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ABSTRACT 

This thesis motivates and describes the use of probability collectives (PC) with a 

multiagent coordination system to solve different problems. The main challenge was 

to enable the agents to work in a coordinated way, optimizing the local utilities and 

contributing the maximum or minimum towards optimisation of a global objective. 

The approach was validated solving numerical benchmark problems such as sphere 

function in which the coupled variables are seen as autonomous agents working 

collectively to achieve the optimum solution.  Moreover, PC algorithm solved 

successfully repeated games such as prisoner‟s dilemma, stag hunt, the battle of 

sexes game and choose sides. In all experimental trials, the optimum results were 

obtained at a reasonable computational cost. 

Keywords: Probability Collectives, Collective intelligence, Multiagent systems, 

Game theory.  
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ÖZ 

Bu tez farklı problemleri çözmek için olasılık derlemelerinin (PC) çok ajanlı 

koordinasyon sistemi ile kullanımını motive eder ve açıklar. Ana zorluk, ajanlarin 

koordineli bir şekilde çalışmasını sağlamak, yerel memniyetin en iyilenmesini 

sağlamak ve küresel bir hedefin maksimize edilmesine katkıda bulunmaktır. Bu 

yaklaşım in başarimi değişkenlerin, en iyi çözümü elde etmek için birlikte çalışan 

özerk ajanlar olarak görülen küre işlevleri gibi sayısal karşılaştırma problemlerini 

çözerek gösterilmiştir. Buna ek olarak, PC algoritması esirlerin ikilemleri, haydut 

avı, cinsiyetler savaşı gibi tekrarli oyunlarda en iyi stratejilerin bulunmasi  icin 

kullanildi. Tüm deneysel denemelerde, en iyi sonuçlar makul bir hesaplama 

maliyetiyle elde edilmiştir. 

Anahtar Kelimeler: Olasılık Kolektifleri, Kollektif Zeka, Çok ajanli Sistemler, 

Oyun Teorisi.  
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  Chapter  1

INTRODUCTION 

1.1 Motivation 

There is a great interest in the field of collective intelligence (COIN) due to its wide 

applications in many areas such as computer network and collective robotics as well 

as applications on the internet, games and movies. COIN framework consists of a 

huge number of autonomous agents, interacting locally both among themselves as 

well as an active environment, which comes out of the collaboration and competition 

of many individuals. These individuals are self-interested in some specific direction 

to select their actions and receive remunerations depending on a utility function. 

Moreover, the process repeats and converges to equilibrium when there is no 

increase in rewards for the agents through trying a variable. This concept is called a 

Nash equilibrium (EN). Hence, the concept of probability collectives (PC) becomes 

the implementation of the concept of Nash Equilibrium successfully [1] [2]. 

Fundamentally, PC algorithm is a modern method to solve distributed optimisation 

problems. The PC approach has strong connections to Game Theory, Statistical 

Physics and Optimisation [2][13]. In PC, the variables are denoted as individual 

agents/players and the distributed optimisation problem is considered  as a game 

played by these agents [5] [3]. Theory of PC allocates probability distributions to 

select the agents‟ moves and allows each agent to autonomously update its own 

probability distribution at each iteration. These agents select the particular action 
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based on the highest probability to optimise its own utility function. Thus, the 

algorithm continues to find the best solution until the convergence reaches to the 

globally optimal solution or one of stopping criteria such as      is achieved[4]. 

1.2 Advantages of Probability Collectives 

Probability collectives algorithm has many benefits over the other optimisation 

techniques that can be used for the solution of numerical problems: 

- In PC, every agent autonomously updates its own probability distribution 

parameters iteratively, and it can be used on continuous, discrete or mixed variables 

[4] [6]. 

- A set of probability strategies that is a vector of real numbers permits the technique 

of optimisation using Euclidean vectors [6]. 

- The cost function of PC can be irregular or noisy because PC is a robust algorithm 

[6]. 

- A variable with a peaky distribution plays a more significant role in the 

optimisation task than a variable with a broad distribution since PC provides the 

sensitivity information about the problem [3]. 

- Each agent (variable) can find the minimum value of the global objective function 

by using a Homotopy function that is easier to compute and optimize [7]. 

1.3 Thesis Work  

Many types of methods are used to solve distributed optimisation problems by using 

variety techniques such as genetic algorithms (GA), particle swarm optimisation 

(PSO), and simulating annealing (SA). In this thesis, we will use probability 
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collectives to solve unconstrained and constrained optimisation problems in order to 

make convergence more rapid as well as reducing the computational cost. We will 

apply PC to solve the numerical benchmark problems, El Farol bar problem, Multi-

agent coordination as a case study to evaluate the N-queens problem, and 

investigating the evolution of cooperation in repeated games (Prisoner‟s dilemma, 

Stag hunt, Battle of sexes game, and Choose sides).  

1.4 Outline of This Thesis  

The remainder of this thesis is organised as follows: 

Chapter 2 

 Background information in the fields of optimisation and multiagent systems. 

 Literature review of probability collectives. 

Chapter 3 

 Details of probability collectives algorithm. 

Chapter 4 

 Describes the specific implementation of probability collectives to solve 

Benchmark, N-queen, El Farol Bar problems, and Repeated games. 

Chapter 5 

 Displays the experimental evaluations of probability collectives algorithm, 

together with detailed discussions on the obtained results.  

Chapter 6 

 Presents the conclusion and future work. 
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  Chapter  2

LITERATURE REVIEW 

2.1 Introduction to Optimisation 

In the simplest case, an optimisation problem consists of maximising or minimising a 

real function by systematically choosing input values from within an allowed set and 

computing the value of the function. The generalisation of optimisation theory and 

techniques to other formulations comprises a large area of applied mathematics. 

Hence, optimisation problems involve searching for a set of potential solutions 

satisfying a number of pre-specified criteria. One of the hardness in solving the real-

world optimisation problems is that they have a variety of forms and kinds. Some 

problems have only one objective to optimise while some others may have multi-

objectives. Additionally, some problems may be highly constrained and some have 

multiple optimal solutions [9].  

2.1.1 Numerical Function Optimisation Problems 

Numerical Function optimisation problems can be formulated in a standard generic 

form as follows: 

Minimise/Maximise     ( )                                                                                             (   ) 

                 Subject to 

Equality constraints                       ( )                     

Inequality constraints                    ( )                     
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where   is a vector of    decision variables:(         )
 . The decision variable 

space is limited by a set of boundary constraint where [  
    

 ] are lower and upper 

bounds for the decision variables. All solutions that satisfy all constraints and 

variable bounds are called feasible solutions. Otherwise they are called infeasible 

solutions. 

2.1.2 Global and Local Optimal Solutions 

A considering a minimisation problem, objective function    has a local minimum 

point at the point    if: 

 (  )   ( ) For all feasible   

This means a local optimum is a solution, which is optimal (either maximal or 

minimal) within a neighbouring set of candidate solutions. 

The objective function   has a global minimum point at the point     if: 

 (  )   ( ) For all X in the feasible region 

Hence, a global optimum is an optimal solution among all possible solutions, not just 

those in a particular neighbourhood of values. These concepts are shown in Figure 

2.1. 

