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ABSTRACT

The present study is conducted to study a new type convergence, called A-statistical
convergence. In the beginning of the study, the concept of infinite, non-negative
regular matrices is introduced. Some basic properties of regular and conservative
matrices are studied. These matrices play an important role in the theory of A-
statistical convergence. Every non-negative regular matrix defines a density function.
These density functions are then used to define some new type of convergences such
as, statistical convergence, lacunary statistical convergence and lambda statistical
convergence. A-statistical convergence is the extension of the other statistical type
convergences. Statistical convergence, Lacunary statistical convergence and Lambda
statistical convergences can be considered as the special cases of A-statistical

convergence produced by different non-negative regular matrices.



Oz

Bu ¢alismada, yeni yakinsaklik tiirlerinden biri olan A-istatistiksel yakinsaklik ele
almmistir. Oncelikle negative olmayan, sonsuz, regular ve konservatif matrisler
iizerinde durulmus ve bdyle matrislerin temel Ozellikleri incelenmistir. Yeni tip
yakinsamalarda yogunluk fonksiyonlar1 temel rol oynamaktadir. Bu anlamda
bakildiginda her sonsuz, regular ve konservatif matrisin bir yogunluk fonksiyonu
tanimlamas1 bu anlamda Onem arz etmektedir. Lacunary, lamda ve istatistiksel
yakinsaklik tiirleri degisik matricler tarafindan tiretilen yakinsamalar olup bu tiirlii

yakinsamalarda A-istatistiksel yakinsama sinifina girmektedir.
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Chapter 1

INTRODUCTION

This thesis is about a new type of convergence i.e. A-statistical convergence. In the
thesis we will see that the study of A-statistical convergence helps to introduce some
other new type of convergences like statistical convergence, lacunary statistical
convergence and lambda statistical convergence. The thesis includes the concept of

infinite matrices and density functions. (See [1] to [4],[10] to [15])

The chapter 2 of the thesis is about some specific non-negative infinite matrices. This
chapter includes the definitions of non-negative infinite matrices. Regular and
conservative matrices, which are non-negative infinite matrices, are discussed in detail
in the chapter. One can find the definitions of regular and conservative matrices and

some examples related to them.

The Chapter 3 is about the density functions. In this chapter the idea of density
functions is discussed in detail. It includes examples and some basic properties of
density functions. It also includes some definitions of different sequences like lacunary
sequence and lambda sequence. One can understand that any non-negative regular
matrix gives a density function. This idea of obtaining density functions from different
non-negative regular matrices is explained in detail with the help of examples. These
density functions are very important in the study of new type of convergences, which

can be understood from the next chapter.



Chapter 4 is the main chapter of the thesis. It explains the concept of A-statistical
convergence. In the beginning the concept of A-density is explained with examples,
on the basis of chapter 3. Later A-statistical convergence is defined and it is explained
in detail with the help of some properties and theorems. The chapter includes the
definitions of statistical convergence, lacunary statistical convergence and lambda
statistical convergence and their relation with A-statistical convergence. From the
study of this chapter one can find out that these new type of convergences (statistical
convergence, lacunary statistical and lambda statistical convergence) are special

classes of A-statistical convergence.



Chapter 2

INFINITE MATRICES

The main purpose of this chapter is to discuss basic definitions and properties of
regular and conservative matrices. As it is well known infinite regular matrices play a
vital role in the theory of new type convergences such as statistical convergence, A-
statistical convergence, lacunary statistical convergence and lambda statistical
convergence. In this chapter we mainly focus on infinite matrices which are
conservative and regular. Another important tool in the theory of new type
convergences is the density functions. In the present chapter the relation between

regular matrices and density functions will also be discussed.

Definition 2.1: An infinite matrix, A = (a,y) is the matrix which has infinitely many
rows and columns.

Fact: In the case of infinite matrices addition and scalar multiplications are defined
component wise. More precisely, let A=(a,,) and B =(b,,) be two infinite matrices
then

)] A+B=(a, +b,)

i) AA = (Za,, ) for any scalar 1).

Definition 2.2: An infinite matrix, (A = (a,,) whose element are non-negative (i.e.
(ank) = 0), is called a non-negative, infinite matrix.

Example 2.1: The following matrix,



O O DN
- O N
- O+, O
N O O

is a non-negative, infinite matrix.

Definition 2.3: Let A= (a,;) be an infinite matrix, for any sequence y = (y;) the A

transform of y is defined as

A(y) = (Z Ank yk) )
k=1

n

provided that series converges for all n.

Example 2.2: Consider the matrix

O O DN
O N B
- O+, O
N O O

and the sequence Y =(Y,) =(Y;,¥Y5:---Y,,-..) then

Vil [ 2y, +Y, ]

(2 1
0 2 Y, 2y, +VY,
0 0 . .

- O+ O
- N O O

yn 2yn + yn+l

If we take y, = (1+ %) then



Fy

It should be mentioned that both y =1+ 1) and Fy =3+
n n(n+1

- O O N

Lo N P

- O B O
- N O O

but converges to different limits.

Example 2.3: Consider the matrix

Fy

O Nk

Wk ko

and the sequence Yy =(Y,) =(Y;,¥Y5:---Y,,-..) then

Fy

If we take y, =1+ %) then

O Nk

Wl P O

Y1
Y2

Yn

11/2
13/3

3n+2
+
n(n+1)

3n+2

YitY,
(1/2)y, +y,

(1/ n)yn + yn+l

are convergent



% 0 o717 712

5 1 3/2 25/12
Y=o o0 3 O 1+1 1Jr2n2+2n+1
S n’(n+1)

n>+2n+1

2

It should be mentioned that both y, = (1+ 1) and Fy =1+
n n“(n+1)

are convergent

and they converges to the same limit.

These two examples show that some infinite matrices preserve the limit of a sequence
but some of them does not. This observation rises the following questions “under
which conditions matrix transformation of a convergent sequences is again
convergent” and “under which conditions matrix transformation preserves limit of the
convergent sequences”. In the present part of this chapter we shall discuss these two
cases.

