
Implementation and Experiments on Face Detection

System (FDS) Using Perceptual Quality Aware

Features

Amir Khan

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February 2017

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr.Mustafa Tümer

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Assoc. Prof. Dr. Alexander Chefranov

 Supervisor

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Assoc. Prof. Dr. Önsen Toygar

3. Asst. Prof. Dr. Adnan Acan

http://cmpe.emu.edu.tr/iAybay/
http://www.emu.edu.tr/onsentoygar/

iii

ABSTRACT

This thesis is motivated by developing a face detection system for detecting faces in

distorted images. Interaction between face detection and perceptual image quality is

studied and analyzed to develop this robust face detection system. It is observed that

accuracy of existing face detection systems are degraded with increase in distortion

which is occurred due to many factors like low resolution of cameras, during

transmission or storing. These types of distortions are AWGN, G Blur and JPEG. To

overcome this problem, a new set of features named QUALHOG (which is a

combination of NSS features and HOG features) is proposed for better and accurate

face detection which augments Histogram of Oriented Gradients (HOG) features

with perceptual quality-aware spatial Natural Scene Statistics (NSS) features.

Face detection system based on QUALHOG features shows a great improvement in

detecting faces as compared to face detection system based on HOG features. A large

set of images are used for experimentation. To facilitate these experiments, a

distorted face database (DFD) which contains face and non-face images by a variety

of common distortion types and levels is used. This new dataset is available for

download and further experimentation and it contains images at 10 distortion levels.

Precision and Recall are calculated, Precision versus distortion level and Recall

versus Distortion level curves are obtained to show the comparison between HOG

and QUALHOG based face detection systems.

Furthermore obtained results are compared with known results and presented as

AUPR versus Distortion level curves to show the feasibility of FDS.

iv

Keywords: Face detection system, Distorted images, Perceptual Quality Aware

features, Histogram of Oriented Gradients

v

ÖZ

Bu tez, bozulmuş görüntülerde yüzleri tespit etmek için bir yüz algılama sistemi

geliştirerek motive edilir. Yüz tanıma ve algılamalı görüntü kalitesi arasındaki

etkileşim incelenmiş ve sağlam bir yüz tespit sistemi geliştirilmiştir. Mevcut yüz

tanıma sistemlerinin doğruluğunun, kameralarda düşük çözünürlük, iletim veya

depolama gibi pek çok faktöre bağlı olarak bozulma artışı ile bozulduğu

gözlemlenmiştir. Bu tür bozulmaların sebebi AWGN, G Blur ve JPEG'tir. Bu

sorunun üstesinden gelmek için, QUALHOG isminde yeni bir öznitelik kümesi

önerilmiştir. Bu yöntem, NSS vs HOG özniteliklerini içermektedir.

QUALHOG özniteliklerini temel alan yüz tanıma sistemi, HOG özniteliklerini

kullanan yüz tanıma sistemi ile karşılaştırıldığında, HOG özniteliklerine göre yüz

tanımada büyük bir gelişme olduğunu gösterir. Deneyler için geniş bir görüntü grubu

kullanılmıstır. Bu deneyleri kolaylaştırmak için, çeşitli genel çarpıtma türleri ve

seviyeleri ile yüz ve yüz olmayan görüntüler içeren çarpık bir yüz veritabanı (DFD)

kullanılmıştır. Bu yeni veri kümesi, indirilebilir,ileriki deneyler için kullanılabilir ve

10 bozulma seviyesinde görüntüler içerir. Deneylerde, Hassas ve Geri Çağırma

hesaplanmış, Hassas ve bozulma seviyesi, ve Geri Çağırma ve Çarpışma seviyesi

eğrileri, HOG ve QUALHOG tabanlı yüz tanıma sistemleri arasındaki

karşılaştırmayı göstermek için elde edilmiştir.

Ayrıca elde edilen sonuçlar, bilinen sonuçlarla karşılaştırıldığında, FDS'nin

fizibilitesini göstermek için AUPR ve Distorsiyon seviyesi eğrileri olarak

gösterilmiştir.

vi

Anahtar Kelimeler: Yüzalgılamasistemi, Bozulmuş görüntüler, Algısal Kaliteye

Duyarlı Öznitelikler, Odaklı Eğim Histogramı

vii

DEDICATION

This thesis dedicated to my mother and my father.

viii

ACKNOWLEDGEMENT

I would like to record my gratitude to Assoc. Prof. Dr. Alexander Chefranov for his

supervision, advice, and guidance from the very early stage of this thesis as well as

giving me extraordinary experiences throughout the work. Above all and the most

needed, he provided me constant encouragement and support in various ways. His

ideas, experiences, and passions has truly inspire and enrich my growth as a student.

I am indebted to him more than he knows.

I would like to acknowledge Assoc. Prof. Dr. Önsen Toygar for all her advice and

encouragement, I am grateful in every possible way. Special thanks go to Asst. Prof.

Dr. Adnan Acan and Prof. Dr. Işık Aybay (Chairman of Computer engineering

department) for their advice and guidance.

In the end, I would like to thank Almighty Allah for everything I accomplished.

http://www.emu.edu.tr/onsentoygar/
http://cmpe.emu.edu.tr/iAybay/

ix

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………..iii

ÖZ…………………………………………………………………………………..…….v

DEDICATION…………………………………………………………………………..vii

ACKNOWLEDGEMENT………………………………………………………..……..viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS .. xvii

