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ABSTRACT

In every field of scientific research and application, where the masses of data is
available in multivariate form, the use of multivariate statistical analysis techniques
can be implemented to achieve proper statistical inferences. The statistical modeling
of data is the essential part of the multivariate analysis. The model might be the linear
combinations of the original data, which can be created though the relationship
between Principal Component Analysis (PCA) and Factor Analysis (FA). Such
process of converting the entire data into the set of few clusters or linear models is
called dimension reduction. Before applying FA, the Kaiser-Meyer-Olkin (KMO)
measure of sampling adequacy test for FA is used (12). Initial factor loadings and the
variamx rotated factor loadings are computed via PCA approach. The estimated factor
models generated by ordinary least square method, are further used for statistical
control charts. Finally the generation of the uncorrelated statistical models using the
relationship between PCA and FA is carried out to enable the estimation of the future

outcomes.

Keywords: Correlation matrix, KMO test, Reducible Eigen space, dimension
reduction, varimax rotation, uncorrelated statistical models, OLS estimated factor

scores, statistical control charts.



Oz

Bilimsel arastirma ve uygulamanin her alaninda, ¢cok degiskenli verilerin var oldugu
durumlarda, en uygun sonuglar ¢ok degiskenli istatistik analiz yontemleri ile elde
edilebilir. Verilerin istatistikslel modellemesi ¢ok degiskenli analizin temel unsurudur.
Bu modelleme Temel Bilesenler Analizi (TBA) ve Faktor Analizi (FA) arasindaki
iliskiden yararlanarak veriler arasinda dogrusal kombinasyonlarin olusturulmasi
seklinde olabilir. Verilerin alt gruplara veya dogrusal modellere doniistiiriilmesine
boyut indirgeme denir. FA vyapilmadan Once, verilerin FA’ya uygunlugunun
saptanmasi icin Kaiser-Meyer-Olkin (KMO) &l¢iim hesab1 yapalir. Tlk faktor yiikleri
ve varimax metodu ile doniisiimii yapimis faktor ylikleri TBA yaklasimi ile hesaplanar.
Minimum kareler yontemi ile tahmin edilmis faktor modeli istatistiksel control
grafiklerinin olusturulmasinda kullanildi. Son olarak TBA ve FA arasindaki iliski
kullanilarak ileriki olusumlarin tahmininde kullanilmak {izere bagimsiz istatistiksel

modeller olusturulmustur.

Anahtar kelimeler: Korelasyon matrisi, KMO test, indirgenebilir Eigen uzay1, boyut
indirgeme, varimaks dondurum, enkicuk kareler metodu ile tahmin edilmis faktor

skorlari, istatistiki Kontrol grafikleri.
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Chapter 1

INTRODUCTION

In every field of data analysis, the data are typically collected by researchers through
the experimental units. These can be inanimate subjects, human subjects, plants,
countries and a wide range of other objects. However, in multivariate analysis,
it is sometimes tedious to isolate and study each variable individually. It is essential to
study all variables simultaneously, to achieve completely understandable structure and
clear configuration of the data. From this point of view, the multivariate statistical
techniques will help to make proper statistical conclusions. Initially applications of
multivariate methods were only limited to the psychological problems of human
intelligence, but currently it is broadly used in quality control, pharmaceutical
companies, DNA microarrays, marketing research, industries and telecommunications

etc [9].

The aim of this study is the creation of statistical models for multivariate data through
the basic relationship between Principal Component Analysis (PCA) and Factor
Analysis (FA). PCA constructs the linear transformations of the multivariate data using
covariance or correlation matrices. Moreover, these transformations are in fact the
statistical models and are largely concerned with exploring and explaining the
characteristics of the data. Basically, PCA reduces the number of dimensions and it is
heavily utilized in FA to determine the appropriate number of factors and

variables for subsequent analysis.



But in some fields they are interchangeably used unconsciously. In FA, the
investigators make the assumptions that there exists an underlying model for the data,
while PCA is just a mathematical model of the original variables without any
assumptions about the variance - covariance matrix. It can be simply employed to
condense the data without loss of information. In the case, if the factor model is
erroneously applied to a particular data and the assumptions about the covariance
matrix are completely unspecified, then FA will lead to improper conclusions or vice

Vversa.

Additionally, the main focus of this thesis is on the generation of the factor model as
well as a proper interpretation of the factor model through a case study using a
multivariate data set. Generally, the factor model is estimated by ordinary least square
method. The estimated factor scores of the factor model are very useful in diagnosing

the characteristics of the data.



Chapter 2

LITERATURE REWIEW

In 1904 the first idea of FA was proposed by an English statistician Charles Spearman
(1) in the field of modern psychology. He discovered that a single artificial factor
called g factor could be considered as general intelligence factor. The intellectual
performance of the human brain depends on many different variables. Spearman
associated all the variables to the g factor. Subsequently this idea was developed into
a new statistical technique called factor analysis, where the association between the
variables was examined. His findings was published in the American Journal of
Psychology under the title “General intelligence objectively determined and
measured”. According to Spearman Theory, all the test measurements of human
intelligence are directly associated, such that it can be modeled by a specific

underlying factor of the various mantel abilities [1].

In 1940, Raymond B. Cattell (2) extended the Spearman idea of the g factor theory to
the multi-factor theory for human intelligence using the same factor analysis. He
started his research with a Personality Factor Questionnaire, in which he included 15
different personality factors including the g factor. The Cattell Factor Analysis was
based on the correlation matrix, he found that the sixteen factors themselves are
correlated and their scores can be measured on the two uncorrelated factors, which he

called extraversion and introversion for the human ability test [2, 3, 4].


https://en.wikipedia.org/wiki/Raymond_Cattell

In 1901, the first concept of PCA was discovered by Karl Pearson. His main idea was
that how to transform or rotate the multi-dimensional data to the low dimensional data.
He found the method of transforming original coordinate system to the new coordinate
system and also the representation of the best fit lines for the system of points in a

multi-dimensional scatter plot [5].

In 1930, Thurston found that PCA and FA are both separate techniques for numerical

problems. But due to some insufficient knowledge both are interchangeably used [6].

In 1933 Harold Hoteling used the PCA as data reduction technique in factor analysis.
His paper published in the Journal of Educational Psychology named “Analysis of a
complex statistical variables into principal components” dealt with the statistical
process that transforms the huge volume of data to the low volume data by the set of
few uncorrelated variables. However, the method for multivariate statistical data
analysis could not be applied to real life problems with large multivariate data due to
the volume of computation involved. With the advent of electronic computation
starting from 1960s onwards, application of PCA and FA became possible [7]. Three
years later in 1936, Hotelling introduced the method of computing PCs by using power

method [8].

During the World War 11 in 1939, Girshick gave another derivation of PCs by using
maximum likelihood estimation and he also introduced the sampling theory in the field
of PCA [10]. In 1966, Gower J C discussed the geometrical and theoretical

interpretation of PCA in the field of FA and other statistical analysis [11].



In 1970, Henry Kaiser proposed the idea of testing the measure of sampling adequacy
for factor analysis [12]. Later in 1974, this was improved by Kaiser and Rice [13]. This
statistic was used to compare the square entries of image correlation matrix and usual
correlation matrix. This test is usually called Kaiser-Meyer-Olkin KM sampling
adequacy test, abbreviated as KMO [13]. In 1972, Vavra used the PCA as a feature
extraction technique before conducting the regression analysis for the solution of

economic problems [14].

In 1976, Jackson, J. E. and Lawton, W. H. used another application of PCA in cross
impact analysis, dealing with estimating the impact of one outcome given that the
likelihood of other outcome is already known [15]. In 1988 Brown used a wide
application of PCA in field of chemistry for mass spectroscopic and gas
chromatographic problems in which the data measured at the various time intervals

[16].

In 1999, Fabrigar claimed that PCA and factor analysis are similar techniques in a few
statistical fields. He addressed that principal component and factor analysis can yield
the same output. But in low communalities cases both methods will provide different
outputs. He also proposed that any data which satisfy the assumptions of factor
analysis exists as an underlying model, and the results of this model can be more

accurate then PCA results [17].



Chapter 3

MATRIX THEORY AS USED IN MULTIVARIATE

STASTISTICS

In this study it is aimed to investigate the relationship between PCA and FA, based on
the certain multivariate statistical data analysis concepts. The statistical techniques
utilizing some matrix theory will be used to detect the structure and pattern of the huge
volume of multivariate data. This will be achieved by first computing the variance-
covariance and correlation matrices. Then the relationship between PCA and FA will
be explained. However, in this chapter the theory establishing a link between matrix
algebra and statistical analysis is explored. In Chapter 4 the summarized theory will
be used for dimension reduction of data, modelling, exploring, interpreting and making
statistical inferences of available data in a multidimensional environment. Application

of such theory necessitates the use of advanced statistical software.
3.1 Matrix Terminologies
In multivariate statistical data analysis when the number of variables are more than

two, statistical computations necessitates the use of computer software packages. In

this section the use of matrix algebra in statistics is explained.



3.1.1 Matrix Representation of Data

Definition 3.1. In multivariate statistical analysis representation of the data in matrix
form is essential. A data with p variables and n observations can be represented by the

matrix X of the sizenx p, denoted as

Xy X le

Xy Xy XZp

X =| 0 E[ XX X ] (3.1.1)

(nx p)
an Xn2 e an

where n represents the number of observations of the data in each column and p
represents of the variables in each row [18].

