
Implementation and Performance Evaluation of Black 

Hole Attacks on DSR and AODV in MANETs 

 

 

 

Emmanuel Ahonsi Ailemen 

 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

 

 

 

 

 

Master of Science 

in 

Computer Engineering  

 

 

 

 

 

 

 

 

Eastern Mediterranean University 

June 2016 

Gazimağusa, North Cyprus 

  



Approval of the Institute of Graduate Studies and Research 
 

 

    

           

           

                                     Prof. Dr. Cem Tanova 

                             Acting Director 
 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master    

of Science in Computer Engineering. 
 

     

           
  

                              Prof. Dr. Işık Aybay 

                          Chair, Department of Computer Engineering 
 

 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Computer 

Engineering. 
          

                         

 

Assoc. Prof. Dr. Ali Hakan Ulusoy                                Asst. Prof. Dr. Gürcü Öz                

Co-Supervisor           Supervisor  

  

 

 

 

                                          

                Examining Committee 

1. Assoc. Prof. Dr. Ahmet Rizaner  

2. Assoc. Prof. Dr. Muhammed Salamah 

3. Assoc. Prof. Dr. Ali Hakan Ulusoy 

4. Asst. Prof. Dr. Yıltan Bitirim 

5. Asst. Prof. Dr. Gürcü Öz 



iii 

 

ABSTRACT 

Mobile Ad-hoc Networks (MANETs) are type of wireless multi-hop networks that 

consists of group of mobile nodes that can interact with each other without the help of 

any predefined infrastructure or centralized controller such as a base station. MANETs 

are easily prone to security attacks. Black hole attack is one of such attacks. In a black 

hole attack, a malicious node deceitfully publicize itself as having the shortest path to a 

given destination and drops the data packet without forwarding it to the actual 

destination. Dynamic Source Routing (DSR) and Ad-hoc On-demand Distance Vector 

(AODV) protocols are two well-known protocols used for routing in the MANETs. In 

this thesis, we investigate the effect of black hole attack in both DSR-based and 

AODV-based MANETs. For this purpose, we implement both protocols using Network 

Simulator version 2 (NS-2) to obtain the performance in terms of Packet Delivery Ratio 

(PDR), End-to-End Delay (EED) and throughput with black hole attack and without 

black hole attack. A modified approach is implemented for DSR and AODV protocols 

to improve their performance in the presence of black hole attacks. Simulation results 

obtained show that network performance is reduced for both protocols in the presence 

of balckhole attack and AODV protocol is more affected by the black hole than DSR 

protocol. The results of the Modified schemes obtained show a significant improvement 

in the network performance over DSR and AODV protocols with black hole. 

Keywords: MANET, DSR, AODV, black hole, PDR, EED, throughput. 



iv 

 

ÖZ 

Gezgin alt yapısız ağlar (MANETs) bir grup gezgin cihazdan oluşan ve herhangi bir alt 

yapıya veya merkezi bir erişim noktasına ihtitaç duymadan haberleşmeyi olanaklı kılan 

kablosuz ağ çeşitlerindendir. MANET’ler ağ güvenliği saldırılarına açık olup, kara 

delik saldırıları güvenliği tehdit eden başlıca saldırı türlerinden bir tanesidir. Kara delik 

saldırıları, kötü niyetli bir düğümün belirli bir hedefe ulaşmak için en kısa yolun kendi 

üzerinden geçerek ulaşılabileceği şeklinde yanlış bir bilginin ağdaki tüm düğümlere 

bildirmesiyle oluşur ve hedefe ulaşmak için gönderilmiş olan veri paketleri kara delik 

tarafından hedefe gönderilmeden imha edilir. Dynamic Source Routing (DSR) ve Ad-

hoc On-demand Distance Vector (AODV) protokolleri MANET’lerde kullanılan en 

bilinen yönlendirme prokolleridir. Bu çalışmada, DSR ve AODV protokolleri 

kullanılarak MANET üzerindeki kara delik saldırılarının etkisi incelenmiştir. Kara delik 

etikisini inceleyebilmek için iki protokol kara delik bulunan ve bulunmayan durumlarda 

Ağ Simülatörü NS-2 de uygulanmış ve Paket Teslim Oranları (PDR), Noktalar Arası 

Gecikme (EED) ve verim sonuçları incelenmiştir. Kara delik saldırısının DSR ve 

AODV protokolleri üzerindeki etkisini azaltmak üzere bu protokollerde yeni bir 

düzenleme yapılmıştır. Benzetim çalışmalarından elde edilmiş sonuçlar göstermiştir ki 

kara delik saldırıları ağın performansını her iki protokol için de düşürmekle birlikte 

AODV protokolü kara delik saldırılarından DSR protokolüne göre daha fazla 

etkilenmektedir. Ayrıca benzetim sonuçları, yeniden uyarlanmış olan DSR ve AODV 

protokollerinin başarım sonuçlarının kara delik saldırıları karşısında yükseldiğini 

göstermiştir. 

Anahtar kelimeler: MANET, DSR, AODV, kara delik, PDR, EED, verim.  



v 

 

DEDICATION 

 

 

 

Dedicated to God Almighty and to My 
Family 

For Their Love and Support 

 

  



vi 

 

ACKNOWLEDGEMENT 

First and foremost, I acknowledge and appreciate God almighty for grace upon my life 

and his abiding presence with me throughout my stay and study in this school. 

Special thanks and appreciation goes to my supervisors Assoc. Prof. Dr. Ali Hakan 

Ulusoy and Asst. Prof. Dr. Gürcü Öz for their collaborative and relentless effort during 

the course of this thesis to ensure the success of this work. Their guidance on every step 

during this research has been an immerse help to me and it is great privilege to work 

with them.  

I would love to use this opportunity to appreciate my wonderful parents Mr. and Mrs. 

Eguaoje A.I. Nicholas for their love, prayers and support. They have been my financial 

backbone during the course of my study. I own my achievement to them. 

Sincere thanks to my siblings: Ailemen Ohis and Ailemen Ruth. To my beloved 

Igbinosa Emwinghare, my extended family: Mr. and Mrs. Eguaoje Ajayi and family, 

Mr. and Mrs. Asije and family, Mr. Isaac and family, Mr Andrew and family, 

Godspower Igbora, Abraham and lots of others. 

Thanks to all the departmental lecturers, my friends: Oyedeji Ajibola, Olaifa Femi, 

Flora, Banke, Ayoku Temitope, Zuhir and others. Special thanks to all scripture miners 

unit members, deeper life members North Cyprus and Bethesda church. Love you all 

and God bless you. 

  



vii 

 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................ iii 

ÖZ .......................................................................................................... iv 

DEDICATION ........................................................................................... v 

ACKNOWLEDGEMENT ......................................................................... vi 

LIST OF TABLES ..................................................................................... x 

LIST OF FIGURES ................................................................................. xi 

LIST OF ABBREVIATIONS .................................................................. xiii 

1 INTRODUCTION ................................................................................... 1 

1.1 General Overview .................................................................................................... 1 

1.2 Problem Statement ................................................................................................... 1 

1.3 Motivation ................................................................................................................ 2 

1.4 Thesis Objectives ..................................................................................................... 2 

1.5 Thesis Structure ........................................................................................................ 3 

2 LITERATURE REVIEW ......................................................................... 4 

2.1 Mobile Ad-Hoc Networks ........................................................................................ 4 

2.2  Routing Protocols in MANETs ............................................................................... 5 

2.2.1 Classes of Routing Protocols in MANETs ....................................................... 5 

2.3 Dynamic Source Routing ......................................................................................... 6 

2.3.1 Route Request Packet........................................................................................ 7 

2.3.2 Route Reply Packet ........................................................................................... 8 

2.3.3 Route Error Packet ............................................................................................ 8 

2.4 DSR Route Discovery Mechanism .......................................................................... 8 

2.5 DSR Route Maintenance ........................................................................................ 10 

2.6 Black Hole Attack in DSR ..................................................................................... 11 



viii 

 

2.7 Ad-hoc On-demand Distance Vector ..................................................................... 12 

2.7.1 Route Request Packet...................................................................................... 13 

2.7.2 Route Reply Packet ......................................................................................... 14 

2.7.3 Hello and Route Error Packets ........................................................................ 15 

2.8 Routing in AODV .................................................................................................. 15 

2.9 Black Hole Attack in AODV ................................................................................. 18 

2.10 Related Works ...................................................................................................... 21 

3 MODIFIED METHODOLOGY .............................................................. 24 

3.1 Modified Scheme ................................................................................................... 24 

3.2 Modification in DSR and AODV Protocols for Black Hole .................................. 26 

3.3 Modification of AODV and DSR for Modified Scheme ....................................... 27 

3.4 Performance Metrics .............................................................................................. 29 

3.4.1 Packet Delivery Ratio ..................................................................................... 29 

3.4.2 Throughput ...................................................................................................... 30 

3.4.3 Average End-to-End Delay ............................................................................. 30 

3.5 System Specifications ............................................................................................ 30 

4 SIMULATION RESULTS AND ANALYSIS .......................................... 31 

4.1 NS-2 Network Simulator ........................................................................................ 31 

4.2 AWK Script File..................................................................................................... 32 

4.3 Simulation Model ................................................................................................... 32 

4.4 Simulation Setup .................................................................................................... 33 

4.5 Simulation Scenarios .............................................................................................. 34 

4.5.1 Simulation Results for DSR Related Based MANETs ................................... 34 

4.5.2 Simulation Results for AODV Related Based MANETs ............................... 38 

5.2.3 Comparison of Simulation Results for DSR and AODV ................................ 41 

5 CONCLUSION AND FUTURE WORK .................................................. 45 



ix 

 

5.1 Conclusion .............................................................................................................. 45 

5.2 Future work ............................................................................................................ 46 

REFERENCES ........................................................................................ 47 

APPENDICES ......................................................................................... 51 

Appendix A:  Script Files ( .h) ..................................................................................... 52 

Appendix A.1: DSR Script (dsragent.h) Original DSR Script file is modified 

(modified parts are provided in boxes). ................................................................... 52 

Appendix A.2: AODV Script (aodv.h) Original AODV Script file is modified 

(modified parts are provided in boxes). ................................................................... 54 

Appendix B:  Script Files ( .cc) .................................................................................... 57 

Appendix B.1: DSR Script (dsragent.cc) Original DSR Script file is modified 

(modified parts are provided in boxes). ................................................................... 57 

Appendix B.2: AODV Script (AODV.cc) Original AODV Script file is modified 

(modified parts are provided in boxes). ................................................................... 64 

Appendix C: TCL Script Files(Used both for DSR and AODV) ................................. 72 

Appendix C.1 wireless.tcl ........................................................................................ 72 

Appendix D : AWK Script file (Used both for DSR and AODV) ............................... 74 

Appendix D.1: setdest and cbrgen Commands to Generate Mobility and 

Connection ............................................................................................................... 74 

Appendix D.2: Performance.awk (Used both for DSR and AODV) ....................... 74 

 

  



x 

 

LIST OF TABLES 

Table 2.1: Routing table for node 4 in AODV ........................................................... 18 

Table 4.1: Simulation parameters  .............................................................................. 34 

Table 4.2: Average simulation results of PDR for DSR  ............................................ 35 

Table 4.3: Average simulation results of throughput in kbps for DSR  ..................... 36 

Table 4.4: Average simulation results of average EED in ms for DSR  ..................... 37 

Table 4.5: Average simulation results of PDR for AODV  ........................................ 39 

Table 4.6: Average simulation results of throughput in kbps for AODV  .................. 40 

Table 4.7:  Average simulation results of average EED in ms for AODV ................. 41 

Table 4.8:  PDR for DSR and AODV  ........................................................................ 42 

Table 4.9: Throughput in kbps for DSR and AODV .................................................. 43 

Table 4.10: Average EED in ms for DSR and AODV ............................................... 44 

 

 

  



xi 

 

LIST OF FIGURES 

Figure 2.1: A typical MANET ........................................................................................... 5 

Figure 2.2: Classes of MANET routing protocols  ............................................................ 5 

Figure 2.3: RREQ packet structure in DSR  ...................................................................... 7 

Figure 2.4: RREP packet structure in DSR  ....................................................................... 8 

Figure 2.5: A route discovery operation in DSR  .............................................................. 9 

Figure 2.6: A route reply operation in DSR  .................................................................... 10 

Figure 2.7: Node C is not able to forward the packet through node D  ........................... 11 

Figure 2.8: An illustration of a black hole attack in DSR  ............................................... 12 

Figure 2.9: RREQ packet structure in AODV  ................................................................ 14 

Figure 2.10: RREP packet structure in AODV ................................................................ 15 

Figure 2.11: Propagation of route request in AODV  ...................................................... 17 

Figure 2.12: Propagation of route reply in AODV .......................................................... 17 

Figure 2.13: Black hole attack in AODV......................................................................... 20 

Figure 3.1: Hop to hop transfer of packet  ....................................................................... 24 

Figure 3.2: Code to create bool variables for malicious node and black hole list  .......... 26 

Figure 3.3: Code to modify the sequence number and hop count in AODV ................... 27 

Figure 3.4: Code used by malicious node to drop packet in AODV and DSR  ............... 27 

Figure 3.5: Snippet of the code to create the promiscous mode function in AODV  ...... 27 

Figure 3.6: Snippet of C++ code to create that allow node overhearing of neigbours in 

AODV .............................................................................................................................. 28 

Figure 3.7: Code for adding the received information to the black hole list and update 

the routing cache in DSR ................................................................................................. 29 

Figure 3.8: Code for adding the received information to the black hole list and update 

the routing table in  AODV .............................................................................................. 29 



xii 

 

Figure 4.1: Simplified view of NS-2 process structure [21] ............................................ 31 

Figure 4.2: The simulation model [21]  ........................................................................... 34 

Figure 4.3: PDR with different number of nodes for PDR  ............................................. 35 

Figure 4.4: Throughput with different number of nodes for DSR  .................................. 36 

Figure 4.5: Average EED with different number of nodes for DSR ............................... 37 