 

 

 

 

 

 

Figure 2.1: Minimum and Maximum Points 
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2.1.3 Nature-Inspired Optimisation Approaches 

Many nature-/bio-inspired optimisation techniques have been evolved in the past few 

years such as Evolutionary Algorithm (EA), and Swarm Intelligence (SI) which have 

been developed. For example, the Genetic Algorithm (GA) works on the principle of 

Darwinian Theory of survival of the fittest in population. According to [26] and [27], 

the population is developed based on some operators like selection and crossover. 

GA may coverage very close to the global optimum. Similarly, Differential 

Evolution (DE) was proposed by Storn and Price, which helps to explore and locally 

exploit the decision space to reach the global solution. Although, easy to implement, 

there are many problem dependent parameters required to be tuned and may also 

require several associated trials to be performed. 

Theories have been inspired by social behaviour of nature organisms such as fish, 

bees, and birds, which can interact with one another. The model of Swarm 

intelligence is a decentralised optimisation approach. In SI, each agent improves 

itself by sharing the information with others in an environment. SI such as Particle 

Swarm Optimisation (PSO) is inspired by social of birds flocking and schooling of 

fish seeking for food. The Ant Colony Optimisation (ACO) relies on the ants‟ social 

behaviour for foraging food by following the smallest track. As the same ACO, the 

Bee Algorithm tends to optimize the utilization of a number of members, which are 

included in specific predefined tasks. Generally, the swarm techniques are 

computationally intensive [8]. 
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2.2 Introduction to Multi-agent Systems (MAS) 

What are Multi-agent Systems? 

Multi-agent systems consist of a number of autonomous agents, which interact with 

each other or with their environment to perform some set of tasks or to satisfy some 

set of goals. One of the main goals of MAS is to find solutions to complex systems 

problems and to deal with tasks that are beyond the ability of a single agent [10]. 

Figure 2.2 shows a generic description of a multi-agent system. 

 

 

 

 

 

Figure 2.2: Generic Description of A Multi-Agent System [10] 

2.2.1 Advantages of Multi-agent Systems 

Multi-agent systems have some benefits that can be listed as follows: 

1- Due to parallel computation and asynchronous operation, MAS increase the speed 

and efficiency of operation [11]. 

2- MAS reduce computational cost due to individual agents; cost is much less than 

that of a centralised architecture [11]. 

3- MAS increase the reliability and robustness of the systems [11]. 

A1 

A2 

A3 

A4 

Environment 

 

Agents and their Organizational Relationships 
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2.2.2 Study of Multi-agent Systems 

There are many topics to study in multi-agent systems such as Agent-oriented 

software engineering, coordination, cooperation, and organisation. In this thesis, we 

will discuss the example of multi-agent coordination. 

 Multi-agent Coordination  

Multiple agents need many practical settings in order to coordinate their actions. This 

coordination includes combined decisions about resource distribution, scheduling, 

and planning that can be formulated as constraint optimisation problems [12]. We 

thus extend the standard definition of constraint optimisation to the multi-agent 

setting as follows: 

Definition 1: constraint optimisation problem (COP) is a tuple ( , , , ) where: 

  *        +   is a set of variables/agents. 

  *        + is a set of domains of the variables.  

  *        + is a set of constraints. 

  *        + is a set of relations, where a relation    is a function is assigned to 

each combination of values of the involved variables/agents. 

All variables have values that satisfy all constraint and maximise the sum of agent 

utilities in MCOP as expresses by their relations. Note that variable, domains and 

constraints are common and agreed upon knowledge among the agents. On the other 

hand, the individual agents specify relations, and they do not necessarily have to 

report them correctly [12].  

2.3  Literature Review of Probability Collectives 

In few past years, there are challenges to solve complex problems by using a set of 

distributed intelligence agents. These agents act in some specific direction to find 
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local payoffs or the best solution. Hence, Probability collectives (PC) in the 

framework of COIN are a new distributed optimisation algorithm that was first 

introduced by Dr David Worlpert in 1999 in a Technical Report suggested to NASA 

[7] [13]. In 2004, many modifications and applications have already been evolved, 

where Lee and Worlpert change the word utility with the private utility to reduce the 

sample size utilised in the PC algorithm with no prejudice and low contrast. The 

sample size has effectively been reduced using the data aging technique 

(Beneniawski et al 2005). Kulkarni et al (2008) shorted the sample region around the 

present optimal points by modifying the sample principle on original monte-carlo. In 

2011, Worlpert et al have been updated some of the strategies like Steepest Decent, 

Nearest Newton, and Brower Fixed Point method [14]. Moreover, Worlpert et al 

used the significance sampling and parametric machine learning technique to classify 

the PC algorithm as „Delayed Sampling‟ and place forward another „Immediate 

Sampling‟. Kulkarni et al. (2011) have used the Broyden Fletcher Goldfarb Shanno 

method (BFGS) to optimise objective system [14][13]. 

There are some applications of the PC algorithm. Numerical results on a set of 

benchmark functions demonstrate that PC method outperforms the GA algorithm in 

the rate of descent (Hunag et al. 2005). PC has been used in some combinatorial 

problems such as multiple travelling salesman problem (Kulkarni et.al 2010), school 

table scheduling problem (Autry and Brian 2008) and vehicle routeing problems 

(Kulkarni et.al 2010).  

2.3.1 Probability Collectives Framework  

The Probability collectives deal the variables in optimisation problem as 

agents/players. These agents make a decision to optimise the local rewards and the 

system level performance. Furthermore, agents determine their strategies of 
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probability values. During its iterations, the agent updates its own probability to 

select specific actions on the base of the highest probability, in order to improve its 

own private utility. Eventually, the process continues, until the convergence reaches 

the global optimal or some stopping criteria such as temperature rate (     ) or no 

change in the objective function. More details of PC are given in Chapter 3. 

2.3.2 Problems Definition 

In this thesis, we will solve Numerical optimisation benchmarks, N-queens, El Farol 

bar, and repeated games problems using probability collectives algorithm. 

A- Numerical Optimisation Benchmarks Problems  

Twenty-three benchmark functions are classified into three categories based on their 

characteristics, which we will use in this thesis. 

- Unimodal Functions 

This category consists of functions (     ). Each function has only one global 

minimum and is high dimensional [15]. 

- High –Dimensional Multimodal Functions 

This group involves functions (      ). There are several local minimums in each 

of the functions and they are high dimensional. This category is the most difficult 

problems compared with the previous group [15]. 