Definition 2.4: An infinite matrix A is said to be conservative, if for any convergent

sequence y=(yx),
A(y) = (z Ank }’k>
k-1 n
is also convergent but the limit may change.The space of all conservative matricesis

denoted by M

Con *

An infinite matrix is conservative if it satisfies the conditions of Kojima-Schur
Theoremstated below.
Theorem 2.1: (Kojima-Schur) An infinite matrix A= (a,) n, k=1, 2, is conservative

if and only if,



i) lima,, = apforeachk=0,1...... , Where ¢, is a real number for each k .
n—-oo

i) lim Y gan = @, forsomea e IR.
n—-o0o

i) sup Z,‘f_o|an,k| <H<oorsomeH>0

Example 2.4: The following infinite matrix

11
01
00

- O — O
-k O O

is a conservative matrix and it is obvious that,

)] lima,; =0, foreachk=0,1...... ,
n—-oo

i) lim Y7 ¢ an = 2 and
n—-oo

i) sup Xp_o|ank| <2 < o
Therefore it satisfies the given conditions of Kojima-Schur Theorem.

Example 2.5: Let C, = (c,, ) denotes the Cesaro matrix of order one where

1 if1<k<n
an =9in
0 otherwise

or



1 0 00
11 450
2 2
C, = :
1.1
n n
then it is obvious that C; is conservative and
i) lima,, =0, foreachk=0,1...... -
n—-oo
i) lim Y gan =1,
n—-oo
iii) sup2,°(°_0|an,k| <1< oo.
Example 2.6: Let A be a matrix
1 0 0 0 -]
0 200
A=|0 0 1 O
0 00 2

then A is not conservative matrix. Because ii) and iii) of Kojima-Schur Theoremdoes

not hold. Moreover, for the convergent sequence y = (L11,---) the A transform of y

Ay =

- O B O O
N O O O

o
2
1
2

- O O O -
- O O N O

IS not convergent.

Lemma 2.1: Let E be a conservative matrix and m be a positive integer then E™is

also conservative.



Proof: Let y = (yy) be a sequence converging to L. If m = 1 then
E™ =E,
and it is conservative. Now let us suppose that it is true for m = k, that is
E'y > L,
(L, may or may not be equal to L) then check itform =k + 1
E¥tly =E E*y — L,

since E is conservative and E*y — L.

Therefore vm € N, E™ is also conservative whenever E is conservative.

Lemma 2.2: Let A=(a, ) and E = (e, ) be two conservative matrices, then

i)  E + Ais also conservative.

il) EAand AEare conservative.

iii) AE where A is any scalar, is conservative.

Proof:

i) Let y = (y,) be a sequence converging to L. Then Ay = L, (L;may or may not be

equal to L) and Ey = L,. (L,may or may not be equal toL) then
(E+Ay=Ey+Ay > L +L,

so E + A is conservative.

ii) We have(EA)y = E(Ay) - L,, (because Ay is convergent sequence and E is

conservative).

Thus EA is conservative. Similarly, we can easily show that, EA is also conservative.



iii)By the definition, we have (AE)y = A(Ey).

Since E is conservative and y —L,, we get Ey —L,for some L,. Hence,

AEy — AL, which means that, AE is conservative.

Lemma 2.3: Let E,E,....., E, be n conservative matrices then E, + E, +....+ E is

also conservative.
Proof: Let y = (y,) be a sequence converging to L. Then assume that

E.y—> L, 1<i<n.Then,
(El +E2 + +E1‘L)y = E1y+E2y+ Ele d Ll +L2 + +LTl

Therefore, E, + E, +....+ E, is conservative.

Definition 2.5: An infinite matrix E is called regular if the convergence of the

sequence y = (yx) implies the convergence of E,, and it preserves the limit. i.e, if
lim y, =L
n—-oo

then

lim (Ey),, = L.
n—-oo

The space of all regular matrices will be denoted by M, .

An infinite matrix is regular if it satisfies the conditions of Silverman-Teoblitz

Theorem stated below.

10



Theorem 2.2: (Silverman, Teoplitz)

A matrix E = (e, ) is regular if and only if

)} 1111—r>§o enx = 0 Foreachk=0,1,2...

i) lim N eny = 1
n—-oo

i) Supp Ypeolenk| < H < oo for some H > 0.

Remark: Every regular matrix is conservative (ie. Mg, € M, ). But converse

inclusion does not hold.

Example 2.7: LetA = (a,,,) be an infinite matrix defined as

1 ifk=n
A=(ay,)= % ifk=n+1
0 otherwise
or equivalently,
11 0 0 ]
01 1 0
2
1
001 =000
A= : : :
0 0O 1 1 0
n

then A is a non-negative, regular matrix.

Example 2.8: The Cesaro matrix of order one is a regular matrix

11



1 0 O
11,
2 2
C, = Do
1 .1,
n n
then it is obvious that C; is conservative because,
i) lima,; =0, foreachk=0,1...... -
n—-oo
ii) llm Z;;O_O ank = 11
n—oo
iii) sup2,°(°_0|an,k| <1< oo.
Example 2.9: Let A be the matrix such that
1149
2 2
o L1y
2 2
1 1
A=|0 0 = = O
2 2
0 0 O 11 0
2 2

then A is also non-negative and regular matrix because

then it is obvious that C; is conservative and

) 7li_r){)loank = 0, foreachk =0, 1... .

i) lim 2o ane = 1,

i) sup Yol ani| < 1 < oo.

Lemma 2.4: Let E be a non-negative regular matrix and m be a positive integer

then E™is again regular.

12



Proof: Assume that y, is an arbitrary convergent sequence(say y, — L), we need to

showthat E"y — L.

Ifm = 1then E'y, =Ey, —> L.

Now suppose that it is true for m = k that is,

Ey, > L.

Take m =k + 1, and use the fact that E*y_ is a sequence converging to L, we

have,

E*y, =E(E*y,)—> L

which completes the proof.

Lemma 2.5: Let A=(a, ) and E = (e, ) be two regular matrices then,

i)

i)

%(E + A) is regular

EA is regular

AE is regular

Proof: Assume that y, is an arbitrary sequence converging to L then

%(E +A)(y,) = G Ejyn + (% Ajyn , since A and E are regular matrices

chil L, which completes

1 1 1 1

~E “Aly. ==(By. )+ =(E

(2 jyn+(2 )yn 5 (EYa)+ 5 (By,) -
the proof.

(EA)(y,) = E(Ay, ), since Ais regularand y, — L we have Ay, — L.

On the other hand, Eisregularand Ay, — L implies that(EA)(y,) > L.

13



iii)  (AE)(y,)=A(Ey, ), since Eisregularand y, — L we haveEy, — L
On the other hand, Aisregularand Ey, — L implies that

(AE)(Y,)—>L.

