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ABSTRACT 

As a context of biometrics, significant advances have been made in face recognition 

during the recent decades. Face recognition is one of the most successful applications 

of image analysis. The accuracy of automated face recognition is greatly affected by 

varying in lighting between probe and train images. Difference in lighting condition 

is one of the difficulties in automated face recognition systems. Histogram 

equalization technique is widely used to diminish the desired effect of different 

illumination condition between probe and train images by normalizing variation in 

illumination. Experiments show that normalizing images that has good lighting 

condition could lead to an increase in recognition error. 

Wavelet transform, that is well-known as a multiresolution method, is used in 

features extracting phase. The multiresolution property of wavelet transform is used 

in extracting feature leading us to have facial feature descriptors at different scales 

and frequencies. This thesis presents image quality based technique which is 

measured in terms of luminance to overcome the disadvantage of varying lighting 

condition to increase the accuracy of face recognition method. 10-fold cross variation 

is used to investigate the effect of data selection on classification algorithm. At the 

end, results are compared to investigate the best method for automated face 

recognition when illumination variation exists.  

Keywords: Biometrics, illumination, Wavelets transform (WT), face recognition, 

feature extraction 
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ÖZ 

Son yıllarda, bir biyometri alanı olarak yüz tanıma konusunda kayda değer 

gelişmeler meydana gelmiştir. Yüz tanıma, görüntü işlemenin en başarılı 

uygulamalarından biridir. Otomatikleştirilmiş yüz tanımanın hassasiyeti, araştırma ile 

eğitme görüntüleri arasında ışıklandırma değişimlerinden büyük oranda 

etkilenmektedir. Işıklandırma koşullarındaki farklılıklar otomatikleştirilmiş yüz 

tanıma sistemlerinin zorluklarından biridir. Histogram eşitleme tekniği, aydınlatma 

farklılıkları normalleştirilerek araştırma ile eğitim görüntüleri arasındaki ışıklandırma 

farklılıklarının istenmeyen etkilerinin azaltılması için geniş çaplı bir kullanıma 

sahiptir. Yapılan deneyler iyi ışıklandırma koşullarına sahip olan normalleştirme 

görüntülerinin tanıma hatasının yükselmesine neden olabileceklerini göstermektedir. 

Çokçözünürlüklü bir yöntem olarak bilinmekte olan Dalgacık Dönüşümü, özellik 

ayrıştırma aşamasında kullanılmaktadır. Özellik ayrıştırma aşamasında kullanılan 

dalgacık dönüşümünün çokçözünürlüklü olma özelliği, farklı ölçek ve aralıklarda yüz 

özellik tanımlayıcılarına sahip olmamıza olanak sağlamaktadır. Bu tez çalışması, yüz 

tanıma yönteminin hassasiyetinin artırılması amacıyla değişken ışıklandırma 

koşullarından kaynaklanan dezavantajları ortadan kaldırmak üzere parlaklık 

cinsinden ölçülen görüntü kalitesine dayalı bir teknik sunmaktadır. Veri seçiminin 

sınıflandırma algoritması üzerindeki etkisinin araştırılması için 10-katlı çapraz 

duğrulama kullanılmıştır. Son olarak, ışıklandırmada değişiklikler bulunduğunda 

otomatikleştirilmiş yüz tanıma için en iyi yöntemin seçilmesi amacıyla sonuçlar 

karşılaştırılmıştır.  
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Chapter 1 

1. INTRODUCTION 

1.1 Introduction 

Biometric recognition is referred to the biometric details of human body. These 

identification details of a person are based on his/her anatomical or behavioral 

characteristics features. There are many research activities that give an in-depth 

analysis in biometrics features like face, DNA, signature, fingerprint, handwriting 

geometry, voice print and eye verification. Among all these features, face recognition 

is one of the most common methods that used in the identification processes. 

Because of non-intrusive nature of image acquisition, face recognition is a very 

accurate identification and recognition technique. Developing face recognition 

system has received a considerable volume of consideration by the machine learning 

and computer vision researchers. 

Generally, in facial recognition we must do several steps as follows. Firstly, we 

should do some pre-processing on images to make them ready for further phases. In 

this step we can resize the images, change the image’s format, background matching 

and so on. Second phase is extracting the image’s features and the final phase is 

recognition work. 

Scientists attempted to design a system which is robust to against illumination 

variation, facial expressions, facial pose, and also noise. Continued investigation in 
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this area is derived by the demand for universal, efficient and trustworthy person 

identification methods in order to make the recognition process more convenient and 

reliable. 

Changing in lighting condition has been one of the challenges in machine vision 

systems. Obtained face biometric samples that extracted from an image can lead to a 

reliable source of data if this information is robust against different lighting condition 

especially when the background is uncontrolled. Since vision cameras are commonly 

used in streets, airports, shops and many private and public places, the face 

recognition system plays an important role in centralized control rooms, security 

systems, crime and international terrorism. 

Using information in images that were taken from a distance has a significant effect 

for person identification issues. Information in an image can be used as a tool for 

person identification by extracting essential and basic details. Wavelets transform 

(WT) as a multiresolution method is a great tool for excerpting and choosing these 

materials form selected images. In addition using wavelet has a great advantage in 

data size reduction. Data size reduction property of WT is very crucial for handheld 

and mobile devices which have limitation in data storage. Moreover, dealing with 

less data leads us to a faster process. After extracting facial details, data are 

normalized by using Z-score normalization before going to the next levels. For 

classification I go through two different and distinct methods. First, I followed the 

work that is done by Harin Sellahewa and Sabah A. Jassim in [1] and then, for 

extended experimental results, I used 10-fold cross validation to choose train and 

probe images of Extended Yale B database [2] in a different way for classifier. At the 
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end of the work I offered fusion method and compared methods together and 

discussed about the results. 

1.2  Aim of this Thesis 

Besides the pose problem, illumination problem makes face recognition more 

complicated. Many researchers have been working in face recognition area to 

introduce an unaffected method in the presence of varying lighting condition in 

image processing and videos processing field. Meanwhile, the proposed method must 

be powerful and need low-cost computing system. 

The work presented in this thesis targets discrete wavelet transform ability in feature 

extraction and usage of a quality based face recognition system to reach a better 

accuracy in face recognition. 

The discrete wavelets transform and face recognition illumination problem is 

extensively studied and defined. Although many efforts have been spent on this 

problem, still it is not completely solved. I am interested in discrete wavelet 

transform applications and this face recognition problem because it is quite 

challenging to teach a machine to do efficient and reliable face recognition. 

1.3  Thesis Organization 

This study is organized into six chapters; the first chapter is an introduction to the 

thesis and review. Chapter 2 gives a quick literature survey of face recognition that 

has been done in this field. Chapter 3 gives some preliminaries related to the 

wavelets and explain how features are extracted with WT and used for image 

processing. 
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Proposed approaches in face recognition are discussed in Chapter 4. Thesis followed 

with experimental results of the work that have done in Chapter 5. Finally, 

conclusions and further work ideas are drawn in Chapter 6.  
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Chapter 2 

2. FACE RECOGNITION 

2.1 Introduction 

Facial recognition problem, as an important part of biometric recognition, has been 

studied extensively since 1960 and continued up to now by early works that done by 

Kelly [3], Bledsoe[4], and Kanade [5]. In the first stages, from1960’s till 1995, 

primary approaches for face recognition can be found in [6] and [7]. Generally, face 

recognition’s researches, can be grouped into two distinct classes, first Feature-Based 

approaches and second Appearance-Based which is also known as holistic approach. 

Moreover, there is one more class which is achieved by combining other two 

methods together; hence named Hybrid method. Facial features like eyes, brows, 

mouth, nose, etc. and their geometric relationships are fundamental features in 

Feature-Based approaches. Edge detection and signature detections are some 

example of earlier works of biometric recognition which just involved basic methods 

of very simple image processing techniques. For instance, in feature base matching 

methods that proposed in [3], recognition is done by calculating the size (width) of 

the head and distance between face elements such as the distances between eyes and 

from eyes to the mouth. Different features investigated in [5] rely on distances and 

also angles between chin, nostrils, mouth extrema and eyes. References [3] and [5] 

rely on finding the exact locations of facial features in a face, unlike [8] which used 

Hidden Markov Model (HMM) methods. In this method, bands of pixels that cover 

the facial features (forehead, nose, mouth, etc.) are utilized. Studies are illustrating 
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that the feature based approaches are most robust against rotation, pose and scale and 

illumination variation. Since feature base methods use the facial features, they are 

extremely relying on the accuracy of facial feature selection procedure. 

In Appearance-based approach, instead of analyzing face detail, just some features of 

the face are extracted as facial features. Two of the most commonly used appearance-

based approaches - which are based on statistical methods - are Principal Component 

Analysis (PCA) [9-10] and Linear Discriminant Analysis (LDA). A valuable 

comparative analysis of PCA and LDA can be found in [11]. Computation of these 

statistical approaches depends on the dimension of the original data and the number 

of images that choose as train samples. Therefore, by growing the size of face 

database, a larger memory demand to handle the system data and also the process 

takes significantly longer time to be done for train. Disadvantages of appearance-

based approaches are generally two main problems: firstly, the features can be 

extracted from the background of face. Secondly, the accuracy can be significantly 

affected by deviating from the average face of a gallery set because of lighting, 

orientation and scale [11]. 

To pass over the illumination variation problem, the effectiveness of visible and 

infra-red (IR) imagery for recognizing faces was compared in [12]. The performance 

for IR and visible imagery was found to be similar. Another approach based on 

Discrete Wavelet Transform (DWT) was successfully used in [13-15]. Many types of 

systems have been successfully applied to the task of face recognition, but they all 

have some advantages and disadvantages. Appropriate schemes should be chosen 

starting from the specific requirements of a given task. 
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Beside alterations in lighting situations, facial expressions, poor camera instrument 

quality and pose cause identification faults. There is a propensity to offer “standard 

reference” images with respect to these variations, increasing to extents of image 

feature [17-18]. Statistical techniques such as PCA need train phase. However, DWT 

as a multiresolution technique, used as a tool without train phase, to extract a 

multiresolution feature representation of a given face image [19-20]. Sellahewa and 

Jassim [21-22] have shown that the low-frequency approximation subbands of 

wavelet transform is an appropriate face descriptor for recognition when illumination 

is controlled; however it is greatly pretentious by varying illumination. Contrariwise, 

other subbands (which obtained by high-pass filters and represent horizontal features 

and/or vertical features) are robust in contradiction of varying illumination 

conditions. However, they are influenced by pose and facial expressions. 

When we have a gallery or a data set of facial images of people and we want to 

recognize a given image as input image by using facial recognition algorithm, face 

recognition should be done. The recognition algorithm matches any of images in the 

input set to a person from the gallery. Face recognition also known as facial 

recognition. The most commonly use of facial recognition is in video surveillance to 

match the identity of people in surveillance footage to an existing database. (See 

Table 2.1) 

Face recognition is a part of larger area called object recognition. As it discussed 

before, face recognition is programing a machine or a computer, based on 

composition mathematic relations that formed by a computer language in order to get 

the machine the ability of recognizing face of different people. In this issue, the 
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brightness level of the image, the direction of the face and generally, variation in the 

angle between camera, subject (person) and light source is one of the reasons of 

failure in face recognition systems. This problem is marked especially when the 

background in uncontrolled. Table 2.1 shows some of the applications of face 

recognition briefly. 

