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ABSTRACT 

Prediction of prices in stock market is an important research topic to direct 

investments to items with high return rates. This thesis compares available time 

series prediction methods for predicting of stock market prices. The available 

methods that have been employed for time series forecasting are support vector 

regression, autoregressive moving average and k-nearest neighbours. They are 

applied on four years of stock market data obtained from London Stock Exchange to 

train each model and to test the performance of the proposed techniques to select the 

best forecasting method. The result of the tests show that support vector regression 

gives less forecasting error compared to other methods of forecasting. 

Keywords: Stock Market Forecasting, Support Vector Regression, ARMA, k-

Nearest Neighbours. 
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ÖZ 

Yatırımları yüksek getiri oranlarına sahip ürünlere yönlendirmek açısından bir 

borsada fiyatların tahmini, önemli bir araştırma konusudur. Bu tez borsa fiyatlarının 

tahmini için geliştirilmiş mevcut zaman serileri tahmin yöntemlerinden destek vektör 

regresyonu, otoregresif hareketli ortalama ve en yakın k komşu yöntemlerini 

karşılaştırarak en iyi tahmin tekniğini belirlemeyi hedeflemektedir. Her bir model 

Londra Menkul Kıymetler Borsası'ndan elde edilen dört yıllık borsa verilerinin 

birinci bölümüyle eğitilmiş ve en iyi tahmin yapabilen yöntemi seçmek için verinin 

ikinci bölümü önerilen tekniğin performansını test etmek için kullanılmıştır. 

Testlerin sonucu, SVR yönteminin diğer iki tahmin yöntemine kıyasla tahminde daha 

az hata verdiğini göstermektedir. 

Anahtar Kelimeler: Borsa Tahmini, Destek Vektör Regresyon, ARMA, En Yakın 

k-Komşu. 
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Chapter 1 

1 INTRODUCTION 

The importance of time series analysis and forecasting has been emphasized in many 

areas using positive science, such as engineering, and business. It gathered interest 

for many researchers in these areas of study.  

A time series is an ordered set of data sequence sampled at regular time intervals. 

Analysis of the time series involves techniques to analyse data in order to gain better 

understanding of its characteristics and forecast future values based on these 

characteristics. Time series analysis has been employed in a many organizations such 

as government organizations in order to forecast the future events. Therefore, many 

time series forecasting techniques have been proposed in the literature.  

Prediction or forecasting of the time series is generally a process that determines the 

future values using the available information in the data set for making a decision 

concerning the future. For a time series prediction, understanding the natural 

structure of the observations is very important. 

The primary objective of developing a time series forecasting method is making 

more accurate prediction of the future, which means reducing the uncertainty 

inherent in the decision-making process [1]. Successful prediction of the time series 

depend on many decision processes and proper model fitting in order to guarantee 
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the accurate prediction of likely outcomes for the future. Prediction of the future 

values is also important in stock market investment, as the investor would like to 

make proper decisions to increase their profits. The stock market data set can be 

treated as a typical time series data and its trend can be analysed accordingly, hence 

can also be forecasted [2].  

 The ability to predict the stock market is critical for decision processes in planning, 

supply management and making the market policy. Therefore prediction of stock 

market is gaining more attention and has become an important topic where a lot of 

research efforts have been carried out.  

Stock market prediction targets to determine the future value of a company stock or a 

financial instrument traded on a financial exchange [3]. Prediction of the stock 

market is gaining more attention due to its financial benefits and its low risk. 

Numerous investigations gave rise to various decision support systems to provide the 

investor the optimal prediction of stock. Thus, most of the traders nowadays depend 

on support trading system which can help them in making right investment decision. 

One of the basic theoretical assumptions regarding stock market prediction is the  

Efficient Market Hypothesis (EMH), which asserts that the price of the stock reflect 

all  information available and everyone has some degree of access to the information. 

The implication of EMH is that the market reacts instantaneously and no one can 

outperform the market in the long run. Therefore, a change in daily price is 

unpredictable, but the trends of prices may be used to predict future value within an 

uncertainty [4]. In addition, a similar perspective view of the stock market prediction 

is the random walk hypothesis theory, which believes in an unpredictable price series 
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and the stock price does not depend on past stock [5]. However the degree of market 

efficiency is  controversial and there  are strong evidences to prove that one can beat 

the market in a short period of time and enable the prediction of price direction based 

on the current and past data [6].   

In order to predict the future stock price, there are two analytical approaches used in 

the literature to analyse the stock market and make decision. The first method is 

fundamental analysis and the second method is technical analysis.  

Fundamental analysis: It is the approach that investigates the factors which affects 

supply and demand. The analyst looks at the intrinsic value of the stock, performance 

of the industry and economy to make a decision whether to invest or not [4]. 

Fundamental analysts make their decisions by studying sales, profits and earnings or 

any factors that reflect economy performance. 

Technical analysis: It is the approach that involves the evaluation of stock by means 

of studying statistics generated by market activity, such as past price and volumes 

[4]. In stock analysis, there are two main approaches; first approach includes analysis 

of graphs where analysts try to find out certain patterns that are followed by the 

stock. In second approach analysts make use of quantitative parameters like technical 

indicators, the daily ups and downs, highest and lowest values of a day, volume of 

stock, indices, etc., [5]. The analysts make the use of technical indicators as a 

measurement of the relationship between the current and past stock such as moving 

average, the rate of the change and exponential moving average. 
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To accurately predict the stock market, a set of forecasting techniques has been 

developed that aims to predict the direction and future value of the stock market 

prices. In the early stage of the stock market prediction, statistical model, especially 

time series models have been used to construct various prediction models. These 

models are mostly based on the assumption that the time series is linear and it 

follows a particular statistical distribution, for example normal distribution [19].  

Examples of these models include Exponential Moving Average (EMA), 

Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving 

Average (ARIMA). 

However, the financial time series data is understood to be stochastic and also 

characterized by non-linearity. The data is prone to random fluctuations. Therefore, 

in recent years, artificial intelligence techniques (AI) have been employed in this 

field to handle nonlinear relationships that exist between the series, such as an 

Artificial Neural Network (ANN), Fuzzy Logic (FL) and Support Vector Machine 

(SVM). These techniques were developed to address the increasing demand for 

methods that have the ability to learn the patterns of the change which is considered 

as the main characteristic of stock prices [7].  

In this study, both statistical and artificial intelligence techniques have been used. 

The estimation methods which are used include: autoregressive moving average, 

support vector regression and k-nearest neighbours. The proposed method is tested in 

predicting the future price of London Stock Exchange (LSE) and compared to 

determine the best prediction model depending on the predicted feature values.  
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1.1 Problem Statement 

The stock market prediction is important for making many investment decisions. The 

factors such as supply and demand of the investment, world events and economic 

conditions have a greater influence on the stock market investment.  All these factors 

may lead to difficulty in a making an accurate decision about the stock prices as well 

as when to buy and sell the stock in order to gain more profit. Therefore, it is 

necessary to develop the model that reflects the structures and patterns of the stock 

market and enable the forecast movement of the stock prices. The ability to predict 

the movement of stock market value would be a crucial capability for investors and 

stakeholders to trade the securities safer and avoid the risk involved when making a 

decision.  The work presented in the study aims to develop three types of predictive 

models and find out the best prediction model applicable to our data set that can be 

used to help trading the stock price with the least risk when making an investment 

decision.  

