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Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor

of Philosophy in Electrical and Electronic Engineering.

Prof. Dr. Hasan Demirel
Chair, Department of Electrical and

Electronic Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality as a thesis of the degree of Doctor of Philosophy in Electrical

and Electronic Engineering.

Prof. Dr. Aykut Hocanın
Supervisor

Asst. Prof. Dr. M. Shukri Salman
Cosupervisor

Examining Committee

1. Prof. Dr. Emin Anarım

2. Prof. Dr. A. Enis Çetin
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ABSTRACT

In recent years, sparse signal estimation has become an important paradigm in the field of

signal processing due to its vast amount of applications. Among the wide range of

applications, system identification and echo cancelation are likely two of the most

challenging signal estimation problems for many practicalchannels with sparse nature.

For such channels, due to low convergence speed and sensitivity to highly correlated

inputs, conventional adaptive filtering algorithms such asleast-mean-square (LMS)

algorithm and its variants, recursive least-squares (RLS)algorithm and Kalman filters are

incapable of exploiting the channel sparsity efficiently. To overcome the difficulties

associated with sparse system identification and echo cancelation, l0-norm constraint

LMS (l0-LMS) modifies the conventional LMS algorithm to capture andutilize the

sparsity of the channel . This modification results in a zero-point attraction to all

filter-taps. Thel0-norm addition, however, causes the optimization problem to be

non-convex and hence not tractable.

In this thesis, we propose three different types of novel sparse adaptive filtering

algorithms to achieve faster convergence rate while decreasing the mean-square deviation

(MSD). Furthermore, all the novel approaches are transformed into convex optimization

problem by imposing eitherl1-norm or logarithmic penalty on the filter-tap during the

adaptation process. The first algorithm is referred as weighted zero-attracting leaky LMS

(WZA-LLMS) algorithm where the original cost function of the leaky-LMS algorithm is

modified by an addition of a log-sum penalty that produces an adjustment term in the

update equation. The adjustment causes the proposed algorithm to attract the zeros of

sparse channel and improves the performance. For system identification and echo
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cancelation setting, the proposed algorithm not only yields lower MSD for highly sparse

channels but converges at the same rate as the standard zero-attracting-LMS (ZA-LMS)

algorithm. In the case of fully non-sparse channels, the WZA-LLMS algorithm performs

better than both the LLMS and ZA-LMS algorithms in the same settings. These filters can

also be efficiently implemented for potential application such as in finite-precision

hardware.

Due to an extra logarithmic cost function, however, the WZA-LLMS algorithm is

computationally complex. To reduce the complexity while achieving lower MSD, a zero

attractor-variable step-size LMS (ZA-VSSLMS) algorithm is introduced. This algorithm

imposes anl1-norm penalty to the original quadratic cost function of theVSSLMS

algorithm which captures the system sparsity during adaptation process. For highly sparse

channel, this process accelerates the final convergence andimproves the error

performance. The convergence analysis for ZA-VSSLMS algorithm is studied when the

white process presents at the input of the system. The stability condition of the algorithm

is presented. Next, the steady-state mean square deviation(MSD) analysis of the

algorithm is carried out. A steady-state MSD expression forthe ZA-VSSLMS algorithm

is derived mathematically in terms of the system parametersfor general white noise

process.A crucial upper bound of the zero-attractor controller (ρ) which yields minimum

MSD is theoretically shown. The effect of both zero-attractor controller (ρ) and the

forgetting factor (α) in ZA-VSSLMS are investigated. Furthermore, the behaviorof the

ZA-VSSLMS algorithm is studied in the presence of noise withdifferent probability

density functions.

Finally, to further improve the ZA-VSSLMS filter when the sparsity of the channel
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decreases, with a slight cost in the number of computations,the WZA-VSSLMS

algorithm is introduced by adding the same log-sum penalty as in WZA-LLMS algorithm

into original cost function of VSSLMS algorithm.

The performance of the ZA-VSSLMS, WZA-VSSLMS and WZA-LLMS algorithms are

examined with respect to the standard ZA-LMS, VSSLMS, leaky-LMS, set-member- ship

normalized LMS (SM-NLMS) and LMS algorithms in system identification, echo

cancelation and image deconvolution problems. Simulationresults show that the

theoretical and simulation results of the ZA-VSSLMS algorithm not only outperforms the

aforementioned algorithms but further are in good agreement with a wide range of

parameters, different channels, input signal and noise types.

Keywords: Adaptive Filters, Sparse Signal, Compressive Sensing, LMSAlgorithm, Zero

Attractor.
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ÖZ

Son yıllarda, ayrık sinyal kestirimi, geniş uygulama olanakları sunduğu için, sinyal

işlemede önemli bir araştırma alanı olarak ortaya çıkmıştır. Uygulama alanları arasında,

ayrık yapıya sahip gerçek kanallar için sistem tanılama ve yankı giderme en önemlileridir.

Bu tür kanallar için, LMS, RLS ve Kalman benzeri geleneksel uyarlanır filtre

algoritmaları, ayrık yapıya sahip özellikleri kullanamamakta ve yavaş yakınsama ve

ilintili gürültüde düşük başarım sağlama gibi sorunlara yol açmaktadırlar. Ayrık yapıyı

kullanabilmek için l0-norm kısıtı eklenerek LMS algoritması güncellenmektedir. Bu

değişiklik, filtre katsayılarının sıfıra doğru yaklaşmalarını sağlamaktadır. Bununla beraber,

l0-norm kısıtının eklenmesi, eniyileştirme problemini dıs¸bükey olmaktan çıkarmakta ve

çözümünü zorlaştırmaktadır.

Bu tezde, daha hızlı yakınsama ve ortalama karesel sapmayı (MSD) azaltan üç özgün

ayrık uyarlanır filtre önerilmiştir. Bunlara ek olarak, dışbükey olmayan eniyileştirme

problemleri, filtredel1-norm kısıtı kullanılarak uyarlama adımları sırasında dıs¸bükey hale

dönüştürülmüştür. Önerilen birinci algoritma, ağırlıklı sıfıra yaklaşan kaçaklı LMS

algoritması, WZA-LLMS, olarak adlandırılmış ve logaritmik toplama dayalı bir ek kısım

eklenerek maliyet işlevi güncellenmiştir. Kanalın yapısında bulunan sıfır katsayılarına

daha hızlı yaklaşılarak başarım artırılmaktadır. Sistem tanılama ve yankı giderme

uygulamalarında, ayrık kanallar için daha düşük MSD elde edilmekte, yakınsama hızı ise

standard sıfıra yaklaşan LMS algoritmasına (ZA-LMS) ile benzer olmaktadır. Ayrık

olmayan kanallar için de, WZA-LLMS LLMS ve ZA-LMS algoritmalarından daha

yüksek başarım göstermektedir. Önerilen filtreler gerçek donanımlarda etkin

algoritmaların uygulamasında da kullanılabilmektedir.
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Eklenen logaritmik maliyet işlevi nedeniyle WZA-LLMS algoritması, yüksek işlem

karmaşıklığına sahiptir.̇Işlem karmaşıklığını azaltmak için değişken adım b¨uyüklüğüne

sahip ZA-VSSLMS algoritması tasarlanmıştır. Bilinen VSSLMS algoritmasınal1-norm

kısıtı eklenerek ayrık kanal yapısının özellikleri kullanılmıştır. Yüksek ayrık özellikleri

olan kanallarda, ZA-VSSLMS algoritması yüksek başarım göstermektedir. Beyaz Gauss

gürültüsü altında, algoritma kuramsal olarak analiz edilerek MSD sonucui türetilmiştir.

Kalıcıdurum başarımına, sıfırayaklaştırıcıρ veα adım uzunluğu parametrelerinin etkileri

incelenmiş veρ için üst sınır belirlenmiştir. Ayrıca, farklı olasılıkdağılımına sahip gürültü

dağılımlarının başarıma etkisi araştırılmıştır.

Son olarak, ZA-VSSLMS algoritmasını daha da iyileştirmekiçin, maliyet işlevine bir

logaritmik toplama terimi eklenerek WZA-VSSLMS elde edilmiştir.

Önerilen ZA-VSSLMS, WZA-VSSLMS, WZA-LLMS algoritmalarının, bilinen standard

algoritmalar ile başarımları, sistem tanılama, yankı giderme ve imge ters-evrişim

problemlerinde kıyaslanmıştır. Benzetim ve kuramsal sonuçlar, önerilen ZA-VSSLMS

algoritmasının, farklı gürültü dağılımlarında daha yüksek başarım sağladığını

göstermektedir. Ayrıca, kuramsal ve benzetim değerlerifarklı parametre değerleri için

örtüşmektedir.

Anahtar Kelimeler: Uyarlanır filtre, Ayrık sinyal, Sıkıştırmalı algılama, LMS algoritması,

Sıfıra-yaklaşan.
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Chapter 1

INTRODUCTION

1.1 Introduction

For several decades, adaptive filters have been studied by many researchers due to their

wide range of applications in electronic devices such as digital cameras and smart phones

[1, 2, 3]. The advantage of self-modification of an adaptive filter for real-time input and its

iterative solution has resulted in its application in an extensive range of problems including

system identification, channel estimation, echo cancelation and many others. To address

such problems, various adaptive algorithms have been developed to reach optimal solution

based on a certain optimization criterion. Among these algorithms, least mean square

(LMS) algorithm and its variants [1]-[8] are some of the mostpopular methods that have

been widely used for this purpose. However, these methods suffer from low convergence

rate, high power consumption and sensitivity to highly correlated input for applications

where the systems are sparse in nature [9, 10].

In the recent years, sparse signal recovery has become a popular approach in the field of

signal estimation due to its vast range of applications. This inspires the design of more

effective adaptive filters for the sparse signal recovery problem that leads to improved

performance in both convergence behavior and error cost function.

1.2 Understanding Sparse Signal

A sparse signal is one that contains only a few relatively large amplitudes while the rest

are zero or very small. Fig. 1.1 shows a typical sparse signalthat resulted from an acoustic
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echo path in a communication system [11]. As it can be seen, the impulse response of the

acoustic echo path has a few large active coefficients for alldelay durations. Consequently,

the impulse response of an acoustic echo is composed of mainly negligible coefficients

(zero or near-zero). As a result of this property, the impulse response produces a sparse

signal.
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Figure 1.1: An acoustic echo path impulse response; a typical sparse signal, [11].

Such a sparse structure in systems can be found in many real world applications such as

digital TV transmission [12], acoustic echo channel [13] and system identification [14] .

Recently, Compressive Sensing (CS) [15] has emerged to be anexciting area of research

in solving many inverse problems. Sparse signal processingof compressive sensing has an

excellent capability of reducing the sampling rate which results in lower implementation

cost [15].
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1.3 Compressive Sensing

Compressive Sensing (CS) is a novel framework in signal processing that allows

estimating a sparse signal via sampling at a much lower rate than Nyquist rate [15]. The

main idea behind the CS theory is to solely acquire large amplitudes of the signal with

most of its coefficients have values close to zero using a proper minimization technique

for reconstruction [16, 17]. In general, estimating these sparse signals involvesl0-norm

minimization of sparse vectorw in the cost function of the form:

min
w

||w||0. (1.1)

where||.||0 denotesl0-norm that returns the number of nonzero entries in sparse vector

w. This gives the minimization process the ability of attracting all zero coefficients [18].