In automated systems, identifying of a face in a photo or a film that is taken with a 

camera is a challenging problem. For humans, this task has been done pretty well 

without any affords but, for programing a machine, it is quite different. In machine 

vision at first, we must detect the location of the face in a photo then recognize the 

subject that detected. Face detection and face recognition is widely used in many 

fields from centralized control room to handhelds and mobile phones. Face 

recognition is highly affected by pose and illumination. Figure 2.1 shows some steps 

of face detection and face recognition tersely. 

 
Figure 2.1: Diagram of face detection and recognition in general 

 

In normal vision cameras (ordinary digital cameras) the quality of images are highly 

affected by using the techniques to solve the lighting condition problem. That’s why 

Infrared (IR) option added to many cameras later and various techniques applied to 

eliminate this weakness. Regardless of pose, it is obviously that recognition of an 

image with an appropriate lighting quality has less error while face recognition of 

Gallery 

images 
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dark images is pretty hard and challenging. Therefore, the accuracy of an automated 

face recognition system is depending on varying illumination in captured images. 

Solving this problem is the core of subject of various researches in recent studies.  

This thesis focuses to solve this obstacle as discussed before. 

Many techniques are used to increase the accuracy of the computer vision’s results 

by decreasing the negative affect of varying lighting condition between enrollment 

and test images during the recognition progress. 

Table 2.1: Application of face recognition in some areas [23] 

 

Area Applications 

Access Control Facility Access, Vehicular Access 

Biometrics 

Drivers’ Licenses, Entitled Programs, 

Immigration, National ID, Passports, 

Voter Registration 

Information Security 

Computer Logon 

Application Security, Database Security, 

File Encryption 

Intranet Security, Internet Access, 

Medical Records 

Secure Trading Terminals 

Law Enforcement and 

Surveillance 

Advanced Video Surveillance, CCTV 

Control 
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Chapter 3 

3. DISCRETE WAVELET TRANSFORM 

3.1 Overview 

In practice the majority of the signals are TIME-DOMAIN signals. It means that we 

can do the measuring as a function of time. By plotting time-domain signals, a time-

amplitude representation of the signal is achieved. In other words, the plot of these 

signals has axes of time (independent variable) and a dependent variable that usually 

called amplitude axes. Related to the applications, this representation is not always 

suitable representation of the signal for most cases. Usually, majority of 

distinguished information is concealed in the frequency content of the signal. The 

information in the frequency spectrum of a signal tells what frequencies exist in our 

signal. [18] 

If changes in a variable are fast, we can say that it is a high frequency variable, 

whereas if the changes do not occur rapidly, i.e., it changes smoothly, we call that 

low frequency variable. The FT of a signal in time domain gives us the frequency-

amplitude representation of that signal. The plot of FT of a signal represent us how 

much of each frequency exists in our signal. In Figure 3.1 you can see a time-domain 

signal and its frequency spectrum. 
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Figure 3.1: On the top a plot of the signal and on the bottom the frequency spectrum 

of an arbitrary Sinusoid function [25] 

 

3.2 Necessity of Obtaining the Frequency Information 

Most of the time information that obtained from the time-domain representation is 

not adequate to do further processing. Thus, by frequency domain representation we 

can see those hidden information. 

Fourier transform just gives us frequency components of the signal, nothing more. It 

means that there is no access to the time information in the Fourier transformed 

signal. On the other hand, there is no frequency information obtainable in the time-

domain representation of a signal. Frequency information is not required when the 

signal is so-called stationary. 
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If there are no changes in frequency content of a signal, this signal is called 

stationary. In other words, when we are working with stationary signals we do not 

see any frequency changes when the time changes. In this case, it is not necessary to 

have the detail of the   frequency component’s exact time. 

The time localization of the spectral components of a signal is expressed by the time-

frequency representation of the signal. To reach this aim we can use Short Time 

Fourier Transform (STFT) and the WT was developed as an alternative to the STFT. 

Briefly, we pass the time-domain signal from individual distinct high pass and low 

pass filters. Which the output of filters, both high frequency and low frequency are 

fragments of the signal. This procedure is imitated, every time some portion of the 

signal corresponding to some frequencies being removed from the signal. In other 

word, it split the signal into two main parts, low frequency and high frequency. This 

operation is called decomposition. 

Although with information given in FT, we are not able to find out what spectral 

component is exists at any exact time, we can investigate what spectral components 

exist at any given interval of time. It makes a new problem that called resolution. To 

solve difficulty, scientists have transferred to Wavelet transform (WT). STFT gives 

an unchanged resolution at all times, while WT offer a range of resolutions as 

follows: lower frequencies which are better determined in frequency, and higher 

frequencies that are well resolved in time. In the other word, a clear high frequency 

component can be located in time with less relative error in compare with a low 

frequency component. In contrast, low frequency components are able to locate 



 

13 

 

better in frequency in compare with a high frequency component. Wavelet Transform 

(WT) is appropriate to analyze non-stationary signals. 

3.3 Multiresolution Analysis 

The Wavelet transform of a signal is obtained by passing the time-domain signal 

through various high-passes and low-passes filters repeatedly.  It means that we can 

analyze any signal at different frequency with different resolution. This 

representation of signal is called Multiresolution Analysis (MRA).  Before going 

through wavelet transform details, we need to describe the main idea of wavelet 

analysis theory. 

3.4 Mathematical Backgrounds 

3.4.1 Vector Space 

A vector space is defined over a set. This set can be real or complex denoted by ℝ 

and ℂ respectively. By definition, any linear combination of elements in a vector 

space must be another element of it. 

3.4.2 Basis 

Now consider linear expansions of signals (or functions). Let consider 𝑆 be a space 

that is finite-dimension (for instance ℝ𝑛or ℂ𝑛 ) or infinite-dimension (for instance  

ℒ2(ℛ) ) and 𝑥 is a subspace of  𝑆.  Based on linear theorem, we will be able to find a 

set like {𝜑𝑘}𝑘∈ℤ to write 𝑥 as a summation of linear combination. Since 𝑥 ∈ 𝑆,  𝑥 can 

be expanded by equation:  

 𝑥 =∑𝛼𝑘𝜑𝑘
𝑘

 (3.1) 
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where {𝜑𝑘} is spanning the complete space S. In signal processing topic, {�̃�𝑘}𝑘∈ℤ 

namely dual basis is defined in order to compute expansion coefficients represent in 

equation (3.1): 

𝛼𝑘 =∑�̃�𝑘[𝑛] 𝑥[𝑛]

𝑛

 (3.2) 

There is some different type of dual basis defined such as orthogonal, biorthogonal 

and over complete (frame). In Figure 3.2 some possible sets of vectors for the 

expansion of the plan (ℝ2) is shown. 

 
Figure 3.2: the interpretation of basis and duality in ℝ2 (a, b) and ℝ3(c) 

 

In Figure 3.2 (a) 𝑒0 and 𝑒1 are orthogonal to each other and 𝜑0 is orthogonal to 𝜑1. 

Since both 𝑒0 , 𝑒1 and 𝜑0 , 𝜑1  can span ℝ2 , we call them orthogonal basis for ℝ2 . 

Moreover in Figure 3.2 (b) 𝑒0  and 𝑒1  are orthogonal but 𝜑0  and 𝜑1  are not 

orthogonal to each other thus, to compute expansion coefficients (3.2) we need to 

define  �̃�0 as a dual for 𝜑1. Accordingly �̃�1 is a dual for 𝜑0. In part (c) of Figure 3.2, 

there are three orthogonal basis  𝑒0 , 𝑒1and 𝜑2 , which can span the ℝ3  and 𝜑1  is a 

frame. 
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Since 𝑥 and �̃�𝑘 are discrete-time functions (sequence), the summation is appeared in 

definition of 𝛼𝑘  . 𝛼𝑘 will express by integral when 𝑥  and �̃�𝑘  both are continuous-

time functions: 

𝛼𝑘 = ∫�̃�𝑘(𝑡) 𝑥(𝑡) 𝑑𝑡 (3.3) 

The result of (3.1) and (3.2) can be written by expending inner product as follow 

 < �̃�𝑘, 𝑥 >. For simplicity of calculation, we define an especial case which that the 

set of {𝜑𝑘} (that known as basis) is orthonormal and complete, since then its dual is 

the same, that is, 𝜑𝑘 = �̃�𝑘. Base on inner product and duality property then we have: 

⟨𝜑𝑘, 𝜑𝑗⟩ = 𝛿[𝑘 − 𝑗] = 𝛿𝑘𝑗 (3.4) 

In this equation 𝛿𝑘,𝑗 is used as direct delta function. 

𝛿𝑘,𝑗 = {
1   𝑓𝑜𝑟 𝑘 = j
0   otherwise

 (3.5) 

For basis, biorthogonal case is happening when the set is complete and bases are 

linear independent but the orthonormality property does not take place. In this case 

the basis and its dual satisfy 

⟨𝜑𝑘, �̃�𝑗⟩ = 𝛿𝑘𝑗 (3.6) 

In one exceptional type of basis, that called 𝑓𝑟𝑎𝑚𝑒, the set is complete but because 

of redundancy the linear independency is no longer satisfy (so we do not have a 

basis) (Figure 3.2 (c)). 

Vector space generated by span of basis vectors. Thus we must discuss about the 

concept of span. If  𝑆 ⊂ 𝐸, the span of 𝑆 is a subspace of  𝐸 which contain the whole 
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possible linear combination of vectors in 𝑆. For finite-dimension the span of S is 

define as below: 

𝑠𝑝𝑎𝑛(𝑆) = {∑ 𝛼𝑘𝜑𝑘|𝛼𝑘 ∈ ℝ 𝑜𝑟 ℂ, 𝜑𝑘 ∈ 𝑆

𝑁−1

𝑘=0

} (3.7) 

Generally it can be said that if  𝑆 = {𝜑𝑘}𝑘=0
𝑁−1 is a linear independent set, any vector in 

𝑠  can be represented uniquely by linear combination of its basis. For instant 

assume  𝑆1 = {[
1
0
] , [
0
1
] , [
1
1
]} , 𝑆2 = {[

1
0
] , [
0
1
]} and 𝑆3 = {[

1
0
] , [
0
1
] , [
1
1
] , [
0
0
]}, We can 

conclude that 𝑆1 is not a basis for ℝ2 but 𝑠𝑝𝑎𝑛{𝑆2} = 𝑠𝑝𝑎𝑛{𝑆1} = ℝ
2,  because the 

linear combination of vectors of 𝑆1  are gathered in 𝑠𝑝𝑎𝑛{𝑆1} . For 𝑆1  and 𝑆2  this 

relation is confirmed: 

𝑆1 ⊆ 𝑆2⟺  𝑠𝑝𝑎𝑛{𝑆1} ⊆ 𝑠𝑝𝑎𝑛{𝑆2} (3.8) 

By adding a linear combination of basis to a set we are increasing the redundancy 

and we will not see any changes in span of that set. The linear independency is 

guaranty that the representation is unique but in presence of redundancy linear 

representation is not unique. 

