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ABSTRACT 

In every field of scientific research and application, where the masses of data is 

available in multivariate form, the use of multivariate statistical analysis techniques 

can be implemented to achieve proper statistical inferences. The statistical modeling 

of data is the essential part of the multivariate analysis. The model might be the linear 

combinations of the original data, which can be created though the relationship 

between Principal Component Analysis (PCA) and Factor Analysis (FA). Such 

process of converting the entire data into the set of few clusters or linear models is 

called dimension reduction. Before applying FA, the Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy test for FA is used (12). Initial factor loadings and the 

variamx rotated factor loadings are computed via PCA approach. The estimated factor 

models generated by ordinary least square method, are further used for statistical 

control charts. Finally the generation of the uncorrelated statistical models using the 

relationship between PCA and FA is carried out to enable the estimation of the future 

outcomes. 

Keywords: Correlation matrix, KMO test, Reducible Eigen space, dimension 

reduction, varimax rotation, uncorrelated statistical models, OLS estimated factor 

scores, statistical control charts. 
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ÖZ 

Bilimsel araştırma ve uygulamanın her alanında, çok değişkenli verilerin var olduğu 

durumlarda, en uygun sonuçlar çok değişkenli istatistik analiz yöntemleri ile elde 

edilebilir. Verilerin istatistikslel modellemesi çok değişkenli analizin temel unsurudur.  

Bu modelleme Temel Bileşenler Analizi (TBA) ve Faktör Analizi (FA) arasındaki 

ilişkiden yararlanarak veriler arasında doğrusal kombinasyonların oluşturulması 

şeklinde olabilir. Verilerin alt gruplara veya doğrusal modellere dönüştürülmesine 

boyut indirgeme denir. FA yapılmadan önce, verilerin FA’ya uygunluğunun 

saptanması için  Kaiser-Meyer-Olkin (KMO) ölçüm hesabı yapılır. İlk faktör yükleri 

ve varimax metodu ile dönüşümü yapımış faktör yükleri TBA yaklaşımı ile hesaplanır. 

Minimum kareler yöntemi ile tahmin edilmiş faktör modeli istatistiksel control 

grafiklerinin oluşturulmasında kullanıldı. Son olarak TBA ve FA arasındaki ilişki 

kullanılarak ileriki oluşumların tahmininde kullanılmak üzere bağımsız istatistiksel 

modeller oluşturulmuştur. 

Anahtar kelimeler: Korelasyon matrisi, KMO test, indirgenebilir Eigen uzayı, boyut 

indirgeme, varimaks döndürümü, enküçük kareler metodu ile tahmin edilmiş faktör 

skorları, istatistiki Kontrol grafikleri. 
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  Chapter 1 

INTRODUCTION 

In every field of data analysis, the data are typically collected by researchers through 

the experimental units. These can be inanimate subjects, human subjects, plants, 

countries and a wide range of other objects. However, in multivariate analysis, 

it is sometimes tedious to isolate and study each variable individually. It is essential to 

study all variables simultaneously, to achieve completely understandable structure and 

clear configuration of the data. From this point of view, the multivariate statistical 

techniques will help to make proper statistical conclusions. Initially applications of 

multivariate methods were only limited to the psychological problems of human 

intelligence, but currently it is broadly used in quality control, pharmaceutical 

companies, DNA microarrays, marketing research, industries and telecommunications 

etc [9]. 

The aim of this study is the creation of statistical models for multivariate data through 

the basic relationship between Principal Component Analysis (PCA) and Factor 

Analysis (FA). PCA constructs the linear transformations of the multivariate data using 

covariance or correlation matrices. Moreover, these transformations are in fact the 

statistical models and are largely concerned with exploring and explaining the 

characteristics of the data. Basically, PCA reduces the number of dimensions and it is 

heavily utilized in FA to determine the appropriate number of factors and 

variables for subsequent analysis. 
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But in some fields they are interchangeably used unconsciously. In FA, the 

investigators make the assumptions that there exists an underlying model for the data, 

while PCA is just a mathematical model of the original variables without any 

assumptions about the variance - covariance matrix. It can be simply employed to 

condense the data without loss of information. In the case, if the factor model is 

erroneously applied to a particular data and the assumptions about the covariance 

matrix are completely unspecified, then FA will lead to improper conclusions or vice 

versa. 

Additionally, the main focus of this thesis is on the generation of the factor model as 

well as a proper interpretation of the factor model through a case study using a 

multivariate data set. Generally, the factor model is estimated by ordinary least square 

method. The estimated factor scores of the factor model are very useful in diagnosing 

the characteristics of the data. 
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 Chapter 2  

LITERATURE REWIEW 

In 1904 the first idea of FA was proposed by an English statistician Charles Spearman 

(1) in the field of modern psychology. He discovered that a single artificial factor 

called g factor could be considered as general intelligence factor. The intellectual 

performance of the human brain depends on many different variables. Spearman 

associated all the variables to the g factor. Subsequently this idea was developed into 

a new statistical technique called factor analysis, where the association between the 

variables was examined. His findings was published in the American Journal of 

Psychology under the title “General intelligence objectively determined and 

measured”. According to Spearman Theory, all the test measurements of human 

intelligence are directly associated, such that it can be modeled by a specific 

underlying factor of the various mantel abilities [1]. 

In 1940, Raymond B. Cattell (2) extended the Spearman idea of the g factor theory to 

the multi-factor theory for human intelligence using the same factor analysis. He 

started his research with a Personality Factor Questionnaire, in which he included 15 

different personality factors including the g factor. The Cattell Factor Analysis was 

based on the correlation matrix, he found that the sixteen factors themselves are 

correlated and their scores can be measured on the two uncorrelated factors, which he 

called extraversion and introversion for the human ability test [2, 3, 4]. 

 

https://en.wikipedia.org/wiki/Raymond_Cattell
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In 1901, the first concept of PCA was discovered by Karl Pearson. His main idea was 

that how to transform or rotate the multi-dimensional data to the low dimensional data. 

He found the method of transforming original coordinate system to the new coordinate 

system and also the representation of the best fit lines for the system of points in a 

multi-dimensional scatter plot [5]. 

In 1930, Thurston found that PCA and FA are both separate techniques for numerical 

problems. But due to some insufficient knowledge both are interchangeably used [6]. 

In 1933 Harold Hoteling used the PCA as data reduction technique in factor analysis. 

His paper published in the Journal of Educational Psychology named “Analysis of a 

complex statistical variables into principal components” dealt with the statistical 

process that transforms the huge volume of data to the low volume data by the set of 

few uncorrelated variables. However, the method for multivariate statistical data 

analysis could not be applied to real life problems with large multivariate data due to 

the volume of computation involved. With the advent of electronic computation 

starting from 1960s onwards, application of PCA and FA became possible [7]. Three 

years later in 1936, Hotelling introduced the method of computing PCs by using power 

method [8]. 

During the World War II in 1939, Girshick gave another derivation of PCs by using 

maximum likelihood estimation and he also introduced the sampling theory in the field 

of PCA [10]. In 1966, Gower J C discussed the geometrical and theoretical 

interpretation of PCA in the field of FA and other statistical analysis [11]. 
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In 1970, Henry Kaiser proposed the idea of testing the measure of sampling adequacy 

for factor analysis [12]. Later in 1974, this was improved by Kaiser and Rice [13]. This 

statistic was used to compare the square entries of image correlation matrix and usual 

correlation matrix. This test is usually called Kaiser-Meyer-Olkin KM sampling 

adequacy test, abbreviated as KMO [13]. In 1972, Vavra used the PCA as a feature 

extraction technique before conducting the regression analysis for the solution of 

economic problems [14]. 

In 1976, Jackson, J. E. and Lawton, W. H. used another application of PCA in cross 

impact analysis, dealing with estimating the impact of one outcome given that the 

likelihood of other outcome is already known [15]. In 1988 Brown used a wide 

application of PCA in field of chemistry for mass spectroscopic and gas 

chromatographic problems in which the data measured at the various time intervals 

[16]. 

In 1999, Fabrigar claimed that PCA and factor analysis are similar techniques in a few 

statistical fields. He addressed that principal component and factor analysis can yield 

the same output. But in low communalities cases both methods will provide different 

outputs. He also proposed that any data which satisfy the assumptions of factor 

analysis exists as an underlying model, and the results of this model can be more 

accurate then PCA results [17]. 

 

 



   

6 
 

Chapter 3 

MATRIX THEORY AS USED IN MULTIVARIATE 

STASTISTICS 

In this study it is aimed to investigate the relationship between PCA and FA, based on 

the certain multivariate statistical data analysis concepts. The statistical techniques 

utilizing some matrix theory will be used to detect the structure and pattern of the huge 

volume of multivariate data. This will be achieved by first computing the variance-

covariance and correlation matrices. Then the relationship between PCA and FA will 

be explained. However, in this chapter the theory establishing a link between matrix 

algebra and statistical analysis is explored. In Chapter 4 the summarized theory will 

be used for dimension reduction of data, modelling, exploring, interpreting and making 

statistical inferences of available data in a multidimensional environment. Application 

of such theory necessitates the use of advanced statistical software. 

3.1 Matrix Terminologies 

In multivariate statistical data analysis when the number of variables are more than 

two, statistical computations necessitates the use of computer software packages. In 

this section the use of matrix algebra in statistics is explained. 
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3.1.1 Matrix Representation of Data 

Definition 3.1. In multivariate statistical analysis representation of the data in matrix 

form is essential. A data with p variables and n observations can be represented by the 

matrix X of the size n× p , denoted as 

 

1p11 12

21 22 2p

1 2 pn p

n1 n2 np

xx x

x x x

= X ,X , ,X

x x x



 
 
 
      
 
 
 
 

X             (3.1.1) 

where n represents the number of observations of the data in each column and p 

represents of the variables in each row [18]. 

3.1.2 Mean Data Matrix 

Definition 3.2 Let 
1 2 p= X ,X ,…,X  X  be a random vector containing p random 

variables each with n observations. Then the sample mean of the p variables can be 

represented by the following vector.  

n n n

j1 j2 jp 1 2 p

j=1 j=1 j=1

1
= x , x ,..., x , = X ,X , ,X

n

 
    

 
  X                                            (3.1.2) 

where each sample mean contained in the sample mean vector measures central 

tendency of the corresponding random variable [18]. 