3.1.2 Mean Data Matrix

Definition 3.2 Let X =[X1,X2,...,Xp] be a random vector containing p random

variables each with n observations. Then the sample mean of the p variables can be

represented by the following vector.

)_(:—{ijl,ijz, ijp, [)?1,)?2,---,)?& (3.1.2)

where each sample mean contained in the sample mean vector measures central
tendency of the corresponding random variable [18].

3.1.3 Sample Variance
Definition 3.3 Amount of variability of a single random variable with n observations

X, %, +, X, , about its mean x , can be computed as

BEA)

S. =8, = _12( K% ) k=12,...,p. (3.1.3)



Here, k represents the number of columns and j represents the number of rows of the
data matrix X. This statistic is commonly used to determine the dispersion among the
data points around the sample mean and it is also called measure of spread. It helps to
understand the shape of the data [18].

3.1.4 Sample Covariance

Definition 3.4 Let X, =[Xy Xy, %] and X, =[X,, X, -+, X,,] be a bivariate
random sample of size n drawn from two populations, assuming that random variables

X, and X, have a joint probability distribution f ( x,,, ). Then the joint variability

of X; and X, is given by
1 < o -

Cov(Xy,X,)=s, :n_Z(le_Xl XX, - X%, ) (3.1.5)
14

In general, the measure of linear relationship between the i" and k™ variables for

i=1,2,--,p & k=1,2,---,p , can be defined as
COV(X, X,) =84 = =2 3%, - % )Xy - X,) (3.16)
14

It is useful to estimate the linear associations of any two variables under the same unit
[18].

3.1.5 Sample Variance Covariance Matrix

Definition 3.5 In general, the covariance of multivariate data can be expressed by the

covariance matrix S,

S S Stp
g=|2 2 2 {Sik = _Z(in - % )X - X )} (3.1.7)
: : o n-1=
Sip - Sap Spp



Here the diagonal elements of matrix S shows variances of the p variables while the

off diagonal entries are covariances between the variables X; and X [18].

3.1.6 Sample Correlation and Coefficient of Determination

Definition3.6 Correlation measures the linear dependency between two random
variables X;and X, having different units of measurement. Mathematically it can be
written as

n

;(in - X )(Xjk - X )

h = ———== fori=12..pandk=12..p (3.1.8)

ﬁ\ﬁ \/i(xji 'Yi )2 \/i(xjk _Xk )2

j=

the square of r is called coefficient of determination (r?). It is the ratio of the amount
of variation explained by regression equation, to the total variation of a data point from
the regression equation [18].

3.1.4 Sample Correlation Matrix

Definition 3.7 In a multivariate random sample, the correlation coefficients between

variables can be arrange in the matrix form as follows,

Iy Mo
I. I. I.

R=| 2 % 2 (3.1.9)
e T Vop

Correlation coefficient between the two distinct variables is symmetrical. That is

r, =r, forall i and k. The correlation coefficient of a variable with itself is always

one [18]. Therefore, the diagonal elements of the R matrix are 1.



3.2 Statistical Techniques

Statistical methods are commonly used to organize, summarize, analyse data, and
make inference about the population from where the data is collected. In this section,
the normal probability distribution and statistical approaches will be discussed to help
clarify the idea of PCA and FA.

3.2.1 Normal Distribution

Normal distribution is one of the widely used continuous probability distributions in
the field of statistical data analysis and the estimation of population parameters based
on sample data.

3.2.2 Univariate Normal Distribution

Any statistical experiment associated with a probability distribution consisting of a
single random variable of a normal population is called univariate normal probability

distribution

Definition 3.8 Considers a univariate random variable X of a normal population with

mean u and variance o”that is symbolically denoted as X ~N(u,az). Then the

probability density function f (x) of this random variable X is called univariate normal

probability distribution and is defined as

e’ J ;=00 < x <0 (3.2.1)

10



Graphically,

X

Figure 3.2.1. Graph of univariate normal distribution function.

Graph of the normal distribution is symmetric bell shaped curve. The shape of the

curve is determined by two parameters. It is mean x called centre of the distribution
and variance ¢° called measure of spread [18].

3.2.3 Mean and Variance of the Distribution of Sample Means X

2

Definition 3.9 Let X ~N [ﬂ,%j with probability density function f (X), then the

2
population mean  and variance 2 are given by the following.
n

u=E(X) (3.2.2)

Let prove the above quantity, starting from the definition of sample mean, that is

E(X):E[w]

Using the expectation linear operator property, then

E()?):%[E(xl)+ E(X,).... E(X,)]

11



As X, X,,.., X, are identically distributed this means that all have the identical

population mean x, then simply replacing expectation of the X, by 4. That is

E(i)=%[ﬂ+ﬂ.---,ﬂ]

Hence proved.

And

Vaur(X):%2 (3.2.3)

The proof of the equation (3.2.3) is given below

Var (X)) :Var( X+ X2+,...,+an
n

=Var L+&++ﬁj
n n n

1 1 1
= FVar(Xl) +FVar(X2)+,...,+FVar(Xn)

Hence proved.

12



3.2.4 Standard Normal Distribution

Definition 3.10 A special case of the normal distribution with zero mean and unit

standard deviation is called standard normal distribution. That is if X ~ N (IL[,O'Z) , then
by definition

z=2""_N(0,2) (3.2.4)

o
Therefore the probability density function of the transformed Z random variable is

called standard normal probability density function, and is given by
f(201)= g2 ;-0<z< . (3.2.5)

This is also called Z distribution and is widely used for testing of hypothesis, and
interval estimation in statistical inference [18].

3.2.5 Bivariate Normal Distribution

Definition 3.11 Let us suppose two independent random variables X, and X, have a

bivariate normal distribution. Then the joint probability distribution of X, and X, is

given by the following probability density function

kil

- 1 1 XMy 2 Xo—Hp 2 —H [ o=k (3'2'6)
f(5x)= ool () ) -em )22
(I'Plz )
where ¢, and a,, are the population variances of X, and X, respectively and g, is

the population correlation coefficient between X, and X,.Graphically the bivariate

normal distribution is as shown in Figure 3.2.2.

13



Geometrically,

ﬂ-ﬂ--’igj
A

;J

Figure 3.2.2: Graph of a BND figure out as a three dimensional bell shaped object.

The covariance matrix for the bivariate case can be written as

z:{"“ ”21} 3.2.7)
Oy Op

Note that due to symmetry of the covariance matrix o,, = 0,, .

Let p,, be population correlation coefficient between X; and X, given by

Op

P, = ——7—, then matrix X can be written as
11402

_ 0y P12\ 01102
3=
P1270114/02 )

Since X is invertible matrix so the determinant of the X is non-zero and its inverse

(3.2.8)

exists. That is

14



|Z| = 01405 - Prz 01102 = 01107 (1 - p122) (3.2.9)

and

s 1 Oy P12 \/E\/E (3.2.10)
01109 (] - plzz ) P12 \[Ia\/a On

Then the probability density of the bivariate normal probability distribution becomes,

1 ~(X-w)EH(X-n)I2

(27,)|§;|% ° —00 < X < +00 (3.2.11)

f(x)=
with mean vector 4 = [ﬂl,yz] and covariance matrix X. That is symbolically matrix

X~N_, (Iu,oz) [18].

3.2.6 Multivariate Normal Distribution

When the number of variables are more than two the joint probability distribution is
known as multivariate normal distribution.

Definition 3.12 A data matrix X containing the p independent random variables

X, X,,...,X,drawn from a multivariate population with mean vector

Y7, =[Ml,,u2,...,ﬂp] and covariance matrix X that is symbolically X ~N(p,X). Then

joint probability distribution of the p variables is given by

1 ~(X-m)EH(X-p)l2

f(X)z—Be —0< X <o (3.2.12)
(27)[2[*

In the multivariate case the covariance matrix X is given by

Oy 0Oy = Oy
Oy Opn Oy .. e . )

r=| 7 . . |, when p=1 the univariate normal distribution is obtained [18].
Unl an Upp

15



3.3 Relationship between Euclidean Distance and Statistical Distance
Euclidean distance is meaningless when the random fluctuations are involved in a
process, since it is deterministic and cannot handle fluctuations in the values attained
by the variables. While in statistical distance the fluctuations in variation are due to
some random phenomena, and they may be correlated up to a certain degree.
Accordingly the proper distance will depend upon the variations of the values taken
on by the random variables, and correlation between the variables.

3.3.1 Euclidean Distance

Definition 3.13 Let X =[X_,X,] be a random vector with two random variables X,
and X, with equal standard deviations and both are uncorrelated. Assuming X, and
X, are standard normal, and P= (xl,xz) any arbitrary point from X, then according

to the Pythagorean Theorem, the Euclidean distance fromPto u = (0,0) is given by.

d ('u’ X) = \/(Xl -/11)2 +(x, ‘/‘2)2
= (¢, -0)° +(x, -0 (33.1)

— 2 2
= X2 +x

By taking the square of equation 3.3.1 the equation of the circle is obtaned. Such that

d?(pu, X)=x"+x"=c? (3.3.2)
According to Euclidean distance, any points that satisfy the equation 3.3.1 will

produced a constant distance such as ¢, and all of these points will be equidistance

from the origin. This situation can be illustrated graphically as in Figure 3.3.1.
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X, u =(0,0)

Figure 3.3.1. Representation of Euclidean distance from P to p.