However, the cost function in (1.1) is a non-convex optimization problem and often is very

hard to tackle. Many good alternative approximations ofl0-norm such asl1-norm and a

log-sum penalty function [10] have been proposed to overcome such drawback, as these

are mathematically more tractable in the minimization process.

1.4 Thesis Contributions

In this work, in order to reduce the effects of the main problems such as low convergence

rate and high power consumption of sparse signal estimationthat exist in conventional

adaptive filtering schemes, three novel versions of LMS-based sparse adaptive algorithms

are proposed:

1. A weighted zero-attracting leaky LMS (WZA-LLMS) algorithm [19] that achieves

enhanced performance in terms of both convergence rate and MSD by incorporating

a logarithmic penalty term into the main cost function of leaky-LMS algorithm.

3



2. A zero attractor-variable step-size LMS (ZA-VSSLMS) algorithm [20] is

introduced which reduces the computational complexity compared to the

WZA-LLMS algorithm.

3. A weighted zero attractor-variable step-size LMS (WZA-VSSLMS) algorithm [20]

is proposed to further improve the ZA-VSSLMS filter performance when the sparsity

of the channel decreases.

For the proposed ZA-VSSLMS algorithm which captures the system sparsity by imposing

the l1-norm penalty into the quadratic cost function of the VSSLMSalgorithm during

adaptation process, the following studies are conducted:

1. The convergence analysis for ZA-VSSLMS algorithm [21] isstudied when the input

to the system is white.

2. A steady-state MSD expression for the ZA-VSSLMS algorithm is derived in terms

of the system parameters for general white noise process [22].

3. The crucial upper bound of zero-attractor controller (ρ) which yields minimum MSD

is theoretically presented [22].

4. The behavior of the ZA-VSSLMS algorithm is studied in the presence of four noise

types: Gaussian, uniform, Laplacian, Impulsive. [22].

5. The effects of both the zero-attractor controller (ρ) and the forgetting factor (α) in

ZA-VSSLMS algorithm are investigated [22].

The performance of the ZA-VSSLMS, WZA-VSSLMS and WZA-LLMS algorithms are

evaluated with respect to the standard ZA-LMS, VSSLMS, leaky-LMS, set-membership

normalized LMS (SM-NLMS) [23] and LMS algorithms in system identification, channel

4



estimation, echo cancelation and image deconvolution problems. Simulation results show

that the theoretical and simulation results of the ZA-VSSLMS algorithm are in good

agreement within a wide range of parameters, different channel, input signal and noise

types and outperform the aforementioned algorithms.

1.5 Thesis Outline

The structure of the thesis are arranged in the following order. After a brief introduction on

sparsity phenomena in signal processing and its application to adaptive filtering problem in

Chapter 1, In Chapter 2 a general background on the adaptive filtering and few LMS-type

algorithms, that will be used in all proposed techniques, isgiven.

In Chapter 3 the proposed algorithms are described. In particular, convergence analysis

for ZA-VSSLMS algorithm is studied when the white process presents at the input of the

system. The stability condition of the algorithm is presented. Furthermore, the

steady-state mean square deviation (MSD) analysis of the algorithm is carried out. A

steady-state MSD expression for the ZA-VSSLMS algorithm isderived in terms of the

system parameters for general white noise process. The crucial upper bound of

zero-attractor controller (ρ) which yields minimum MSD is theoretically shown. The

effect of both zero-attractor controller (ρ) and the forgetting factor (α) in ZA-VSSLMS

are investigated. Furthermore, the behavior of the ZA-VSSLMS algorithm is studied in

the presence of noise with different probability distributions.

The superiority of the proposed methods are presented through the simulation results in

Chapter 4 for a wide range of parameters, different channel,input signal and noise types.

We conclude the thesis in Chapter 5 by giving a summary of the results, discussions and

future work.
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Chapter 2

REVIEW OF ADAPTIVE FILTERING

2.1 Background

Adaptive filtering is a popular technique that has been used in a wide spectrum of signal

processing and communication problems. In many real world scenarios, it is dealt with

unknown time-varying processes which result in undesired distortion of signals [25]. In

order to eliminate such unknown distortions, adaptive systems are known to be efficient

tools for this purpose. By an adaptive system, we mean the self-designing finite impulse

response (FIR) filter which relies on a recursive algorithm to converge to optimum Wiener

solution in some statistical sense [1]. In each successive iteration, the output of adaptive

filter attempts to minimize the error signal with respect to its desired response in order to

update the filter coefficients. In the coming sections, a brief description of three common

adaptive filtering algorithms, that will be used throughoutthis thesis, will be reviewed.

2.2 The Least-Mean-Square (LMS) Algorithm

The least-mean-square (LMS) adaptive algorithm, introduced by Widrow and Hoff [3], is

the most widely used method that appears in many applicationareas, such as adaptive noise

cancelation [3], channel equalization [26] and system identification [27], etc. The main

reason for the popularity of LMS algorithm is its robustness, low computational complexity

and easy hardware implementation [1]. The LMS algorithm hasthe following important

characteristics:

1. The optimum filter [1] solution can be efficiently estimated without computing

matrix inversion. Furthermore, the autocorrelation and cross correlation matrices

6



are not required [28].

2. A step-size,µ, is readily selected in order to control the convergence speed and

stability of the algorithm [29].

3. The algorithm is robust and stable in solving many practical adaptive signal

processing problems [3, 30, 31].

Table 2.1 summarize the LMS algorithm.

Table 2.1: The LMS algorithm (LMS)

Least-Mean-Square Algorithm

Data Input Signal :x(k)

Desired Response:d(k)

Initialization Set Filter-Tap:w(0) = 0

Select Step-Size:µ

Computation Fork = 0, 1, 2, ....., n

Error Vector:e(k) = d(k)− wT (k)x(k)

Update Filter-Tap:w(k + 1) = w(k) + µe(k)x(k)

2.3 The Leaky Least Mean Square(LLMS)Algorithm

The leaky LMS algorithm (LLMS) has been proposed to mainly combat the numerical

instability of the filter in the digital implementation of LMS algorithm [1, 3]. A leakage

prevents overflow in finite-precision by providing a trade-off between minimizing the

MSE and the energy in the filter’s coefficients. This is achieved by adding a regularization
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term (l2-norm of filter-taps) into the cost function of the LMS algorithm [1]. Table 2.2

summarize the LLMS algorithm..

Table 2.2: LLMS Algorithm

Leaky Least-Mean-Square Algorithm algorithm Algorithm (LLMS)

Data Input Signal :x(k)

Desired Response:d(k)

Initialization Set Filter-Tap:w(0) = 0

Select Step-Size:µ

Select Leakage Factor:υ ; Small Positve Number<< 1

Computation Fork = 0, 1, 2, ....., n

Error Vector:e(k) = d(k)− wT (k)x(k)

Update Filter-Tap:w(k + 1) = (1− µυ)w(k) + µe(k)x(k)

2.4 The Variable Step-Size LMS (VSSLMS) algorithm

The variable step size LMS (VSSLMS) algorithm was proposed to establish a balance

needed for faster convergence speed and lower MSE of the LMS algorithm with a fixed

step-sizeµ [6]. By allowing each filter coefficient a separate time-varying step-size, the

adaptation process is capable to accelerate the convergence speed by selecting a large step-

size at the beginning. As the VSSLMS algorithm reaches the steady-state solution, the step-

sizeµ decreases in order to reduce MSE. Table 2.3 summarize the VSSLMS algorithm..
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Table 2.3: The VSSLMS algorithm

Variable Step-Size Least-Mean-Square Algorithm (VSSLMS)

Data Input Signal :x(k)

Desired Response:d(k)

Initialization Set Filter-Tap:w(0) = 0

Select Variable Step-Size:µ(0) = µmax

Computation Fork = 0, 1, 2, ....., n

Error Vector:e(k) = d(k)− wT (k)x(k)

Update Filter-Tap:w(k + 1) = w(k) + µ(k)e(k)x(k)

Step-Size Update :

µ(k + 1) =







µmax, if αµ(k) + γe2(k) > µmax

µmin, if αµ(k) + γe2(k) < µmin

αµ(k) + γe2(k), otherwise

α , γ ∈ [0, 1]

2.5 Sparse Adaptive Algorithms

Conventional adaptive algorithms, such as LMS and its variants [1, 3, 6], Kalman filters

[7] and RLS [1], suffer from being sensitive to highly correlated inputs, low convergence

and high-power consumption. Furthermore, the adaptive methods mentioned above are

not capable taking advantage of a priori information available about the system structure

such as sparsity. Using such a priori information can be verycrucial in obtaining good

performance by the adaptive filtering algorithm.
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Consequently, research studies have been conducted to address these difficulties

experienced by adaptive schemes in the context of recently emerging field of sparse signal

processing [17, 18, 32, 33, 34].

In this work, new sparsity-aware adaptive filtering algorithms are proposed within the

sparse signal processing framework for improved performance.
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Chapter 3

PROPOSED SPARSE ADAPTIVE FILTERING ALGORITHMS

3.1 Introduction

As stated before, the LMS-type adaptive filtering algorithms suffer from low convergence

rate and high power consumption when a long impulse responseof an unknown system

contains many small (near-zero) amplitudes and a few large ones. In other words, the

system impulse response has a sparse structure. In many communication and signal

processing systems, identifying the sparse impulse response is a challenging problem

[10, 35]. Under such scenarios, the conventional LMS-type algorithms as well as the such

as RLS and Kalman filtering techniques, are incapable of addressing system sparsity and

hence fail to result in promising performance [17]. This inspires the development of

efficient adaptive filtering algorithms that utilize the sparse nature of the system to be

estimated.