3.1.3 Sample Variance  

Definition 3.3 Amount of variability of a single random variable with n observations

1 2 nx ,x , ,x , about its mean x , can be computed as   

n
2 2

k kk jk k

j=1

1
s = s = (x - x )

n -1
                 k  1,2, , p  .   (3.1.3) 
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Here, k represents the number of columns and j represents the number of rows of the 

data matrix X. This statistic is commonly used to determine the dispersion among the 

data points around the sample mean and it is also called measure of spread. It helps to 

understand the shape of the data [18]. 

3.1.4 Sample Covariance  

Definition 3.4 Let  1 11 21 n1X = x ,x , ,x  and  2 12 22 n2X = x ,x , ,x  be a bivariate 

random sample of size n drawn from two populations, assuming that random variables 

1X  and 2X  have a joint probability distribution  1 2f  x ,x . Then the joint variability 

of 1X  and 2X  is given by 

 
n

1 2 12 j1 1 j2 2

j=1

1
Cov X ,X = s = (x - x )(x - x )

n -1
                         (3.1.5) 

In general, the measure of linear relationship between the  and  variables for  

i = 1,2, , p  & k =1,2, , p  , can be defined as 

 
n

i k ik ji i jk k

j=1

1
Cov X ,X = s = (x - x )(x - x )

n -1
          (3.1.6) 

It is useful to estimate the linear associations of any two variables under the same unit 

[18]. 

3.1.5 Sample Variance Covariance Matrix 

Definition 3.5 In general, the covariance of multivariate data can be expressed by the 

covariance matrix S,    

12 1p

21 22 2p

1p 2p pp

n

ik ji i jk k

j=1

s s s

s s s 1
s = (x - x )(x - x )

n -1

s s s

 
 

     
   
 
  

S =

11

         (3.1.7) 

thi thk



   

9 
 

Here the diagonal elements of matrix S shows variances of the p variables while the 

off diagonal entries are covariances between the variables iX  and jX  [18]. 

3.1.6 Sample Correlation and Coefficient of Determination  

Definition3.6 Correlation measures the linear dependency between two random 

variables and  having different units of measurement. Mathematically it can be 

written as   

n

ji i jk k

j=1ik
ik

n n
2 2ii kk

ji i jk k

j=1 j=1

(x - x )(x - x )
s

r = =
s s

(x - x ) (x - x )



 

for i =1,2,…p and k =1,2,…p   (3.1.8) 

the square of r is called coefficient of determination ( 2r ). It is the ratio of the amount 

of variation explained by regression equation, to the total variation of a data point from 

the regression equation [18]. 

3.1.4 Sample Correlation Matrix 

Definition 3.7 In a multivariate random sample, the correlation coefficients between 

variables can be arrange in the matrix form as follows, 

11 12 1p

21 22 2p

1p 2p pp

r r r

r r r

r r r

 
 
 
 
 
  

R =                (3.1.9) 

Correlation coefficient between the two distinct variables is symmetrical. That is 

 for all i and k. The correlation coefficient of a variable with itself is always 

one [18]. Therefore, the diagonal elements of the R matrix are 1. 

iX kX

ik kir r
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3.2 Statistical Techniques  

Statistical methods are commonly used to organize, summarize, analyse data, and 

make inference about the population from where the data is collected. In this section, 

the normal probability distribution and statistical approaches will be discussed to help 

clarify the idea of PCA and FA. 

3.2.1 Normal Distribution 

Normal distribution is one of the widely used continuous probability distributions in 

the field of statistical data analysis and the estimation of population parameters based 

on sample data. 

3.2.2 Univariate Normal Distribution 

Any statistical experiment associated with a probability distribution consisting of a 

single random variable of a normal population is called univariate normal probability 

distribution 

Definition 3.8 Considers a univariate random variable X of a normal population with 

mean μ  and variance 2σ that is symbolically denoted as X ~  2N μ,σ . Then the 

probability density function  f x  of this random variable X is called univariate normal 

probability distribution and is defined as 

 
2

1 x-μ

2 2 σ1
f x; μ,σ = e ;- x

σ 2π

 
 
                                                   (3.2.1) 
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Graphically, 

Figure 3.2.1. Graph of univariate normal distribution function. 

Graph of the normal distribution is symmetric bell shaped curve. The shape of the 

curve is determined by two parameters. It is mean μ  called centre of the distribution 

and variance 2σ  called measure of spread [18]. 

3.2.3 Mean and Variance of the Distribution of Sample Means X   

Definition 3.9 Let X ~

2σ
N μ,

n

 
 
 

 with probability density function  f x , then the 

population mean μ and variance
2σ

n
 are given by the following. 

 μ E X                 (3.2.2) 

Let prove the above quantity, starting from the definition of sample mean, that is  

   1 2 ,..., nX X X
E X E

n

 
  

 
 

Using the expectation linear operator property, then 

       1 2

1
,..., nE X E X E X E X

n
     
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As 1 2, ,..., nX X X  are identically distributed this means that all have the identical 

population mean  , then simply replacing expectation of the iX  by . That is 

   

 

1
,...,E X

n

n

n

  





 





 

Hence proved. 

And 

 
2σ

Var X =
n

                      (3.2.3)  

The proof of the equation (3.2.3) is given below 

 

22 2 2

2 2 2

2

2

2

2

1 1 1
( ) ( ) ,..., ( )

1
,...,

1

1 2 n

n1 2

1 n

X + X +,...,+X
Var X Var

n

XX X
=Var + +,...,+

n n n

Var X Var X Var X
n n n

n

n
n

n

  





 
  

 

 
 
 

   

     

   



 

Hence proved. 
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3.2.4 Standard Normal Distribution 

Definition 3.10 A special case of the normal distribution with zero mean and unit 

standard deviation is called standard normal distribution. That is if X ~  2N μ,σ , then 

by definition 

x - μ
Z =

σ
~ N(0,1)                         (3.2.4) 

Therefore the probability density function of the transformed Z random variable is 

called standard normal probability density function, and is given by 

 
21

z
2

1
f z;0,1 = e ;- z

2π
    .      (3.2.5) 

 This is also called Z distribution and is widely used for testing of hypothesis, and 

interval estimation in statistical inference [18]. 

3.2.5 Bivariate Normal Distribution 

 Definition 3.11 Let us suppose two independent random variables 1X  and 2X  have a 

bivariate normal distribution. Then the joint probability distribution of 1X  and 2X  is 

given by the following probability density function  

 
 

      1 1 2 2 1 1 2 2

2
11 22 11 2212

2 2
1

122(1
2

x x x x

1 2
2

11 22 12

1
f x ,x = exp

2π σ σ 1- ρ

   

   


   



  
    

  

                         (3.2.6) 

where 11σ  and 22σ  are the population variances of 1X  and 2X respectively and  is 

the population correlation coefficient between 1X  and 2X .Graphically the bivariate 

normal distribution is as shown in Figure 3.2.2. 

 

 

 

12
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Geometrically,  

  

 

 

 

 

 

 

                                              

 

 

 

 

Figure 3.2.2: Graph of a BND figure out as a three dimensional bell shaped object. 

The covariance matrix for the bivariate case can be written as 

11 21

21 22

σ σ

σ σ

 
 
 

=                          (3.2.7) 

Note that due to symmetry of the covariance matrix 12 21σ = σ . 

Let 12ρ  be population correlation coefficient between 1X  and 2X  given by 

  12
12

11 22

σ
ρ

σ σ
 , then matrix Σ can be written as 

11 12 11 22

12 11 22 22

σ ρ σ σ

ρ σ σ σ

 
 
  

=                                                                      (3.2.8) 

Since Σ is invertible matrix so the determinant of the Σ is non-zero and its inverse 

exists. That is  
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 2 2

11 22 12 11 22 11 22 12σ σ - ρ σ σ = σ σ 1- ρ            (3.2.9) 

and  

 
1 22 12 11 22

2

11 22 12 12 11 22 11

σ -ρ σ σ1

σ σ 1- ρ -ρ σ σ σ


 

  
  

Σ        (3.2.10) 

Then the probability density of the bivariate normal probability distribution becomes, 

 

    X        (3.2.11) 

with mean vector  1 2= μ ,μμ  and covariance matrix Σ. That is symbolically matrix 

X ~  2

2

pN μ,σ
  [18]. 

3.2.6 Multivariate Normal Distribution 

When the number of variables are more than two the joint probability distribution is 

known as multivariate normal distribution. 

Definition 3.12 A data matrix X containing the p independent random variables 

1 2 pX ,X ,…,X drawn from a multivariate population with mean vector 

1 2 pμ ,μ ,...,μ     and covariance matrix Σ that is symbolically X ~  N ,μ  . Then 

joint probability distribution of the p variables is given by 

 
 

   

2

1 /21

2
p

f x e









X - μ X - μ

         X                                          (3.2.12)   

In the multivariate case the covariance matrix Σ is given by 

11 12 1p

21 22 2p

n1 n2 pp

σ σ σ

σ σ σ

σ σ σ

 
 
 
 
 
  

Σ = , when p꞊1 the univariate normal distribution is obtained [18]. 

 
 

   

1
2

1 /21

2
f x e










X - μ X - μ
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3.3 Relationship between Euclidean Distance and Statistical Distance  

Euclidean distance is meaningless when the random fluctuations are involved in a 

process, since it is deterministic and cannot handle fluctuations in the values attained 

by the variables. While in statistical distance the fluctuations in variation are due to 

some random phenomena, and they may be correlated up to a certain degree. 

Accordingly the proper distance will depend upon the variations of the values taken 

on by the random variables, and correlation between the variables. 

3.3.1 Euclidean Distance  

Definition 3.13 Let  1 2X ,X=X  be a random vector with two random variables 1X  

and 2X  with equal standard deviations and both are uncorrelated. Assuming 1X  and 

2X are standard normal, and  1 2P = x ,x  any arbitrary point from X, then according 

to the Pythagorean Theorem, the Euclidean distance from P to  μ = 0,0  is given by.    

 , 2 2

1 1 1 2

2 2

1 1

2 2

1 1

d (x - μ ) +(x - μ )

= (x -0) +(x -0)

= x + x

X

  (3.3.1) 

By taking the square of equation 3.3.1 the equation of the circle is obtaned. Such that 

 ,2 2 2 2

1 1d x + x = cXμ                (3.3.2) 

According to Euclidean distance, any points that satisfy the equation 3.3.1 will 

produced a constant distance such as c, and all of these points will be equidistance 

from the origin. This situation can be illustrated graphically as in Figure 3.3.1.  
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Figure 3.3.1. Representation of Euclidean distance from P to µ. 