1.2 Research Motivation 

Predicting the trend of the financial stock market obviously has a great economical 

benefit and is considered to be a critical input to many types of planning and 

investment decision making. Therefore, many strategies were employed that attempt 

to achieve this, using statistical and artificial intelligence techniques to model stock 

price. The major motivation for our work includes many benefits including (i) 

gaining higher outcome from the financial market, (ii) getting a good working 

prediction model that predicts the trend and future value of the stock market which 

helps for better trading decision, (iii) increasing the profit of financial communities 

in stock market which shifts higher amount of investments in successful sectors of 

stock market. 
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1.3 Aim and Objective 

The main objective of this research is to develop better market trading predictors that 

can predict the prices and up-down direction of the next trading day of London stock 

prices accurately, thereby acting as a decision-support tool for the firms, investors 

and stakeholders. This was accomplished by construction of three different models. 

Three types of learning algorithms were employed using both artificial intelligence 

techniques and statistical methods. A comparison between the results of predictions 

of different techniques was performed in order to find out the best model and method 

for predicting the direction movement of London stock market prices. 

1.4 Significance of the Study 

The stock market has been widely studied to extract the useful pattern and predict 

their future movement. This study would be useful for decision makers, investors and 

researchers as this would provide the knowledge about the underlying factors behind 

the forecasting accuracy of the stock market. This will further give more prospective 

to develop a mechanism for predicting the stock to avoid the risk involved.  

Predicting the stock market can also provide more benefits to do more business with 

less risk. 

1.5 Thesis Outline 

The remaining Chapters of this thesis have the following contents:  

Chapter 2, contains a general introduction to the stock market and its data as well as 

the data pre-processing steps that are used to improve the quality of the time series 

data. The chapter also describes the methods that are used to conduct our 

experiments. 

Chapter 3, introduces the methodology of the study and our proposed approach to 

achieve the research objectives. The techniques that are used to build prediction 
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models are introduced, thus the evaluation criteria and how to select the best method 

among proposed techniques is explained. 

Chapter 4, present the result obtained from our experiments on the data set. 

Chapter 5, concludes the research and suggests future research directions. 
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 Chapter 2  

2 DATA SET AND RELATED BACKGROUND 

 In this chapter, we present the fundamental understanding of subjects related to 

stock market and its data. In addition, all methods that are used in the study to 

achieve the research objectives would be described in this chapter. We begin by 

reviewing the fundamental background studies of the stock market. The next section 

examines the data related to the stock market. We would describe how it should be 

pre-processed and transformed before being used for prediction.  In the last section 

we explain the methods that are used in the study.  

2.1 Stock Market 

The stock market is an extremely productive environment where data is reflected 

rapidly in prices. It can be characterized as an open market for exchanging the 

organization’s stock and derivative at an approved stock price. These are called 

securities, recorded on a stock exchange as well as an investor trading secretly [9].  

The essential goal of stock market is to serve as a stage for organizations to exchange 

shares of ownership. Rising share prices will expand business investment and 

development of the organization’s profitability [8].  

The stock price of an organization is determined by demand and supply of the stock. 

In stock market extensive volume of stock is exchanged every day. If the stock is 

purchased more than it is sold, then the stock price will increase. Alternately, if the 
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selling of the stock is more than buying, then the stock value will decrease. Besides, 

the factors such as financial condition, political circumstance and unexpected events 

are exceedingly causing fluctuations in the stock price. Moreover, stock price 

fluctuations strongly affect trading volume and investment decision making in the 

stock market.  

Stock markets are organized into stock exchanges which are the place where 

members of the organization gather to trade company stock [10]. The activity on the 

stock exchange will induce price movement as it’s influenced by supply and demand 

of investors and stakeholders. Furthermore, stock exchanges play essential role in the 

country’s economic strength and development since they allow the companies to 

raise their capitals for investment through selling their shares.  

2.1.1 Stock Market Data 

Various types of stock data are accessible for predicting the stock market. The stock 

data is related to the circumstance and state of the market. They are ranging from 

open, close, high, low and volume of the prices.  

Fundamentally, the stock data is time series data with past observation that gives a 

visual illustration of nature fluctuations of the market. The time series data typically 

characterize by its non-linearity, dynamic and non-stationary because of the random 

walk process behavior of stock market prices. Consequently, it is generally 

undesirable to utilize them in their raw form for the forecasting. 

2.2 Dataset 

The stock market data of the London Stock Exchange (LSE) has been used in this 

research. The data set was downloaded from the website of www.finance.yahoo.com 
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[11]. The data set is comprised of the daily closing price of LSE over the period of 

January 1, 2008 to December 31, 2012, resulting in 1827 trading days.  

We partition the whole data into two parts. 70% of the data is for training and 30% 

for testing. The period utilized as a part of training data beginning from 1st January 

2008 to 3rd July 2011. The period utilized as a part of testing data set beginning from 

4th July 2011 to 31st December 2012. 

2.2.1 Data Pre-processing  

The raw data is highly susceptible to noise, missing values and inconsistency. 

Consequently,  a special preparation and transformation is necessary. The raw data is 

pre-processed so as to enhance efficiency and simplicity of mining process [12]. 

 

Missing Data is an important factor in forecasting the future values of stock market 

items. The stock prices comprise of the vast amount of the data which is incomplete. 

This can result from missing values in a daily stock data because of weekends and 

holidays since these are normally not a trading day. Therefore, the data is pre-

processed to fill missing values. The estimation of the missing value is done by the 

mean of interpolation. This method replaces the missing values using the mean value 

between previous and preceding value of the considered attribute.  

Linear interpolation was used to calculate an output value   for the input   using two 

known values, the previous value (       ) and succeeding value (         ) of the 

missing data. Its equation is defined as follows: 

         (  –   ) 
           

            
                                                                                                (2.1)    
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where (      ) and (         ) are the closest points to  the unknown values.   

Logarithmic Return rates of  a stock data provides a stationary time series data. 

The stock data is converted into stock log-returns because there are more convenient 

to work with algorithm [12]. Besides, time series data are described by non-

stationary, the logarithmic return transformation can convert data to stationary time 

series data.  

Another advantage of log-return is its capability to handle the outliers in the data 

which decrease its impact on prediction model and increase forecasting accuracy.  

This approach utilizes the difference between the natural     of the stock price at 

time  , and the natural     of the price at the previous step in time, as given by 

equation 2.2. 

                      
  

    
                                                                   (2.2)     

where      is log-returns of the data,     is current value and       is pervious value. 

 

Data Normalization is necessary to resize the data set into the best working range of 

the algorithms which operates on the data set. The principal goal of normalization is 

to improve the quality of the data and increase the performance of the algorithm. In 

this research, the following formula has been used to normalize the stock prices: 

    
      

    
                                                                                                     (2.3)    
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where x is vector of data values, Y is vector of normalized data values,      is the 

mean of elements of x, and       is standard deviation of  elements of x.  

Figure 2.1 shows the daily closing price and log-returns of the London Stock Market 

after the stock data was pre-processed. 

 
Figure 2.1: Closing Price and Log-Returns of London Stock Market 

(top: Closing Prices, bottom: logarithmic return rates) 

 
  

2.3 Proposed Prediction Techniques  

2.3.1 Support Vector Machines 

Support Vector Machine (SVM) is a supervised learning technique that can be 

applied to solve a variety of classification and regression problems. It was proposed 

by Vapnik and his co-works as implementation of the structural risk minimization 

principle (SRM) [14]. 
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Basically, the SVM was originally utilized for classifying the input data that are 

linearly separable. It finds optimal hyper-plane in order to separate the data with 

maximum margin. Moreover, SVM can be utilized to separate the data that are not 

linearly separable [13]. In such case, the fundamental thought is to map input data 

into a high-dimensional feature space by utilizing a nonlinear function, then it 

separates the data linearly in a higher dimensional space. The separation is done by 

defining the support vectors with a maximum margin between two separated classes. 

Figure 2.2 below outlines the thought behind optimal hyper-plane under the 

assumption of linear separable data.  