Lemma 2.6: Let E ,E,,...., E, be n regular matrices then
. 1 :
i) —(E,+E, +....+E,) isalso regular.
n

i) E,E,---E, isalso regular.
Proof: Let y = (y;) be a sequence converging to L.

) |2+ B 44 E)|y = 2By + Bpy + -+ Epy)

1
=—(L+L++1)

i) By the definition,
(E1E; . Ep)y = (E1E; ...) (Epy).
But since E,y is a sequence converging to Land all E,, 1<i<n, are

regular. Hence

(B Ep .. ) (Eny) — L.
In this part we shall focus on the necessary and sufficient conditions for matrices that

maps zero sequences to zero sequences. Of course by the zero sequences we mean the

sequence which converges to zero.

14



Definition 2.6: An infinite matrix E is called zero preserving matrix if for every
sequence y € ¢y, Ey € co. The set of all zero preserving matrices will be denoted by

M,.

The necessary and sufficient condition for a matrix E to be a zero preserving matrix

is given in the following theorem.

Theorem 2.3: (See [1] to [4]) A matrix E = (e, ;) preserves zero limits if and only if

1) 711_1)1010 enx =0, foreachk=0,1,2...

i) Sup, Xieolenk| < H < o, for some H > 0.

Remark: Every regular matrix E is zero preserving matrix.

Example 2.10: The following matrix

m

I
- O O o K
- O O N O
- O P O O
N O O O

is neither regular nor conservative but it zero preserving matrix. In fact let y = (y,)

be a zero sequence (i.e. y, — 0) then,

1 0 0O A A
0 200 Y, 2y,
Ey=(0 0 1 O Y= Y;
0 00 2 Y, 2y,

itis obviousthat Ey — 0.

15



Lemma2.7: Let A=(a,) and E =(e, ) be two elements of M, then,
i) (E+A)eM,,
ii) EAe M,
iii) AE e M,,
iv) AE € M, for any scalar 1.

Proof: Let y = (yy) be a sequence converging to 0 then
Q) We have, (E+ Ay =Ey+Ay=0+0=0.

Hence (E+A)eM,.

(i)  Wehave (EA)y = E(Ay)
Since Ay is a sequence converging to 0 and Ee M, so (EA)y — 0. Thus,

EAeM,.

(i)  We have (AE)y = A(Ey)

Since E'y is a sequence converging to 0 and Ae M, so (AE)y — 0.

(iv)  Wehave (AE)y = A(Ey) and A(Ey) — 0.

Lemma 2.8: Let E,,E,....., E, be elements of M, then,
i) E,+E,+..+E, eM,.
i) MLE + L,E, +..+ A,E, e M, where 4,,4,,..., 4, are scalars.

i)  EFE,..E, eM,

n

iv) E," eM,

16



Proof: Let y = (yy) be a sequence converging to zero then
Q) By the definition, (E,+E, +...+E,)y=Ey+E,y+...+E,y

=0+0+---+0=0
therefore

E,+E,+..+E, eM,.

(i) Using definition we have,
(LE +4LE, +...+ 4E)y
= H(EY) + L (EY) +.t A, (EY) = 4(0)+ 4,(0) +....+ 4, (0)
=0.

Thus L E +4L,E, +...+ 4, E, e M,.

(iii)  Wehave (EE,...E,)y=(EE,..)Ey
Since E,y — Oandforall E;,1<i<n,

Weget, EE,---E, eM,.
(iv) Ifn=1thenE;y = 0 because E; € M,.
Let us suppose that it is true for n = k. Then we have

E.*y =o.

Now checkitforn =k + 1

E,**'y = E,. E¥y — 0 since E; and E* belongs to M,.

17



Definition 2.7: An infinite matrix E is a multiplicative with multiplier if for every

sequence y € c,

lim (Ey), = A lim y,.
n—->0oo n—-oo

The space of all multiplicative matrices with multiplier A, will be denoted by M , .

Theorem 2.4: (See [1] to [4]) A matrix E = (e, ) is multiplicative with multiplier A
if and only if

1) lim e, , =0, Foreachk=0,1,2...
n—-oo

i) lim Y oenr =4,
n—-oo

i) Sup, Yireolenk| < H < o, for some H > 0.

Remark: It is obvious that M, =M .

Example 2.11: Let E be the matrix, E = (e, ) where

3 if n=Kk
(ex)=41/n if n=k+1
0 otherwise
Or equivalently,
31 0 0 0 O]
0 31/2 0 0 O
£ 00 3 1/3 0 O--
|00 0 3 1/4 0--

Since,

18



)] lim e, , =0, Foreachk=0, 1, 2...

n—-oo
i) lim Y genr =3,
n—-oo
i) Sup, Yieoleni| <4 < oo
E is a multiplicative matrix with the multiplier A=3. On the other hand let y = (y, )

be a convergent sequence converging to L, then

310 0 0 0 vi] [ 3%i+y,
0 3 1/2 0 0 O]y, 3y2+(y3/2)
00 3 13 0 0-[yy| | 3y;+(y./9
Ey = = =3 /n) — 3L.
Y 0 0 O 3 1/4 0---| : (Y) + (Yo /n) >
. ) ) oy, 3y, +(Y,./n)

Example 2.12:Let E be a matrix such that

o o N
o O
L =)
=

) lim e, , =0, Foreachk=0,1,2...
n—-oo

i) lim Y. genr =2,
n—oo

i) Sup, Yircoleni| <2 < .

E is a multiplicative matrix with the multiplier = 2 . Now takey = (y,) = (3—% :
n

which converges to 3, then

19



2 00 00 -] 2
01100 --|5/2
00110 ---|8/3
Ey: .=
00011 - :1
00001'3_H

In other words, Ey =| 6— 2n+1 —>6=2Qimy).
n(n+1) -

Lemma 2.9: Let E,,E,....., E, be elements of M, then,
. 1
i) ~(E,+E, +...+E )eM,.
n
i) E.E,eM,

i) E'"eM

Aﬂ

31/6
65/12

B 2n+1
n(n+1)

Proof: Consider a sequence y := (y;) Which is convergent to L then

0) (E.+E,+..+E)y=Ey+Ey+..... +E.y

AL+ AL+....+ AL =nALsince each E; for i = 1, ...n belongs to M.

1
This implies that, —(E, +E, +---+E ) eM ,.
n

(i)  Wehave
(E,E)y=E(EY).
Since
E,y — AL and E e M, so
E.E,eM ..