It is clear from the Figure 3.3.1 that the square Euclidean distance between P and µ. 

Generates the equation of circle basis on two independent variables having equal 

magnitudes. 

3.3.2 Statistical Distance  

Definition 3.14 Let 1X  and 2X be bivariate random sample with variances 11s  and 22s  

respectively, and let the  * *1 2
1 2

11 22

x x
P : , = x ,x

s s

 
  
 
 

 have the standardized coordinates 

obtained by dividing the coordinates of  1 2P : x ,x by their respective standard 

deviations. Then the statistical distance from  * *

1 2P = x ,x  to  μ = 0,0  can calculated 

as follow, 

By using equation (3.3.1) 

     
2 2

* *

1 2

2 2

1 2

11 22

2 2

1 2

11 22

d μ,P = x + x

x x
= +

s s

x x
= +

s s



   
   
   
   

                                                                         (3.3.3)  
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Geometrically, 

Figure 3.3.2. Graph of statistical distance 

By taking the square of equation 3.3.3 the equation of the ellipse is obtained. That is  

 
2 2

2 21 2

11 22

x x
d μ,P = + = c

s s
              (3.3.4) 

It is clear any pair of points of X that satisfy the equation 3.3.4 will produce a constant 

square statistical distance from origin  0,0    such as 2c . 

Remark: An Euclidian distance is the radius of the points to origin, which lies on the 

circle and is constant. Whereas a statistical distance is the locus of the points from 

origin lie on the ellipse. 

3.3.3 Confidence Ellipsoid 

 Definition 3.15 Let matrix X with p variables be normally distributed, that is X ~

 N ,μ  .Then the square statistical distance, produces the hyper ellipsoid that has chi-

square distributed with p degrees of freedom. That is if 
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    21 c  X Σ Xμ                               (3.3.5) 

or 

 
 

2

2

p 


 

X
Z =

Σ


                              (3.3.6) 

Then all the X values must satisfy the following equation.  

     
21
p 

   X Σ Xμ                (3.3.7) 

where 2c  is a constant square statistical distance measured from X to population mean

, and generates a hyper ellipsoid that contains
 
(1 )%

 
of observations. It can be 

estimated by the following equations.  

       21P 1 100
p 

      
  

X Σ Xμ   (3.3.8) 

or 

     21P 1 100c      
  

X Σ Xμ                                                           (3.3.9) 

Graphically, 

Figure 3.3.3. Representation of confidence ellipsoid for two normal distributions 





   

20 
 

Remark: The confidence ellipsoid is simply the contour of normal probability density 

function. It is broadly used for quality control and helps to detect the outliers and clean 

the data. When a data set is used, equation 3.3.7 becomes as 

     
1 2

2 .05

   X S XX X                                                                                                       (3.3.10) 

3.3.4 Example for the Quality Control Ellipse  

A clinician wants to test the two different quality of dosage times. A random sample 

of 12 diverticulosis patients of the age 21- 45 are selected from a case control study 

and both the dosages are given to them in the two different time periods, the dosage 

times of each stage are recoded through the patients alimentary canal and it is given in 

table (3.3.1). 

  Table 3.3.1. A case control study 

 No of 

Patients 
1 2 3 4 5 6 7 8 9 10 11 12 

Dosages 

times  

(in 

hours) 

Dosage 

A 
63 54 79 68 87 84 92 57 66 53 76 63 

Dosage 

B 
55 62 134 77 83 78 79 94 69 66 72 77 

 

The XLSTAT command from Excel gives the following statistics output of the two 

different dosage times. 

                     Table 3.3.2. Mean and variance of the dosages time 

 

 

 

 

 

Sum 842.000 946.000 

Mean 70.167 78.833 

Variance 174.333 405.242 
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Here p represents total number of dosages and n the total number of patients, i.e. p=2 

and n=12 

Sample mean vector =    70.167,78.833A Bx ,x X =   

Sample covariance matrix =
174.333 93.757

93.757 405.242

aa ab

ba bb

s s

s s

   
   
  

S = .  

At 95 % confidence quality control ellipse for the dosages data can be obtained via 

equation 3.3.10 and all the pair of observations must satisfy the condition given in 

this equation.The critical chi square value at 0.05 significance level is 
 

2

2 .05
5.991  . 

Then substituting 5.991 into equation 3.3.10 we have    1 5.991  X S XX X . 

Now to check if the dosages time of the patients is under control, all the pairs of 

observations must fall inside the ellipse. Suppose to see the dosage times  63,55P   

of the patient 1 is in the control area or out of control it is necessary to simplify the 

following equation. 

  
      

2 2

2 5.991
A A A A B B B BAA BB

AB

AA BB AB AA AA BB BB

x x x x x x x xs s
s

s s s s s s s

    
   

 
 

       (3.3.12) 

       
2 2

70.167 70.167 78.833 78.833174.333 405.242
174.333 405.242 174.

63 63 55 55

93. 333 174.333 405.242 405.2 2757 4
2(93.7 5.99157)

 
 

 


  

 

It is straight forward the dosage times of patient No.1 is in the control and still stable 

and no problem during dosages given to him or her with 5% level of significance. Data 

pairs are shown in Figure 3.3.4, and data pair No. 1 is well within the limits of the 

control ellipse.  
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Graphically, 

 

Figure 3.3.4. 95% quality control ellipse for dosages time 

The dosage B for patient 3 is statistically out of control with 5% level of significance 

and it falls outside the control ellipse. That means this point does not satisfy the 

statistical distance equation from the mean origin. Because it may not contain the 

actual ingredients given to the patient, or the timing of administration of the dose may 

not be the same as the other patients. Due to this reason, the effect of dosage B on 

patient 3 was incorrectly observed in the study. Therefore, the clinician should be 

aware before investigating or changing the quality of dosages in the future. 
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Chapter 4 

RELATIONSHIP BETWEEN PRINCIPAL COMPONENT 

ANALYSIS AND FACTOR ANALYSIS 

In this chapter the theoretical concepts will be introduced to understand the 

fundamental relation between the PCA and FA. In factor analysis, the PCA approach 

will be used to reduce the dimension of the data. PCA also helps to determine the initial 

factor loadings and the score coefficients of the FA model. Before discussing the 

relation it is necessary to understand some basic concepts behind PCA and FA.  

Considers the list of the steps involved in the construction of FA model using PCA 

approach.   

1. Compute the covariance Σ  or correlation ρ matrices.  

2. Calculate eigenvalues and eigenvectors of Σ or ρ matrices. 

3. Draw scree plot and determine the number of factors to be used in the model. 

4. Calculate the factor loadings matrix using PCA method. 

5. Find communalities and specific variances from factor loadings matrix. 

6. Rotate the factor loadings matrix for example using varimax rotation technique to 

interpret the factor loadings easily. 

7. Estimate the factor scores using ordinary least square regression. 

8. Detect outliers and group the variables by few factors.   

9. Interpret the factor scores using statistical control ellipse chart.  



   

24 
 

4.1 Principal Component Analysis  

PCA reduces the high dimensional data into lower dimensional data. In factor analysis, 

PCA helps to reduce number of factors. Similarly it is also used as a dimension 

reduction technique in many other multivariate statistical analyses. 

4.1.1 Principal Components 

Principal components are obtained by linear transformation of the original variables. 

In the linear transformation process either the covariance or correlation matrices 

obtained from raw data can be used.   

Definition 4.1 Let  1 2 pX ,X ,…,X  be a set of p random variables consisting of n 

observations  with covariance matrix Σ, then the new set of uncorrelated variables 

called principal components 1 2 pY ,Y ,…,Y   can be expressed as the linear combinations 

of the original p variables [18].  

4.1.2 Geometrical Interpretation of PCA 

Definition 4.1 Let 
1 2 pX ,X ,…,X   X  be a random vector consisting of n 

observations drawn from a multivariate normal population with a mean vector 

1 2 pμ ,μ ,…,μ   μ  and covariance matrix Σ. It is possible to plot the n observations of 

the multivariate normal data in a n× p  coordinate system. Then the rotated coordinate 

system of the data, gives a hyper ellipsoid, whose axes are similar to those computed 

from the Eigen vectors of the covariance matrix Σ. Let us consider a constant statistical 

distance from 
1 2 pX ,X ,…,X   X  to 

p0,0,…,0   μ is defined by  

   10 0 c X - Σ X -  

Then the square statistical distance is 
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   10 0 2c   X X 1 2c ΣX X  

 As 1 2 pλ + λ +,...,+λ   1 1 2 2 p pΣ e e e e e e 1

1 1 2 2 p p
p1 2

1 1 1
+ +,...,+

λ λ λ

    Σ e e e e e e  

2

p
p1 2

1 1 1
c

λ λ λ
           1 1 2 2 pΣ e e e e e e

-1
X X X X X X X X

     
32 2 2

p1 2

1 1 1
c

λ λ λ
        -1

1 2 pΣ e X e X e XX X  

  (4.1.1) 

  

Thus the square constant statistical distance produces an ellipsoid with axes  

1 ,  ,  ,  2 pY Y Y    1 2 pe X e X e X  , where these axises are actually principal 

components. Hence semi minor and semi major axes measured by ic λ   in the 

direction of eigenvector ie  [18]. 

Geometrically, 

 

Figure 4.1.1. Graph of PCs 1 2Y , Y  orthogonal to the original coordinate system 

1 2X , X  

22 2

1 2 p 2

p1 2

YY Y
c

λ λ λ
     -1
ΣX X
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It is clear from the graph that the new 1 2Y , Y  axes passing through the center of the 

ellipse are obtained by orthogonal rotation of the original coordinate system.   

Theorem 4.1.1 Consider the eigenvalue - eigenvector pairs      1 1 2 2 p pλ , , λ , ,..., λ ,e e e

computed from the covariance matrix Σ obtained from the n p  data matrix, where 

1  2  p  0, and let 1 2 pY ,Y ,…,Y be the principal components. Then 1 2 pY ,Y ,…,Y  are 

computed as given below.  

