds,
S =2 5
where S€fa,f], a=s,<* ¢ * <5,=f, 4, €R and the generated functions are all

continuous, nonnegative and real and if the following inequality holds

n=2

i/lnjl Ya(S) l:xz (s)+ Xl(S)J. Y1 ()X, (1) (J X, (k) )ﬁ(’ddk‘}t:l ds <1,
S S S

then
o(s) <K (s)+MK,(s),
where
K, () =X()+ % () [, (t)x(t)exp[jxl(x) yl(lc)dlc]dt,
K, (3) =%, (5)+ % (5) [ (V)% (t)eprxi(K) yl(zc)dchdt,
and

10



Theorem 2.11 (see [35]) Let ¢(s) be continuous, real, and non-negative such that for

S>SO

p(s)< 2+ [y (s.t)p(t)dt, 20

So

where (S,t) is a continuously differentiable function in s and continuous in

t with y(s,t) >0 fors > t > so. Then

o(s)< ﬂexp{j{y/(t,t) + j%//(t r)dr}jt}

So

Theorem 2.12 (see [17]) Suppose that ¢(s)be continuous, nonnegative and real on

[«, ], such that

S

p(s)<x(s)+ y(s)ﬁu(s,t)gp(t)dt,

a

where  X(5)>0,y(s)>0, w(st)>0 and are continuous mappings for

o(s)< X (s)exp(Y (S)E‘P(s,t)dtj,

where X (s) =sup x(t), Y (s) =sup y(t), ¥(t,s) =supw(s,o).

a<t<s a<t<s t<o<s

11



Theorem 2.13(see [14]) Assume ¢, x C[a,b] and let| :[a,b] furthermore lety

be a non-negative continuous functiononz:a<t<s<hb. If
S

p(s)< x(s)+jw(s,t)¢(t)dt, sel, (2.15)

a

then

S

(p(s)3x(5)+.|'y(s,t)x(t)dt, sel, (2.16)

a

where 4(s,t) =D W, (s,t)with (t,s)ez, is the resolving kernel of y(s,t)and

n=1

¥, (s,t)are repeated kernels of (s, t).

Remark: If we take y(s,t)=y(s)w(t) and w(s,t):Zyn(s)yxn(t) we have the

n=1

results of D. Willett [14].

12



Chapter 3

NONLINEAR INEQUALITY

We can consider various nonlinear generalizations of Gronwall’s inequality. The

following theorem is proved in [43].

Theorem 3.1(see [43]) Assume ¢(s) > 0be a function satisfy

p(s)<A+ i(X(t)¢(t)+ y(t)e* (t))dt, a=0, 120, (3.1)

So

where x(s) > 0 and y(0) > 0 are continuous mappings for S 2 $;.When0 < a <1 we have

o(s) < {;t“ exp {(1— a)i x(t)dt]

N (32)

+(1_a)jy(t)exp£(1_a)jx(,c)d,cj dt}la ;

So t

fora=1

go(s)szexp{j[x(m y(t)]dt}, (33)

and for a > 1 with the additional hypothesis

2< {exp£(1a)s°f Vx(t)dt]}al {(a_l)%f Vy(t)dt}a_l (3.4

So So

we also get forS; <S<S,+V, forv>0, we have

13



#(s) < ﬂ{exp((l a) Js'x(t) dt}

So

, (35)

-~ (a-1) jy(t)exp[(l— a)jx(zc)dzc] dt}a—l |

S t

proof
If a =1we have linear inequality so that (3.2) is valid.

Now let 0 <a <1. his a solution of the integral equation
h(s)=2+ [[x(t)h(t)+y(t)h* (1) ]dt, s =5,

In differential system this is the Bernoulli equation

h'(s)=x(s)h(s)+y(s)h*(s), h(0)=A.

This is linear in the variable h*2 so can readily be integrated to create

So

h(s) = {/Ila exp{(l— a)j' x(t)dtj

+(1-a) iy(t)exp((l— a)ix(,c)d,(] dt}l‘a |

So t
This equals the right side of the equation (3.2).
For a >1 the equation is an equation of Bernoulli type. For the proof we need the

additional condition (3.4) if this condition is to holds on bounded interval

S, <SS, +V.

Theorem 3.2 (see [17]) If

S

#(s)<g(s)+AJu(t)g (1)dt, 0<a<i

0

14



where all mappings are non-negative and continuous on [0,v], 2>0. Then

S

#(s) < g(s)+/15§[ julla(t)dtJ ,

0

where J,is the unique root of =a+ 0",

Theorem 3.3 (see [17]) Assume ¢(s), u(s) € C[0,v]be non-negative functions
if

#(s)< 4 +/12ju ()¢ (t)dt +/13Iu (t)¢* (t)dt,

0

where 4, 20, 4,20, 4,>0 then for 0<a <1we have

1
1-a

o(5)<[ a5+ -y

0

where Oy is the uniquesolution of the equality

[ﬂzzf .5&42]_ —51‘a—22(1—a);[u(t)dt=0.

If2,(a—1) fu (t)dt <A *anda>1 there exists an interval [0, €] 0,v] where

0

1

o(0)<[ 24 e-nfuar |

Theorem 3.4(see [48]) Assume @, X, Yand i be non-negative and continuous of

X
| =[a,b]and Iet; be a non-decreasing function. If

S

(p(S)SX(S)+y(s)jw(t)(on(t)dt, sel, n>2, (3.6)

a

15



then

S

p(s)< x(s){l—(n —1).[1/1 (1) y(t)x”‘l(t)dt}ln ,a<s<b,(3.7)

a

where

b, :sup{s el :(n—l)_[z//yx”‘ldt<1} :

Theorem 3.5 (see [30]) Suppose thatg(s) € C[a,b], w(s) € C[a,b] are positive

functions, «>0, #>0 and f(z)>0be a non-decreasing mapping forz>0. If

¢(s)3a+ﬁiw(t) f(p(0)dt, se[ab],

then
¢(s)£F‘1[F(a)+ﬂjy/(t)dtj, a<s<b <b,
where
F(/i):j;% (5>0,4>0)

and b1 is defined such that

F (a)+,b’jy/(t)dt e the domain of (F ™) for s e[a,b,].

a

Theorem 3.6 (see [22]) Assume ¢(s) >0, y(s) > 0be continuous functions on [S5,0).
Moreover let g(s), f(¢) and x(s) be differentiable mappings with g non-negative,

f >0 non-decreasing, and fx >0 non-increasing. Let

16



4(5)20(5)+x(5) [y (0 1 (40t

1

g’(s)[m—1] <0,0n [s;,)

for each non-negative continuous mapping n, then

#(s)< F1{F(9(so))+j[y(t)X(t)+g'(S)]dS}

where

& odt
F(e)=|——, 6>0, >0,
=1+

and (3.10) holds for all values of Swhich make the function
e(s)=F [g(so)]+f[y(t)x(t)+ g'(t)]dt

belongs to the domain of the inverse mapping F.

Proof Let

K(t)=g (s)+jx(t)y(t) ((1))dt

Since f is non-decreasing and X is non-increasing, from (3.8) we get that

f (¢(s)) < f (K(s)). As of this we get

9'(s)+x(s)y(s) F[4(s)|<x(s)y(s) F[K(s)]+9'(s),

this may be written as

By (3.9), we have,
17

(3.8)

(3.9)

(3.10)

(3.11)



TRy =X 9).

Integrating from both sides we get,
FLK ()] <F[a(s)]+ [0 Y0+ /()]

If we assume that £(S) € the domain of (F™) , then we get the inequality (3.10)

since ¢(s) < K(s).