1 INTRODUCTION .. 1

2 LITERATURE REVIEW OF FDS AND PROBLEM DEFINITION 3

2.1 Face Detection on Distorted Images Augmented by Perceptual Quality Aware

Features .. 3

2.2 Distortion of images by AWGN, GBlur and JPEG .. 5

2.3 Extraction of QUALHOG features ... 9

2.3.1 Extraction of NSS features .. 9

 2.3.2 Extraction of HOG features ... 15

2.4 SVM Classifiers ... 18

2.4.1 Liblinear SVM Classifier ... 18

2.4.2 SVM Light Classifier ... 22

2.5 Known experimental results according to [1] .. 22

2.5.1 Experiment setup ... 22

2.5.2 Experiment results ... 23

2.6 Problem Definition ... 26

2.7 Related work ... 27

x

2.8 Conclusion .. 29

3 DESIGN, IMPLEMENTATION AND TESTING OF FDS USING QUALHOG 30

3.1 Overall Structure of FDS .. 30

3.2 Implementation and testing of NSS features .. 30

3.2.1 Implementation and testing for image normalization 30

3.2.2 Implementation and testing of GGD parameters ... 35

3.2.3 Implementation and testing of AGGD parameters .. 41

3.3 Implementation and testing of extraction of HOG features 49

3.3.1 Implementation and testing of gradient vectors ... 49

3.3.2 Implementation and testing of orientation binning .. 52

3.3.3 Implementation and testing of block normalization .. 54

3.4 Implementation and testing of Classifiers usage .. 55

3.4.1 Implementation and testing of Liblinear SVM usage 55

 3.4.2 Implementation and testing of SVM Light usage .. 58

3.5 Implementation of FDS for any size of images using sliding window 58

3.6 Conclusion .. 59

4 EXPERIMENTS ON FDS FOR DISTORTED IMAGES .. 60

4.1 Experiment setup .. 60

4.2 Experiments results .. 61

 4.2.1 Images distorted by AWGN (Additive White Gaussian Noise) 62

 4.2.2 Images distorted by G Blur (Gaussian Blur) ... 66

4.2.3 Images distorted by JPEG .. 70

4.3 Comparison with known results ... 74

4.4 Experiments on images of any size using sliding window technique 75

4.4.1 Training .. 75

xi

4.4.2 Prediction ... 75

4.4.3 Results of experiments ... 75

4.5 Conclusion .. 79

5 CONCLUSION ... 81

REFERENCES ... 83

APPENDICES ... 86

Appendix A: Code for training images using Liblinear SVM 87

Appendix B: Code for testing images using Liblinear SVM 88

Appendix C: Code for calculating NSS features .. 89

Appendix D: Code for calculating GGD parameters ... 90

Appendix E: Code for calculating AGGD parameters ... 91

Appendix F: Code for extracting HOG features .. 91

Appendix G: Code for normalize images features between -1 and +1 93

Appendix H: Code for training of images in test images using SVM light 93

Appendix I: Code for testing images using SVM light through sliding window 95

Appendix J: Code for generating curve QUALHOGvs HOG 96

Appendix K: Code for generating Gaussian filter without using Matlab function 97

Appendix L: Manually created table for saving experiment results............................. 98

xii

LIST OF TABLES

Table 1: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by AWGN with different

levels using QUALHOG features, Precision and Recall are calculated. 62

Table 2: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by AWGN with different

levels using HOG features, Precision and Recall are calculated. 63

Table 3: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by Gaussian Blur with

different levels using QUALHOG features, Precision and Recall are calculated............ 66

Table 4: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by Gaussian Blur with

different levels using HOG features, Precision and Recall are calculated. 67

Table 5: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by JPEG in different levels

(Q factor) using QUALHOG features, Precision and Recall are calculated. 70

Table 6: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by JPEG in different levels

(Q factor) using HOG features, Precision and Recall are calculated. 71

Table 7: True positive and false positive are obtained for images distorted by AWGN at

different log scale ... 75

Table 8: True positive and false positive are obtained for images distorted by AWGN at

different log scale ... 76

xiii

Table 9: True positive and false positive are obtained for images distorted by G Blur at

different log scale ... 76

Table 10: True positive and false positive are obtained for images distorted by G Blur at

different log scale ... 77

Table 11: True positive and false positive are obtained for images distorted by JPEG at

different log scale ... 77

Table 12: True positive and false positive are obtained for images distorted by JPEG at

different log scale ... 78

xiv

LIST OF FIGURES

Figure 1: Overall structure of FDS according to [1] .. 5

Figure 2: NIQE vs AWGN curve ... 23

Figure 3: NIQE vs GBlur curve ... 24

Figure 4: NIQE vs JPEG curve .. 24

Figure 5: AUPR vs AWGN curve .. 25

Figure 6: AUPR vs GBlur curve .. 25

Figure 7: AUPR vs JPEG curve ... 25

Figure 8: Input Image used for testing for NSS and HOG features [1] 31

Figure 9: Gray scale conversion of an image in Figure 8 .. 31

Figure 10: Pixel intensity values of image (24..29, 54..58) from Figure 9 32

Figure 11: Generated Gaussian Filter for an image (Figure 9) .. 32

Figure 12: Generated Gaussian Filter for an image (Figure 6) by using code in Appendix

K ... 33

Figure 13: Mean values of gray scale image (24...29, 54....58) are shown in Figure 9 ... 34

Figure 14: Variance values (24...29, 54...58) of a given image (Figure 9) 34

Figure 15: Normalize pixel intensity values of gray scale image (24...29, 54...58) (Figure

9) .. 35

Figure 16: Normalized image .. 35

Figure 17:Values of r (γ) is shown (from position 79 to 91) which is obtained using

lookup table .. 36

Figure 18: Determine array position in Gaussian ratio table (5) by using value of ratio . 39

Figure 19: Determine value in look up table corresponds to array position found in

Figure 18 .. 40

file:///F:\Final%20submission.docx%23_Toc476079343

xv

Figure 20: A totals of 4 parameters are calculated for a given image (Figure 16) 40

Figure 21: Pixel value intensities (1...4, 1...5) of an image (Figure 16) 41

Figure 22: Pixel value intensities (1...4, 1...5) of an image (Figure 16) after horizontal

shift ... 42

Figure 23: Values of vector (1...7) obtained by multiplication of shifted image pixel

values in horizontal direction (Figure 22) with normalized image pixel values (Figure

21) and stored in pair.. 42

Figure 24: Initial 13 values of r (α) is shown of image (Figure 13) which is obtained

using lookup table .. 43

Figure 25: A total of 4 parameters that are shape parameter, statistical mean, left and

right standard deviation for an image (Figure 16) are estimated 48

Figure 26: A total of 16 features in horizontal, vertical and in diagonal direction are

calculated for an image (Figure 16) ... 48

Figure 27: A total of 32 parameters obtained by concatenation of features from

normalized image (Figure 16) and down sampled image. ... 48

Figure 28: Gradient in x direction [2..5, 27..31] for an image (Figure 9) 51

Figure 29: Gradient in y direction [2..5, 27..31] for an image (Figure 9) 51

Figure 30: Angles are calculated [2..5, 27..31] for an image (Figure 9) 51

Figure 31: Magnitudes are calculated [2..5, 27..31] for an image (Figure 9) 52

Figure 32: Grouping of 64 pixels (1..2, 21..28) calculated angles into a cell for Figure 9