20




(i)  If n=1then
Elny = Ely
and

Ey— AL
since E, eM ,.
Now assume that it is true for n=Kk that is

EXy - A°L.
Now check it for k+1,
Ey=E(E"Y)
E,*y is a sequence converging to A¥L and E; € M; so
Ey - AL

hence El'y > A"Land E' € M., .

As a consequence of Kojima-Schur Theorem, Silverman-Teoblitz Theorem, Theorem

2.3 and Theorem 2.4, we can state the following lemma.

Lemma 2.10: For the spaces M ., M., M, and M, we have,
I) M reg M con?
ii) Mreg = Mll

iii) M, c M, forall A

Lemma2.11: If Ae M ,and B e M, then

i) ABeM,,

21



ii) BAe M,.
Proof: Let y = (yy) be a convergent sequence converging to L.
0) We have (AB)y = A(BYy)
Since By — 0and A is regular so

(AB)y > 0.

Hence ABeM,.

(i)  We have, (BA)y = B(Ay)
Ay — Las Ais regularand B e M, so
B(Ay) -0
and

BAeM,.

Lemma 2.12:If Ae M ,and B e M then
i) ABeM ,,
i) BAe M,
iii) AAeM , forall 1

iv) %BeMreg, forall A4.=0.

Proof: Consider a sequence y = (y,) converging to L then,
Q) (AB)y=A(By)and By > ALas Be M,
and since A is regular so

A(By) — AL.

Hence ABe M, .
22



(i) we have (BA)(y) =B(Ay)and Ay — Las A is regular

since Be M, so

B(Ay) - AL .

Hence BAe M, .

(iii)  let A be any scalar then

(AA)(y) = A(Ay) = AL since A is regular.

Hence forany 1, AAeM,.

: 1 1 1 .
(iv) (Z B)(y)—z(By) _Z(/“') since BeM,and A#0,we
B L

Hence = % B is regular.

Lemma 2.13: If Ae M and B € M, then
i) ABeM,,
ii) BAe M,.
Proof: Let y = (y;) be a sequence converging to 0 then,
Q) (AB)y=A(By)and By > A0=0as Be M, but
Ae M, implies that,
A(By) > 0.
Hence ABe M,.

23
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(i) (BA)y =B(Ay) and Ay — 0, = B(0) since A M,
=0

Hence BAe M,

24



Chapter 3

DENSITIES

The main purpose of this chapter is to introduce definitions and basic properties of
density functions. As it is well known, density functions play a vital role in the study
of new type of convergences such as statistical convergence and all types of A-
statistical convergences. In fact, A-statistical convergence is based on a density
function, which is obtained from a non-negative regular matrix. In other words,
different non-negative regular matrices give us different density functions. In this
chapter we will try to underline two points, firstly, what is a density functions and well
known properties of density functions and secondly, the relation between density

functions and non-negative regular matrices.

Definition 3.1: Let A, EC N, then the symmetric difference of these two sets is defined
as,

AAE = (A/E) U (E/A)

and it is denoted by A~E.

Note: A and E have a relation “~” if their symmetric difference is finite, i.e. A~E if

and only if A A E is finite.

Definition 3.2: (See [3] A function § = 2V — [0,1] will be called a lower asymptotic
density or just density if it satisfies these four axioms

25



dl ifA~Ethen6(A) = 6(E)
d2 ifANE= ¢then5(A)+6(E)<S(AVE)
d3 VAEG8A)+6E)<1+8(ANE)

d4  S(N) =1

Definition 3.3: (See [3] For any lower density & we can define upper density § related
with 6 by

5; =1—8(N/E)

where E € N.

Proposition 3.1: (See [3] Let & be a lower density and & be an upper density. For sets
A and E, where A, ES N, we have

)  ACE = §(4) < §(E)

i) ACE = §(A) < 8(E)

iii) Forall A,ESN,5(A)+6(E)=65(AVE)

iv)  8(0)=486(0)=0

V) S(N) =1

vi)  A~E=5(4) =5(E)

vii)  S6(E) < 5(E)

Proof :
(i)  Using A n (E/A) = @, then by using (d.2) and AS E, we have,
5(A) + 8(E/A) < 8(A U (E/A)) = 5(E)
Thus
5(A) < 8(E).

26



i) From the assumption we have
N/E <N/A
By using (i) we get
S(N/A) = §(N/E)
1-68(N/A) <1-8(N/E)
Then from the definition of the upper density we get

5(A) < 6(E).

iiiy  Using the definition of the upper density
5(A) =1-58(N/A)
and
5(E) =1-6(N/E)
Therefore,
5(A) +6(E)=2—-68(N/A) — §(N/E)
=2~ (8(N/A) + (6(N/E)

> 2 — (14 8(N/A) n (N/E)).

From §((N/A) n (N/E)) = §((N/(A U E)) we get

5(A)+6(E)=1—-6((N/(AUE)) =5(AUE)

iv) Take A = @ and E = N then from (d.2) we get
5(@)+6(N) < 8(NU®)=6(N)
which gives 6(@) = 0. The equation §(@) is a direct result of the definition of the

upper density and (d.4).
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V) From the definition of the upper density we get

S(N)=1-6(N/N)=1-6(0) = 1.

vi)  Suppose that A~E then we have
(N/A)A(N/E) = ((N/A)/(N/E) U ((N/E)/(N/A))
(E/A) U (A/E) = AAE
which implies that
5(N/A) = §(N/E)
Hence

5(4) = 6(E).

vii)  Consider two sets E and N/E and apply (d.2) on these sets we get,
S(N/JEY+6(E)<S6((N/JE)UE)=6(N) =1
So,

5(E) <1-6((N/E) = 6(E).

Definition 3.4: (See [3] A set of natural numbers E is said to have natural density

with respect to 9, if

S(E) = §(E).

Lemma 3.1: (See [3] Letas = {E c N: 5(E) exists} and af = {E S N:6(E)}
i) If E ~ NthenE € asand 6(E) =1
ii) If E ~ ¢pthen E € a®s5and §(E) = 0

Proof (i) Since E ~ Nthen by (d.1)

S(E)=06(N)=1
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using
§(E) < 6(E)
we have
S(E)=6(E) =1
which means that

E€asand 6(E) =1

(i)  E ~ ¢ From Proposition 1, (vi) we get

S(E)=6(¢)=0
and

S(E)<S(E)=0
Thus we have

S(E)=6(E)=0

S(E)=0s0E € a%.