Theorem 3.7 (see [2]) Assume that ¢(s) Is a continuous mapping on[So,T] such that

(s
0<g(s)<g(s)+ [w(s.t)f((t))dt

So
where

1) g(s) = 0is continuous, and non-increasing;
2) u(s) is differentiable, andU'(S) 20, u(s) <s, u(s,) =$,;
3) f(¢)>0is non-decreasingonRR ;

4) w(s,t) e C[So, T]X[SO,T] is non-negative with aa—‘//(s,t) > Qis continuous.
S

Then for F defined by (3.11) we get

where

18



Theorem 3.8(see [26]) Assume ¢(s) and x(s) be non-negative and continuous

functions on[«, 5], f(¢) >0 is non-decreasing for ¢ > 0, and let for each t in [, s]

$(t)< ¢(s)+jx(r) f(¢(r))dr.

t

Then for eachs in [«, 8] We have
#(s)= F‘l{F(¢(a))—J.x(r)dr},

where F is defined in (3.11) and Iet{F (¢(a))—f><(r)dr} e the domain of (F ).

Proof Let

then we have

Since f is non-decreasing, we get

flp(t)]< f[d(s)+H(1)],

this can be written as,

By integrating froms to t (t < s) we have,
—F(¢(s)+H (1)) +F(4(s))=—[x(t)dt.

However, F is non-decreasing thus F[ ¢(t) |< F[4(s)+H (t)],combining the last

two inequalities and reorganizing, we get

19



S

F(¢(s))>F(8(1)— [x(t)dt.

t

Apply Fto both sides we get the result.

Theorem 3.9 (see [2])Suppose that the positive functions ¢(s)andg(s) are

continuous on [S,,%), moreover assume
H <9+ % O]y, O 01 dt 55,

where Y, (S) > 0be a continuous on [s,,%), X, (t) >0, while X (t)>0, and f is a
non-decreasing function that satisfies f () > w, where @ > 0.
Then

#9506 -3+F* [ F@+ ][5 - Tx 6+ [ Sn om,0a |

where 62 max g(s)and F is defined in (3.11).

Theorem 3.10(see [2])Suppose that ¢(s) > 0is a continuous function and satisfy

() ()
$(s)<g(s)+ [ % ()G, (4(t))dt+ [ % ()G, (g(1))et,

with

1) g(s) Is anon-increasing mapping on[SO,T],

2) X% €C[s,, 7], X, € C[S,, 7] are nonnegative on [S,,7];

3) U and U, are non-decreasing and continuously differentiable mapping

withU, (S,) =S, N=12, and u,(s) <s;

20



4) G,(w) and G,(®) are non-decreasing, continuous functions, and

satisfy G, (@) >0, for all ® and

d {Gl(a))} A

do| G,(0) | G,(@)’

where A is any constant. Then

where

ofs) - Fl{exp[ff)xxt)dq Flo(s)

So

s u(t)
s w0 o] Xl“)dr}ﬂ”’

So So

is a continuous solution of the initial value problem

o (9)= 1, (8, () (5)8 () 1, 15 (5))u5 (5) ()

w(so) = 9(30),
Fis the inverse of F, and

A
G, (t)

F(a))z dt.

Gl(a)) . T
G, () = F(a)o)+;)[

Theorem 3.11(see [2])Assume ¢(s) is a continuous function and satisfy

m Un(s)
#(8)<9(5)+ ) %,(5) [ V(g (g(t))dt, on[s, 7],
n=1 S
with the following condition
1) X, 2 Ois bounded, non-increasing functions ;

2) Y, 2 Oiis continuous functions;

21



!

3) un(SO):SO’ Un(S)SS, un(S)>O'

4) g(s)is a non-increasing continuous function ;

5) f(w) >0 is anon-decreasing function defined on R.

Then

where F is defined by (3.11) and
Un (5)

o(5)=F [ F(g(s))+3 [ % (0 (0],

n=1

is a continuous solution of the initial value problem @(S,)=9(S,)and
m

(5= 2% (0,(9)), 4, (9)u (5) (@)

n=1
Theorem 3.12 (see [8])Assume that¢(s) >0, x(s) >0 and y(s) >0are bounded on
[a,b]; w(s,t)>0is bounded fora<t<s<b;g(s)andy (-,t) are  measurable

functions. Let g(¢) be strictly increasing and f () be non-decreasing. If

X (s) = sup x(t), Y (s) = sup y(t) and ¥(s,t) = sup y (o, t), then from

a<t<s a<t<s t<o<s

S

9(#(s))<x(s)+y(s) [w(st) f (#(1))dt, se[ab],

a

it follows that

¢(s)<g1[Fl{F(X(s))+Y(s)i‘P(s,t)dtH, sefa,b],

a

where

¢
F(¢):j% (5>0,¢>0)



and

b'= max{a <k<b: F(X (K)+Y(K)T‘P(K,t)dté F(g(oo))J}.

Theorem 3.13 (see [22])Assume that the functions g(s), x(s), y(s) and f (¢) satisfy
the conditions of Theorem 3.6 and the function G(¢) >0 is monotone decreasing

forg>0. Let
S(9(9)= 8(5) +x(5)[y(0 T (40t

Then, on [S,,0']
#(s)< Gl{FlLF (g(so))+j‘x(t)y(t)+ g'(t)dt]},

where

F (o) w>5>0

; f[6H ()]
and b’ is defined such that the mapping ¢(s) obtained in Theorem 3.6 belongs to the

domain of the mapping G*-F ™.

Theorem 3.14 (see[50]) Assume ¢(s) >0, x(s)>0, y>0and w >0 be continuous

functions on 1 =[a,b], and

1

¢ q

(o(S)SX(S)+y(s)(.[l//(t)(oq(t)dt], sel, 1<g<wo.

a

Then
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1

[ [y ®zx (t)dtjq
1-[1- z(s)ﬁ

P(s)<x(s)+y(s) sel,

and

2(s) =exp[—iy/(t)xq (t)dtj.

Theorem 3.15(see [15], [3])Assume

1) ¢(s)>0, g(s) >0 and G(s,t)>0are continuous functionsonR , and t <s;

dG(s,t)
0s

2) >0 is continuous;

3) f(g)>0 iscontinuous, additive and non-decreasing on (0, ©);

4) v(w) is a positive, non-decreasing and continuous function on (0, ).

If

4(s)< g(s)+v@G(s,t) f (¢(t))dtJ,

for seJ, then we have

0

#(s)<g (s)+v{F1[F ﬁG(s,t) f(g (t))dt}iu(t)dtJ},

while
F(¢):]: f(?/tt))’ $>0, 5>0,
0(5)=6(s5)+ [ S (st
and
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S

J :{s €(0,%0): F(0)>F UG(s,t) f(g (t))dt)]+iu(t)dt}

0

Proof Since the function f is additive and G(s,t)in S is non-decreasing we have

#(s)-9(s)<v(n(s)).

where

S

h(s)=[G(s.) f (¢(t)—g(t))dt+.:|:G(r,t) f(g(t))dt,

0

s e(0,7) and 7 >0.Moreover since f is non-decreasing, we find that
f(4(s)-g(s))<f (v(h(s)))
0G(s,t)
08

Multiplyingboth sides by and integrating from0 to s, we get

5 0S
Conversely, if we multiply (3.12) byG(S,S)and using this previous

inequality, we get

h'(s)<G(s,s)f (v(h(s)))+i2—f(s,t) f (v(h(t)))dt,

that is,

and since ¢(7)—g(7)<v(h(r)) we have
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¢(r)—g(r)<v{Fl£FﬁG(z’ 0 (g(t))dtHu(s)dsj}

0

SinceTis arbitrary, we get the result.