The linear independency for {𝜙𝑘}𝑘=0
𝑁−1 is defined as 

∑𝛼𝑘𝜑𝑘

𝑁−1

𝑘=0

= 0 ⟺ 𝛼𝑘 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘. (3.9) 

A subset 𝑆 = {𝜑𝑘}𝑘=0
𝑁−1 that defined over a vector space like 𝐸 is called a basis for E if 

and only if 𝐸 = 𝑠𝑝𝑎𝑛(𝜑0,𝜑1,… ,𝜑𝑁−1) and 𝜑0,𝜑1,… ,𝜑𝑁−1  are linear independent. 

In this case the vector space 𝐸  known as N-dimension space. If 𝐸   includes an 
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infinite linear independent set of vectors in its basis, 𝐸 called infinite-dimensional 

space. 

3.4.3 Inner Product 

If 𝑉 and 𝑊  are subspace of vector space S then the inner product is a function that 

assign to each order pair of vectors (3.10). Using inner product gives us optionality to 

define various mathematical topics such as Norm. By means of inner product many 

important theorem is define e.g., Cauchy-Schwarz inequality, Triangle inequality, 

Parallelogram law. 

𝑖𝑓 𝑉,𝑊 ⊂ 𝑆 𝑎𝑛𝑑 𝑣 ∈ 𝑉 𝑎𝑛𝑑 𝑤 ∈ 𝑊 

⟹

{
  
 

  
 
𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠(ℝ): 〈𝑣, 𝑤〉  = ∫ 𝑣∗(𝑡) 𝑤(𝑡) 𝑑𝑡

𝑡

𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (ℤ): 〈𝑣, 𝑤〉  = ∑ 𝑣∗[𝑘]𝑤[𝑘]         

𝑁−1

𝑘=0

 

(3.10) 

 

By applying the inner product, the norm of a vector can define simply: 

‖𝑣‖ = 〈𝑣, 𝑣〉
1
2⁄  (3.11) 

And the distance between two vectors is simply defined by the norm of 

differences‖𝑣 − 𝑤‖ = 〈𝑣,𝑤〉
1
2⁄ . This norm is known as Euclidean or square norm. 

There are other norms that defined for different customs. For example City Block 

norm and City Block distance are defined by: 

‖𝑣‖ = ∑|𝑣𝑖|

𝑁−1

𝑖=0

 (3.12) 

and 
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‖𝑣 − 𝑤‖ = ∑|𝑣𝑖 − 𝑤𝑖|

𝑁−1

𝑖=0

 (3.13) 

respectively. In some texts, City Block distance is called Manhattan distance. Be 

informed that the energy of a signal is obtained by Euclidean norm. 

‖𝑣‖2
2 =∑〈𝑣, 𝑣〉2 (3.14) 

3.4.4 Orthogonality and Orthonormality Property of Vectors 

A vector 𝑣 is said to be orthogonal to a set of vectors 𝑊 = {𝑤𝑘} if the inner product 

of that vector and any vector in 𝑊 is equal to zero: 

〈v, wk〉 = 0 ⟹ v ⊥ W (3.15) 

As a rule, two subspace 𝑊1 and 𝑊2 are called orthogonal (𝑊1 ⊥ 𝑊2) if any vector in 

𝑊1 is orthogonal to any vector in𝑊2 . Moreover, orthogonality is defined for any 

arbitrary set in similar way. If 𝑉 = {𝑣𝑘}𝑘=0
𝑁−1,  〈𝑣𝑗 , 𝑣𝑘〉 = 0 (𝑣𝑗 ⊥ 𝑣𝑘) when 𝑗 ≠ 𝑘, 𝑉 

named an orthogonal set. For some reasons such as simplicity in mathematical 

calculations we attempt to normalize a vector to achieved unit norm. By doing 

normalization we obtain an orthonormal system which is satisfies 

〈𝑣𝑘, 𝑣𝑗〉 =  𝛿𝑘𝑗 (3.16) 

 

Because of convenience in calculating and also large number of mathematics options 

that available, we are trying to work with the basis that chosen orthonormal. One of 

the great advantages of orthonormal basis is shows below: 

𝑖𝑓 𝑥[𝑘] = ∑ 𝛼(𝑘)𝜑(𝑘)

𝑁−1

𝑘=0

𝑖𝑓 𝜑 𝑖𝑠 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙 𝑏𝑎𝑠𝑖𝑠 
⇒                    𝑎𝑘 = ⟨𝑥(𝑘), 𝜑(𝑘)⟩ 

𝑎𝑘 = ∑ 𝑥∗(𝑘)𝜑(𝑘)

𝑁−1

𝑘=0

 

 

 

(3.17) 
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As an implicitly assume, a Hilbert space is a space that contain a countable number 

of orthonormal basis. In other word, Hilbert space satisfies complete inner product 

specification. For continuous-time signals this property is define by substituting 

integral instead of summation. In dealing with continuous time signals since the 

equation (3.3) is satisfied (in presence of orthonormal basis) equation (3.17) can use 

to present the coefficients(𝛼). 

〈𝛼𝑘, 𝛼𝑗〉 =  𝛿𝑘𝑗 ⟹ 𝑥(𝑡) = ∫ 𝛼(𝑡)𝜑(𝑡)𝑑𝑡

𝑡

⟹ 𝛼(𝑡) = ⟨𝑥(𝑡), 𝜑(𝑡)⟩, (3.18) 

3.4.5 Direct Sum and Projection 

If 𝑆 is a Hilbert space, both 𝑊 and 𝑉 are subspace of 𝑆 (𝑊,𝑉 ⊂ 𝑆), 𝑆 = 𝑊 ∪ 𝑉 and 

𝑊 ∩ 𝑉 = ∅  therefore, we can represent 𝑆 by direct sum of two subspaces 𝑊 and 𝑉: 

𝑆 = 𝑊⊕𝑉 (3.19) 

In this case decomposition of S is unique. This decomposition is known as Oblique 

case of Oblique projection. In special case, 𝑊  and 𝑉  are orthogonal so it can 

determined that 𝑊 and 𝑉 are orthogonal compliment: 

𝑖𝑓 𝑊 ⊥ 𝑉 ⟹ 𝑊 = 𝑉⊥ (𝑉 = 𝑊⊥) ⟹ 𝑆 = 𝑉 ⊕ 𝑉⊥ 

To illustrate these concepts, consider the following example. If 𝑦 is a vector and 𝑉 

and 𝑊 are linear vector spaces, it can be said that 𝑣 is projection of 𝑦 along 𝑊 and 

similarly 𝑤 is the projection of 𝑦 along 𝑉. Refer to Figure 3.3 to see the concept of 

projection geometrically .It obvious that 𝑉 and 𝑊 which plotted in Figure 3.3 can 

constructℝ2. In the other word, 𝑊⊕𝑉 = ℝ2. 

 

In discrete Fourier transforms 
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𝐹(𝑒𝑖ω) = ∑ 𝑓[𝑘]𝑒−𝑖ω𝑘
+∞

𝑘=−∞

 (3.20) 

ϕ = {eikω}  for all k ∈ ℤ  and s = {ϕk}k=0
N−1is basis. But this representation has its 

own weakness for instance v = span{s} is always a subspace since, the basis of 

v, (φ) cannot be zero in following statement. 

 
Figure 3.3: The geometric representation of orthogonal projection (a) and Oblique 

projection (b); 𝑣 = 𝑃𝑉,𝑊𝑦  , 𝑤 = 𝑃𝑊,𝑉𝑦 

 

Every vector in a vector space can be written as a linear combination of the basis 

vectors in that vector space.  

In Fourier based methods we assumed that the signals are linear and stationary and 

this is one of the most significant motives to avoid using Fourier transform. The key 

difference between Fourier bases methods and Wavelets is the nature of basis 

functions that made the fundamental of both theorems. In Fourier, the basis is a 

function of sine and cosine. Meanwhile, in wavelet transform, basis can be chosen by 

mother wavelet function adequate to the problem. 
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However the main challenging issue on Wavelet is the proper selection of mother 

wavelet function and the accuracy of results is purely based on mother wavelet 

function that chosen.  

3.5  Wavelet  

3.5.1 Haar Wavelet  

Up to now we had pointed out some of crucial deficiencies and it had said that 𝐿2(𝐴) 

is a linear space of finite energy signals with duration in  𝐴 . Fourier transform 

decompose our function into sine and cosine. In the other word, it could give use a 

basis in𝐿2([0,1] ) which consisting of sin waves. Alfred Haar in the year 1910 

discovered different basis for a subspace of 𝐿2([0,1]). After 100 years from the time 

that Alfred Haar discovery has borne, the signal processing become very much akin 

to Haar wavelet (which also called mother wavelet). Haar wavelet is famous because 

of its simplicity in calculation and also speed of computation. These two 

specifications make it suitable for a large area of application in digital signal 

processing. By using Haar wavelet, two disparate type of information (coefficients) 

is obtained. 1- Course approximation and 2- fine detail of function. One of the 

prominent properties of Haar wavelet function is reversibility. The forward transform 

of scaling function is obtained easily by add two adjacent samples value and divide 

by two. As well, the wavelet coefficient can obtain by subtracting two adjacent 

samples value and divide by number 2. The reverse transform can calculate by 

simple adding and subtracting. 

Suppose that 𝑥 is a continuous signal and 𝜑0, 𝜓0 and 𝜓1 are defined as 

𝜑0(𝑥) = {
1 𝑓𝑜𝑟 0 ≤ 𝑥 < 1
0        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(3.21) 
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, 

𝜓0(𝑥) =

{
 
 

 
 1      𝑓𝑜𝑟 0 ≤ 𝑥 <

1

2

−1    𝑓𝑜𝑟 
1

2
≤ 𝑥 < 1

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

(3.22) 

𝜓1(𝑥) = √2𝜓0(2𝑥) =

{
 
 

 
 √2      𝑓𝑜𝑟 0 ≤ 𝑥 <

1

4

−√2    𝑓𝑜𝑟 
1

4
≤ 𝑥 <

1

2
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.23) 

respectively. 