- Low-Dimensional Multimodal Functions 

This category includes functions (       ). They contain fewer local minimums 

and they are low Dimensional compared with the second group [15]. Table (2.1) 

shows the descriptions of each function which starts from Sphere function and goes 

down Shekel-10 function. 
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Table 2.1: The 23 Numerical Optimisation Benchmarks 

Name Test Function N Domain Optimum 

Sphere   ( )   ∑  
 

 

   

 30 ,        -  0 

Schewefel 

2.22 
  ( )   ∑   

 

   

  ∏    
 

   
  30 ,      -  0 

Schewefel 

1.2 
  ( )   ∑ 4∑   

 

   
5

  

   
 30 ,        -  0 

Schewefel 

2.21 
  ( )      *          + 30 ,        -  0 

Rosenbrock   ( )  ∑ .   (       
 )
 
 (    )

 /
   

   
 30 ,      -  0 

Step   ( )  ∑ (        )
 

 

   
 30 ,        -  0 

Quartic   ( )  ∑    
 

 

   
       ,   ) 30 ,      -  

0 

 

Schwefel 

2.26 
  ( )   ∑ (     (√  )

 

   
 30 ,        -  

-12569.5 

 

Rastrigin   ( )  ∑ (  
       (    )    )

 

   
 30 ,          -  

0 

 

Ackley 

   ( )          (    √
 

 
∑   

 
 

   
) 

    (
 

 
∑        

 

   
)       

30 ,      -  0 

Griewank    ( )  
 

    
∑   

  ∏ (
  

√ 
)

 

   
  

 

   
 30 ,        -  0 

Levy 

   ( )  
 

 
{      (   )

 ∑ (  
  

   

  ) ,        (     -  (  

  ) }  ∑  (           )
  

   
 

     
 

 
(    ) 

 (       )  {

 (    )
          

                    

 (     )
         

 

30 ,      -  0 
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Levy 8 

   ( )     {   
 (    )

 ∑ (    )
 

  

   
, 

     (      )-  (    )
 , 

     (     )-}

 ∑  (          )
  

   
 

30 ,      -  0 

Shekel 

Foxholes 
   ( )  [

 

   
 ∑

 

  ∑ (      )
  

   

  

   
]

  

 2 ,              -  1 

Kowalik    ( )  ∑ 6   
  (  

      )

  
         

7

 
  

   
 4 ,    -  0.0003075 

Six-Hump 

Camel 
   ( )     

       
  

 

 
  
          

     
  2 ,    -  -1.0316285 

Branin 
   ( )  (   

   

   
  
  

 

 
    )

 

   (  
 

  
)          

2 
,     -
 ,    - 

0.398 

Goldstein 

   ( )  ,  (       )
 (           

 

               
 )-

 ,  
 (       )

 (       
     

             
     

 )- 

2 ,    -  3 

Hartman 4    ( )   ∑   
 

   
   6 ∑    (      )

  

   
7 4 ,   -  -3.86 

Hartman 6    ( )   ∑   
 

   
   6 ∑    (      )

  

   
7 6 ,   -  -3.32 

Shekel 5    ( )   ∑ ,(    )(    )
    -

  
 

   
 4 ,    -  -10 

Shekel 6    ( )   ∑ ,(    )(    )
    -

  
 

   
 4 ,    -  -10 

Shekel 10    ( )   ∑ ,(    )(    )
    -

  
  

   
 4 ,    -  -10 
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B- El Farol Bar Problem (EFBP) 

El Farol Bar Problem was first proposed by W. Brian Arthur in 1994 based on a bar 

in Santa Fe New Mexico. 

 
Figure 2.3: El Farol Bar in Santa Fe New Mexico[16] 

The idea of this problem is that, there are N agents/people. Each Thursday, the agent 

tries to predict the bar‟s attendee “go to a bar or stay at home”. If attendances are 

more than 60 of agents/people, the bar is crowded and then agent decides to stay at 

home otherwise attends the bar. Each agent/person cannot communicate with others, 

so no one has any information about the intentions of the others. They only have 

access to the number of the clients of the last weeks [16]. This problem can be 

formalised as follows.  

- N is the number of agents/people. 

-   ,       - history list stores previous attendance at the bar, where history list 

size =   , where m is memory size. 

https://en.wikipedia.org/wiki/W._Brian_Arthur
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-   [            ] is list strategies for each agent which consist of a list of real 

valued numbers, where [           ] are weights that take a random value between -1 

to +1, C is a constant. 

- Calculate prediction using this formula: 

 ( )    ∑    (   )
 
                                                                        (2.1) 

Where  ( ) is the prediction for the attendance at week t, and  (   ) is actually 

recorded attendance at the week (   ). 

- Find the best strategy for each agent for the next prediction using strategy score, 

which is the sum of the difference between its predictions and the actual attendees, 

this is known as error function: 

 (   )  ∑   (   )   ( )    
                                                                                (2.2) 

- Select the best strategy based on minimum score (error) and use this strategy for 

predicting next week. 

C- N-Queens Problem 

The N-queens problem has been proposed by Max Bezzel in 1848 for normal 8 8 

chessboard, which belongs to the class of constraint satisfaction problems. The 

objective of the problem is to put   queens on a     chessboard where there are 

no conflicts among any of queens such as no shared rows, columns, diagonals [17]. 

This problem is formalized as follows. 

- Let   *         +  is a group of variables and each of them is identical to a 

row in the chessboard [17]. 

-   is the number of queens.  
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- Every variable    takes a value from the domain where    *          +, 

where every    corresponds to a column of the chessboard which we can put a queen 

[18]. 

-  The constraints are                              [18]. 

- The objective function is non-attacking queens on the     chessboard by 

considering the chess rules. 

 

 

 

 

 

 

Figure 2.4: Example of Queen‟s Move [18] 

D- Repeated Games 

When the game is repeated a number of times by the same player, the game is called 

iterated game. Each player determines their strategies taking into account the effect 

of his previous actions on the future actions of others. In a repeated game, an 

equilibrium that is not stable may become stable, because the player will play the 

game again with the same player. Hence, Nash equilibrium is a set of strategies, each 

player is considered that no player has the incentive to change its strategy given what 
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the other players are doing. The basic descriptions of games (prisoner‟s dilemma, 

stag hunt, the battle of sexes game, choose sides) are as follows: 

In the prisoner‟s dilemma, two criminals are arrested and brought into a police 

station. The police think they committed a more serious crime but they do not have 

enough evidence to convict them. They need a confession. They take them and put 

them in separate rooms, so they can‟t talk to each other. The police give each of them 

a choice. Admit your partner committed the crime and you will be free, but your 

partner will spend 5 years in a jail. If you do not confess and your partner does, it 

will be the reverse. On the other hand, if they both defect, they will spend only one 

year in jail. While if they both do not defect, they will serve three years. There is one 

pure strategy in this game when both player defect. This can be expressed in a 

normal form, which is shown in table 2.5 [20][21]. 

 

Table 2.2: Payoffs Matrix of the Prisoner‟s Dilemma 

 

 

  

 

The game of stag hunt involves two hunters. They can hunt a stag or a rabbit. If both 

hunters cooperate together, they hunt the stag. However, if hunters hunt separately, 

they will get the rabbit. This game has two pure strategies of Nash equilibrium, 

which differ from prisoner‟s dilemma. So you can see in table 2.3 that if both players 

choose the stag then they will both get payoffs 2. This strategy is called payoffs 
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dominant. On the other hand, if both players play alone they will both get payoffs 1. 

This strategy is known risk dominant [22]. 