1

2

1

1 11 1 12 2 1p p

2 21 1 22 2 2p p

3 p p1 p2 2 pp p

Y e X e X e X

Y e X e X e X

Y e X e X e X

    

    



    

e X

e X

e X

            (4.1.2) 

Then   11 22 pptr = σ +σ +,…,+σΣ  

where    
p p

11 22 pp i i 1 2 p i

i=1 i=1

σ +σ +,…,+σ Cov X ,X = λ + λ +,…,+λ Var Y    

Proof. By definition the trace of covariance matrix Σ is equal to the sum of it diagonal 

entries that is 

  11 22 pptr σ +σ +,…,+σΣ .                                        (4.1.3) 

If    1 2 pe ,e …,eP  is the matrix containing the eigenvectors of Σ such that PP = I

and 

0 0

0 0

0 0

1

2

p

λ

λ

λ

 
 
 
 
 
  

D  is a diagonal eigenvalues matrix, then by definition

Σ PDP . 

This implies that       1 2 ptr tr tr λ + λ +,…,+λ  PDP D and

11 22 pp 1 2 pσ +σ +,…,+σ = λ + λ +,…,+λ .  

Hence proved [18]. 
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4.1.3 PCA for Components Reduction   

Each eigenvalue i ; i 1, , p   represents a certain percentage of total variation in the 

PCs obtained from the multivariate process under study and is given by 

1 2

ˆ
100

ˆ ˆ ˆ, ,

ı

p




   
. 

It must be pointed out that  i iVar Y    and  
1 1

p p

i i

i i

Var Y
 

  . Then 

m

j

j 1

p

i

i 1

;  0 1;  1 m p








      


                                                      (4.1.4) 

can be used as a measure to determine the number of PCs to be used. Depending on 

the nature of the process under study, it is desirable to have   high to very high. For 

most applications a value 0.8   is desirabe.                                                       

4.1.4 PCA for Variable Reduction   

In principal component analysis one of the major issues is to interpret principal 

components. Sometimes it is difficult to judge high contributed explanatory variables 

in the component models. The following correlation is used to determine the 

correlation coefficient between a variable and a principal component.  

i k

ik
Y ,X

kk

e λ
ρ =

σ
                         i,k =1,2,...,p                                                                                   (4.1.5) 

while the correlation is a measure of the level of relationship between a variable and 

the PC, the coefficients of the PC measures the contribution of each variable to the PC. 

Therefore, the two measures should not be compared with each other, but rather be 

used together for a better interpretation of the individual PC [18].   
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Theorem 4.1.2  Let 1 2 pY ,Y ,…,Y  be the set of unobserved random variables (in this case 

PCs) computed from a population.  

Then 
i k

ik
Y ,X

kk

e λ
ρ =

σ
 is the correlation coefficient that measures the linear relationship 

between thi  PC and thk  variable, where 

   k i k i k iCov X ,Y = Cov a X,e X = a e ; i,k = 1,2,..., p     

Proof: Let  0, ,0,1,0, ,0ka  be the coefficient vector of matrix X such that 

k kX = a X and let i iY = e X  be the PCs represented by an equation k i i ia e λ e    

By definition  

   k i k i k iCov X Y = Cov a X,e X a e     As k i i ia e λ e             (4.1.6) 

 k i i iCov X Y = λ e . Then   k k kV a r X =σ  and  i iVar Y = λ  gives 

 
 

   
i k

k i ik ii ik
k i Y ,X

kk i kkk i

Cov X Y e λλ e
Corr X Y = = = = ρ

σ λ σVar X Var Y
 for i,k = 1,2,..., p     

Hence proved [18]. 

4.1.5 Covariance verses Correlation Matrix   

When the variables involved in a process have different units or the variations in the 

data values of some variables are considerably large, it leads to unreliable results in 

the computation of the principal components and gives ambiguous interpretation of 

the principal coefficients. To avoid these problems it is necessary to first standardize 

the data and then compute the principal components using correlation matrix not 

covariance matrix [18].  
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4.1.6 Standardized Principal Components 

Definition 4.2 Suppose  
1 2 pX ,X ,…,X   X  is a random vector consisting of p 

variables drawn from a multivariate population with mean vector 
1 2 pμ , μ ,…,μ   μ   

and standard deviation matrix is 

1

2

0 0

0 0

0 0

11

22

pp

σ

σ

σ

 
 
 

  
 
 
 

V  . Then the new vector 

1 2 pZ ,Z ,…,Z   Z  with i i
i

ii

X - u
Z

σ
  is called the standard normal vector generated 

by X, and the relation between Z and X can be expressed as given by 

   
1

1

2



 
  
 

Z V X μ  (4.1.7) 

The expectation of Z is zero. That is  

                                              
1

1

2( )E E

   
   

   

Z V X μ  

     
1

1

2E E E



 
       

 
Z V X - μ  

               
1

1

2E E E E



 
       

 
Z V X   

                    
1

1

2E E E



 
     

 
Z V μ - μ X μ  

                                          
1

1

2 0E E



 
   

 
Z V  E  0Z   

Hence Proof completed. 

 



   

30 
 

Also       
1 1

1 1

2 2Cov Cov

      
     
     

Z V X - μ V   (4.1.8) 

                  
1 1

1 1

2 2Cov V

      
      
     

ρZ V   

Thus the standardize principal components can also be derived from the correlation 

matrixρ . See the Theorem 4.1.3 below [18]. 

Theorem 4.1.3 Let 
1 2 pZ ,Z ,…,Z   Z

 
be a standard normal vector and

     1 1 2 2 p pλ , , λ , ,..., λ ,e e e   be pairs of eigenvalues and eigenvectors where 1  2  

p  0 with correlation matrix  Cov  ρZ . Then uncorrelated variables 1 2 pY ,Y ,…,Y  

can be computed by 

 
1

1

2
i iY



 
    

 
e Z e V X -μ               i=1,2,…,p                   (4.1.9) 

In this case, each standard normal variable have unit variance and the sum of the 

variances are equal to the number of variables p. That is  

 i iiVar Z = σ = 1 . Then    
p p

i i

i=1 i=1

Var Y = Var Z = p      for all i=1, 2, …,  p    (4.1.10) 

Similarly, correlation between thk  standard variate kZ and thi  principal component iY

is defined as   

 
 

   
i k

k i ik i

k i ik i Y ,Z

kkk i

Cov Z Y e λ
Corr Z Y = =  = e λ = ρ     i,k = 1,…, p

σVar Z Var Y
      (4.1.11) 

Consequently, the equation 4.1.11 can be used in determining the number of PCs to be 

used in representing the process in a lower dimensional space.Since the variance of 
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standardized data is always 1 and forms the diagonal elements of the correlation 

matrix, then total variance is the same as the number of variables p.  

4.2 Factor analysis 

Factor analysis is a data classification technique used to group the large number of 

variables into set of few unobserved variables called factors. The purpose of the factor 

analysis is to construct a system of equations accommodating the underlying factors 

in order to capture the maximum information from the data set. 

4.2.1 Independent Factor Model 

Definition 4.3 Let 
1 2 p= X ,X ,…,X  X  be a random vector containing p random 

variables of size n that follows a multivariate normal distribution with mean vector

1 2 pμ , μ ,…,μ   μ  and population covariance matrix  

11 12 1

21 22 2

1 2

p

p

p p pp

  

  

  

 
 
 
 
 
  

Σ . 

Assuming that is X is correlated with 
1 2 pF ,F ,…,F   F  called unobserved factors and 

1 2 pε ,ε ,…,ε     called disturbance terms or specific factors, then the p deviations 

model can be expressed as linear combinations of unobserved factors plus error terms 

and is given as follows, 

11 1 11 12 2 1m m 1

2 2 21 1 22 2 1m m

p p p1 1 p2 2 1m m p

X - μ l F l F l F ε

X - μ l F l F l F

X - μ l F l F l F ε



    

    

    

                           (4.2.1) 

In general,  

 
m

i i ij j i

j=1

X - μ = l F +ε ,                  i = 1,2,.., p                                                        (4.2.2) 
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This is called factor analysis model, where 
ijl is the loading of the thi  variable on the 

thj  factor. In other words 
ijl  is the measure of factor loading of the thi  variable 

contribution, on the
thj factor [18]. 

The orthogonal factor model can be expressed in the matrix form as   

         1 1 1p p p m m p    
  X μ L F ε                                                                         (4.2.3) 

where F and iε are unobserved random vectors satisfying the following assumptions. 

1.   1mE F 0 ,        

2

m m
Var E E


    F FF F I   

Hence    10pE ε  and      

1

2 2

0 0

0 0

0 0

p p

p

Var E E 

 
 
        
 
  

ε εε ε Ψ







        

  2.   m pCov F ε 0, ,   hence F and ε  are independent.  

Also  Cov X,F L . 

As X - μ = L F + ε  

Multiplying of the factor model by F , then it becomes 

     X - μ F = L F + ε F = LFF + ε  

By taking expectation it is becomes as 

 

 

 

 

Hence the proved. 

( , ) ( ) ( ) [ ]

[ ] [ ]

( ) 0

Cov E E E

E E

 



       

     

 



X F X μ F  LF F = LFF F

L FF F FF I

= L I

L
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Remark:

11 12 1

21 22 2

1 2

m

m

p p pm

l l l

l l l

l l l

 
 
 
 
 
  

L

 

is called factor loading matrix, and its elements are 

the same as the elements of the covariance between thi  variable and 
thj  factor i.e.

 i j ijCov X ,F = l . 

4.2.2 Standardized Orthogonal Factor Model 

Let 1 2, ,..., pZ Z Z  be the standardized variables and   be the population correlation 

matrix that can be expressed as     

 LL                                                                                                                                          (4.2.4) 

where 

11 12 1

21 22 2

1 2

p

p

n n np

  

  

  

 
 
 
 
 
  

 , 

11 12 1

21 22 2

1 2

m

m

p p pm

l l l

l l l

l l l

 
 
 
 
 
  

L  and 

1

2

0 0

0 0

0 0

p p

p









 
 
 
 
 
  

  

Then the m common factor model can be written as follows 

11 11 12 2 1m m 1

2 21 1 22 2 1m m

p p1 1 p2 2 1m m p

Z l F l F l F ε

Z l F l F l F

Z l F l F l F ε



    

    

    

                                                     (4.2.5) 

System 4.2.5 is called Standardized Orthogonal Factor Model. 