Motivated by the LASSO [36] and the recent developments in the field of compressive

sensing [15], the sparsity is addressed by combiningl0-norm penalty function into the

original cost function of the LMS algorithm. Adding thel0-norm to the cost function of

the LMS-type algorithm causes the optimization problem to be non-convex. In order to

avoid this drawback, thel1-norm is used as an approximation to thel0 norm [10]. This

gives the adaptation process the ability of attracting zero(or nearly zero) filter coefficients,

and is named zero-attracting LMS (ZA-LMS) algorithm[10]. Areweighed zero-attracting

LMS (RZA-LMS) algorithm is additionally developed in [10] that, by using modified

zeros-attractor term, employs a selective zero-forcing mechanism on the filter taps with
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small magnitude rather than uniformly forcing induce zero on all the filter taps. This

results in improved performance when the sparsity of the system decreases. In this

chapter, we design three new sparse LMS-type algorithms with zero attractors based on

ZA-LMS and RZA-LMS algorithms that aim to achieve faster convergence rate while

decreasing the mean-square deviation (MSD) compared to existing ones. The first

algorithm is referred as weighted zero-attracting leaky LMS (WZA-LLMS)algorithm

where a logarithmic penalty term is added into the leaky-LMSalgorithm cost function in

order to adjust the update equation. The adjustment causes the proposed algorithm to

attract the zeros of sparse channel and improves the performance compared to LLMS and

ZA-LMS algorithms. Furthermore, a zero attractor-variable step-size LMS

(ZA-VSSLMS) algorithm is introduced with a lower computational complexity than the

WZA-LLMS algorithm . The ZA-VSSLMS algorithm imposes anl1-norm penalty to the

original quadratic cost function of the VSSLMS algorithm which captures the system

sparsity during adaptation process. For highly sparse channel, this process accelerates the

convergence speed and improves the error performance. For this particular algorithm, the

convergence analysis of the algorithm is derived when the white process presents at the

input of the system and stability condition of the algorithmis presented. In addition, the

steady-state MSD analysis of the algorithm is carried out indetail. A steady-state MSD

expression for the ZA-VSSLMS algorithm is derived in terms of the system parameters

for general white noise process. Most importantly, the crucial upper bound of

zero-attractor controller (ρ) which yields minimum MSD is theoretically shown. Finally,

to further improve the performance of the ZA-VSSLMS algorithm when the sparsity of

the channel decreases, with a slight cost in the number of computations, the weighted

zero-attracting-variable step-size LMS (WZA-VSSLMS) algorithm is introduced by

adding the same log-sum penalty as in the WZ-LLMS algorithm into original cost
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function of the VSSLMS algorithm.

The rest of this chapter is organized as follows. Section 3.2briefly reviews the ZA-LMS

and RZA-LMS algorithms. In Section 3.3, the proposed WZA-LLMS algorithm is

presented. In Section 3.4, the proposed ZA-VSSLMS will be provided together with

detailed analysis in both convergence (Section 3.5) and thesteady-state condition (Section

3.6) of the algorithm. Finally, in Section 3.7, the WZA-VSSLMS is derived which

provides further improvement over the ZA-VSSLMS algorithm.

3.2 Review of the Zero Attracting Algorithms

3.2.1 The LMS Algorithm

Consider the input-output relation of a linear time-invariant (LTI) system described by

y(k) = hTx(k) + v(k), (3.1)

whereh is the actual system response of lengthN , T is the transposition operator,x(k)

is a white input signal,y(k) is the output andv(k) is an additive noise process which is

independent fromx(k).

In the standard LMS algorithm, the cost functionJ(k) is defined as

J(k) =
1

2
e2(k), (3.2)

wheree(k) is the error signal computed as,

e(k) = y(k)− wT (k)x(k), (3.3)
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with w(k) is the coefficient weight vector of the adaptive algorithm ofthe length N.

By the steepest descent method, the filter coefficient vectoris updated according to

w(k + 1) = w(k)−
µ

2
∇J(k)

= w(k) + µe(k)x(k) (3.4)

where µ is the adaptation step-size which controls the convergenceand steady-state

behavior of the LMS algorithm.

3.2.2 ZA-LMS and RZA-LMS Algorithms

In order to estimate the sparse system, a new class of convex adaptive filtering algorithm is

proposed [10] by adding thel1-norm penalty to the cost function given in 3.2 as follows

J1(k) =
1

2
e2(k) + λ‖w(k)‖1 (3.5)

whereλ is a positive constant. By the gradient method, the tap-weights update equation

takes the form,

w(k + 1) = w(k)−
µ

2
∇J1(k)

= w(k) + µ(k)e(k)x(k)− ρf(w(k)) (3.6)

whereρ = λµ, andf(w(k)) is the sign function(f(w(k)) = sgn(w(k))).

Comparing (3.4) and (3.6), in (3.6) there is an extra term (−ρf(w(k))). This term forces the

tap coefficients to become zero. In other words, if the large number of the coefficients ofw

is zero, the zero-attractor will accelerate the convergence behavior.ρ controls the strength
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of the zero-attractor. Due to this, the algorithm is called zero-attracting LMS (ZA-LMS).

The summary of the ZA-LMS algorithm is shown in Table 3.1.

Table 3.1: ZA-LMS Algorithm

Zero-Attracting Least- Mean Square Algorithm (ZA-LMS)

Data Input Signal :x(k)

Desired Response:d(k)

Initialization Set Filter-Tap:w(0) = 0

Select Step-Size:µ

Select Zero-Attractor Strength:ρ = λµ ; ρ ∈ [0, 1]; λ is Small Positive

Constant.

Computation Fork = 0, 1, 2, ....., n

Error Vector:e(k) = d(k)− wT (k)x(k)

Update Filter-Tap:w(k + 1) = w(k) + µ(k)e(k)x(k)− ρf(w(k))

The shrinkage in the ZA-LMS algorithm does not differentiate the zero taps from the

non-zero taps. Hence, its performance get worse in the case of less sparse systems. This is

due to the fact that the zero-attractor term,−ρf(w(k)), in the ZA-LMS algorithm

uniformly updates all filter taps. So weighting the zero-attractor term in (3.6), will

enhance its performance if the system is less sparse [10]. This is achieved by replacing the

l1- norm penalty with a log-sum penalty, which resemblesl0-norm more than thel1 norm,

into the cost function in (3.2) as
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J2(k) =
1

2
e2(k) + λ′

N∑

i=1

log

(

1 +
|wi|

ζ ′

)

(3.7)

whereλ′ andζ ′ are positive constants. Then, the same as before, by applying the gradient

method we get

w(k + 1) = w(k) + µ(k)e(k)x(k)− ρ
sgn [w(k)]

1 + ζ |w(k)|
(3.8)

whereρ = µλ′

ζ′
, ζ = 1

ζ′
and|w(k)| =

√
N∑

i=1

(w2
i ).

The weighted zero-attracting effect appears only on the taps that have magnitude

comparable to1
ζ

and there is a little shrinkage exerted on the taps whose magnitude is

much greater than1
ζ
. As a result of that, the bias of the weighted zero-attracting LMS

(RZA-LMS) algorithm can be reduced. The summary of the ZA-LMS algorithm is shown

in Table 3.2.

3.3 Proposed Weighted Zero-Attracting Leaky-LMS Algorithm

By adding the cost function associated with LLMS algorithm [5]) together with a log-sum

penalty function as in the RZA-LMS algorithm, we propose theweighted zero-attracting

leaky-LMS algorithm which forms the new cost function as

J3(k) =
1

2
e2(k) + υwT (k)w(k) + γ′

L∑

i=1

log

(

1 +
|wi|

ζ ′

)

(3.9)

with υ is a small positive constant known as the leakage factor.

Applying the gradient decent method, the WZA-LLMS algorithm is updated recursively
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Table 3.2: RZA-LMS Algorithm

Reweighted Zero-Attracting Least- Mean Square Algorithm (RZA-LMS)

Data Input Signal :x(k)

Desired Response:d(k)

Initialization Set Filter-Tap:w(0) = 0

Select Step-Size:µ

Select Zero-Attractor Strength:ρ = µλ′

ζ′
λµ ; ρ ∈ [0, 1]; λ′ andζ ′ are

Small Positive constants

Computation Fork = 0, 1, 2, ....., n

Error: e(k) = d(k)− wT (k)x(k)

Update Filter-Tap:w(k + 1) = w(k) + µ(k)e(k)x(k)− ρ
sgn[w(k)]
1+ζ|w(k)|

as,

w(k + 1) = (1− µυ)w(k) + µe(k)x(k)− ρ
sgn [w(k)]

1 + ζ |w(k)|
(3.10)

with a segment zero attractor vector−ρ
sgn[w(n)]
1+ζ|w(n)|

. Simulation results in chapter 4 show that

the WZA-LLMS algorithm outperforms the LLMS and ZA-LMS algorithms in terms of

convergence speed and MSD.
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3.4 Proposed Zero-attracting Variable Step-size LMS Algorithm

In this section, we propose a new approach called the zero-attracting variable step-size

LMS (ZA-VSSLMS) algorithm that has the order of computational complexity as that of

the LMS algorithm (O(N)) but with better performance compared with those of the well-

known LMS, VSSLMS and ZA-LMS algorithms. Unlike the ZA-LMS and RZA-LMS

algorithms, the ZA-VSSLMS algorithm employs a varying zero-attractor controller,ρ(k),

that results in improved MSD. It combines theℓ1-norm penalty function with the original

cost function of the VSSLMS to utilize the sparsity of the system.

Using the same cost function as in (3.5) and the error signal given by (3.3), by the gradient

method, the ZA-VSSLMS update equation becomes

w(k + 1) = w(k) + µ(k)e(k)x(k)− ρ(k)sgn(w(k)). (3.11)

Here,ρ(k) = λµ(k) , sgn(.) is the pointwise sign function andµ(k) is a variable step-size

[6] which is given by

µ(k) =







µmax if µ′(k + 1) > µmax

µmin if µ′(k + 1) < µmin

µ′(k + 1) otherwise

(3.12)

whereµmax andµmin are the upper and lower bound ofµ(k), respectively.

µ′(k + 1) can be estimated in the following form

µ′(k + 1) = αµ′(k) + γe2(k), (3.13)

with 0 < α < 1 andγ > 0.

18



3.4.1 Discussion

The recursive update formula in the VSSLMS algorithm, can beviewed as







present filter

weights







=







past filter

weights







+







gradient

correction







(3.14)

where the filter taps are updated in the direction of the negative gradient. Also, the update

equations of the ZA-VSSLMS algorithm can be written as






present filter

weights




 =






past filter

weights




 +







gradient

correction







+







zero

attraction







(3.15)

where the zero attraction term in (3.15) (equivalent to−ρ(k)f(w(k)) in (3.11), imposes an

attraction to zero on small filter-taps. Explicitly, for positive value of filter-taps the zero

attractor term will subtract from the update equation and ifthe filter-taps is negative, it will

add up to the update equation respectively.

In (3.11),ρ(k) results in a compromise between the adaptation quality and its speed. A

large value ofρ(k) leads to a faster convergence as the ability of zero-forcingincreases.

At the same time, with the value ofρ(k) increased, the steady-state misalignment also

increases. At steady state, due to the sparsity nature, majority of filter weights are close

to zero. Therefore, those near-zero coefficientswi(k) will move randomly in the small

neighborhood of zero, caused by both attraction and the gradient noise terms. Hence, a

largeρ(k) results in a large steady-state misalignment.

Furthermore, in (3.11),−ρ(k)sgn(w(k)) is bounded between−ρ(k) andρ(k) or −λµmax

19



and−λµmin. Hence the convergence criterion of the ZA-VSSLMS algorithm is expected

to be similar as that of the VSSLMS algorithm. We shall proof this mathematically in the

next section.