Table 2.3: Payoffs Matrix of Stag Hunt 

 

  

 

The battle of the sexes game includes a husband and his wife that want to spend a 

night out at either the opera or a football game. The husband would like to go to the 

football game, while the wife prefers to go to the opera. However, both prefer to go 

out together rather than alone. This game has two version. Version 2 is introduced to 

an account for the fact that a couple could choose the event that is not there the most 

preferred, while version 1 does not. Version 1 is called the battle of the sexes 1, 

whereas version 2 is called the battle of the sexes 2. This game is similar to the stag 

hunt, which has two pure strategies. These strategies occur when both go to the 

football game and both go to the opera [23]. The payoffs matrix is shown in table 

2.4. 

Table 2.4: Payoffs Matrix of The Battle of Sexes Game 

 

 

 

                   a. The battle of the sexes 1                           b. The battle of the sexes 2  
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Choose sides are a coordinate game, which involves two drivers. They drive along a 

dirt road. Both must swerve to avoid a head-on collision. If both choose the same 

sides (both left or both right), they will manage to pass each other. However, if they 

choose different sides such as (left, right), they will collide. This game has two pure 

strategies either both swerve to the left, or both swerve to the right. Both solutions 

are payoffs dominant. In table 2.5 the payoffs matrix of this game is shown clearly. 

Table 2.5:  Payoffs Matrix of The Choose sides 

 

   

 

You can see a summary of characteristics of these games in table 2.6. 

Table 2.6: The Summary of Game Characteristics 

  

 

 

Game 
Number of Pure Strategy 

Nash Equilibrium 

Pure Strategy Nash 

Equilibrium 

Zero 

Sum 

Prisoner‟s 

Dilemma 
1 (Defect, Defect)     = (1,1) No 

Stag Hunt 2 
(Stag,Stag)           = (2,2) 

(Rabbit, Rabbit)    = (1,1) 
No 

Battle of the 

sexes 

1 and 2 

2 
(Opera,Opera)       = (3,2) 

(Football, Football)=(2,3) 
No 

Choose sides 
2 

(Left,Left)             = (1,1) 

(Right,Right)         = (1,1) 
No 
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  Chapter  3

Probability Collectives Algorithm 

3.1 Probability Collectives Formulation 

Probability collectives algorithm formalise as a group of   agents, each agent    can 

take on a finite number of values from interval   ,  
    

 - and builds a set of 

solution through a strategy set x represented as [4][13]:  

       2  
, -
   

, -
       

,  -3 ,     *          +                                       (3.1)                                                                                                                     

Where    is the number of strategies and   is the number of variables. Each agent   

combines a set of strategies   
  with cardinality    in cooperation with other agents 

as: 

  
, -
 2  

, -
   
, -
       

, -
          

, -
   
, -
3                                                    (3.2) 

The superscript [?] denotes to random selection and each agent has formed one 

strategy set for each remaining strategies of its strategy set   . Accordingly, the set of 

solutions build by agent   as shown below. 

     
, -
 2  

, -
   
, -
       

, -
          

, -
   
, -
3                     

     
, -
 2  

, -
   
, -
       

, -
          

, -
   
, -
3                                                    (3.3) 

     
, -
 2  

, -
   
, -
       

, -
          

, -
   
, -
3                     

     
,  -  2  

, -
   
, -
       

,  -         
, -
   
, -
3                     
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As the same, all the remaining agents form their collective strategy sets as shown in 

equation (3.3), then every agent   evaluates the objective function for each of their 

combined strategy set      
,  - as: 

0 .  
, -
/   .  

, -
/      .  

, -/        .  
,  -/1                                          (3.4) 

Each agent finds the sum of the objective function for its combined strategy set to be 

minimised as follows [13]: 
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It is a very hard to find the minimum of function ∑  (  
, -
) 

  
   , because there are 

several possible local minima. For this reason, the objective function 

∑  (  
, -
) 

  
    are converted into another topological space by building an easier 

function   and placing it in a new form known as a Homotopy Function. 

  ( (  )  )  ∑  .  
, -/     

  
      ,        ,   )                                         (3.6) 

∑ 𝐺(𝑌 
,𝑟-

𝑚𝑖

𝑟  
) 

∑ 𝐺(𝑌𝑖
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𝑚𝑖

𝑟  
) 

∑ 𝐺(𝑌𝑁
,𝑟-

𝑚𝑖

𝑟  
)  (   ) 
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Agent i 

Where  (  
, -) is the probability distribution associated with agent  , who is taken as 

the uniform probability, defined as:   

 .  
, -/  

 

  
                                        (3.7) 

As an illustration, the uniform probability distribution for agent   may look like that 

shown in figure 3.1 .for example, there are 5 strategies i.e     . Then, each agent   

will take uniform probability distribution  .  
, -/  

 

 
  .  

 

 

 

 

 

 

 

Figure 3.1: Uniform Probability Distribution      of Agent i. 

 

Each agent calculates the expected utility function ∑  
  
   . (  

, -
)/ through using a 

joint product probability that is sampled randomly the probabilities from 

distributions of other agents as [4][13]: 

 .  
, -/   .  
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, -
/)    
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Now, we need to replace   used in the Homotopy function and put its place a convex 

function such as the Entropy Function [7][4]. 

    ∑ 0 .  
, -/      .  

, -/1
  
                                                                         (3.9) 

Hence, each agent   minimizes its Homotopy function as: 

  . .  
, -/   /  ∑  . (  

, -
)/

  
           

 ∑  . (  
, -
)/    . ∑ 0 .  

, -/      .  
, -/1

  
   /

  
                              (3.10) 

where   ,   )    

A suitable optimisation technique is used to find the minimization of Homotopy 

function such as Nearest Newton Descent Scheme (NNDS), Borden-Flectcher-

Goldfarb-Shanno (BFGS) and Deterministic Annealing (DA) (Kulkarni et al 

2015)[7][13]. This thesis introduces a further intensification scheme using the PC 

algorithm and based on results generated by Nearest Newton Descent Scheme 

(NNDS). 

 .  
, -
/   .  

, -
/          .  

, -/                                                         (3.11) 

Where             
                        

 
    ( )    ( .  

, -
/)                  (3.12) 

And                           ( .  
, -
/)
 
 .∑  ( .  

, -/)
  
   /

 
     (3.13) 

Where       is constant which takes a value  (   -and   is Boltzamann‟s 

temperature, which starts from                        , so   is a number of 

iterations and   ( ) is the Entropy Function of agent  . After that, each agent   find 

∑ 𝐸(𝐺 .𝑌𝑁
,𝑟-
/)

𝑚𝑁

𝑟 𝑁
 (3.8) 
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the favourable strategy   
,   -

 by the highest prbability value over its distributin [13]. 

For example, there are 5 strategies for 3 agents as demonstrated in figure 3.2. 

 

 

 

 

 

 

a) Favourable Strategy for Agent 1                        b). Favourable Strategy for Agent 2 

 

 

 

 

 

 

c) Favourable Strategy for Agent 3 

Figure 3.2: Probability Distribution of Agent,  =1,2,3. 

All agents compute the objective function ( (    )   where      is given by      

{  
     

   
     

       
     

   
     

}. Actually, there are some criteria to terminate the 

algorithm of probability collectives either: 

- If temperature    . 

- If ||   (    )   ( 
   )          where     . 