Where  
i jij i j X ,F j ijl Corr X ,F = ρ λ e  ,   1jVar F   and  i jCorr ,F = 0  

4.2.3 Orthogonal Model for Covariance Matrix  

Consider the variance-covariance matrix of X under the orthogonal factor model [17]. 

By definition the orthogonal factor model can be written as 
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     

  

    

   

 



 

      

X - μ X - μ LF + ε LF + ε

LF + ε LF + ε

LF + ε LF + ε

LF LF LF LFε 

 

By taking expectation we obtain 

    

       

Cov E

E E E E

 

       



 X X - μ X - μ

L FF L εF L L Fε ε,ε

LL +Ψ

 (4.2.6) 

This gives the covariance structure of X for common factors. Diagonal entries of Σ  

can be decomposed as     

    2 2 2

i i i i1 i2 im iCov X ,X =Var X = l +l +,...,+l +ψ                                                 (4.2.7) 

                              
 

 

2 2 2

i i1 i2 im i

i

Var X = l +l +,...,+l +ψ

Var X = commuality unique ss+ ne




. 

Off diagonal entries of Σ  can be calculated by 

  1 1 2 2 im,i k i k i k kmCov X X l l l l l l                                                               (4.2.8) 

4.2.4 Communality and Specific Variance 

In case of orthogonal factor model, the  iVar X  can be split into two parts. First part 

consists of the sum of square loadings, called communality denoted by 2

ih  for the thi  

variable. Communality measure the percentage of the total variation of X explained by 

common factors, whereas the last part is symbolized by i , represents the percentage 

of variability explained due to some other factors. The variance of error term 

 i iVar ε = ψ  is called specific variance or uniqueness [18]. 
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4.2.5 Theoretical Relationship between PCA and FA  

In sections two types of factor models will be disused. One is called exact factor model 

and the other is called inexact factor model. The exact model has no error term, for 

this reason, the exact model is not a suitable model to explore the data. However, the 

PCA approach will be used to investigate the unknown population parameters of such 

models.  

4.2.6 Exact or Non-Stochastic Factor Model 

Let  iλ ,
i

e  be the eigenvalue - eigenvector pairs of the covariance matrix Σ  with 

ordered eigenvalues
1 2 0p      and p=m. Then the covariance matrix Σ  can 

be decomposed as  

1 2

0 0

0 0

0 0

1

2

p

p p





   
   
            
   

      

Σ PDP

e

e
e e e

e

 

or 

                        11 2 pλ + λ +,...,+λ   1 2 2 p pΣ e e e e e e  

                                   

1 1

2 2

1 2 2 p p

p p

λ

λ

λ λ λ

λ

 
 
 
 
 

   
   

 
 
 

 
 

 1

e

e

e e e

e

 

This implies that    

       0p p p p p p p p p p p p     
    L L L L                 (4.2.9) 
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This provides the covariance structure of X in case where the number of common 

factors are the same as the number of variable m=p and it gives  i iVar ε = ψ = 0  for 

orthogonal factor model. For this reason it is not a useful method to analyze data with 

using factor analysis. The value j jλ e  represents the factor loading of the jth column 

of the loading matrix, without the scale value jλ  factor loading is actually principal 

component coefficient denoted by
je [18]. 

4.2.7 Inexact or Stochastic Factor Model 

This approach will be useful when the eigenvalues with not significant contribution to 

the total variance m+1 pλ ,…,λ are eliminated from the following matrix equation    

1 1 1 2 2 2 m m m m+1 m+1 m+1 m+2 m+2 m+2 p p pλ + λ +,...,+λ + λ + λ +,...,+λ      e e e e e e e e e e e e .  

After the exclusion of the terms 
m+1 m+1 m+1 m+2 m+2 m+2 p p pλ + λ +,...,+λ  e e e e e e  from the 

above expression the approximate covariance matrix of X can be expressed as  

1 1 1 2 2 2 m m mλ + λ +,...,+λ   e e e e e e  

m m

m m

1 1 2 2 m m p m m p

m m

λ

λ

λ λ λ

λ

 

 
 
 
 
 

    
 

 
 
 
 

  



e

e

e e e L L

e

 

or    

    
p m m p 

  L L  
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1

2

0 0

0 0

0 0

m m

m m

1 1 2 2 m m

p

m m

λ e

λ e

λ e λ e λ e

λ e







 
 
 

     
    

    
  
   

 
  

  

and finally,

 

 

p m m p 
  L L

                                                                                                                            
(4.2.10) 

where is the diagonal matrix whose diagonal entries are specific variances. That is 

denoted by  i iVar ε = ψ [18]. 

This procedure of splitting the covariance matrix of X into factor loading matrix plus 

specific variance matrix is known as principal component approach for factor analysis 

model. 

4.2.8 Factor Analysis Model 

 Applying the procedure given under section 4.2.7 to a particular data 

1 2 pX ,X ,…,X   X  each variable consisting of the observations
1 2 nx ,x ,…,x , it is 

necessary to first transform the data matrix to the deviation matrix. That is,  

j1 1 j1 1

j2 2 j2 2

j

jp p jp p

x μ x μ

x μ x μ

x μ x μ

     
     


        
     
     

          

x    for j=1,2 ,...,n                                             ( 4.2.11) 

This is sometime called mean corrected data matrix, each observation of this matrix 

centered by their corresponding population mean. Then the population principal 
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components 
1 2, , , pY Y Y  can be computed as follows,   

 

1

p pm m
2

j j j j j j j j j j

j=1 j=m+1 j=1 j=m+1

p

Y

Y
Y + Y = λ Y λ + Y

Y

 
 
     
 
 
  

   e μ e e e eY X     

    

(4.2.13) 

                              

1 1 p

1 1 2 2 m m j j

j=m+1

m m

Y λ

λ λ λ Y

Y λ

 
 

      
 
 

e e e e LF   

Then this yields    

1

1 2 p

p

Y

Y , ,...,

Y

 
 

     
 
 

e e e eX - μ                                                                         (4.2.14) 

This is called factor analysis model derived by the principal component analysis 

approach.  

1 1 2 2 m mλ λ λ 
 

e e eL  is called factor loadings matrix. 

 

1 1

m m

Y λ

Y λ

 
 

  
 
 

F  represents population common factors generated from the first PCs 

scaled by the square root of eigenvalues and 
p

j j

j=m+1

Y ε e  is called error term generated 

by the last principal components, whose variances are smaller eigenvalues. This 

derivation of the model helps to determine the perfect solutions for factor analysis 

model [18]. 

Remark 1: 
1

p

j j

j m

Y
 

 ε e  is represents all factors having low eigenvalues.  

Remark 2: The covariance matrix of X computed form original observations or 

deviation data remains unchanged. 
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4.2.9 Estimators of Factor Model  

Let 
1 2 pX ,X ,…,X   X  be the collection of p samples each consisting of the 

following observations
1 2, , , nx x x , with sample covariance matrix of the form 

1

2

1 2

ˆ 0 0 ˆ

ˆ ˆ0 0ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ0 0

p

p
p





   
              
   

      

e

e
S PDP e e e

e

, where 
1 2 0p       

Then by the principal component approach when m< p the estimatied facor loading 

matrix is given by    

11 12 1

21 22 2

1 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

m

m

m

p p pm

1 1 2 2 m m

l l l

l l l

l l l

λ λ λ

 
 
 

     
 
 
 

 
  

L l l l

e e e

        , where j=1,2,…,m 

 The matrix ˆ ˆ
p m m p 

S L L  produce a diagonal matrix whose diagonal entries are 

specific variances estimated by ̂ . 

That is  

1

2

ˆ 0 0

ˆ0 0
ˆ

ˆ0 0 p







 
 
 
 
 
  

  

 where      ˆˆ
n

2

i ii ij

j=1

ψ = var X = s - l   

The portion of the total variation of thi  variable explained by m factors can be estimated 

by the following communality value 

ˆ ˆ ˆ ˆ2 2 2 2

i i1 i2 imh = l +l +,..,+l  for i=1,2,…,p   
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The number of factors in the factor analysis to be included will be judged based on the 

following statistic 

ˆ ˆ

ˆ ˆ ˆ
11 22 pp 1 2 p

λj λj
=

s +s +,...,s λ + λ +,...,+λ
   , 

 where   11 22 pptr s +s +,...,+sS and 

   ˆ ˆ ˆ ˆ ˆ ˆ
j

2 2 2

j 1j 2j p j j j jλ = l +l +,...,+l = λ λ ;  j = 1,…m


 e e  , 

 For standardize variables this can be defined as 

ˆ ˆ ˆ

ˆ ˆ ˆ
1 2 p

λj λj λj
= =

1+1+ +1 pλ + λ + + λ
  

where p is the total number of standardized variables [18]. 

4.2.10 Factor Rotation  

In factor analysis it is difficult to interpret the original factor loadings found by 

principal component analysis approach. In order to develop a simpler structure of the 

factor model it is essential to rotate the initial factor loadings. The rotation of factor 

loadings does not affect the original factor model; only rotate the original factor 

loadings such that the original factor axes are perpendicular to the new factor axes 

[18]. 

Let ˆ
p mL  be the estimated factor loadings matrix derived by principal component 

approach.  Then 

ˆ ˆ
p m p m m m



  L L T                                                                                            (4.2.15) 

where T  is transformation matrix. Additionally the rotation of factor loading matrix 

does not change the covariance and correlation structure. That is  

ˆˆ ˆ ˆ ˆ ˆ ˆ
p m m p p m m m m m p m p m m p



       
      L

*
L L T T L L L Ψ   
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So this suggests that the residual matrix ˆ ˆˆ ˆ ˆ ˆ * *

n p×m m× p n p×m m× pS - L L +Ψ = S - L L +Ψ  is not 

affected, and the specific variances and communalities are also unaffected due rotating 

the original factor loadings. Consequently the original factor model is exactly the same 

as rotated factor model that is  

* *
X = μ + L F + ε = μ + L F + ε                                       (4.2.16) 

Remark: Factor rotation helps to determine the appropriate number factor loadings in 

order to gain more clear idea about the structure of the factor model. 

4.2.11 Varimax Rotation  

Varimax is an orthogonal factor rotation technique developed by an American 

statistician Henry F. Kaiser. It helps to achieve the clear configuration of the factor 

loadings for uncorrelated factors. Let ijl 
 be the rotated factor loadings whose values 

lies on the new rotated factor coordinate system defined by the following quantity   

ˆ ˆ
ij ij il l h   

where ˆ
ijl   are the coefficients of the ˆ

p m



L  rotated factor loadings matrix and ˆ
ih  is the 

square root of the thi communality.  