Theorem 3.16 (see [15])Assume | = (0, ) and
1) ¢(s) >0, g(s) >0 and G(s) > 0are continuous on| ;
2) f(¢)>0is additive, continuous and non-decreasing on| ;

3) v(w) Is continuous, positive and non-decreasing.

If
#(s)<g(s +v[jG(t)f () dtj sel,

then forS € |, we have

(s)< g(s)+v{F{F@G(t) f (g(t))dt}rie (t)dt}},

where F is well-defined such as in Theorem 3.15 and
, {SE| F (o0 >F[jG ))dtj+IG(t)dt}
0

Theorem 3.17 (see [15])Assume | = (0, ) and let

1) ¢(s) >0, g(s) >0 and G(s) > 0are continuous on| ;

2) f(¢)>0is additive, continuous and non-decreasing on| ;
3) v(w) is continuous, positive and non-decreasing.

and assume f () be an even functiononR . If
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#(s)=g (s)—VC[G (t) f (¢(t))dt], s€(0,00),

then for t € I; we have

#(s)=9 (S)—V{F{F [jG (t)f(g (t))dt}riG (t)dt}},

0

where

S

1, Z{SE |:F (o0)> F[_[G(t) f (g(t))dt]+i6(t)dt}.

0

Theorem 3.18 (see [13]) Assume @>0, x>0, w>0and ;>0 be continuous

functions on| =[a,b], and let x(s) be non-decreasing onl. Suppose f >0and Vare

non-decreasingcontinuous functions on [0, ) such that f is sub-additive and sub-

multiplicative on [0, o), moreover assume that V(¢) is positive for ¢>o0.Let

g e C[0, ) be a strictly increasing function with g(¢)>¢ for ¢>0 and g(0)=0.

If
o(o(E)=x(3)v| o0 1 (o)t fu ot sen,
then
(9 s(gloel){im(t)dt
+G(x(s)+(vO FY {iy/(t) f(zZ(t))dt
o# [tz | or szesn
where
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s [
Z(s):expul//l(t)dt) G(¢)=yj gf'z’y) . Y, >0, (y>0)
and
F(¢)= . $>0, (¢,>0
W=ty 70 @0
while

If x(s)=s we may drop the condition that the function f is sub-additive and

considering & <S <, leads us to

o(s)<(g™ OGl){i%(t)dt +G[x+(vO Fx’l)ﬁx//(t) f(z (t))dtD},

a

where

and

b, =sup{tel : jy/(t) f(Z(t))dteF, (R*)}.

Theorem 3.19(see [34]) Let u(s, ¢) be continuous and non-decreasing ing on

[0,7]x(~¢,€) where <. Ifh(s)is continuous and satisfies

T

h(s)<g,+[u(s.h(t))dt,

0
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where ¢0 € Rbe any a constant, then

where ¢(s) is the maximal solution of the problem
#(s)=u(s.9). #(0)=,

defined on[0,7].

Proof Consider the function
o(s)=¢,+ Ju(t.n(t))dt,
0
then h(s) < w(s) and

@' (s)=u(s,h(s))<u(s,o(s)), with o(0)=g,

From Theorem 2 of Chapter X1, [34] we have o(s) < #(s) then we get the proof.

Theorem 3.20(see [34]) Assume ¢0(S) eC[0,7]. Suppose u(s,t, ¢) be continuous and
non-decreasing ingfor 0<s,t <z and|4| < &.1fn(s) is considered to be a continuous

mapping which satisfies the following inequality (On [0, r] )

S

h(s)<¢0(s)+_|'u(s,t,h(t))dt (3.13)

0

then

h(s)<g¢(s) on[0,7], (3.14)

where ¢(s) is a solution of the equation

#(5) = () + fu(s.t. 4(8)) ct on [0, 7] (3.15)
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Proof
From (3.13) and (3.15) we get (3.14) ats=0. Based on the continuity of the

mappings used, we have (3.14) holding on a number of nontrivial interval. In case
the last deduction is not holding on the interval [0,z]then there is S;such that

h(s)<g(s) on[0,s,) however N(S;) = #(S,). From (3.13) and (3.15) we get

S

h(so)=¢0(so)+ju(so,t,h(t))dt

0

S

<¢ (so)+fu(so,t,¢(t))dt =¢(s,)-

0
This contradiction proves the theorem.

In what following we say that the mapping u(s,t, ¢) is a solution of the condition

(E) if the equation
w(s)=¢, (so)+c+_5[u (s.t,w(t))dt

has a solution defined on [0,7], Vce[O0,u].

Theorem 3.21(see [34]) Assume thatu(s, t, ¢)is defined for 0<s,t <7, |¢|<¢,and is

continuous and non-decreasing ing satisfying condition(u).lf the continuous

mapping h(s) satisfies
h(s)s¢0(so)+_|'u(s,t,h(t))dt (3.16)

on [0,7], then

h(s)<¢(s) on[0,z],

where ¢(s) satiates (3.15) on the same interval
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Proof For all fixed m,we denote by W, (S) a solution of the integral equation

0, (5)= 2+ (5)+ Ju(s.tw, (1))

0

defined on[o, z] for & small enough, we may employ Theorem 3.20 to arrange that
$(S) <Wy.y (5) < W, (S)<w(s)

in addition to h(s)<w, (s).Letting M approaches oo, we get the result.

Theorem 3.22(see [33]) Assume u(s,t,¢)be continuous and non-decreasing
function in ¢ for 0<s, t<7, |¢ <e. Let ¢(S) € C[0,7]and either

1) Considering any continuous function @(S) which is fixed over|¢|<&on [o, 7]

and any ¢ >0 which is small enough, the equation

S

w(s)=c+¢0(s)+.|.u1(s,t,w(t))dt+_:[u(s,t,wo (t))dt

0

has a continuous solution on [o, z]; or

2)

T

|6(s)|+ | max

0<s<r

u(s.t,e)+u, (st e)|dt<e.

Moreover if h(s) satisfies

S

h(s)< g (s)+[u (s t, h(t))dt+.1.u2 (s.t.h(t))dt,

0

where h(s) is a continuous function, then

h(s)<g¢(s) on|0,r],

where
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¢(s) =4, (s)+:[ul(s,t,¢(t))dt +_:[u2 (s.t,¢(t))dt.

Theorem 3.23(see [32]) Assume u(s,t,4) < C[0,) forte[0,0)and gwith |¢|< .
Let for fixed s and V ¢(t)eC[0,) the function u(s,t, 4(t)) is measurable in t on

[0,00). Additionally, suppose U be a non-decreasing in ¢ and ¢;(S) € C[0,]. If

o0

h(s)<¢0(s)+ju(s,t,h(t))dt on [0,e), (3.17)

S

while h(s)is any continuous function, then

h(s)<¢(s) on [0,x), (3.18)

where ¢(s) is a solution of the equation

o0

¢(s)=¢O(s)+ju(s,t,¢(t))dt on [0,0).