3.5 Convergence Analysis of the ZA-VSSLMS Algorithm

In this section, we analyze the convergence of the ZA-VSSLMSalgorithm when the input

to the system is white. We start by defining the filter misalignment vector, mean and the

misalignment vector covariance matrix respectively. Onceall these parameters are well-

defined, we use them to estimate the updated value of covariance matrix and hence deriving

the stability condition based on the trace of this matrix. Here, we present the stability

condition in terms of the input varianceσ2
x and filter lengthN . The filter’s misalignment

vector can be defined as

δ(k) = h − w(k). (3.16)

The mean and covariance matrices ofδ(k), respectively, as

ǫ(k) = E{δ(k)}, (3.17)

S(k) = E{c(k)cT (k)}, (3.18)

where a zero mean vectorc(k) is computed as

c(k) = δ(k)−E{δ(k)}. (3.19)

We also define the instantaneous mean-square-deviation (MSD) in the following form
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J(k) = E{||δ(k)||22} =

N−1∑

i=0

Λi(k), (3.20)

whereΛi(k) represents thei-th tap MSD given by

Λi(k) = E{||δi(k)||
2
2} = Sii(k) + ǫ2i (k), i = 0, ..., N − 1. (3.21)

In equation (3.21),Sii(k) represents the diagonal elements of the auto-covariance matrix

S(k).

By combining (3.1), (3.3), (3.5), (3.16) and using the independence assumption we get

δ(k + 1) = [I − µ(k)x(k)xT (k)]δ(k) + µ(k)x(k)v(k)− ρ(k)sgn[w(k)], (3.22)

Taking the expectation of (3.22), we get

E{δ(k + 1)} = E{[I − µ(k)x(k)xT (k)]δ(k) + µ(k)x(k)v(k)

− ρ(k)sgn[w(k)]}. (3.23)

Due to the independence betweenx andv, the expectation of the second term
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becomes zero. Thus the expectation of (3.23) simplifies to

ǫ(k + 1) = (1− E{µ(k)}σ2
x)ǫ(k)−E{ρ(k)sgn[w(k)]}. (3.24)

SubtractingE{δ(k + 1)} from both sides of equation (3.22) and substituting in (3.24)

c(k + 1) = (I − µ(k)x(k)xT (k))δ(k) + µ(k)x(k)v(k)

− ρ(k)sgn[w(k)]− ǫ(k + 1)

= A(k)δ(k) + µ(k)x(k)v(k)

− (1−E{µ(k)}σ2
x)ǫ(k) + p(k). (3.25)

Here

A(k) = I − µ(k)x(k)xT (k), (3.26)

p(k) = E{ρ(k)}E{sgn[w(k)]} − ρ(k)sgn[w(k)]. (3.27)

Next, the termµ(k)x(k)xT (k)ǫ(k) is added to both side of (3.25) and by rearranging the

terms

we get

c(k + 1) = A(k)c(k) + µ(k)x(k)v(k) + B(k)ǫ(k) + p(k). (3.28)

In the above equation,

B(k) = E{µ(k)x(k)xT (k)} − µ(k)x(k)xT (k). (3.29)
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Next, we estimateS(k + 1) based upon the independence amongx(k), v(k), andδ(k) as

follows:

S(k + 1) = E{c(k + 1)cT (k + 1)}

= E{A(k)c(k)cT (k)AT (k)}+ 2E{A(k)c(k)pT (k)}

+ E{B(k)ǫ(k)ǫT (k)B(k)}

= (1− 2E{µ(k)}σ2
x + 2E{µ2(k)}σ4

x)S(k) + E{µ2(k)}σ4
xtr[S(k)]I

+ 2E{ρ(k)}(1− 2E{µ(k)}σ2
x)E{w(k)pT (k)}+ E{p(k)pT (k)}

+ E{µ2(k)}σ4
x(ǫ(k)ǫ

T (k) + tr[ǫ(k)ǫT (k)]I) + E{µ2(k)}σ2
xσ

2
v I ,

(3.30)

The estimate in (3.30) is obtained by calculating input’s fourth moment [37] as well as the

symmetricity of the covariance matrixS(k).

Applying the trace operator to the both sides of the (3.30) yields,

tr[S(k + 1)] = (1− 2E{µ(k)}σ2
x + (N + 2)E{µ2(k)}σ4

x)tr[S(k)]

+ tr(E{p(k)pT (k)}) + NE{µ2(k)}σ2
xσ

2
v

+ 2E{ρ(k)}(1− E{µ(k)σ2
x})E{w(k)pT (k)}

+ (N + 1)E{µ2(k)}σ4
xǫ

T (k)ǫ(k). (3.31)

In (3.31),p(k), E{w(k)}, E{w(k)pT (k)} andǫ(k) are all bounded.
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Thus, the adaptive filter is stable if the following holds

|1− 2E{µ(k)}σ2
x + (N + 2)E{µ2(k)}σ4

x| < 1. (3.32)

This implies that ask −→ ∞, E{µ2(k)} = E{µ(k)}2 = µ2(k). Hence the above equation

simplifies to

0 < µ(∞) <
2

(N + 2)σ2
x

. (3.33)

This result shows that ifµ satisfies (3.33) the convergence of the ZA-VSSLMS is

guaranteed. It is worthy to note that the stability condition in (3.33) is similar to that the

standard LMS algorithm. The critical bound onµ for which the LMS algorithm converges

in mean-square sense is given as [23]:

0 < µ <
1

2λmax +
N∑

j=0

λj

. (3.34)

whereλmax corresponds to the largest eigenvalue of covariance matrixS. For the white

input signal the stability condition in (3.34) reduces to (3.33) as above. Furthermore, for

µ << 1, the stability condition in (3.33) is identical to the NLMS algorithm at steady

state [24]. Once the convergence criterion is known, we shall continue to examine the ZA-

VSSLMS algorithm by studying the behavior of adaptive filtercoefficients at steady state

which is highly useful in actual design of the filter.

3.6 Mean-Square Deviation Analysis of ZA-VSSLMS Algorithm

In this section, we present the steady-state MSD analysis ofthe ZA-VSSLMS algorithm.

A steady-state MSD expression for the ZA-VSSLMS algorithm is proved in terms of the

system parameters. More importantly, an upper-bound of thezero-attractor controller (ρ)
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which provides minimum MSD is derived. While the stability condition on the step size

(µ) of ZA-VSSLMS is provided in presence of an additive Gaussian white noise in Section

3.4, the MSD analysis assumes any white noise distribution.It is later shown in Chapter 4,

the theoretical and simulation results are in good agreement for a wide range of parameters,

different channel, input signal and noise types.

Now we derive the MSD expression for the proposed algorithm.Our analysis will be based

on the assumptions that:

1. The input signal is independent and identically distributed with zero mean and

varianceσ2
x [1].

2. The input-tap vectorx(k) is independent fromw(l) for l ≤ k [1].

3. The observation noise has zero mean and varianceσ2
v and is independent fromx(k).

The variable step-sizeµ(k) in (3.13) can be estimated recursively as

µ(k + 1) = γ

k−1∑

i=0

αie2(k − i) (3.35)

whereµ1 is assumed to be initially at rest (µ1 = 0). Combining (3.1) and (3.3) yields,

e(k) = xT (k)δ(k) + v(k). (3.36)

Inserting (3.16) and (3.35) into (3.11) gives the ZA-VSSLMSupdate equation as,

δ(k + 1) = δ(k)− γx(k)xT (k)δ(k)g(i, k)− γx(k)v(k)g(i, k)

+ λγg(i, k)sgn[w(k)] (3.37)

whereg(i, k) =
k−2∑

i=0

αie2(k − i− 1).
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Multiplying both sides of (3.37) byδT (k + 1) we obtain,

δ(k + 1)δT (k + 1) = δ(k)δT (k)−

(

γδ(k)δT (k)x(k)xT (k)

+ γδ(k)xT (k)v(k)− λγδ(k)sgn[wT (k)]

)

g(i, k)

−

(

γx(k)xT (k)δ(k)δT (k) + γx(k)δT (k)v(k)

− λγsgn[w(k)]δT (k)

)

g(i, k) +

(

γ2x(k)xT (k)δ(k)δT (k)

x(k)xT (k) + γ2x(k)xT (k)δ(k)xT (k)v(k)− λγ2

x(k)xT (k)δ(k)sgn[wT (k)]

)

g(i, k)g(i, k)

+

(

γ2x(k)δT (k)x(k)xT (k)v(k) + γ2x(k)xT (k)v2(k)

− λγ2x(k)sgn[wT (k)]v(k)

)

g(i, k)g(i, k)

−

(

λγ2sgn[w(k)]δT (k)x(k)xT (k) + λγ2sgn[w(k)]

xT (k)v(k)− λ2γ2sgn[w(k)]sgn[wT (k)]

)

g(i, k)g(i, k) (3.38)

In order to obtain the expression for the MSD, we need to compute the expectation of

(3.38) ask → ∞. However, computing the expectation of (3.38) in the original matrix

form is very difficult. To tackle this difficulty, we take advantage of both matrix stacking

operator [38] and Kronecker product property at the same time. The matrix stacking

operator maps the columns of an arbitrary matrix into a single column vector. This

process is called vectorization and denoted byvec(.). Then by Kronecker product

property [39], for given arbitrary matricesA, B and C of compatible sizes,

vec(ABC) = (CT
⊗

A)vec(B) [40].
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Using the above, the expectation of (3.38) in the vector formask → ∞ is:

vec (∆∞) = vec(∆∞) + γ2ξE

[

x∞xT
∞ ⊗ x∞xT

∞

]

vec (∆∞)

−
γE (e2∞)

(1− α)

(

E

[

I ⊗ x∞xT
∞

]

+ E

[

x∞xT
∞ ⊗ I

])

vec (∆∞)

+

[

γ2σ2
v −

2γ2λ2

σ2
x

]

ξvec(R) +
λ2γ2

N
ξ

N−1∑

j=0

sgn[|wj|]vec(I) (3.39)

wherevec (∆∞) = E

[

vec

(

δ∞δ
T
∞)

)]

is a vector of sizeN2 × 1, sgn[|wj|] = 1 if

wj 6= 1, ξ =

[
2α(E(e2∞))

2

(1−α)2(1+α)
+

E(e4∞)
(1−α2)

]

andR = E[x∞xT
∞].

The detailed derivation of equation (3.39) can be found in the Appendix.