 .. 53

Figure 33: Grouping of first 64 pixels (1..2, 21..28) calculated magnitudes into a cell for

Figure 9 .. 53

Figure 34: Histogram values in 36 bins for one block for Figure 9 54

Figure 35: All features in a block after L2 normalization for Figure 9............................ 54

xvi

Figure 36: All features in a block after L1 normalization for Figure 9............................ 55

Figure 37: All features in a block after L1 sqrt normalization for Figure 9..................... 55

Figure 38: First 13 features of total 2268 features for Figure 9 55

Figure 39: Result obtained after training ... 56

Figure 40: Accuracy (percentage of true positive images) is obtained for tested images 57

Figure 41: Precision vs AWGN curve for QUALHOG (red curve) and HOG (green

curve) features .. 64

Figure 42: Recall vs AWGN curve for QUALHOG (red curve) and HOG (green curve)

features ... 65

Figure 43: Precision vs GBlur curve for QUALHOG (red curve) and HOG (green curve)

features ... 68

Figure 44: Recall vs GBlur curve for QUALHOG (red curve) and HOG (green curve)

features ... 69

Figure 45: Precision vs JPEG curve for QUALHOG (red curve) and HOG (green curve)

features ... 72

Figure 46: Recall vs JPEG curve for QUALHOG (red curve) and HOG (green curve)

features ... 73

Figure 47: A tested example of true positive (left) and false positive (right) detection in

two distorted images .. 78

xvii

LIST OF ABBREVIATIONS

AGGD Asymmetric Generalized Gaussian distribution

AUPR Area under precision recall curve.

AWGN Additive White Gaussian Noise

DCT Discrete Cosine Transformation

DFD Distorted Face Database

FDS Face Detection System

G Blur Gaussian Blur

GGD Generalized Gaussian distribution

HOG Histogram of Oriented Gradients

JPEG Joint Photographic Experts Group

NIQE Natural Image Quality Evaluator

NSS Natural Scene Statics in Spatial domain

QUALHOG Augmentation of Histogram of Gradient features (HOG) with

perceptual quality (NSS) features

1

Chapter 1

INTRODUCTION

The arrival of low cost digital storage device and social networking and photo

sharing websites like Instagram, Snapchat, Facebook, Twitter etc leads to rapid

growth of sharing visual data like photos and videos across these platforms over

internet. Image processing and Computer vision algorithms focus on studying the

content based on real life applications like surveillance, image exploring etc. The

main task of Computer vision algorithms are object detection and object recognition.

But these algorithms work well in certain limits and performance is degraded with

the decline in image quality. Automatic face detection which is used commercially

these days is one of the examples. Face detection is used for security purpose and

also for surveillance but often images are subjected to be distorted due to the weather

conditions or due to low quality of camera device and these distortion have direct

effect on performance of detector.

In this research, a new set of features QUALHOG [1] are studied and implemented,

which shows more tolerance to common distortion like AWGN, GBlur and JPEG in

images. This research inspires by the fact that perceptual quality aware feature can be

used for modeling face detectors. Widely used and implemented Histogram of

gradient features (HOG) based detection algorithm is used as foundation for

implementation of this research. Perceptual quality aware features (NSS spatial) [2]

2

are also explored along with HOG [5] in order to make detector more tolerant to

image distortions.

The main contribution of this thesis is as follows

 Images are distorted by using three different types of distortion techniques

like Additive White Gaussian noise (AWGN), Gaussian Blur (G Blur) and

JPEG at different levels.

 A new set of features name QUALHOG, which augments perceptual quality

aware (NSS spatial) features with HOG features are studied and

implemented.

 Robustness of QUALHOG is measured and calculated and compare it with

HOG in order to show its better performance.

 LIBLINEAR [6] and SVM Light [13] Support vector machine is studied and

implemented for classification and prediction of facial images.

The rest of the thesis is organized as follows. Chapter 2 contains literature review of

FDS and problem definition. Chapter 3 contains design, implementation and testing

of FDS. Chapter 4 contains experiments and results of FDS. Chapter 5 contains

conclusion. Appendices contain code of FDS and raw data on experiments with

FDS.

3

Chapter 2

LITERATURE REVIEW OF FDS AND PROBLEM

DEFINITION

2.1 Face Detection on Distorted Images Augmented by Perceptual

Quality-Aware Features

Overall FDS structure

Training Images QUALHOG features

 Model file

Testing Image QUALHOG features

 Face or non face

a. Overall FDS structure

QUALHOG

feature extraction

Label images (+1 for face

and -1 for non face)

Training using

Classifier

QUALHOG

feature extraction

Testing using Classifier using

model file

4

 NSS features

 Distorted Image QUALHOG features (HOG + NSS)

 HOG features

b. Structure for QUALHOG feature extraction

 GGD parameters

Distorted Image Normalized image

 AGGD parameters

 NSS features (GGD + AGGD)

c. Structure for NSS feature extraction

Distorted Image Gaussian filter mean

 Normalized image

variance

d. Structure for image normalization

Normalized Image Gaussian ratio mean and variance

 ratio mean estimate

 GGD parameters

e. Structure for estimation of GGD parameters

NSS feature

extraction

HOG feature

extraction

Image

normalization

Estimation of

GGD parameters

Estimation of

AGGD parameters

Generate

Gaussian filter

Calculate mean Calculate variance

Normalized

formula

Calculate

Gaussian ratio

Calculate mean

and variance

Calculate modified

mean estimate
Calculate ratio Calculate shape

parameter

5

Normalized Image Gaussian ratio left and right standard

 deviation

 gammahat,unbiasedestimate and rhatnorm

shape parameter left and right scale parameters AGGD

parameters

f. Structure for estimation of AGGD parameters

 Distorted Image gradient vectors histogram bins

 HOG features

g. Structure for HOG features extraction

Figure 1: Overall structure of FDS according to [1]

Figure 1 shows overall structure of FDS as it is defined in [1], in which QUALHOG

features are extracted by augmentation of NSS and HOG features. NSS features are

obtained by augmentation of GGD and AGGD parameters. In the end, LIBLINEAR

SVM is used for training and testing of images.

2.2 Distortion of images by AWGN, GBlur and JPEG

In [1]detection of faces on distorted images mainly by Gaussian Blur, Additive white

Gaussian noise and JPEG is considered.