S

Theorem 3.24(see [32]) Suppose that g(¢) e C(J)is strictly monotone functionon
an interval J, and let the function R(s, h) be continuous on | x K where | =[a,b] and
K'is an interval containing zero, and furthermore assume that the mapping R is

monotone with the respect to the variableh.Letz, = {(S,t) rast<s< b} and assume

that W(S,t,¢)is continuous and either positive or negative on7, XJ , monotone in the
variable4, and monotone in the variable S. Letalso that the mapping ¢ and the
mapping Xare all continuous on| with go( I ) c Jand

x(s)+R(s,h)eg(J) for sel and |h|< g, (3.19)

where g > 0is constant. Assume
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g(e(t))<x(t)+ R(s,iw(s,t,go(t))dtj, sel, (3.20)

and assume x = x(s,z,a)is the maximal (minimal) solution of the initial value

problem

K = W(z’, 5,97 [ x(s)+R(s, K)])

(3.21)
k(a)=0, a<s<z<b (b <b),

if the functions W(S,t,-) and g are monotonicin the same sense, whereb, >Xis
chosen such a way that the maximal (minimal) solution can be computed in the given

interval. Then, if the functionw(+,t,¢)and R(s,*) are monotonic in the same sense,
¢(s)£(2)g‘1[x(s)+ R(s,z%(s))], a<s<h, (3.22)

where £(s)=x(s,s,a) if

1) R(S,')and w(s,t,+) are monotonic in the same sense and g is increasing; if

2) gis decreasing and R(S,*), w(s,t,*)are monotonic in the opposite sense, then

the previous inequality is reversed in (3.22).

ProofThe mapping

G(z,s,x)=w(z,5,9 7 [x(s)+R(s,x)])
is continuous on the compact setrl><[—ﬂ,ﬁ],so it is bounded there, say by the
constant N. By [34]there exists a, independent of S, such thata<b (indeed
b, >a+min (b—a, AN™)) such that the maximal(minimal) solution of the initial

value problem (3.21) has a solution on[a,b]. If Te(a,b] is fixed, and assume

se[a,z]. We define
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S

h(s,¢)=jw(¢,t,go(t))dt

a

we have

S S

h(s;s)=[w(s,t.o(t))dt < (=) [w(z.tp(t))dt =h(s,7) (3.23)

a a

if w(e,t,¢)is increasing (decreasing). Note that (3.20) implies thath(s,s)e K for
sel.Since 0eK, it follows thath(s, ) € K in both sense of (3.23).
From (3.20) we get
¢(s)£(2)g‘1[x(3)+ R(s,h(s,s))}, (3.24)
if g is increasing (decreasing).As h'(s,7)=w(z,s,¢(s)) fora<s<r <b,we have
h’(s,r)s(z)w(r,s,g‘l [x(s)+ R(s,h(s,s))]), (3.25)
if W(S,t,°)and g are monotone in the same (opposite) sense. In additional, using

(3.23) leads us to
R(s,h(s.s))<(2)R(s,h(s,7)), a<s<r, (3.26)
if (i) R(S,*) andw(s,t,*) are monotonic in the same ((ii)opposite) sense. Therefore
g‘l[x(s)+ R(s,h(s, s))] <(2) g‘l[x(s)+ R(s, h(s,r))] ,
ona<s<rt if(i’): g isan increasing function and (i) or g is a decreasing function

and (ii) ((ii’) g is an increasing function and (ii) or g is a decreasing function and

(1)). Then this implies that

w(r,s,g’l[x(s)+ R s,h(s,s))]) 627)
< (Z)W(r, 5,97 x(s)+R(s.h(s, r))})
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if (i”): W(S,t,‘) is an increasing function and (i’) 0rW(S,t,°) is a decreasing
function and (ii’) ((ii”): W(S,t,') is an increasing function and (ii’) or W(S,t,°) is a
decreasing function and (i’)). Joining this and (3.25), gives us that to, if W(S,t,°) and
R(s,*) are monotonic in the same sense, then

h'(s,z) < (Z)W(T, s,g7'[ x(s)+R(s.h(s, r))]) ,a<s<r<bh, (3.28)
If W(s,t,-) and g are monotone with same (opposite) sense.
Sinceh(a,7) =0, and from [34] leads us to, ifw(s,t,*) and R(s,*)are monotonicin
the same sense and if K(S, T, a) Is the extreme solution of (3.19) as mentioned, then

h(s,7)<(>)x(s,7,a) for a<s<T <h,

which we get in particular that this hold when S=7. SinceTis a randomly chosen

element from the interval (a,b;], it follows that

h(s,s)<(2)&(s) on [a,b] (3.29)
provided that (1): W(s,t,) and g are monotonicin the same sense ((I1): W(s,t,*) and
g are monotonicin the opposite sense).
From (3.23) and (3.26), it follows on[a,b;] that

R(s.h(s,5))<(2)R(s,%(9))

if (I): R(S,*)is an increasing function and (1) or R(S,*) is a decreasing function and
(1), ((I): R(s,*) is an increasing function and (II) or R(s,*)is a decreasing

function and (I)). Now, if (I”): g is an increasing function and (I’) or g is a

decreasing function and (II’) ((II”): g is an increasing function and (I’) or g is a
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decreasing function and (II’) ((I”): g is an increasing function and (II") or g is a

decreasing function and (I”)) then

From the different cases, we can conclude that if W(*,t,¢)and R(s,*) are monotone

in the same sense and W(s,t,*) alsoR(S,*) are monotone in the same (opposite)

sense, then
g‘l[x(s)+ R(s,h(s,s))]s(z)g‘l[x(s)+ R(s,z%(s))] (3.30)
on[a,b].The conclusion (3.22) now follows in cases (1) or (2) from (3.24) and

(3.19).

Similarly we can prove the following theorem.

Theorem 3.25(see [33]) Addition to the hypotheses of last theorem, assume
g(e(s))zx(s)+ R[s,jw(s,t,go(t))dtj, sel
and that W(~,t,¢) and R(S,°)are monotone in the opposite sense. Suppose

K= K(S,S,a),where K(S,Z’, a) is the maximal (minimal) solution of problem (3.21)

and assume that W(S,t,°) and g are monotone with opposite (same) sense. Then

p(s)<(2) g™ [ x(s)+R(s,x(s))] on [ab]

provided that conditions (1) or (2) of Theorem 3.24 hold.

Remark IfK =[0,s,], thenw>0holds (sinceh(s,s) e K), so by (3.19) |h|< B can

be replaced with 0<h< .
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Theorem 3.26 (see [27]) Consider¢, X, Y and:to be continuous non-negative

functions on | :[a, b] and g, v are continuous non-negative mappings on R*with g
strictly increasing andV non-decreasing. Furthermore, assume that l//(S,t)iS
continuous and non-negative onz ={(s,t):a<t<s<b}, andW (s,¢) is continuous

and nonnegative on | xR", with W (S,°) non-decreasing onR". Define

Z(s) =maxz(t), and W(s,t) = maxy(o,t), fora<t<s<h.
a<t<s t<o<s

If
g(o(s))<x(s)+ Y(S)V[Z(S)+j;l//(s,t)w (t,go(t))dt], sel, (3.31)
then
P(s) <G IX(s) + Y(S)V(K (S, Z(5))], sel,, (3.32)

where /Zl(s, z (a)) = K‘(S, S,Z (a)), with x = K(S, b,z (a)) is the maximal
solution on | =[a,b,] of
K' =Y (0y, W (s, g [x(s) + YS)V(K)]),  K(a) =2(a).