It is clear from the Figure 3.3.1 that the square Euclidean distance between P and .
Generates the equation of circle basis on two independent variables having equal
magnitudes.

3.3.2 Statistical Distance

Definition 3.14 Let X, and X, be bivariate random sample with variances s,, and s,,

L

obtained by dividing the coordinates of P:(x,X,)by their respective standard

respectively, and let the P": { j: (xI ,x;) have the standardized coordinates

deviations. Then the statistical distance from P'=(x’1*,x;) to x =(0,0) can calculated

as follow,

By using equation (3.3.1)

- \/[ \% j +[ ’;2 ] (3.3.3)
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Geometrically,

 Statistical distance =c¢

Statistical distance b/w P&Q )(-? ¢ \jg

F 3

Outlier value /'

Figure 3.3.2. Graph of statistical distance

By taking the square of equation 3.3.3 the equation of the ellipse is obtained. That is

2

X, X
o (upP)=t+2=c’ (334)
It is clear any pair of points of X that satisfy the equation 3.3.4 will produce a constant

square statistical distance from origin p =(0,0) such asc’.

Remark: An Euclidian distance is the radius of the points to origin, which lies on the
circle and is constant. Whereas a statistical distance is the locus of the points from
origin lie on the ellipse.

3.3.3 Confidence Ellipsoid

Definition 3.15 Let matrix X with p variables be normally distributed, that is X ~

N (p,Z).Then the square statistical distance, produces the hyper ellipsoid that has chi-

square distributed with p degrees of freedom. That is if

18



(X—u) 27 (X=p)=¢? (3.35)

or
_ (X_/‘)z 2
Z= S ~ An(a) (3.3.6)
Then all the X values must satisfy the following equation.
(X—n) = (X-p) <22, (3.3.7)

where ¢ is a constant square statistical distance measured from X to population mean
4, and generates a hyper ellipsoid that contains (1—o )% of observations. It can be

estimated by the following equations.

P (Ox-wf (X ) <2, |~ (2-x)100 (3.38)
or

p[(x_ u) T (X p)< CZ} ~ (1-)100 (33.9)
Graphically,

Y2

Figure 3.3.3. Representation of confidence ellipsoid for two normal distributions
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Remark: The confidence ellipsoid is simply the contour of normal probability density
function. It is broadly used for quality control and helps to detect the outliers and clean

the data. When a data set is used, equation 3.3.7 becomes as

!

(X=X) sH(X=X)<y] (3.3.10)

(.05)

3.3.4 Example for the Quality Control Ellipse
A clinician wants to test the two different quality of dosage times. A random sample
of 12 diverticulosis patients of the age 21- 45 are selected from a case control study
and both the dosages are given to them in the two different time periods, the dosage
times of each stage are recoded through the patients alimentary canal and it is given in

table (3.3.1).

Table 3.3.1. A case control study

No ofly 15 13 |4 |5 |6 |7 |8 |9 |10/11]12
Patients
Dosages | Dosage | o3 | 54 | 79 |68 |87 |84 |92 |57 | 66|53 |76 |63
times A
(in Dosage
nours) | B 55 |62 | 134 |77 |83 |78 |79 |94 | 69 | 66 | 72 | 77

The XLSTAT command from Excel gives the following statistics output of the two

different dosage times.

Table 3.3.2. Mean and variance of the dosages time

Sum 842.000 946.000
Mean 70.167 78.833
Variance 174.333 405.242
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Here p represents total number of dosages and n the total number of patients, i.e. p=2

and n=12

Sample mean vector = X =[X,,X, | =[70.167,78.833]

. ) Ssa  Sa 174.333 93.757
Sample covariance matrix =S = = :
93.757 405.242

Sba Sbb
At 95 % confidence quality control ellipse for the dosages data can be obtained via
equation 3.3.10 and all the pair of observations must satisfy the condition given in

this equation.The critical chi square value at 0.05 significance level is XE(.os) =5.991.

Then substituting 5.991 into equation 3.3.10 we have (X — )?), $™(X-X)<5.991.
Now to check if the dosages time of the patients is under control, all the pairs of
observations must fall inside the ellipse. Suppose to see the dosage times P = (63, 55)

of the patient 1 is in the control area or out of control it is necessary to simplify the

following equation.

SaaSes ((XA—YA)Z ) (XA_XA)£XB_73)+(XB—YB)ZJSS_QQI (3.3.12)

SanSes ~Sas

174.333¢405.242 ((6370.167)2 —2(93.757) (63-70.167)(55-78.833) (55-78.833)° ) <5991

174.333x405.242-93.757 174.333 174.333x405.242 405.242

It is straight forward the dosage times of patient No.1 is in the control and still stable
and no problem during dosages given to him or her with 5% level of significance. Data
pairs are shown in Figure 3.3.4, and data pair No. 1 is well within the limits of the

control ellipse.
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Graphically,

140 3

120

100 8

80 11 -

Dosage B

60 ® 1
40

20
30 40 50 60 70 80 90 100 110
Dosage A

Figure 3.3.4. 95% quality control ellipse for dosages time

The dosage B for patient 3 is statistically out of control with 5% level of significance
and it falls outside the control ellipse. That means this point does not satisfy the
statistical distance equation from the mean origin. Because it may not contain the
actual ingredients given to the patient, or the timing of administration of the dose may
not be the same as the other patients. Due to this reason, the effect of dosage B on
patient 3 was incorrectly observed in the study. Therefore, the clinician should be

aware before investigating or changing the quality of dosages in the future.
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Chapter 4

RELATIONSHIP BETWEEN PRINCIPAL COMPONENT

ANALYSIS AND FACTOR ANALYSIS

In this chapter the theoretical concepts will be introduced to understand the

fundamental relation between the PCA and FA. In factor analysis, the PCA approach

will be used to reduce the dimension of the data. PCA also helps to determine the initial

factor loadings and the score coefficients of the FA model. Before discussing the

relation it is necessary to understand some basic concepts behind PCA and FA.

Considers the list of the steps involved in the construction of FA model using PCA

approach.

1.

2.

Compute the covariance X or correlation p matrices.

Calculate eigenvalues and eigenvectors of X or p matrices.

Draw scree plot and determine the number of factors to be used in the model.
Calculate the factor loadings matrix using PCA method.

Find communalities and specific variances from factor loadings matrix.

Rotate the factor loadings matrix for example using varimax rotation technique to
interpret the factor loadings easily.

Estimate the factor scores using ordinary least square regression.

Detect outliers and group the variables by few factors.

Interpret the factor scores using statistical control ellipse chart.
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4.1 Principal Component Analysis

PCA reduces the high dimensional data into lower dimensional data. In factor analysis,
PCA helps to reduce number of factors. Similarly it is also used as a dimension
reduction technique in many other multivariate statistical analyses.

4.1.1 Principal Components

Principal components are obtained by linear transformation of the original variables.
In the linear transformation process either the covariance or correlation matrices

obtained from raw data can be used.

Definition 4.1 Let X, X,,.,X  be a set of p random variables consisting of n
observations with covariance matrix X, then the new set of uncorrelated variables
called principal components Y,,Y,,....Y, can be expressed as the linear combinations
of the original p variables [18].

4.1.2 Geometrical Interpretation of PCA

Definition 4.1 Let X =[X,X,..X, | be a random vector consisting of n

observations drawn from a multivariate normal population with a mean vector

= [,ul,/,tz,...,ﬂp] and covariance matrix X. It is possible to plot the n observations of

the multivariate normal data ina nx p coordinate system. Then the rotated coordinate

system of the data, gives a hyper ellipsoid, whose axes are similar to those computed

from the Eigen vectors of the covariance matrix X. Let us consider a constant statistical

distance from X =[X1,X2,...,Xp] to u =[0,0,...,0p] is defined by

J(x-0) x73(x-0) =¢

Then the square statistical distance is
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— (X -0)Z}(X-0)=c* = X=IX =¢?

1 1
_ ! ’ ' -1 _
As X =jee +lee,t,.. tLee =X = Zele{ +Ze2e;+,...

= XEZ'X = X’%eleix +X'ie2e’2X oot X'% eel X =c?
p

1 2 1 2 1 3
:>XZ'1X=_ eX) +—(e'X) +--+= (e X =C2

/ll(l ) ;{2( 2 ) /,{p(p )

Y2 Y2 2
SXEIX =2 g2 oy P2

2 A

(4.1.1)

Thus the square constant statistical distance produces an ellipsoid with axes

Y= X, Y, =e;X, ..., Y, =e,X , where these axises are actually principal

components. Hence semi minor and semi major axes measured by ca/li in the

direction of eigenvector €, [18].

Geometrically,

Figure 4.1.1. Graph of PCs Y,,Y, orthogonal to the original coordinate system

X, X,
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It is clear from the graph that the new Y,,Y, axes passing through the center of the
ellipse are obtained by orthogonal rotation of the original coordinate system.

Theorem 4.1.1 Consider the eigenvalue - eigenvector pairs (4,.e, ).(4,.€, ),...,(ip,ep)
computed from the covariance matrix X obtained from the nx p data matrix, where
M 222222 20,and let ¥,,Y,,.... Y, be the principal components. Then Y,,Y,,....¥, are

computed as given below.