 

 

 

 
Figure 3.4:The function 𝜑0 or scaling function (a) and the wavelet functions for 

𝑟 = 0 and 𝑟 = 1  which named 𝜓1(b) and 𝜓2 (c) respectivelly 

 

As equation (3.23) illustrated, 𝜓𝑠(𝑥)  when  𝑠 = 1 , 𝜓1(𝑥)  is obtained by 

squeezing  𝜓0(𝑥)  along 𝑥  axis and stretch it along 𝑦  axis by the value of 

𝜓0(𝑥)coefficient and ratio of 𝑥. In Figure 3.4 the plot of 𝜑0(𝑥),𝜓0(𝑥) and  𝜓1(𝑥) are 

shown. Follow this process; function 𝜓𝑟,𝑠(x) for 𝑟 = 0  and for s= 0, 1, 2 𝑎𝑛𝑑 3 are 

defined as below: (We assumed 𝜓0,0(x) =  𝜓0(x) ) 

𝜑𝟎 

𝒙 𝒙 𝒙 

𝜓
𝟎

 

𝜓𝟏 
𝒚 𝒚 𝒚 
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𝜓2,0(𝑥) = 2𝜓0(4𝑥) = {

2      𝑓𝑜𝑟 0 ≤ 𝑥 <
1

8

−2    𝑓𝑜𝑟 
1

8
≤ 𝑥 <

1

4

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and 𝜓2,1(𝑥) = 2𝜓0(4𝑥 − 1),

𝜓2,2(𝑥) = 2𝜓0(4𝑥 − 2), 𝜓2,3(𝑥) = 2𝜓0(4𝑥 − 3)  which  are shifted vesion of 

𝜓2(𝑥)  that shown in Figure 3.5. We can also define shifted version of 𝜓2,0(𝑥). 

 
Figure 3.5: This plot is showing  𝜓2,0(𝑥) and shifted versions of that geometricaly in 

x-y plane 

 

Moreover, Figure 3.5 is showing that what is happening in an interval and also it’s 

certain scale. This structure can continued to build more functions such as 𝜓14,𝑠(𝑥), 

𝜓30,𝑠(𝑥)  and 𝜓62,𝑠(𝑥)  which have smaller length scale and eventually we get 

functions that are too small so we can neglect them because they have poor 

resolution.  

𝜓14,𝑠(𝑥) = 2√2 𝜓0(8𝑥 − 𝑠) |𝑠 = 0,1, … ,7 

𝜓30,𝑠(𝑥) = 4𝜓0(16𝑥 − 𝑠) |𝑠 = 0,1, … ,15 

𝜓62,𝑠(𝑥) = 4√2𝜓0(32𝑥 − 𝑠) |𝑠 = 0,1,2… ,31 

When we have a continuous signal like 𝑓(𝑥) and want to know the coefficients 

respect to 𝜓𝑛(𝑥), it just needs to do 𝑉𝑛 = ∫ 𝜓𝑛(𝑥)𝑓(𝑥)𝑑𝑥
1

0
. If we do so, 𝑉0, 𝑉1, 𝑉2,… 

will obtain which shows the resolution of that signal [16]. Finally, since the value of 

resolution and shift parameter is set to zero in 𝜓0,0(𝑥), let assume 𝜓0,0(𝑥) = 𝜓(𝑥). 

A
m

p
li

tu
d

e 

Width 

 𝜓2,0   𝜓2,1      𝜓2,2        𝜓2,3 
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3.5.2 Theory of Wavelet 

3.5.2.1 Continuous Wavelet Transform (CWT) 

 Let define a new class of functions 𝜑𝑟,𝑠(𝑥) as below: 

𝜑𝑟,𝑠(𝑥) = 𝑎
𝑟
2⁄ 𝜑(𝑎𝑟𝑥 − 𝑠) (3.24) 

Which 𝑟  and 𝑠 are integers, 𝑎 is a positive value greater than 1 and 𝑥 is a variable in 

continuous space. With 𝜑𝑟,𝑠(𝑥) and for any possible value of 𝑟 and 𝑠 we are able to 

produce the entire square integrable real space (𝑠𝑝𝑎𝑛 ({𝜑𝑟,𝑠(𝑥)})  =  𝐿
2(ℝ)). 

Let assume 𝑎 = 2 , by substituting this assumption into equation (3.24) we will have 

the first idea of Haar wavelet: 

𝜑𝑟,𝑠(𝑥) = 2
𝑟
2⁄ 𝜑(2𝑟𝑥 − 𝑠) (3.25) 

This set of functions is called scaling function. Now let choose 𝑟 = 𝑟0 . Which 𝑟0 is a 

specific value of  𝑟 . In this case we can say that {𝜑𝑟0,𝑠(𝑥)}  is just depends on 

changing the value of 𝑠 since we assume a constant quantity for 𝑟. Moreover, since 

there is no shifting and resolution parameter in  𝜑0,0(𝑥) , we usually 

assume 𝜑0,0(𝑥) = 𝜑(𝑥). 

Now let analyze this problem geometrically. As we discussed, 𝑟 is an integer value 

and 𝑟0  and 𝑟1  have this relation 𝑟1 = 𝑟0 + 1  and 𝑟2 = 𝑟1 + 1 = 𝑟0 + 2  .Due to 

equation (3.24), by substituting 𝑟0  with 𝑟1 = 𝑟0 + 1  we will 

obtain𝑉0 = 𝑠𝑝𝑎𝑛({𝜑𝑟0,𝑠(𝑥)}) and 𝑉1 = 𝑠𝑝𝑎𝑛({𝜑𝑟1,𝑠(𝑥)}). The comparison between 

𝑉0 and 𝑉1 tells us the amplitude is increase by a factor of √2 meanwhile the width is 

reduced by a factor of 2. Based on the spaces that subspaces V0 and V1 are contained, 

we can conclude thatV0 ⊂ V1, because the resolution of V1 is higher thanV0.  
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The subsets V2, V3, … can obtain by the same way and since the r  can takes any 

integer value we will have: 

V−∞ ⊂ ⋯ ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ⋯ ⊂ V∞ (3.26) 

These relations in (3.26) are well illustrates in Figure 3.6. 

Based on linearity, any arbitrary function that lying within V1 can approximate by 

linear combination of V1 basis ({𝜑r1,s(x)}). Also by Figure 3.6 it is obvious that any 

function that lying within  V0  can represent by  V1  basis (sinceV0 ⊂ V1 ). Now let 

assume that  

V1 = V0⊕W0 (3.27) 

 
Figure 3.6: The relation between subspaces that are made by wavelet basis 

In the other word, subspace W0 contain the difference between V0 and V1 by applying 

this change of presenting V2 we will have 

𝑉2 = 𝑉1⊕𝑊1 = 𝑉0⊕𝑊0⊕𝑊1 (3.28) 

V3 

V2 

V1 

V0 
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Assume the set of basis that presented in equation (3.25) and let 𝑟 = 1. Generally, we 

can compose any function that spanned by set of  {𝜑1,s(x)}  from summation of 

different shifted versions of next higher space functions that have specific weights. 

𝜑(x) =∑h(n)√2𝜑(2x − n)

n

 

In this expression the shifted basis is 𝜑(2𝑥 − 𝑛) which 𝑛 is shifting parameter and 

h(𝑛)are the coefficients with respect to each basis. 

 
Figure 3.7: Geometrically representation of concept of direct sum 

 

By developing this algorithm up to Vn|n ≥ 0,  𝑉𝑛 can represent by direct sum of 𝑉0 

and all 𝑊k |0 ≤ 𝑘 < 𝑛 − 1 

𝑉n = 𝑉0⊕𝑊0⊕𝑊1⊕…⊕𝑊𝑛−1 (3.29) 

By applying  𝜑0.0(𝑥) or (3.21) that had been shown in Figure 3.4 (a) over a signal, 

technically do the low-pass filtering. But whenever we consider a function that cover 

the differences in the subspace which has covered by the two low-pass filters we 

must use high-pass filters. Thus, the type of filters that can span the difference spaces 

V1 

W0 

V0 



 

27 

 

that covered by two low filter is high-pass filter. The original forms of this class of 

functions which is called 𝑊𝑎𝑣𝑒𝑙𝑒𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are introduced as bellow: 

𝜓𝑟,𝑠(𝑥) = 2
𝑟
2⁄ 𝜓(2𝑟𝑥 − 𝑠) (3.30) 

This presentation is very similar to (3.25) however they are completely distinct and 

span different spaces. When the shifted versions of (3.25) and (3.30) is considered, it 

is imperative for them to satisfy orthogonality with respect to each other. So, due to 

(3.28), to represent 𝑉2 we need one scale function 𝑉0  and two wavelet 

functions𝑊0 and  𝑊1 . As well, to find  𝑊2 , we need 𝑉2 and  𝑉1  cause 𝑊2  is the 

difference between them. The relation between wavelet function and scaling function 

is  𝜓(𝑥) = ∑ g(n)√2φ(2x − n)n  and it tells us the wavelet function can construct by 

using a series summation of shifted versions of scaling function of the next higher 

subspace. For example, reassume equation (3.21) as scale function (known as Haar 

scale function) and in equation (3.30) let 𝑠 = 0 and calculate the wavelet function for 

each values of 𝑟 = 0, 𝑟 = 1 and 𝑟 = 2. The results are shown in Figure 3.8 (a), (b) 

and (c) respectively. By adding up the scaling function subspace and wavelet 

function subspace with higher resolution order that had been offered in this example, 

in fact, we are able to analyze any function in 𝐿2(ℝ). This concept is well defined 

by 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑠𝑒𝑟𝑖𝑒𝑠: 

𝑓(𝑥) =∑𝑎𝑟0,𝑠𝜑𝑟0,𝑠(𝑥)

𝑠

+ ∑∑𝑏𝑟,𝑠𝜓𝑟,𝑠(𝑥)

𝑠

∞

𝑟=𝑟0

 , 𝑟 ≥ 𝑟0 (3.31) 

That 𝑎𝑟0,𝑠 is corresponding coefficients which associated with𝜑𝑟0,𝑠. Also, this 𝜑𝑟0,𝑠 is 

using in set of 𝜓(𝑥) as well. Moreover, ∑ 𝑎𝑟0,𝑠𝜑𝑟0,𝑠(𝑥)𝑠  can cover 𝑉𝑟0 subspace. In 

the wavelet series, 𝑏𝑟,𝑠 are coefficients associated with {𝜓(𝑥)}. 
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The basic objective reason to applying the wavelet transform to an image is 

achieving space frequency localization with the image. In the other word, wavelet 

transform tells us at what position, what frequency component exists. If we fix 𝑟 to a 

constant value, the scaling and wavelet functions become orthogonal since the scale 

parameter 𝑠  is change by integer numbers. As the orthogonality property is 

satisfying, we can obtain coefficients in (3.31) as below: 

𝑎𝑟0,𝑠 = ∫𝑓(𝑥)𝜑𝑟0,𝑠(𝑥) 𝑑𝑥 (3.32) 

  𝑏𝑟,𝑠 = ∫𝑓(𝑥)𝜓𝑟,𝑠(𝑥) 𝑑𝑥 
(3.33) 

 

For discrete Haar wavelet the filters that used are as follow. 