For each iteration, the PC algorithm updates the boundaries of variables   and 

Boltzmann‟s temperature as follows: 
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 (   )  (   )    

   
    , i=1…                                                               (3.14) 

  
 (   )  (   )    

   
 , i = 1,………,                                                     (3.15) 

     (    )                                                                                               (3.16) 

Where       is the range factor and        is the cooling rate. The 

algorithm PC continues until one of mentioned criteria above is satisfied. 

3.3 Implantation of PC Algorithm  

The probability collectives algorithm to solve problems is as follows: 

- Initialize  

- Set the parameters (         ) and convergence criteria  . 

- Allocate the starting probabilities for each agent to uniform over its values as Eq. 

(3.7). 

- Set the number of generations     . 

- Repeat 

- Form a set of combined strategies    
,  - for each agent   as Eq.  (3.3).  

- Evaluate the objective function for the set of combined strategies      
,  - as Eq. 

(3.4). 

- For each agent   computes expected objective function using Eq. (3.8). 

- Minimise the Homotopy Function   as shown in Eq. (3.10). 

- Compute the contribution of   
, -

using Eq. (3.13). 

- Update the probabilities of all the strategies for every agent, I as Eq. (3.11). 

- Update the strategy boundaries using Eq. (3.14) and (3.15). 

- Update Boltzmann‟s temperature as shown in Eq. (3.16). 

- Define the favourable strategy through determining the maximum probability 

value for each variable as shown in Figure 3.2. 
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- Compute the utility function ( (    ) with this set of agents. 

- Keep the favourable strategy for every value. 

-      . 

- Until the convergence criteria are satisfied. 

- Accept final value. 

- Stop  

The flowchart description of PC algorithm is shown in Figure 3.3. 
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Figure 3.3: Flowchart of PC Algorithm 

 

 

Set the parameters  𝜆 𝛼𝑠 𝛼𝑇  𝐾 𝑁 𝑎𝑛𝑑 𝜀 , and initialize all 

probabilities to uniform value 

Form a set of combined strategies    𝑌𝑖
,𝑚𝑖- (random sampling) 

Evaluate objective function for a set of combined strategies 

Compute expected objective value   

Minimize the Homotopy function 

Compute the contribution of agent 𝑖 

Update probability distribution 

Iteration  ≥ 𝑘 

Find the favorable strategy  

Evaluate objective function 𝐺(𝑌𝑓𝑎𝑣) 

Store most favorable strategy for each agent 

Termination 

criteria satisfied? 

Accept final solution 

𝑁   𝑁    

START

T 

STOP 

No 

No 

Yes 

Yes 
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  Chapter  4

METHODOLOGY 

In this thesis, we applied the probability collectives algorithm to solve four different 

problems such as 23 Numerical benchmark functions, El Farol bar, constraint 

satisfaction (N-Queens), and Repeated games problems. 

4.1 Application of Probability Collectives to Numerical Benchmark 

Problems 

In this thesis, we used the PC algorithm described in chapter 3 to solve 23 Numerical 

benchmark problems, which are described in chapter 2. In the initialization of 

parameters, we set the number of runs (   =   ) and the number of iteration 

(      ) is a different for each problem as well as the number of agent ( ). We also 

set the number strategies (     ) for each agent and parameters including 

(                                             ). After that, we 

proceeded with the following steps: 

- Allocate uniform probability value (       
 

  
  ) for each agent. 

- Each variable (agent) is randomly chosen value from [     ] i.e. [-100,100] for 

sphere function. 

- Form a set of combined strategies   
,  -. 

- Evaluate objective function for each problem as shown in table 2.1 as well as 

calculate expected and Homotopy function. 

- for each   of iterations updates each probability values. 
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- find the highest of probability to find the best value for each agent, and then 

evaluate objective function. 

- IF the difference between the best solution and the current solution is less than  , 

then the final solution is accepted. 

- Else updates the boundaries of variables   and Boltzmann‟s temperature and  

      . 

The flowchart of Numerical benchmark problems is the same, which is described in 

chapter 3. 

4.2 Application of PC to El Farol Bar Problem 

In this problem, we applied the PC algorithm as follows: 

a- Initial parameters (                   ), as the same first problem as well as 

the parameters of El Farol bar  problem is as: 

-     is the size of memory where     =8. 

-   is the number of agents where      . 

- W is the number of weeks where       . 

- The size of history attendance equal     * 2. 

- The size of strategy equal     + 1. 

b-  Initialize the current history of attendance randomly among (0:100) such as: 

      = [ 10,20,50,15,60,100,12,0,18,80,50,59,60,40,25,32] subject to        is 

integer numbers . 

c- For each week, find the number of attendance as: 

- Initial the strategy to each agent among (-1,1)as shown: 

    ,              - 

    ,               -, where c is constant and w is a weight. 

- Calculate prediction for each agent using Eq. (2.1).   
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-  Find the best strategy by computing the strategy score for each strategy using Eq. 

(2.2). Hence, the low score is good, a high score is bad. Mathematical example to 

show how to find the best strategy and calculate a score [25]. 

Each strategy based on    =2 and  =2. 

 

 

 

 

 

  

 

       

To compute the score: 

    Predict         using        ,        ,                     

         

    Predict         using        ,        ,                     

         

                                

Strategy 1 score:                                   

                                 

=12.5                                                    

                                

=47.5                                                   

                            

                                

30 20 5 90 

        

0 0.5 0.5 

        

0.5 -0.1 0.6 

History of agent 1 

ah  

Strategy 1  Strategy 2 
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 Strategy 2 score: 

                     

=3.3 

                           

=55       

                        

=61.7  

Strategy 1 is the best because the score is lower. 

- Repeat this calculation for all agents then find minimum score using the PC 

algorithm as the same which discussed in chapter 3. 

- Check the prediction if (p <= 60) then                . This means, this 

agent comes to bar otherwise stays at home. 

- Update the history attendance. 

- Update temperature  . 

- Repeat until finding a prediction for all week. 

- Show results 

Figure (4.1) shows the flowchart of the PC algorithm to the El Farol bar problem. 
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Figure 4.1: Flowchart PC Algorithm for El Farol Bar Problem 
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4.3 Application of PC to N-queens Problem 

In this thesis, we applied this problem addressed by PC to Distributed Constraint 

Satisfaction Problems (DCSP). We can formalise the algorithm as follows: 

- Initialize the parameters of PC algorithm (                        

          M            ), and (       is a number of queens,      

is a number of population and           is a number of actions. 

- Create actions list. 

- Initialize a set of agents where each agent can take a value from domain 

={1,2,….,  } where initialization is done using a random permutation such as 

 =[1,3,4,2]. 

- Apply actions and evaluate the objective function for each agent. 

- IF all constraint is not satisfied repeat pervious step otherwise go to next step. 

- Find the best solution using the PC algorithm. 

- Repeat until the global minimum is reached, then accept the optimal solution. 

Figure 4.2 shows the flowchart of PC algorithm to N-queens problem. 
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Figure 4.2: Flowchart PC Algorithm for N-queens Problem 
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4.4 Repeated Games 

We applied the PC algorithm to the study of evolutionary game theory. In this thesis, 

we used different problems such as (Prisoner‟s dilemma, Stag hunt, Battle of sexes 

game, Choose sides) to simulate one shot (repeated) games between two players. 