Y, = X = e, X; + e, X, + + ey X ]

Y, = eX = eyX;, + e,X, + + esz o (412)
. ) N 1.

Y, = X = e X + epX, + + X,

Then tr(X)=0y, +o,*,... 0

P p
where o,, +0,,+,.... 0, =D Cov(X,,X,)= A + A+, tA, =D Var(Y;)

i=1 i=1
Proof. By definition the trace of covariance matrix X is equal to the sum of it diagonal
entries that is

tr(X)=o,to,+.. 1o (4.1.3)

pp

If P= [el,ez ...,ep] is the matrix containing the eigenvectors of X such that PP’ =1

A4 0 0
0 & -~ 0 : . -
and D= ... | is a diagonal eigenvalues matrix, then by definition
0 0 - 4
~ =PDP'.

This implies that tr(X)=tr(PDP")=tr(D) =4 +4,+,...,+4,and

Oy topt . to, =4+t 4,
Hence proved [18].
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4.1.3 PCA for Components Reduction
Each eigenvalue ,; i=1,...,p represents a certain percentage of total variation in the

PCs obtained from the multivariate process under study and is given by

—x100.
+A

p

A,
A+ Ayt

p p
It must be pointed out that Var (Y;) =4, andZﬂ, ZVar ). Then

[\js

1
[N

0<t<l; 1<m<p (4.1.4)

.[\j”

T
N

can be used as a measure to determine the number of PCs to be used. Depending on
the nature of the process under study, it is desirable to have 1 high to very high. For
most applications a value t > 0.8 is desirabe.

4.1.4 PCA for Variable Reduction

In principal component analysis one of the major issues is to interpret principal
components. Sometimes it is difficult to judge high contributed explanatory variables
in the component models. The following correlation is used to determine the

correlation coefficient between a variable and a principal component.

ik=12,.,p (4.1.5)

levXk o

while the correlation is a measure of the level of relationship between a variable and
the PC, the coefficients of the PC measures the contribution of each variable to the PC.
Therefore, the two measures should not be compared with each other, but rather be

used together for a better interpretation of the individual PC [18].
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Theorem4.1.2 Let V,,Y,,.... Y, be the set of unobserved random variables (in this case

PCs) computed from a population.

e N4

Then p, , =~ is the correlation coefficient that measures the linear relationship
O

between i" PC and k™ variable, where

Cov(X,.Y;)=Cov(a;X,eX)=2a, Xe;i,k=12,..,p
Proof: Let a, =(0,...,0,1,0,---,0) be the coefficient vector of matrix X such that

X, =a Xand let Y, =e X be the PCs represented by an equation &, Ze, = Le,

By definition

Cov(X,Y;)=Cov(aX,eX)=aZe,  Asale =ie (4.1.6)
= Cov(X,Y;)=4e. Then V @ ro and Var(Y;)=4  gives
Corr(X,¥,)= ——MXN) e _ '“/_— for ik=12,...p

" TGO e e

Hence proved [18].

4.1.5 Covariance verses Correlation Matrix

When the variables involved in a process have different units or the variations in the
data values of some variables are considerably large, it leads to unreliable results in
the computation of the principal components and gives ambiguous interpretation of
the principal coefficients. To avoid these problems it is necessary to first standardize
the data and then compute the principal components using correlation matrix not

covariance matrix [18].
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4.1.6 Standardized Principal Components

Definition 4.2 Suppose X =[X,,X,,..,.X, | is a random vector consisting of p

variables drawn from a multivariate population with mean vector p :[ﬂl,uz,...,yp]

Jon, O o 0 ]
o o1 0 G, v 0
and standard deviation matrixis V2 =| . S .| . Then the new vector
0 0 T
. X, -U; .
z :[ZI,ZZ,...,Zp] with Z; = IS called the standard normal vector generated
O

by X, and the relation between Z and X can be expressed as given by

z :(VZ)I(X—;L) (4.1.7)

The expectation of Z is zero. That is

E(Z)= E{(Vill(x—u)}

Hence Proof completed.
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w(z)(Vz]l(;ov(x-,,)[(yzﬂ' 419

:Cov(z)[vzyzuvzﬂp

Thus the standardize principal components can also be derived from the correlation

matrix p . See the Theorem 4.1.3 below [18].

Theorem 4.1.3 Let Z= [Zl,Zz,...,Zp] be a standard normal vector and
(71.8,).(%.€, ),...,(ip,ep) be pairs of eigenvalues and eigenvectors where A1 > 42 >....

Ap > 0 with correlation matrixCov(Z)=p. Then uncorrelated variables Y,.Y,.....Y,

can be computed by

1

-1
Y :e{Z:e’(sz (X-p) i=12,..p (4.1.9)

In this case, each standard normal variable have unit variance and the sum of the

variances are equal to the number of variables p. That is
Var(Z,)=o0; =1.Then ZVar ZVar foralli=1,2,..., p (4.1.10)

Similarly, correlation between k" standard variate Z, and i" principal component Y,

is defined as

cov(zY,)  _ .k\/__elk\/z pra "ik=l..p (4111)

\ﬁ/ar \/\/ar () O

Consequently, the equation 4.1.11 can be used in determining the number of PCs to be

Corr Z Y

used in representing the process in a lower dimensional space.Since the variance of
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standardized data is always 1 and forms the diagonal elements of the correlation
matrix, then total variance is the same as the number of variables p.

4.2 Factor analysis

Factor analysis is a data classification technique used to group the large number of
variables into set of few unobserved variables called factors. The purpose of the factor
analysis is to construct a system of equations accommodating the underlying factors
in order to capture the maximum information from the data set.

4.2.1 Independent Factor Model

Definition 4.3 Let X =[X1,X2,...,Xp] be a random vector containing p random

variables of size n that follows a multivariate normal distribution with mean vector

u= [,Ltl, uz,...,up] and population covariance matrix

Oy Op ot Oy

U U “oe o-

21 2 2
=] ) P
Oip Opp " Op

Assuming that is X is correlated with F = [FlF2 Fp] called unobserved factors and

& :[el,gz,...,gp] called disturbance terms or specific factors, then the p deviations

model can be expressed as linear combinations of unobserved factors plus error terms

and is given as follows,

Xy = L+ LLE + - + LF + &

xzj/‘z = Lk, + IF, + + Lk, + &, (4.2.1)

Xo-py = InF + 1,F, + - + L F + ¢

In general,

X; -1 =Y I;F; +e, i=12,.,p (4.2.2)
=1
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This is called factor analysis model, where |, is the loading of the i variable on the
j™ factor. In other words |; is the measure of factor loading of the i" variable

contribution, on the j" factor [18].
The orthogonal factor model can be expressed in the matrix form as

Xioxt) ™M) = Lipem Fimer) T () (4.2.3)
where F and ¢, are unobserved random vectors satisfying the following assumptions.

1.E(F)=0,,, Var(F)=E(FF)-[E(F)] =1

(mxm)

y, 0 0
[ 2 0 l//Z O

Hence E(g) =0,, and Var(s) = E(as )—[E(a)] =¥, = :
[0 0

2.Cov(F,g)=0 hence F and ¢ are independent.

mxp !

AlsoCov(X,F)=L.
AsX -u=LF +¢
Multiplying of the factor model by F’, then it becomes
(X -p )F'=(LF +¢ )F'=LFF'+¢
By taking expectation it is becomes as
Cov(X,F)=E(X —u)F' =E(LF +&)F'=E[LFF'+¢F']
=LE[FF']+E[¢F']..FF'=1

=(Lx1)+0
=L

Hence the proved.
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Ill I12 Ilm
|21 |22 o I2m . . . .
Remark:L={ . . . " |iscalled factor loading matrix, and its elements are
LT Lo

the same as the elements of the covariance between i variable and j" factor i.e.

Cov(X,.F)=;.

4.2.2 Standardized Orthogonal Factor Model

Let Z,,Z,,...,Z, be the standardized variables and p be the population correlation

matrix that can be expressed as

p=LL +vy
where
_ﬁﬁl P /ﬁp_ _hl L, - hm_ _Vﬁ
p: p:21 10:22 p2p , L: |21 |22 Iz:m and \prp — O
_pnl Pn2 " pnp_ _Ipl Ip2 Ipm_ L 0

z, = I,F + 1L + - + IF, + g
z, = LWk + LF + - + IF + &
Z, = IR + 1R + - + I R+ ¢

System 4.2.5 is called Standardized Orthogonal Factor Model.

where I =Corr (X,,F;)= py = =\[};¢;, Var(F;)=1and Corr (&, F,

4.2.3 Orthogonal Model for Covariance Matrix

)=0

(4.2.4)

(4.2.5)

Consider the variance-covariance matrix of X under the orthogonal factor model [17].