 

 

 

 

Figure 2.2: SVM in a Separable Case 

SVM is specified as a kernel based learning approach. The kernels are functions that 

play a vital role in the transformation of the data into an appropriate feature space 

representation in which separating the data is easier. There are many types of the 

kernel function. However, the most commonly utilized kernels are polynomial, radial 

basis function and sigmoid which is represented by following equations respectively: 

                   )
 d 

                                                                            (2.4) 



 

14 

               ‖     ‖
2
)                                                                    (2.5) 

               (     )                                                                       (2.6) 

 where   ,    and   are the constant parameters and         are vectors in the input 

space. SVM has become a popular method to learn and analyze data, as a learning 

algorithm. It has also been shown to yield a good generalization performance in a 

variety of prediction domains such as financial time series forecasting [10, 13, 15].  

Generally, there are two types of the support vector machine which are support 

vector classification (SVC) and support vector regression (SVR). Its regression form 

has been applied to solve regression and prediction problems [7] [16].  In this 

research, we focus our work on SVR. 

  

Support Vector Regression (SVR) is an extension of support vector machine for 

classification. SVR uses the same principle of the support vector classifier with 

generalization of SVM for regression estimation. Furthermore, SVR is a nonlinear 

regression technique that finds the best regression hyper-plane with the lowest risk in 

a high-dimensional feature space. 

In order to perform a regression task, SVR utilizes the loss function to quantify 

empirical risk and attempt to minimize the regression error [16]. The most commonly 

utilized function is the  -insensitive loss function which was proposed by Vapnik.  

The  -insensitive loss function is given by the following equation: 
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             ={
                  |        |    

|        |                                  
                          (2.7)     

where   > 0 is a predefined constant parameter that controls the width of  - 

insensitive zone,   is actual value and        is the predicted value. 

Typically,  -insensitive loss function finds a regression hyper-plane with an  -

insensitive band [16]. It tries to construct a linear hyper-plane in a way that the 

training data lies within a distance of     as represented in figure 2.3. Additionally, 

the  -insensitive loss function is equal to zero if the data points lie inside the band 

region. Otherwise, the loss is given by the absolute difference between the actual and 

predicted values which mean that the data points lie outside the band region.    

 
  Figure 2.3: SVR using a  -Insensitive Loss Zone 

In SVR model, we are given a set of training data (          (       where    is 

represented as a set of real input data,     is output value and         . The aim is to 

learn data trend and behavior of the training data vectors, and then use it to predict 

the target value where the estimated regression function      that used to form a 

linear regression in a feature space can be expressed as: 
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                                                                                              (2.8) 

where      is a nonlinear function that transforms the nonlinear input data into a 

linear form,   and   are weight vector and constant respectively. In order to 

accomplish less training error, the slack variables      
   are introduced in order to 

measure the deviation of training data that lie outside  . However, this resulted in the 

following optimization problem:  

Minimize  J ( ,       
 ) =

   
   

 

 
‖  ‖

2
 +  ∑       

   
                                       ( 2.9)    

Subject to, {

              
               

 

      
                            

                                                           (2.10) 

After transforming the above optimization problem to dual form the solution is given 

as follows: 

    = ∑       
  

                                                                             (2.11) 

Subject to, 0          
                                                                  (2.12) 

where    0 is a regularization parameter which controls the trade-off between 

machine complexity and misclassification errors,    and   
  are Lagrange multipliers, 

  is number of support vectors and         is kernel function that specify as the 

inner product of two vectors in the feature space [6].  
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The precision of the support vector machine relies on a suitable determination of the 

parameter   and kernel parameters. It is critical to decide about the value of these 

parameters before the experiment. The kernel parameters depend on the kind of 

kernel function of support vector machine. For example, the radial basis function has 

the parameter gamma ( ). A good choice of these parameters has a greater impact on 

the generalization performance of SVM and prediction accuracy [28]. The low 

estimation of parameter   may increase the misclassification errors where we might 

have under fitting problem, while a large value of    will prompt to a high penalty 

for the data points and the over fitting has a tendency to happen. The gamma 

parameter defines the distance which a single training example can be reached to 

decision boundary. Thus, it has greater impact on how many samples can be selected 

by the model as support vectors. The lower value means far training examples and a 

higher value means closer training examples. In this way, it is imperative to choose 

these parameters precisely.  

One of the commonly used approaches for parameters determination is Cross-

Validation [17]. It is an assessment technique that separates the data into two 

sections, a part for model training and the other for model validation. The 

fundamental type of cross validation is k-fold cross-validation. In this approach the 

data is partitioned into    folds of equivalent size, then the cross validation process is 

repeated   times. At every cycle different partition is utilized for validation and the 

rest of the folds are utilized for training, and the performance of each fold is 

measured using mean square error. The average of the errors of all folds is a good 

estimate of the error for the model trained with the complete training data set. 
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2.3.2 Autoregressive Moving Average (ARMA) 

Autoregressive moving average (ARMA) is a mathematical model based on an 

integration of AM ( ) and MA ( ). Mathematically the ARMA (   ) model is 

represented as [18]:  

  =   +    ∑       
 
   +∑   

 
                                                                  (2.13) 

where    and    are coefficients of AR and MA models respectively and   is a 

constant term which represent the mean of the series.  

 An AR model is expressed as a combination of one or more previous values and a 

random error.  The AR ( ) is defined as follows [2]: 

  =   +∑        
 
       =  +      +      +………      +                (2.14) 

where    and      are respectively the actual value and random error at time period  , 

  is the mean of the series, (              are model parameters and p is order of 

the model. 

An MA (q) model utilizes past errors as the input variables. The past errors are 

assumed to follow the typical normal distribution. Thus, a moving average model is a 

linear regression of the current observations of the time series against the random 

errors of one or more prior observations.  The MA (q) model is given by [2]: 

 

  =   +∑       
 
   +   =   +       +      +…..…..+                       (2.15)  
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where   is the mean of the series,             ) are the model parameters and   is 

the order of the model. 

An ARMA (p, q) is an appropriate technique for modeling stationary procedures 

where the mean and variance are invariant in a time. However, most of the time 

series data is non-stationary due to the existence of the trend. The trend is defined as 

a pattern of deterministic change in a series of the data; it can be eliminated by curve 

fitting prior to ARMA modelling where a smooth curve describing the growth trend 

is removed [19]. Elimination is carried out by including smoothing stage while 

modeling ARMA such as exponential smoothing. This also helps to ensure the 

stationarity of the time series data. An ARMA model is commonly used to analyze 

time series in order to gain better understanding and predicting the future value in the 

series.  

 

An ARMA (p, q) is built by a series of well-defined steps in order to select the 

applicable model that can be used to predict future values of time series.   

The Modeling Steps in ARMA (p, q) are described as follows: 

 

1- Model Identification 

The initial step is to identify the model by selecting the proper order of the model 

and determine if the series is stationary with the constant mean and variance. There 

are two strategies for identifying the order of the model; the principal approach is 

Box-Jenkins technique. This method is based on inspecting the plot of the 

autocorrelation (ACF) and partial autocorrelation functions (PACF) to choose which 

AR and MA component ought to be utilized as a part of the model.  The second 
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technique to identify the order of the model is an automated iterative procedure. In 

this approach different ARMA model is prepared and fit. Then a goodness-of-fit 

statistic is utilized to choose the best model. The Akaike Information criterion (AIC) 

and Bayesian information criterion (BIC) are broadly used to measure the goodness-

of-fit of statistical models. Both AIC and BIC are utilized for model determination. 

The best fit model has the minimum of AIC and BIC.  

The AIC and BIC defined as follows: 

 AIC =                                                                                             (2.16) 

 BIC                                                                                         (2.17) 

where   is a variance of the model residuals,    is the number of the observations 

and    is the number of estimated parameters.  

2- Model Estimation   

This step involves estimation of model coefficients. By using computation methods 

that determine the best fit coefficients of the selected model such as maximum 

likelihood estimation and least squares estimation. 