Each   is considered as an agent in a D-dimensional space and each element of agent 

can take the binary value of 24-bit length. Also each bit will represent an action (0 

for defect, 1 for cooperate) .all agents have a D-dimensional, which are in 

range ,         -. More details of the algorithm are as follows: 

Step1: initial parameters of PC algorithm (             M            ). 

Step2: allocate uniform probability value for each agent as      
 

  
 . 

Step3: initial   
,  -  random such as     2        

, -
         

, -
       

,  -3. 

Step4: find a set of solution      
,  - then evaluate fitness function.  For example, 

calculate objective function for Prisoner‟s dilemma as 

IF (C&C) then fitness= fitness+3 

IF (C&D) then fitness= fitness+0 

IF (D&C) then fitness= fitness+5 

IF (D&D) then fitness= fitness+1  

Where C means a cooperate, D means a defect. 

Step5: find expected function and homotopy function. 

Step6: update probabilities value for   of iteration. 

Step7: find the maximum probability. 

Step8: evaluate objective function, calculate average payoffs, and update     

Step9: repeat until the number of iteration ≥      , and then show the results. 

The flowchart of repeated games is the same which we described in chapter 3. 
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  Chapter  5

EXPERIMENTAL RESULTS 

The probability collectives is implemented to solve four problems using 

Matlab2013b in Windows 7 operating systems and run on a personal computer with 

Intel core(TM) i3 2.10 GHz CPU and 4.00GB of RAM. First, we focus on 23 

benchmark functions, which the same functions used in (Huang et al.2005). 

Moreover, we compared the convergence rate of PC algorithm over 20 runs for 

unimodal functions       except for    which is a discountouns function as well as 

compared highly multimodal functions        and basic multimodal 

functions        . Second, the simulation of el Farol bar problem is done over 

1000 weeks. We will show the mean and standard deviation of attendance over 20 

runs. Third, we implemented the PC algorithm of N-queens problem for a various 

sizes N=(8,100,150,180) and show the best solution based on time and a number of 

iterations. Fourth, different related games are solved using PC such as (Prisoner‟s 

dilemma, Stag hunt, Battle of sexes game, Choose sides). In these games, we did 

simulation for 10 agents over 500 times and will show the comparison among four 

games, which reach the best fitness. 

5.1 Results of Benchmark Problem 

The first experiment is carried on benchmark functions      , which have 30 

variables (agents). Each agent has 20 strategies, starting from uniform 

probability 
 

  
 and random initial values. So, all functions are iterated 2000 times 

until convergence is reached to   =0.000001. We discussed only Sphere function 
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The best solution    

The worst solution 

while you can see the results of other functions       in the following figures 5.2 

and 5.3. In figure 5.1(a), the result of function    reached the best minimum solution 

about 1.0797e-07 at 1 run. Because, the probability of some agents are close to one 

such as agents (3,4,7,8,11,15,20,21,26,29) as indicated in figure 5.1 (b). However, 

the worst solution of Sphere function is 1.975e-05 at 13 run.  

 

 

 

 

 

 

 

 

   (a) 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b)  

Figure 5.1: Performance of The PC Algorithm on Sphere Function. (a) Shows The 

Best Result Over 20 Runs, and (b) Shows Favourable Strategy of Agents at 1 Run. 
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The worst solution 

The best solution    

The worst solution 

The best solution    

The worst solution 

The best solution    

 

 

 

 

 

 

 

 

            

            

      

   

                    (Schwefel 2.22 )                                Favorable Strategy of 30 agents at 1 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          (Schwefel 1.2)                        favorable strategy of 30 agents at run 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

                 (Schwefel 2.21)                          Favorable Strategy of 30 agents at run 14 

(a) Shows the best result over 20 runs        (b) Shows favourable strategy of 30 agents 

Figure 5.2: Performance of The PC Algorithm on Functions       . 
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The worst solution 

The best solution    

The best solution    

The worst solution 

The best solution    

The worst solution 

 

 

 

 

 

 

 

 

 

 

 

 

                        
                                  (Rosebrock)                                              Favorable Strategy of 30 agents at run 9 

 

 

 

 

 

 

 

   
                                       (Step)                                              Favorable strategy of 30 agents at run 8 

    

 

 

 

 

 

 

 

                       

                             
                                      (Quartic)                                                Favorable strategy of 30 agents at run 1 

(a) Shows the best result over 20 runs        (b) Shows favourable strategy of 30 agents 

Figure 5.3: Performance of The PC Algorithm on Functions      . 
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The best solution    

The worst solution 

From Figures 5.1, 5.2 and 5.3, we can summarise the results of these functions where 

the best result is function 6 which converged to zero. However, the worst result is 

function 5 because the most its results are close to 29, while the results of other 

functions are similar approximately between          . 

High-dimensional functions        are the second experiment that is implemented 

using the PC algorithm. They have the same dimension and also the number of 

strategies that are used in the first experiment. But the number of iterations is a 

different in around 1000 for all functions. In Figures 5.4, 5.5, and 5.6 (a), the results 

of functions         are the nearest to the global optimum such as (our result 

of      -12435.8614, global optimum= -12569.5). In contrast, outcomes of 

functions          gave us local solutions (     approximately 0.1,      about 0.3) 

which are far the optimum solutions (0). 

 

 

 

 

 

 

 
                                 (Schwefel2.26)                                       Favorable strategy of 30 agents at run 15 

(a) Shows the best result over 20 runs        (b) Shows favourable strategy of 30 agents 

Figure 5.4: Performance of The PC Algorithm on Function   . 
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The best solution    

The worst solution 

The worst solution 

The best solution    

The worst solution 

The best solution    

 

 

 

 

 

 

 
                                  (Rastriging)                                               Favorable strategy of 30 agents at run 14 

 

 

 

 

 

 

 
                                     (Ackley)                                                 Favorable strategy of 30 agents at run 9 

 
 
 

 

 

 

 

 
 
                                 (Griewank)                                                  Favorable strategy of 30 agents at run 7 

(a) Shows the best result over 20 runs        (b) shows favourable strategy of 30 agents 

Figure 5.5: Performance of The PC Algorithm on Functions       . 

 



 

41 

 

The worst solution 

The best solution    

The worst solution 

The best solution    

 

 

 

 

 

 

 

 

 

 

 

  

                                  (Levy)                                               Favorable strategy of 30 agents at run 5 

 

 

 

 

 

 

 

                                

                         
                                  (Levy 8)                                          Favorable strategy of 30 agents at run 13 

(a) Shows the best result over 20 runs        (b) Shows favourable strategy of 30 agents 

Figure 5.6: Performance of The PC Algorithm on Functions        . 