Calculate

Gaussian ratio
Calculate left and right

standard deviation

Calculate gammahat,unbiased

estimate and rhatnorm
Calculate shape

parameter

Calculate left and

right scale parameters

Calculate

statistical mean

Compute gradient

vectors

Orientation

binning

Block

normalization

6

Additive White Gaussian Noise (AGWN) - It‟s a type of distortion which is used in

networking as well as in images processing. In image processing, zero mean normal

distributed noise which is Gaussian noise is added to every pixel of an image.

AWGN is defined as

 I i, j = I i, j + Nij (1)

where,Nij ~ N(µ , σN
2), µis mean,𝜍𝑁

2 is variance and I i, j is original imageandI i, j is

image distorted by AWGN. µis always zero in AWGN therefore distortion level

depend on𝜍𝑁
2 .

Gaussian Blur (G Blur) – In Gaussian blur, images are distorted using normal

distribution or Gaussian function. Convolution of an image with its Gaussian

function used to obtain desired distortion, new value of a pixel is obtained by taking

weighted average of neighbor pixels.

The Gaussian function in two dimensions is given by

G(x,y)=
1

2πσB
2 ∗ e

−
x 2+ y 2

2σB
2

 (2)

In (2), x refers to rows and y refers to column of Gaussian kernel and 𝜍𝐵 refers to

standard deviation.

In images processing, Gaussian function is pruned to 6𝜍𝐵 which means

−[3𝜍𝐵] ≤ x ≤ [3𝜍𝐵] and −[3𝜍𝐵] ≤ y ≤ [3𝜍𝐵] (3)

7

An image distorted by Gaussian blur can be written as

 I = I ∗ G (4)

Where, „*‟ stands for convolution.

Formula (4) can be rewritten as

 𝐼 𝑖, 𝑗 = 𝐼 𝑖 + 𝑥, 𝑗 + 𝑦 ∗ 𝐺(𝑥,𝑦)
[3𝜍𝐵]
𝑦= −[3𝜍𝐵]

[3𝜍𝐵]
𝑥= −[3𝜍𝐵] (5)

In (5), 𝑖 is rowand 𝑗 is the column number of an image.

Joint Picture Experts Group (JPEG) – It is a compression technique to reduce size of

an image so that it is easy to store and send them over network medium. It is a lossy-

compression technique in which once data is loosed in order to reduce storage space

can‟t be recovered and quality of an image degrades with the increase in

compression.

Steps to perform JPEG Compression and decompression

a. JPEG works on 8*8 blocks, an image is converted into a grayscale image and

then is divided into sub images of size dimension 8*8 which is called blocks.

b. As it is a grayscale image, it ranges from 0 to 255, we need to convert the

value between -128 to 127, so we subtract 128 from each pixel of an image

block we selected.

8

c. In this step DCT is performed on x axis and y axis, that is 2-D DCT, in order

change image values into frequency domain.

Mathematical expression for 2 dimensional DCT is

 𝐺𝑢 ,𝑣 =
1

4
𝛼 𝑢 𝛼 𝑣 𝐺𝑥 ,𝑦

7
𝑦=0

7
𝑥=0 cos

 2𝑥+1 𝑢𝜋

16
 cos[

 2𝑦+1 𝑣𝜋

16
] (6)

where, u and v horizontal and vertical spatial frequencies respectively and

ranges from 0 ≤ 𝑢 < 8 𝑎𝑛𝑑 0 ≤ 𝑣 < 8

𝛼 𝑢 =

1

√2
 , 𝑖𝑓𝑢 = 0

1 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

𝐺𝑥 ,𝑦 is a pixel value at location (x,y) and 𝐺𝑢 ,𝑣 is Discrete Courier

Transformation coefficient at location (u,v).

After applying the above expression, image pixel values will change into

frequency domain.

d. This stage is called Quantization and it is the process which decides the

image quality and compression efficiency and it is also called „Q‟ factor.

Quantization reduces information at higher frequencies as human eye is less

susceptible to see minor changes at higher frequency. Mathematical

expression for Quantization can be written as

9

 𝐵𝑗 ,𝑘 = 𝑟𝑜𝑢𝑛𝑑
𝐺𝑗 ,𝑘

𝑄𝑗 ,𝑘
 𝑓𝑜𝑟𝑗 = 0 𝑡𝑜 7 𝑎𝑛𝑑𝑘 = 0 𝑡𝑜 7 (7)

Where,

G = dequantized DCT coefficient

Q = quantization matrix for an image

B = quantized Discrete courier transform coefficient

Coding – In this stage, components of image coded in zigzag manner which

uses RLE (run to length algorithm which picks up same frequencies in image

component and group them. Huffman coding is used in later part to code

image components.

Decompression – It‟s the inverse of compression, Its consists of decoding,

then de-quantized image , then apply inverse DCT on de-quantized image to

convert it from frequency domain to its original form.

Note – since it‟s a lossy-compression hence, original image can‟t be obtained

after decompression.

2.3 Extraction of QUALHOG features

QUALHOG Features are the augmentation of NSS and HOG features.

 2.3.1 Extraction of NSS features

This paper [2] proposed a method of image quality assessment in spatial domain with

no references available. This method works in spatial domain and no transformation

is needed to another coordinated frame like DCT, wavelet, etc. hence require very

little computation. This is done in three stages -

10

1.Compute locally normalized luminance of an image.

It is done using normalization and local mean subtraction over an image

 𝐼 𝑖, 𝑗 =
𝐼 𝑖 ,𝑗 −𝜇 (𝑖 ,𝑗)

𝜍 𝑖 ,𝑗 + 𝐶
 (8)

In equation (8),‘ I‟is the original image in which i ϵ 1,2,3…… . M

and𝑗𝜖 1,2,3…… .𝑁where M and N are the rows and columns of an image. C is a

constant which is always1, the role of C is to keep image stable when denominator

goes to zero. μ and σare the mean and variance of an image.Mathematical expression

to calculate mean and variance of an image.

 𝜇 𝑖, 𝑗 = 𝑤𝑘 ,𝑙
𝐿
𝑙 = −𝐿

𝐾
𝑘= −𝐾 𝐼𝑘 ,𝑙 𝑖, 𝑗 (9)

 𝜍 𝑖, 𝑗 = 𝑤𝑘 ,𝑙(𝐼𝑘 ,𝑙 𝑖, 𝑗 − 𝜇 𝑖, 𝑗)2𝐿
𝑙= −𝐿

𝐾
𝑘= −𝐾 (10)

In equation (9) and (10), 𝑤𝑘 ,𝑙 is a two dimensional Gaussian filter applied circularly

and down sampled to unit volume and three standard deviation, K = 3 and L = 3. By

applying the above equation, locally normalized luminance image is obtained, the

performance of the above equation fluctuate according to the window size of an

image.