Figure 4.6: PDR with different number of nodes for AODV .......................................... 38 

Figure 4.7: Throughput with different number of nodes for AODV ............................... 40 

Figure 4.8: Average EED with different number of nodes for AODV ............................ 41 

 

 

  



xiii 

 

LIST OF ABBREVIATION 

AODV   Ad-hoc On-demand Distance Vector 

AWK   Alfred Weinberger Kernighan 

Bps   Bits per second 

CBR   Constant Bit Rate 

DoS                  Denial of Service 

DSDV   Destination Sequenced Distance Vector 

DSR   Dynamic Source Routing 

EED   End-to-End Delay 

FSR   Fisheye State Routing 

IP   Internet Protocol 

MANET  Mobile Ad-hoc Network 

ms   Milliseconds 

NAM   Network Animator 

NS-2   Network Simulator version 2 

OLSR  Optimized Link State Routing   

OSPF  Open Shortest Path First 

OTCL   Object Oriented Tool Command Language 

PDA                  Personal Digital Assistant 

PDR   Packet Delivery Ratio 

RERR   Route Error 

RREP   Route Reply 

RREQ   Route Request 

RREQ ID  Route Request Identification  

TCL   Tool Command Language 



xiv 

 

TTL   Time To Live 

UDP   User Datagram Protocol 

ZHLS              Zone-based Hierarchical Link State 

ZRP   Zone Routing Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1 

 

Chapter 1 

 1 INTRODUCTION   

1.1 General Overview 

A group of mobile nodes that are wirelessly connected together and can communicate 

with each other via radio waves is known as a wireless network. A wireless network 

can be categorized into two classes. The class of wireless network that operates with 

the support of a fixed infrastructure such as an access point is known as infrastructure-

based network and the wireless network that does not require the support of a fixed 

infrastructure is referred to as infrastructure-less network. Mobile Ad-hoc Networks 

(MANETs) fall into the class of infrastructure-less network. In MANETs, each node 

has the ability to join or leave the network at any given time because of the networks 

open nature and can act not only as a host but also as a router to help in forwarding 

packet if it is neither the source nor destination using a routing protocol. For routing in 

MANETs, routing protocols such as Destination Sequence Distance Vector (DSDV), 

Optimized Link State Routing (OLSR), Dynamic Source Routing (DSR) and Ad-hoc 

On-demand Distance Vector (AODV) have been developed for efficiently transmitting 

packets from source to destination.  

1.2 Problem Statement  

In MANETs, due to its characteristic and nature such as open communication medium, 

lack of centralized monitoring infrastructure and node cooperativeness cause the 

network to be easily susceptible to various types of security attacks. Some of these 

attacks include Denial of Service (DoS), black hole attacks, gray hole attacks, worm 



2 

 

hole attacks, etc. [1, 2]. Routing protocols were created without taking into 

consideration the security issues prone to MANETs. Therefore, MANETs using these 

protocols are usually susceptible to these security attacks. 

1.3 Motivation 

Security is highly essential for both wireless and wired network for the safeguarding of 

data communication. Therefore, the security in MANETs is one of the major issues for 

the standard functioning of the network. The level of trust of an individual in a network 

is based on its level of security which should satisfy availability, confidentiality, 

integrity, authentication and authorization [2]. MANETs are easily prone to security 

attacks and black hole attack is one of the most common type of attack faced by this 

network where a malicious node drops data packets thereby causing harm to the 

network. We therefore, focus on black hole attack because of its common nature and 

the  high adverse effect it has on the network.  

1.4 Thesis Objectives  

This thesis focuses on analyzing the effect of black hole attack on the network 

performance of both DSR and AODV protocols for MANETs and aims at improving 

the original existing DSR and AODV routing protocols in the presence of a black hole 

attack. In this thesis, a modified scheme is implemented for both DSR and AODV 

routing protocols to detect and mitigate the effect of the black hole attack and thereby 

improve the performance of the network in the presence of the malicious node. This 

thesis also aims at comparing and analyzing the results of the modified DSR and 

AODV routing protocols with that of the original DSR and AODV routing protocols 

using throughput, Packet Delivery Ratio (PDR) and End-to-End Delay (EED) as the 

performance metric to evaluate the performance of the network. 



3 

 

1.5 Thesis Structure 

The remaining part of this thesis are divided into six chapters.  

Chapter 2 deals on the literature review and background studies on MANET, DSR and 

AODV routing protocols that includes discussions of black hole attack on these routing 

protocols.  

Chapter 3 presents the detailed methodologies of modified scheme for both DSR and 

AODV protocols together with the performance metrics used for the simulations. 

Chapter 4 presents a detailed description of the network environment used and the 

results obtained from the simulations showing the PDR, throughput, and average EED. 

Finally, Chapter 5 talks about the conclusion and presents the future works to be done 

as a continuation of this topic. 

  



4 

 

Chapter 2 

2 LITERATURE REVIEW 

2.1 Mobile Ad-Hoc Networks 

MANETs are a kind of network that consist of a collection or groups of self-organizing wireless 

mobile hosts that can communicate with each other directly without the aid of a centralized 

supporting infrastructure such as access points, routers or base-stations. Each device on this 

network communicates directly with another device wirelessly if they are on reachable 

communication range. Otherwise communication is done via multi-hop communication which 

connectivity is done by forwarding packets to neighboring devices so as to get a route to the 

destination device [2]. In MANETs, each mobile device behaves not only as an end user but also 

as a router to other devices on the network. Dynamic network topologies are formed by MANET 

since each node can leave or join the network freely [1, 2]. Examples of these communicating 

mobile devices include handheld digital devices, phones, Personal Digital Assistants (PDAs), 

laptops, etc. Figure 2.1 gives a typical example of a MANET. Data communication is done with 

the help of a routing protocol. 



5 

 

 
Figure 2.1: A typical MANET 

2.2  Routing Protocols in MANETs 

Routing is defined as a process of finding and selecting the best path among other paths in a 

network on which to forward data packets between a source host and a destination host. 

2.2.1 Classes of Routing Protocols in MANETs 

As shown in Figure 2.2, MANET routing protocols are sub-divided into three classes which are 

based on the way they function. They are proactive protocols, reactive protocols, and hybrid 

protocols [3]. 

 
Figure 2.2: Classes of MANET routing protocols 

Proactive Protocols: These protocols are also known as table driven protocols [3]. For 

these protocols, each node in the network maintains routing tables for routing 



6 

 

information in the network. These tables in each node are continuously updated 

whenever there is a change in the network topology through the propagation of these 

changes and each node in the network has the complete routing information of the 

entire topology [3]. Examples of proactive protocols include DSDV, OLSR, Open 

Shortest Path First (OSPF), and Fisheye State Routing (FSR) protocols. 

Reactive Protocols: These protocols are also known as on-demand protocols because 

they do not maintain routing information on the nodes in the absence of communication 

but only search for a route when a node needs to send a packet to another node in the 

network [4]. The path discovery is done by broadcasting of Route Request (RREQ) 

packets throughout the network until RREQ is received by the destination node. 

Examples of reactive protocols include DSR, and AODV. 

Hybrid Protocols: These protocols combine both the proactive and the reactive 

approaches in its mode of operation to achieve a better result. Hybrid protocols are able 

to minimize the issues of delay which can be seen in reactive protocols and control 

overhead found in proactive protocols. Examples of hybrid protocols include Zone 

Routing Protocol (ZRP) and Zone-based Hierarchical Link State (ZHLS) routing 

protocol [4].  

2.3 Dynamic Source Routing 

DSR is a reactive or on-demand source routing protocol [5]. This implies that a source 

only initiates route discovery if it has a packet to send and then places the complete 

routing information to the destination in the data packet header. Each node maintains a 

route cache which contains routes the node has knowledge of. A node may cache 

multiple routes to a single destination such that if one fails, it falls back on the other. 

When a node decides to send a packet to a destination, it searches its route cache to 



7 

 

check if it has a route to the given destination and if there exists a route to this 

destination it includes the routing information into the data packet and uses the route to 

forward the packet to the destination node. In the absence of a route to the destination 

node, the source node initiates a route discovery process to obtain routes to the 

destination. Also, in a situation of link failure or route breakage, a mechanism known 

as route maintenance is initiated. Therefore, the two mechanisms used in the DSR are 

route discovery and route maintenance [5, 6]. The control packets used during route 

discovery are RREQ, Route Reply (RREP) and Route Error (RERR) packets. 

2.3.1 Route Request Packet 

A source in a network that wants to initiate communication with a different node needs 

to transmit a RREQ packet. The RREQ packet as shown in Figure 2.3 includes source 

address, destination address, and a unique identification number known as (RREQ ID) 

and path [6]. There is also a hop limit which is carried out using the Time To Live 

(TTL) value in the RREQ packet. The TTL value shows the number of hops that the 

RREQ packet should be forwarded and each intermediate node receiving the RREQ 

packets decrements the hop count by one before forwarding.   

 
Figure 2.3: RREQ packet structure in DSR 



8 

 

2.3.2 Route Reply Packet   

The destination node or any intermediate node in the network that has a route to the 

destination generates a RREP packet and forwards it back to the source node. The 

RREP packet as shown in Figure 2.4 mainly includes destination address, source 

address, life time and path. 

 
Figure 2.4: RREP packet structure in DSR 

2.3.3 Route Error Packet 

During data transmission, if a link to a next hop neighbor is broken, a RERR packet is 

generated and propagated backward to the source. The RERR packet contains 

information on the broken link which is used by the source node to identify and erase 

any route in its cache that contains the failed link.  

2.4 DSR Route Discovery Mechanism  

The following steps below give a detailed procedure for the operation of route 

discovery in DSR when no route exists in a route cache of the source node intending to 

forward a packet to a destination node.   

1. The source node broadcasts a route RREQ packet to all its neighbors. The RREQ 

packet contains the source address, destination address, and a unique RREQ ID which 

is selected by the source node.    



9 

 

2. When an intermediate node receives the broadcast RREQ packet, it checks its cache 

for a route to the destination. If it has no route to the destination, it appends its address 

into the path field and broadcasts the RREQ packet to its neighbors as shown in Figure 

2.5. A node discards a RREQ packet if it has recently seen another RREQ packet from 

the same source with the same RREQ ID and destination address or if its own address 

is among the Internet Protocol (IP) addresses listed in the route record of the RREQ 

packet. 

 
Figure 2.5: A route discovery operation in DSR 

If an intermediate node has a route to the destination, it generates and returns a RREP 

packet to the source with this RREP packet containing the cached route information to 

the destination attached with the accumulated route record copied from the RREQ 

packet. But if the RREP packet is generated by the destination, it places the route 

record in the RREQ packet in the RREP packet and forwards it as a unicast packet to 

the source as seen in Figure 2.6. This reverse-route forwarding of the RREP packet by 

the destination is only obtainable if network links are bi-directional [6]. The following 

steps below give the procedure for the source after receiving the RREP packets in DSR.        



10 

 

 
Figure 2.6: A route reply operation in DSR 

Step 1. The source node on receiving the RREP packets, extracts and stores the source 

routes obtained from the RREP packets into its route cache for routing of data packets 

to the given destination. 

Step 2. Source node selects from its route cache the route with the shortest path to the 

destination and begins the transmission of data packet through it. 

2.5 DSR Route Maintenance 

Route maintenance in DSR protocol is achieved using passive acknowledgments [6] 

and RERR packets. In a network topology, when there is a link failure, the source node 

is informed by the use of RERR packet. Each node in an active route uses passive 

acknowledgment to confirm that the next hop neighbor receives the packet by listening 

if the neighbor receives the packet or not. If a node cannot confirm that the packet is 

received by the neighbor node, the link is considered broken and an RERR packet is 

sent back to the source node which removes the hop in error from its cache and also all 

the routes that contain this hop must be truncated at that point. The source node then 

uses another existing route in its cache that does not have the broken link to forward the 

data packet to the destination otherwise restarts a new route discovery. 



11 

 

Using an illustration as in Figure 2.7, a route is discovered and established from source 

node A to destination node E as A-B-C-D-E. Node A routes the data packet through 

intermediate nodes B, C and D. Considering the link between node C and D fails, node 

C sends a RERR packet to node A along route C-B-A. Nodes C, B, A on receiving the 

RERR packet update their route caches by removing link C-D.      

 
Figure 2.7: Node C is not able to forward the packet through node D 

2.6 Black Hole Attack in DSR    

In DSR when a source node has a data packet to send to a destination node in the 

network and does not have a route in its cache to the destination, it initiates a route 

discovery process to find a route to the destination. It is during the route discovery 

process that a malicious node is able to advertise itself as having the shortest route to a 

destination [7, 8]. The steps below show the process of black hole attack in DSR. 

1. The malicious node waits to receive a RREQ packet sent by a source node on the 

network. 

2. The malicious node receiving the RREQ packet, it immediately generates and sends 

a falsified RREP packet to the source node without checking its route cache as 

having the shortest path to the destination node [9].  

3. The falsified RREP packet is sent as a unicast packet to the source node directly or 

through its immediate neighbors who then forward the message towards the source 

node. 



12 

 

4. The source node that receives the falsified RREP packet from the malicious node 

updates its routing cache and thinks the route discovery process is ended. It 

disregards the RREP packets from other nodes in the network and begins to transmit 

the data packets through the malicious node. 

 5. The malicious node that receives the data packets drops them without forwarding 

them towards the destination node creating a black hole in the network as shown in 

Figure 2.8. 

 
Figure 2.8: An illustration of a black hole attack in DSR  

2.7 Ad-hoc On-demand Distance Vector 

AODV is a reactive or on-demand protocol. This protocol is an improved version of the DSDV 

protocol [10]. AODV is invoked only when a source node in a network has a data to transmit 

hence the name on-demand. Each node in the ad hoc network acts as both a router and a host. All 

nodes maintains a routing table that contains information about known destinations which are 

used to route data packets to the desired destination. The routing table is minimized to only 

include the next hop information and not the entire route information to the destination node [10]. 