Then the sum of variance of the  
2

*

ijl  for thj factor can be expressed as 

      
2

m n n2 4 2
* * *

ij ij ij

j=1 i=1 i=1

1 1
V l = l - l

p p

  
  
   

                             (4.2.17) 

In order to achieve the maximum values ˆ*

ijl  of the rotated factor loadings it is required 

to maximize the sum of variance of the square rotated factor loadings ˆ*

ijl  on the thj  

factor [18].
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4.2.12 Factor Score  
 

In factor analysis the population parameters of the factor model are usually unknown. 

These parameters can be estimated by using ordinary least square technique by 

minimizing the total sum of square residuals  of the sample factor model with respect 

to the estimated value of 
jF , such that

 

    
1

ˆ

0
ˆ

m
2

j

j

j

ε

f










 

This equation yields the following estimator 

                                  
1

ˆ ˆ ˆ ˆ ( )j jf x - x


  L L L                                                       (4.2.18) 

where,
1 1 2 2 m mλ λ λ 

 
e e eL  is the original factor loadings matrix 

established by PCA approach.  

Then             

ˆ

ˆ

ˆ

ˆ

ˆ

1

j

λ

F (x - x)

λ

 
 
 
 
 

 
 
  

m

e

e

1

j

m

=
ˆ

ˆ
ˆ

j j

j

F = (x - x)
λ




j
e

                                                    (4.2.19)

ˆ
jF  is actually thj  sample principal component ˆˆ ( - )j jy x x

j
e scaled by

ˆ
j

1

λ
 That is,

                                        

ˆˆ
ˆ

ˆ ˆ

j j j

j

j j

y (x - x)
F = =

λ λ

e
  

Moreover, the standardize factor score of the data can be computed by the following 

estimator is 

                                                      

for j =1,2,…,m & i =1,2,…, p                            (4.2.20) 

ˆ ˆ
ˆ

ˆ ˆ

j j j

j j

ii
j j

e x x e
F z

s 

  
  

 
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Since the factor scores are useful to judge explanatory variables with high contribution 

in the factor model, it helps to detect outliers and also obtain a simple structure of the 

data [18].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

44 
 

Chapter 5 

STATISICAL ANALYSIS OF THE WORLD ECOMONIC 

DATA 

The data used in this study represents 12 different economic indicators by country from 

185 different countries. Data was originally compiled by the United States, Heritage 

Foundation of Research and Educational Institute. Each economic indicator is 

represented by a variable as follows. 

 
1X :  Gross domestic product (GDP) in billion dollars. 

2X :  GDP/capita. 

3X :  Growth rate. 

:4X  Inflation rate.  

:5X  Interest rate. 

6X :  Income tax rate. 

7X : Unemployment rate. 

8X :  Corporate tax rate. 

9X :  Tariff rate. 

10X :  Public debt. 

11X :  Tax burden . 

12X :  Government expenditure. 

https://en.wikipedia.org/wiki/United_States
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The data was analyzed both numerically and graphically using MATLAB and 

XLSTAT. The analysis of the data is mainly aimed at generating the new set of 

economic variables (PCs) and also attempt to establish the relationship between PCA 

and FA as explained theoretically in Chapter 4. Furthermore a statistical process of 

how to control the scores of such variables in the future is examined. 

5.1 Data Processing  

Let  1 2 12X ,X …,XX =  be a random vector representing the number of variables of 

the world economic data available in the table given in Table 1 in Appendix I. Initially 

for the p=12 variables and n=186 countries the following summary statistics using 

XLSTAE has been obtained and given in Table 5.1. 

 Table 5.1. Descriptive Statistics 

 

Variable Observations Mean Variance 

GDP  1851n =  
1 614.017X   

11 114 452 697.342s   

GDP per Capita 
2 185n =  

2 19114.554X   
22 445 917 739.0s   

GDP Growth Rate 
3 185n =  

3 2.285X   
33 20.187s   

Inflation Rate 
4 185n =  

4 4.659X   
44 126.092s   

Interest Rate 
5 185n =  

5 5.768X   
55 31.478s   

Income Tax Rate 
6 185n =  

6 27.795X   
66 176.763s   

Unemployment Rate 
7 185n =  

7 9.612X   
77 63.934s   

Corporate Tax Rate 
8 185n =  

8 23.703X   
88 83.965s   

Tariff Rate 
9 185n =  

9 5.434X   
99 20.942s   

Public Debt 
10 185n =  

10 53.181X   
1010 1103.030s   
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It is clear from the Table 5.1, that all the means differ from each other, and similarly 

all variances are unequal, exhibiting considerable difference. Under such 

circumstances it is necessary to standardize the data and use correlation matrix before 

performing PCA and FA. 

The sample correlation matrix for all possible paired observations of twelve variables 

computed using equation (3.1.8) is,   

1 0.145 0.052 0.027 0.089 0.172 0.125 0.082 0.127 0.153 0.058 0.034

0.145 1 0.143 0.154 0.405 0.059 0.240 0.311 0.434 0.020 0.290 0.255

0.052 0.143 1 0.305 0.129 0.106 0.035 0.006 0.012 0.034 0.015 0.081

0.027 0.15

   

      

       

 

R =

4 0.305 1 0.395 0.089 0.008 0.066 0.107 0.057 0.142 0.111

0.089 0.405 0.129 0.395 1 0.120 0.102 0.196 0.332 0.057 0.181 0.152

0.172 0.059 0.106 0.089 0.120 1 0.002 0.591 0.102 0.274 0.287 0.109

0.125 0.240 0.035 0.008 0.1

    

      

  

   02 0.002 1 0.006 0.175 0.112 0.121 0.300

0.082 0.311 0.006 0.066 0.196 0.591 0.006 1 0.326 0.096 0.078 0.126

0.127 0.434 0.012 0.107 0.332 0.102 0.175 0.326 1 0.008 0.392 0.187

0.153 0.020 0.034 0.057 0.057 0.274 0.112 0.096



    

    

   0.008 1 0.236 0.191

0.058 0.290 0.015 0.142 0.181 0.287 0.121 0.078 0.392 0.236 1 0.559

0.034 0.255 0.081 0.111 0.152 0.109 0.300 0.126 0.187 0.191 0.559 1

 
 
 
 
 
 
 
 
 


    

  


 
 
 
 
 
 
 
   

 

From a visual inspection of R matrix, it is evident that pairwise correlations are not 

very high. This suggests that there is no extreme multicollinearity present in the data 

Moreover highly multicollinearity might affect the univariate contribution of the 

variable to a factor and may causes problems in conducting factor analysis. 

Tax Burden 
11 185n =  

11 21.625X   
1111 126.620s   

Gov't Expenditure 
12 185n =  

12 33.481X   
1212 172.971s   
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5.2 Detection of Multicollinearity 

Multicollinearity occurs when two or more independent variables in a Factor analysis 

model are highly correlated and one can be expressed as linear combination of the 

other variables with a certain degree of error. For example 3 1 2   3    8    X X X    . In 

such cases, the determinant of the correlation matrix will be zero and the factor analysis 

cannot be performed.  

Multicollinearity can be diagnosed by computing the determinant of R. In this example 

0.0661R =  is computed. Since the R is invertible matrix and the determinant of R>0, 

it implies that there is no multicollinearity does not exist. In other words, there exists 

a few set of new uncorrelated variables (PCs) that can be expressed as linear 

combinations of these variables. 

5.3 Kaiser-Meyer-Olkin Sampling Adequacy Test  

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy test used to check 

whether or not the sample data is appropriate for running factor analysis. 

The null and alternative hypotheses of KMO sampling adequacy test is give below. 

0H : The sample data is not suitable for factor analysis. 

1H : The sample data is suitable for factor analysis. 

If D is a diagonal matrix of inverse correlation matrix 1
R , i.e.  1

D = diag R and 

* 1/2 1 1/2  
R = D R D  an anti-image correlation matrix, then KMO test statistic is found 

by the following formula, 
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i j i j

p
2

ij

i j

p p
2 *2

ij ij

r

KMO = ; 0 < KMO < 1

r + r



 



 

 

where 
p

2

ij

i j

r


 is the sum of the square off diagonal entries of the squared correlation 

matrix 2
R and 

j

p
*2

ij

i

r


  is the sum of the square off diagonal entries of the anti-image 

correlation matrix *2
R .  

According to KMO test, if KMO >0.5  the null hypotheses will be rejected, and the 

sampling will be sufficient. 

Since for the data used the KMO is computed as 0.614, it indicates that the data taken 

as a case study is adequate for running factor analysis [13]. 

Remark: KMO test is a way of checking whether there is some possible factors that 

exists leading to dimension reduction of the data. The higher the value of KMO the 

more powerful the factor analysis will be. 

5.4 Dimension Reduction using PCA  

The factor extraction and factor retention are obviously judged on the eigenvalues of 

correlation matrix. As a rule of thumb, the number of common factors is recommended 

to be the same the number of eigenvalues that are greater than unity. For the case study 

the eigenvalues of correlation matrix and their cumulative percentages are given in the 

Table 5.2. 
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   Table 5.2. Eigenvalues and their percentage and cumulative percentage  

 

Eigenvalues represents the variances of the common factors. It is shown in the Table 

5.2 that all eigenvalues are positive and their sum is equivalent to the total number of 

variables     i.e. 

12

i

i=1

λ = p = 12     . This suggests that the correlation matrix is positive 

definite and it is possible to obtain the factors from the original data. 

It is clear from the Table 5.2 that only first four eigenvalues of R  are greater than 

unity. Additionally, the percentage of the total standardized population variance due 

Factors Eigen values 

i iVar(F )= λ  

Percentage 

distribution 

Cumulative  percentage 

 

F1 2.596 21.629 21.629 

F2 1.947 16.228 37.857 

F3 1.544 12.870 50.727 

F4 1.302 10.850 61.578 

F5 0.908 7.565 69.142 

F6 0.814 6.781 75.923 

F7 0.738 6.153 82.076 

F8 0.585 4.878 86.954 

F9 0.537 4.471 91.425 

F10 0.410 3.420 94.845 

F11 0.365 3.042 97.887 

F12 0.254 2.113 100.000 
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to the first common factor which is the variation explained by the first factor is 

computed as 
1 2.596

100 21.629%
12

λ

p
  . 