By definition the orthogonal factor model can be written as
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(X -u )(X-ﬂ )' =(LF+8)(LF+8),

=(LF +s)(LF+s)'
=(LF + £)((LF')+£’)

=LF(LF) +&(LF) +LF¢ +&¢’
By taking expectation we obtain

=Cov(X)=E(X-p )(X-u)
=LE(FF')L+E(eF")L'+ LE(F¢')+E(s¢) (4.2.6)
=LL'+¥

This gives the covariance structure of X for common factors. Diagonal entries of =

can be decomposed as

Cov(X;, X;)=Var(X;)=1%, +1%,+,...+* +y, (4.2.7)

= Var (X, )=+ P+ 1 +y,
= Var (X, )= commuality +uniqueness
Off diagonal entries of x can be calculated by
Cov (X, X, ) =ll +1l, ++ -+ Ll (4.2.8)

4.2.4 Communality and Specific Variance

In case of orthogonal factor model, the Var(Xi) can be split into two parts. First part
consists of the sum of square loadings, called communality denoted byh? for the i"
variable. Communality measure the percentage of the total variation of X explained by
common factors, whereas the last part is symbolized by y;, represents the percentage
of variability explained due to some other factors. The variance of error term

Var (&) =y is called specific variance or uniqueness [18].
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4.2.5 Theoretical Relationship between PCA and FA

In sections two types of factor models will be disused. One is called exact factor model
and the other is called inexact factor model. The exact model has no error term, for
this reason, the exact model is not a suitable model to explore the data. However, the
PCA approach will be used to investigate the unknown population parameters of such
models.

4.2.6 Exact or Non-Stochastic Factor Model
Let (/l,,ei) be the eigenvalue - eigenvector pairs of the covariance matrix £ with
ordered eigenvalues 4, > 4, >---> A4, > 0and p=m. Then the covariance matrix x can

be decomposed as

Ao 0 0le;

0 A 0 || e

L=PDP'=[e e, e, ] N Y
0 0 - A, le]|

or

Y =lee +Leet,. . tiee

Zz[ﬁel Dol o ﬁep}

s

This implies that

==Ly, +0,, =L, L (4.2.9)

pxp —pxp pxp —pxp
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This provides the covariance structure of X in case where the number of common

factors are the same as the number of variable m=p and it givesVar(ai ) =y, =0 for
orthogonal factor model. For this reason it is not a useful method to analyze data with

using factor analysis. The value \/Z e, represents the factor loading of the jth column

of the loading matrix, without the scale value \/Z factor loading is actually principal
component coefficient denoted bye, [18].

4.2.7 Inexact or Stochastic Factor Model

This approach will be useful when the eigenvalues with not significant contribution to

the total variance /,,,,...,4,are eliminated from the following matrix equation

I =hee A0t A el t A€ T An oo T +/1pepe'p :

After the exclusion of the terms 7 e ..er . +4 .€. ..en.,+...+t4iee, from the

above expression the approximate covariance matrix of X can be expressed as

T =iee +tAee+,...,+1.e.e

m~mTm

N/

Ve,
Z:[\jzel \/ZEZ \jﬂem] :prer'nxp

e,

or

z_ prmLt,ﬂxp Z\Il
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z=[Jhe i ke i i Jhe] -

and finally,

Z=L, Lo, +¥ (4.2.10)
where W is the diagonal matrix whose diagonal entries are specific variances. That is
denoted byVar (& )=y, [18].

This procedure of splitting the covariance matrix of X into factor loading matrix plus
specific variance matrix is known as principal component approach for factor analysis
model.

4.2.8 Factor Analysis Model

Applying the procedure given under section 4.2.7 to a particular data

X =[X1,X2,...,Xp] each variable consisting of the observationsx,,x,,...,x,, it is

necessary to first transform the data matrix to the deviation matrix. That is,

Xi1 My Xin —

X; U X, — U
e 27 forj=1,2,..n (4.2.11)

_Xip_ L Hp | [ Xip T Hp |

This is sometime called mean corrected data matrix, each observation of this matrix

centered by their corresponding population mean. Then the population principal
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components Y Yy Y, can be computed as follows,

Yl
Y. m p m p
Y| :er(x—u):Z;erjleerj :Z;\/Zej YJ./\/Zleejyj (4.2.13)
: i= j=m+ = j=m+
Yp

Yl/\jz p
:[sz% \/Zez \/Zem} : +_Z eY;=LF +¢
Yo/ T

Then this yields

Yl
X-p=eY=[e.e,.e,] (4.2.14)
Y

p

This is called factor analysis model derived by the principal component analysis

approach.

L:[\/Zel a8, \/ZemJ is called factor loadings matrix.

A
F=|

I

represents population common factors generated from the first PCs

p
scaled by the square root of eigenvalues and ¢ = z e,Y; iscalled error term generated

j=m+1
by the last principal components, whose variances are smaller eigenvalues. This
derivation of the model helps to determine the perfect solutions for factor analysis

model [18].

p
Remark 1: ¢= Z e,Y, is represents all factors having low eigenvalues.

j=m+1
Remark 2: The covariance matrix of X computed form original observations or

deviation data remains unchanged.
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4.2.9 Estimators of Factor Model

Let X :[Xl,Xz,...,Xp] be the collection of p samples each consisting of the

following observations x,, x,, ..., x, , with sample covariance matrix of the form

A0 Y

U I B} 0 |l&
S=PDP'=[8:8,i...0¢, ] 2 || 7| where 4,>4,>-.> 4 >0

0 0 - &, |&

Then by the principal component approach when m< p the estimatied facor loading

matrix is given by

Ill I12 Ilm
~ | T I Ce
' T2 am | _
L= ; =00,
: , Where j=1,2,....,m
_Ipl Ip2 Ipm
= \Aj’lel \Mzez \limem:|

The matrix S—I:pmeA_;nXp produce a diagonal matrix whose diagonal entries are

specific variances estimated by ¥ .

w, O 0
A % 0

Thatis ¥ = l'//f
0 0 -y,

where g, :var(X):Sii 'Zlu?

The portion of the total variation of i variable explained by m factors can be estimated

by the following communality value

222,012 [2 .
hi=1;+15+,..+l; fori=12..p

i i2 1
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The number of factors in the factor analysis to be included will be judged based on the

following statistic

A _ i

SutSptinSy AL tA4Lt., A

where tr(S)=s,, +s,+,...+s and

7 7272 72 _ ‘/' I D
Ay =1+ 2J.+,...,+lpj —(a//ljej) (ﬂ/ijej), j=1,..m,

For standardize variables this can be defined as

A A

Jj _

where p is the total number of standardized variables [18].

4.2.10 Factor Rotation

In factor analysis it is difficult to interpret the original factor loadings found by
principal component analysis approach. In order to develop a simpler structure of the
factor model it is essential to rotate the initial factor loadings. The rotation of factor
loadings does not affect the original factor model; only rotate the original factor
loadings such that the original factor axes are perpendicular to the new factor axes
[18].

Let L, be the estimated factor loadings matrix derived by principal component

approach. Then

A

U N, (4.2.15)

where T is transformation matrix. Additionally the rotation of factor loading matrix

does not change the covariance and correlation structure. That is

Cowle +® =L, T el =0 L+ %

pxm " mxm © mxm —pxm pxm —mxp
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So this suggests that the residual matrix S, - I:pxm I:,'nxp +Y = S -L L + ¥ is not

pxm Lmup
affected, and the specific variances and communalities are also unaffected due rotating
the original factor loadings. Consequently the original factor model is exactly the same
as rotated factor model that is

X =u+LF+g =u+L F +¢ (4.2.16)
Remark: Factor rotation helps to determine the appropriate number factor loadings in
order to gain more clear idea about the structure of the factor model.

4.2.11 Varimax Rotation

Varimax is an orthogonal factor rotation technique developed by an American

statistician Henry F. Kaiser. It helps to achieve the clear configuration of the factor
loadings for uncorrelated factors. Let fi}‘ be the rotated factor loadings whose values
lies on the new rotated factor coordinate system defined by the following quantity

I~u - 'Ai?/ ﬁi

where I?; are the coefficients of the I:*px rotated factor loadings matrix and ﬁi is the

m

square root of the i" communality.

Then the sum of variance of the (I~”)2 for j™ factor can be expressed as

n

V() )= [%;(ﬂ:)“-{%i(ﬂsz}z] (4217

i=1
In order to achieve the maximum values f” of the rotated factor loadings it is required

to maximize the sum of variance of the square rotated factor loadings IIJ on the j"

factor [18].
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4.2.12 Factor Score

In factor analysis the population parameters of the factor model are usually unknown.
These parameters can be estimated by using ordinary least square technique by
minimizing the total sum of square residuals of the sample factor model with respect

to the estimated value of F,, such that

m
0.
= _

—=0
of,
This equation yields the following estimator
A N I _
f;=(LC) L -x) (4.2.18)

where,Lz[\/Ze1 Je, ﬂem} is the original factor loadings matrix

established by PCA approach.

él
o
Then F=| @ |(X-%) =F=

Al
€

i

(x;-%) (4.2.19)

D>

3~

=
3

. 1
F, is actually j™ sample principal component ¥y, =€j(x; -X) scaled byT That is,
i

Moreover, the standardize factor score of the data can be computed by the following

estimator is

e € (X=X _é]
ST\ s, )T forj=12..m&i=12..p (4.2.20)
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Since the factor scores are useful to judge explanatory variables with high contribution
in the factor model, it helps to detect outliers and also obtain a simple structure of the

data [18].
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Chapter 5

STATISICAL ANALYSIS OF THE WORLD ECOMONIC

DATA

The data used in this study represents 12 different economic indicators by country from
185 different countries. Data was originally compiled by the United States, Heritage
Foundation of Research and Educational Institute. Each economic indicator is
represented by a variable as follows.