The third experiment is executed on low-dimensional functions        . Each 

function has a various dimension and the number of iteration. In figures 5.7, 5.8, 5.9, 

and 5.10, all functions          are converged to the global solutions such as (our 

outcome of function     = -1.0316, the global minimum = -1.0316285). 
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                              (Shekel Foxholes)                                      Favorable strategy of 2 agents at run 13 

 

  

 

 

 

 

 

 

                      
                                       (Kowalik)                                            Favorable strategy of 4 agents at run 4 

 

 

 

 

  

 

 

 
                         (Six-hump Camel)                                    Favorable strategy of 2 agents at run 12 

(a) Shows the best result over 20 runs         (b) Shows favourable strategy of   agents 

Figure 5.7: Performance of The PC Algorithm on Functions        . 
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The worst solution 

The best solution    

The worst solution 

The best solution    

The worst 

solution 
The best solution    

 

 

 

 

 

 

 

 

                                     (Branin)                                                  Favorable strategy of 2 agents at run 1 

 

 

 

 

 

 

 

 

                                     (Goldstein-Price)                                  Favorable strategy of 2 agents at run 2 

 

  

 

 

 

 

 

 

                                   (Hartman 4)                                              Favorable strategy of 4 agents at run 13 

(a) Shows the best result over 20 runs         (b) Shows favourable strategy of   agents 

Figure 5.8: Performance of The PC Algorithm on Functions          
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The worst solution 

The best solution    

The worst solution 

The best solution    

 

 

 

 

 

 

 

 

                                     (Hartman 6)                                        Favorable strategy of 6 agents at run 12 

 

 

  

 

 

 

 

    
                                 (Shekel 5)                                             Favorable strategy of 4 agents at run 1 

 

 

 

 

  

 

 

                   
                           (Shekel 7)                                               Favorable strategy of 4 agents at run 13 

(a) Shows the best result over 20 runs         (b) Shows favourable strategy of   agents 

Figure 5.9: Performance of The PC Algorithm on Functions        . 

The worst solution 

The best solution    
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                              (Shekel 10)                                          Favorable Strategy of 4 agents at run 4 

(a) Shows the best result over 20 runs         (b) Shows favourable strategy of N agents 

Figure 5.10: Performance of The PC Algorithm on Functions    . 

In the following, the summary of all functions is demonstrated in table 5.1. All 

outcomes have been averaged over 20 runs. We found the mean best functions values 

over 20 times, and standard deviation. Moreover, we took the minimum best 

solutions for all runs and the maximum best solutions over 20 runs. It can be said 

from table 5.1 that the majority varies between functions        ,       , and 

        is that functions         are convergence rate faster than other functions, 

because these functions have low dimensions and small local minima.  
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Table 5.1: PC Results of 23 Benchmark Problems 

 

Functions N S 
Number of 

Generations 

Best 

solution 

Worst 

solution 
Mean STD DEV Time  Optimum 

F1 30 [-100,100] 2000 1.0797e-07 1.975e-05 4.0497e-06 5.6421e-06 171.194 s 0 

F2 30 [-10,10] 2000 1.2452e-06  0.0006045 6.0565e-05 0.00014377 256.867 s 0 

F3 30 [-100,100] 2000 4.6356e-08 8.0209e-05 6.4234e-06 1.7668e-05 275.03 s 0 

F4 30 [-100,100] 2000 6.8104e-07 0.00012707 1.4142e-05 2.8366e-05 365.561 s 0 

F5 30 [-30,30] 2000 28.7648 29.0015 28.9699 0.0695 2061.81 s 0 

F6 30 [-100,100] 2000 0 21 4.7 5.526 180.40 s 0 

F7 30 [-1.28,1.28] 2000 1.2743e-05 0.0021258 0.00066206 0.0005144 2543.27 s 
0 

 

F8 30 [-500,500] 1000 -12435.8614 -1520.0505 -5673.9477 3015.9275 1690.48 s 
-12569.5 

 

F9 30 [-5.12,5.12] 1000 1.3225e-07 0.00025839 2.152e-05 6.0401e-05 145.41s 
0 

 

F10 30 [-32,32] 1000 3.7471e-07 0.00015753 1.2967e-05 3.4556e-05 312.60 s 0 

F11 30 [-600,600] 1000 8.0909e-08 6.0028e-05 5.2176e-06 1.3048e-05 178.087 s 0 

F12 30 [-50,50] 1000 0.1054 0.15941 0.14468 0.018089 3535.41 s 0 

F13 30 [-50,50] 1000 0.28619 0.3 0.29628 0.0039995 3307.92 s 0 

F14 2 [-65.536,65.536] 1000 1.0375 16.6154 9.3546 4.6737 182.467 s 1 

F15 4 [-5,5] 1500 0.00049479 0.14844 0.062034 0.06317 307.88 s 0.0003075 

F16 2 [-5,5] 100 -1.0316 -0.99236 -1.0103 0.01411 32.62 s -1.0316285 

F17 2 [-5,10]x[0,15] 500 0.3981 19.5348 1.3624 4.2773 88.4769 s 0.398 

F18 2 [-2,2] 1000 3.0001 599.06 119.09 179.64 125.03 s 3 

F19 4 [0,1] 500 -3.4545 -0.7997 -2.395 0.81776 69.99 s -3.86 

F20 6 [0,1] 1000 -3.3196 -0.65012 -2.847 0.8126 204.63 s -3.32 

F21 4 [0,10] 2000 -10.04 -1.6524 -5.5518 1.9146 100.03 s -10 

F22 4 [0,10] 2000 -10.24 -0.337 -5.322 3.017 73.81 s -10 

F23 4 [0,10] 2000 -10.215 -0.996 -5.043 2.590 74.023 s -10 



 

47 

 

5.2  Results of EL Farol Bar Problem 

The results of this problem being repeated 20 runs as shown in figure 5.11. We found 

the attendance at the bar in each of the 1000 weeks. The mean was not stable as in 

figure 5.11. It is noteworthy that, the average was approximately among 54 and 53. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Mean Attendance over 20 Runs 

Figure 5.12 illustrates the standard deviation of attendance at the bar over 20 runs. 

There were fluctuations of standard deviation for all weeks between 4.5 and 5. 
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Figure 5.12: Standard Deviation of Attendance over 20 Runs. 

Figure 5.13 is shown the last attendance at the bar. The number of attendance is 

fluctuated to among 55 and 67 for each week. Attendance in 5 weeks is 64.  This 

means, the bar is crowded, whereas attendance in the first week is about 46 

attendances. This means, agent attends the bar. The results of each trial were similar 

with that illustrated in figure 5.13. 

 

 

 

 

 

 

 

 

Figure 5.13: The Attendance in The Last Run. 
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5.3 Results of N-Queens Problem 

We implemented the PC algorithm to solve the N-queens problems at different sizes 

(               ). Figure 5.14 illustrates the convergence for various sizes of 

problem. The numbers of conflicts drop sharply from 1 to 0 as in figure 5.14 (a). 

However, the number of conflicts in figure 5.14 (b, c, d) decreased gradually to reach 

zero. This means, the small size of problem took much less iterations to 

convergences than larger sizes. 

 

 

 

 

  

 

 

(a)   = 8 queens 

 

 

 

 

 

 

 

 

(b)   = 100 queens 
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(c)    = 150 queens                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

(d)    = 180 queens 

Figure 5.14: (a-d) The Convergence for PC Algorithm Runs on Different Sizes of 

Queens. 

Table 5.2 shows the result of applying the PC algorithm to find the best solution for 

N-queens, with the time that is needed to achieve each solution. For example, 8 

queens are distributed on chessboard as :(    at column 4 ,    at column 8,    at 

column 1,    at column 5,    at column 7,    at column 2,    at column 6 ,    at 

column 3). 