3- Model Checking 

In this step, the selected model is checked to ensure that residual of ARMA model is 

random, i.e., residuals are independent of each other and have constant mean and 

variance over the time [19]. The autocorrelation function (ACF) is one of the most 

normally utilized techniques to test randomness. In order to check the randomness, 
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the individual residuals of ACF ought to be relatively small, zero or close to zero and 

generally within 2/ n, where n represent number of the observations. This step 

also ensures that the chosen model fits the data properly or not. 

2.3.3 k- Nearest Neighbours 

The k-nearest neighbours (k-NN) is a technique for classifying the data points 

according to nearest training patterns in a feature space. It is a non-parametric 

approach utilized for classification and regression problems. The k-NN is referred as 

instance-based learning strategy [20]. The instance-based learning is a supervised 

learning in which the data set are categorized by comparing it with the already 

classified data [29].  

The k-NN is widely utilized in pattern classification and forecasting. The algorithm 

predicts the output using a classification approach, according to the result of the 

majority vote on the most occurrence class within the group of the neighbours. 

In k-NN algorithm, all observations are represented as a set of vectors. When the 

output of a new vector is requested, the algorithm determines the   training data 

vectors that are nearest to the new vector among the training vector set using a 

distance metrics. The output for the new vector is predicted from these nearest k 

vectors by least squares regression, or simply from the average of their future values. 

In k-NN forecast, the choice of the size ( ) which is known as embedding 

dimension and the number of neighbours ( ) is an essential point of this method; 

where   and   are predefined parameters by the users. Additionally, performance of 

the k-NN depends profoundly on these parameters.    
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Chapter 3 

3 RESEACH METHODOLOGY  

This section examines the proposed research methodology. The methods and steps 

that are utilized to build up the forecast models are clarified. The evaluation 

methodology that was used for validating the performance of the perdition models is 

discussed. Then the approach that was used for selecting the best forecast technique 

is clarified as a last stage of the Research Methodology.  

3.1 Problem Formulation 

Predicting stock market is described as the procedure of estimation in unknown 

future events to help decision making. The interest of predicting the stock prices 

originates from its advantages of having the better knowledge about the future value 

developments, its financial benefit and avoiding a certain risk in a financial market. 

Generally in stock market the financial specialists are often facing the difficulty in 

deciding the best time for selling or buying their stock to expand their benefit 

because of the unpredictable behaviour of the stock market. In this manner, having 

the possibility to predict stock price movements can help decision making procedure 

in a stock market.  

Hence, in this research, we proposed the development of the three types of 

forecasting models with the purpose of stock market prediction. The forecasting 



 

23 

model 

models include: Support Vector Regression Model, Autoregressive Moving Average 

Model and k-Nearest Neighbours’ Model.  

The contribution of the exploration is to identify the best forecasting method 

regarding the most accurate prediction result.  

3.2 Proposed Approach  

Three types of techniques have been utilized to construct the forecasting model that 

examines the stock patterns using the “Support Vector Regression, Autoregressive 

Moving Average and k-Nearest Neighbours”. The proposed research strategy is 

shown in a figure 3.1. The fundamental stages of our proposed approach are 

explained in the following sub-sections. 

 

  

  

  

 

 

  

 

 

  

 

   

 

 

 

Figure 3.1: Flow Diagram to Decide on the Best Forecasting Method 
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3.2.1 Data Preparation  

In order to predict the future trends and assess our prediction techniques, the 

historical stock prices of London Stock Exchange has been chosen as the 

experimental data. Then the raw data have been pre-processed and separated into in-

sample and out of sample data set as mentioned in chapter 2, section 2.2 and 2.2.1. 

The In-sample data is used to construct the forecast models, the out of sample data is 

used to assess the how well the prediction models preform in a forecasting the new 

data set. 

3.2.2 Model Construction 

After preparing the raw data, the following step was the creation of the prediction 

models using previously mentioned techniques. The proposed prediction models 

were created to predict the future daily closing price of the LSE. All prediction 

models were provided with the same input of the daily closing price. 70% of our data 

were utilized to build prediction models.  

The first prediction model was support vector regression model. SVR with ε- 

insensitive loss function was utilized to build the model. We choose radial basis 

function as a kernel function because of its capability to map a non-linear training 

data and its superior performance [1, 10, 16]. The radial basis function is calculated 

by the following formula: 

               ‖     ‖
2
)                                                                    (3.1)  

where γ is a constant parameter. The precision of the support vector regression model 

is exceedingly impacted by the estimation of the parameters. Therefore, we utilized a 

grid-search on parameters C and γ using k-fold cross-validation technique to choose 
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the proper estimation of the parameters. In order to form the SVR model, the 

LIBSVM [21], a library of the support vector machines was utilized to conduct the 

experiment.  

The second prediction model was an autoregressive moving average model. An 

ARMA model was developed according to the steps that have been described in 

chapter 2, section 2.3.2. As discussed earlier, when conducting ARMA model, the 

stationarity of the data must be considered for proper prediction. Consequently, the 

main stage included testing data for stationarity. Thus, we use logarithmic 

transformation technique to ensure the stationarity of the data and stabilize attribute. 

Identifying the order of ARMA        model is done by utilizing an automated 

iterative procedure. The AIC and BIC were utilized as a measurement to choose the 

best fitted model. The next step involved estimation of the parameters for a tentative 

model with maximum likelihood estimation. After the parameters have been 

estimated, in the next step we test the residuals of the model with ACF plot to check 

for the model suitability. If the residuals are random, then the chosen model can be 

utilized for forecasting the future price. 

The last prediction model was k-nearest neighbours’ model. Essentially, the 

algorithm begins with the determination of the ideal number of neighbours ( ). The 

approach that is used to choose the parameter   in this research has been used as a 

part of [22-24] by testing the algorithm with various values of   and characterized 

the best value of   that yield the minimum errors.  
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Different   values has been attempted to determine the optimum value of   that 

generates the best prediction result. After the parameter   was identified, the distance 

between the observations of the training data and test data is calculated using 

Manhattan distance. The Manhattan distance is defined as: 

   ⃗  ⃗    ∑ |     |
 
                                                                                  (3.2)  

The distance metric takes an absolute difference between the coordinates, where    

and    are components of vectors  ⃗  ⃗ respectively and   is the number of 

observations.  After sorting the distance from the smallest to the highest values, 

determination of the   closest neighbours is done based on the minimum distance to 

the test data. The prediction for the following day is processed as the average of 

identifying neighbours. The average was computed as follows:  

    = 
 

 
 ∑   

 
                                                                                                    (3.3) 

 where    is the number of the closest neighbours of    and   is the forecast value of 

the test data. 

3.2.3 Model Evaluation  

After the forecast models have been built, the next stage is to assess the models with 

a new data set. This step is critical to figure out if the model has good generalization 

ability performance or not. Also this step is very important in a determining whether 

the model is sufficient or insufficient in a use as a model to predict the future stock 

price. The trained models are tested on 30% of the selected stock prices. 
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3.2.4 Selection Criteria  

After testing the model, we have assessed the accuracy of the models by utilizing 

assessment measures. The point is to measure the deviation of predicted stock prices 

from the actual value. Three kinds of measurement have been used to quantify the 

precision of the models, thus to be specific we have used Normalize Mean Square 

Error (    ), Mean Absolute Error (   ) and Coefficient of Determination ( 2
). 

Mathematically, these measures are calculated by following equations:  

MAE = 
 

 
∑ |     |

 
                                                                                   (3.4) 

NMSE = 
 

 
∑

       
 

   ̅̅ ̅   ̅̅ ̅ 

 
                                                                                    (3.5)  

 2 
= 

   

   
  ,    =∑       ̅ 

 
   

2
,       ∑       ̅ 

 
   

2 
                             (3.6) 

where    is real values,    is the predicted values,   is number of the observations, 

     is the total sum square error and      is the regression sum of the square error. 