Similarly, the first two and three factors together accounted for 37.857% and 50.727% 

of the total standardized sample variance respectively. While the cumulative 

percentage of the total standardized population variance explained by first four 

common factors is 61.578%. 

Consequently the sample standardized variation is reasonably well summarized by first 

four common factors. Hence, in place 12 variables, 4 PCs can represent the same data 

or each of the 12 variables can be represented by 4 common factors.  

5.5 Scree Plot 

Scree plot is another tool that helps in determining the optimum number of common 

factors. The percentage of each j

i

λ

λ
 gives a visual idea about the distribution of 

the eigenvalues which are also represent the proportion of sample variance due to the 

thi  factor. Similarly the relative cumulative variance values produces a concave down 

graph that is helpful in determining the number of factors that can be used in 

representing each variable. Figure 5.1 clearly shows the decreasing nature of the 

proportion of sample variance due to the thi  factor, via the bar chart. It also shows the 

concave down relative cumulative variance values, indicating a visible decrease in the 

slope of the curve at around PC 4 that corresponds to about 60% of the relative 

cumulative variance. This also means that around 40% of variation is represented by 

the remaining 8 factors. This relatively high percentage of variation represented by the 

8 factors is mainly attributable to the low correlation between variables as can be seen 

from the correlation matrix. 
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Figure 5.1. Scree plot for dimensions reduction 

 

5.6 Reduced Eigen Space 

Reduced Eigen space contains the reduced eigenvalue matrix (E) and reduced 

eigenvector (V) matrix of R are given below,         

2

3

4

0 0 2.596 0.000 0.000 0.000

0 0 0.000 1.947 0.000 0.000

0 0 0 0.000 0.000 1.544 0.000

0 0 0 0.000 0.000 0.000 1.30

0

2
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1λ
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 

22

42 43 44

72 73

82 83

92 93

102 103

112 113

122 123

11 12 13 14

21 23 24

31 32 33 34

41

51 52 53 54

61 62 63 64

71 74

81 84

91 94

101 104

111 114

121 124

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

e e e e

 
 
 
 
 
 
 
 
 

  







 

V 1 2 me ,e , ...,e

0.133 0.158 0.249 0.365

0.438 0.184 0.051 0.267

0.023 0.076 0.418 0.501

0.255 0.069 0.343 0.480

0.395 0.034 0.301 0.145

0.048 0.594 0.208 0.129

0.041 0.203 0.481 0.433

0.247 0.498 0.186 0.184

0.426 0.188 0.023 0.







 

 

 








 










 175

0.138 0.373 0.100 0.091

0.419 0.262 0.246 0.011

0.356 0.211 0.415 0.124

 
 
 
 
 
 
 
 












 
 
 
 
 
 
 
  



  

 

 

Remarks: The eigenvalues measure the variation of the population principal 

components and the eigenvectors are indicators of the direction of the principal 

components. Principal components are actually scaled eigenvectors. They span the 

original coordinate system in the directions of great variability. 

5.7 Algorithms for Relationship between PCA and FA. 

In multivariate computational statistical analysis, the term algorithms refer to set of 

rules that can perform calculation or processing the data in order to answer statistical 

problems, with help of computer software. The procedure of the following algorithms 

step by step mentioned in Appendix II, the initial factor loadings 

matrix, variamx rotated factor loadings matrix, commonalities and specific variances 

obtained by using principal component approach and results are given in Table 5.3. 

 



   

 
 

 Table 5.3. Pattern matrices, communalities and specific variances by PCA method. 

 

 Estimated factor loadings  ij i ijl λ e  Rotated  estimated factor loadings Communalities Uniqueness 

Variable 
1F  2F  3F  4F  

*

1F  2

*F  3

*F  4

*F  
2

ih  
2

i1- h  

GDP  -0.214 0.221 0.309 0.417 -0.363 0.467 0.112 0.034 0.364 0.636 

GDP per Capita -0.706 -0.257 0.063 0.304 -0.799 -0.073 -0.134 0.004 0.661 0.339 

GDP Growth Rate -0.037 0.106 0.519 -0.572 0.149 0.040 0.132 -0.754 0.609 0.391 

Inflation Rate  0.411 -0.097 -0.426 0.548 0.142 -0.003 0.118 0.791 0.66 0.34 

Interest Rate  0.637 0.047 -0.375 0.165 0.532 -0.021 0.105 0.530 0.576 0.424 

Income Tax Rate -0.078 0.828 0.259 0.147 0.075 0.845 -0.190 -0.161 0.781 0.219 

Unemployment Rate 0.065 0.284 -0.598 -0.494 0.507 -0.187 -0.628 -0.019 0.686 0.314 

Corporate Tax Rate  0.398 0.694 0.231 0.210 0.389 0.755 0.117 0.059 0.738 0.262 

Tariff Rate  0.686 0.263 -0.028 -0.200 0.729 0.134 0.173 0.045 0.581 0.419 

Public Debt  -0.223 0.521 -0.125 0.104 -0.031 0.429 -0.402 0.027 0.348 0.652 

Tax Burden  -0.676 0.365 -0.306 0.012 -0.358 0.189 -0.719 -0.051 0.683 0.317 

Gov't Expenditure -0.573 0.295 -0.516 -0.142 -0.180 -0.009 -0.818 0.000 0.702 0.298 
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 5.8 Estimation of Standardized Factor Analysis Model   

The estimated factor loadings matrix is computed by
i jX ,F j ij ijρ = λ e = l . Factor 

loadings represents correlation between the principal components and the standardized 

variables, these are computed using (4.2.5)  

Like the regression analysis, the standardized score of all variables can be predicted 

from m=4 standardized factor model, by the following equations from (4.2.5)  

1

2

22 3 11 4

1 2 3 4

1 2 3 4

1 2

1

2

-0.214F 0.221F 0.309F 0.417F

-0.706F -0.257F 0.063F 0.304F

-0.573F 0.295F -0.516F -0.142F

Z = + + +

Z = + + +

Z = + + +













                             

where 1 12Z ,…,Z  standard normal variables, the coefficients of 1 4, ,F F  are factor 

loadings and 1 12,...   are unknown error terms. 

It clear from 1Z  model that all the corresponding factor coefficients 

11 21 31 41l 0.214, l 0.221, l 0.309, l 0.417      of the 1 4,...,F F  respectively, are 

insignificantly contributes to 1Z . This means that 1Z  does not provide the best fit based 

on scores of 1 4,...,F F . Consequently, the highly correlation coefficients between the 

factors and variables indicates the higher factor loadings on the individual variables. 

The communalities are obtained from the sum of square factor loadings, it measures 

the goodness of fit of the factor model. The communality for the first variable has been 

obtained from the sum of square factor loadings corresponding to that variable, and 
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the complement of the communality is called uniqueness or specific variance, that is 

given by 

Communality =        
2 2 2 2

0.214 0.221 0.309 0.417 0.3642

ih       

and 

Uniqueness = 0.6362

i i= 1- h   

This means that 36.4 % of the total standardized variation of GDP (PPP) is captured 

by factor model and 63.6% are dropped due to some extraneous factors. Similarly, the 

communalities and uniqueness for each variables are already obtained from equation 

(4.2.8). 

The interpretation of the initial factor loadings found by PCA method is difficult. 

Rotation of the factor loadings matrix provides a simpler way of interpreting the 

obtained factor model. During the process of rotation that can be performed using any 

matrix rotation method, computed communalities and specific variances remains 

unchanged. In this study the Varimax method of rotation is employed for the rotation 

of factor loadings matrix by 090  (orthogonal rotation). The rotated factor loadings are 

obtained from equations (4.2.14). Following the varimax rotation the new factor model 

is given. 

* * * * *

1 2 3 4 1

* * * * *

1 2 3 4 2

* * * * *

1 2 3 4 1212

0.363 . 0.112 0.034

. 0.073 0.134 0.004

0.149 0.040 0.132 .

1

2

F F F F

F F F F

F

Z = + + +

Z = + + +

Z = + + +F F F







 

   

 

0 467

0 799

0 754

 

 

The rotated factor model is easier to interpret then the un-rotated factor model. Factors 

that have high effect on the process under study becomes evident. For example for 1Z  
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the highest influence comes from factor
*

2F . Similar interpretations can be made for all 

other variables.  

It is clear from Table 5.3 that the variables GDP per Capita, Interest Rate and Tariff 

Rate, have high loadings on factor
*

1F , low or ignorable loadings on other factors. 

When we look at factor
*

2F , the variables Income Tax Rate, Corporate Tax Rate, and 

Public Debt are dominant. Thus
*

1F can be called the economic survival index factor 

and the second factor 
*

2F  the economic development index factor. In Figure 5.2 

variables with high loadings on 
*

1F  and 
*

2F  are clearly visible as they extend along 

the appropriate axis. 

Figure 5.2. Factor loading after varimax rotation 
*

1F  and 
*

2F  
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From the table 5.3 a plot for rotatated factor loadings of the last two factors 
*

3F  and 
*

4F  

are used to generated a similar graph to that is given in Figure 5.2.and is given in Figure 

5.3. It is demonstrated in the Figure 5.3 that the variables Unemployment Rate, Tax 

Burden and Gov't Expenditure have the highest loadings on 
*

3F .Therefore 
*

3F can be 

called the economic conservative index factor. The fourth factor 
*

4F  receives maximum 

information from three other variables, GDP Growth Rate, Inflation Rate and Interest 

Rate. So it can be named as the economic inconsistency index factor. The other 

variables have negligible and considerably low factor loadings on these two factors.       