Lemma 3.2: (See [3] Let K be a finite subset of N then the density of the set K is
zero. That is
5(K)=0.

Proof: Let K be a finite set then, K ~ ¢ and §(K) = 0.

The following example shows that, density function is not countably additive

Example 3.1: Take E; = {i} wherei =1,2,3, ...... , we have
E€a’scas,i=123,....andENE =0 (i+#))

but

U(iilEi = Nand 6(N) =1+ Zfi16(El) =0
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Example 3.2: Density function is often used for the function

6(E) = hm mfl (n)l

where, |E(n)| is the cardinality of E.

Enm)=En{123...n}

X 1s a sequence of 0’s and 1’s and it denotes the characteristic sequence of E.

Example 3.3: The upperdensity §(E) corresponding to §(E) is used for the function

S5(E) = hm supl (n)I

From definition 2.4. Any subset E of natural numbers is said to have density if
S(E) = 6(E)

It means that lim inf = hm sup which means that the limit exists. Hence the density

n—-oo

of the set E is defined as

S(E) = IE(n)I

n—)OO

Example 3.4 Let E be a finite subset of natural numbers then

5(E)_I|m| ( )|

n—oo

=0

since |E(n)| is finite number.

Example 3.5: Let E ={3e:e € N}and A = {3e + 1 : e € N}, then these sets have

density 1/3.

Lemma 3.3: (See [1] to [6], [10] to [15]) Let E = {A(n) : n € N} then
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6(E) = 11m L
o0 A(m)’

Example 3.6: Let E = {e € N : e = n?} then

6(E) = lim E@)
n-o N

n 1
= llm—z— lim—=0
n-on n-on

Hence the density of the sets like E = {e € N : e = n?} is zero.

Example 3.7: (See [6], [13], [14] and [19]) The Cesaro matrix of order one C; =

(Cpx) is a non-negative regular matrix.

1
- if 1<k<n

Cn,k =In
0 otherwise
then £% is the nh term of the sequence C; X hence

S(E) = lim (Cy. Xg).

The function 6 (E) satisfies the four axioms of the density i.e. (d.1) to (d.4).
The Ceséaro matrix of order one is a non-negative regular matrix and we obtained a

density function § (E) from it.

According to Kolk [9],one can extend this idea to any non-negative regular matrix.

For every non-negative regular matrix we obtain a different density function.

Definition 3.5: (See [3] and [4]) Let A be a non-negative regular matrix then &, is

defined by
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S4(E) = lim (A. Xg)n

6, satisfies (d.1) to (d.4) so it is a density function. And moreover

8(E) = lim sup(A. Xg)n.

Example 3.8: Let A be a non-negative regular matrix such that

10000
2oloo
2 2

Alo 20 2o
2 2

And let k = {2N} then the A-density of the set k is defined as

84(2N) = rlli_r){}o(szN)

. 1 1
= lim (E)n = E

n-oo

Example 3.9: Let B be a non-negative regular matrix such that

1000

Lol

2 2

B=lo o Y0l o
2 2

and let k = {2N + 1} then the A-density of the set k is defined as

42N +1) = Ai_f)Tgo(szNﬂ)

= lim (1), = 1.
n—-oo
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Definition 3.6: (See [21]) A lacunary sequence 6 = {k,.}, is an increasing integer

sequence such thatk, = 0, and h, = k, —k, —1 - o asr — oo, In this case I, =

(kr—1: kr]'

Example 3.10: Let 8 = {k,.} = 2" — 1 be an increasing sequence then,
k,=2"—1, ky=2°-1=1-1=0
and
hy=k —ky_1=Q2" -1 -2 1-1)=2"—-1-2""1+1
=2r —2r1=2r"1(2-1)=2""1
since h, — w0 asr — oo,
example satisfies the conditions of a lacunary sequence mentioned above in the
definition. Hence 8 = 2" — 1

is a lacunary sequence.

Example 3.11: Let 8 = {k,.} = r! — 1be an increasing sequence then
k,=r1—1, ko=0'—1 =0
and
hy =k, =k == =[r=D!'=1]=rl-1-(r-1D!+1
=rl—(r-D=C-D'.(r—-1
since h, — o asr — oo,

0=rl—-1

is a lacunary sequence.

Definition 3.7: (See [21]) Let 6 be a lacunary sequence, then
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1
Cg (T', k) = h_r
0 otherwise

if kel

is a non-negative regular matrix. Therefore

1
8¢, (K) lim (Co Xy ), = lim E —
T—00 T—00 h

kEKNI,

is a density function.

Example 3.12: Let 6 ={k,} ={2" —1} be a lacunary sequence, then the

characteristic function of the set K = {k e N :k =2" forsome r}is defined as

(1 if k=2
XK(")‘{O if K#2"

where I, = (k,_4, k] = (271 — 1,2" — 1]. We can define 8¢, (K)for K, as

ke@-12-1fikek]  |ke@-12 -1]:keK]
h = 2r 2t

r

S,(K) = lim

 kel2t-1 27 —1]:k =2 forsomer
:!Lrg‘{ ( 2" ot }‘

Definition 3.8: (See [21] and [22]) A A-sequence is a sequence (4,.) of the positive,
non-decreasing numbers, such that,

i) A > 0,851 5> 0, 1; =1

ii) A1 S A4+ 1

iy M. =[r—21 +1r]
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Example 3.13: LetA,. = r be a non-decreasing sequence then,
Q) Ay=1land A, » casr — oo,
@iy Appr=r+1=2.+1
Since A, = r satisfies the above mentioned conditions of a lambda sequence, it is

lambda sequence.

Example 3.14: Let A, = |[v/r]| be a non-decreasing sequence then,
Q) A > 0asSr = 00
A= |V1) =1

(i) Ay =|Vr+ 1|1 <|[Vr]| + 1 = A, + 1is a lambda sequence.

Definition 3.9: LetA,. be a lambda sequence then

1 .
A, = Z if reM,
0 otherwise

is a non-negative regular matrix. Therefore,

64, (K) = 1im (4220),

— i Z 1
= m 1.

is a density function.

Example 3.15: Let 4, = rbe a A —sequence and K = {k e K :k=m? forsome m}
then

1 if k=m?

X =
K {0 if k#m?
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and M, = [r — A, + 1,7] = [1,r].We can define §,(K)for K, as

fkeLr]:k e K] i ‘{ke[l,r]:k:mz, for some m}{

o, (K)=Ilim =lim
/1( ) r—o ﬂ“r r—o r
slim£=o.
r-wo
Therefore,
6,1(1() = 0.