Now consider the following inequality of Gollwitzer[20]

p(5)<x+ 14y (s.0) f (p() ), sl =[ab]

Using Theorem 3.24 with: §(¢) =, R(s,h) = f *(h),
W (s,t,¢)=p(t)f(¢), ¥=1f(J) and J isan interval defined such thatp(1) < J .
The comparison equation is

K=y (s)f(x+f7(x)), x(a)=0. (3.33)

From Theorem 3.24 we have
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o(s) <x+ f(x(s)), a<s<hb, (3.34)

with «(s) being the unique solution of the problem (3.33) on the interval[a,0;], if we

define now the function F as

pef(3)=K,

!fx+f x)]’

then from (3.34) we get

o(s)<x+ f{F{j‘wdtH, a<s<h, (3.35)

where

b, =sup{36 I :j'wdt eF(K )}
Consider ¢ and w be continuous mapping on the interval | =[a,b]withy >0, and
assume the mapping f be continuous and monotone function in the interval J such
thatg(1)cland f =0 onJ except perhaps at an endpoint of J . Let chooseVbe
continuous and monotone on an interval K such that0 e K, and assume that X,y are
constantssuch thatx+v(h) e J° for heK , |h|<y

If the mappings f andVare monotonic in the same sense and

¢(s)£x+v@y/(s,t) f ((p(t))dtj, se

then

where
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_¢ dx e
F(¢)_£f[x+v(z<)]’ sk

and

bl—sup{sGI:;[y/dteF(K)}.

Theorem 3.27(see [41]) Assume that the functions ¢(s), x(s), y(s), w(s) and z(s)

are non-negative, real and continuous defined on R* such that fors e R*,

P(s) <X(s) + y(s)( [wOe(t)dt+ | w(t)y(t)[ | z(v)go(v)dv}ftj.

0

Then on the same interval we have

o(s)<x(s)+ y(S)ﬁW(t){X(t) + y(t)eXp(—j y(r) (w(r)+ z(r))dr]

t

. Jx<r><w<r>+z<r>)exp[—jy<v>(w<v>+z(v))dv}drjdt]-

0

Theorem 3.28(see [18]) Assume V(s)>0, u(s)>0, h(s,r)>0 and H(s,r,x) >0

for s>r>x>aand/4 20, 4, 20and A, >0be a constants not all zero. If

t

V()< 4+ 4[| u(t)v(t)+ [t r)v(r)dr ot

(3.36)

srt

+/13.[”H (t,r,x)v(x)dtdrds,

aaa

then fors > o
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v(s )<Aiexp{/12_|.( j tr)drjdt

a

> (3.37)
+23”.[H (t,r,x)dxdrdt}.

aoaa

Proof Suppose the right hand side of (3.36) be denoted by 3(s) .

Then g(t) < B(s) for t < ssince all termsare nonnegative, we get

zzjh(s )V dr+” (S XV e

g/lzu(s)+ﬂzjh(s,r)dr+i3”H (s,r,x)dxdr.

Integrationfroma to twe getg
logb(s)—log A,
str

<ﬂzj{ () I (t, r)drdt}+ﬂ,&”.|'H (t,r, x)dxdrdt.

aoca

Writing this in terms of b(s) and fromV(s) < b(s) complete the proof.

Theorem 3.29 (see [3])Assume ¢(s) >0, on[SO,OO) and satisfy the inequality

p(s)< 2+ fy (s.)p(t)dt+  [F (.6, r)p(r)drds,

So So So

Where l//(S,t) and F(s,t,r)are continuously differentiable non-negative

mappings forS=t>r2>s,, and 4>0. Then

(/>(s)<}texp{j‘{w(t,t) j[a’/’a(tt L jdr+”al: (Lrox d/cdr}dt}.

So So So So
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Theorem 3.30(see [18]) Assume ¢(s)>0, x(s) =0, y(s)=0and «(s,r)>0 be

continuous functions for @ <r<s, and assume 4, 4, and 4, are all non-negative. If

fors e[a, «),

(p(s)</11+x(s){/12+ﬂgi{y(t)gp(t)+jw(t,r)x(r)drdt}dt},

[24

then for s e[a,x),

Pp(S) <A + x(s){/i2 exp{ﬂgj(y(t)x(t) + jw(t r)x(r)drjdt}

a

+Mgi[y(t)+jw(t, r)dr]

a

[y(é‘)X(S) +ja)(s, r)x(r)erdg}dt}.

a

xexp [/13

- —

Theorem 3.31 (see [51]) Assume that (p(s)eC[O,h) is non-negative and suppose
thatq(s) € C[0,h)is positive and non-decreasing. Letg, (s,t)>0, n=1,2,...,m, be

continuous functions on[0,h)x[0,h), and non-negative in S. If fors < [0, h)

S

go(s)Sq(s)+_|.gl(s,sl)sfsz(sl,sz). : .Sn_l.lgm(sml,m)go(sm)dsm. . ds,

0

then

p(s)<a(s)V(s), sel0h),

where V() =U.(s,S) andU.(z,S) is defined by

0j=1

Uy (r 1s) =exp{ijgj (r,t)dt}
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U, (r,s)=Gi_k+1(r,S){l+igi_k+l(r,s)Mdt},

0 gi-k+1(7’s)

Remark Considering the particular case when n=2in the previous theorem leads us

to that Vs e J
p(s)< q(s)exp[—:[gl(s,t)dtj
x{1+jgl(s,t)exp {j[Zgl (t,r)-g,(t, r)]dr}dt}.

From the last theorems we have took linear inequalities.

Theorem 3.32(see [40], [38]) Assume that ¢(s), X(s) and y(s)are continuous, real

and non-negative mappings on [0, «0) such that

S t
+Ix(t)(_[y(r)¢q (r)dr]dt, se[0,0), 0<qg<l,
where @, 2 0is constant. Then for s [0, )

o(s) 0+ fxpen futr)er

x{(péq +(1—q)_t[y(r)xexp(—(l—q)_r[x(v)vadr}l_q dt.

0 0

42



Theorem 3.33(see [40], [38])Assume ¢(s) >0, x(s) =, y(s) >0and z(s) >0 be

continuous on R such that for s [0, o)

¢(s)£¢0+ix [ j [Iy ()dvjdr]dt 0<qg<l

where @, 2 0is constant. Then for s [0, )

o(9) 200 ey 0y )

0
1

x{(oé—u(l—q)_j; (v )xexp( (1-q .:[ )+y(u ))dujdv}l_p dt.

Theorem 3.34(see [54]) Assume ¢(s), X(s), g(s,t), f,(s,t) andh,(s,t),
n=1, ...,mbe non-negative continuous mappings defined on J =[0,h)and J xJ .
Let x(s) be non-decreasing and g(s,t), f,(s,t) and h,(s,t) be non-decreasing in s.