X, : Gross domestic product (GDP) in billion dollars.
X, : GDP/capita.

X, : Growth rate.

X, : Inflation rate.

X, @ Interest rate.

X, : Income tax rate.

X, :Unemployment rate.
X, : Corporate tax rate.
X, @ Tariff rate.

Xy, - Public debt.

Xy, - Tax burden .

X, - Government expenditure.
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The data was analyzed both numerically and graphically using MATLAB and
XLSTAT. The analysis of the data is mainly aimed at generating the new set of
economic variables (PCs) and also attempt to establish the relationship between PCA
and FA as explained theoretically in Chapter 4. Furthermore a statistical process of

how to control the scores of such variables in the future is examined.

5.1 Data Processing
Let X =[X,,X,...X,,] be a random vector representing the number of variables of

the world economic data available in the table given in Table 1 in Appendix I. Initially
for the p=12 variables and n=186 countries the following summary statistics using

XLSTAE has been obtained and given in Table 5.1.

Table 5.1. Descriptive Statistics

Variable Observations | Mean Variance

GDP n, =185 X,=614.017 | s, =114 452 697.342
GDP per Capita n, =185 X, =19114.554 | s,, =445 917 739.0
GDP Growth Rate | n,=185 X, =2.285 S,; = 20.187
Inflation Rate n, =185 X, =4.659 S4 =126.092
Interest Rate n, =185 X, =5.768 S, =31.478

Income Tax Rate n, =185 X, =27.795 Ses =176.763
Unemployment Rate | n, =185 X, =9.612 s,; =63.934
Corporate Tax Rate | n, =185 X, =23.703 Sgs =83.965

Tariff Rate n, =185 X, =5.434 S = 20.942

Public Debt n, =185 X, =53.181 S,01, =1103.030
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Tax Burden n, =185 X, =21.625 Si =126.620

Gov't Expenditure n, =185 X, =33.481 S, =172.971

It is clear from the Table 5.1, that all the means differ from each other, and similarly
all variances are unequal, exhibiting considerable difference. Under such
circumstances it is necessary to standardize the data and use correlation matrix before

performing PCA and FA.

The sample correlation matrix for all possible paired observations of twelve variables

computed using equation (3.1.8) is,

1 0145 0052 -0.027 -0.089 0172 -0.125 0.082 -0.127 0.153 0.058 0.034]

0.145 1 -0.143 -0.154 -0.405 -0.059 -0.240 -0.311 -0.434 0.020 0.290 0.255
0.052 -0.143 1 -0305 -0.129 0.106 -0.035 -0.006 0.012 -0.034 -0.015 -0.081
-0.027 -0.154 -0.305 1 039 -0.089 0.008 0066 0.107 -0.057 -0.142 -0.111
-0.089 -0.405 -0.129 0.395 1 -0120 0102 0196 0.332 -0.057 -0.181 -0.152
0.172 -0.059 0.106 -0.089 -0.120 1 0002 0591 0102 0.274 0287 0.109
-0.125 -0.240 -0.035 0.008 0.102  0.002 1 -0.006 0175 0112 0.121 0.300
0.082 -0.311 -0.006 0.066 0.196 0.591 -0.006 1 032 0.09 -0.078 -0.126
-0.127 -0.434 0.012 0.107 0332 0.102 0.175 0.326 1 -0.008 -0.392 -0.187
0.153 0.020 -0.034 -0.057 -0.057 0.274 0.112 0.096 -0.008 1 0236 0191
0.058 0290 -0.015 -0.142 -0.181 0.287 0.121 -0.078 -0.392 0.236 1 0,559

| 0.034 0255 -0081 -0.111 -0.152 0.109 0.300 -0.126 -0.187 0.191 0.559 1

From a visual inspection of R matrix, it is evident that pairwise correlations are not
very high. This suggests that there is no extreme multicollinearity present in the data
Moreover highly multicollinearity might affect the univariate contribution of the

variable to a factor and may causes problems in conducting factor analysis.

46



5.2 Detection of Multicollinearity

Multicollinearity occurs when two or more independent variables in a Factor analysis

model are highly correlated and one can be expressed as linear combination of the

other variables with a certain degree of error. For example X;= 3X,+8X,+¢. In

such cases, the determinant of the correlation matrix will be zero and the factor analysis

cannot be performed.

Multicollinearity can be diagnosed by computing the determinant of R. In this example
|R|=0.0661 is computed. Since the R is invertible matrix and the determinant of R>0,

it implies that there is no multicollinearity does not exist. In other words, there exists
a few set of new uncorrelated variables (PCs) that can be expressed as linear

combinations of these variables.
5.3 Kaiser-Meyer-Olkin Sampling Adequacy Test

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy test used to check

whether or not the sample data is appropriate for running factor analysis.

The null and alternative hypotheses of KMO sampling adequacy test is give below.
H, : The sample data is not suitable for factor analysis.

H,: The sample data is suitable for factor analysis.

If D is a diagonal matrix of inverse correlation matrixR™, i.e. D =diag(R™*)and

R" =D Y?R'D™"? an anti-image correlation matrix, then KMO test statistic is found

by the following formula,
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: 2
D5

KMO=—" _—:0<KMO<1
P RPN
i#] i#]j

p
where Zr,f is the sum of the square off diagonal entries of the squared correlation

i]

matrix R?and Zp: r*fj is the sum of the square off diagonal entries of the anti-image
i]

correlation matrix R™.

According to KMO test, if KMO >0.5 the null hypotheses will be rejected, and the

sampling will be sufficient.

Since for the data used the KMO is computed as 0.614, it indicates that the data taken

as a case study is adequate for running factor analysis [13].

Remark: KMO test is a way of checking whether there is some possible factors that
exists leading to dimension reduction of the data. The higher the value of KMO the
more powerful the factor analysis will be.

5.4 Dimension Reduction using PCA

The factor extraction and factor retention are obviously judged on the eigenvalues of
correlation matrix. As a rule of thumb, the number of common factors is recommended
to be the same the number of eigenvalues that are greater than unity. For the case study
the eigenvalues of correlation matrix and their cumulative percentages are given in the

Table 5.2.
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Table 5.2. Eigenvalues and their percentage and cumulative percentage

Factors | Eigen values | Percentage Cumulative percentage
Var(F )=/ distribution

F1 2.596 21.629 21.629
F2 1.947 16.228 37.857
F3 1.544 12.870 50.727
F4 1.302 10.850 61.578
F5 0.908 7.565 69.142
F6 0.814 6.781 75.923
F7 0.738 6.153 82.076
F8 0.585 4.878 86.954
F9 0.537 4471 91.425
F10 0.410 3.420 94.845
F11 0.365 3.042 97.887
F12 0.254 2.113 100.000

Eigenvalues represents the variances of the common factors. It is shown in the Table

5.2 that all eigenvalues are positive and their sum is equivalent to the total number of

12
variables i.e. Zii =p=12 | This suggests that the correlation matrix is positive

i=1

definite and it is possible to obtain the factors from the original data.

It is clear from the Table 5.2 that only first four eigenvalues of R are greater than

unity. Additionally, the percentage of the total standardized population variance due
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to the first common factor which is the variation explained by the first factor is

computed as % = %MOO =21.629%

Similarly, the first two and three factors together accounted for 37.857% and 50.727%
of the total standardized sample variance respectively. While the cumulative
percentage of the total standardized population variance explained by first four
common factors is 61.578%.

Consequently the sample standardized variation is reasonably well summarized by first
four common factors. Hence, in place 12 variables, 4 PCs can represent the same data

or each of the 12 variables can be represented by 4 common factors.
5.5 Scree Plot

Scree plot is another tool that helps in determining the optimum number of common

A
> A4

factors. The percentage of each gives a visual idea about the distribution of

the eigenvalues which are also represent the proportion of sample variance due to the
i™ factor. Similarly the relative cumulative variance values produces a concave down
graph that is helpful in determining the number of factors that can be used in
representing each variable. Figure 5.1 clearly shows the decreasing nature of the
proportion of sample variance due to the i" factor, via the bar chart. It also shows the
concave down relative cumulative variance values, indicating a visible decrease in the
slope of the curve at around PC 4 that corresponds to about 60% of the relative
cumulative variance. This also means that around 40% of variation is represented by
the remaining 8 factors. This relatively high percentage of variation represented by the
8 factors is mainly attributable to the low correlation between variables as can be seen

from the correlation matrix.
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Figure 5.1. Scree plot for dimensions reduction

5.6 Reduced Eigen Space

Reduced Eigen space contains the reduced eigenvalue matrix (E) and reduced

eigenvector (V) matrix of R are given below,

0 O 2.596 0.000 0.000 0.000
0 O 0.000 1.947 0.000 0.000
s 0 0.000 0.000 1.544 0.000
0 4, 0.000 0.000 0.000 1.302

and

o1



L] [-0.133 0158 0249 0.365]
| |-0.438 -0.184 0051 0.267
~0.023 0076 0418 -0.501
| | 0255 -0.069 -0.343 0.480
0395 0034 -0301 0.145
~0.048 0594 0208 0.129
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V=[e e, .t,]= -
&, €, €5 €, 0.041 0.203 -0.481 -0.433
€1 € €u Gy 0.247 0498 0.186 0.184
€1 €p €y €y 0426 0.188 -0.023 -0.175
o ©o €3 Cls -0.138 0.373 -0.100 0.091
ey € €3 €| [-0419 0262 -0.246 0.011
1€ €y €y €, | [-0356 0211 -0.415 -0.124

Remarks: The eigenvalues measure the variation of the population principal
components and the eigenvectors are indicators of the direction of the principal
components. Principal components are actually scaled eigenvectors. They span the

original coordinate system in the directions of great variability.
5.7 Algorithms for Relationship between PCA and FA.