ℎ𝜑(𝑛) = {
1

√2
,
1

√2
} (3.34) 

𝑔𝜓(𝑛) = {
1

√2
,−
1

√2
} 

(3.35) 

Which ℎ𝜑(𝑛) is known as Haar scale function andℎ𝜓(𝑛)is known as Haar wavelet 

function (see Figure 3.9) 

3.5.2.2 Discrete Wavelet Transform (DWT) 

However we defined 𝑥 as a continuous signal, in point of fact, when we work with 

computers we deal with digital signals which obtained from continuous sequences by 

applying kind of sampling. For instant, any image can be sampled as the form of 

𝐼(𝑚, 𝑛)which 𝑚 = 1,2, … ,𝑀 , 𝑛 = 1,2, … ,𝑁 and 𝑀 ×𝑁 is the size of image. 

Consequently, the DWT for a one dimension signal like 𝐼(𝑛), 𝑛 = 1,2, … , 𝑁  can 

obtain by replacing integral with summation 
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𝑊𝜑(𝑗0, 𝑘) =
1

√𝑁
∑𝐼(𝑛)𝜑𝑗0,𝑘(𝑛)

𝑛

 (3.36) 

𝑊𝜓(j, 𝑘) =
1

√𝑁
∑𝐼(𝑛)𝜓j,𝑘(𝑛)

𝑛

 
(3.37) 

 

Figure 3.8: The relation between different wavelet functions 

 

 

 
(a) (b) 

Figure 3.9: The FIR version of Haar scale function (a) and Haar wavelet function (b). 

 

Which 𝑊𝜑  and  𝑊𝜓  are the scaling function and the wavelet function quantity 

respectively that are similar to 𝑎𝑟0,𝑠and 𝑏𝑟,𝑠 , 𝑘 is an integer number and 𝑗 ≥ 𝑗0. In 

compare with (3.32) and (3.33), here we use 𝑗0 instead of 𝑟0 and also use 𝑘 as scaling 
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parameter. Since we convert the signal 𝑆(𝑛)  to a new domain 

(𝑊𝜓(𝑗0, 𝑘) and/or 𝑊𝜑(𝑗0, 𝑘)), we need to normalize the phrases by 
1

√𝑁
 to be sure that 

the energy of signal remains unchanged after shifting the domain. The wavelet series 

for discrete signals makes us able to produce the original signal from scaling function 

and wavelet function as follow: 

𝑓(𝑥) =
1

√𝑁
∑𝑊𝜑(𝑗0, 𝑘)𝜑𝑗0,𝑘(𝑥)

𝑘

+ ∑∑𝑊𝜓(𝑗0, 𝑘)𝜓𝑗0,𝑘(𝑥)

𝑘

∞

𝑗=𝑗0

 , 𝑟 ≥ 𝑟0 (3.38) 

Furthermore,  𝜑𝑗0,𝑘 and 𝜓𝑗0,𝑘  are the kernels of this transformation. For convenience 

in calculation, normally we set 𝑗0 = 0  and𝑁 = 2𝑗 , (𝑗 = 0,1, … ,𝑁 − 1) . Due to 

equation (3.30), we will have: 

𝜓𝑗,𝑘(𝑛) = 2
𝑗
2⁄ 𝜓(2𝑗𝑛 − 𝑘) (3.39) 

By substituting this equation into equation (3.37) we will have 𝑊𝜓(𝑗0, 𝑘) =

1

√𝑁
∑ 𝐼(𝑛)2

𝑗
2⁄ 𝜓(2𝑗𝑛 − 𝑘)𝑛  . This equation leads us to two new useful relations: 

𝑊𝜓(𝑗, 𝑘) =∑g(n − 2k)𝑊𝜑(j + 1, n)

n

 (3.40) 

𝑊𝜑(𝑗, 𝑘) =∑h(n − 2k)𝑊𝜑(j + 1, n)

n

 
(3.41) 

If  𝑊𝜑(j + 1, n) is available, we just need to convolve it with h and g to obtain the 

scale function and wavelet function of lower resolution respectively. Usually, ℎ is 

use to express low-pass filter and 𝑔  shows high-pass filter. Wavelet essentially 

permits us to realize a bank of analysis filters which means we can obtain the original 

signal back if we apply a corresponding bank of synthesis filters. Figure 3.10(a) 

shows analyze of a one dimension (1D) signal from 𝑆(𝑛) to three bands and its 

frequency response. As it illustrates in Figure 3.10 (b), filter banks do not have the 

same bandwidth. In this figure, 𝑆1(𝑛)which is the ultimate low-pass filter output has 
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the one quarter, 𝑆2(𝑛) has one fourth and 𝑆3(𝑛) as the result of passing the original 

signal through the high-pass filter,  has half of  the original bandwidth. Also, the 

frequency response of 𝑆1(𝑛), 𝑆2(𝑛) and 𝑆3(𝑛) are shown correspondingly in (1), (2) 

and (3) fragments of Figure 3.10 (b). 

The four different possible functions are: 

𝜑(m, n) = 𝜑(𝑚)𝜑(𝑛) (3.42) 

𝜓𝐻(𝑚, 𝑛) = 𝜓(𝑚)𝜑(𝑛) (3.43) 

𝜓𝑉(𝑚, 𝑛) = 𝜑(𝑚)𝜓(𝑛) (3.44) 

𝜓𝐷(𝑚, 𝑛) = 𝜓(𝑚)𝜓(𝑛) (3.45) 

 
 

(a) 

 
(b) 

Figure 3.10: The wavelet analyze filter bank of a 1D signal in two levels. 

 

In (3.42), 𝜑(𝑚, 𝑛) represents the approximation of image which is obtained from 

passing both rows and columns of image through the low-pass filter. In (3.43) the 

𝑆(𝑛) 

ℎ 2 ↓ 
ℎ 2 ↓ 𝑆1(𝑛) 

𝑔 2 ↓ 𝑆2(𝑛) 

𝑔 2 ↓ 𝑆3(𝑛) 
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supper script 𝐻 shows that rows are high-pass filtered (wavelet function) but columns 

are low-pass filtered (scale function). Equation (3.44) represents 𝜓𝑉(𝑚, 𝑛)  which is 

calculated by taking low-pass filter from rows and high-pass filter form columns. 

Finally the last subband is diagonal subband  𝜓𝐷(𝑚, 𝑛) . Here supper script 𝐷  is 

referring to diagonal.  

Whenever we applying 2D DWT to an image, since any level is made by the product 

of two filters, we have to do double decimation by the factor of two. Sharply, 

decimation by factor of two in horizontal direction and decimation by another factor 

of two in vertical direction and in overall, we do the decimation by factor of four. 

This is the reason that each subbands contained one quarter of image space as it 

shows clearly in Figure 3.11. in this figure  Lena benchmark image (Figure 3.11 (a)), 

discrete wavelet subbands of that in one level (Figure 3.11 (b)) and the responses of 

different wavelet subbands in the image space (Figure 3.11 (c)) are shown. 

 

LL HL 

LH HH 

(a)  (b) (c) 

Figure 3.11: Different wavelet subbands in an image space 

We discussed about how wavelet transform is applicable on the images. To 

understand it better assume that 𝑊𝜑(𝑗 + 1,𝑚, 𝑛) is an image with size 𝑚 × 𝑛 in the 

first scale 𝑗 + 1. By applying 2D DWT to the image, at the first stage we must pass 

the image through the high-pass and low-pass filter distinctly, which indicate as 

DWT 



 

33 

 

ℎ𝝋(−𝑛) and ℎ𝝍(−𝑛) correspondingly. Firstly step, the scale function and wavelet 

function must apply to columns; this is the reason of using (– 𝑛). Likewise, rows will 

analyze at the second stage. The negative sign is for shifted part of h𝜓and h𝜑 which 

is introduced in (3.40) and (3.41). Decimation by the factor of two means selecting 

the alternate samples. In the other word, we remove redundant samples that will not 

carry any information. The bandwidth of signal essentially gets half in each scale and 

wavelet subbands. Figure 3.12 shows the diagram of filters and decimation blocks. 

 
Figure 3.12: Block diagram of 2D wavelet transform in one level 

Phrase 𝑊𝜓
𝐷(𝑗,𝑚, 𝑛)that shows the diagonal edges, is the result of extracting the high-

pass features along rows and columns so, it is corresponding to HH segment that 

showed in Figure 3.11.𝑊𝜑(𝑗,𝑚, 𝑛) , 𝑊𝝍
𝐻(𝑗,𝑚, 𝑛) and 𝑊𝝍

𝑉(𝑗,𝑚, 𝑛)  in this block 

diagram are referred to LL, HL and LH respectively. HL and LH are show the extract 

of horizontal and vertical edges individually (see Table 3.1). Interestingly, from 

Figure 3.12 it can conclude that by giving an image with a scale of  𝑗 + 1 to the 

wavelet transform, the output of transform will be at scale of 𝑗. Decrease the scale by 

factor of one means effectively lose the resolution by a factor of 2 for both rows and 

columns. Moreover, each of these four sub bands can be analyzed further but, since 

 wφ(j+1,m,n)     

hφ(-m) 2↓ 

hφ(-n)  2↓ Wφ(j,m,n) 

hψ(-n)  2↓ WV
ψ(j,m,n) 

hψ(-m)  2↓ 

hφ(-n)  2↓ WH
ψ(j,m,n) 

hψ(-n)  2↓ WD
ψ(j,m,n) 
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images are very rich in low frequency content, we mostly do the further analysis on 

LL sub-bands. 

Accordingly, the squeeze version of original image is offered by LL sub-band. 

Highest scale is referring to original image which has the maximum resolution as 

well. By going further in decomposition, the coarseness of sub-bands will decrease. 

In the other word, by partitioning we move from finer domain to coarser domain of 

analysis. This is exactly the objective of doing wavelet which is frequency 

localization. 

Table 3.1: Table of wavelet sub-bands and corresponding applied filters 

Direction Horizontal 

 (Row) 

Vertical  

(Column) 

Subbands 

representatives Filter  type 

Low X X LL 

𝑊𝜑(𝑗,𝑚, 𝑛) High   

Low  X HL 

𝑊𝝍
𝐻(𝑗,𝑚, 𝑛) High X  

Low X  LH 

𝑊𝝍
𝑉(𝑗,𝑚, 𝑛) High  X 

Low   HH 

𝑊𝝍
𝐷(𝑗,𝑚, 𝑛) High X X 

 

 

  

𝑊𝜑(𝑗,𝑚, 𝑛) 

LL 

 

𝑊𝝍
𝐻(𝑗,𝑚, 𝑛) 

HL 

 

𝑊𝝍
𝑉(𝑗,𝑚, 𝑛) 

LH 

 

𝑊𝝍
𝐷(𝑗,𝑚, 𝑛) 

HH 

 

 

 

Figure 3.13: Block diagram of 2D wavelet transform. 
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Chapter 4 

4. PROPOSED ILLUMINATION INVARIANT FACE 

RECOGNITION METHODS 

4.1 Methodology 

4.1.1 Benchmark Face Databases 

In order to evaluate the proposed face recognition system, our experiments are 

performed on following benchmark face databases. 

Extended Yale Database B (Extended Yale B) [23]: Extended Yale B is containing  

2414 images of 38 different subjects. For each subject there are five different 

illumination subsets which were divided base on the angle between light source and 

optical axis of the camera. Images in subset 1 are captured in good lighting condition. 