Ifo<g<1and

s)<x(s)+J.g(st ¢(t)dt+ZIf st)“ (s.r)e"(r )dr}

_10
then

1) for 0<g<1and seJ we have
S

p(s)< {[x(s)e<s)]“* +(1- q)ZF (s)e(s)I h, (s, byt } A

2) forg=1 and seJ we have

o(e) x(s)ewp| [ a5+ 3 @G, (50|
where
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G(s)= expj'g (s,t)dt
0
also

Fn(s)zjfn(s,t)dt, n=12,...,m
0

Theorem 3.35 (see [39], [37]) Assume that ¢(s), x(s) and y(s) are continuous and
non-negative mappings on J =[a, 8], and suppose that f (v)>0 is continuous,

sub-additive and strictly increasing function for v>0and f (0)=0. If for seJ
S t
p(s)< x(s)+fy(t)(¢(t)+jy(r) f (go(r))dr]dt,
then for S€J, we have

p(s)< x(s)+_fy(t)[(p(t)+jy(r) f (x(r))drjdt
+_|'y(t) F‘{F Gy(r)(x(r)+ y(v)f (x(v))dv)dr}+iy(r)dr}dt,

where

¢ dt

RO}

Vo

vV2>v,>0,

and

B

J :{s e [, B]: F(0)> F(Iy(t)(x(t)+ y(r) f (x(r))dr)dt+iy(t)dt}}.

a

Theorem 3.36(see [39], [37]) Assume thatp(s), x(s), y(s), z(s) and w(s)are

continuous mappings onJ :[a,ﬂ]aﬂdg(V)>0 is strictly increasing, continuous,
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sub-multiplicative, and sub-additive mapping forv >0 , withg(0)=0.1f seJ we

have
o) x(5)+ y(3) 208 0(0) (O o (o o(r)) .

then for S€J, we also have

o(s)<x(s)+ y(s){b+iz(t)g(y(t) £t

where
b= fz(t)g (x(t)+ y(t)jt//(r)g (x(r))dr}dt,
F(v):;[%, v>v,>0
and

J, ={s ela, B]:F ()2 F(b)+fg(y(r))(z(r)+y/(r))dr} .

Theorem 3.37 (see [39], [37])Suppose that ¢, x, y, z, w and g are the functions

that satisfy the hypotheses of the last theorem. If for s J we have

o(s)2x(3)y(2)a” | Je0s(ol0)o

a a

+jz(t)9(y(t))UW(r)g(w(r))dr]dt}

then we also have for se J
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S

qo(s)sx<s>+y(s)g*(fz(t)g(x(t)ﬁg(y(t))

a

oo Jotsoeter v (oo fotsteee)-vie)

xexp£—ig (y(v))(z(v)+W(v))vadert.

Theorem 3.38(see [39], [37])Assuming that the mappings is defined as in Theorem
3.36, fora <t<s<p,
we have

¢<s>>¢<t>—y<s>g{jz(r)g(<o<r>>dr—iz<r>[iw<u>g<<o<u>>du]dr}

t r

then for the same range of values we have

o(s)2o(t)(0*(1+9(y(s))

[2(n) exp[ [Wa(y(s) +w(u»du}dr}] .

t

Theorem 3.39 (see [10]) Suppose that the mappings¢(8), X(S)and l//(S,t) are non-

negative foro <t <s < gand U(t) is positive, non-decreasing and continuous fort>0.

If

$(s)< ﬂ+jlx(r)u(¢(r))+_:[l//(r,t)u(¢(t))dtjdr

S

=4+ [Pu(g)dr=5(s),

o

where 4 >0 is constant, then for s € (a, ) we have
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(s) d

jﬁ Hx +£y/ (rt) dt}d L(s).

Proof From the hypotheses, it follows that

WAOREWNIC(O) ug) | E o
wpe) Ve j 65y SO e

Apply integration operator to both sides we obtain the result.

Theorem 3.40 (see [46]) Let

1) u(¢)>0and continuous non-decreasing mapping on[0,);
¢
2)R(¢)= j TR , (0<g <o, ¢ e(0,00)is fixed),

and R™* is the inverse of R ;
3) ¢(s)eC[0,);
4) M(s)=0is a non-decreasing mapping.

If

#(s) <M (s)+[Pu(g)dr,

a

with the operator P defined in Theorem 3.39, then
#(s)<RMR[M(s)+L(s)]}

where L(s)is also defined in the previous Theorem.

ProofSuppose 7> @ is fixed. Then forS € (a,r] we get

$(s) <M (z)+ [Pu(g)dr,

0
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since M (7) = M (s). On the basis of in Theorem 3.39, we have
#(5) <R {RIM(2) +L(9)]} for s<r.

Setting S =7 we get the result.
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Chapter 4

GRONWALL TYPE INEQUALITY AND ITS
APPLICATION TO A FRACTIONAL INTEGRAL
EQUATIONS

In recent years, an increasing number of Gronwall inequality generalizations have
been discovered to address difficulties encountered in differential equations. Among
these generalizations, we focus on the works of Ye, Gao and Qian, Gong, Li, the
generalized Gronwall inequality with Riemann-Liouville fractional derivative are
presented as follows.In thischapter we will show that fractional Gronwall inequality
is useful in investigating the dependence of the solution on the order and the initial
condition to a certain fractional differential equation with Riemann—Liouville
fractional derivatives.

4.1 Fractional Integral Inequality

In this section, we wish to establish an integral inequality which can be used in a

fractional differential equation.

Theorem 4.1 (see [42]) Assume S>0, x(S) is a non-negative function locally
integrable on0<s<T (some T <+c0) and f(s)>0 is a non-decreasing continuous

function well-defined on0<s<T, f(s) M eR and let¢(s) be non-negative and

locally integrable on0<s <T by the way of
#(s)<x(s)+ f(s) I(s—t)ﬁ’l¢(t)dt,
0
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on this interval then

#(s) <x(s)+_|. g( F)( ,é)')B)) (s—t)¥x(t) dt, 0<s<r.

Proof

SupposeBu(s) = f (s)j(s—t)ﬁflu(t)dt, s>0,for locally integrable functions w.

0

Then
#(s)<x(s)+Bg(s)
implies

#(s) < ni B*X(s) + B"¢(s).

Let’s show that

S

B"g(s) < j

0

(FOTB) s
Tﬂ) (s—t)" g(t)dt (4.1)

and B"¢(s) >0 as n— -+ foreach se[0,T).

Clearly for n=1 the relative (4.1) is true.

Let (4.1) be true for some n = k, then we have to prove that it is true for n = k+1.

Then the induction hypothesis equals

5(5) = B(8"9(5)) < £ () [ (5-0" [I k;f)) - T)kﬁ1¢(T>dT]dt

Since f (s) is non-decreasing, then

B*ip(s)<(f (s))“i(s—t)ﬂ [j (5] (t—T)k”‘1¢(T)dT }dt

Via exchanging the order of integration, we get
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B“"g(s)< f(s kﬂj:j

_ P\B-1lp  T\kB-1
T kﬂ) (s 1)’ (t-T) dt}(T)dT.

( f(S)r(ﬂ))k+l (k+1) -1
T A

where the integral

j@—oﬂ%S—TYﬂHt:@—ﬁ)wwlja—zw1ﬂﬂwz
=(s _T)(k+1)ﬂfl B(kS, B)

N

is calculated by the substitution t=T+z(s—T) and the definition of the beta

function, the inequality (4.1) proved

n

since B"¢(s) SI (S—t)”ﬁ’lqﬁ(t)dt —0 as n—+w for se[0,7),
0

we get the result.

Corollary 4.1 Leta>0, p>0 and x(s) be a non-negative function locally
integrable on 0<s<T (some T <+c0), and suppose ¢(s) > 0is locally integrable on

0<s<T, and satisfy
#(s) < x(s) + lj (s—t)?p(t)dt
on this interval; then

#(s) < x(s)+ j Z(’lrr((ﬂﬂ))) (s—t)Y7x(t) [dt, 0<s<T.
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Corollary 2 Under the hypothesis of Theorem 4.1 let x(s)be a non-decreasing

function on [0, T ). Then
#(s)<X(s)E 5 (f (5)r(B)s),

where E , is the Mittag- Leffler function defined by E Z
=0 F(kﬂ +1)

Proof The hypothesis imply

(FOTB)" [ ot | = (FE)(B)s”)"
#(s)< x(s)[u j Z; T (s—t)"dt _x(s)nzz(; T8+
= X(S)E,4 (T (s)T(B)s").
The proof is complete.