 

 



 

51 

 

Table 5.2: The Results of N-Queens Problem and Time of Reaching The optimum 

Solutions 

 

 

 

 

 

Number of 

queens 

Number of 

Generations 
Time Solutions 

8 2 0.408623 s [4,8,1,5,7,2,6,3] 

100 19 2168.79359s 

[27,90,17,62,47,2,41,71,24,3,80,4,37,66,96,87,29,

69,28,65,67,1,54,57,84,94,40,44,89,95,11,73,31, 

34,19,38,98,100,45,76,8,52,46,14,53,36,77,42,81, 

78,56,5,10,79,18,43,13,93,97,55,83,51,15,63,85, 

70,33,91,6,99,68,21,64,48,82,20,25,23,7,39,92,59

,12,22,49,26,88,60,32,75,72,74,61,35,50,30,58,16

,9] 

150 30 6067.604771s 

[34,140,61,80,49,147,137,148,40,21,23,48,127,24

,31,81,68,55,3,97,133,67,120,135,44,87,96,100, 

33,89,2,25,14,116,130,9,5,136,11,142,129,94,45,

76,107,63,113,53,56,79,126,4,43,122,149,111,6, 

57,20,26,46,42,144,131,118,17,146,65,77,10,134,

58,38,98,64,110,124,93,70,47,27,109,8,114,108, 

95,105,138,117,132,60,22,19,1,71,145,13,90,86, 

18,37,39,128,74,125,16,30,102,36,92,15,12,139, 

73,75,78,112,62,115,28,121,35,52,7,99,32,91,50,

85,119,82,66,69,54,83,59,141,84,29,104,143,41, 

123,88,51,101,72,106] 

 

180 30 30240.05265s 

[34,176,103,170,147,10,68,142,73,97,122,41,35, 

172,155,65,109,61,168,171,123,137,62,134,100, 

108,37,46,133,11,5,1,95,28,70,78,159,57,47,124,

148,143,39,24,135,4,48,52,140,71,119,141,113, 

150,116,6,74,144,158,76,83,88,14,161,110,23,55,

96,69,44,20,84,127,120,85,111,25,131,51,12,87, 

139,153,178,160,152,128,66,18,13,19,27,90,7,22,

145,164,180,17,45,54,101,59,129,174,177,16,126

,72,166,36,3,33,82,99,26,175,21,156,179,107,43,

165,162,115,9,89,104,121,163,138,86,75,132,102

,151,92,15,2,117,114,40,130,63,56,98,80,49,42, 

93,154,118,112,58,94,64,146,53,105,125,91,30, 

79,149,136,8,32,38,29,60,173,50,167,31,81,157, 

77,169,67] 
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5.1 Results of Repeated Game Problems 

We carried out the PC algorithm on a different repeated games such as (Prisoner‟s 

dilemma, Stag hunt, Battle of sexes game, Choose sides), with the number of runs 

equal to 500 and the number of agents 10, starting from random initial values. We 

had two results for each problem. The first graph illustrates the mean of payoff at 

each ran. The second graph shows the decimal representation of values at each run. 

We discussed result each problem as follows: 

-  Results of Prisoner’s Dilemma game 

We can see in figure 5.15 that the mean payoffs converged gradually to a value near 

1 at 150 iterations. It is clear that the Prisoner‟s Dilemma simulations stabilized even 

after 150 runs. Thus, the optimal strategy is for all players to defect (D, D), yielding 

payoffs of (1, 1). Figure 5.16 shows the decimal representation of the best value. We 

can see that after around 20 runs this value decreased to zero and stayed there. 

 

 

  

 

 

 

 

 

Figure 5.15: The Mean of Payoffs over 500 Iterations (Prisoner‟s Dilemma) 
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Figure 5.16: The Decimal Representation of The Best Value (Prisoner‟s Dilemma) 

 

- Results of Stag Hunt game 

The average of payoffs remained stable to a value 1 for all iterations. The 

equilibrium point of stag hunt game is (Rabbit, Rabbit) which is easy to achieve 

because of risk dominant the highest possible payoff as shown in figure 5.17. The 

best value declined from        to zero at iteration 10 as shown in the figure 

below 5.18. Thus, the best strategy of this game was always defection “hunting 

rabbits”(R, R). 
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Figure 5.17: The Mean of Payoffs over 500 Iterations (Stag Hunt) 

 

 

 

 

 

 

 

 

 

Figure 5.18: The Decimal Representation of The Best Value (Stag Hunt) 

- Results of Battle of Sexes Game 

This game has two versions. The results of both versions were inherently similar. 

The average of payoffs converged at around 150 runs in version 1 to a value 5 and 

about 105 runs in version 2 to a value 5 as shown in figure 5.19. The graph shows the 

most outcomes to have been two equilibrium points of this game, one at (football, 

football) and one at (opera, opera). In figure 5.20, the best value of version 1 
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decreased at around 15 iterations to zero. Whereas, the best value of version 2 

dropped approximately 10 times to zero. 

 

 

 

 

 

 

 

                  

(a) The Battle of Sexes (Version 1) 

 

 

 

 

 

 

 

 

(b)  The Battle of Sexes (Version 2) 

Figure 5.19: The Mean of Payoffs over 500 Iterations (Battle of Sexes Game) 
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(a) The Battle of Sexes (Version 1) 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  The Battle of Sexes (Version 2) 

Figure 5.20: The Decimal Representation of The Best Value (The Battle of Sexes) 

- Results of Choosing Sides Game 

In this game requires the two players to choose the same action both right or both 

left. In figure 5.21, we can see that the convergence of the average payoffs was close 

to one at 100 runs and remained the same value after this iteration, which reflects the 

payoffs at the two equilibrium (Right, Right) and (Left, Left). The decimal 

representation of value converged to zero at 10 iterations as in figure 5.22. 
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Figure 5.21: The Mean of Payoffs over 500 Iterations (Choosing Sides) 

 

 

 

 

 

 

 

 

Figure 5.22: The Decimal Representation of The Best Value (choosing Sides) 

To sum up, we compared the results of four games. We found that the best result was 

the stage hunt game because the convergence of this game was faster than other. 

Whereas, the convergence of others games was inherently similar. 

 

 



 

58 

 

  Chapter  6

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we have implemented several problems using probability collectives 

algorithm. The PC is a general framework of agent coordination and distributed 

optimisation, which is a type of heuristic algorithm. This algorithm concentrates on 

adapting the distributions the strategy set of each agent to improve its performance. 

Each agent makes options using the determined utility until the algorithm reaches the 

convergence. The performance of probability collective is tested using four problems 

such as 23 benchmark problems, El Farol bar problem, N-queens problem and 

repeated games problems. The results show that the PC algorithm was successful and 

was sufficiently robust in solving these problems.   

6.2 Future Work 

In the future task, we will implement PC algorithm to solve the multi-objective 

optimisation for all problems the proposed in this thesis. We will also hybridise PC 

algorithm with different technics such as simulated annealing to estimate expected 

utility and escape from a local minimum. Furthermore, we will develop parameters 

of PC algorithm such as the number of strategies    and number of iterations.   
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