The majority of images in subset 2 have similar illumination condition in compare 

with set 1 and the light source and subject just have 20 to 25 degree difference. In 

Subset 3 because of larger angle between light source and subject, some images have 

shadow and it cause some dark area over faces. Because of these dark shadows, the 

lighting condition in set 3 is not as good as set 1 and 2. In subset 4 and subset 5, the 

angle between light source and subject increase up to 105 degree. The worst 

lightening condition is referred to subset 5 (Figure 4.1 (a)). All of the images in this 

database are captured in frontal pose and have a same size of  168 × 192 . The 

number of images for each subject is varying between 59 and 64 images. For this 

experiment, I resize the images to size of 128 × 128. In each subsets there is one 

image which captured in frontal pose and direct illumination which named by 
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P00A+000E+00. These 38 images are used to build the gallery images which are 

used in classifier. Each of gallery images set in one row matrix with a size of 

[1, 16384] and then put them together. For example gallery group is a matrix with 38 

rows and 16384 columns. 

AT&T (ORL) face database [26]: The ORL database is used to find the luminance 

quality and threshold. In whole, this database has 400 images which contains of 40 

different subjects. Each of 40 subjects, has a collection of 10 images were captured at 

different pose, facial expression and time (Figure 4.1 (b)). 

 

 

 

 

 

 

 

 

(a) 

 

 
(b) 

  

(c) (d) 
 

Figure 4.1: (a) Illumination subbands of Extended Yale B and (b) Example images of 

the ORL database. Some of Extended Yale B images used to calculate reference 

image (c) and reference face image (d) [1] 

 

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

263 456 525 456 714 

𝜃 < 12° 20° < 𝜃 < 25° 35° < 𝜃 < 50° 60° < 𝜃 < 77° 85° < 𝜃 < 128° 
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Also, images in this data base captured against a dark homogeneous background and 

cropped in the size of 92 × 112. I resampled these images to a fix size of 128 × 128 

before using them. Since the images in this data base are captured in good lighting 

condition and there is no illumination variation, this database is an appropriate choice 

for introducing an average of face images this average image is called reference 

image and I use it to calculate Luminance Quality (LQ) (see Figure 4.1(c) and (d)). 

4.1.2 Wavelet Transform 

The objective of using WT in this work is achieving space frequency localization in 

images and to know at what position, what frequency component exists. By knowing 

this information we are able to select the most appropriate subbands of wavelet for 

face recognition. Since the images that used in this work have different lighting 

condition, in theorem, 𝐿𝐿𝑘  subband of wavelet transform cannot gives us the best  

face features in compare with 𝐿𝐻𝑘 , 𝐻𝐿𝑘  and 𝐻𝐻𝑘 . Although by using some low-

pass and high-pass filters we can reach us to same point but using wavelet has it own 

advantages. Using wavelet can compress the information then we can represent 

images with less data and it lead us to faster analyses. Moreover, once DWT applied 

to an image, the information of image in four different subbands can achieved. 

Haar Wavelet, that known as simplest and the first wavelet is applied to test and train 

images in order to extract features that needed over recognition work.  The Haar 

wavelet gives us an image into four different segments. These subbands represent 

different features base on utilized filters. 
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Figure 4.2: Diagram of 2D wavelet hierarchical steps for k=1 

 

I benefit the multiresolution property of WT to decompose images into low and high 

frequencies. These hierarchically decomposition of images, at the resolution of 𝑘, 

gives us 3𝑘 + 1 subbands. In Figure 4.2 the result of applying wavelet on an image is 

showed. In this figure, ℎ  and 𝑔  are represent low pass and high pass filter 

respectively. 

These sub-bands are known as LLk, LHk, HLk, HHk, …, LL1, LH1, HL1, HH1. In this 

arrange of sub-bands, LLk is achieved by passing the signal (image) through a low-

pass filter. Since the luminance is a trait of DC component of an image and the LLk 

subband considered as a kth level approximation of image, it is mostly affected to 

illumination variation in compare with other subbands. 

LH1 

HL1 

LH2 

HL2 
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 4.3: Decomposition of an image in one level (a) and two level (b) 

 

4.1.3 Z-score Normalization (ZN) 

After extracting the facial feature, in order to improve recognition accuracy, there is 

need to apply a kind of preprocessing on data before using them in classifier.  

Typically, sub-bands coefficients are normalized. Here, face features normalized by 

Z-score normalization method. Assume that the wavelet coefficient that I want to 

normalize is 𝑥 = {𝑥𝑖|𝑖 = 1,2, … , 𝑁} then 

𝑍𝑁 =
𝑥 − �̅�

𝑠𝑡𝑑(𝑥)
 (4.1) 

where �̅� =
1

𝑁
∑ (𝑥𝑖)
𝑁
𝑖=1  is the average value of feature and 𝑠𝑡𝑑(𝑥) =

𝑛𝑜𝑟𝑚(𝑥−�̅�)

√𝑁−1
 is the 

standard deviation. 

ZN is based on calculating mean and standard deviation. By normalizing the wavelet 

coefficients with ZN, the recognition algorithm becomes robust against illumination 

in compare with lack of ZN. Therefore, it leads us better accuracy. 

 

LL2 HL2 

HL1 
LH2 HH2 

LH1 HH1 

 

LL1 HL1 

LH1 HH1 
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4.1.4 Luminance Quality (LQ) Metric 

As discussed before, the aim of this thesis is remove the harmful effect of different 

lighting condition in captured images when we want to do face recognition. This 

issue is done by applying a method which must be generalizable to vast area of 

application in facial recognition. The first idea against illumination variation problem 

is handle a normalization method to normalize illumination. This normalization must 

apply to images before extracting the facial features. In this work I utilized histogram 

equalization (HE) to normalize the illumination in preprocessing stage. Although 

using HE is a common use method to improve face recognition accuracy, this 

improvement is depends on the level of illumination discrepancy between test and 

trained images. I offered three distinct techniques to exert HE in preprocessing 

section. 

In some techniques of this work, I did the HE if the luminance quality (LQ) of the 

image was less than a predefined measure. In these methods, before feature 

extraction I achieved the luminance quality. Applying equation (4.2) by assuming 

train images and test images are 𝑥 = {𝑥𝑖|𝑖 = 1,2, … ,𝑁} and 𝑦 = {𝑦𝑖|𝑖 = 1,2, … ,𝑁} 

respectively we have: 

𝐿𝑄 =
2�̅��̅�

(�̅�)2 + (�̅�)2
 (4.2) 

Where  

�̅� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 (4.3) 

and 
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�̅� =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

 . (4.4) 

The value range of LQ is [0,1] and it shows the distance of illumination between 𝑥 

and 𝑦. In (4.2) the LQ has the maximum value (LQ=1) if and only if �̅� = �̅�. 

4.1.5 Nearest Neighbor (NN) Classifier  

After normalizing features, I compare test (probe) and train images by using the 

nearest neighbor as the standard determination technique. The NN classifier is a 

special case of K-Nearest Neighbors (K-NN) Classifier. In the other word, the K 

Nearest Neighborhood classifier when K=1 gives us nearest neighbor. The nearest 

neighbor classifier applied to take a decision between probe (test) and train groups. 

Train group contains the P00A+000E+00 image from each 38 subjects and remain 

images which are 2376 items in total, are used as test to calculate the efficiency of 

identification system.  The CityBlock (Manhattan) distance calculated the distance 

score between train images and probe images [1]. 

4.2 Proposed Methods 

With reference to [1] five new techniques were investigated and compared with other 

previews techniques in face recognition in presence of varying illumination. As an 

additional job, I changed the classification inputs (probe and train groups) by using 

10 fold cross validation method. In [1] train images selected from well-lit images but 

by applying 10 fold cross validation not only the number of train images are 

increased, but  also train groups include images of  all five subsets. 

4.2.1 None Method 

Firstly wavelet transform applied to images without any luminance normalization 

technique. This approach is maned None. (Figure 4.4 (right)). As it is shown in 

Figure 4.4 (right), we took DWT of probe and train images and after that the wavelet 
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coefficients normalized with Z-score normalization (ZN) algorithm. The LL, HL and 

LH subbands of probe and train images gave to the classifier. 

4.2.2 Histogram Equalization (HE) Method 

In this method all images normalized before extracting features without any 

exception. This approach was called HE. (Figure 4.4 (left)). After HE, features 

(wavelet subbands) of each image achieved by DWT and then normalized by ZN. 

These processes applied for both probe and train images in a same way. At last, data 

was given to NN classifier to complete the recognition progression. 

4.2.3 Quality Base Histogram Equalization (QbHE) Method 

Thirdly, Quality Base Histogram Equalization (QbHE) approach was exerted (Figure 

4.5). In this approach the LQ calculated for each image and compared with a 

predefine threshold [1]. If the image’s LQ was less than the threshold, the image 

normalized with HE method before feature extraction. Otherwise the original image 

was given to feature extracting stage. 

 

 

Figure 4.4: Block diagram of None method (right) and HE mothed (left) 
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After this level, features extracted by DWT and then ZN applied to normalize the 

features. For the last part, NN classifier applied to decide about the accuracy of 

method. 

 

Figure 4.5: Block diagram of QbHE method 

4.2.4 Regional Histogram Equalization (RHE) Method 

In this approach which named Regional Histogram Equalization (RHE), any images 

divided into four equal fragments by applying a 2 by 2 mask (Figure 4.6). For each 

region which had a size of 64 × 64 pixels, HE applied separately. After normalizing 

each region of images distinctly, WT applied on any single images to extract features 

and NN classifier used to investigate the efficiency of method (Figure 4.7).  
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4.2.5 Regional Quality Base Histogram Equalization (RQbHE) Method 

At last, I tested the Regional Quality Base Histogram Equalization approach 

(RQbHE). This method had done by dividing images into four different regions 

similar to RHE technique and then compared the LQ of each single region with the 

threshold value that defined before in QbHE approach. HE only used for normalizing 

regions that have a LQ ratio less than the predefined threshold. 

 

 

 

 

 

 
 

1 2 

 3 4 

1  64 128 

    

64  64x64  

    

128   128x128 

(a) (b) 

Figure 4.6: Region segments that use in RHE and RQbHE techniques (a) and the 

number of pixels that included in each regions (b) 

 

Figure 4.7: Block diagram of  RHE method 
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A sample of each subset and the LQ measure of each image is shown in Table 4.1. 

Moreover, Table 4.1 shows an example for each method. As it discussed before, 

subset 1 contains images with a good illumination condition. In the other hand subset 

5 images mostly captured under insufficient light. (Figure 4.8) 

 

Figure 4.8: Block diagram of  RQbHE method 

4.2.6 10 Fold Cross Validation Method 

In this method, 10-fold cross validation technique applied to choose train and test 

images for classifier. In the previous techniques, the number of probe images was 

2376 and train images were 38. But in new technique I have 10% of 2414 images as 
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test (probe) and the 90% rest assumed as train images and each time the accuracy 

calculated (Figure 4.9).  