4.2 Application

Consider the following Riemann-Liouville fractional derivatives problem with initial

value problem
Dx(s) = f (s,x(s)), (4.2)
DX(S)] 520 = Xo» (4.3)
with 0<a <1 0<s<r<+w, f:[0,7)xR—>R and D stand for Riemann —

Liouville derivative operator.

The existence and uniqueness of the initial value problem are studied in what follow.
The problem stated by the equations (4.2)-(4.3) is first reduced into fractional

integral equation

()= s e [ (-T) (T (T, (44
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this is called Volterra integral equation of order & .
Obviously, the initial value problem (4.2)-(4.3) and equation (4.4) are equivalent.

Theorem 4.2: (see [44]) Let £ >0 and a >0 such that O<a—&<a <1. Consider

f to be a Lipschitz continuous mapping with respect to second variable.
(s, %)= (s,2)| <L|x—2]
with L being a constant independent of S, Xand zin R. ForO<s<h <, assuming

that the solutions of initial value problems (4.2)-(4.3) are Xand z and
D“z(s)=f(s,2(s)), (4.5)
D 2(s)| o =177 (4.6)

the following holds for 0<s<h

I gyt
|2(s)-x(s)|< A(s)+£[2($a)r(a—g)j L))A(t)}dt,

n=1 F(n(a—g
where
ol T wer N sr st |
A e o) |Tacor@ el
% 1 1
i (a—g){F(a—g)_F(a)} 11l
and

[ 1= max| f (s, )

0<s<h

Proof: Initial value problem stated by (4.2)-(4.3) and (4.5)-(4.6) have solutions given

by
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and

I'(a-¢) I'(a-¢)
it follows that
|z(s) x(s)\_r(j_g) 1—%3 '
" r(al—g i(s—T)"‘“f(T,z(T))dT-ﬁ!(s—T)"“f(T,z(T))dT
+ ﬁ!(s—T)““f(T z(T))dT—ﬁ:[(s—T) (T, X(T))dT
+ F(la)g(s—T)““f(T,x(T))dT— EQ)E(S—T)“lf(T,x(T))dT
< A(s)+F(la)!(S—T)“_g_lL‘z(T)—x(T)‘dT
where
R A S I S |
A= T |Tecor@ el

The theorem is therefore proved.

Corollary 3 Based on the hypothesis of theorem 4.2, if ¢ =0, it follows that

|2(s)—x(s)|<|7—n|s"E,,, (Ls“) ,
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for 0<s<h, with the Mittag-Leffer function E,, defined

3 0
Z(;F ak+a) “>

Proof if ¢ =0, then

By Theorem 4.2, we have

|2(s)—x(s) |<A(s)+j{z_;L” F_(n):l (t)}dt=|ﬁ—ﬂ|salg%
= |77 —77| Sa_lEa’a (Ls”‘)
withO<s<h.

The corollary is then proved.

Theorem 4.3: (see [53]) Suppose W,V € C, (J , R) be such that

2 (s—a)pfl+ D, " f (s,w)

and

2_(s-a)"" +D"f(s,v)

with w, =T(p)w(s)(s—a) |, and v, =[(p)v(s)(s—a) "|... If any of the
above inequalities come to be strict, and if W, >V, thenit follows that W(s)>V(s) on

J.
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Theorem 4.4 (see [12])Consider as defined in the previous theorem W,V with none

of them is having strict inequality. Let’s assume also that the right-sided Lipschitz

condition is satisfied by f .
f(s,y)-f(sXx)<L(y-X), y=x.

If W, >V,, then W(s)>V(s)on J .

Proof Consider 5>0and let a functionW; be defined as W;(s)=w(s)+d4(s),

seJ, with
A(s)=(s—a)" " E,,(2L(s-2)")

note that

Ws, :r(p)wé(s)(s_a)liwka
= W.+5

a

>w, >V,

furthermore, by taking A(s):ﬂ,(s)—i(s—a)pfl and applying the Lipschitz

r'(p)

conditionon f , we get what follows

oy (5)2 5 (5=a)" 4D (1 (s0) 1 (50, DLV (530, 4 1 (5
S (s-a) - SLDIPA(5)+ DT (s, + A9
S (s) D () £ SA()
= Sy (572 B () + 5 (9
) D (s

with
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In the previous set of relations, the inequalities come from that o > . We also

)
T(p)
have that

w;(s)(s—a)' =w(s)(s—a) " +SE,, (2L(s—a)p).

The previous function is continuous onJ, sinceWec, (J,R). Therefore
w; ¢, (J,R)and using the Theorem 4.3, W, (s)>V(s), ¥s€J. Now if§ —0, we

then have on both sides W(s)>V(s), Vs J, this finishes the proof.

What will follow now is the solving of linear fractional integral equation, which has
variable coefficients. Combined with theorem 4.3, this equation give us the Gronwall

type inequality.

Theorem 4.5 (see [28])Let X € C(J : R) , The fractional integral equation

y(s)=L(s—a)p’l+D;px(s)y(s) (4.7)

r'(p)

withseJ and y, =I'(p)y(s)(s-a) "|._.has Y €¢,(J,R) as solution defined

Ya Nk p-1
S)=—34 7, (S—a 4.8
V) =F &2 (4.8)
with y(s)(s—a)q which converges uniformly on J and the operator 7, is defined by

7,6 =D;"X(s)4(s).

Proof The following corollaries are required to prove the previous theorem
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Corollary 4If the function x(s)is identically equals to a constant A , then

p-1 n r in np+p-1
o (s—a)" =71 (s—a)"" F(E]E)ij)( a) , Vn>1(4.9)

Proof Induction is used for the proof.

The equation (4.9) is true for n =1since

Consider this to be the basis step and suppose that the equation (4.9) is true up to an

index k >1. It follows that

T (s a) =7,7, (S— a)p_1
T2
“T'(kp+p)

P S s—a)"*t F(p)}“k s—g)ert
_zr(p)L( ) r(kp+p)( )P dt

_ F(p)ik+l (S_a)(k+1)p+p—l
F((k+1)p+p)

)kp+ p-1

it follows by induction that the equation (4.9) is true ¥Yn>1.

Corollary 5 Let 4 >0 be defined such that|x(s)| <4, Vs e J. Then

" (s—a)p_l‘gr;‘ (s—a)’™", vn>1 (4.10)

Proof Induction is used for the proof.

The equation (4.10) is true for n=1 since

7 (s—a)"" Sr(lp)j (s—a)"" [x(t)(t—a)" " dt
SF(lp)-[ (s—a) A(t—a)" dt
=z,(s—-a)""



Consider this to be the basis step and suppose that the equation (4.10) is true up to an

index k >1. It follows that

rxk”(s—a)pfl‘:

< F(lp)j:(s-t)“\q(t) o (t—a)”dt
< F(lp)j:(s—t)“mxk (t-a)" dt

=7 (s—a)"".