2. Applying Generalized Gaussian distribution (GGD) [3] on normalized image.

11

Computer histograms over pixels of distorted images befitted by applying

Generalized Gaussian distribution (GGD) and digression of that image from its

original form comes handy to estimate type of distortion and level of distortion.

3.Applying Asymmetric Generalized Gaussian Distribution (AGGD) [4] on

normalized image. AGGD generalizes the Generalized Gaussian Distribution and

comprehend it by allowing asymmetry in the distribution. The features are calculated

along four orientations horizontal (H), vertical (V), main-diagonal (D1) and

secondary diagonal (D2).

𝐻 𝑖,𝑗 = 𝐼 𝑖 ,𝑗 𝐼 𝑖,𝑗+1

𝑉(𝑖,𝑗) = 𝐼 (𝑖,𝑗)𝐼 (𝑖+1,𝑗)

𝐷1(𝑖,𝑗) = 𝐼 (𝑖,𝑗)𝐼 (𝑖+1,𝑗+1)

 𝐷2(𝑖,𝑗) = 𝐼 (𝑖,𝑗)𝐼 (𝑖+1,𝑗−1) (11)

In equations (11), AGGD parameters are calculated in horizontal, vertical, diagonal

D1 and diagonal D2 directions.

Estimation of GGD parameters

In [3], two parameters, shape parameter and standard deviation are estimated for

animage. The GGD probability density function (pdf) is given by

 𝑓 𝑥;𝛼,𝜍2 =
𝛼

2𝛽𝜏 1/𝛼
exp

−|𝑥|

𝛽

𝛼

 (12)

𝛽 = 𝜍
𝜏 1/𝛼

𝜏 3/𝛼

12

𝜏 𝑎 = 𝑡𝑎−1

∞

0

∗ 𝑎−𝑡𝑑𝑡𝑎 > 0

Where, 𝜏is gamma function

In equation (12), 𝛼 is shape parameter and 𝜍 is the standard deviation.

The steps used to calculate shape parameter (𝛼) and variance (𝜍2) of any image are

as follows

a. Calculate Generalized Gaussian ratio function

 𝑟 𝛾 =
𝜍2

𝐸2[𝑋]
 =

𝜏 1/𝛾 ∗𝜏 3/𝛾

𝜏2 2/𝛾
 (13)

To calculate Gaussian ration function, Look up table is defined for parameter (𝛾).

b. Calculate mean (𝜇𝑥) and variance (𝜍𝑥
2) of any image (𝑥𝑖𝑗)

 𝜇𝑥 =
1

𝑀
 𝑥𝑖𝑗
𝑀
𝑖=1 (14)

 𝜍𝑥
2 =

1

𝑀
 𝑥𝑖𝑗 − 𝜇𝑥

2
 𝑀

𝑖=1 (15)

In equation (14) & (15), M is total number of pixel values in any image.

c. Calculate estimate (𝐸 𝑋) for the absolute values modified mean

 𝐸 𝑋 =
1

𝑀
 |𝑥𝑖𝑗 − 𝜇𝑥 |𝑀
𝑖=1 (16)

13

 In equation (16), M is total number of pixel values in any image.

d. Determine the ratio (𝜌)

 𝜌 =
𝜍𝑥

2

𝐸2[𝑋]
 (17)

e. Solve the equation 𝛾 = 𝑟−1 𝜌 (18)

where, r is the generalized Gaussian ratio function, by using a lookup table. The

look up can be defined by the user or by giving instructions to machine to choose

random variable with a constant difference between two variables.

By applying the above four steps in a image, two important features that is shape

parameter 𝛾 and variance (𝜍2) are found. These parameters are used for examining

distortion level in images and videos and useful for detection of faces in distorted

images.

Estimation of AGGD parameters

In [4], AGGD parameters (4 parameters i.e. shape parameter, left and right standard

deviation and statistical mean) are calculated. Probability density function for AGGD

is given by

 𝑓 𝑥; 𝛼,𝛽 =

𝛾

2 𝛽𝑙+𝛽𝑟 𝜏(1/𝛾)
exp

− 𝑥

𝛽𝑙

α

, 𝑖𝑓𝑥 ≤ 0

𝛾

2 𝛽𝑙+𝛽𝑟 𝜏(1/𝛾)
exp

− 𝑥

𝛽𝑟

α

 , 𝑖𝑓𝑥 > 0

 (19)

14

Steps to calculate parameters

a. Calculate Generalized Gaussian ratio𝜌 𝛼 function

 𝜌 𝛼 =
𝜏2 2/𝛼

𝜏 1/𝛼 𝜏 3/𝛼
 (20)

b. Calculate left standard deviation (𝛽𝑙) ad right standard deviation(𝛽𝑟)

 𝛽𝑙 =
1

𝑁𝑙−1
 𝑥𝑘

2𝑁𝑙
𝑘=1,𝑥𝑘<0 (21)

 𝛽𝑟 =
1

𝑁𝑟−1
 𝑥𝑘

2𝑁𝑟
𝑘=1,𝑥𝑘≥0 (22)

In equations (21) & (22), 𝛽𝑙 and 𝛽𝑟 are left and right standard deviation, 𝑁𝑙

and 𝑁𝑟 is number of sample of 𝑥𝑘𝑤𝑒𝑛𝑥𝑘 < 0 𝑎𝑛𝑑𝑥𝑘 ≥ 0 respectively.

c. Calculate the value of gamma hat (γ), r (unbiased estimate) and R using γ

and r

 𝛾 =
𝛽𝑙

𝛽𝑟
 (23)

 𝑟 =
 |𝑥𝑘 | 2

 𝑥𝑘
2 (24)

15

 𝑅 = 𝑟 .
 𝛾 3+ 1 . (𝛾 + 1)

(𝛾 2+ 1)2 (25)

d. According to 𝑅 (R hat) value estimate (α) using the approximation of the

inverse generalized Gaussian ratio

 𝛼 = 𝜌−1 𝑅 (26)

e. Calculate left scale parameter (𝛽 𝑙) and right scale parameter (𝛽 𝑟)

 𝛽 𝑙 = 𝛽𝑙 ∗
𝜏 3/𝛼

𝜏 1/𝛼
 (27)

 𝛽 𝑟 = 𝛽𝑟 ∗
𝜏 3/𝛼

𝜏 1/𝛼
 (28)

f. Compute statistical mean

 𝜂 = 𝛽𝑙 − 𝛽𝑟
𝜏 2/𝛼

𝜏 1/𝛼
 (29)

2.3.2 Extraction of HOG features

This paper [5] studies the extraction for histogram of oriented gradient features in

images. This paper shows the superiority of Histogram of oriented gradient

descriptor over SIFT and shape context descriptor.