 
1st 

Level 

2nd 

Level 

3rd 

Level 
… 

10th 

Level 
 

Figure 4.9: selecting probe and train images in 10 fold cross validation method in 10 

levels. 

 

At the end, the average of accuracies assume as final accuracy of approach. Each 

time, after calculating accuracy, I choose another 10 percent. By respect to this 

manner 10 distinct groups of probe and train images obtained. In this method, since 

2414 subjects are sorted form subject 1 to subject 38, before 10 fold cross validation 

I mixed the place of rows to make sure about fairness in classification. The total 

number of image is 2414 and I select 241 images for first nine 10 percent and 244 for 

last 10 percent. Obviously, the number of train images is 2173 for the first nine 90% 

and for the last 90% is 2170. 

  

Train 

Probe 
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 Table 4.1: Subsets and their LQ correspond to methods 

 

 

LQ Method 
Subsets 

1 2 3 4 5  

 

None 

 

 

 0.9987 0.8880 0.5647 0.4197 0.1481 
 

HE 

 

 

 0.9865 0.9866 0.9863 0.9861 0.9850 
 

QbHE 

 

 

 0.9987 0.9687 0.9863 0.9861 0.9850 
 

RHE 

 

 
 0.9867 0.9865 0.9866 0.9860 0.9845 

 

RQbHE 

 

 

 0.9987 0.9687 0.9866 0.9860 0.9845 
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Chapter 5 

5. EXPERIMENTS AND RESULTS 

5.1 LQ as an Appropriate Measure for Evaluating the Quality 

Sabah A.Jassim and Harin Sellahewa in [1] by defining Global Luminance Quality 

(GLQ) showed that 60% of images in subset 1 (60 percent out of 225 images) have 

an equal or a higher GLQ score of 0.95. This rate is only 19% in the images of 

second subset. Additionally, 91% of subsets 1 images have a luminance quality mark 

of 0.90 or higher. This condition is same for 73% of the images of subsets 2. This 

measure proves that the GLQ quantity properly express the illumination excellence 

of images in first two groups. Since GLQ in subset one and two is very close to the 

predefined reference image, distinguishing that first subset images are closer to the  

predefine reference image in compare with images from subset 2. In addition in [1] is 

discussed that 96% of associates of subset 3 have a GLQ mark of less than 0.90, 

although, 33% of face images which made subset 3 have a global luminance quality 

value from 0.80 to 0.90. This specifies an obvious difference in lighting of images in 

subset 3. Approximately, only the LQ rate of 18% of whole 456 images in subset 4 is 

60 or higher. While the maximum value of image’s GLQ rate of this subset is merely 

0.76. Almost 56% of the images in fifth subband recorded GLQ grade equal or 

greater than 0.70, whereas it’s maximum GLQ score is individual 0.59. These 

numbers indicate that the images which grouped in subset 4 and 5 are poor is 

illumination quality aspect as a result of the great changes in illumination along 

horizontal and/or vertical directions (see Figure 4.1). By analyzing these data it 
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demonstrates that, as an illumination quality, the luminance quality (LQ) index 

nicely estimates the illumination quality for face image. [1] 

5.2  Experiment and Discussion 

Recently, [22] shows us that by normalizing so-called well-lit images we cannot 

reach to better identification accuracy. However, normalizing images with bad 

lighting condition could lead to increase LQ factor markedly. These conclusions can 

be easily understood by Table 4.1. For more information Table 5.9 is given for 

threshold 0.8. In this table, a sample image refers to subset 1 remained unchanged 

during RQbHE. Meanwhile, the illumination of second subset image is normalized 

for regions 2 and 4 which had luminance quality equal 0.7773 and 0.77858 

respectively. Additionally, to understand better the difference between adaptive 

technique like RQbHE and non-adaptive techniques, Table 5.9 gives the accuracy of 

different illumination normalization techniques respect to each subsets. The accuracy 

of each approach for first level of DWT is given by Table 5.1.  Table 5.2 examined 

the accuracy of LL1 obtained from approximation subband of first level of 2D WT 

besides LL2, HL2,HH2 and LH2 which are features obtained by second level of 2D 

WT. Since the images are rich in low frequencies, LL1 and LL2 subbands are highly 

affected by bad condition of lighting. Unlikely, HL2 and LH2 are more robust 

against illumination variation. Then HH2 cannot assume as an appropriate descriptor 

of face base on Table 5.1 and Table 5.2.  By comparing accuracy rates given in Table 

5.1 and Table 5.2 generally it can conclude that LL1 given better accuracy in 

compare with LL2 nevertheless LH2 and HL2 has more accurate results in 

recognition approaches in compare with LH1 and HL1. In overall, HH2 has a higher 

accuracy in compare with HH1 but its result is not comparable with LL, HL and LH 

subbands.  LL1 subband contains LL2, LH2, HL2 and HH2 subbands and also HH, 
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HL and LH are more robust against illumination variation. Accordingly, I chose LL2, 

LH2 and HL2 subbands as selected features in this work. Table 5.2 clearly implies 

these concepts. Furthermore, it shows that LH2 subband of RQbHE technique has the 

best accuracy in recognition in presence of luminance variation. 

Table 5.1: Identification accuracy rates base on different illumination 

normalization techniques for Extended Yale B data base for one level DWT 

          

            

 Accuracy (%) 

Wavelet 

subbands 
Method Set1 Set2 Set3 Set4 Set5 

All 

sets 

LL1 

None 98.67 84.65 34.86 6.58 4.2 35.82 

HE 98.22 82.68 32 10.31 16.95 39.31 

QbHE 98.67 84.65 35.05 8.33 18.63 40.53 

RHE 100 100 72.38 25 20.45 55.6 

RQbHE 98.22 86.84 56.95 30.7 27.59 52.74 

LH1 

None 84.89 100.00 83.05 65.79 24.51 65.57 

HE 84.00 100.00 80.95 81.58 79.55 84.60 

QbHE 84.89 100.00 83.43 75.88 73.39 82.28 

RHE 83.11 100.00 81.33 81.14 76.05 83.46 

RQbHE 84.89 100.00 82.48 78.51 69.05 81.27 

HL1 

None 81.78 98.03 73.90 31.14 4.62 50.25 

HE 79.11 97.81 70.48 46.27 28.43 59.26 

QbHE 81.78 98.03 74.10 38.82 25.35 58.00 

RHE 77.33 97.59 70.67 49.34 36.41 62.08 

RQbHE 81.78 97.81 71.43 39.25 22.83 56.69 

HH1 

None 55/11  87/72 44/57 31/58  8/82 40/61 

HE 56/89 86/18  36/95 17/32 10/92 36/70 

QbHE 55/11 87/72 43/62 28/73 11/90 40/78 

RHE 58/67 87/50 37/71 19/08 11/62 37/84 

RQbHE 55/11 87/72 35/81 12/06 9/52 35/14 

In the next stage, to achieve better results and base on the highest accuracy rates in 

Table 5.1and Table 5.2; two wavelet coefficients which achieved by RQbHE and 

RHE approaches combined together distinctly with considering certain weights. This 
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work has been done by combining subbands with a constant factor. Assume the 

combination of two subbands saved in 𝑓𝑆𝑢𝑏𝑏𝑎𝑛𝑑: 

𝑓𝑆𝑢𝑏𝑏𝑎𝑛𝑑 = 𝛼𝑆1 + 𝛽𝑆2 (5.1) 

Which 𝛼 and 𝛽 are real positive coefficients and 𝛼 + 𝛽 = 1. 𝑆1 and 𝑆2 are wavelet 

subbands which can be LL, LH or HL. Assume that 𝑆1  and 𝑆2  have 𝑛  features 

therefore they are a row matrix of size 1by𝑛. In order to combine subbands, at first 

the correspond coefficient multiplied to them, and then put weighted coefficients 

together in a new matrix like 𝑓𝑆𝑢𝑏𝑏𝑎𝑛𝑑. This new matrix has one row and 2𝑛 columns 

(Figure 5.1). 

 

 

 
Figure 5.1: Combination of weighted subbands and save in a new vector 

 

 The accuracy based on different fix weighs of LL2 with LH2 subbands and LH2 

with HL2 subbands are given in Table 5.6 and Table 5.7  respectively. 

 In Table 5.6 and Table 5.7, the identification accuracy is shown by corresponding 

subbands fusions. Followed by accuracies for RQbHE method it can observe that, 

fusion quality based histogram equalization method is much accurate than before. 

The higher accuracy is referring to fusion method with LH2 and HL2 subbands since 

these two subbands are robust against illumination variation.  
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Table 5.2: Identification accuracy rates base on different illumination 

normalization techniques for Extended Yale B data base 

 

 Accuracy (%) 

Wavelet 

subbands 
method Set1 Set2 Set3 Set4 Set5 

All 

sets 

LL1 

None 98.67 84.65 34.86 6.58 4.2 35.82 

HE 98.22 82.68 32 10.31 16.95 39.31 

QbHE 98.67 84.65 35.05 8.33 18.63 40.53 

RHE 100 100 72.38 25 20.45 55.6 

RQbHE 98.22 86.84 56.95 30.7 27.59 52.74 

LL2 

None 98.67 79.82 32.76 6.36 3.78 34.26 

HE 97.33 77.41 30.29 9.43 15.27 37.16 

QbHE 98.67 79.82 32.95 7.68 16.11 38.26 

RHE 100 100 68.19 21.93 19.33 53.75 

RQbHE 97.78 82.02 53.52 27.41 25.63 49.79 

LH2 

None 89.33 100 85.14 66.89 31.79 68.86 

HE 88.44 100 81.9 82.24 88.52 88.05 

QbHE 89.33 100 84.76 76.1 83.47 86.07 

RHE 87.56 100 83.43 84.43 89.64 89.06 

RQbHE 89.33 100 85.14 84.21 89.08 89.39 

HL2 

None 90.67 99.12 83.24 32.68 6.3 54.17 

HE 88 99.12 83.43 63.6 45.66 71.72 

QbHE 90.67 99.12 84 45.39 40.76 67.13 

RHE 88 99.12 84.19 62.94 43 70.96 

RQbHE 90.67 99.12 83.81 56.58 37.96 68.39 

HH2 

None 67.56 95.18 57.14 28.29 5.88 44.49 

HE 67.56 94.74 65.14 51.97 44.12 62.21 

QbHE 67.56 95.18 58.29 33.11 27.87 52.27 

RHE 69.78 94.96 62.10 46.05 38.94 59.09 

RQbHE 67.56 95.18 56.38 37.72 29.13 53.11 

The accuracy rate in table 5.6 and Table 5.7 overall, illustrate that the multi-stream 

approach is more precise in identification in compare with individual sub-band 

representation. However, the results highly depend on selecting the efficient weights 

as well as choosing subbands. At first glance, by neglecting or giving a small weight 
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to LL2 subband the identification accuracy improve. However, LL2 subband 

contribution in fusion weighted method is more effective for images in subset 1.  