It follows by induction that the equation (4.10) is true vVn >1. What follows now is
the rest of the proof of the theorem 4.5,

let the sequence of functions

Y, (s)= I)(/f’;o)(s—a)pl +D;"x(s)Y,4(s), vn>1 (4.11)
with y,(s)= in))(S—a)'”. Our aim is to show that {y, (s)(s~a)®} is uniformly

convergent on J . The proof is done by induction. Actually, by induction, we can

show that

Ya Nk p-1
2 7, (s—a) , vn=1 412
r(p)é (s-a) (4.12)

Y (S)=

First of all, let consider,

r(p)
=Ya o5 q)ty Y o (5_q)
_F(p) X( ) (p) x( )

The equation (4.12) is true for n=1, taking this as the basis step of the induction and

assuming that the equation (4.12) is always true up to a certain k >1. Then
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r(a) r(p) " r(p)fx
=l e s S (s (e ()
e

By induction, we are leading to the conclusion that the equation (4.12) is true ¥Yn>1

and Vs € J. Our aim is now to show that

iy, (9)(5-2)" = 5 30 (5-2)" v (5-2)"”

uniformly on J.First, note that X € ¢(J,R), therefore, one may choose 4 €(0,%)

such a way that ‘x(s)‘ <A, VseJ. Using the corollary 4 and 5 it follows that vn >1

and VseJ,

‘(S—a)q o (S_a)p_l‘ < (5—a)q ) (S—a)p—l

_T(p)4" s_3)"
_F(np+p)( )

< T _aye,

I'(np+p)

also note that

S LA () gy T(p)E,,(1(b-a)’).

=T (np+p)

The previous equation converges. It follows by the Wieirstrass M-Test that

y(s)(s— Fx(/ap ,2‘ (s-a)’ ~ is uniformly convergent on J.
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Let’s finally show that the considered Y satisfies the equation (4.7)

Yo ()+D;Px(s)y(5) = =2~ (s—a)* " + 22 D-v[x(t)ifj(t-a)p'lj

r'(p) r(p) °

Then we get the proof.

Remark : To establish the previous result, the requirement is that X(s) is a

continuous function. However, to prove our next result, the requirement is that X(S)

is nonnegative. And finally were leading to the following Gronwall type inequality.

Theorem 4.6 (see [28])Let uec,(J,R,) and XeC,(J,R,)be such that

0(9)% 55 (5-2)" + D Pu()x(0).

then

u(s)< e ika (s—a)"".

F( p) k=0

The proof of this theorem 4.6 is directly established using Theorems 4.4 and 4.5.

, : : , - L. u 1.
Actually, if the theorem 4.6 is considered with the initial condition —*~(t-a)" His

r(p)

identically constant sayU,. In which case, when the integer p=1, the

Theorem4.6becomes
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then

o]

=u exp(i x(t)dt]

which is the Gronwall Inequality well known.

Another application of Gronwall Inequality
Theorem 4.7 (see[28]) Let f € C(R,,R)be a function such that |f (s,y)| <M on Ry

where

R, ={(s, y)la<s<a+rand ‘y—i(s—a)p

o (p) ! st}.

Suppose that f is Lipschitz. Then we have the following successive approximations

ynﬂ(s):r e;))(s—a)pl+D;pf (s.y,), ¥vn=>0

1/p
existon | =[a,a+7], with 77=min{r{tr(l+ p)J }

M

Theorem 4.8 Let f ec(D,R), withD being a domain, D <= RxIR. Assuming
that the function f is a Lipschitz function on the domain D with respect to Yy and

with Lipchitz constant L. Let (a,Y,)eD. Then 35>0,3¢ > 0all constants such

that VX, € B, (Y, ), the equation (4.4) defined by
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y(s)=—22 (s-a)’ +D;"f(s,y(s)) has a unique solution Yy(s,a,) on the

I'(p)

interval | =[a,a+¢].

Theorem 4.9 (see [29])Assuming that all the assumptions of the previous theorem

are verified. Then 35 >0and 3¢ > 0such that y(S,a, X, ) is continuous with respect
to X, € B; (Y, ) based on the following conditions : If X, X, € B;(y,)then y(s,a,X)
and y(s, a, Xa) are solutions of the equation (4.4) and also

limy(s,a x)(s—a)'=y(s,ax,)(s—a)’

X—>X,

uniformly on | =[a,a+¢].

Proof Based on theorem 4.8, it follows that

y<s,a,xa>=rfp)<s—a>“1+fo(s,y<s,a,xa>),

and

y(s,ax) =ﬁ(s—a)pl+ D" f (s,y(s.a,x)),

are the unique solutions of the equation (4.4) that exist on the interval | = [a, a+g]. If

the Lipchitz condition is applied on f , it follows that

|X_Xa| p-1 _p
(p) (s—a)" +D; L|y(s,a,x)—-y(s,a,%,)|,

y(s.a,x)-y(s.a,x,) <

by the theorem 4.8, it follows that

ly(s.a,x)—y(s.a,x,)|<|x—x,|(s—a)" " E,, (;t(s-a)”) :
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Therefore Vse l,

|y(s,a, X)—y(s,aX,) s|x—xa|(s—a)p’1 Ep'p(g"),

which leads us to

limy(s,a x)(s—a)' =y(s,ax,)(s—a)’

X—>X,

uniformly on | =[a,a+¢].

Theorem 4.10 (see [36]) Let f eC(D,R), withD being a domain, D < RxR.
Assuming that the function f is a Lipschitz function on the domain D with respect

to yand with Lipchitz constant L. Let (a,y,)eD. Then 36>0,3¢>0and
J&’' > 0all constantssuch taht Vs, e[a,a+g’]and VX, € Bg(ya), the equation (4.4)

has a unique solution on the interval | = [a,a+g].

Theorem 4.11 (see [53]) Assuming that all the assumptions of the previous theorem

are verified. Then35 >0, 3¢ >0and J¢'>0such that Y(s,a,X, )is continuous with
respect to Sy, %, ) € Q=[a,a+¢'|xB;(y, ) based on the following conditions:

(T, ), (S, % ) €Q then
lim  y(s,T,X)(s=5)" =Y(5,5,%)(s—5,)"

(T.%)-(s9.%)

uniformly on | =[a,a+¢].

Proof Based on the theorem 4.10, it follows that

y(s,so,xo)zﬁ(s—so)p1+F(1p)r(s—t)p1f (t,y (550 %))dt

So
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and

Y(s,T,X)=——(s=T)" "+

I'(p)

F(lp)j:(s—t)“f (t,y(t,T,x))dt

are the unique solutions of the equation (4.4) on | =[a,a+¢]. Suppose now that
ate2s;2T>a. Because of fec(QR)and (S5,%)eQ is fixed, we may
choose M >0 such  that ‘f (s, y(s,so,xo))‘ <M, Vsel. Let

u(s):‘y(s,T,x)—y(s,so,xo)‘and M =Mg", with p=a+&-S,. We have in this

case(s—T)"" <(s—s,)" ‘applying the Lipschitz condition on f , it follows that

u(s) <Xl gy L ﬁmyqfﬂf@dasm%Mm+Fﬁﬁg@—o“qom
1

_p)(s—so)Pl I:°(s—t)p’ldt+ (o) LS (s—t)p*lu (t)dt

0

L

fﬁﬁﬁ“‘”HWﬂm

with M~ = ? using theorem 4.6, it follows that

u(s) =< (|x=%|+ M [T =s;|)(s—50)" " E, , (L(s-%)")

There fore vs e 1, we have

u(s)(s—so)qs(|x—x0|+M*|T—so|)Epyp(L(s—so)p)
S(|X_X0|+IVI*|T_‘°’0|)Ep,p(|‘(pq)
which leads us to _ lim  y(s,T,X)(s=5;)" = Y(5,5, % )(s—$,)" uniformly on

T.X)>(s0.%)

| =[a,a+¢], end of proof.
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Chapter 5

CONCLUSION

In this thesis, we have studied generalizations of the Gronwall inequality using
several mathematical techniques. In addition, we have listed the initial value
problems and studied the uniqueness of solutions to these problems by applying the

generalized Gronwall inequalities.
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