Sequence number is a distinct feature used by AODV when comparing it to other routing 



13 

 

protocols. Sequence number increases monotonically whenever a RREQ packet is sent or a 

RREP packet is forwarded in response to a RREQ packet received by a destination node. It is 

used to indicate the freshness of a routing information and for loop prevention. The higher the 

sequence number of a destination in a routing information is, the fresher (more recent) the route is 

[10].  When a node has a data packet to send, it checks its own routing table for the next hop 

information to the destination. If such a next hop entry exists, then the data packet is sent through 

it else a route discovery process is initiated. In AODV functionality, the basic control packet set 

comprises of RREQ, RREP, RERR and Hello packets. Description of these packets is given 

below. 

2.7.1 Route Request Packet 

A RREQ packet is generated by a source node and forwarded via flooding when the 

source node needs to discover a route to a given destination node for data transmission. 

The RREQ packet consists of RREQ ID, source IP address, destination IP address, 

source sequence number, destination sequence number and hop count [10]. As the 

RREQ packet propagates in the network, intermediate nodes use it to set up reverse 

route entry toward the direction of the source node in its routing table. The fields of 

RREQ packet as shown in Figure 2.9 are discussed below: 

 Type: This indicates the packet type which is 1 representing RREQ packet. 

 Hop Count: This is the number of hops from the source node to the node currently 

handling the RREQ packet. 

 RREQ ID: This is a numeric value attached to a particular RREQ packet used to 

uniquely identify the RREQ packet in connection with the IP address of the source 

node. It assists other nodes in a network to identify and discard duplicate RREQ 

packets which they receive. RREQ ID value is incremented whenever a new RREQ 

packet is broadcasted by the source node.   



14 

 

 Destination IP Address: This is the IP address of the destination node that a route is 

desired for. 

 Destination Sequence Number: This is the most recent sequence number received 

previously by the source node for any given route for the destination node. 

 Source IP Address: This is the IP address of the source node that originates the 

RREQ packet. 

 Source Sequence Number: This is the current sequence number of the source node 

that would be used during routing. 

 
 Figure 2.9:  RREQ packet structure in AODV 

2.7.2 Route Reply Packet     

A RREP packet is created if a node finds out a route to a RREQ packet it received. The 

RREP packet is unicasted to the source node since AODV supports bi-directional links. 

RREP packet as shown in Figure 2.10 consists of fields such as type, hop count, 

destination IP address, destination sequence number, source IP address and lifetime. 

These fields have been discussed in the section 2.7.1 except for lifetime. Lifetime is the 

time duration for which a node that receives the RREP packet considers the route to be 

unexpired. If the RREP packet is generated by the destination node, the hop count will 



15 

 

be equal to zero but if the RREP is being generated by an intermediate node the hop 

count will be its distance to the destination node. 

 
Figure 2.10.  RREP packet structure in AODV                                

2.7.3 Hello and Route Error Packets  

Hello packets are used to detect the link failures. During transmission of data between 

source and destination nodes, neighboring nodes which are part of the active route 

periodically send Hello packets to each other to confirm connectivity. The absence of 

Hello packet indicates the link failure which causes RERR packet to be generated and 

broadcasted to neighbors with the aim of notifying the source and other nodes in the 

network about the broken link. 

2.8 Routing in AODV 

Routing in AODV takes place in two phases. First is the route discovery phase which 

commences when a source node having a data packet to send does not have the next 

hop route entry for the destination node. Second is the route maintenance phase which 

takes place during data transmission [10]. The following steps below give the 

description of AODV routing with Step 1 to Step 4 dealing with the route discovery 

phase and Step 5 on route maintenance phase. 



16 

 

 

Step 1: The source node generates a RREQ packet and broadcasts it via flooding to all 

neighboring nodes in order to find a route to the destination.  

Step 2: Intermediate nodes receive the RREQ packet and do the following actions: 

 Discard the RREQ packet if they have been previously seen and processed. But if it 

is not a duplicated RREQ packet, they generate and forward a RREP packet to the 

source, if a fresh route exists for the destination node. By fresh it is meant that that the 

sequence number of the destination node stored in the routing table is greater or equal to the 

sequence number of the destination node in the RREQ packet just received. 

 If no fresh route exists to the destination, they extract the route information from the RREQ 

packet and make a reverse route entry in the routing table [10]. They then increment the hop 

count and rebroadcast the RREQ packet to neighbors until the destination is reached. 

Figure 2.11 shows this process. The source as node 1 seeking a route to destination 

node 8 broadcasts the RREQ packet to its neighboring nodes 2, 3 and 4. Neither node 2, 

3 nor 4 know a route to node 8, so each node creates a reverse route entry for the source 

and rebroadcasts the RREQ packet. We assume that the broadcast from node 2 arrives 

at node 5 before node 3 therefore, node 5 processes the broadcast from node 2 and 

discards that of node 3 as duplicate. After nodes 5, 6 and 7 broadcast, the RREQ packet 

finally arrives at the destination node 8. The first arriving RREQ packet to node 8 will 

be processed and other subsequent RREQ packets will be dropped as duplicates. 



17 

 

 
Figure 2.11: Propagation of route requests in AODV 

Step 3: Destination node receiving the RREQ packet, it generates a RREP packet that 

consists of source node address, destination node address, destination sequence 

number, life time and hop count. The RREP is forwarded as unicast back to the source 

node using the reverse path. Figure 2.12 shows the RREP process by destination node 

8.  

                            
Figure 2.12: Propagation of route reply in AODV                                 

Step 4: Source node begins transmission of data on receiving the first RREP packet and 

may start using another route if a new RREP packet arrives with a greater sequence 

number or has equal sequence number but a smaller hop count than the one previously 

in use.  



18 

 

Step 5: Hello packets are sent to neighbor nodes on an active transmission route to 

monitor link connectivity. If a link becomes broken, an RERR packet is sent.      

AODV makes use of tables to store information for routing. The routing table stores 

information such as destination IP address, destination sequence number, next-hop 

address, life time (route expiration time), hop count, precursor list, network interface, 

valid destination sequence number flag, other state and routing flags [10]. Table 2.1 

gives a possible routing table for node 4 from the example network topology illustrated 

in Figure 2.12. 

      Table 2.1: Routing table for node 4 in AODV 

 

2.9 Black Hole Attack in AODV 

MANETs are vulnerable to security attacks and AODV has no inbuilt security feature 

[11]. One of the common security attacks to routing protocols in MANETs is the black 

hole attack [12]. The operation of black hole in AODV is described in the following 

steps. 



19 

 

Step 1: Source node floods RREQ packet to all neighboring nodes when it desires a 

route to a destination node. 

Step 2: Neighboring nodes receive the RREQ packet, check the routing tables for the 

next hop route to the destination node and if no such route is found, they also broadcast 

the RREQ packet to their own neighbors. 

Step 3: When the malicious node receives this RREQ packet, it immediately sends a 

fake RREP packet to the source node and falsely sets its sequence number to a very 

high value.  

Step 4: Source node compares the sequence numbers of the RREP packets received and 

uses the route from the RREP packet with the highest sequence number [13]. Since the 

RREP packet of  malicious node comes with the highest sequence number, source node 

uses that route.  

Step 5: Source  node begins to forward data packet through the malicious node thinking 

the route is reliable. 

Step 6: The malicious node drops the packets coming from the source and does not 

forward them to the destination node as required. 

For example, in Figure 2.13, let us assume that node 2 becomes malicious which is 

represented as node M. When node 1 as the source node desires a route to the 

destination node, it broadcasts a RREP packet to its neighbors which are nodes 2 (M), 3 

and 4. Node M without checking its routing table immediately sends a falsified RREP 

packet to node 1 with an abnormal high sequence number (99856745689) as shown in 



20 

 

the figure. Node 1 believes this is the fresher route since this has the highest sequence 

number and begins to forward data packet to M. On the other hand, nodes 3 and 4 

rebroadcast the RREQ packet received from node 1 to nodes 5 and 6 respectively, since 

they do not have the next hop route entry to the destination node available in their 

routing table.  

 
Figure 2.13: Black hole attack in AODV 

After nodes 5, 6 and 7 rebroadcast the RREQ packet, node 8 as the destination node 

receives the RREQ packet and generates a RREP packet. It unicasts the RREP packet 

to node 1 with included sequence number as 27.  When node 1 receives RREP packet 

from neighbor node 4, it compares the sequence number in RREP packet with the 

already existing malicious node sequence number in its routing table. It discards the 

RREP packet from node 4 and continues using the path through the malicious node M 

since the sequence number of RREP packet coming from malicious node M is higher 

(99856745689) than that of node 4 (27). Consequently, data packets forwarded to the 

malicious node are dropped.  



21 

 

2.10 Related Works 

A lot of research has been made on black hole attack and several approaches have been 

proposed to tackle the issue of black hole attacks in MANETs. Some major works done 

on this topic are given below. 

In [14], the authors proposed a scheme known as Association Based DSR protocol 

which encourages cooperation of nodes. It detects the selfish node and isolates it from 

participating in the routing process. This approach from the performance metric result 

obtained which was done varying the number of nodes shows a better throughput than 

normal DSR in the presence of black hole node but when no malicious node is present 

the normal DSR has less packet drop than this proposed scheme. 

In [15], Tsou et al proposed an approach for DSR known as Baited-Black-hole DSR. In 

this scheme, the source node initially broadcasts a fake RREQ packet known as bait 

RREQ that contains a randomly selected and non-existent address as the desired 

destination. Since a black hole node does not check its routing table for a route to the 

destination, the baited malicious node immediately sends RREP packet to the source 

node claiming to have a route to the non-existent destination. Source node stores the 

detected black hole node id. After this process, source begins the actual route discovery 

process and is able to detect RREP packets from black hole node and discard such 

routes. 

In [16], Pooja Jaiswal et al. proposed a solution to mitigate black hole attack in 

MANETs. In this approach, a mechanism was introduced to record destination 

sequence number of the neighbor nodes. The sequence numbers of the neighboring 

nodes are compared with that of the source node. If the difference between a source 



22 

 

node and a neighboring node is large, the neighboring node is considered to be 

malicious and its route entry is discarded. The result obtained shows a better metric 

performance for PDR and EED. 

Lu et al. in [17] proposed a scheme to detect and avoid black hole in AODV called 

Secure AODV. It uses verification packets to ascertain the destination node as authentic 

via exchange of random numbers. When a source node receives a RREP packet, it 

sends a reply to the destination node using a verification secure RREQ packet that 

includes a randomly generated number by the source node. The destination node 

receives the secure RREQ packet and generates a secure RREP packet with the random 

number by the destination node. For the source node to determine a secure route, it 

waits for two or more secure RREP packets from different paths with the same random 

number. This scheme, however, fails to detect the malicious node when only a single 

secure RREP packet is received. 

Raj et al. in [18] proposed an approach known as Detection, Prevention and Reactive 

AODV to identify and isolate malicious node in MANETs. In this approach, when a 

source node receives a RREP packet, the source node checks for the value of its 

sequence number on the routing table and also checks if the sequence number of the 

RREQ packet is higher than a defined threshold value. This threshold value is updated 

dynamically at a given time interval. If the RREP packet has a higher sequence number 

value than the threshold value, that node is considered malicious and blacklisted. An 

alarm packet is broadcasted to other nodes in the network so that RREP packet 

generated by the malicious node is discarded. This scheme is however affected by 

excessive overhead due to the update of the threshold value at regular time interval and 

the alarm control packet broadcasted. 



23 

 

In [19], the authors proposed an approach called Trust Based Dynamic Source Routing 

for black hole. Each node in the network observes its one hop distance neighbors 

during route discovery and records in a monitoring table their trust values which are 

based on rreq_fwd_credit. When a node receives a RREQ packet from a neighbor node, 

it stores the id of this neighbor node and increases the rreq_fwd_credit value for that 

node by 1 in its monitoring table therefore a node rreq_fwd_credit increases any time it 

forwards a RREQ packet and by this every node has gathers information about its 

surrounding neighbor and assigns a trust level which is either high or low which is 

based on the rreq_fwd_credit value for the node. A threshold value of 1 is selected for a 

rreq_fwd_credit value of a normal node. A black hole node never participates in RREQ 

packet forwarding. When an intermediate node receives a RREP packet, it attaches the 

trust value it recorded for the node it just receives the RREP packet and forwards it to 

next hop on the unicast path until it arrives at the source. The source node selects only 

the RREP packet with high trust values for all its nodes on the path.  

  



24 

 

Chapter 3  

3 MODIFIED METHODOLOGY 

3.1 Modified Scheme 

The modified scheme utilizes promiscuous mode property of node in DSR for our 

improvement for both DSR and AODV protocols. Promiscuous mode enables a node to 

monitor packet traffic, intercept and read packets of neighbors in the same broadcast 

domain [20]. This implies that node can overhear its next neighbor and be able to tell if 

the received packet is forwarded along the route or not.  For example in Figure 3.1, 

node B confirms that node C receives the data packet by overhearing C transmits the 

data packet to node D. 

 
Figure 3.1: Hop to hop transfer of packet 

In this scheme, the basic assumption is that there is no link and node failures and 

corrupted packets in the network. This implies that all nodes are functionig correctly 

apart from the node selected as the malicious node. All nodes in the network have an 

additional black hole list table created for storing malicious nodes detected in the 

network.  

The proposed scheme increases network overhead due to continuous broadcast of alarm 

error packets to all nodes in the network for black hole list update when a node is 



25 

 

identified as a malicious node. Sometimes a false error packet can be generated that 

leads to declearing a non-malicious node as malicious in a situation when a node is 

temporarily unavailable.The following steps give a description of the implementation 

of this scheme. 

 

Step 1: Initially routing cache and black hole list are empty for all nodes. 

Step 2: Source node initiates route discovery so as to establish a route to the destination 

for communication as described in Section 2.4 and 2.8 for DSR and AODV 

respectively.  