Gamma/Color normalization – RGB, grayscale, LAB color images were tested, these

color were subject to normalization before computing gradients.

16

Gradient computation – Gradient have been computed in x and y direction. It is

computed for every pixel of an image, It is calculated the variance in pixel value in

horizontal and vertical direction.

Gradient vector in x direction of pixel (hx) = 𝑥𝑙 − 𝑥𝑟 (30)

Gradient vector in x direction of pixel (hy) = 𝑥𝑡 − 𝑥𝑏 (31)

In equations (30) and (31), hx is centrepixel ,𝑥𝑟 is a pixel right direction of center

pixel, 𝑥𝑙 is a pixel in left direction of center pixel , 𝑥𝑡 is a pixel on top of center

pixel and 𝑥𝑏 is a pixel in bottom of center pixel. By appending these two values we

get out gradient vector.

Magnitude and angle is also obtained by

 Magnitude= 𝑥2 + 𝑦2 (32)

 Angle = arctan
𝑥

𝑦
 (33)

Orientation Binning – The next step is orientation binning, pixels of an image are

grouped into cells and their magnitude is place into histogram bins, a total of 9 bins

are used for the purpose. Histogram is ranges from 0 to 180 degrees and a total of 9

bin so every bin there are 20 degrees. Unsigned gradients changes into signed

gradient to fall into range of 0 to 180 degree. For each gradient vector, it‟s

contribution to the histogram is given by the magnitude of the vector (so stronger

gradients have a bigger impact on the histogram). Image pixel is grouped into cells,

17

every cell has 8x8 pixels that‟s a total of 64 pixels, and each pixel have it angle and

magnitude. In histogram calculation if angles of pixel all in the range of any bin

angle, then that pixel magnitude added into that bin.

Normalization and descriptor block - Four cells grouped together into one block and

normalized based on histograms value in the block and blocks have 50% overlap.

This block normalization is executed by appending the histograms of the four cells

within the block into a vector with 36 components (4 histograms x 9 bins per

histogram). Divide this vector by its magnitude to normalize it. This block

normalization is executed by appending the histograms of the four cells within the

block into a vector with 36 components (4 histograms x 9 bins per histogram).

Divide this vector by its magnitude to normalize it. L2 normalization followed by L1

normalization and it followed by L1- sqrt normalization.

L2 – norm =
𝑣

 | 𝑣 |2
2+ 𝑒2

 (34)

L1 – norm =
𝑣

 | 𝑣 |1+ 𝑒
 (35)

L1 sqrt norm =
𝑣

 | 𝑣 |1+ 𝑒
 (36)

Where, v is non-normalized vector containing all histogram in a block and | 𝑣 |𝑘 is

its k norm for k = 1,2, and e is small value.

18

2.4 SVM Classifiers

Liblinear and SVM Light are the two classifiers used in this research.

2.4.1 Liblinear SVM Classifier

The paper [6] studies about a linear Support Vector Machine Classification (SVM).

This paper studies the feasibility of Liblinear on large scale data for classification. It

supports two classifiers Logistic regression and linear SVM.

It solves the following optimization problem

 min
1

2
𝑤𝑇𝑤 + 𝐶 𝜀 𝑤; 𝑥𝑖 , 𝑦𝑖

𝑙
𝑖=1 (37)

Where, (𝑥𝑖 ,𝑦𝑖) are set of instant label pairs, 𝑖 = 1,…… . . , 𝑙, 𝑥𝑖 ∈ 𝑅𝑛 ,𝑦𝑖 ∈ {−1, +1}

𝜀(𝑤; 𝑥𝑖 ,𝑦𝑖)is a loss function and C >0 is a penalty parameter.

For prediction, the linear predictor with for a sample with feature X is given by

 𝑦 = 𝑠𝑖𝑔𝑛 𝑊𝑇𝑋 + 𝑏 (38)

In equation (38), 𝑊 = 𝑊𝐻𝑂𝐺 ,𝑊𝑁𝑆𝑆 , 𝑊𝐻𝑂𝐺 are weight corresponds to 2268 HOG

features and 𝑊𝑁𝑆𝑆 corresponds to 36 spatial NSS features.

This optimization problem is modified because the weight correlate with 36

dimensional spatial NSS features (perceptual quality aware features) 𝑊𝑁𝑆𝑆 can be

inequitably penalized in contrast to weight of 2268 dimensional HOG

features 𝑊𝐻𝑂𝐺 .

19

The modified optimization equation can be written as

 𝑚𝑖𝑛 𝑚𝑖𝑛
𝑤 ,𝑏 ,{𝛏𝐢}

1

2
| 𝑊𝐻𝑂𝐺 |2

2 +
1

2
| 𝑊 𝑁𝑆𝑆 |2

2 + λ 𝛏𝐢n
i=1 (39)

Such that 𝑦𝑖 = 𝑊𝐻𝑂𝐺 ,𝑋𝑖
𝐻𝑂𝐺 + 𝑊 𝑁𝑆𝑆 ,𝐶𝑠𝑋𝑖

𝑁𝑆𝑆 + 𝑏 ≥ 1 − ξi

In equation (39) 𝑋 𝑖 = [𝑋𝑖
𝐻𝑂𝐺 ,𝐶𝑠𝑋𝑖

𝑁𝑆𝑆] , parameters λ and 𝐶𝑠 are selected by cross

validation.

LIBLINEAR is an efficient and straightforward package for linear classification on

large sets of data. It is proved to be better than other large scale classification

packages like LIBSVM. The main goal of LIBLINEAR is to classify large set of data

in less time efficiently.

Training using Liblinear SVM

 Design for training images of QUALHOG and HOG features is done as shown in

Figure 1. A total of 2731 images (1231 facial images and 1500 non-facial images)

are used in each level for training. Training is done by extracting QUALHOG

features for all images, store them in a vector and liblinear SVM is trained on these

vectors to obtain a file named model. HOG features are also extracted in order to

compare results of QUALHOG with HOG.