Figure 5.3. Factor loading after varimax rotation for the factors 
*

3F  and 
*

4F . 
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5.9 Factor Estimation 

All the standardized estimated factor score can be predicted by the following equations  
*

*

*

*

*

ˆ
ˆ

ˆ

ˆ

ˆ

j j

j

ii
j

j

j

j

e x x
F

s

e
z





  
  

 




   for j =1,2,…,m & i =1,2,…, p             

Where 
*ˆ
j and 

*ˆ
je  are the 

thj  rotated paired eigenvalues and eigenvectors, for j=1, 2, 3, 

and 4 the following equations are obtained as 

* * * *

4

* * * *

*

*

*

2
*

2

*

3
*

3

4

* * *

*

4

*

3

*

4

ˆ ˆ
ˆ

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ
ˆ

1 21 2 31 3 41 121 12

1 22 2 32 3 42 122 12

1 23 2 33 3 43 123

*

1 11

1

*

12

*

13

1

12

*

14

Z +e Z +e Z +e Z ,...,+e Z

Z +e Z +e Z +e Z ,...,+e Z

Z +e Z +e Z +e Z ,...,+

1
F = e

λ

1
F = e

λ

1
F = e

λ

1
F = e

e Z

λ
Z

  

  

 



 





* * * *

4
ˆ ˆ ˆ ˆ

24 2 34 3 44 124 12+e Z +e Z +e Z ,...,+e Z  

 

Matlab gives the following equations 

*

1 0.223 0.376 0.132 0.020 0.200 0.021

0.330 0.127 0.328 0.002 0.107 0.001

ˆ
1 2 3 4 5 6

7 8 9 10 11 12

Z Z Z Z Z Z

Z Z

F

Z Z Z Z

     

    




 

*

2 0.300 0.001 0.015 0.035 0.012 0.462

0.178 0.421 0.045 0.226 0.084 .044

ˆ

0

1 2 3 4 5 6

7 8 9 10 11 12

Z Z Z Z Z Z

Z Z Z + Z

F

Z Z

   

 

 

  
 

*

3 0.129 0.005 0.078 0.032 0.012 0.059

0.415 0.069 0.026 0.196 0.351 .438

ˆ

0

1 2 3 4 5 6

7 8 9 10 11 12

Z Z Z Z Z Z

Z Z Z Z Z Z

F    

  

 

  
 

*

4 0.079 0.081 0.534 0.527 0.309 0.073

0.057 0.036 0.038 0.052 0.026 .037

ˆ

0

1 2 3 4 5 6

7 8 9 10 11 12

Z Z Z Z Z Z

Z Z Z Z Z Z

F    

  

 

  
 

After extracting all the small and negligible coefficients and labeling, the following 

equations created, 

0.376   0.330  0.328  GDP per Capita Unemployment Rate Tariff RateESI     

0.300 0.462   0.421   0.226  GDP Income Tax Rate CorporaEDI te Tax Rate+ Public Debt    

0.415  0.351  0.438 '  Unemployment Rate Tax Burden Gov t ExpendEC i rI tu e      
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5.10 Economic Survival Index (ESI) 

The standardized factor scores for all four factors can be computed by using equation 

(4.2.18) .Out of 185 countries, as an example the standardized factor scores are 

computed for the top 10 ranking countries. The factor scores for economic survival 

index (ESI) are given in Table 5.4. 

 Table 5.4. Standardized score of economic survival index 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

First ranked United States, has the highest ESI with a score 2.977. United Arab 

Emirates is ranked 10th, has ESI 1.712. Thus, United States has the highest ESI as 

compared with other countries.

Country  ESI Ranking 

United States 2.977 1 

Macau 2.800 2 

Qatar 2.731 3 

Luxembourg 2.125 4 

China 2.096 5 

Singapore 2.026 6 

Brunei Darussalam 1.983 7 

Switzerland 1.848 8 

Germany 1.766 9 

United Arab Emirates 1.712 10 

0.534   0.527   0.309  Growth Rate Inflation Rate Interest RatE I eI    
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5.11 Economic Developmental Index (EDI) 

The table 5.5 shows the economic developmental index (EDI) score for the top 10 

ranking countries. 

                    Table 5.5:  Economic developmental index score 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to EDI given in Table 5.5 United States ranks the first, and Netherlands 

occupies the tenth place. This index can be used as a measure for the level of 

development of the concerned country. 

 

 

 

 

 

 

Country Name EDI Ranking 

United States 3.816 1 

China 3.312 2 

Japan 2.533 3 

India 1.855 4 

France 1.708 5 

Belgium 1.630 6 

Italy 1.480 7 

Greece 1.198 8 

Austria 1.176 9 

Netherlands 1.143 10 
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5.12 Economic Conservative Index (ECI) 

The economic conservative index (ECI) score for the top 10 ranking countries are listed 

in Table 5.6. 

             Table 5.6. Economic conservative index score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Table 5.6 Liechtenstein has the highest ECI, while Hong Kong is in the 

tenth position. This reveals Liechtenstein has the highest concentration on the change 

to development of its economy, while those with lower ECI lack this concentration. 

 

 

 

 

Country Name ECI Ranking 

Liechtenstein 2.386757 1 

Nigeria 1.877187 2 

Bangladesh 1.713963 3 

Republic of the Congo 1.59834 4 

China 1.596723 5 

Guatemala 1.535151 6 

Madagascar 1.437041 7 

Cambodia 1.399659 8 

Indonesia 1.38805 9 

Hong Kong SAR 1.370173 10 
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5.13 Economic Inconsistent Index (EII)  

Economic inconsistent index (EII) score for the highest scoring countries are listed in 

Table 5.7. 

                    Table 5.7: Economic inconsistent Index score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The EII is an indicator of inconsistencies in the economy of a country mostly due to 

imbalance in economy and various factors that causes big fluctuations in economy. 

According to analysis results from the data Venezuela has the highest EII, while 

Malawi is in the tenth position. 

5.14 Statistical Control Ellipse  

In the order to see which observations of the factor scores are statistically in or out of 

control in the future, two control ellipse charts are generated using the four factors.For 

Country Name EII       Ranking 

Venezuela 7.290538631 1 

Yemen 5.182715378 2 

Ukraine 4.014900017 3 

Sierra Leone 3.223664087 4 

Macau 2.870468153 5 

Argentina 2.391867354 6 

Korea, North  1.874090873 7 

Belarus 1.731406576 8 

Russia 1.636494569 9 

Malawi 1.59328325 10 
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the purpose of this study the pairwise comparison between the factors (
*

1F ,
*

2F ) and (

*

3F ,
*

4F ) are examined. 

The 95 % confidence quality control ellipse for all pairs of values of ESI and EDI are 

obtained the following equation as 

    
*2 *2

22
2* *

1 2

ˆ ˆ
.051F F


 

                                                                                 (5.1.2)  

where 

     
2 2 2

0.363 . ,..., 0.516

2.20

* *2 *2 *2

1 11 12 112λ l +l +,...,+l

      



0 799  

   
2 2

2

. ,..., 0.009

1.78

* *2 *2 *2

21 22 212λ l +l +,...,+l

 



 



0 467  

Similarly the 95 % control ellipse for ECI and EII factors can be determined. That is 

 
*2 *2

23 4
2* *

3 4

ˆ ˆ
.05

F F


 
                              (5.1.3) 

where  

     
2 2

3

2
0.112 0.134 ,..., .

1.89

* *2 *2 *2

31 32 312λ l +l +,...,+l

     





0 818  and 

   
2 2

4

0.034 ,..., 0

1.51

* *2 *2 *2

41 42 412λ l +l +,...,+l

  





 

The above values of the rotated factor loadings are taken from table 5.3.  

 



   

 

This chart was drawn benefiting from equations 3.1.10 and 5.1.2. Using the standardized scores of ESI and EDI 

 

Figure5.4. 95% Statistical Control Ellipse for EDI - ESI pairs 
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This chart was drawn through the equation 3.1.11 and 5.1.3 and using the standardized scores of ECI and EII   

 

Figure 5.5. 95% Statistical Control Ellipse Chart for ECI and EII pairs 
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5.14 General Interpretations of Statistical Control Ellipse Charts 

The Figure 5.4 shows that 95% control ellipse of the scores for 185 countries. 

Evidently 9 countries out of the control ellipse. They either have very high or low 

factor scores on either or on both indexes. Hence, these countries should investigate 

and change the policy to growth or survival factors influencing the economy in the 

future. 

The control ellipse 5.5 shows that factors score of the 8 countries falls outside the 

control ellipse. They are statistically out of control with 5% level of significance, 

which is due to inconsistency and instabilities. Consequently the countries whose 

scores lie outside the control ellipse, need to take some remedial action to protect their 

economy against inconsistencies and instability in the future. 
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Chapter 6 

CONCLUSION 

In multivariate statistical analysis, the relationship between PCA and FA is 

investigated. Explored theory is applied to a multidimensional data and obtained 

results are interpreted.  The statistical analysis of such large data without using the 

PCA – FA relationship would be incomplete. Furthermore, PCA was used as a tool for 

factors extraction and variable selection in FA. 

The link between FA and PCA was investigated through the correlation matrix. 

Correlation matrix has been chosen due to significant differences between the 

observations of each variable. More specifically, the correlation matrix would be only 

applicable when the variation from variable to variable is considerably large, or the 

units of each variable are not identical.  

Before running PCA in FA, the Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy test was applied to the overall data, where the correlation matrix is utilized 

to determine the suitability of the data for FA. Obtained test result indicated that the 

application of FA to the selected sample data is possible. MATLAB is used to compute 

the eigenvalues and eigenvectors of the correlation matrix. It is worth remembering 

that the obtained eigenvalues are actually the variances of PCs and PCs are scaled 

eigenvectors span the original coordinate system to new coordinate system in the 

directions of the greatest variation of the original data. 
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In PCA the scree plot helps to determine the number of factors for FA model. These 

CFs explains the maximum variability in the original data. Moreover, this plot 

constructed from the eigenvalues of the correlation matrix and provides an evidence 

to the possible number of highly correlated groups of variables. This enables the 

selection of the number of factors to be used in establishing the orthogonal factor 

model for the data. 

In PCA, the principal loadings are simply the eigenvectors. In FA the factor loadings 

are the correlation values between the original variables and underlying common 

factors. Generally the factor loadings helps to compute the communalities and 

uniqueness of a particular variable. Additionally, communality can be interpreted for 

a particular explanatory variable in FA, as it is for a response variable the coefficient 

of the determination in regression analysis. 

In FA sometime is very tedious to interpret the initial factor loadings obtained by PCA 

approach. In such circumstances the varimax rotation criteria can be used to rotate the 

initial factor loadings, obtaining a better picture for more elaborate interpretation. 

Additionally the factor scores estimated by using ordinary least square method based 

on rotated factor loadings, enables the detection and cleaning outliers from the data. 

This facility is widely used in the field of statistical quality control and subsequent 

analysis.  
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Appendix A: World Economic Data 
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Table World economic data continued 
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Table World economic data continued 
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Appendix B: Matlab Code for Relationship between PCA and FA  

 