In multivariate computational statistical analysis, the term algorithms refer to set of
rules that can perform calculation or processing the data in order to answer statistical
problems, with help of computer software. The procedure of the following algorithms
step by step mentioned in Appendix [l, the initial factor loadings
matrix, variamx rotated factor loadings matrix, commonalities and specific variances

obtained by using principal component approach and results are given in Table 5.3.
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Table 5.3. Pattern matrices, communalities and specific variances by PCA method.

Estimated factor loadings , — JA e, Rotated estimated factor loadings Communalities Uniqueness

Variable F F, F, F, F F, F, F h 1-h’
GDP -0.214 0.221 0.309 0.417 -0.363 | 0.467 0.112 0.034 0.364 0.636
GDP per Capita -0.706 -0.257 0.063 0.304 -0.799 | -0.073 |-0.134 | 0.004 0.661 0.339
GDP Growth Rate -0.037 0.106 0.519 -0.572 0.149 | 0.040 |0.132 -0.754 | 0.609 0.391
Inflation Rate 0.411 -0.097 -0.426 0.548 0.142 -0.003 | 0.118 0.791 0.66 0.34

Interest Rate 0.637 0.047 -0.375 0.165 0.532 -0.021 | 0.105 0.530 0.576 0.424
Income Tax Rate -0.078 0.828 0.259 0.147 0.075 0.845 -0.190 |-0.161 | 0.781 0.219
Unemployment Rate 0.065 0.284 -0.598 -0.494 0.507 -0.187 | -0.628 |-0.019 | 0.686 0.314
Corporate Tax Rate 0.398 0.694 0.231 0.210 0.389 0.755 0.117 0.059 0.738 0.262
Tariff Rate 0.686 0.263 -0.028 -0.200 0.729 0.134 0.173 0.045 0.581 0.419
Public Debt -0.223 0.521 -0.125 0.104 -0.031 | 0.429 -0.402 | 0.027 0.348 0.652
Tax Burden -0.676 0.365 -0.306 0.012 -0.358 | 0.189 -0.719 | -0.051 | 0.683 0.317
Gov't Expenditure -0.573 0.295 -0.516 -0.142 -0.180 | -0.009 |-0.818 | 0.000 0.702 0.298




5.8 Estimation of Standardized Factor Analysis Model
The estimated factor loadings matrix is computed by,oxi'Fj Z\/Zeijzlij. Factor

loadings represents correlation between the principal components and the standardized

variables, these are computed using (4.2.5)

Like the regression analysis, the standardized score of all variables can be predicted

from m=4 standardized factor model, by the following equations from (4.2.5)

Z, = -0214F, + 0221F, + 0309F, + O0.417F, +¢
Z, = -0.706F, + -0.257F, + 0.063F, + 0.304F, +¢,
Z, = -0573F, + 0295F, + -0516F, + -0.142F, +¢,

where Z,,..,Z,, standard normal variables, the coefficients of F,...,F, are factor

loadings and é&;,...6;, are unknown error terms.

It clear from Zl model that all the corresponding factor coefficients
|11 =—0.214, IZl 20221, |31 =0309, |41 =0.417 of the Fl""’ F4 respective|y1 are
insignificantly contributes to Z, . This means that Z; does not provide the best fit based

on scores of Fl,---, F4. Consequently, the highly correlation coefficients between the

factors and variables indicates the higher factor loadings on the individual variables.

The communalities are obtained from the sum of square factor loadings, it measures
the goodness of fit of the factor model. The communality for the first variable has been

obtained from the sum of square factor loadings corresponding to that variable, and
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the complement of the communality is called uniqueness or specific variance, that is
given by

Communality =h? = (~0.214)° +(0.221)" +(0.309)° +(0.417)" = 0.364

and

Uniqueness = ; =1-h* =0.636

This means that 36.4 % of the total standardized variation of GDP (PPP) is captured
by factor model and 63.6% are dropped due to some extraneous factors. Similarly, the

communalities and uniqueness for each variables are already obtained from equation

(4.2.8).

The interpretation of the initial factor loadings found by PCA method is difficult.
Rotation of the factor loadings matrix provides a simpler way of interpreting the
obtained factor model. During the process of rotation that can be performed using any
matrix rotation method, computed communalities and specific variances remains
unchanged. In this study the Varimax method of rotation is employed for the rotation
of factor loadings matrix by 90° (orthogonal rotation). The rotated factor loadings are

obtained from equations (4.2.14). Following the varimax rotation the new factor model

is given.
Z, = -0363F + 0467F, + 0.112F, + 0.034F, +¢
Z, = -0799F + -0.073F, + -0.134F, + 0.004F, +¢,
Z, = 0149F  + 0.040F, + 0.132F, + -0.754F, +¢,

The rotated factor model is easier to interpret then the un-rotated factor model. Factors

that have high effect on the process under study becomes evident. For example for Zl
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the highest influence comes from factor F; . Similar interpretations can be made for all

other variables.

It is clear from Table 5.3 that the variables GDP per Capita, Interest Rate and Tariff

Rate, have high loadings on factor F *, low or ignorable loadings on other factors.
When we look at factor F*, the variables Income Tax Rate, Corporate Tax Rate, and
Public Debt are dominant. Thus Fl* can be called the economic survival index factor
and the second factor Fz* the economic development index factor. In Figure 5.2

variables with high loadings on F,” and F, are clearly visible as they extend along

the appropriate axis.
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Figure 5.2. Factor loading after varimax rotation F; and F,
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From the table 5.3 a plot for rotatated factor loadings of the last two factors F; and F4*
are used to generated a similar graph to that is given in Figure 5.2.and is given in Figure

5.3. It is demonstrated in the Figure 5.3 that the variables Unemployment Rate, Tax

Burden and Gov't Expenditure have the highest loadings on Fg*.Therefore F; can be

called the economic conservative index factor. The fourth factor F, receives maximum

information from three other variables, GDP Growth Rate, Inflation Rate and Interest
Rate. So it can be named as the economic inconsistency index factor. The other

variables have negligible and considerably low factor loadings on these two factors.
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Figure 5.3. Factor loading after varimax rotation for the factors Fg* and F4*.
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5.9 Factor Estimation

All the standardized estimated factor score can be predicted by the following equations

. 8" (x.-X
* 5 j
Fj__A*( )
A Sii

]

YA

Jor j=12,...m&i=12,..,p

N AP :th - . . .
Where 4;and e} are the J[ rotated paired eigenvalues and eigenvectors, for j=1, 2, 3,
and 4 the following equations are obtained as

2% 1 AKX AKx AKx <3 AKX
Fl - ~x I:ellzl +e21ZZ + e3123 + e4lZ4+7""+e121212:|
j’l
2 * _ 1 AKx AKx AKx Ax ’~3
F2 - e [eIZZl + eZZZZ + e3223 + e4ZZ4+""’+e122212:|
2‘2
2k _ 1 AKx AK AF AK Ax
FS - e |:e13zl +e23ZZ +e33z3 + e4323+""’+6123212:|
/13
2 * _ 1 A Ax AKx Ax AK
F4 - \jii* [e14zl +e24ZZ + e34ZS +e44z4+' ""+e124212:|
4

Matlab gives the following equations

F’=-0.223Z, —0.376Z, +0.132Z, —0.020Z, +0.200Z, +0.021Z,
+0.330Z, +0.127Z,, +0.328Z, —0.002Z,, —0.107Z,, —0.001Z,,

F, =0.300Z, —0.001Z, —0.015Z, +0.035Z, —0.012Z, +0.462Z,
~0.178Z, +0.421Z,, +0.045Z, +0.226Z,, +0.084Z,, —0.044Z,

F, =0.129Z, +0.005Z, +0.078Z, +0.032Z, —0.012Z —0.059Z,
~0.415Z, +0.069Z, +0.026Z, —0.196Z,, —0.351Z,, —0.438Z,

F’ =0.079Z, +0.081Z, —0.534Z, +0.527 Z, + 0.309 Z, —0.073Z,
~0.057Z, +0.036Z, —0.038Z, +0.052Z,, +0.026Z,, + 0.037Z,,

After extracting all the small and negligible coefficients and labeling, the following
equations created,

ESI =—-0.376GDP per Capita + 0.330Unemployment Rate +0.328Tariff Rate

EDI =0.300GDP + 0.462Income Tax Rate +0.421Corporate Tax Rate+0.226Public Debt

ECI =0.415Unemployment Rate +0.351Tax Burden + 0.438Gov 't Expenditure

57



Ell =-0.534Growth Rate +0.527 Inflation Rate +0.309 Interest Rate
5.10 Economic Survival Index (ESI)
The standardized factor scores for all four factors can be computed by using equation
(4.2.18) .Out of 185 countries, as an example the standardized factor scores are
computed for the top 10 ranking countries. The factor scores for economic survival

index (ESI) are given in Table 5.4.