Solving equation (3.39) at steady state we can get

vec(∆∞) =

{(

E

[

I ⊗ x∞xT
∞

]

+ E

[

x∞xT
∞ ⊗ I

])

E
(
e2∞
)

−
γ

(1− α)

[

2α (E (e2∞))
2
+ (1− α)E (e4∞)

1 + α

]

× E

[

x∞xT
∞ ⊗ x∞xT

∞)

]}−1{

(1− α)ξ

([

γσ2
v −

2γλ2

σ2
x

]

vec(R)

+
λ2γ

N

N−1∑

j=0

sgn[|wj|]vec(I)

)}

(3.40)

Forγ ≪ (1− α), the term,

γ

(1− α)

[

2α (E (e2∞))
2
+ (1− α)E (e4∞)

1 + α

]

E

[

x∞xT
∞ ⊗ x∞xT

∞)

]

,

in (3.40) can be neglected. Additionally, ask → ∞ from (3.36)e(∞) ≈ v(∞). Hence, we
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can assume thatE (e2∞) = σ2
v andE (e4∞) = E (v4k). Therefore, equation (3.40) reduces to

vec(∆∞) =
1

1− α

[
2α(σ2

v)
2 + (1− α)E(v4k)

(1 + α)σ2
v

](

E

[

I ⊗ x∞xT
∞

]

+ E

[

x∞xT
∞ ⊗ I

])−1

×

[(

γσ2
v −

2γλ2

σ2
x

)

vec(R) +
λ2γ

N

N−1∑

j=0

sgn[|wj|]vec(I)
]

(3.41)

From (3.41), we evaluate the mean square deviation (MSD) of the proposed algorithm by

computing the trace of the covariance matrix of the misalignment vector

(MSD = Tr(E
[
(δ∞δ

T
∞)
]
). To do so, we first applyvec−1(.) operation to both sides of

(3.41) and then using the propertyTr(AB) = (vec(AT ))Tvec(B) [41].

For white input(R = σ2
xI), the MSD is

MSD = N

[
2α(σ2

v)
2 + (1− α)E(v4k)

2(1− α2)σ2
v

][

γσ2
v −

2γλ2

σ2
x

+
γλ2

Nσ2
x

N−1∑

j=0

sgn[|wj|]

]

(3.42)

From (3.42) we note the following:

1. For relatively smallλ, the sparse VSSLMS algorithm will converge to the steady-

state if the conventional VSSLMS algorithm converges.

2. The term

(

−2γλ2

σ2
x

+ γλ2

Nσ2
x

N−1∑

j=0

sgn[|wj|]

)

≤ 0 and, hence, the steady-state MSD of

the sparse VSSLMS algorithm will always be less than or equalto that of the

conventional VSSLMS algorithm.

3. The term

(

γσ2
v −

2γλ2

σ2
x

+ γλ2

Nσ2
x

N−1∑

j=0

sgn[|wj|]

)

≥ 0 and hence an upper-bound of

ρ(k) can be found to be:
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0 < ρ(k) ≤ µmax

√
√
√
√
√

Nσ2
vσ

2
x

2N −
N−1∑

j=0

sgn[|wj|]

. (3.43)

This upper bound always guarantees better MSD than that of the VSSLMS algorithm.

It is also worthy to note that in a situation where the system is completely non-sparse,

the MSD expression in (3.42) reduces to

MSD = N

[
2α(σ2

v)
2 + (1− α)E(v4k)

2(1− α2)σ2
v

][

γσ2
v −

2γλ2

σ2
x

]

(3.44)

The MSD in (3.44) is still lesser than that provided by equation (21) in [6].

3.7 Proposed Weighted ZA-VSSLMS Algorithm

To further improve the ZA-VSSLMS filter when the sparsity of the channel decreases,

with a slight cost in the number of computations, the WZA-VSSLMS is introduced

by adding the same log-sum penalty as in WZ-LLMS algorithm into original cost

function of VSSLMS algorithm.

Using the same cost function given in equation(3.8), the update equation for the

WZA-VSSLMS algorithm becomes

w(k + 1) = w(k) + µ(k)e(k)x(k)− ρ(k)
sgn [w(k)]

1 + ζ |w(k)|
(3.45)

whereρ(k) = λµ(k) as before. All the properties of the WZA-VSSLMS algorithm

is similar to the RZA-LMS algorithm except the adaptation uses the VSSLMS

algorithm which results in improved performance.
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Chapter 4

SIMULATION RESULTS

4.1 Introduction

In this chapter, we aim to evaluate the performance of the proposed algorithms

derived in Chapter 3, through various numerical simulations.

In the following sections,MATLABSoftware is employed for the simulation of the

standard LMS, LLMS, VSSLMS, ZA-VSSLMS, WZA-LLMS, WZA-VSSLMS and

set-membership normalized LMS (SM-NLMS) algorithms.

Simulations are performed in order to assess the effectiveness of the proposed

algorithms with a wide range of parameters in additive whiteGaussian noise

(AWGN), general white noise with different probability distributions and correlated

input signal for the following settings:

(a) system identification

(b) echo cancelation

(c) image deconvolution

Before we highlight the details of each conducted experiments, we shall briefly

discuss on the general nature of the above mentioned settings where the proposed

algorithms are used respectively.
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Figure 4.1: Block diagram of the system identification.

4.2 System Identification

System identification attempts to estimate and determine the input-output

relationship of an unknown dynamic model (system) based only on data available at

input-out of the unknown model. The block diagram of the system identification

problem is shown in Fig.4.1.

The identification problem requires a set of model structure, a validation criterion

and an aim [42]. This technique have been applied in many problems where the

analyze, predict, interaction and control strategy designs for an unknown model is

highly crucial [43].

In the context of classical adaptive filtering, however, theconventional algorithms

are not suited for identifying an unknown sparse system. Therefore, in the

following section, we show that by applying the proposed sparse algorithms, the

identification problem can be further improved in terms of performance criterion

(e.g. convergence speed, MSD).
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4.3 Experimental Results

In this section, we compare the theoretical and the experimental results of the

proposed algorithms in the system identification problem [1, 6] shown in Fig. 4.1.

In all the experiments, if not explicitly mentioned otherwise, the input signal is

designed to be white with zero-mean and the observed noise (v(k)) is assumed to be

a white random sequence [44] with zero-mean and variance (σ2
v) adjusted to provide

the desired signal-to-noise ratio (SNR) in each experiment. Unless stated otherwise,

all simulation results are averaged over 100 independent runs. In addition,

throughout this chapter, the zero-attracting controller parameter(ρ) is strictly set to

be less than the theoretical upper-bound ofρ∞ given in (3.43). The performance of

all experiments are evaluated using the MSD criterion defined as follows:

MSD(k)dB = 10 log10 E||h − w(k)||2. (4.1)

4.3.1 Unknown Sparse Systems Identification with DifferentLengths and

Sparsity Levels

In order to investigate the tracking ability of the proposedalgorithms (ZA-VSSLMS,

WZA-VSSLMS and WZ-LLMS), here, we carry out number of experiments similar

to the setup discussed in [10] but with different filter length and sparsity level.

In the first experiment, the proposed WZA-VSSLMS and ZA-VSSLMS algorithms

are compared with that standard VSSLMS algorithm. The simulation involves

identifying an unknown system with a filter lengthN = 10, that has only one

filter-tap equal to one in the first500 iterations while the others remain zero(to

obtain a sparsity degree of1
10

). After 500 iterations, all the5 random taps are set to

1 and the rest kept to be zero, i.e., a sparsity of5
10

. Finally, after1000 successive

iterations all the taps are set to values−1 and1 randomly, producing a completely
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Figure 4.2: Comparison of MSDs between the WZA-VSSLMS, ZA-
VSSLMS algorithms in AWGN. The filter length isN = 10.

non-sparse system. In order to have a 30dB SNR, the simulation assume both the

input and noise signals are the white Gaussian random sequences with variances 1

and10−3, respectively. The remaining parameters For the VSSLMS areas follows:

µmin = 0.05, µmax = 0.07, γ = 0.048 andα = 0.97. For the ZA-VSSLMS:

µmin = 0.05, µmax = 0.07, γ = 0.048, α = 0.97 andρ = 1 × 10−3. For the

WZA-VSSLMS: µmin = 0.05, µmax = 0.07, γ = 0.048, α = 0.97 and

ρ = 1× 10−3. Fig. 4.2 shows the average MSD curve for all algorithms in dB.

As it can be seen from the MSD results, before the500th iteration, with a significantly

sparse system, the ZA-VSSLMS and the WZA-VSSLMS algorithmsthe converge

speed is similar to that of the VSSLMS algorithm but with lower steady-state MSD

(1dB better). After the500th iteration, as the number of non-zero taps increases,

we see that the performance of the ZA-VSSLMS algorithm deteriorates since the

shrinkage in the ZA-VSSLMS algorithm does not diffrentiatethe zero taps from

non-zero ones. However, the WZA-VSSLMS algorithm converges at the same rate

to same MSD as that of the VSSLMS algorithm even if the system is non-sparse.
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In the second experiment , the effectiveness of the proposedWZA-LLMS algorithm

is tested with respect to the standard algorithms such as leaky-LMS and ZA-LMS.

With the similar procedures as in the first experiment, the filter length is set to be

N = 16 in this experiment. The SNR value is 30 dB as before and the remaining

parameters for the leaky-LMS are set to be:µ = 0.035, γ = 0.001. For the WZA-

LLMS: µ = 0.035, γ = 0.001, ζ = 10 andρ = 5 × 10−4. For ZA-LMS: µ = 0.035

andρ = 5× 10−4.

Fig.4.3 demonstrates the average mean-square-devation curve of both algorithms all

in dB. It can be observed that in the case of system with high degree of sparsity

(before the500th iteration), the proposed WZA-LLMS algorithm has similar

convergence speed as those in the other algorithms except ityields 1 dB lower MSD

than the leaky-LMS .In the next500th iterations, by increasing the sparsity level to

%50 (with 8 non-zero taps), we observe that the WZA-LLMS algorithms converges

with 30 iterations faster relative to the leaky-LMS at the same MSD rate. In

addition, with reference to the ZA-LMS algorithm, it achieves 9.5dB better MSD

result at moderately faster convergence speed. In the next500 iterations where all

the filter-taps are set to one( fully non-sparse system scenario), the performance of

the WZA-LLMS is almost identical to the leaky-LMS algorithmbut much better

than the ZA-LMS algorithm.

We carry on with the performance of the WZA-LLMS algorithm for correlated

(non-white) input signal in the third experiment. The inputsignalx(k) is generated

by using correlated first-order Gauassian-markov model

(x(k) = 0.8x(k − 1) + vo(k)) [44] wherevo(k) is a white Gaussian process. In

addition, the abrupt changing time mechanism of the simulation where the sparsity
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Figure 4.3: Comparison of MSDs in dB between the WZA-LLMS, ZA-LMS
and LLMS algorithms in AWGN. The filter length isN = 16.

level of the channel alters in the previous experiments are adjusted to be at5000th

and the10000th iteration respectively. The observed noise and SNR level are the

same as before. Simulations are done with the following parameters: For the

leaky-LMS:µ = 0.015, γ = 0.0001. For the WZA-LLMS:µ = 0.015, γ = 0.0001,

ζ = 10 andρ = 2 × 10−4. For ZA-LMS: µ = 0.015 andρ = 3 × 10−5. Fig. 4.4

shows the average MSD curve for all algorithms in dB.

Referring to the MSD results obtained by the simulation, at highly sparse region, the

WZA-LLMS has 400 iterations faster converges speed than the leaky-LMS but as

same as the ZA-LMS algorithm. In addition, the WZA-LLMS algorithm results in

3.5 dB lower MSD relative to LLMS algorithm. By increasing the number of non-

zero taps to eight, we observe that the WZA-LLMS algorithms converges faster than

both algorithms with 0.5dB better MSD. in the case of complete non-sparse system,

the WZA-LLMS algorithm still has better performance both algorithms.