 For QUALHOG feature training, NSS features are concatenated with HOG features

and store in the form of vector, liblinear SVM is trained on these features.

LIBLINEAR [11] which is a linear SVM is used to classification of data. The reason

behind choosing LIBLINEAR is because of large data for testing. There are more

20

than half a million of images to be tested, so LIBLINEAR is used for the job to be

done.

It is an open source package and developed by National Taiwan University and it is

written is C++ language and can be compiled in Matlab or python through make file

easily. Training a Liblinear SVM based on solving an optimization problem given in

equation (39).

Steps for training images

 Load all positive (faces) and negative (non faces) training images.

 Calculate 36 NSS feature vector of given images (one by one).

 Calculate HOG features of images (one by one).

 Concatenate both features and store them into a vector.

 Once features for all images are computed, store them in to a matrix.

 Classify it by using LIBLINEAR and store the result into a file.

Detection of face in test images using Liblinear SVM

Design for detection of face in test images is obtained as shown in Figure 1. A total

of 17872 images (393 facial images and 17479 non-facial images) are used in each

level for detection. Detection is done by extracting QUALHOG features for all

21

images, store them in a vector and Liblinear SVM along with model file (obtained

from training) are used for face detection in images.NSS features are concatenated

with HOG features and store in the form of vector, Liblinear SVM is used for testing

by using these features.

LIBLINEAR [11] which is a linear SVM is used to classification of data. The reason

behind choosing LIBLINEAR is because of large data for testing. There are more

than half a million of images to be tested, so LIBLINEAR is used for the job to be

done. It is an open source package and developed by National Taiwan University and

it is written is C++ language and can be compiled in Matlab or python through make

file easily. Images are tested and predicted by using equation (38).

Steps for testing images

 Load all the testing data (images).

 Calculate 36 dimensional feature vector of given image (one by one).

 Calculate HOG features of an image (one by one).

 Concatenate both features and store them into a vector.

 Once features for all images are computed, store them in to a matrix.

 Predict it by using LIBLINEAR by using a file which stored results of

training data.

22

 LIBLINEAR predict the data by showing -1 for non-face and 1 for face.

 Prediction accuracy is depends on variable λ , which is selected carefully by

cross validation.

2.4.2 SVM Light Classifier usage

SVM light [13] is an implementation of Support Vector Machines (SVMs) in C. The

main features of the program are the following:

It is a fast optimization algorithm which solves classification and regression

problems. It solves ranking problems, computes XiAlpha-estimates of the error rate,

the precision, and the recall. It can train SVMs with cost models and example

dependent costs. It also handles many thousands of support vectors and supports

standard kernel functions. It is used for training and testing of images of any size for

face detection system.

2.5 Known experiment results according to [1]

2.5.1 Experiment setup

For experiments [1], Matlab is used. In addition to Matlab 2015.For training and

testing of images LIBLINEAR SVM [11] is used. A database for 25 GB of image

containing images of (80x64) dimension is created by the author of article [1] to

conduct experiments. QUALHOG and HOG method is analyzed on distorted image

database. This database contains images distorted on 10 levels by AWGN, GBlur and

JPEG separately. At every level 2731 images (1231 faces and 1500 non faces) are

used for training, and 17872 images (393 faces and 17479 non faces) are used for

testing FDS. All the images in database are scaled to a size of 80x60 [14]. A total of

536,160 images are used for testing FDS.

23

QUALHOG is compared with HOG by calculating True positive, False positive and

Total number of detected images distorted by all three type of distortion. True

positive is an image that is detected by SVM as facial image and actually is a facial

image. False positive is an image detected by SVM as facial image and actually is a

non- facial image. Precision and recall are calculated by using QUALHOG features

as follows

Precision =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐷𝑒𝑡𝑒𝑡𝑒𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖 𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (40)

Recall =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (41)

It is observed that AUPR and NIQE[12] is claimed to be considered in [1] but

actually not defined. Dependence of NIQE on distortion levels and on AUPR are

shown but not actually defined.

2.5.2 Experiments results

NIQE vs distortion level is given below as shown in [1]

Figure 2:NIQE vs AWGN curve

24

In Figure 2, NIQE is calculated at every AWGN distortion level and curve is

obtained.

Figure 3:NIQE vsGBlur curve

In Figure 3, NIQE is calculated at every GBlur distortion level and curve is obtained.

Figure 4:NIQE vs JPEG curve

In Figure 4, NIQE is calculated at every JPEG distortion level and curve is obtained.

25

Figure 5:AUPR vs AWGN curve

Figure 6:AUPR vsGBlur curve

Figure 7:AUPR vs JPEG curve

26

In Figure 5, 6 and 7, it is observed that with increase in distortion level (AWGN,

GBlur and JPEG), AUPR decreases more rapidly for HOG features as compare with

QUALHOG features, which shows better performance of FDS based on QUALHOG

features.

In [1] NIQE and AUPR are calculated for distorted images at every different level

for all the three type of distortion (AWGN, GBlur and JPEG) and NIQE vs distortion

level and AUPR vs distortion level curves are obtained.

2.6 Problem Definition

In this thesis, the following problems are considered:

 Implementation of Face Detection System using QUALHOG approach based

of HOG and NSS features.

 Test FDS on database of images provided by the author of paper [1].

 Compare experiments on the FDS developed in the conditions of paper [1]

and compare it versus HOG.

 Study dependence of accuracy characterized by Precision and Recall on

distortion level of images distorted by AWGN, GBlur and JPEG.

 Test on 100 images of any size download from internet randomly is

conducted using sliding window.

27

QUALHOG is compared with HOG by calculating True positive, False positive and

Total number of detected images distorted by all three type of distortion.

2.7 Related work

 AdaBoost based Face Detection for Embedded Systems

This paper [7] proposed the technique of face detection in still images using

AdaBoost which was introduced by Viola and Jones. It is the most popular

technique used for detection mainly due to it less complex nature, higher

accuracy. The algorithm works in four stages. Selecting Haar like features ,

taking integral of images, AdaBoost training and Cascading Classifiers.

 Tolerance for Distorted Faces: Challenges to a Configural Processing

Account of Familiar Face Recognition

Configural processing means spatial relation between spatial features and it is

widely used in Face recognition. This paper [8] concentrates on familiar faces

and check how well configuring processing is able to recognize face. This paper

uses three types of configural processing. Detection of first order relations which

define important features of face like eyes above nose, above mouth. Holistic

processing, which bind features into perceptual gestalt and sensitivity to second

order relation which means recognizing distance among features.