Moreover, to find out the best results and choose the most accurate approach in this 

work the same process for unchanged fusion manner, applied to RHE method as 

well. Since RHE and RQbHE methods have the largest accuracy rate between other 

methods, comparing the results of these two approaches can lead us to better 

conclusion. 

Table 5.3: The accuracy of fix weighted of RHE method for LL and LH subbands 

 

 

 

 

Wavelet Subbands Accuracy (%) 

LL+LH 
Set 1 Set 2 Set 3 Set 4 Set 5 All sets 

Factors 

1 0 100.00 100.00 68.19 21.93 19.33 53.75 

0.9 0.1 100.00 100.00 74.10 28.73 23.11 57.49 

0.8 0.2 100.00 100.00 78.29 37.28 29.13 61.87 

0.7 0.3 100.00 100.00 81.33 47.81 40.34 67.93 

0.6 0.4 99.56 100.00 83.81 57.89 55.32 74.87 

0.5 0.5 96.89 100.00 85.71 66.67 67.65 80.43 

0.4 0.6 96.00 100.00 86.86 74.56 76.89 84.89 

0.3 0.7 95.56 100.00 86.10 78.73 82.77 87.25 

0.2 0.8 93.78 100.00 85.90 82.02 87.39 89.06 

0.1 0.9 89.78 100.00 84.57 84.65 89.08 89.39 

0 1 87.56 100.00 83.43 84.43 89.64 89.06 

The accuracy of RHE method’s wavelet subbands are given in Table 5.3 and Table 

5.4. Based on these two tables, by using LL+LH and LH+HL the maximum accuracy 

is 87.25% and 92% respectively. These accuracy rates were predictable since HL and 

LH are more robust in compare with LL. 
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After applying 10 fold cross validation, since the population of subset’s images 

raised and train group did not only contains P00A+000E+00 images, the accuracy of 

system enhance significantly in compare with original selecting the probe and train 

groups. 

Table 5.4: The accuracy of fix weighted of RHE method for LH2 and HL2 subbands 

in RQbHE method 

 

Wavelet Subbands Accuracy (%) 

LH+HL 
Set 1 Set 2 Set 3 Set 4 Set 5 All sets 

Factors 

1 0 87.56 100.00 83.43 84.43 89.64 89.06 

0.9 0.1 90.22 100.00 85.90 85.53 90.06 90.19 

0.8 0.2 92.89 100.00 87.43 87.28 90.20 91.16 

0.7 0.3 93.33 100.00 89.71 87.94 90.48 91.92 

0.6 0.4 94.22 100.00 90.10 88.16 90.06 92.00 

0.5 0.5 94.67 100.00 90.29 87.94 87.25 91.20 

0.4 0.6 96.44 100.00 90.67 87.72 83.89 90.40 

0.3 0.7 94.22 100.00 90.48 85.09 77.87 87.84 

0.2 0.8 92.89 100.00 89.33 79.82 67.79 83.42 

0.1 0.9 89.33 99.78 86.67 72.37 55.88 77.44 

0 1 88.00 99.12 84.19 62.94 43.00 70.96 
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Table 5.5: The accuracy of combination of LL2 and LH2 with fix weights for five 

different approaches 

 

Wavelet Subbands Accuracy (%) 

LH+HL Methods 

Factors None HE QbHE RHE RQbHE 

1 0 34.26 37.16 38.26 53.75 49.79 

0.9 0.1 38.22 42.59 44.07 57.49 56.48 

0.8 0.2 42.51 48.74 49.79 61.87 62.21 

0.7 0.3 47.01 55.35 56.27 67.93 69.53 

0.6 0.4 51.64 62.84 63.43 74.87 76.01 

0.5 0.5 55.60 69.82 70.08 80.43 81.61 

0.4 0.6 59.72 77.15 76.77 84.89 86.11 

0.3 0.7 63.80 82.32 81.78 87.25 88.05 

0.2 0.8 67.17 86.11 85.40 89.06 89.10 

0.1 0.9 68.81 87.67 86.45 89.39 89.56 

0 1 68.86 88.05 86.07 89.06 89.39 

 

  

Table 5.6: The accuracy of fix fusion method for LL and LH subbands in RQbHE 

approach 

Wavelet Subbands Accuracy (%) 

LL+LH 
Set 1 Set 2 Set 3 Set 4 Set 5 All sets 

Factors 

1 0 97.78 82.02 53.52 27.41 25.63 49.79 

0.9 0.1 98.67 92.76 61.71 33.99 30.53 56.48 

0.8 0.2 99.11 96.93 69.33 42.11 35.99 62.21 

0.7 0.3 99.11 99.78 76.00 51.97 47.34 69.53 

0.6 0.4 98.22 100.00 80.76 62.28 58.96 76.01 

0.5 0.5 96.89 100.00 83.81 71.05 70.17 81.61 

0.4 0.6 95.11 100.00 85.90 78.07 79.69 86.11 

0.3 0.7 94.22 100.00 85.90 81.36 84.31 88.05 

0.2 0.8 92.00 100.00 85.71 83.55 87.25 89.10 

0.1 0.9 91.11 100.00 85.71 84.87 88.24 89.56 

0 1 89.33 100.00 85.14 84.21 89.08 89.39 
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Table 5.7: The accuracy of fix weighted for RQbHE method for LH and HL 

subbands 

 

Wavelet Subbands Accuracy (%) 

LH+HL 
Set 1 Set 2 Set 3 Set 4 Set 5 All sets 

Factors 

1 0 89.33 100.00 85.14 84.21 89.08 89.39 

0.9 0.1 91.56 100.00 86.10 85.96 89.36 90.24 

0.8 0.2 92.44 100.00 87.62 85.96 89.92 90.82 

0.7 0.3 94.22 100.00 89.14 86.40 89.22 91.20 

0.6 0.4 94.67 100.00 90.86 87.72 87.39 91.33 

0.5 0.5 95.56 100.00 91.81 87.94 85.01 90.95 

0.4 0.6 96.89 100.00 92.38 86.18 78.99 89.06 

0.3 0.7 97.78 100.00 91.81 81.36 71.29 85.77 

0.2 0.8 94.67 100.00 89.33 75.88 59.80 80.43 

0.1 0.9 92.89 100.00 86.29 66.01 47.90 74.12 

0 1 90.67 99.12 83.81 56.58 37.96 68.39 

 

 

The earlier method shows the effect of adaptive face recognition however; in new 

method I could investigate the best approximation to choose the better accuracy for 

recognition system. The results in Table 5.8 illustrated the accuracy rate of all 

approaches with benefit of 10-fold valid classification. In this table the whole 

accuracy rates are significantly greater than last results. This increase is just about 

changing in probe and test images that NN classifier used. In previews tables, results 

were achieved by using 2376 images for probe and 38 images for train groups and 

the train group is include the well-lit photos. Results in this technique demonstrate 

the effectiveness of recognition system to illumination. Then, results in Table 5.8 

show the accuracy of methods in illumination normalization and feature extraction 

technique. High accuracy rates in this table illustrate that DWT extract important 

features of photos that makes the classifier more reliable even for None method. 
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Comparable to data in Table 5.2 here the minimum error is refers to RHE and 

RQbHE approaches. Since results in Table 5.8 for LH and HL subbands are very 

close, combing them with LL subband cannot present useful information. 

Table 5.8: Identification accuracy rates correspond to each approach achieved by 10 

fold cross validation for Extended Yale B data base 

 

 

 
 

 Accuracy (%) 

Wavelet 

subbands 
Method Set1 Set2 Set3 Set4 Set5 All sets 

LL2 

None 100 100 86.10 52.63 41.46 70.71 

HE 100 100 89.71 81.80 92.02 91.96 

QbHE 99.62 99.78 85.71 56.36 83.61 83.72 

RHE 100 100 97.14 90.57 98.32 97.10 

RQbHE 88.65 100 96.93 76.38 78.51 94.68 

LH2 

None 100 100 100 99.56 88.24 96.44 

HE 100 100 100 99.78 99.16 99.71 

QbHE 100 100 100 99.78 99.16 99.71 

RHE 100 100 99.62 100 99.16 99.67 

RQbHE 99.67 100 100 99.81 99.78 99.16 

HL2 

None 100 100 99.43 93.42 80.25 92.79 

HE 100 100 99.81 98.25 99.16 99.38 

QbHE 100 100 100 98.03 99.02 99.34 

RHE 100 100 99.62 98.90 99.16 99.46 

RQbHE 99.38 100 100 99.62 98.25 99.30 
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Table 5.9: GLQ and RLQ of each region for RHE and RQbHE methods when 

threshold sets to 0.8 
 

Method 
Subsets 

1 2 3 4 5 

None 

 

 

GLQ 0.9987 0.8880 0.5647 0.4197 0.1481 

RLQ 

0.9978 0.9995 0.9964 0.7773 0.7202 0.4013 0.3005 0.5467 0.0794 0.13162 

0.99897 0.9982 0.9999 0.77858 0.7116 0.3576 0.2588 0.5459 0.1099 0.2686 

 

RHE 

 

 

GLQ 0.9867 0.9865 0.9866 0.9860 0.9845 

RLQ 
0.9865 0.9865 0.9866 0.9866 0.9866 0.9864 0.9844 0.9867 0.9804 0.9840 

0.9867 0.9870 0.9865 0.9865 0.9867 0.9865 0.9866 0.9863 0.9865 0.9869 

 

RQbHE 

 

 

GLQ 0.9987 0.9687 0.9866 0.9860 0.9845 

RLQ 
0.9978 0.9995 0.9964 0.9866 0.9866 0.9864 0.9844 0.9867 0.9804 0.98404 

0.99897 0.9982 0.9999 0.9865 0.9867 0.9865 0.9866 0.9863 0.9865 0.98695 
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Chapter 6 

6. CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

In this thesis human face recognition is investigated in the presence of validation in 

lighting condition. A quantitative quality value is used which is named the luminance 

quality (LQ) index. LQ is used for the whole pixels and for four regions of images. 

Based on [1] the probe and train images are selected from Extended Yale database B 

which confirmed the effectiveness of illumination normalization procedures. By 

changing the group of train and probe images the effectiveness of feature extraction 

method and illumination normalization procedure are investigated.  

Moreover, Wavelet transform gave us different features of images that presented 

specific information of images. Since the images captured in extreme variation in 

lighting conditions, combining different features that obtained from wavelet 

transform led us to a more accurate recognition system.  

Finally, adaptive fusion approach, done by choosing appropriate masses according to 

LQ index of probe images, significantly increased the accuracy of the face 

recognition system. 

6.2 Future Work 

The future work will contain other applications of wavelet transform in face 

detection and face recognition. 3D wavelet transform can use in 3D face recognition 
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and even face detection. Moreover, it can utilize the features of human brain 3D MRI 

images in an automated system to detect the position and even recognize the type of 

tumors. Beside choosing better databases and different classification approaches 

according to probe and train groups, wavelet base adaptive automated systems enable 

us to reach a wider range of features of data that lead to more accurate and reliable 

systems. 
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