To conclude this section, we repeat the same procedure for the fourth experiment

35



0 5000 10000 15000

Iteration

-50

-40

-30

-20

-10

0

10

M
S

D
(d

B
)

WZA-LLMS

leaky-LMS

ZA-LMS

Figure 4.4: Comparison of MSDs between the WZA-LLMS, ZA-LMSand
LLMS algorithms for correlated input signal and filter lengthN = 16.

with filter length set to beN = 50 and implemented with 200 independent runs

explicitly. In this setting, the filter coefficients are designed such that the abrupt

change occurs at certain periods of time. Initially, a random tap of the unknown

system is set to 1 and the rest are zeros. After each 1500 iterations, 4 and 14

coefficients are set to ones and others to zeros, respectively. The performance of the

ZA-VSSLMS algorithm is compared to those of the standard VSSLMS, LMS and

ZA-LMS algorithms.

Once again, the simulation result confirms that for significantly sparse systems all

proposed algorithm results in lower MSD compare to those conventional LMS-type

algorithm as well as the sparse ZA-LMS algorithm. As the system sparsity decreases

to completely non-sparse scenario the performance difference between the proposed

sparse algorithm with respect to conventional adaptive filtering algorithms becomes

smaller. However, it still performs comparably better thanthose conventional ones.
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Figure 4.5: Comparison of MSDs of the VSSLMS, ZA-VSSLMS, LMSand
ZA-LMS algorithms in AWGN. The filter length isN = 50.

4.3.2 The Effect of Zero-Attractor controller parameter On the

ZA-VSSLMS Algorithm in System Identification

In this section, we investigate the effect of the varying parameter ρ on the

performance of the ZA-VSSLMS algorithm in the system identification setting .

The parameterρ in the ZA-VSSLMS algorithm that were defined in the equation

(3.11) controls the strength of the zero attractor in order to increases the

convergence speed and decreases the MSD, by forcing the small filter taps to move

toward the origin. Its value is changing within an interval0 < ρ < 1.

In order to observe the effectiveness of the MSD analysis in Section (3.6), One can

select all different value ofρ’s to be less than the theoretical upper-bound ofρ∞ given

in Eq. 3.43. By this, one can find the experimentally optimal value ofρ that results in

optimal performance in the ZA-VSSLMS algorithm through simulation and employ

it in the real design problem.

To show this, we carry out two similar experiments with slightly different
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Figure 4.6: MSD vsρ of the ZA-VSSLMS, ZA-LMS, VSSLMS and LMS
algorithms in AWGN. The filter length isN = 10.

parameters. In the both experiments, as explained before, all theρ’s are chosen

based on the upper-bound given in Eq. 3.43. In the first setting of system

identification problem, the channel was assumed to be of lengthN = 20 with two

nonzero coefficients distributed randomly (90% sparsity). The observation noise

was assumed to be additive white Gaussian noise (AWGN) providing an SNR of 30

dB. The remaining parameters of the ZA-VSSLMS algorithm are:µmin = 0.01,

µmax = 0.1, γ = 0.0001 andα = 0.97.

As we see in Fig. 4.6, with the proposed bound on the parameterρ, the performance

of the ZA-VSSLMS algorithm keeps improving compared to those of ZA-LMS and

VSSLMS algorithms by changing theρ value until it reaches its minimum MSD at

ρ = 3× 10−5 (ρexp−opt < ρupper). At this optimal point, the ZA-VSSLMS algorithm

shows 1 dB and 1.5 dB improvements over the ZA-LMS and VSSLMS algorithms,

respectively. Withρ > ρexp−opt, the ZA-VSSLMS algorithm starts to lose its ability

to attract the zero taps and hence yields a higher MSD compared to standard LMS

and VSSLMS algorithms whenρ > 6× 10−5.
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Figure 4.7: MSD vsρ of the ZA-VSSLMS and VSSLMS algorithms in
AWGN. The filter length isN = 256.

Similarly, we repeat the same experiment only for the ZA-VSSLMS and VSSLMS

algorithms for a filter length ofN = 256. Once again from Fig. 4.7, we confirm

that the performance of the ZA-VSSLMS algorithm follows similar behavior as in

the previous simulation until it reaches the minimum MSD atρ = 4 × 10−4. At

this point, the ZA-VSSLMS algorithm shows 4 dB improvement over the standard

VSSLMS algorithm.

4.3.3 The Effect of forgetting factor On the ZA-VSSLMS Algorithm in System

Identification

The forgetting factor parameterα given explicitly in (3.35) reveals the behavior of

the step-size in the ZA-VSSLMS algorithm and plays a vital role on the steady-state

performance of the algorithm. We derived that the MSD expression given in (3.42) is

directly proportional to the the step-size parameterα of the ZA-VSSLMS algorithm.

In this section, we study the effect of parameterα on the MSD performance of ZA-

VSSLMS for different values (0.2, 0.7 and 0.9) in the system identification problem.
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Figure 4.8: Theoretical and simulated MSD curves for the ZA-VSSLMS
algorithm in AWGN with differentα’s.

In the following simulation, the channel is assumed to be of lengthN = 4 with 1

nonzero coefficient distributed randomly (75% sparsity). The observation noise was

assumed to be AWGN with SNR set at 0 dB. The remaining parameters of the ZA-

VSSLMS algorithm are:µmin = 0.001, µmax = 0.1, γ = 0.0001 andρ = 3 × 10−5

(the experimentally optimum value in Fig. 4.6).

Fig. 4.8 shows the average MSDs for 3 values ofα. Forα = 0.2, The ZA-VSSLMS

has 3 dB and 4.5 dB lower MSD with respect toα = 0.7 and 0.9 respectively.

However, at the sameα, the ZA-VSSLMS algorithm converges to the steady-state

at a slower rate. Simulation results prove the validity of the theoretical studies that

carried out in Chaper 3. Moreover, it shows a trade-off [45, 46] between lower MSD

and faster convergence rate of the algorithm based on the value of parameterα.

4.3.4 The Effect of General White Noise parameters on the ZA-VSSLMS

Algorithm in System Identification

Similar to step-size parameterα, the overall MSD in (3.42) is affected by the noise

variance(σ2) and the fourth moment(σ4
v) respectively. Here we investigate the
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behavior of the ZA-VSSLMS algorithm is in the presence of white noise with

different probability distributions.

In this experiment, the channel was assumed to be the same as in previous experiment

in Section (4.3.3). The observation noises were assumed to be Uniform, Gaussian,

Laplacian and Impulsive respectively. The SNR is set at 0 dB for all cases. The

remaining parameters of the ZA-VSSLMS algorithm are:µmin = 0.001,µmax = 0.1,

γ = 0.0001, α = 0.97 andρ = 3 × 10−5. All Simulation results in this experiment

are averaged over 200 independent runs.

As it can be seen from Fig. 4.9, the ZA-VSSLMS performs betterin a

uniformly-distributed noise environment as compared to the Gaussian, Laplacian

and Impulsive distributed ones. The performance is the lowest in

Impulsive-distributed noise environment. The effect of the noise distribution is due

to the different values of the fourth moment,E(v4k), MSD expression given in

(3.42). The theoretical values for this parameter with respect to its standard

deviation (σv) are1.8(σ4
v), 3(σ

4
v) , 6(σ4

v) and14(σ4
v) respectively [47]. Once again,

Simulation results indicate excellent agreement with the theoretical results.

4.3.5 The Effect of Non-White Input Signal on the ZA-VSSLMS

Algorithm in System Identification

In this section, we consider the effect of a non-white input signal on the steady state

performance of ZA-VSSLMS, the VSSLMS and , in particular, analternative

variable-step size adaptive algorithm known as the set-membership normalized

LMS (SM-NLMS), [23], algorithms in system identification setting.

In this experiment, the input is generated by using correlated first-order
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Figure 4.9: Theoretical and simulated MSD curves for the ZA-VSSLMS
algorithm with different noise types.

Guassian-Markov model (x(k) = a1x(k − 1) + u(k))[44] with a1 = 0.8. The

channel was assumed to be the same as in previous section. TheSNR is set at 0 dB

and simulation results are the averaged deviation of 200 independent trials. The

remaining parameters of the ZA-VSSLMS algorithm are:µmin = 0.01, µmax = 0.1,

γ = 0.0001, α = 0.97 andρ = 3× 10−5. For the VSSLMS algorithm:µmin = 0.01,

µmax = 0.1, γ = 0.0001 andα = 0.97. For the SM-NLMS algorithm:̄γ =
√

5σ2
n,

whereσ2
n is the noise variance, andγ = 10−6. Fig. 4.10 shows that before400th

iteration, the ZA-VSSLMS shows maximum 4 dB lower MSD and faster

convergence rate compared to VSSLMS algorithm. After400th iteration, the

performance difference between ZA-VSSLMS and VSSLMS algorithm becomes

smaller. At steady state, however, the ZA-VSSLMS still performs comparably

better than the VSSLMS. The SM-NLMS algorithm converges to 11 dB higher

MSD than the other algorithm.
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Figure 4.10: The MSD performance curve of the ZA-VSSLMS, VSSLMS
and SM-NLMS algorithms for non-white input.

4.4 Echo Cancelation

Acoustic Echo Cancellation (AEC) is perhaps one of the most challenging problem

in the domain of telecommunication systems [11, 48, 49]. over Several years,

various adaptive filtering algorithms have been proposed to address this problem to

deliver excellent performance [2, 23]. By emerging new technologies in the

telecommunication industry such as internet phones and hand-free telephone,

however, the demand for enhancing the speech/listening quality is still an active

area of research in recent years. The main task of an echo canceler is to identify a

replica of echo at the output of adaptive filter [50]. Fig. 4.11 shows the block

diagram of a typical echo canceler.

From Figure, x(k) represents a speech signal from the far-end side that is

transmitted in an acoustic room via a loudspeaker. A near-end speech signal,v(k), is

then recorded the speech signal by microphone in the room and transmits back to

the far-end side.
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Figure 4.11: Schematic of an acoustic echo canceler.

This results in an acoustic echo path between the loudspeaker and the microphone.

In other word, the recorded signal,s(k) = u(k) + v(k), is composed of an echo

componentu(k) and the near-end speech signal componentv(k). In such a scenario,

one can model the transfer function of the echo path using an FIR filter f(k), that

turns the echo component as a filtered version of the loudspeaker signal, (u(k) =

x(k) ∗ f(k)).

The basic task of an acoustic echo canceler is to identify theunknown room impulse

response ,f(k), to effectively eliminate the echo signal from the microphone signal.

Consequently, the desired speech signal (with no echo) which is transmitted to the

far-end side has the formd(k) = s(k) − x(k) ∗ w(k) [51]. It should be noted that

w(k) corresponds to an estimate off(k)).