The criteria to judge for the best model are relatively small of NMSE and MAE, and 

higher  2
 value. 
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 Chapter 4  

4 IMPLEMENTATION AND RESULTS  

This chapter outlines the results of the study. As mentioned earlier, historical data of 

London Stock Exchange was selected to perform the tests. The principal objective is 

to generate a one-day forecast of the closing price using the prediction models by 

examining the historical data. The implementation of all steps was conducted in a 

MATLAB environment. 

4.1 SVR Model Results 

We considered support vector machine for regression (SVR) with Gaussian kernel to 

conduct our experiment. The parameters to be determined are kernel parameter 

Gamma ( ),   and  . According to [6, 25, 26], it showed that SVR is insensitive 

to   , as long as it is a reasonable value. Therefore in this work, we choose 0.01 for  . 

To select values for   and  , we used a 10-fold cross-validation in combination with 

a grid-search to determine the appropriate values. Various pairs of   ,  ) values are 

tried and one with the best cross-validation accuracy is selected. According to the 

results of the cross-validation, it was found that the best performance can be obtained 

with  = 8 and    = 0.0625. Figure 4.1 shows the forecasted result of the developed 

SVR model. The figure demonstrated the performance of model on the test data set 

and how the predicted and actual stock prices are close to each other. As it is obvious 

from the figure, the predictions follow the actual data extremely well which indicates 

that SVR model is sufficient when it is used as a prediction model. 
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Figure 4.1: Actual vs. Predicted Values of London Stock Market 

Figure 4.2 shows prediction errors after applying SVR model on test set which 

indicates how far away are actual prices from the predicted prices. The prediction 

errors    are calculated for each day by   =       where    is actual prices and    is 

predicted prices. We obtain for each day the prediction errors that represent a 

difference between the predicted prices and actual prices. However, the prediction 

errors are mostly close to each other as it is shown in the figure. Moreover, most of 

the errors fluctuated around zero indicate that the errors of SVR model is quite 

acceptable. 
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Figure 4.2: Error between Actual and Predicted Stock Prices of SVR Model 

In order to evaluate the performance of the model, Normalized Mean Square Error 

(NMSE), Mean Absolute Error (MAE) and  2 
were calculated. Thus, the 

performance evaluation results of SVR model is given in the table 4.1.  

Table 4.1: Evaluation Accuracy of SVR Model 
Model  NMSE  MAE  2

 

SVR 0.033996  0.005495 0.965993 

4.2  ARMA Model Results 

As discussed earlier in chapter 3, section 3.2.2, the first step in ARMA modeling 

always begins with exploration of the series in order to have an overall view about 

stationary or non-stationary of the time series data. Figure 4.3 shows the London 

Stock Market data between the periods 2008 - 2012. From the graph, the time series 



 

31 

over the period show the trends movement and the variance tend to increase over the 

time. The random movement in the prices indicates that the data are non-stationary.  

 

 

 

 

  

    

  

Figure 4.3: The Daily Closing Prices of LSE between the Years 2008-2012 

We perform logarithmic return transformation to transform the data to stationary 

time series data.  Figure 4.4 shows the data set after transformation. From the plot it 

is obvious that the log-returns appear to fluctuate around a constant level where most 

of the log-returns oscillated around zeros which indicate to the stationarity. 
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Figure 4.4: Log-Returns of Closing Prices between the Years 2008-2012 

After we have obtained the stationary data set, the next step was to identify the best 

lags p and q of ARMA model based on AIC or BIC criteria. We fit different models 

with different lags for   and  . In order to perform this experiment the values of 

  and   were set as follows:   1 to 10 and   1 to 10. After that the AIC and BIC 

criteria was computed for each model to assess the goodness of the fit. The results of 

AIC and BIC are summarized below: 

Lowest AIC = -7511.292262 obtained for p = 9 and q = 9 

Lowest BIC = -7469.191524 obtained for p = 1 and q = 2 

The selection of the best model is done according to lowest AIC and BIC. ARMA 

(1,2) is considered the best, since the model return the lowest BIC, hence, was 

selected as the optimum model.  
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After selection of the model, the next step involved estimation of the parameters    

and     of ARMA(1,2) model where i=1 and j=1, 2. The results of the estimation are 

summarized below: 

AR (1) = 0.995163 

MA (1) = 0.164444 

MA (2) = 0.091998 

In the next step, we checked whether the model fit the data properly by applying a 

diagnostic checking of model residuals. Figure 4.5 shows the ACF plot of the model 

errors after applying ARMA(1,2) model on our data set. Note that if the model is 

good, the residuals should be uncorrelated and ACF of model residuals is expected to 

be zero or close to zero at the all lags except lag zero. As the plot indicates, most of 

the lags within acceptable limit indicate sufficiency of the model for forecasting.   

 
Figure 4.5: ACF of Model Residuals 

 

Figure 4.6 shows the forecasts and actual values of the London stock exchange rates. 

It is noticeable that the difference between the actual prices and predicted prices is 
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not distinguishable; since the predicted prices are closely related to the actual prices. 

The result demonstrates a good performance of the selected model.  

 
Figure 4.6: Actual vs. Predicted Values of London Stock Market 

Figure 4.7 represents the difference between the predicted and actual prices of 

London Stock Market. From the figure, it is clear that most of the errors are close to 

zero value. This ensures that the difference between the actual and predicted prices is 

not very large.   
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Figure 4.7: Error between Actual and Predicted Stock Prices of ARMA (1,2) 

Table 4.2 below represents performance evaluation of ARMA model using 

evaluation techniques.  

Table 4.2: Evaluation Accuracy of ARMA (1, 2) Model 
Model NMSE  MAE  2

 

ARMA(1,2)  0.034745 0.006239 0.965238 

 

4.3 k-NN Model Results 

Since our prediction model depend on the number of nearest k points in a feature 

space, we have considered the use of 10 to 50 neighbours with m=2, 3.  The selection 

of the best k was done based on the k value that yields the smallest mean square 

error. The best result was obtained with    50 and m=2 corresponding to smallest 

mean square error. Figure 4.8 shows the model result for one day a head prediction 

of London stock market closing prices using Manhattan distance with   50. It is 

evident from the graph that the selected parameters are quite acceptable and k-NN 

performed well as it gives a good performance on the test data set. 
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  Figure 4.8: Actual vs. Predicted Values of London Stock Market 

We estimated the errors between the predicted and actual prices of London Stock 

Market.  As the figure 4.9 shows the errors of k-NN on the y axis are ranging from -

0.3 to 0.3 values which indicates that k-NN produce the highest errors compared to 

SVR and ARMA models.  
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  Figure 4.9: Error between Actual and Predicted Stock Prices of k-NN Model 

Table 4.3 below represents the performance evaluation of proposed model using 

evaluation techniques.   

Table 4.3: Evaluation Accuracy of k-NN Model 
Model NMSE  MAE  2

 

k-NN 0.036878 0.039978 0.700428 

 

4.4 Comparison of Forecasting Methods 

The error figures of the three tested methods are compared in Table 4.4.  

Table 4.4: Comparison of Evaluation Accuracies for All Three Methods 
Model NMSE  MAE  2

 

SVR  0.033996  0.005495 0.965993 

ARMA(1,2) 0.034745 0.006239 0.965238 

k-NN 0.036878 0.039978 0.700428 
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According to the table of error figures, the method that has the smallest overall error 

value for both NMSE and MAE scales is the SVR technique. SVR outperforms the 

other prediction models due to its many advantage compared to ARMA and k-NN 

methods such as using the various kernels which allows the algorithm to be suits to 

many prediction problems, also SVM adopt the structural risk minimization principle 

to minimize the test errors, which eventually leads to better generalization capability 

of SVM. 