Step 3: After the route discovery is completed and the path to the destination is defined, 

source node checks if any of the intermediate or destination nodes is on the black hole 

list or not. If none of them is on the black hole list, data transmission begins, otherwise, 

a new route discovery process is started. 

Step 4: During data transmission, nodes check if the next hop neighbor is the 

destination or not. If it is not then each node after forwarding the data packet starts 

overhearing in the promiscuous mode to track if the data packet is forwarded by the 

neighbor to the next intermediate node or not. 

Step 5: If the node forwards the data packet to the next node then it means that the node 

is not malicious otherwise it is considered as a malicious node and error message is 

broadcasted to neighbors identifying the malicious node. 



26 

 

Step 6: All nodes update their black hole list by adding this malicious node to their 

black hole list. 

Step 7: Source node removes the malicious route entry from its routing table and begins 

another route discovery process to get a new route for data transmission. 

For the implementation of black hole attack and the modified scheme to mitigate the 

black hole attack, modification is made to the source code for DSR and AODV 

protocols. The two files where these modifications are made are dsragent.h and 

dsragent.cc for DSR protocol and aodv.h and aodv.cc for AODV protocol. These 

modifications are described and shown in subsequent sections. 

3.2 Modification in DSR and AODV Protocols for Black Hole 

For the addition of a black hole node in DSR and AODV protocols, a node needs to be 

declared as malicious. In dsragent.h and aodv.h files we modify the code as shown in 

the snippet of Figure 3.2 to declare a boolean variable malicious and black hole list 

which is presented in Appendix A.1 and A.2. 

 
Figure 3.2: Codes to create bool variable for malicious node and black hole list 

As explained in Chapter 2, during route discovery, the black hole increases the 

destination sequence number of its RREP packet in AODV to an abnormally high value 

and reduces the hop count to a small value so that the source node would forward the 

data packet to it as having a fresh route to the destination node. For the malicious node 

to act this way we modify the code as shown in Figure 3.3 which is presented in 



27 

 

Appendix B.2 by changing the sequence number to 99856745689 and hop count to 1 in 

aodv.cc file. During data transmission, the black hole node drops the data packet that it 

receives and does not forward them. As presented in Appendix B.2, Figure 3.4 shows 

the snippet of the C++ code added to both DSR and AODV protocol respectively for 

the malicious node to drop the packet. 

 
Figure 3.3: Code to modify the sequence number and hop count in AODV 

 
Figure 3.4: Code used by malicious node to drop packet in AODV and DSR  

3.3 Modification of AODV and DSR for Modified Scheme 

Since the modified scheme promiscuous mode property as explained in Section 3.1 

exists in DSR only we create this promiscuous function in AODV as shown in Figure 

3.5 which is presented in Appendix B.2. This function allows a node to have 

promiscuous mode functionality. This modification is made in aodv.cc file. 

 
Figure 3.5: Snippet of the code to create the promiscuous mode function in AODV 



28 

 

According to the modified scheme, during data transmission, each node after 

forwarding the data packet to the next hop neighbor, it starts overhearing in the 

promiscuous mode to track if the data packet is forwarded by the neighbor or not. For 

each node to act in this manner,  Figure 3.6 shows the code that is modified in AODV 

as presented in Appendix B.2. 

 
Figure 3.6: Snippet of C++ code that allows nodes overhearing of neighbors in AODV 

After the node discovers that its neighbor does not forward but drops the packet it 

receives, it alerts other nodes and the malicious node is added to the black hole list and 

route entry update is done. Figures 3.7 and 3.8 show the snippet of the code which is 

given in Appendix B.1 and B.2 respectively that allows nodes to update their black hole 

list and their route cache for DSR and routing table for AODV respectively 



29 

 

 
Figure 3.7: Codes for adding the received information to the black hole list and update 

the routing cache in DSR                                                      

     

 
Figure 3.8: Codes for adding the received information to the black hole list and update  

the routing table in AODV 

3.4 Performance Metrics 

For this thesis, the performance metrics discussed below are used for the analysis and 

evaluation of the simulations. 

3.4.1 Packet Delivery Ratio 

This is a network performance metric that indicates the ratio of the number of packets 

received at the destination to the number of packets sent by the source as shown in (1). 

The greater the PDR value, the better the network performance is. 



30 

 

                                                       
packetssent  ofNumber 

packets recieved ofNumber 
 PDR                    (1)                                         

3.4.2 Throughput 

This performance metric indicates the rate of packets success fully transferred over a 

communication link at a given time in a network as shown in (2). It can be measured in 

bits per seconds (bps). 

 
 timeSimulation

sent Packet  sent packet  ofNumber 
Throughput


                               (2) 

3.4.3 Average End-to-End Delay 

The network metrics indicates the average time it would take the packets generated at 

the source to reach the destination as shown in (3). It is measured in seconds. EED 

delay for each received packet is computed by subtracting sending time of a packet 

from the receiving time of the packet and average EED is calculated for all packets as 

in (3). 

                 
 Recieving  time  Sending time

Average EED
Number of recieved packets





                    (3) 

3.5 System Specifications 

For the simulations, we used HP pavilion TS 15 notebook PC and installed oracle 

virtual box machine. The laptop has the following specifications: Intel(R) Core(TM) i5-

4200U CPU @ 1.60 GHz (4 CPUs) 2.3 GHz processor, 12 GB RAM, 64-bit windows 

10 operating system. 

  



31 

 

Chapter 4 

SIMULATION RESULTS AND ANALYSIS 

This chapter deals on the network simulator used called Network Simulator version-2 

(NS-2), tools used in the network simulator, the simulation results and the analysis of 

the network performance obtain from the results. 

4.1 NS-2 Network Simulator  

NS-2 is a discrete event-driven, object-oriented network simulator [21]. It is a widely 

used open source software for network research which runs on Linux and was 

developed at the University of California, Berkeley. NS-2 is used for simulating and 

analyzing wireless and wired networks, and routing protocols. NS-2 is based on two 

programming languages namely C++ and Object Oriented Tool Command Language 

(OTCL) which is an extension of the Tool Command Language (TCL) and compatible 

with C++. Both languages are used for different reasons.  C++ is used for implementing 

the protocol in detail and the OTCL is used for scheduling the events and controlling 

the simulation scenario for the user.  

 
Figure 4.1: Simplified view of NS-2 process structure [21] 



32 

 

In the NS-2 process shown in Figure 4.1, the first stage is the declaration of the network 

topology, and traffic scenario. The configurations of these fields are created in the TCL 

script file which is programmed in C++. In the second stage, which is the simulation 

stage, the written OTCL script is interpreted by NS-2 in combination with C++ class 

libraries which are used for various common network protocols. For the third stage, 

NS-2 generates two analysis report files simultaneously after the TCL script of the 

simulation is interpreted. These two files are the Network Animator (NAM) file with 

the extension as .nam and trace file with the extension as .tr. The NAM shows the 

visual animated display of the nodes’ behaviors during the simulation and the trace file 

shows the simulation traces of nodes in the format of texts.  

4.2 AWK Script File 

AWK is a powerful programming language interpretation tool made for processing text. 

It was developed in 1970 by Alfred Aho, Weinberger Peter, and Kernighan Brain [21]. 

Its main purpose is to extract data. 

 In this thesis, to collect the results from trace file which is in the format of text, an 

AWK script file is written which includes calculation of the network performance 

metrics such as PDR, throughput and average EED.  

4.3 Simulation Model 

For our simulations, NS-2.35 is installed [22] on oracle virtual box Windows-10 

environment. As shown in Figure 4.2, the mobility and connection pattern is generated 

using setdest and cbrgen commands as presented in Appendix D.1. The mobility pattern 

describes the movement of nodes with their speeds and connection pattern deals with 

setting up traffic connection. Using the specified parameters mentioned in Chapter 5, 

we create our desired network using C++ codes in TCL script format as shown in 

Appendix C. The simulation is executed using the TCL script file to obtain a trace file 



33 

 

and nam file. To acquire the data analysis file for the network performance metrics of 

the network simulation which are PDR, throughput and average EED from the trace file 

generated, an AWK script called Performance.awk as presented in Appendix D.2 is 

used. The acquired network performance metric results are imported to Microsoft Excel 

2010 for displaying in a graphical representation. 

    

 

Figure 4.2: The simulation model [21] 

4.4 Simulation Setup 

The simulations are based on the analysis of DSR and AODV routing protocols with 

different simulation parameters as shown in Table 4.1. The implementation is to 

examine the effect of black hole attack on DSR and AODV based MANETs. The 

results in [13] are satisfyingly reproduced in this work. The thesis continues further 

with a modification for DSR and AODV protocols in the presence of black hole attack. 

The data analysis was conducted using the network performance metric discussed in 

Section 3.4 which are all measured against the various number of nodes. 20 simulation 

runs are done for each number of nodes and the average values are used to plot the 

graphs for each network performance metric. 



34 

 

Table 4.1: Simulation Parameters 

Parameter Settings 

Network Routing Protocols DSR, AODV 

Traffic Type CBR (UDP) 

Mobility Model Random Way Point 

Network Area 670 × 670 m
2
 

Pause Time 0 seconds 

Simulation Time 500 seconds 

Packet Size 512 Bytes 

Number of Runs 20 

Maximum Speed 20 m/s 

Numbers of Malicious Nodes 1 

Number of Nodes 20, 40, 60, 80, 100 

 

4.5 Simulation Scenarios  

In this thesis, the DSR and AODV are the original protocols without black hole, Black 

hole DSR and Black hole AODV are protocols with the malicious node, and Modified 

DSR and Modified AODV are the modified protocols in the presence of the malicious 

node. All these protocols are implemented using the network parameters as shown in 

Table 4.1. Node 9 is made the malicious node which acts as the black hole node in the 

network. It sends back false RREP packet to the source and drops data packets 

whenever it receives them. Nodes in the network move randomly with the max speed as 

20 m/s and the number of nodes is varied as 20, 40, 60, 80 and 100 with a fixed 

network area as 670 × 670 m
2
. 

4.5.1 Simulation Results for DSR Related Based MANETs 

In this section, DSR protocol is investigated. Original DSR results are compared with 

Black hole DSR and Modified DSR. From the simulation results as shown in Figure 4.3 

and Table 4.2, it can be observed that the PDR for DSR when there is no black hole 

ranges approximately from 0.991 to 0.999 for all nodes but when a malicious node is 

included as indicated for Black hole DSR, the PDR drops with values from 0.712 to 

0.761 which indicates a decrease of  around 26% which shows that data packets are 



35 

 

dropped by the black hole hence a decrease in the PDR of the network. From the result 

of the Modified DSR, it can be observed that modified protocol produces a better PDR 

even in the presence of the black hole with values ranging from 0.845 to 0.882 as 

indicating a 17% increase of the peak value than that of Black hole DSR which 

signifies less packet loss.  

 
Figure 4.3: PDR with different number of nodes for DSR 

Table 4.2: Average simulation results of PDR for DSR 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 0.991 0.999 0.999 0.999 0.989 

Black hole DSR 0.761 0.751 0.715 0.721 0.712 

Modified DSR 0.853 0.882 0.851 0.845 0.853 

  

Figure 4.4 shows the throughput results for the simulation. It can be observed that 

Black hole DSR has a lower throughput in comparison to DSR and the Modified DSR. 

As seen in Table 4.3, DSR throughput values for all nodes are relatively high with 

values from 118.09 kbps to 118.79 kbps and the throughput for Black hole DSR 

decreases for all nodes with values ranging from 85.93 kbps to 92.80 kbps. This shows 



36 

 

a 25% decrease and is due to the fact that the average rate of data packet successfully 

sent over the communication channel in the network has been reduced by the black 

hole. There is a significant improvement in the Modified DSR with values from 99.62 

kbps to 104.61 kbps for all nodes indicating approximately 14% increase of its peak 

value than that of the Black hole DSR.   

 
Figure 4.4: Throughput with different number of nodes for DSR 

Table 4.3: Average simulation results of throughput in kbps for DSR 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 118.77 118.09 118.65 118.79 118.67 

Black hole DSR 92.66 92.80 86.12 86.98 85.93 

Modified DSR 104.61 103.09 100.71 102.86 99.62 

 

Figure 4.5 shows the results of the average EED of the network which is measured in 

milliseconds (ms) when varying the number of nodes and it can be observed that the 

average EED for the Black hole DSR is lower in comparison to the others. As seen in 

Table 4.4, the average EED for DSR for all the nodes ranges from 162.23 ms to 193.24 

ms and in the presence of the black hole attack decreases to between 100.52 ms to 

135.78 ms which indicates approximately a 32% decrease. This decrease is as a result 



37 

 

of the shortening of the route discovery process by the black hole since the source 

begins to transmit data as soon as it receives the falsified RREP packet from the 

malicious node. Furthermore, since there is less traffic in the network because of 

dropped packets, the few packets which are able to avoid the malicious node gets to the 

destination faster thereby reducing the average EED of the packets received. The 

Modified DSR also has a lower average EED than the original DSR without black hole 

with values from 150.66 to 173.43 indicating around 10% decrease. It should be noted 

that the decrease of average EED for Black hole DSR is not an improvent in the system 

performance but it is as a result of high rate of dropped packets by the black hole. 