The problems of high power consumption and slow convergencespeed makes the

traditional adaptive algorithms impractical to use for an acoustic echo cancelation of

the sparse system [14, 35, 52]. In many practical situations, the impulse response

of a classic echo path is long and sparse [53]. In other words,the region where
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the impulse response coefficients have large magnitude, is relatively small [53, 54].

By taking advantage of this property, we employ the proposedalgorithms through

simulation in order to confirm the effectiveness of each method compared to that of

conventional ones.

4.4.1 Experimental Results

In this section, we consider the convergence behavior of theproposed the

WZA-LLMS, WZA-VSSLMS and the ZA-VSSLMS algorithms and compare to

those of the LLMS, VSSLMS, ZA-VSSLMS and the SM-NLMS algorithm. All the

experiments is set up for an echo cancelation problem by estimating the room

impulse response such as shown in Fig. 1.1.

In the first experiment, We apply the proposed WZA-VSSLMS algorithm to an

acoustic echo canceler consist of a 256-tap system with 28 non-zero coefficient

distributed in a random fashion. The driving signal is whitenoise with the desired

SNR level of 30 dB. The simulations are performed over 200 independent run.

Simulations are done with the following parameters: For theleaky-LMS:

µ = 0.005, γ = 0.002.

For the WZA-LLMS: µ = 0.005, γ = 0.002, ζ = 10 andρ = 4 × 10−4. For

ZA-LMS: µ = 0.005 andρ = 3 × 10−5. Fig. 4.12 shows the average MSD curve

for all algorithms in dB. As illustrated, the WZA-LLMS algorithm has the same

convergence speed relative to the ZA-LMS algorithm but with2dB lower MSD.

With reference to the leaky-LMS, the WZA-LLMS algorithm hasas much as1000

iterations faster convergence speed with 3dB lower MSD.

In the similar fashion as the fist experiment of this section,the convergence

performance of the ZA-VSSLMS algorithm is now tested and compared to those of
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Figure 4.12: Convergence behaviors of the proposed WZA-LLMS algorithm
in an acoustic echo cancelation setup. Filter length isN = 256.

the standard VSSLMS, LMS and ZA-LMS algorithms. The filter length is same as

before with 10% nonzero coefficients distributed randomly.In this, the following

parameters were used : For the VSSLMS:µmin = 0.008, µmax = 0.012, γ = 0.0048

andα = 0.97. For the ZA-VSSLMS:µmin = 0.008, µmax = 0.012, ρ = 0.0001. For

the ZA-LMS :µ = 0.005. The simulations are performed for 200 independent runs.

Fig. 4.13 demonstrates the averaged MSD curve for all algorithms in dB. As shown,

the ZA-VSSLMS algorithm converges to 2 dB and 9 dB lower MSDs compared to

the VSSLMS, ZA-LMS algorithms respectively. In addition, the proposed

algorithm converges faster when room impulse response has sparse structure

implying the sensitivity of the ZA-VSSLMS to such a scenario.

Finally to observe that the analytical results in Section(3.6) are consistent with our

simulated result, we study the convergence behavior of the proposed ZA-VSSLMS

algorithm in echo canceler problem and compare its result tothose of VSSLMS and

SN-NLMS algorithm. In this experiment, the room impulse response is assumed to
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Figure 4.13: Convergence rate of the proposed ZA-VSSLMS algorithm in
acoustic echo cancelation setup driven by a white input signal. Filter length
isN = 256

be sparse with a total of 128 coefficients (N = 128); randomly 6 taps are set to 1

while the others are kept zero. The algorithms were simulated with the following

parameters:µmin = 0.001, µmax = 0.004, γ = 0.0001, α = 0.97 andρ = 5 × 10−5.

For the VSSLMS algorithm:µmin = 0.001, µmax = 0.004, γ = 0.0001 andα =

0.97. For the SM-NLMS algorithm:̄γ =
√

5σ2
n andγ = 10−6.

As illustrated in Fig. 4.14, the ZA-VSSLMS algorithm converges to 1.5 dB lower

MSD compared to the VSSLMS algorithm. Moreover, The ZA-VSSLMS algorithm

converges much faster and to a 1.5 dB lower MSD than the SM-NLMS algorithm.

This shows the advantage of the variable step-size update ofthe VSSLMS algorithm

over that of the SM-NLMS algorithm.

4.5 Image Deconvolution

Blind image deconvolution [55], [56]-[58] addresses the problem of reconstructing

the true image from a corrupted observation image without having the knowledge of

either the original 2-D source or the degradation function.
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Figure 4.14: Convergence rate of ZA-VSSLMS, VSSLMS and SM-NLMS
algorithms, for echo canceler driven by white input. The SNR is set at 0 dB.

No image is a perfect representation of the real world. All images have noise in them

caused by the detection process in the camera. All images are also blurred to some

extent, whether by focus problems, fundamental limitations or errors in the optics,

motion blur, or the effects of air currents in the atmosphere [59]. All of these blurring

effects can be modeled by a single Point-Spread Function (PSF) which is also known

as a linear shift-invariant blur(LSI). An observed image can be modeled by the 2-D

convolution of the true image with the PSF . Mathematically, this can be written as

[55]:

s(x, y) = p(x, y) ∗m(x, y), (4.2)

where∗ represents the convolution operation in 2D,s(x, y) is the corrupted image,

p(x, y) is the true image andm(x, y) is the Point Spread Function (PSF) given in

(4.7). In most systems, the PSF is unknown, or we may have partial information

about it. Common techniques for reconstructing images include
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Maximum-Likelihood (ML) approaches and the classical method of Least-Squares

(LS), when the statistical properties of the noise are at hand. In both cases, we are

lead to ill-posed problems and must ensure that appropriateregularizing measures

are taken [60]. When the input image has a sparse structures,one may be interested

in applying, to a certain extent, the proposed sparse adaptive algorithms in order to

gain a possible improvements in reconstruction performance. Before we do that, it

is important to generalize the proposed 1-D adaptive filtersmodel into 2-D

counterpart using the same approach [60, 61]. In the next section, we show how 1-D

ZA-VSSLMS algorithm transforms into 2-D version and the sparsity is addressed to

improve the performance of the filter in terms of both convergence rate and MSD.

The extended version has relatively low computational complexity (the

computational complexity of the proposed algorithm isO(N2) which is of the same

order as that of the VSSLMS algorithm). In addition, The filter has the ability of

updating its coefficients by scanning along both the horizontal and vertical

directions on a 2-D spatial coordinate providing better exploitation of information

as well as the casuality condotion in the cases that it matters [62].

4.5.1 The two-dimensional zero-attracting variable step-size LMS

The update equation (3.11) can be readily extended to 2-D form as follows:

wk+1(p1, p2) = wk(p1, p2) + µkek(p1, p2)xk(l1, l2)

− ρksgn(wk(p1, p2)) (4.3)

wherewk+1 is the 2-D filter’s coefficient vector with dimensions ofN ×N , xk(l1, l2)

is the filter input vector andp1, p2, l1, l2 = 0, 1, . . . , N − 1, respectively.

More precisely, The filter inputxk(l1, l2) and coefficient vectorswk+1 can be written
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as the column vectors in the following form:

xk(l1, l2) =



























x(l1, l2)

...

x(l1, l2 −N + 1)

...

x(l1 −N + 1, l2)

...

x(l1 −N + 1, l2 −N + 1)



























(4.4)

wk(p1, p2) =



























w(0, 0)

...

w(0, N − 1)

...

w(N − 1, 0)

...

w(N − 1, N − 1)



























(4.5)

The filter output can be evaluated by a 2-D convolution as follows:

y(l1, l2) =
N−1∑

p1=0

N−1∑

p2=0

w(p1, p2)x(l1 − p1, l2 − p2). (4.6)

In the design of the 2-D filter, one should determine how to scan the input data so

that it can be reused. There are many ways that data can be reused [58]. In this thesis
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we use the same method discussed in [62] to exploit the data efficiently.

4.6 Experimental Results

In the first part of the experiments, the performance of the proposed 2-D filter is

compared to that of the 2-D VSSLMS algorithm in the image deconvolution setting.

The test image we used for comparison is a sparse image ‘Checker Board’ in the

shape of Fig. 4.15(a). Following parameters are used in thissimulation: For the

2-D ZA-VSSLMS: µmin = 0.005, µmax = 0.009, γ = 0.00048, α = 0.97 and

ρ = 4 × 10−5. For the VSSLMS:µmin = 0.005, µmax = 0.009, γ = 0.00048 and

α = 0.97. The filter sizes in both cases are3× 3.

Fig. 4.15(a) indicated the test image ‘Checker Board’, Fig.4.15(b) shows the blurred

image which is obtained by using Eq. 4.2 wherep(x, y) is the original image and

s(x, y) is the3× 3 Gaussian PSF described as follows:

m(x, y) =











−0.035 −0.65 −0.35

0.45 0.09 0.45

0.13 −0.65 0.13











(4.7)

Fig. 4.15(c) illustrates the image recovered by 2-D VSSLMS and Fig. 4.15(d)

shows the image recovered by the proposed 2-D ZA-VSSLMS algorithm. As it can

be seen from Fig. 4.14(d), the proposed sparse algorithm results in a visually

improved restored image. Also, the proposed 2-D ZA-VSSLSM algorithm yields

approximately 1.0 dB improvement over the 2-D VSSLMS algorithm in terms of

PSNR.

Even though the proposed algorithm performs better than the2-D VSSLMS, its

performance will be much better if we further assume that theGaussian PSF has

51



relatively many near-zero entries. To show this, with the same setting and

parameters above, both algorithms were simulated using thePSF given in (4.8).

Fig. 4.16(b) demonstrates the degraded image. Fig. 4.16(c)illustrates the image

recovered by 2-D VSSLMS and Fig. 4.16(d) indicates the imagerecovered by the

proposed 2-D ZA-VSSLMS algorithm. As it can be seen, the proposed algorithm

results in a much better performance (3.5 dB) than the 2-D VSSLMS algorithm when

the input is sparse and PSF has meany near-zero coefficients.

h(x, y) =











0.035 −0.0065 −0.035

0.045 0.09 0.45

0.013 −0.065 0.13











(4.8)

This shows, by assuming a sparse structure for the input image, small PSF

coefficients and a proper input data reuse, one can design an efficient 2-D filter that

considerably improve the performance of the adaptive filter. For an image

deconvolution setup the simulation results show higher PSNR compared to 2-D

VSSLMS algorithm.
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(a) (b)

(c) (d)

Figure 4.15: a) Test image, b) Degraded image, d) Recovered image by 2-D

VSSLMS (PSNR=27.10 dB) and d) Recovered image by 2-D ZA-VSSLMS

(PSNR=28.1 dB)
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(a) (b)

(c) (d)

Figure 4.16: a) Test image, b) degraded image, d) Recovered image by 2-D

VSSLMS (PSNR=30.5 dB) and d) Recovered image by 2-D ZA-VSSLMS

(PSNR=34 dB)
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

Sparsity is a feature present in many practical signals and systems. Efficient signal

processing techniques which can exploit the sparseness property are very attractive

from an implementation perspective. In this thesis, a set ofnovel sparsity-aware

adaptive filtering algorithms are proposed. The proposed algorithms modifies the

cost function of the conventional LMS, LLMS, VSSLMS algorithms in order to

utilize the system sparsity. These modifications resulted in attracting zero or

near-zero coefficients of adaptive filter-taps that significantly improve the

performance of the adaptive filter in terms of both the convergence rate and MSD.