Lemma 3.4: (See [3]) Let A be a non-negative regular matrix, K be a subset of N
such that 6, (K)exists then,for any submatrix 4, of 4,
Sa(K) = 6,,,(K).
Proof. Recall that, §,(K) is defined as
S4(K) = AEEIO(AXK),

where (AX) is a convergent sequence. Let the sequence (AX)is convergent to L.

Now assume that A4, is a submatrix of A then,
84, (K) = lim (4,X)
where (Aux K)is a subsequence of (AX)since every subsequence of a convergent
sequence is convergent and converges to the same limit we get,
lim (AX;) = L = lim (A, k).
Hence

54(K) = 8, (K.

Example 3.16 Let A be a non-negative regular matrix such that
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114
2 2
o 1 1o
2 2
A=lo o 2 1o
2 2
0 0O 11 0
2 2
and consider the following submatrix of A4,
o1 1o
2 2
A =0 0 O 11 0
“ 2 2

then for the subsetK = {2N}

84(2N) = 6,,(2N) = :

2
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Chapter 4

A-STATISTICAL CONVERGENCE

In the previous chapters, we have discussed the density functions and non-negative
regular matrices in detail. We studied the natural density, which plays an important
role for statistical convergence and it can be obtained from the Cesaro matrix of order
one. Moreover, we also studied that replacing Cesaro matrix, with A, which is a non-
negative regular matrix, then we get the idea of A-density. With the help of A-density,
we can define A-statistical convergence. A-statistical convergence is used by many

researchers in their studies (See [5] to [7], [15] to [20]).

Definition 4.1: (See [3]) Let A = (a,,) be a non-negative regular matrix. Then the
A-density
8,:2V - [0,1]

with

5 (K) = lim (AX;)y = lim > any

keK
where K © N and X is the characteristic function of the set K defined as

(0 ifk€K
Xie (k) _{1 ifkeK.

In this case we say that K has A-density, provided that limit exists.
Example 4.1: Let A be an infinite regular matrix
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O N+

O Nk NP

O NIk N o

N NP o o
N |-
o

and let K = {2N}. Then the A-density of the set K is defined as

84(2N) = rlli_{go(AXZN)'

0
1
It is obvious that, y,, =|0 |and,
1
- __0_ — -—
L 1
2 2 1 2
SRR
AXon = 1|=
§ 0 0 l 1 0. 0 1
2 2 2
C 1 :

therefore,

84(2N) = lim (AXzy) = 1/2

Example 4.2: Let A be an infinite regular matrix.
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ol
2 2
00+ oo
2 2
A=lo 000 folo
2 2

and let K = {2N + 1}. Then A-density of the set K is defined as

42N +1) = AEEO(AXZN+1)-

1
0
Xana =|1]and,
0
i 1 1
2929 o o
0 0 1 0 101 1
AXana = 2 % 0|=|1],
0 0 0O E 1 1
o 1
therefore,

842N + 1) = lim (AXyy41) = 1.
n-oo

Remark: If K is a finite subset of N, then for any non-negative, regular matrix A then

Proof: Assume that K = {kq, k5, ..... k,,} and
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64(K) = Tlll_r)goz An,, = Tlli_r)glo(ank1 +ny, +ot ankm).
kek

Since A is a non-negative and regular we have,

lim Any. = 0,fori=12,..,n.
n—->00 L

Thus,

8,(K) = 0.

Lemma 4.1: (See [3]) We have the following relation for an existing 6, (K),

6a(K) = 1= 84(N\K).
Definition 4.2: A sequence y, is said to be A-statistically convergentto L if V& >
0,theset K(¢) = {k € N: |y, — L| = €} has A-density zero. We write it as
Sty—limy, =1L

Stay—limy, =L < §,({k e N: |y, —L| = €}) = 0.

Example 4.3: Let A be the following non-negative regular matrix

1 0 O

2ol

2 2

1 1 1

-0 -0 -0
A=(a,)=|3 3 3

Tolololo

n n n n
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and the sequence y, is given as

_{1 if k€2N +1
Ye =0 if k € 2N

If £>1,then

54(K(©)) = 64({k € N: [y — LI = £}) = §,(9) = 0.

On the other hand, if 0< g <1, then
Sa(K(e)) = 6,({k € N: |y, — L| = €})

=06,2N) = lim > a,, =0.

k€E2N

Therefore

Sty — limy, = 1.

Lemma 4.2: Every convergent sequence is A-statistically convergent.

Proof: Assume that y;, converges to L in the ordinary sense, then vV € > 0
Sa(Ke) =84({k €EN: |y, — Ll =2€}) =0

since K, is finite for all e > 0.

Hence y, is also A-statistically convergent to L.

Converse implication of the above lemma does not hold. Moreover, an A-statistically
convergent sequence need not be bounded. These case will be illustrated in the

following examples.
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Example 4.4: Consider the following sequence

_{1 if k€2N +1
Ve = 1k if k € 2N

and the matrix

1 0O

ol

2 2

1 1 1

-0 -0 =0
A=(a,)=|3 3 3

Tolololo

n n n n

Following the same lines as we used in the above example, we see that
Sty —limy, =1,

but the sequence y,, is not bounded.

Example 4.5: Consider the following sequence

_{1 if k€ 2N +1
Yk =10 if k € 2N

and the matrix,

114594 0.
2 2
0 % % 0 0--
A:(ank):
oo X 1.
2 2

Forall e>1and L=1orL =0,

54(K () = 84({k € N: |y, — L| = &}) = 8,(8) = 0.
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On the other hand, if 0<¢<1,and L =1 , then
Sa(K(e)) = 84({k € N: |y, — L| = €})

< 6§,(2N) = lim z An,, = 1/2.
="

If 0<g<1,and L=0, then
54(K(e)) = 8,({k € N: |y, — L] = &})

< 6,(2N +1) = lim z An, = 1/2.
" keamy

Therefore
Sty — lim yy

does not exists.

Theorem 4.1: (See [1]) Let A be a non-negative, infinite, regular matrix and let y,
and z;, be two sequences, if
Sta = Jlg v =1
and
Sta= Imzc=Q
then
. Sty—=lim(yy+2z,)=L+Q
ii. Sty —lim(Ay,) = AL

ii. Sty —lim(ygzx) = LQ
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iv. Sty — lim(¥ = %, provided that Q # 0 and V k, z, # 0.
k
Proof:

(1) By the assumption
Ve>0, §,({k:lyx — LI =€}) =0
and
Sa({k:1z) — QI z€}) =0
we need to show that

Sa(tk: |k +2) = (L + Q)| 2 €}) = 0.