 

Figure 4.5: Average EED with different number of nodes for DSR 

   Table 4.4: Average simulation results average EED in ms for DSR 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 169.23 173.26 189.51 188.78 193.24 

Black hole DSR 100.52 116.32 135.78 133.42 134.55 

Modified DSR 150.66 159.68 173.43 165.42 170.91 

 

  



38 

 

4.5.2 Simulation Results for AODV Related Based MANETs 

In this section, AODV protocol is investigated. Original AODV results are compared 

with Black hole and Modified AODV. It can be seen from Figure 4.6 that the PDR and 

throughput values for the various number of nodes for each protocol are just slightly 

different and the black hole greatly decreases the PDR and throughput for AODV based 

MANETs. As it can be observed in Table 4.5, the PDR for AODV without black hole is 

relatively high with peak value as 0.999 but when a malicious node is present as 

implemented for Black hole AODV, the PDR is brought down for all the various 

number nodes ranging between 0.162 to 0.187. This shows that the PDR decreases by 

82% since black hole node forces a packet to be sent to it by including an abnormal 

high sequence number in its RREP packet. The Modified AODV results show better 

PDR values ranging from 0.814 to 0.853 which shows around 79% increase than Black 

hole AODV. This indicates less packet loss in comparison to Black hole AODV since 

the Modified AODV can detect the node that is malicious and then use another secured 

route for data transmission 

 
Figure 4.6: PDR with different number of nodes for AODV 



39 

 

Table 4.5: Average simulation results of PDR for AODV 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 0.996 0.999 0.998 0.996 0.984 

Black hole DSR 0.162 0.182 0.187 0.162 0.161 

Modified DSR 0.852 0.853 0.832 0.825 0.814 

 

Figure 4.7 indicates the resulting graph of the network throughput for the simulation 

while varying the number of nodes. It can be observed that Black hole AODV shows a 

lower throughput for the different network load when compared with the AODV 

without black hole and the Modified AODV. As shown in Table 4.6, AODV 

throughput values for the different number of nodes range from 115.65 kbps to 117.9 

kbps with the highest value as 117.9 kbps and the throughput for Black hole AODV 

decreases with values from 15.69 kbps to 18.21 kbps indicating around 85% reduction 

in comparison to AODV without black hole. This is due to the fact that the average rate 

of successfully data packet sent over the network has been reduced and most packet are 

discarded by the black hole node. The Modified AODV outperforms the AODV with 

black hole with values ranging from 94.84 kbps to 98.25 indicating around 81% 

increase. 

 



40 

 

 
Figure 4.7: Throughput with different number of nodes for AODV 

Table 4.6: Average simulation results of throughput in kbps for AODV 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 116.40 117.32 117.56 117.90 115.65 

Black hole DSR 15.69 17.20 18.21 17.92 17.95 

Modified DSR 98.25 96.53 95.54 97.83 94.84 

 

From Figure 5.6, it is observed that the results of the average EED of the network while 

varying the network load significantly decreases for the Black hole AODV in 

comparison to the others. Table 5.7 shows that the average EED for Black hole AODV 

decreasing with approximately 92% in comparison to AODV without black hole. For 

AODV without black hole, the average EED for all nodes ranges from 108.89 ms to 

119.51 ms and the Black hole AODV ranges from 17.28 ms to 20.84 ms. The Modified 

AODV shows a lower average EED than the AODV without black hole with around 

17%.    



41 

 

 
Figure 4.8: Average EED with different number of nodes for AODV 

Table 4.7: Average simulation results of average EED in ms for AODV 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 119.51 108.89 116.94 110.36 118.51 

Black hole DSR 20.84 17.28 25.92 17.92 20.59 

Modified DSR 98.47 90.55 94.83 91.68 97.18 

 

5.2.3 Comparison of Simulation Results for DSR and AODV 

The performance of DSR and AODV are shown by the results obtained from the 

simulations while varying the numbers of nodes. The results show the impacts of the 

black hole and the modification on both protocols using PDR, throughput and average 

EED. The comparison for each of these protocol on the different metrics are analysed 

below based on the tables given. 

 

 



42 

 

Table 4.8: PDR for DSR and AODV 

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 0.991 0.999 0.999 0.999 0.999 

AODV 0.996 0.999 0.998 0.996 0.984 

Black hole DSR 0.761 0.751 0.715 0.721 0.712 

Black hole AODV 0.162 0.182 0.187 0.162 0.161 

Modified DSR 0.853 0.882 0.852 0.845 0.853 

Modified AODV 0.852 0.853 0.832 0.825 0.814 

 

We observe from the results presented in Table 4.8 that the PDR for both original DSR 

and AODV is relatively high and remains almost the same despite the different number 

of nodes with values ranging from 0.991 to 0.999 for both but when a malicious node is 

introduced, PDR performance of DSR decreases approximately by 26% as seen in 

Black hole DSR and PDR for AODV decreases by around 82% as seen also in Black 

hole AODV indicating that AODV is more affected by the black hole since the 

malicious node makes use of hop count and the sequence number option in AODV to 

force the selection of its route in the RREP packet. The modified approach shows 

improvement for both protocols with Modified DSR increasing to values ranging from 

0.845 to 0.882 and Modified AODV increasing with values ranging from 0.814 to 

0.853 which is due to the fact that malicious node is being identified and avoided 

during route selection. Similarly in [13], PDR of DSR for all number of nodes falls 

approximately between 0.96 and 0.99 and when black hole is introduced, it drops to 

around 0.68 to 0.75. For AODV, PDR ranges approximately from 0.95 to 0.99 when 

there is no black hole and drops significantly when black hole is included to around 

0.08 to 0.12 which is similar to the results obtained in this thesis study.  



43 

 

Table 4.9:  Throughput in kbps for DSR and AODV  

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 118.77 118.09 118.65 118.79 118.67 

AODV 116.40 117.32 117.56 117.90 115.65 

Black hole DSR 92.66 92.80 86.12 86.98 85.93 

Black hole AODV 15.69 17.20 18.21 17.92 17.95 

Modified DSR 104.61 103.09 100.71 102.86 99.62 

Modified AODV 98.25 96.53 95.54 97.83 94.84 

 

It can be seen from Table 5.9 that the throughput remains almost constant for the 

different number of nodes for both DSR and AODV protocols. The results also 

indicates that when black hole attack is launched, throughput values for DSR decrease 

with values ranging from 85.93 kbps to 92.80 kbps showing around 25% drop in 

comparison to DSR without black hole having values from 118.09 kbps to 118.79 kbps 

and AODV with black hole decreases with values from 15.69 kbps to 18.21 kbps 

showing around 85% drop as against AODV without black hole. This indicates also 

that black hole attack has greater impact on AODV. The modified DSR and AODV 

improves the network throughput even in the presence of black hole attack as Modified 

DSR increases with values ranging from 99.62 kbps to 104.61 kbps and Modified 

AODV increase with values ranging from 94.84 kbps to 98.25 kbps. Similarly also in 

[13], the throughput of DSR falls approximately between 132 kbps and 138 kbps for all 

nodes and when black hole is introduced, it decreases to around 90 kbps to 97 kbps. For 

AODV when there is no black hole, the values ranges approximately from 130 kbps to 

135 kbps and drops significantly when black hole is included to around 6 kbps to 9 

kbps which shows a similar drop as the simulation results obtained in this thesis study. 



44 

 

      Table 4.10: Average EED in ms for DSR and AODV 

 

 

It is observed from the results showing in Table 4.10 that DSR has a higher average 

EED than AODV which is due to multiple route cache overhead found in DSR. When 

black hole is included to DSR and AODV protocols, the average EED of DSR 

decreases for all nodes with values ranging from 100.52 ms to 135.78 ms as against 

DSR without black hole having values ranging from 162.23 ms to 193.24 ms having 

around 32% decrease while AODV decreases significantly with values for the different 

nodes ranging from 17.28 ms to 25.92 ms as against AODV without black hole having 

its values ranging from 108.89 ms to 119.51 ms signifying a decrease of around 82% 

which is due to the fact that AODV is highly impacted by the malicious node and hence 

the data traffic is greatly reduce making successfully transferred data packets to take 

shorter time to get to their respective destination. The modified DSR and AODV 

having been able to mitigate the effect of the black hole attack shows a lower average 

EED with around 10% and 17% decrease respectively than original DSR and AODV. 

  

Protocol 
Number of Nodes 

20 40 60 80 100 

DSR 162.23 173.22 189.51 188.78 193.24 

AODV 119.51 108.89 116.94 110.36 118.51 

Black hole DSR 100.52 116.32 135.78 133.14 134.55 

Black hole AODV 20.84 17.28 25.92 17.92 20.59 

Modified DSR 150.66 159.68 173.42 165.42 170.91 

Modified AODV 98.47 90.55 94.83 91.68 97.18 



45 

 

Chapter 5 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

MANETs are easily prone to security attacks with black hole attack as one of the most 

common security attack. In this thesis, our main aim is to investigate the effect of the 

black hole attack and discuss a method to lessen the effect of the black hole attack on 

MANETs. Firstly, mechanism of DSR and AODV protocols is tackled. Secondly, the 

behavior of DSR and AODV protocols in the presence of black hole attack is studied 

with a review on previous work done on black hole prevention. Thirdly, a modified 

approach for DSR and AODV protocols to improve the network performances even in 

the presence of a black hole attack is discussed. Finally implementations for original 

DSR and AODV, Black hole DSR and AODV, and Modified DSR and AODV 

protocols are carried out so examine the effect of the black hole on these protocols and 

to see the improvement of modified protocols in the network. 

From the results of the simulations done, it can be observed that PDR, throughput, and 

average EED decrease for both DSR and AODV protocols when a black hole is 

included. It can be observed that the PDR and throughput remain almost the same 

irrespective of the network load. Results show that for DSR based network, when black 

hole is introduced, the values for PDR decrease by 26%, throughput decrease by 25%, 

and average EED decrease by 32%. For AODV based network, when a black hole is 

introduced, the PDR decreases averagely by 82%, throughput decreases by 85%, and 



46 

 

average EED decreases by 82%. Finally, the modified protocols show an improvement 

to original DSR and AODV in the presence of black attack since they are able to detect 

the black hole node in the network by overhearing in promiscuous mode to neighbors if 

the received packet is forwarded or not. Consequently, the malicious node is stored in a 

black hole list and subsequently source avoids the use of any path having the malicious 

node. The simulation results of protocols show that even with black hole in the 

Modified DSR, the PDR increases with 17%, throughput with 14% higher than Black 

hole DSR and 10% lower for average EED than DSR without black hole. For Modified 

AODV, PDR increases with 79%, throughput with 81% higher than Black hole AODV 

and 17% lower for average EED than AODV without black hole.     

In conclusion, it can be said of the results generated from the simulations that black 

hole attack decreases the overall network performance and it has a more severe impact 

on AODV protocol than on DSR protocol and the modified protocols outperforms 

original DSR and AODV protocols when black hole attack is launched thereby 

improving the security and enhancing the network performance of DSR and AODV 

protocols against black hole attacks.  

5.2 Future Work  

For the future work in relation to this thesis, we intend to fix the fault tolerance such 

that a node not forwarding packet due to its temporal unavailability is not falsefully 

considered as a malicious node. We will extend our work by implementing and 

analyzing our modified approach on proactive and hybrid routing protocols due to their 

on-demand nature and also investigate a situation of two or more black holes in the 

network. 

  



47 

 

REFERENCES         

[1] Ghosekar, P., Katkar, G., & Ghorpade, P. (2010). Mobile Ad Hoc Networking: 

Imperatives and Challenges. IJCA Special Issue on Mobile Ad-hoc Networks 

(MANETs). 

 

[2] Aarti, D. S. (2013).  Study of Manet: Characteristics, Challenges, Application 

and Security Attacks. International Journal of Advanced Research in Computer 

Science and Software Engineering, 3(5), pp. 252-257. 

 

[3] Dhenakaran S., & Parvathavarthini A. (2013) An Overview of Routing 

Protocols in Mobile Ad-Hoc Network, International Journal of Research in 

Computer Science and Software Engineering, 3(2). 

 

[4] Bilandi, N., & Verma, H. K. (2012). Comparative Analysis of Reactive, 

Proactive and Hybrid Routing Protocols in MANET. International Journal of 

Electronics and Computer Science Engineering, 1(3), pp. 1660-1667. 

 

 [5] Johnson, D., Hu, Y., & Maltz, D. (2007). The Dynamic Source Routing 

Protocol (DSR) for Mobile Ad Hoc Networks for IPv4. IETF Internet draft, No. 

RFC 4728. 

 

[6] Johnson D. B., Maltz D. A., & Broch J. (2001). DSR: The Dynamic Source 

Routing Protocol for Multi-hop Wireless Ad Hoc Networks”. In C. E. Perkins, 

editor, Ad Hoc Networking, pp. 139–172.  

 



48 

 

[7] Abdelshafy, M. A., & King, P. J. (2015). Dynamic Source Routing under 

Attacks. In Reliable Networks Design and Modeling (RNDM), 7th International 

Workshop, pp. 174-180. 

 

[8] Bhardwaj, A. (2014). Secure Routing in DSR to Mitigate Black Hole Attack. 

In Control, Instrumentation, Communication and Computational Technologies 

(ICCICCT) International Conference, pp. 985-989. 

 

[9] Woungang, I., Dhurandher, S. K., Peddi, R. D., & Obaidat, M. S. (2012). 

Detecting Blackhole Attacks on DSR-based Mobile Ad Hoc Networks. In 

Computer, Information and Telecommunication Systems (CITS), 2012 

International Conference, pp. 1-5. 

 

[10] Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad Hoc On-demand Distance 

Vector (AODV) Routing. IETF MANET Working Group AODV Draft, No. RFC 

3561. 

 

 [11] Jali, K. A., Ahmad, Z., & Ab Manan, J. L. (2011). Mitigation of Black Hole 

Attacks for AODV Routing Protocol. International Journal of New Computer 

Architectures and their Applications, 1(2), pp. 336-343. 

[12] Tseng, F. H., Chou, L. D., & Chao, H. C. (2011). A Survey of Black Hole 

Attacks in Wireless Mobile Ad Hoc Networks. Human-centric Computing and 

Information Sciences, 1(1), pp. 1-16. 

 

 

[13] Mejaele L. & Ochola E. O. (2014). AODV vs. DSR: Simulation-Based 

Comparison of Ad-hoc Network Reactive Protocols under Black Hole Attack. 



49 

 

in Proc. of the Second Intl. Conference on Advances in Computing, Electronics 

and Electrical Technology. 

 

[14] Bhalaji, N., & Shanmugam, A. (2009). Association between Nodes to Combat 

Blackhole Attack in DSR based MANET. In Wireless and Optical 

Communications Networks (WOCN'09) IFIP International Conference, pp. 1-5. 