Table 5.4. Standardized score of economic survival index

Country ESI Ranking
United States 2.977 1
Macau 2.800 2
Qatar 2.731 3
Luxembourg 2.125 4
China 2.096 5
Singapore 2.026 6
Brunei Darussalam 1.983 7
Switzerland 1.848 8
Germany 1.766 9
United Arab Emirates 1.712 10

First ranked United States, has the highest ESI with a score 2.977. United Arab
Emirates is ranked 10th, has ESI 1.712. Thus, United States has the highest ESI as

compared with other countries.
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5.11 Economic Developmental Index (EDI)

The table 5.5 shows the economic developmental index (EDI) score for the top 10

ranking countries.

Table 5.5: Economic developmental index score

Country Name EDI Ranking
United States 3.816 1
China 3.312 2
Japan 2.533 3
India 1.855 4
France 1.708 5
Belgium 1.630 6
Italy 1.480 7
Greece 1.198 8
Austria 1.176 9
Netherlands 1.143 10

According to EDI given in Table 5.5 United States ranks the first, and Netherlands
occupies the tenth place. This index can be used as a measure for the level of

development of the concerned country.
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5.12 Economic Conservative Index (ECI)

The economic conservative index (ECI) score for the top 10 ranking countries are listed

in Table 5.6.

Table 5.6. Economic conservative index score

Country Name ECI Ranking
Liechtenstein 2.386757 1
Nigeria 1.877187 2
Bangladesh 1.713963 3
Republic of the Congo 1.59834 4
China 1.596723 5
Guatemala 1.535151 6
Madagascar 1.437041 7
Cambodia 1.399659 8
Indonesia 1.38805 9
Hong Kong SAR 1.370173 10

According to Table 5.6 Liechtenstein has the highest ECI, while Hong Kong is in the
tenth position. This reveals Liechtenstein has the highest concentration on the change

to development of its economy, while those with lower ECI lack this concentration.
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5.13 Economic Inconsistent Index (EII)

Economic inconsistent index (EII) score for the highest scoring countries are listed in

Table 5.7.

Table 5.7: Economic inconsistent Index score

Country Name Ell Ranking
Venezuela 7.290538631 1
Yemen 5.182715378 2
Ukraine 4.014900017 3
Sierra Leone 3.223664087 4
Macau 2.870468153 5
Argentina 2.391867354 6
Korea, North 1.874090873 7
Belarus 1.731406576 8
Russia 1.636494569 9
Malawi 1.59328325 10

The EIll is an indicator of inconsistencies in the economy of a country mostly due to
imbalance in economy and various factors that causes big fluctuations in economy.
According to analysis results from the data Venezuela has the highest Ell, while

Malawi is in the tenth position.
5.14 Statistical Control Ellipse

In the order to see which observations of the factor scores are statistically in or out of

control in the future, two control ellipse charts are generated using the four factors.For
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the purpose of this study the pairwise comparison between the factors (F; , FZ*) and (
F,,F,) are examined.

The 95 % confidence quality control ellipse for all pairs of values of ESI and EDI are

obtained the following equation as

(5.1.2)

where

* _ *2 *2 *2
Ay=lp ity

=(~0.363)" +(-0.799)" +,...,+(~0.516)"
=220

A 2= 21+l 22+’---’+1 212

=(0.467)" +,...,+(~0.009)°

=1.78
Similarly the 95 % control ellipse for ECI and EIl factors can be determined. That is

(5.1.3)

where

* 2 *9 *9
/1 3 _l 31 +l 32+""’+l 312

=(0.112)" +(-0.134)" +,...,+(~0.818)" and
=1.89

* *2 *2 *2
A=l Tt iy,

=(0.034)’ +,...,+(0)
=151
The above values of the rotated factor loadings are taken from table 5.3.

2
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This chart was drawn benefiting from equations 3.1.10 and 5.1.2. Using the standardized scores of ESI and EDI

Statistical Control Ellipse
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Figure5.4. 95% Statistical Control Ellipse for EDI - ESI pairs



This chart was drawn through the equation 3.1.11 and 5.1.3 and using the standardized scores of ECI and ElI
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Figure 5.5. 95% Statistical Control Ellipse Chart for ECI and EIl pairs




5.14 General Interpretations of Statistical Control Ellipse Charts

The Figure 5.4 shows that 95% control ellipse of the scores for 185 countries.
Evidently 9 countries out of the control ellipse. They either have very high or low
factor scores on either or on both indexes. Hence, these countries should investigate
and change the policy to growth or survival factors influencing the economy in the

future.

The control ellipse 5.5 shows that factors score of the 8 countries falls outside the
control ellipse. They are statistically out of control with 5% level of significance,
which is due to inconsistency and instabilities. Consequently the countries whose
scores lie outside the control ellipse, need to take some remedial action to protect their

economy against inconsistencies and instability in the future.
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Chapter 6

CONCLUSION

In multivariate statistical analysis, the relationship between PCA and FA is
investigated. Explored theory is applied to a multidimensional data and obtained
results are interpreted. The statistical analysis of such large data without using the
PCA — FA relationship would be incomplete. Furthermore, PCA was used as a tool for

factors extraction and variable selection in FA.

The link between FA and PCA was investigated through the correlation matrix.
Correlation matrix has been chosen due to significant differences between the
observations of each variable. More specifically, the correlation matrix would be only
applicable when the variation from variable to variable is considerably large, or the

units of each variable are not identical.

Before running PCA in FA, the Kaiser-Meyer-Olkin (KMO) measure of sampling
adequacy test was applied to the overall data, where the correlation matrix is utilized
to determine the suitability of the data for FA. Obtained test result indicated that the
application of FA to the selected sample data is possible. MATLAB is used to compute
the eigenvalues and eigenvectors of the correlation matrix. It is worth remembering
that the obtained eigenvalues are actually the variances of PCs and PCs are scaled
eigenvectors span the original coordinate system to new coordinate system in the

directions of the greatest variation of the original data.
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In PCA the scree plot helps to determine the number of factors for FA model. These
CFs explains the maximum variability in the original data. Moreover, this plot
constructed from the eigenvalues of the correlation matrix and provides an evidence
to the possible number of highly correlated groups of variables. This enables the
selection of the number of factors to be used in establishing the orthogonal factor

model for the data.

In PCA, the principal loadings are simply the eigenvectors. In FA the factor loadings
are the correlation values between the original variables and underlying common
factors. Generally the factor loadings helps to compute the communalities and
uniqueness of a particular variable. Additionally, communality can be interpreted for
a particular explanatory variable in FA, as it is for a response variable the coefficient

of the determination in regression analysis.

In FA sometime is very tedious to interpret the initial factor loadings obtained by PCA
approach. In such circumstances the varimax rotation criteria can be used to rotate the
initial factor loadings, obtaining a better picture for more elaborate interpretation.
Additionally the factor scores estimated by using ordinary least square method based
on rotated factor loadings, enables the detection and cleaning outliers from the data.
This facility is widely used in the field of statistical quality control and subsequent

analysis.
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Appendix A: World Economic Data
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Table World economic data continued

Country D

Country Name
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Table World economic data continued

Country 1D

Country Name
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43.201047
37840003
3837
34338
32328
.03
26.565
24.033
2557
28.508
21376
40.416



Appendix B: Matlab Code for Relationship between PCA and FA

»>» 3The following conmand is used to import the data file from excel in matlab.
[num, txt,rav] =xlsread|'data.xlsx'); %Import from excel in matlab.

X=num|:,3:end) ;3Data Matrix

[n,p]=size(X) ;3 size of X

Y = E-ones(n,l) *mean(X); % Mean deviation matrix.

2 = Yrinvidiag(std(X))),;sstandardized data matrix with means zero,and variance 1
pause

[ 'Inter-correlations among the tewlve world economic variables ' ];

R = corrcoef (¥) ;3Correlation matrix.

DBE= det(B);3Determinant of E.

pause

[ 'Singular valus decomposition of correlation matrix ' ]:

[V, D, V] =svdiR):% for order Eigen values matrix and Eigen matrix

P=D*{ (sumiD))."-1) *100;% percentage variance explained

C=cumsum(P) ;3Cumulative percentage variance explained.

pause

[ 'Seree plot.' ]

figure()

paretoiP)

®xlabel({'Principal Component'

ylabel|'Variance Explained (3)')

pause

[ '"Eeduce esigen space.' ]:

v
D
[ ' Initial Factor loadings matrix using PCA ' ]

V (:,1:4) ; % keep only first four eigen vectors and eigen values.

D{1:4,1);%reduce Eigen valus matrix

pasue

Iding = V*sgrt (diagiD));

pasue

CN=diag(Iding* Iding');% comnmunalities,
UQ=1-CN; 3Uniqueness or specific variances.
pause

CHN=diag(Iding* Iding');% communalities.

TQ=1-CN; 5Uniqueness or specific variances.
VM=rotatefactors(Iding) ;svarimax rotation factor loadings.
BL=VM*inv (VN'*VH )% varimax rotated factor loadings matrix.

F =Z*Iding*inv{Iding' *Iding ),% unrotated estimated factor scores .
F2 =Z*VN*inv(VM' *VK ) ;5varimax rotated estimated factor scores.
save

return
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