 

However, the figures of all three methods are very close to each other, and therefore 

advanced methods to combine all three results may be useful in decision making for 

stock market investments. 

 

The NMSE and MAE are used as estimators of overall deviation between the actual 

and predicted values, the smaller value of them indicates to better forecast result. The 

MAE measure the average of the errors in a set of the predictions, the NMSE 

normalizes the obtained MSE after dividing it by the test variance; it measures the 

difference between the actual and predicted values. 

 

Overall NMSE value for ARMA is quiet close to value for SVR; however, their 

MAE values are very different from each other. It means that although the average 

error of SVR is very low, it gives comparably large errors for closing prices of some 

days along the test period. The result also indicates that the MAE value of SVR and 

ARMA models give lower error than NMSE, however, k-NN model produce quiet 

large value of MAE in comparison to other prediction models. 
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The  2
, is squared measure of correlation between the model output and actual 

output.  2 
getting closer to unity correspond to outputs fully correlated, in other 

words they are explained by a straight line. The value of  2 
rang from 0 to 1, the 

higher value indicate more useful model and strong correlation between the actual 

values and predicted values. The  2 
with the small value close to the zero

 

corresponds to weak correlation of the model prediction to the actual values. Both 

SVR and ARMA methods predicted the actual future price with very high 

correlation, and their  2 
measures are nearly 0.965, while k-NN shows very low  2

, 

compared to the other models, indicating that its prediction correlates to actual values 

quite weak comparing to SVR and ARMA models. 

 

In summary, to improve the prediction technique, ARMA and SVM methods may be 

combined by some methods such as applied by [23].  
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Chapter 5 

5 CONCLUSION 

Stock market prediction has become one of the most essential tasks for decision 

making units to determine their trading strategies. In this research, three forecasting 

techniques were applied to predict the future price of London stock market namely, 

support vector regression, autoregressive moving average and k-nearest neighbours.  

The outcomes we got demonstrated that each of the three methods has ability to 

predict the future price of the market. In addition, the research result illustrates that 

past stock price contain data that can be utilized to forecast the future price, if it is 

predicted within a certain level of accuracy it can provide more information about the 

future behaviour of the stock market price. This implies that the proposed prediction 

techniques can be used for forecasting in the market. Furthermore, our results has 

found that, support vector regression provide the better prediction result than other 

proposed techniques. 

5.1 Recommendation for Future Studies 

There are several directions to extend this work for future improvement. In this 

thesis, only daily closing prices were used as input to the prediction models. The 

technical indicators such as moving average and exponential moving average may be 

combined with historical data for better prediction result.  
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This research has shown that SVM gives better performance in comparison with 

other prediction techniques. Further research may compare the standard SVM to the 

least squares SVM, which is an improved version of the SVM algorithm. 
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Appendix A: Table of Prediction Results of Forecasting Models 

Actual values Predicted Values 

Sample period Test data set SVR ARMA k-NN 

04/07/2011 9651.48 9173.1 9173.9 9650.7 

05/07/2011 9668.31 9174.7 9175.4 9625.1 

06/07/2011 9689.01 9176.4 9177.3 9640.2 

07/07/2011 9647.26 9178.6 9178.5 9656.3 

08/07/2011 9703.54 9174.3 9173.5 9673.2 

09/07/2011 9575.37 9180.1 9806.8 9615.7 

10/07/2011 9555.31 9164.7 9165.1 9708.3 

11/07/2011 9535.2 9162.7 9163.1 9513.7 

12/07/2011 9515.18 9160.6 9162.1 9537.7 

13/07/2011 9371.03 9164.7 9169.7 9520.4 

14/07/2011 9379.363 9145.4 9142.5 9508.5 

15/07/2011 9345.26 9146.2 9144.8 9326.9 

16/07/2011 9429.97 9142.6 9142.1 9394.1 

17/07/2011 9379.1 9151.1 9152.4 9345.2 

18/07/2011 9329.54 9160.6 9145.6 9462.9 

19/07/2011 9279.26 9171.3 9138.9 9373.9 

20/07/2011 9309.12 9172.6 9134.1 9330.1 

21/07/2011 9425.20 9173.9 9138.7 9285.2 

22/07/2011 9515.94 9175.2 9153.5 9340.1 

23/07/2011 9618.85 9175.8 9162.1 9469.6 

24/07/2011 9631.39 9167.3 9173.1 9532.1 

25/07/2011 9643.92 9172.1 9173.2 9622.3 

26/07/2011 9656.41 9158.6 9173.7 9605.8 

27/07/2011 9661.83 9158.1 9174.9 9634.3 

28/07/2011 9579.64 9157.6 9175.5 9650.7 

29/07/2011 9625.587 9157.1 9165.7 9625.1 

30/07/2011 9496.83 9145.1 9172.2 9640.2 

31/07/2011 9491.9 9115.9 9156.8 9656.3 

01/08/2011 9487.02 9084.1 9156.7 9673.2 

02/08/2011 9482.12 9057.4 9157.3 9615.7 

03/08/2011 9368.5 9046.7 9156.5 9708.3 

04/08/2011 9098.7 9035.8 9142.6 9513.7 

05/08/2011 8812.8 9024.8 9109.9 9537.7 

06/08/2011 9651.48 9044.2 9077.4 9520.4 

07/08/2011 9668.37 9007.7 9051.5 9508.5 

08/08/2011 9689.005 9034.2 9043.4 9326.9 

09/08/2011 9647.2 9060.2 9033.3 9394.1 

10/08/2011 9703.57 9064.2 9021.9 9345.2 

11/08/2011 9575.35 9068.2 9046.5 9462.9 

12/08/2011 9555.31 9072.1 9002.8 9373.9 

13/08/2011 9535.25 9076.5 9034.9 9330.1 

14/08/2011 9515.18 9075.5 9066.2 9285.2 

15/08/2011 9371.02 9035.1 9065.5 9644.3 

16/08/2011 8579.89 9029.4 9067.8 9636.7 
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17/08/2011 8487.94 9032.3 9072.3 9537.1 