 

[15] Tsou, P. C., Chang, J. M., Lin, Y. H., Chao, H. C., & Chen, J. L. (2011). 

Developing a BDSR Scheme to Avoid Black Hole Attack based on Proactive 

and Reactive Architecture in MANETs. In Advanced Communication 

Technology (ICACT) 13th International Conference, pp. 755-760. 

 

[16] Jaiswal, P., & Kumar, D. R. (2012). Prevention of Black Hole Attack in 

MANET. International Journal of Computer Networks and Wireless 

Communications, 2(5). 

 

[17] Lu, S., Li, L., Lam, K. Y., & Jia, L. (2009). SAODV: A MANET Routing 

Protocol that can Withstand Black Hole Attack. In International Conference on 

Computational Intelligence and Security, pp. 421-425. 

 

[18] Raj, P. N., & Swadas, P. B. (2009). DPRAODV: A Dyanamic Learning System 

against Blackhole Attack in AODV based MANET. arXiv preprint 

arXiv:0909.2371. 

 



50 

 

[19] Mohanapriya, M., & Krishnamurthi, I. (2014). Trust based DSR Routing 

Protocol for Mitigating Cooperative Black Hole Attacks in Ad Hoc Networks. 

Arabian Journal for Science and Engineering, 39(3), pp. 1825-1833. 

 

[20] Singh P. K., & Sharma G. (2012). An Efficient Prevention of Black Hole 

Problem in AODV Routing Protocol in MANET, 11th International Conference 

on Trust, Security and Privacy in Computing and Communications. 

 

[21]   Issariyatul T., Hossain E. (2013), Introduction to Network Simulator NS-2, 

Springer, 2
nd

 Edition. 

 

[22] “How to Install NS-2.35 in Ubuntu-13.10/14.04”, available at 

http://installwithme.blogspot.com/2015/05/how-to-install-ns-2.35-in-ubuntu-

13.10-or-14.04.html (last accessed on November 2015). 

 

 

 

 

 

 



51 

 

 

 

 

 

APPENDICES  



52 

 

Appendix A:  Script Files ( .h) 

Appendix A.1: DSR Script (dsragent.h) Original DSR Script file is modified 

(modified parts are provided in boxes). 

   */ 

#ifndef _DSRAgent_h 

#define _DSRAgent_h 

class DSRAgent; 

#include <stdarg.h> 

 

#include <object.h> 

#include <agent.h> 

#include <trace.h> 

#include <packet.h> 

#include <dsr-priqueue.h> 

#include <mac.h> 

#include <mobilenode.h> 

#include <list> 

 

#include "path.h" 

#include "srpacket.h" 

#include "routecache.h" 

#include "requesttable.h" 

#include "flowstruct.h" 

 

#define BUFFER_CHECK 0.03 // seconds between buffer checks 

#define RREQ_JITTER 0.010 // seconds to jitter broadcast route requests 

#define SEND_TIMEOUT 30.0 // # seconds a packet can live in sendbuf 

#define SEND_BUF_SIZE 64 

#define RTREP_HOLDOFF_SIZE 10 

… 

class SendBufferTimer : public TimerHandler { 

public: 

 SendBufferTimer(DSRAgent *a) : TimerHandler() { a_ = a; } 

 void expire(Event *e); 

protected: 

 DSRAgent *a_; 

}; 

 

LIST_HEAD(DSRAgent_List, DSRAgent); 

 

class DSRAgent : public Tap, public Agent { 

public: 

 virtual int command(int argc, const char*const* argv); 

 virtual void recv(Packet*, Handler* callback = 0); 

 

 void tap(const Packet *p); 

 // tap out all data packets received at this host and promiscously snoop 

 // them for interesting tidbits 



53 

 

 

 void Terminate(void); 

 // called at the end of the simulation to purge all packets 

 void sendOutBCastPkt(Packet *p); 

 

 DSRAgent(); 

 ~DSRAgent(); 

 

private: 

 Trace *logtarget; 

 int off_mac_; 

 int off_ll_; 

 int off_ip_; 

 int off_sr_; 

  

 bool isMalicious;   // this is the flag variable for the malicious node 

 bool IsMaliciousOrSelfish();        // this is the function for check the malicious node 

 bool CheckBlackList(int addr); 

 

 // will eventually need to handle multiple infs, but this is okay for 

 // now 1/28/98 -dam 

 ID net_id, MAC_id;  // our IP addr and MAC addr 

 NsObject *ll;          // our link layer output  

 CMUPriQueue *ifq;  // output interface queue 

 Mac *mac_; 

 

 // extensions for wired cum wireless sim mode 

 MobileNode *node_; 

 int diff_subnet(ID dest, ID myid); 

 

 // extensions for mobileIP 

 NsObject *port_dmux_;    // my port dmux 

 std::list<int> m_blackList; 

  *  A cache of recently seen packets on the TAP so that I 

  *  don't process them over and over again. 

  */ 

 int tap_uid_cache[TAP_CACHE_SIZE]; 

#endif 

  

#endif // _DSRAgent_h 

 

 

 



54 

 

Appendix A.2: AODV Script (aodv.h) Original AODV Script file is modified 

(modified parts are provided in boxes). 

*/ 

#ifndef __aodv_h__ 

#define __aodv_h__ 

 

//#include <agent.h> 

//#include <packet.h> 

//#include <sys/types.h> 

//#include <cmu/list.h> 

//#include <scheduler.h> 

 

#include <cmu-trace.h> 

#include <priqueue.h> 

#include <aodv/aodv_rtable.h> 

#include <aodv/aodv_rqueue.h> 

#include <classifier/classifier-port.h> 

#include <mac.h> 

/* 

  Allows local repair of routes  

*/ 

#define AODV_LOCAL_REPAIR 

 

  Allows AODV to use link-layer (802.11) feedback in determining when 

  links are up/down. 

*/ 

#define AODV_LINK_LAYER_DETECTION 

/* 

  Causes AODV to apply a "smoothing" function to the link layer feedback 

  that is generated by 802.11.  In essence, it requires that RT_MAX_ERROR 

  errors occurs within a window of RT_MAX_ERROR_TIME before the link 

  is considered bad. 

*/ 

  Timers (Broadcast ID, Hello, Neighbor Cache, Route Cache) 

*/ 

class BroadcastTimer : public Handler { 

public: 

        BroadcastTimer(AODV* a) : agent(a) {} 

        void handle(Event*); 

private: 

        AODV    *agent; 

 Event intr; 

}; 

 

class HelloTimer : public Handler { 

public: 

        HelloTimer(AODV* a) : agent(a) {} 

        void handle(Event*); 

private: 



55 

 

        AODV    *agent; 

 Event intr; 

}; 

 

class NeighborTimer : public Handler { 

public: 

        NeighborTimer(AODV* a) : agent(a) {} 

        void handle(Event*); 

private: 

        AODV    *agent; 

 Event intr; 

}; 

 

class RouteCacheTimer : public Handler { 

public: 

        RouteCacheTimer(AODV* a) : agent(a) {} 

        void handle(Event*); 

private: 

        AODV    *agent; 

 Event intr; 

}; 

 

*/ 

class BroadcastID { 

        friend class AODV; 

 public: 

        BroadcastID(nsaddr_t i, u_int32_t b) { src = i; id = b;  } 

 protected: 

        LIST_ENTRY(BroadcastID) link; 

        nsaddr_t        src; 

        u_int32_t       id; 

        double          expire;         // now + BCAST_ID_SAVE s 

}; 

LIST_HEAD(aodv_bcache, BroadcastID); 

/* 

  The Routing Agent 

*/ 

class AODV: public Tap, public Agent { 

   * make some friends first  

   */ 

        friend class aodv_rt_entry; 

        friend class BroadcastTimer; 

        friend class HelloTimer; 

        friend class NeighborTimer; 

        friend class RouteCacheTimer; 

        friend class LocalRepairTimer; 

 

 public: 

        void tap(const Packet *p); 

        AODV(nsaddr_t id); 

        void  recv(Packet *p, Handler *); 



56 

 

 protected: 

        Mac *mac_; 

        int             command(int, const char *const *); 

        int             initialized() { return 1 && target_; } 

        /* 

         * Route Table Management 

         */ 

        void            rt_resolve(Packet *p); 

        void            rt_update(aodv_rt_entry *rt, u_int32_t seqnum, 

           u_int16_t metric, nsaddr_t nexthop, 

          double expire_time); 

        void            rt_down(aodv_rt_entry *rt); 

        void            local_rt_repair(aodv_rt_entry *rt, Packet *p); 

 public: 

        void            rt_ll_failed(Packet *p); 

        void            handle_link_failure(nsaddr_t id); 

 protected: 

        void            rt_purge(void); 

 

        void            enque(aodv_rt_entry *rt, Packet *p); 

        Packet*         deque(aodv_rt_entry *rt); 

 

    bool isMalicious;   // this is the flag variable for the malicious node 

    bool IsMaliciousOrSelfish(); // this is the function for check the malicious node 

    bool CheckBlackList(int addr); 

 

         * Neighbor Management 

         */ 

        void            nb_insert(nsaddr_t id); 

        AODV_Neighbor*       nb_lookup(nsaddr_t id); 

        void            nb_delete(nsaddr_t id); 

        void            nb_purge(void); 

 

#endif /* __aodv_h__ */ 

 

  



57 

 

Appendix B:  Script Files ( .cc) 

Appendix B.1: DSR Script (dsragent.cc) Original DSR Script file is modified 

(modified parts are provided in boxes). 

extern "C" { 

#include <assert.h> 

#include <math.h> 

#include <stdio.h> 

#include <signal.h> 

#include <float.h> 

} 

#include <object.h> 

#include <agent.h> 

#include <trace.h> 

#include <packet.h> 

#include <scheduler.h> 

#include <random.h> 

 

#include <mac.h> 

#include <ll.h> 

#include <cmu-trace.h> 

 

#include "path.h" 

#include "srpacket.h" 

#include "routecache.h" 

#include "requesttable.h" 

#include "dsragent.h" 

…. 

static class DSRAgentClass : public TclClass { 

public: 

 DSRAgentClass() : TclClass("Agent/DSRAgent") {} 

 TclObject* create(int, const char*const*) { 

  return (new DSRAgent); 

 } 

} class_DSRAgent; 

 

int 

DSRAgent::command(int argc, const char*const* argv) 

{ 

 TclObject *obj; 

 if (argc == 2) 

 { 

  if (strcasecmp(argv[1], "testinit") == 0) 

  { 

   testinit(); 

   return TCL_OK; 

  } 

  if (strcasecmp(argv[1], "reset") == 0) 

  { 



58 

 

   Terminate(); 

   return Agent::command(argc, argv); 

  } 

  if (strcasecmp(argv[1], "check-cache") == 0) 

  { 

   return route_cache->command(argc, argv); 

  } 

  if (strcasecmp(argv[1], "startdsr") == 0) 

  { 

   // cheap source of jitter 

   send_buf_timer.sched(BUFFER_CHECK 

    + BUFFER_CHECK * Random::uniform(1.0)); 

   return route_cache->command(argc, argv); 

  } 

  else if (strcasecmp(argv[1], "send_timeout") == 0) 

  { 

   send_timeout = strtod(argv[2], NULL); 

   return TCL_OK; 

  } 

 

  if ((obj = TclObject::lookup(argv[2])) == 0) 

  { 

   fprintf(stderr, "DSRAgent: %s lookup of %s failed\n", argv[1], 

    argv[2]); 

   return TCL_ERROR; 

  } 

 

  if (strcasecmp(argv[1], "log-target") == 0)  { 

   logtarget = (Trace*)obj; 

   return route_cache->command(argc, argv); 

  } 

  else if (strcasecmp(argv[1], "tracetarget") == 0) 

  { 

   logtarget = (Trace*)obj; 

   return route_cache->command(argc, argv); 

  } 

  else if (strcasecmp(argv[1], "install-tap") == 0) 

  { 

   mac_ = (Mac*)obj; 

   mac_->installTap(this); 

   return TCL_OK; 

  } 

  else if (strcasecmp(argv[1], "node") == 0) 

  { 

   node_ = (MobileNode *)obj; 

   int node_id = node_->nodeid(); 

   if(IsMaliciousOrSelfish()) isMalicious = true; 

   else isMalicious = false; 

 

   return TCL_OK; 

  } 



59 

 

  else if (strcasecmp(argv[1], "port-dmux") == 0) 

  { 

   port_dmux_ = (NsObject *)obj; 

   return TCL_OK; 

  } 

 } 

 else if (argc == 4) 

 { 

  if (strcasecmp(argv[1], "add-ll") == 0) 

  { 

   if ((obj = TclObject::lookup(argv[2])) == 0) { 

    fprintf(stderr, "DSRAgent: %s lookup of %s failed\n", 

argv[1], 

     argv[2]); 

    return TCL_ERROR; 

   } 

   ll = (NsObject*)obj; 

   if ((obj = TclObject::lookup(argv[3])) == 0) { 

    fprintf(stderr, "DSRAgent: %s lookup of %s failed\n", 

argv[1], 

     argv[3]); 

    return TCL_ERROR; 

   } 

   ifq = (CMUPriQueue *)obj; 

   return TCL_OK; 

  } 

 } 

 return Agent::command(argc, argv); 

} 

 

 bool DSRAgent::IsMaliciousOrSelfish() { 

 FILE* fp = NULL; 

     

 // please input the real path of node information file 

 fp = fopen("/home/ailem/node.info", "r+"); 

 if(fp == NULL) { 

  printf("Please input the node information file path correctly!\n"); 

  return false; 

 } 

 int malicious_id = -1; 

 

 while(!feof(fp)) { 

  fscanf(fp, "%d\n", &malicious_id); 

  

  if(malicious_id == node_ -> nodeid()) { 

   printf("NodeId: %d is Malicious!\n", malicious_id); 

   return true; 

  } 

 } 

 return false; 

} 



60 

 

void DSRAgent::SendOutBCastErrorPkt(Packet *p) 