The ZA-LLMS and ZA-VSSLMS algorithms have been proposed in asimilar

optimization strategy by incorporating thel1-norm into the cost function of the

LLMS and VSSLMS algorithms respectively. The performance improves

significantly when the impulse response of the channel is highly sparse. For a less

sparse channel, however, the performance of the proposedl1-norm based adaptive

filters may deteriorate as the attractor term uniformly forces the filter-taps to

become zero. To overcome this difficulty, by employing the logarithmic

approximation to thel0-norm, the WZA-LLMS and the WZA-VSSLMS algorithms

are proposed.
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For the ZA-VSSLMS algorithm, the convergence analysis has been presented to

determine the stability condition. Moreover, the steady-state analysis has been

carried out to derive the MSD expression for a general white input which is crucial

in the real filter implementation. Furthermore, the upper bound on the zero-attractor

controller (ρ) which yields minimum MSD has been theoretically derived. We have

shown that by choosing the zero attracting controller parameter (ρ) smaller than that

of the theoretical upper-bound the superiority of the ZA-VSSLMS algorithm is

guaranteed. A 2-D extension of the ZA-VSSLMS has been presented to produce

excellent results in imaging applications where sparsity is assumed.

The behavior of the ZA-VSSLMS algorithm has been investigated in the presence

of four noise types. In order to achieve improved performance, by selecting optimal

parameters, the effects of both the zero-attractor controller (ρ) and the step-size (α)

on the MSD performance of ZA-VSSLMS algorithm have been studied.

The performance of the ZA-VSSLMS, WZA-VSSLMS and WZA-LLMS algorithms

are compared with the standards ZA-LMS, VSSLMS, leaky-LMS,SM-NLMS and

LMS algorithms in system identification, channel estimation, echo cancelation and

image deconvolution problems. Results show that the theoretical and simulation

results of the ZA-VSSLMS algorithm are in good agreement within a wide range of

parameters, different channel, input signal and also noisetypes and outperform the

standard algorithms.

5.2 Future Work

The tracking analysis of the proposed algorithms in both stationary and

non-stationary environments could be a potential study forfuture work. Another

area for investigation is to come up with more interesting applications and scenarios
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where sparse adaptive filtering can deliver promising performance. Finally, the

development of an efficient hardware implementation of the proposed algorithms

can be included in the future study.
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Appendix A: Proof of the MSD result in equation 3.38

Here we show how we obtain mathematically the result stated in equation (3.39)

from (3.38). By using the Kronecker product property [39], for a given arbitrary

matricesA, B andC of compatible sizes,vec(ABC) = (CT
⊗

A)vec(B). Then,

the expression given in (3.39) can be transformed into the followingvec(.) form and

taking the expectation of both sides yields,

E

[

vec

(

δ(k + 1)δT (k + 1)

)]

= E

[

vec
(
δ(k)δT (k)

)
]

− γE

[(

x(k)xT (k)⊗ I)vec
(
δ(k)δT (k)

)
)

(g(i, k))

︸ ︷︷ ︸

1

]

− γE

[(

(I ⊗ x(k)xT (k))vec
(
δ(k)δT (k)

)

)

(g(i, k))

︸ ︷︷ ︸

2

]

+ γ2E

[(

(x(k)xT (k)⊗ x(k)xT (k))vec
(
δ(k)δT (k)

)

)

(g(i, k))

︸ ︷︷ ︸

3

]

+ γ2E

[(

vec(x(k)xT (k))v2(k)

)

(g(i, k))

︸ ︷︷ ︸

4

]

− λγE

[(

δ(k)sgn[wT (k)]

)

g(i, k)

︸ ︷︷ ︸

5

]

− λγ2E

[(

x(k)xT (k)δ(k)sgn[wT (k)]

)

g(i, k)g(i, k)

︸ ︷︷ ︸

6

]
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+ λγE

[(

sgn[w(k)]δT (k)

)

g(i, k)

︸ ︷︷ ︸

7

]

− λγ2E

[(

sgn[w(k)]δT (k)x(k)xT (k)

)

g(i, k)g(i, k)

︸ ︷︷ ︸

8

]

+ λ2γ2E

[(

sgn[w(k)]sgn[wT (k)]

)

g(i, k)g(i, k)

︸ ︷︷ ︸

9

]

+ E

{

v(k)

[

− γδ(k)xT (k)g(i, k) + γ2x(k)xT (k)

δ(k)δT (k)g(i, k)g(i, k)− γx(k)δT (k)g(i, k)

+ γ2x(k)δT (k)x(k)xT (k)g(i, k)g(i, k)

− λγ2x(k)sgn[wT (k)]g(i, k)g(i, k)− λγ2sgn[w(k)]

xT (k)g(i, k)g(i, k)

]}

(A.1)

In steady-state we can assume the following:

1-E
{
e2k−i−1e

2
k−j−1

}
= E

{
e2k−i−1

}
E
{
e2k−j−1

}
for i 6= j.[65]

2- The expressions(g(i, k)), (g(i, k)) (g(i, k)) and
(
δ(k)δT (k)

)
are assumed to be

independent.

Hence, employing the above assumptions we obtain (refer to next Section for the

proof):

E {(g(i, k)) (g(i, k))} =
2α (E (e2∞))

2

(1− α)2(1 + α)
+

E (e4∞)

(1− α2)
(A.2)
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and

E {g(i, k)} =
E (e2∞)

1− α

From (A.1) it is easy to show that the expectation of the last term is zero (E{.} = 0).

Now let us evaluate the expectations of terms5 , 6 and 9 , individually.

Starting by term 5 and using the independence assumption,

E
[
λγδ(k)sgn[wT (k)] (g(i, k))

]

= λγE
[
(h − w(k))sgn[wT (k)]

]
×E [g(i, k)] (A.3)

To find expectation of (A.3) at steady state, we need to computeE[w∞]. To do so,

by applying the above assumption (2), we calculate the expectation of equation

(3.37) in the article aslim
k→∞

we obtain,

E[δ∞] =

(

1−
γσ2

xE (e2∞)

1− α

)

E[δ∞] +
λγE (e2∞)

1− α
E[sgn(w∞)]

=
λ

σ2
x

E[sgn(w∞)]. (A.4)

Substituting the result of (A.4) in (3.16) ask → ∞ we get,

E[w∞] = h −
λ

σ2
x

E[sgn(w∞)], (A.5)
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or in scalar form, (A.5) can be written as

E[wj,∞] = hj −
λ

σ2
x

E[sgn(wj,∞)], j ∈ NZ (A.6)

wherej ∈ NZ is the index that corresponds to a non-zero (NZ) coefficient.By [9],

for sufficiently small λ
σ2
x

, the sign of (A.6) is,

E [sgn (wj,∞)] = sgn[hj] (A.7)

And hence, using (A.6) and (A.7) gives

E [wj,∞]E [sgn (wj,∞)] =







|hj| j ∈ NZ

−λ
σ2
x

E2 [sgn(wj,∞)] j ∈ Z

(A.8)

Additionally, from (A.7), it is straight forward to show that for j ∈ NZ we have,

E [hjsgn (wj,∞)] = |hj|. (A.9)

Substituting (A.6), (A.8), (A.9) in (A.3) and lettingE2 [sgn (wj,∞)] ≈ 0 if j ∈ Z, the

expectation in equation(A.3) at steady state reduces to,

λγE
[
(h − w(k))sgn[wT (k)]

]
E [g(i, k)] =







γλ2

(1−α)σ2
x

E (e2∞) j ∈ NZ

0 j ∈ Z

(A.10)

In similar way it is easy to verify that the expectations of terms 6 and 9

in equation (A.1) are as follows,

72



λγ2E
[
x(k)xT (k)δ(k)sgn[wT (k)]g(i, k)g(i, k)

]

=







γ2λ2

σ2
x

[
2α(E(e2∞))

2

(1−α)2(1+α)
+

E(e4∞)
(1−α2)

]

vec(R) j ∈ NZ

0 j ∈ Z

(A.11)

and

λ2γ2E
[
sgn[w(k)]sgn[wT (k)]g(i, k)g(i, k)

]

=







λ2γ2

N

N−1∑

j=0

sgn[|wj|]

[
2α(E(e2∞))

2

(1−α)2(1+α)
+

E(e4∞)
(1−α2)

]

vec(I) j ∈ NZ

0 j ∈ Z

(A.12)

The expectations of term7 and 8 in equation(A.1) are identical to term5 and

6 , respectively.

As k → ∞, let vec (∆∞) = E

[

vec

(

δ∞δ
T
∞)

)]

be a vector of sizeN2 × 1, ξ =
[
2α(E(e2∞))

2

(1−α)2(1+α)
+

E(e4∞)
(1−α2)

]

andR = E[x∞xT
∞]. Hence, substituting the results of (A.10),

(A.11) and (A.12) into (A.1) and using assumption (2) we get

vec (∆∞) = vec(∆∞) + γ2ξE

[

x∞xT
∞ ⊗ x∞xT

∞

]

vec (∆∞)

−
γE (e2∞)

(1− α)

(

E

[

I ⊗ x∞xT
∞

]

+ E

[

x∞xT
∞ ⊗ I

])

vec (∆∞)

+

[

γ2σ2
v −

2γ2λ2

σ2
x

]

ξvec(R) +
λ2γ2

N
ξ

N−1∑

j=0

sgn[|wj|]vec(I)

which is identical to equation (3.39) in the Section (3.6).
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Appendix B :Proof of equation A.2

Recalling thatg(i, k) =
k−2∑

i=0

αie2(k − i − 1), we want to evaluate the expectation of

the form,

E {g(i, k)g(i, k)} =

k−2∑

i=0

k−2∑

j=0

αi+jE

{

e2(k − i− 1)e2(k − j − 1)

}

(A.13)

To calculate the above expectation we divide (A.13) into two cases as following:

Case I: wheni = j, ask → ∞

k−2∑

i=0

k−2∑

j=0

αi+jE

{

e2(k − i− 1)e2(k − j − 1)

}

=
1

1− α2
E(e4∞)

Case II: wheni 6= j, ask → ∞ and by assumption (2) in A.1., in Appendix I, we

have,

k−2∑

i=0

k−2∑

j=0

αi+jE

{

e2(k − i− 1)e2(k − j − 1)

}

=
∞∑

i=0
(i6=j)

∞∑

j=0

αiαj
(
E(e2∞)

)2
(A.14)

Combining the results of case (I) & (II), the expectation of (A.13) becomes,

E {g(i, k)g(i, k)} =
2α (E (e2∞))

2

(1− α)2(1 + α)
+

E (e4∞)

(1− α2)

Which is identical to (A.2).
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