18/08/2011 8395.9 9034.6 9078.5 9614.5 

19/08/2011 8304.03 9042.6 9074.8 9453.6 

20/08/2011 8466.82 9058.4 9027.5 9482.8 

21/08/2011 8162.73 9041.6 9023.1 9478.8 

22/08/2011 8382.83 9034.4 9030.6 9471.3 

23/08/2011 8604.03 9173.1 9032.8 9336.9 

24/08/2011 8638.36 9174.7 9034.4 9025.9 

25/08/2011 8672.7 9176.4 9042.9 8694.4 

26/08/2011 8707.03 9178.6 9061.8 8483.9 

27/08/2011 8745.2 9174.3 9039.3 8490.8 

28/08/2011 8736.83 9180.1 9030.6 8378.8 

29/08/2011 8389.99 9164.7 9042.8 8259.5 

30/08/2011 8320.89 9162.7 9051.7 8600.1 

31/08/2011 8342.54 9160.6 9057.4 8000.4 

01/09/2011 8364.19 9164.7 9063.9 8438.3 

02/09/2011 8385.85 9145.4 9088.2 8819.5 

03/09/2011 8453.21 9146.2 9087.2 8712.1 

04/09/2011 8588.13 9142.6 9052.9 8699.5 

05/09/2011 8444.74 9151.1 9041.1 8733.1 

06/09/2011 8384.82 9160.6 9031.3 8762.3 

07/09/2011 8446.54 9171.3 9019.9 8746.1 

08/09/2011 8508.66 9172.6 9027.7 8287.4 

09/09/2011 8569.99 9173.9 9056.2 8305.1 

10/09/2011 8631.71 9175.2 9052.8 8344.6 

11/09/2011 8819.48 9175.8 9023.2 8367.6 

12/09/2011 8828.55 9167.3 9017.2 8373.5 

13/09/2011 8580.49 9172.1 9011.8 8492.9 

14/09/2011 8477.04 9158.6 9003.9 8640.3 

15/09/2011 8373.69 9158.1 9011.9 8415.7 

16/09/2011 8270.24 9157.6 9022.9 8384.9 

17/09/2011 8322.56 9157.1 9041.3 8464.4 

18/09/2011 8537.47 9145.1 9046.5 8514.5 

19/09/2011 8530.21 9115.9 9036.6 8585.5 

20/09/2011 8330.85 9084.1 9029.1 8648.5 

21/09/2011 8422.02 9057.4 9023.1 8878.4 

22/09/2011 8301.2 9046.7 9041.4 8834.4 

23/09/2011 7899.63 9035.8 9022.9 8521.2 

24/09/2011 7817.05 9024.8 8965.2 8489.1 

25/09/2011 7832.53 9044.2 8969.1 8357.6 

26/09/2011 7848.108 9007.7 8967.3 8276.8 

27/09/2011 7863.63 9034.2 8968.6 8327.8 

28/09/2011 8201.99 9060.2 8969.9 8610.7 

29/09/2011 8138.93 9064.2 9019.4 8523.4 

30/09/2011 9336.78 9068.2 9006.8 8282.1 
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Appendix B: MATLAB Code   

%:::::::::support vector machine:::::::% 
% read the financial data of stock price 
DataSet= xlsread('LSEdataset.xlsx'); 
[m,n] = size(DataSet); 
%traget / input 
t = DataSet(2:m,:); 
X=DataSet(1:m-1,:); 
% Split data into training and test sets: 
N = length(t);               
split = 0.70;                
Train = round(split * N);    
nTest = N - Train;           
tTrain = t(1:Train);          
tTest  = t(Train+1:N);       
XTrain = X(1:Train,:); 
xTest  = X(Train+1:N,:); 
% Normalization : 
mu_xTr = mean(XTrain); sig_xTr = std(XTrain); 
mu_tTr = mean(tTrain); sig_tTr = std(tTrain); 
XTrain = (XTrain - repmat(mu_xTr,Train,1)) ./ ... 

repmat(sig_xTr,Train,1); 
tTrain = (tTrain - repmat(mu_tTr,Train,1)) ./ ... 

repmat(sig_tTr,Train,1); 
mu_xTe = mean(xTest); sig_xTe = std(xTest); 
mu_tTe = mean(tTest); sig_tTe = std(tTest); 
xTest = (xTest - repmat(mu_xTe,nTest,1)) ./ repmat(sig_xTe,nTest,1); 
tTest = (tTest - repmat(mu_tTe,nTest,1)) ./ repmat(sig_tTe,nTest,1); 
% Cross validation: 
method       = 3;   % SVM type: 3 = epsilon-SVR 
kernel       = 2;   % kernel type:  2 = rbf.  
nFoldCV      = 10;  %no. of folds in cross-validation 
pars.epsilon = 0.01; % epsilon parameter in epsilon-SVR  
display   = true;   % true = display result . false = don't. 
%find optimal parameters C and gamma: 
if nFoldCV ~= false  
log2c_list = -5:2:8;    
log2g_list = -8:1:4;    
numLog2c = length(log2c_list);  
numLog2g = length(log2g_list); 
cvMatrix = zeros(numLog2c,numLog2g); 
bestcv = 10^9;  % initialize best CV MSE  
for i = 1:numLog2c 
log2c = log2c_list(i); 
for j = 1:numLog2g 
log2g = log2g_list(j); 
if method == 3  % epsilon-SVR. 
svm_params = ['-q -s ',num2str(method), ' -t ',num2str(kernel), ... 

' -c ',num2str(2^log2c), ' -g ',num2str(2^log2g), ' -p ' ... 

,num2str(pars.epsilon), ... 
' -v ', num2str(nFoldCV)]; 
 end 
 cv = svmtrain(tTrain, XTrain, svm_params); % compute cv MSE 
 cvMatrix(i,j) = cv; 
 if cv <= bestcv  
 bestcv = cv; bestLog2c = log2c; bestLog2g = log2g; 
 end 
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 end 
 end 
 bestC = 2^bestLog2c;  
 bestg = 2^bestLog2g;  
% Print  cross validation results: 
if display == true 
fprintf('\n Cross Validation Results:\n'); 
fprintf(['Best parameters:\n  log2C  = %3.1f \t  C = %4.4f\n' ... 
'log2gamma = %3.1f  \t  g = %4.4f\n'], ... 
bestLog2c, 2^bestLog2c, bestLog2g, 2^bestLog2g); 
fprintf('CV MSE = %g \n\n', bestcv); 
end                    
% Train SVM model using optimal  parameters: 
% or train model by using specified C and gamma 
if method == 3 
    svm_params = ['-q -s ', num2str(method),  ' -t ', 

num2str(kernel),... 
        ' -c ', num2str(bestC), ' -g ', num2str(bestg),... 
        ' -p ', num2str(pars.epsilon), '-b 1']; 
end 
%Do training by using svmtrain of libsvm 
model = svmtrain(tTrain, XTrain, svm_params); 
%Do predicting by using svmpredict of libsvm 
if display == true 
[yTrain, perfTrain, probEstTrain] = svmpredict(tTrain, XTrain, 

model); 
else 
yTrain = svmpredict(tTrain, XTrain, model);  
end 
if display == true 
fprintf('Prediction on TEST data:\n') 
[yTest, perfTest, probEstTest] = svmpredict(tTest, xTest, model); 
else 
yTest = svmpredict(tTest, xTest, model);  
end 
disp(yTest); 
% De-normalize:  using POSTSTD function to convert the data  
% back into unnormalized units. 
tTrain=poststd(tTrain,mu_tTr,sig_tTr); 
yTrain=poststd(yTrain,mu_tTr,sig_tTr); 
tTest=poststd(tTest,mu_tTe,sig_tTe); 
yTest=poststd(yTest,mu_tTe,sig_tTe); 
%------- Computing  the performance measures of model -----------% 
%          Display the result of SVM Regression          % 
%Error rate 
error_test=tTest-yTest; 
%mean absolute error 
mAETe=mae(error_test); 
%NMSE 
NMSETe=var(error_test)/var(tTest); 
%computing the  R-Square value 
rSqTe=1-sse(error_test)/sum((tTest-mean(tTest)).^2); 
fprintf('test result:\n'); 
fprintf('  - NMSE=%f\n',NMSETe); 
fprintf('   MAE     = %g %%\n', mAETe); 
fprintf('   R-Square     = %g %%\n', rSqTe); 
% plot the result 
figure, plot(tTest,'-b','LineWidth',1), hold on, plot(yTest,'-r'...  