{ 

 hdr_cmn *cmh = hdr_cmn::access(p); 

 cmh->ptype() = PT_DSR_ERROR; 

 if (cmh->direction() == hdr_cmn::UP) cmh->direction() = hdr_cmn::DOWN; 

 Scheduler::instance().schedule(ll, p, 0.0); 

 return; 

} 

/* This is the function for broadcast the error packet to the others. */ 

void DSRAgent::sendOutBCastPkt(Packet *p) 

{ 

 hdr_cmn *cmh = hdr_cmn::access(p); 

 if (cmh->direction() == hdr_cmn::UP) cmh->direction() = hdr_cmn::DOWN; 

 Scheduler::instance().schedule(ll, p, 0.0); 

 return; 

} 

void DSRAgent::ProcessDetectBlackhole(SRPacket &p) { 

 if (!isMalicious) { 

  UpdateTheCache(p); 

  m_blackList.push_back(p.src.addr); 

  drop(p.pkt, DROP_RTR_TTL); 

  return; 

 } 

} 

bool DSRAgent::CheckBlackList(int addr) { 

 for (std::list<int>::iterator it = m_blackList.begin(); it != m_blackList.end(); it 

++) { 

  if (*it == addr) return true; 

 } 

 return false; 

} 

/* This is the Update the cache after receive the error notification. */ 

void DSRAgent::UpdateTheCache(SRPacket& p) 

{ 

 hdr_sr *srh = hdr_sr::access(p.pkt); 

 assert(srh->num_route_errors() > 0); 

 for (int c = 0; c < srh->num_route_errors(); c++) 

 { 

  assert(srh->down_links()[c].addr_type == NS_AF_INET); 

 

  route_cache->updateBrokenLink(ID(srh->down_links()[c].from_addr, 

::IP), ID(srh->down_links()[c].to_addr, ::IP), Scheduler::instance().clock()); 

 

  flow_table.noticeDeadLink(ID(srh->down_links()[c].from_addr, ::IP), 

ID(srh->down_links()[c].to_addr, ::IP)); 

 } 

 return; 

} 

 

void 

DSRAgent::recv(Packet* packet, Handler*) 



61 

 

/* handle packets with a MAC destination address of this host, or 

   the MAC broadcast addr */ 

{ 

 hdr_sr *srh = hdr_sr::access(packet); 

 hdr_ip *iph = hdr_ip::access(packet); 

 hdr_cmn *cmh = hdr_cmn::access(packet); 

 // special process for GAF 

 if (cmh->ptype() == PT_GAF) { 

  if (iph->daddr() == (int)IP_BROADCAST) { 

   if (cmh->direction() == hdr_cmn::UP) 

    cmh->direction() = hdr_cmn::DOWN; 

   Scheduler::instance().schedule(ll, packet, 0); 

   return; 

  } 

  else { 

   target_->recv(packet, (Handler*)0); 

   return; 

  } 

 } 

 assert(cmh->size() >= 0); 

 SRPacket p(packet, srh); 

 p.dest = ID((Address::instance().get_nodeaddr(iph->daddr())), ::IP); 

 p.src = ID((Address::instance().get_nodeaddr(iph->saddr())), ::IP); 

 assert(logtarget != 0); 

  

 if(cmh->ptype() == PT_DSR_ERROR) { 

  ProcessDetectBlackhole(p); 

  return; 

 } 

 if (srh->valid() != 1) { 

  unsigned int dst = cmh->next_hop(); 

  if (dst == IP_BROADCAST) { 

   if (p.src == net_id) 

    sendOutBCastPkt(packet); 

   else 

    port_dmux_->recv(packet, (Handler*)0); 

  } 

  else { 

   srh->init();   // give packet an SR header now 

   cmh->size() += IP_HDR_LEN; // add on IP header size 

   if (verbose) 

    trace("S %.9f _%s_ originating %s -> %s", 

    Scheduler::instance().clock(), net_id.dump(), 

p.src.dump(), 

    p.dest.dump()); 

   if (isMalicious) { 

        drop(p.pkt, DROP_RTR_TTL); 

    goto done; 

   } 

   handlePktWithoutSR(p, false); 

   goto done; 



62 

 

 } 

 else if (srh->valid() == 1) 

 { 

  if (p.dest == net_id || p.dest == IP_broadcast) 

  {  

   handlePacketReceipt(p); 

   goto done; 

  } 

  if (dsragent_snoop_forwarded_errors && srh->route_error()) 

  { 

   cmh->next_hop() = IP_BROADCAST; 

   SendOutBCastErrorPkt(packet); 

   processBrokenRouteError(p); 

  } 

  if (srh->route_request()) 

  { // propagate a route_request that's not for us 

   if (isMalicious) { 

    sendOutPacketWithRoute(p, false); 

    goto done; 

   } 

   handleRouteRequest(p); 

  } 

  else 

  { // we're not the intended final recpt, but we're a hop 

   if (isMalicious) { 

    drop(p.pkt, DROP_RTR_TTL); 

    goto done; 

   } 

   handleForwarding(p); 

  } 

 else { 

  // some invalid pkt has reached here 

  fprintf(stderr, "dsragent: Error-received Invalid pkt!\n"); 

  Packet::free(p.pkt); 

  p.pkt = 0; // drop silently 

 } 

done: 

 assert(p.pkt == 0); 

 p.pkt = 0; 

 return; 

} 

 

void 

DSRAgent::handleDefaultForwarding(SRPacket &p) { 

 hdr_ip *iph = hdr_ip::access(p.pkt); 

 u_int16_t flowid; 

 int       flowidx; 

 if (!flow_table.defaultFlow(p.src.addr, p.dest.addr, flowid)) { 

  sendUnknownFlow(p, true); 

  SendOutBCastErrorPkt(p.pkt); 

  assert(p.pkt == 0); 



63 

 

  return; 

 } 

 if ((flowidx = flow_table.find(p.src.addr, p.dest.addr, flowid)) == -1) { 

  sendUnknownFlow(p, false, flowid); 

  SendOutBCastErrorPkt(p.pkt); 

  assert(p.pkt == 0); 

  return; 

 } 

 if (iph->ttl() != flow_table[flowidx].expectedTTL) { 

  sendUnknownFlow(p, true); 

  SendOutBCastErrorPkt(p.pkt); 

  assert(p.pkt == 0); 

  return; 

 } 

 // XXX should also check prevhop 

 handleFlowForwarding(p, flowidx); 

void 

DSRAgent::handleFlowForwarding(SRPacket &p, int flowidx) { 

 hdr_sr *srh = hdr_sr::access(p.pkt); 

 hdr_ip *iph = hdr_ip::access(p.pkt); 

 hdr_cmn *cmnh = hdr_cmn::access(p.pkt); 

 int amt; 

 assert(flowidx >= 0); 

 assert(!srh->num_addrs()); 

 

 if (!iph->ttl()--) { 

  drop(p.pkt, DROP_RTR_TTL); 

  SendOutBCastErrorPkt(p.pkt); 

  p.pkt = 0; 

  return; 

 } 

void 

DSRAgent::sendOutPacketWithRoute(SRPacket& p, bool fresh, Time delay) 

// take packet and send it out, packet must a have a route in it 

// return value is not very meaningful 

// if fresh is true then reset the path before using it, if fresh 

//  is false then our caller wants us use a path with the index 

//  set as it currently is 

{ 

 hdr_sr *srh = hdr_sr::access(p.pkt); 

 hdr_cmn *cmnh = hdr_cmn::access(p.pkt); 

 assert(srh->valid()); 

 assert(cmnh->size() > 0); 

 

 ID dest; 

 if (diff_subnet(p.dest, net_id)) { 

  dest = ID(node_->base_stn(), ::IP); 

   

  if (CheckBlackList(dest.addr)) return; 

  p.dest = dest; 

 } 



64 

 

 if (CheckBlackList(dest.addr) && p.dest == net_id) 

 { // it doesn't need to go on the wire, 'cause it's for us 

  recv(p.pkt, (Handler *)0); 

  p.pkt = 0; 

  return; 

 } 

 if (fresh) 

 { 

  p.route.resetIterator(); 

  if (verbose && !srh->route_request()) 

  { 

   trace("SO %.9f _%s_ originating %s %s", 

    Scheduler::instance().clock(), 

    net_id.dump(), packet_info.name(cmnh->ptype()), 

p.route.dump()); 

  } 

#endif //0 

 

 

Appendix B.2: AODV Script (AODV.cc) Original AODV Script file is modified 

(modified parts are provided in boxes). 

*/ 

//#include <ip.h> 

 

#include <aodv/aodv.h> 

#include <aodv/aodv_packet.h> 

#include <random.h> 

#include <cmu-trace.h> 

//#include <energy-model.h> 

 

#define max(a,b)        ( (a) > (b) ? (a) : (b) ) 

#define CURRENT_TIME    Scheduler::instance().clock() 

 

//#define DEBUG 

//#define ERROR 

 

#ifdef DEBUG 

static int route_request = 0; 

#endif 

/* 

  TCL Hooks 

*/ 

int hdr_aodv::offset_; 

static class AODVHeaderClass : public PacketHeaderClass { 

public: 

        AODVHeaderClass() : PacketHeaderClass("PacketHeader/AODV", 

                                              sizeof(hdr_all_aodv)) { 

   bind_offset(&hdr_aodv::offset_); 

 }  



65 

 

} class_rtProtoAODV_hdr; 

 

static class AODVclass : public TclClass { 

public: 

        AODVclass() : TclClass("Agent/AODV") {} 

        TclObject* create(int argc, const char*const* argv) { 

          assert(argc == 5); 

          //return (new AODV((nsaddr_t) atoi(argv[4]))); 

   return (new AODV((nsaddr_t) Address::instance().str2addr(argv[4]))); 

        } 

} class_rtProtoAODV; 

 

int 

AODV::command(int argc, const char*const* argv) { 

  if(argc == 2) { 

  Tcl& tcl = Tcl::instance(); 

 

  if(strcmp(argv[1], "node") == 0) {  

         node_ = (MobileNode *) obj; 

         int node_id = node_ ->nodeid(); 

         if( IsMaliciousOrSelfish()) isMalicious = true;  

          

      return TCL_OK; 

    } 

    if(strncasecmp(argv[1], "id", 2) == 0) { 

      tcl.resultf("%d", index); 

      return TCL_OK; 

    }    

    if(strncasecmp(argv[1], "start", 2) == 0) { 

      btimer.handle((Event*) 0); 

 

#ifndef AODV_LINK_LAYER_DETECTION 

      htimer.handle((Event*) 0); 

      ntimer.handle((Event*) 0); 

#endif // LINK LAYER DETECTION 

 

      rtimer.handle((Event*) 0); 

      return TCL_OK; 

     }                

  } 

  else if(argc == 3) { 

    if(strcmp(argv[1], "index") == 0) { 

      index = atoi(argv[2]); 

      return TCL_OK; 

    } 

 

  else if (strcmp(argv[1], "install-tap") == 0) { 

   mac_ = (Mac*)TclObject::lookup(argv[2]); 

   if (mac_ == 0) return TCL_ERROR; 

   mac_->installTap(this); 

    return TCL_OK; 



66 

 

  } 

    else if(strcmp(argv[1], "log-target") == 0 || strcmp(argv[1], "tracetarget") == 0) { 

      logtarget = (Trace*) TclObject::lookup(argv[2]); 

      if(logtarget == 0) 

 return TCL_ERROR; 

      return TCL_OK; 

    } 

    else if(strcmp(argv[1], "drop-target") == 0) { 

    int stat = rqueue.command(argc,argv); 

      if (stat != TCL_OK) return stat; 

      return Agent::command(argc, argv); 

    } 

    else if(strcmp(argv[1], "if-queue") == 0) { 

    ifqueue = (PriQueue*) TclObject::lookup(argv[2]);  

      if(ifqueue == 0) 

 return TCL_ERROR; 

      return TCL_OK; 

    } 

    else if (strcmp(argv[1], "port-dmux") == 0) { 

     dmux_ = (PortClassifier *)TclObject::lookup(argv[2]); 

 if (dmux_ == 0) { 

  fprintf (stderr, "%s: %s lookup of %s failed\n", __FILE__, 

  argv[1], argv[2]); 

  return TCL_ERROR; 

 } 

 return TCL_OK; 

  } 

  return Agent::command(argc, argv); 

} 

 bool DSRAgent::IsMaliciousOrSelfish() { 

    FILE* fp = NULL;   

    // please input the real path of node information file 

    fp = fopen("/home/node.info", "r+"); 

    if(fp == NULL) { 

 printf("Please input the node information file path correctly!\n"); 

 return false; 

    } 

    int malicious_id = -1; 

    while(!feof(fp)) { fscanf(fp, "%d\n", &malicious_id); 

 } 

 if(malicious_id == node_ -> nodeid()) { 

     printf("NodeId: %d is Malicious!\n", malicious_id); 

     return true; 

 } 

 

    return false; 

} 

void 

AODV::tap(const Packet *p) { 

 

 (index== node -> nodeid()_) 



67 

 

 

//listens to node about packet by overhearing method. 

 

 /* snoop on the SR data */ 

  trace( net_id.dump(), cmh->uid()); 

      cmh->next_hop() = IP_BROADCAST; 

        if(malicious_id == node_ -> nodeid()) { 

           SendOutBCastErrorPkt(packet); 

            ProcessDetectBlackhole; 

      return true; 

     } 

    return false; 

   Constructor 

*/ 

 

void 

AODV::rt_resolve(Packet *p) { 

struct hdr_cmn *ch = HDR_CMN(p); 

struct hdr_ip *ih = HDR_IP(p); 

aodv_rt_entry *rt; 

 

if(isMalicious==true) 

{ 

drop(p,DROP_RTR_ROUTE_LOOP); 

} 

  *  Set the transmit failure callback.  That 

  *  won't change. 