We know that,

{kilk+zi) —(L+ Q)| =z e} {k: lye — L| Zg}u {k; |z, — 0| 2;}

and

oalk: |0+ 22 = (L + Q)1 2 &} < 8a({les lyie = L1 = 5} + 8, ({12 — 01 2 2}
<0+0=0.

So StA - llm(yk + Zk) =L+ Q

(ii) The case A =0 is obvious. Let us assume that A = 0, by the assumption
Ve>0, §,({k: |y, — Ll = ¢€}) =0.
We need to show that

Sa({k: | Ay, — AL| = €}) = 0.

Now we have
|Ayx — AL| = [A(yx — L)
< |Allyx — L]
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that is

|Ay — AL| < [Ally, — L.

Now

Sa({k: |Ayx — AL[}Y) < A8, ({k: |yx — LI}) =0
hence

sty — limAy, = AL.

i) Sty — Ilg{)lo vx = L implies that there exists a subset B of N such that

S4(B)=1
and Ill_)ngo ¥k = L on B in the ordinary sense. Similarly, there exists a subset D of N
such that

64 (D) =1

and Ilim Z, = Q on D in the ordinary sense.

Now

8,(D)=6,(B)=1
implies that
64(BND)=1

and for (B n D) the sequence (y,z;) converges to LQ in the ordinary sense.

Hence

Sty —lim(yxz,) = LQ

iv) For

StA— lim Vi =1L

k—oo
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there exists a subset M of N such that

Su(M) =1
and on the set M the sequence y, converges to L in the ordinary sense.
Similarly, for

StA— lim Zy = Q

k—o0

there exists P, subset of N such that
5.(P) =1
and on the set P the sequence z;converges to Q in the ordinary sense.

But,

S4(M) =6,(P) =1
implies that
s,(MNP) =1,
and on (M n P) the sequence (’Z’—:) converges to % in the ordinary sense.

Hence

Sty — lim(2) = %
k

Lemma 4.3: (See [3]) Let A be a non-negative, infinite, regular matrix and let y,, be

asequences, if St, — Ilim yx = L, then for any sequence of positive integers u = p(n)

Sty ~limy, =L,
where A(w)is a submatrix of A.
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Proof: By the definition of A-statistical convergence if
StA - Illm Yk = L
then

Sal{k: |y — LIz =0
where A-density is defined for any set K as

S4(K) = Ai_r){)lo(AxK)n =0

Now (AXg),is a sequence which is convergent to zero in the ordinary sense.

As we know that any subsequence of a convergent sequence is also convergent,
hence (A#XK)nis a convergent subsequence of (AXg),,. So
84, (K) = 84(K) = lim (AﬂxK)n =0
and

Sta, — Ili_r)goyk = L.
Definition 4.3: (See [5], [6], [7] and [15]) A sequence y, is said to be A-statistically
divergent to —co and denoted by

St, _lim Y, =—0,

if forany P € R

S({k € N:y, <P}) =1

Example 4.6: Consider the following matrix
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1 0O

ol

2 2

1 1 1

-0 -0 =20
A=(a,)=|3 3 3

Tolololo

n n n n

and the sequence

_{—k if k€2N+1
Yk =13 if k € 2N.

Then, for any P € R,the set
S,{k eN:y, <P}) =6,2N+1)=1.
Therefore,

St, —Eim Y, =—o0.

Definition 4.4: (See [5], [6], [7] and [15]) A sequence y, is said to be A-statistically
divergent to coand denoted by

St, — l!im Y =0,
if forany Q € R

Sa(tk EN:y > Q) =1

Example 4.7: Consider the following matrix

0o o0otoooo o
2 2
0 ololoo o
A= 3 3 3
030101030...
4 4 4 4
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and the sequence

:{ k?  k €2N
Yk=13,  ke2N+1.

Then, for any Q € R, the set

Sa({k € N:y, > Q}) = 8,(2N) = 1.

Therefore,

St, —llim Y, = .

Definition 4.5: (See [5] to [7], [15] to [20]) A sequence y := (y;) is said to be A-
statistically bounded if 3 a positive constant Q

such that

Sa({k: lyr|l > Q1) = 0.

Example 4.8: Consider a sequence

_ (K k = m3 for somem
y =0 = '
0 otherwise

And let A be the Cesaro matrix of order one then for any positive number Q we have,
|k € [1,m?): yi| = Q3
Sa{k: lyil = Q) = nlll_r)réo k
m

m3
< lim—=0
m-ooMm

which implies that y,, is A-statistically bounded.
Definition 4.6: (See [5] to [7], [15] to [20]) A sequence y := (y;) is said to be A-

statistical monotone increasing if 3 Q < Nwhich has A-density one. i.e.

5,(Q) =1

such that the sequence y = y; is monotone increasing on Q in the ordinary sense.

Example 4.9: Let y := (yy) be a sequence such that
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k ke2N+1
0 otherwise

y =) =={

Now for any non-negative regular matrix

Iolo
2 2
0 0 1 0 1 0
2 2
A:(ank)z
the set K = 2N + 1 has a-density one. i.e.

Hence on K = 2N + 1 the above sequence y := (y,) = (1,3,5, ...) is monotone

increasing in the ordinary sense.

Definition 4.7: (See [5] to [7], [15] to [20]) A sequence y = (yy) is said to be A-
statistical monotone decreasing, if 3 Q S Nwhich has A-density one. i.e.

5.(Q) =1

such that the sequence y = y; is monotone decreasing on Q in the ordinary sense.

Example 4.10: Let y := (y,) be a sequence such that

—k k € 2N
1 otherwise

y = ) =={

Now for the non-negative regular matrix
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0 1 0 1 0
2 2
0 0O 1 0 1 0
2 2
A=(a,)=
the set K = 2N has A-density one. i.e.

hence on the set K = 2N the sequence y = (yi) = (—2,—4, —6, ...) iS monotone

decreasing in the ordinary sense.

Definition 4.8: (See [5] to [7], [15] to [20]) If a sequence y := y, is A-statistically
monotone increasing or A-statistically monotone decreasing, then the sequence y, is

called a A-statistically monotone sequence.