,'LineWidth',1) 
set(gcf,'color',[1 1 1]) 
title(' SVR model Performance on Test Set') 
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xlabel('Time (trading days)'), ylabel('Closing Price') 
legend('Actual','Predicted') 
figure,plot(error_test,'-k') 
xlabel('Days') 
ylabel('Errors') 
title('Error Difference') 

%%%%%%%% ARMA model%%%%%%%%%%% 
timeseriesdata=xlsread('LSEdataset.xlsx'); 
% Split into training and test data 
t=(timeseriesdata); 
y= log(timeseriesdata); 
N= length(y);  
N_train = round( 0.70 * N );% training data = 70% of total. 
N_test = N - N_train;% test data = remaining 30% 
tTrain = y(1:N_train); 
tTest  = y(N_train+1:N); 
xTest  = y(N_train+1:N,:); 
% Choose best ARMA lags p and q using AIC and BIC: 
% Find optimal lags p and q by fitting several models: 
maxLags = 10; 
LOGL = zeros(maxLags,maxLags);% initialize matrix for loglikelihood 

% values. 
PQ = zeros(maxLags,maxLags);% initialize matrix for no. of  

   % coefficients. 
for p = 1:maxLags 
for q = 1:maxLags 
mod = arima(p,0,q); % create ARMA(p,q) model. 
[fit,~,logL] = estimate(mod,tTrain,'print',false); 
% fit model and estimate parameter values. 
LOGL(p,q) = logL;   % store loglikelihood. 
PQ(p,q) = p+q;      % store no. of coefficients. 
end 
end 
figure 
subplot(2,1,1) 
autocorr(y) 
subplot(2,1,2) 
parcorr(y); 
% Calculate and display AIC and BIC for each fitted model: 
LOGL = reshape(LOGL,maxLags^2,1); 
PQ = reshape(PQ,maxLags^2,1); 
[aic,bic] = aicbic(LOGL,PQ+1,N_train); 
aic = reshape(aic,maxLags,maxLags); 
bic = reshape(bic,maxLags,maxLags); 
% Find lowest AIC and BIC and best p and q: 
[bestAIC, index] = min(reshape(aic, numel(aic), 1));  
[bestP_AIC,bestQ_AIC] = ind2sub(size(aic), index);    
[bestBIC, index] = min(reshape(bic, numel(bic), 1)); 
[bestP_BIC,bestQ_BIC] = ind2sub(size(bic), index);    
fprintf('Lowest AIC = %f obtained for p = %d, q = %d. \n', ... 
bestAIC, bestP_AIC, bestQ_AIC); 
fprintf('Lowest BIC = %f obtained for p = %d, q = %d. \n', ... 
bestBIC, bestP_BIC, bestQ_BIC); 
%BIC(1,2) % - Optimal model: ARMA(1,2) 
model=arima(1,0,2); 
fit1=estimate(model,y); 
model = arima('AR',fit1.AR,'MA',fit1.MA,'Constant',fit1.Constant ... 

,'Variance',fit1.Variance); 
% Fit model to training data: 
fit2 = estimate(model,tTrain,'print',false); 
%Check the residuals for autocorrelation. 
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figure 
subplot(2,1,1) 
autocorr(res./sqrt(Var)) 
set(gcf, 'Color', [1 1 1]);  
[E0,V0] = infer(fit2,tTrain);  
% Forecast: 
Y = zeros(N_test,1); YMSE = zeros(N_test,1); V = zeros(N_test,1); 
presampleData = tTrain; 
for i = 1:N_test 
[E0,V0] = infer(fit,presampleData); 
[y,ymse,v] = forecast(fit2,1,'Y0',presampleData,'E0',E0,'V0',V0); 
presampleData = [tTrain; tTest(1:i)]; 
Y(i) = y; 
YMSE(i) = ymse; 
V(i) = v; 
end 
%------- Computing  the performance measures of model -----------% 
%          Display the result of ARMA         % 
error_test=tTest-Y;  
%mean absolute error 
mAETe=mae(error_test); 
%NMSE 
NMSETe=var(error_test)/var(tTest); 
%computing the  R-Square value  

rSqTe=1-sse(error_test)/sum((tTest-mean(tTest)).^2); 
fprintf('test result:\n'); 
fprintf('   NMSE=%f\n',NMSETe); 
fprintf('   MAE     = %g %%\n', mAETe); 
fprintf('   R-Square     = %g %%\n', rSqTe); 

Y=exp(Y); 
tTest=exp(tTest); 
figure    
plot( tTest,'b') 
hold on  
plot( Y,'-r') 
title('ARMA model Performance on Test Set') 
xlabel('Time (trading days)'), ylabel('Closing price') 
legend('Actual','Predicted')   
hold off 
figure,plot(error_test,'k'); 
xlabel('Days') 
ylabel('Errors') 
title('Error between target and predicted stock prices');  

 %%%%%k-Nearest Neighbours(k-NN) %%%%% 
[x] = xlsread('LSEdataset.xlsx');  

[x,mu,sigms]=featureNormalize(x); %normalizatiion 
d=1278;      
m=2;       % embeding dimension 
k=50;       % Number of nearest neighbors  
distance='manhattan distance';  % type of distance       
[OutSample_For_Corr,InSample_For_Corr,InSample_Res_Corr]= ... 

nn1(x,d,m,k,distance);  
disp(InSample_For_Corr)    
%Apply De-normalization / convert the data  back into  

   % unnormalized units. 
X=x(d+1:end); 
X=poststd(X,mu,sigms); 
InSample_For_Corr=poststd(InSample_For_Corr,mu,sigms); 
%plot the result 
figure, 
set(gcf,'color',[1 1 1]); 
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plot(X,'b','linewidth',1)  
hold on 
plot(InSample_For_Corr,'r','linewidth',1);  
%disp(InSample_For_Corr); 
xlabel('Time(trading days)');  
ylabel('Closing Price');  
title(' k-NN model Performance on Test Set'   );  
legend(' Actual','Predicted');  
figure, 
plot(InSample_Res_Corr,'k') 
xlabel('Days') 
ylabel('Errors') 
title( 'Error between target and predicted stock prices ') 
%%calclute performance of K-NN model %%  
MSE=mse(InSample_Res_Corr); 
% calclute normalised mean square error 
NMSE=var(InSample_Res_Corr)/var(x(d+1:end)); 
% Computing mean absolute error 
mAb= mae(InSample_Res_Corr); 
%compute R-squared 
RSq2=1-sse(InSample_Res_Corr)/sum(x(d+1:end)-mean(x(d+1:end).^2)); 
r=corrcoef(InSample_Res_Corr); 
fprintf(' Evaluation of the K-NN model:\n'); 
fprintf('  - NMSE=%f\n',NMSE); 

fprintf('  - MSE=%f\n',MSE); 
fprintf('  - MAE=%f\n',mAb); 
fprintf('  - R-Square     = %f %%\n', RSq2); 

function [x_norm, mu, sigma] = featureNormalize(X) 
x_norm = X; 
mu = zeros(1, size(X, 2)); 
sigma = zeros(1, size(X, 2)); 
mu = mean(X,1); 
sigma = std(X,1); 
n = length(mu); 
for i = 1:n 
    x_norm(:,i) = (x_norm(:,i) - mu(i)) / sigma(i); 
end  
function [OutSample_For,InSample_For,InSample_Res]= nn(x,d,m,k, ... 

distance,n)              
if (nargin<4)  
    error('Its missing arguments.')  
end  
if d>=length(x)  
error('The value of d must be between 1 and length(x)-1')  
end  
if (nargin==5)  
n=0;  
OutSample_For=[];  
end  
% Main Loop.   
for v=0:length(x)-d-1;      
Series=x(1:d+v);     
[For]=nn_core(Series,m,k,distance);          
InSample_For(v+1,1)=For;  

fprintf(1,['\nCalculating NN Forecast #',num2str(v+1)]);  
end 

disp(' '); 

InSample_Res=x(d+1:length(x))-InSample_For;  
if n~=0  
x2=x;  
for z=1:n  
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[Out_For]=nn_core1(x2,m,k,distance);  
OutSample_For(z,1)=Out_For;  
x2=[x2;OutSample_For(z)];  
end  
end 
function [For_x]=nn_core(x,m,k,distance); 
[n1,n2]=size(x);  
chunk = x(n1-m+1:n1,1); 
for i=0:n1-m-1; 
distance=sum(abs(chunk-x(n1-m-i:n1-i-1,1))); 
sum_distance(n1-m-i,1)=distance; 
end         
[sorted idx] = sort(sum_distance,'descend'); 
fullIdx = repmat( idx((end-k+1):end),1,m+1) + repmat([0:m],k,1); 
s = x(fullIdx); 
% Calculate the forecast              
For_x(1,1)=mean(s(:,m+1)); 
end 

 