  */ 

 ch->xmit_failure_ = aodv_rt_failed_callback; 

 ch->xmit_failure_data_ = (void*) this; 

 rt = rtable.rt_lookup(ih->daddr()); 

 if(rt == 0) { 

   rt = rtable.rt_add(ih->daddr()); 

 } 

 

void 

AODV::recvAODV(Packet *p) { 

 struct hdr_aodv *ah = HDR_AODV(p); 

 

 assert(HDR_IP (p)->sport() == RT_PORT); 

 assert(HDR_IP (p)->dport() == RT_PORT); 

//this is new code 

 if(cmh->ptype() == PT_AODV_ERROR) { 

  ProcessDetectBlackhole(p); 

  return; 

 } 

 

  * Incoming Packets. 

  */ 

 switch(ah->ah_type) { 

 



68 

 

 case AODVTYPE_RREQ: 

   recvRequest(p); 

   break; 

 case AODVTYPE_RREP: 

   recvReply(p); 

   break; 

 

 case AODVTYPE_RERR: 

   recvError(p); 

   break; 

 

 case AODVTYPE_HELLO: 

   recvHello(p); 

   break; 

         

 default: 

   fprintf(stderr, "Invalid AODV type (%x)\n", ah->ah_type); 

   exit(1); 

 }                

   // Just to be safe, I use the max. Somebody may have 

   // incremented the dst seqno. 

   seqno = max(seqno, rq->rq_dst_seqno)+1; 

   if (seqno%2) seqno++; 

   sendReply(rq->rq_src,           // IP Destination 

             1,                    // Hop Count 

             index,                // Dest IP Address 

             4294967295               // Dest Sequence Num    

             MY_ROUTE_TIMEOUT,     // Lifetime 

             rq->rq_timestamp);    // timestamp 

  

   Packet::free(p); 

 } 

 

 // I am not the destination, but I may have a fresh enough route. 

 

 else if (rt && (rt->rt_hops != INFINITY2) &&  

    (rt->rt_seqno >= rq->rq_dst_seqno) ) { 

 

   //assert (rt->rt_flags == RTF_UP); 

   assert(rq->rq_dst == rt->rt_dst); 

   //assert ((rt->rt_seqno%2) == 0); // is the seqno even? 

   sendReply(rq->rq_src, 

            // rt->rt_hops +1, 

             1, 

             rq->rq_dst, 

             4294967295 

          //   rt->rt_seqno, 

      (u_int32_t) (rt->rt_expire - CURRENT_TIME), 

 Packet::free(p);} 

  * Can't reply. So forward the  Route Request 

  */ 



69 

 

 else { 

   ih->saddr() = index; 

   ih->daddr() = IP_BROADCAST; 

   rq->rq_hop_count += 1; 

   // Maximum sequence number seen en route 

   if (rt) rq->rq_dst_seqno = max(rt->rt_seqno, rq->rq_dst_seqno); 

   forward((aodv_rt_entry*) 0, p, DELAY); 

 

   sendReply(rq->rq_src,            // IP Destination 

             1,             // Hop Count 

             rq->rq_dst,             // Dest IP Address 

             99856745689,              // Highest Dest Sequence Num 

  MY_ROUTE_TIMEOUT, // Lifetime 

             rq->rq_timestamp); // timestamp 

  

Packet::free(p); 

 } 

 

void 

AODV::recvReply(Packet *p) { 

//struct hdr_cmn *ch = HDR_CMN(p); 

struct hdr_ip *ih = HDR_IP(p); 

struct hdr_aodv_reply *rp = HDR_AODV_REPLY(p); 

aodv_rt_entry *rt; 

char suppress_reply = 0; 

double delay = 0.0; 

  

#ifdef DEBUG 

 fprintf(stderr, "%d - %s: received a REPLY\n", index, __FUNCTION__); 

#endif // DEBUG 

 

 /* 

void 

AODV::sendReply(nsaddr_t ipdst, u_int32_t hop_count, nsaddr_t rpdst, 

                u_int32_t rpseq, u_int32_t lifetime, double timestamp) { 

Packet *p = Packet::alloc(); 

struct hdr_cmn *ch = HDR_CMN(p); 

struct hdr_ip *ih = HDR_IP(p); 

struct hdr_aodv_reply *rp = HDR_AODV_REPLY(p); 

aodv_rt_entry *rt = rtable.rt_lookup(ipdst); 

 

#ifdef DEBUG 

fprintf(stderr, "sending Reply from %d at %.2f\n", index, 

Scheduler::instance().clock()); 

#endif // DEBUG 

 assert(rt); 

 

 rp->rp_type = AODVTYPE_RREP; 

 //rp->rp_flags = 0x00; 

 rp->rp_hop_count = hop_count; 

 rp->rp_dst = rpdst; 



70 

 

 rp->rp_dst_seqno = rpseq; 

 rp->rp_src = index; 

 rp->rp_lifetime = lifetime; 

 rp->rp_timestamp = timestamp; 

    

 

 ih->saddr() = index; 

 ih->daddr() = ipdst; 

 ih->sport() = RT_PORT; 

 ih->dport() = RT_PORT; 

 ih->ttl_ = NETWORK_DIAMETER; 

 Scheduler::instance().schedule(target_, p, 0.); 

} 

 

void 

AODV::SendOutBCastErrorPkt(Packet *p){ 

struct hdr_cmn *ch = HDR_CMN(p); 

struct cmh->ptype() = PT_AODV_ERROR; 

struct hdr_ip *ih = HDR_IP(p); 

struct hdr_aodv_error *re = HDR_AODV_ERROR(p) 

 

// This is the function for broadcast the error packet to the others.  

} 

void 

AODV::sendError(Packet *p, bool jitter) { 

struct hdr_cmn *ch = HDR_CMN(p); 

struct hdr_ip *ih = HDR_IP(p); 

struct hdr_aodv_error *re = HDR_AODV_ERROR(p); 

     

#ifdef ERROR 

fprintf(stderr, "sending Error from %d at %.2f\n", index, Scheduler::instance().clock()); 

#endif // DEBUG 

 

 re->re_type = AODVTYPE_RERR; 

 //re->reserved[0] = 0x00; re->reserved[1] = 0x00; 

 // DestCount and list of unreachable destinations are already filled 

 

void  

AODV::ProcessDetectBlackhole(SRPacket &p) { 

 if (!isMalicious) { 

  UpdateThert_entry(p); 

  m_blackList.push_back(p.src.addr); 

  drop(p, DROP_RTR_ROUTE_LOOP); 

  return } 

} 

bool AODV::CheckBlackList(int addr) { 

 for (std::list<int>::iterator it = m_blackList.begin(); it != m_blackList.end(); it 

++) { 

  if (*it == addr) return true; 

 } 

 return false; 



71 

 

/* This is the Update the route entry after receive the error notification. */ 

void DSRAgent::UpdateThert_entry(SRPacket& p) 

{ 

 hdr_sr *srh = hdr_sr::access(p.pkt); 

 assert(srh->num_route_errors() > 0); 

 for (int c = 0; c < srh->num_route_errors(); c++) 

 { 

  assert(srh->down_links()[c].addr_type == NS_AF_INET); 

 

  route_table->updateBrokenLink(ID(srh->down_links()[c].from_addr, 

::IP), ID(srh->down_links()[c].to_addr, ::IP), Scheduler::instance().clock()); 

 

  flow_table.noticeDeadLink(ID(srh->down_links()[c].from_addr, ::IP), 

ID(srh->down_links()[c].to_addr, ::IP)); 

 } 

 return; 

 // ch->uid() = 0; 

 ch->ptype() = PT_AODV; 

 ch->size() = IP_HDR_LEN + re->size(); 

 ch->iface() = -2; 

 ch->error() = 0; 

 ch->addr_type() = NS_AF_NONE; 

 ch->next_hop_ = 0; 

 ch->prev_hop_ = index;          // AODV hack 

 ch->direction() = hdr_cmn::DOWN;       //important: change the packet's direction 

 

  

 

  



72 

 

Appendix C: TCL Script Files(Used both for DSR and AODV) 

Appendix C.1 wireless.tcl 

set opt(chan)  Channel/WirelessChannel 

set opt(prop)  Propagation/TwoRayGround 

set opt(netif)  Phy/WirelessPhy 

set opt(mac)  Mac/802_11 

set opt(ifq)  CMUPriQueue 

set opt(ll)  LL 

set opt(ant)         Antenna/OmniAntenna 

set opt(x)  670     ;# X dimension of the topography 

set opt(y)  670    ;# Y dimension of the topography 

set opt(ifqlen)  150  ;# max packet in ifq 

set opt(seed)  1234.0 

set opt(tr)  out.res     ;# trace file 

set opt(nam)            wireless.nam    ;# nam trace file 

set opt(adhocRouting)   DSR 

set opt(nn)                 100             ;# how many nodes are simulated 

set opt(sc)  "scen-100-test" 

set opt(cb)  "cbr-100-test" 

set opt(stop)  500.0  ;# simulation time 

## Main Program 

if {$argc != 5} { 

    puts "Usage: ns *.tcl (NODECOUNT|SCENFILEPATH|NAMFILE|TRFILE)" 

    exit 1 

} 

set arg1 [lindex $argv 0] 

set arg2 [lindex $argv 1] 

set arg3 [lindex $argv 2] 

set arg4 [lindex $argv 3] 

set arg5 [lindex $argv 4] 

set opt(nn) $arg1 

set opt(sc) $arg2 

set opt(cb) $arg3 

set opt(nam) $arg4 

set opt(tr) $arg5 

# Initialize Global Variables 

set ns_ [new Simulator] 

# set wireless channel, radio-model and topography objects 

set wtopo [new Topography] 

# create trace object for ns and nam 

$ns_ use-newtrace 

set tracefd [open $opt(tr) w] 

set namtrace [open $opt(nam) w] 

$ns_ trace-all $tracefd 

$ns_ namtrace-all-wireless $namtrace $opt(x) $opt(y) 

# define topology 

$wtopo load_flatgrid $opt(x) $opt(y) 

# Create God 

set god_ [create-god $opt(nn)] 



73 

 

# define how node should be created 

#global node setting 

set chan_1 [new $opt(chan)] 

$ns_ node-config -adhocRouting $opt(adhocRouting) \ 

   -llType $opt(ll) \ 

   -macType $opt(mac) \ 

   -ifqType $opt(ifq) \ 

   -ifqLen $opt(ifqlen) \ 

   -antType $opt(ant) \ 

   -propType $opt(prop) \ 

   -phyType $opt(netif) \ 

   -topoInstance $wtopo \ 

   -channel $chan_1 \ 

   -agentTrace ON \ 

   -routerTrace OFF \ 

   -movementTrace OFF \ 

   -macTrace OFF 

#  Create the specified number of nodes [$opt(nn)] and "attach" them 

for {set i 0} {$i < $opt(nn) } {incr i} { 

 set node_($i) [$ns_ node]  

 $node_($i) random-motion 1  ;# disable random motion 

} 

# Define movement of the NODES model 

puts "Loading connection pattern..." 

source $opt(cb) 

# define traffic model 

puts "Loading scenerio file..." 

source $opt(sc) 

# Define node initial position in nam 

for {set i 0} {$i < $opt(nn)} {incr i} {  

    # 20 defines the node size in nam, must adjust it according to your scenario 

    $ns_ initial_node_pos $node_($i) 30 

} 

# Tell nodes when the simulation ends 

for {set i 0} {$i < $opt(nn) } {incr i} { 

    $ns_ at $opt(stop).000000001 "$node_($i) reset"; 

} 

# tell nam the simulation stop time 

$ns_ at  $opt(stop) "$ns_ nam-end-wireless $opt(stop)" 

$ns_ at  $opt(stop).000000001 "$ns_ halt" 

$ns_ run 

 

 

  



74 

 

Appendix D: AWK Script file (Used both for DSR and AODV) 

Appendix D.1: setdest and cbrgen Commands to Generate Mobility and 

Connection 

Setdest Command:  

Format:  

./setdest [-v version of setdest][-n num_of_nodes][-p pausetime][-M maxspeed] [-t 

simtime] [-x maxx] [-y maxy] > [ Movement- File_name]  

Example  

./setdest -v 1 -n 100 -p 00.0 -M 20.0 -t 500 -x 670 -y 670 > scen-100 

 

Cbrgen Command  

 

Format:  

ns cbrgen.tcl [-type cbr|tcp] [-nn nodes] [-seed seed] [-mc connections][-rate rate] > 

[Connection- File_name] 

Example  

ns cbrgen.tcl -type cbr -nn 100 -seed 1.0 -mc 10 -rate 0.25 > cbr-10 

Appendix D.2: Performance.awk (Used both for DSR and AODV) 

BEGIN { 

    ctr=0; 

    snt_c = 0; 

    rec_c = 0; 

    drp_c = 0; 

    seqno=0; 

    max_s_n=0; 

} 

 

{ 

    action = $1; 

    seqno = seq_no; 

    time_val[ctr++] = time; 

 

    if($1 == "r") 

    { 

 seq_no= $6; 

 time = $2; 

        if( (!(a[seq_no] > 0))  ) 

        { 

             rec_c++; 

             a[seq_no] = time; 

        } 

    } 

    if($1 == "s" || $1 == "+") 

    { 



75 

 

 seq_no= $6; 

 time = $2; 

 

        if( !(b[seq_no] > 0) ) 

        { 

             snt_c++; 

             b[seq_no]=time; 

        } 

    } 

    if($1 == "D") 

    { 

        if( !(c[seq_no] > 0) ) 

        { 

             drp_c++; 

             c[seq_no]=time; 

        } 

    } 

    if(seq_no > max_s_n) max_s_n = seq_no; 

END { 

 

    for(i = 0; i <= max_s_n; i++) 

    { 

 if( (b[i] > 0) && (a[i] > 0) ) 

 { 

            delay += a[i] - b[i]; 

        } 

    } 

    averageDelay = delay / (max_s_n + 1); 

    printf("AverageDelay: %f(MiliSec)\n", averageDelay); 

    printf("ThroughPut: %f(Kbps)\n", 5 / averageDelay); 

    printf("Packet Deliver Ratio: %f\n", (snt_c - rec_c) / snt_c); 

} 

 