Proposition 4.1: (See [15] to [20]) Let y = y; be a sequence which is a monotone
sequence in the ordinary sense then it is also A-statistical monotone.

Proof: Suppose y = (yx) be a monotone increasing sequence i.e. V k € N

Y < Vi1

Now choose Q = N. As the A-density of Nis1.i.e. §,(N) = 1, we see thaty = (y)

is A-statistical monotone increasing.

The above idea can be used to show that if y := (y,) is a monotone decreasing

sequence in the ordinary sense then it is A-statistical monotone decreasing.

Example 4.11: Consider a sequence y := y, such that

52



. — a2
yk={1 ifk=n" 1 -12..
k  otherwise

and let A be the Cesaro matrix of order one i.e. A = C, then y := y, is A-statistical

monotone increasing.

Remark: The converse of the above proposition is not true. For instance, in the above
example, the sequence y := (y,) IS not monotone increasing but it is A-statistical

monotone.

Theorem 4.2: (See [5] to [7], [15] to [20]) Lety = (y)) be a sequence which is A-
statistical monotone increasing or A-statistical monotone decreasing then the sets,

{(n€N:yp11 < yn}

or

{(nE€N:yp11 > Yn}

has A-density zero.

Proof: Let us suppose that y = (y;) is A- statistical monotone increasing, which
implies that 3 Q < N with §,(Q) = 1 such that (y,) is monotone increasing on Q
which means

Yk < Yk+1,Vk €Q
hence
mMeEN:y 1<y} cN-Q
Taking A-density of the above sets, we get this inequality
San EN:yns1 <yn}) S G(N—-H) =0

which satisfies the theorem.
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Remark: In general the converse of the above theorem is not true.

Theorem 4.3: (See [5] to [7], [15] to [20]) let y = (y,) be a bounded and A-

statistical monotone sequence, then y = (y,) is A-statistically convergent.

Proof: By the definition there exists a subset Q of N with density one such that y =
(yx) s monotone increasing on Q. Let g, be the sequence of elements of Q@ and let
us suppose that g,, is a monotone increasing sequence of natural numbers. Then for the
sequence y = (yx), (yqn) is the monotone increasing subsequence. Since y :=
(yi) is bounded so (yqn) is also bounded. Hence (yqn) converges to sup yg_. That
means vV ¢ > 0 there exists a positive number
qno = qn.(€) EN
such that
Yq, — SUP Yq, <e¢
valid for all g,, > g,
Since ordinary sequence implies A-statistical convergence. So
Yq, — SUup yqn(A — st)
We see that
Q(n) = {q S n:|yg — sup y,| = €}
={q<nq#q, and |yq —supyq| > ¢}
U {qg <niq=q, and |y, — sup y,| = €}
=Q'(mu Q*(n)
Since Q*(n) isasubsetof N —Qandy, — L (4—st),sothes (@'(n)) = 0and

(Qz(n)) =0.Hence y, — L (A — st).
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Remark: Generally the boundedness of A-statistical monotone sequence is not
necessary for the A-statistical convergence, it is sufficient though. For example,

consider the Cesaro matrix of order 1 and a sequence y = (yy) as

if k =n?

n
~ 11
Yk = ifk#n

where k € N.

It is obvious that y = (y,) is unbounded, but it is statistically monotone decreasing

and statistically convergent to zero.

Theorem 4.4: (See [5] to [7], [15] to [20]) Let y = (yx) be an A-statistical
monotone sequence then y = (yy) is A-statistical convergent if and only if it is A-

statistically bounded.

Proof : Let y = (y;) be an A-statistical monotone sequence which is A-statistically

bounded then we need to show that it is A-statistically convergent.

Since y = (yy) is A-statistically montone sequence there exists a subset K; of N such

that
Sa(K1) =1
and on the set K; the sequence y = (yy) is monotone increasing in the ordinary sense.
Now there exists a subset K, of N such that
04(K;) =1
and on K, the sequence y = (yy) is bounded in the ordinary sense.

Since A-densities of K;and K, are both one,
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SA(Kl N KZ ) = 1.

Hence on (K; N K,) the sequence y = (yy) is both monotone increasing and bounded
in the ordinary sense. This implies that on (K; N K,) the sequence y = (yi) is
convergent to any number L in the ordinary sense. Hence y = (y;) is A-statistically

convergent to L.
The converse of the theorem can be proved by using similar methods used above.

Definition 4.9: (See [1], [4] and [16]) A sequence y = (y,) is statistically convergent

to L (any number) if for all € > 0 the natural density of the set
keo={k € N:|y, —L| = &}

IS zero. That is

({k: lyx =Ll z€}) = 0.

Example 4.12: Let y, be a sequence defined as

_{1 if k=n?
Yk =10 if k #n?

then
St—llim Vi =0,
because,

SUk: |y — L = €}) = 8({k?:k € N}) = 0.

Recall that in Definition 3.8, we have defined a density function &4 ,, on the basis of
which we will define A-statistical convergence.
Definition4.10: (See [22]) A sequence y := y, is A-statistically convergent to L, if vV

e>0
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1
lim —{|k € M,: |y, — L| = €|} =0.
T—00 r

whereM, =[r—4, +1r].
This is denoted by

St; —limy, =1L
We have studied previously in the chapter that if we choose A to be the Cesaro matrix
of order one, then A-density is reduced to the natural density and the A-statistical
convergence is reduced to the statistical convergence.

Recall the density function 6., on the basis of this density function, we can define a

co!
special kind of convergence called lacunary statistical convergence.
Definition4.9: (See [21]) A sequence y, is said to be Lacunary statistical convergent

toL,ifforalle >0
lim hi l{k € L.: |y, — L| = €}| = 0.
r—oo iy

where I, =(k, .k, ].
This is denoted by

Stg —limy, = L.
Similarly if A = Ag, where 6 is any lacunary sequence then we can define §,, = &g
and then A-statistical convergence reduces to lacunary statistical convergence.
Remark 4.5: The ordinary convergence imply lacunary statistical convergence, i.e
limy = L = Stg — limy = L. Moreover if A = A,, then &4, = &, and A-statistical

convergence is reduced to A-statistical convergence.

Remark: The ordinary convergence imply A-statistical convergence, i.e
limy =L = St; —limy = L. If 1, = r, then A-statistical convergence is equivalent

to statistical convergence.
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Since A-statistical convergence includes, statistical convergence, A-statistical
convergence and lacunary statistical convergence, hence we can say that these new

type of convergences are special cases of A-statistical convergence.
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