 Face Gender Classification: A Statistical Study when Neutral and

Distorted Faces are combined for Training and Testing purposes

This paper [9] studies gender identification on distorted faces. Three techniques

grey level, Principal Component analysis and Local binary pattern were used to

28

extract features. Three classifiers (1 –NN, PCA + LDA, SVM) were used to

classify images for gender recognition.

Grey level - Images are converted into gray images and stored in a vector.

Principal component analysis (PCA) – It is a statistical procedure which based on

orthogonal transformation. It was introduced by Karl Pearson in 1901. It scans

down for subspace in original space whose vectors have maximum variance

similar to directions in the original space.

Local Binary patterns [10] - It is used to determine image textures and for face

detection. Every pixel in an image is described by a binary number, and it is

computed for neighborhood of every pixel. Number 1 is assigned to

neighborhood pixels if they are brighter than central pixel otherwise 0 value is

assigned. Histogram of LBP values of every pixel is calculated and image is

characterized according to these histogram values.

Classifiers - Three classifiers are used for gender classification which are nearest

neighbor, PCA + LDA and Support vector machine.

Nearest neighbor – It is very simple classifier, and metric used in this Euclidean

distance to classify sample data.

 Neural Network based Face Detection

This paper [11] proposed neural network based face detection system. A small

window of an image inspect by retinally connected neural network system.

29

Multiple networks are used to improve performance of system. Bootstrap

algorithm is used for obtaining negative images for training, Bootstrap algorithm

adds face detections into training set as training progresses. Comparisons with

several other state-of-the-art face detection systems are presented; showing that

our system has comparable performance in terms of detection and false-positive

rates.

2.8 Conclusion

In this chapter, articles related to implement methodology are discussed. Metrics and

methods used in them such as HOG, NSS, Liblinear, are explained. Problems to be

solved in the thesis are defined.

30

Chapter 3

DESIGN, IMPLEMENTATION AND TESTING OF FDS

USING QUALHOG

3.1 Overall Structure of FDS

Overall structure of FDS is we follow is shown in Figure 1. QUALHOG features are

calculated for distorted images. These QUALHOG features are contatenation of

HOG and NSS features. Liblinear SVM is used for training and testing of

images.Images are taken from database provided by the author of article [1]. It

contains facial and non-facial images distorted by AWGN, G Blur and JPEG at 10

different levels. Training and testing is doneseparately for each level.

3.2 Implementation and testing of NSS features

3.2.1 Implementation and testing for image normalization

In this section, image is normalized by using equation (8) as follows. Mean is

calculated by using equation (9) and variance is calculated by using equation (10) in

section 2.4 in Chapter 2.

This is done by following code in Matlab in Appendix C. In this code, image is

converted into grayscale (line 2 to 7), then Gaussian filter is generated and applied

(line 9), mean (line 13) and variance (line 13) are calculated. In the end image is

normalized by using these mean and variance (line 16).

31

Testing for image normalization

Figure 8: Input Image used for testing for NSS and HOG features [1]

We test image normalization for image Figure 8.Figure 8 is taken from database

provided by author of article [1]. If image in Figure 8 is RGB, convert it into gray-

scale image. This is done by the following Code in Matlab in Appendix C. In

Appendix C Code, if an image is an RGB image, it is converted to gray scale image.

Figure 9: Gray scale conversion of an image in Figure 8

32

Figure 10: Pixel intensity values of image (24..29, 54..58) from Figure 9

In Figure 10, Pixel intensity values of image (24..29, 54..58) from Figure 9 are

shown.

Test cases for generating Gaussian filter

In Matlab, fspecial() function is used to generate random numbers satisfying

Gaussian filter (line 9) in Appendix C. hsize is an integer specifying size of the

square matrix of random numbers to be generated according to Gaussian distribution

with zero mean and standard deviation sigma. This is done by the following code in

Matlab in Appendix C.

Figure 11: Generated Gaussian Filter for an image (Figure 9)

33

Figure 12: Generated Gaussian Filter for an image (Figure 6) by using code in

Appendix K

In Figure 12, at location [2,2] , calculated Gaussian filter is 0.0029 which matches at

location [2,2] in Figure 11.

Test cases for Gaussian weighted image mean value calculation using

convolution

Now after creating a 7x7 two dimensional Gaussian filter, it is applied on the image

to calculate mean using equation (7). filter2 function in Matlab is used to calculate

mean in line 13 (Appendix C), filter2 use convolution function to convolve image

pixels with 2D Gaussian filter.

Y = filter2(h, X) filters the data in X with the two-dimensional FIR filter in the

matrix h. It computes the result, Y, using two-dimensional correlation, and returns

the central part of the correlation that is the same size as X. This is done by the

following code in Matlab in Appendix C. It is calculates by using equation (9).

34

Figure 13: Mean values of gray scale image (24...29, 54....58) are shown in Figure 9

Test cases for Gaussian weighted image variance calculation using convolution

After calculating mean, next step is to calculate variance using equation (10). This is

done by the following code in Matlab in Appendix C,filter2 function is used (line 15)

to calculate variance (same like mean).

Figure 14: Variance values (24...29, 54...58) of a given image (Figure 9)

Test cases for image normalization using Gaussian weighted mean and standard

deviation according to (8)

Next step is to put the values of mean, standard deviation and C=1 into equation (8).

This is done by the following Code in Matlab in Appendix C in line 16.

35

Figure 15: Normalize pixel intensity values of gray scale image (24...29, 54...58)

(Figure 9)

imdist at location [24 54] = 86 (from Figure 9),mean at location [24 54] = 100.7049

(from Figure 13) and variance at location [24 54] = 31.5935 (from Figure 14)

Normalized pixel at location [24 54] = 𝑖𝑚𝑑𝑖𝑠𝑡[4 4] −𝑚𝑢[4 4]./𝑠𝑖𝑔𝑚𝑎[4 4] + 1

 = -0.4512

And by using equation (8), we get normalized image.

Figure 16: Normalized image

3.2.2 Implementation and testing of GGD parameters

Two parameters, shape parameter and standard deviation are estimated for a

normalized image. Steps to calculate the two parameters that are shape parameter (𝛼)

and variance (𝜍2) of an images using moment matching based approach. It is

implemented by Matlab code in Appendix D.

36

Implementation and testing of Generalized Gaussian ratio

Generalized Gaussian ratio is calculated by equation (13) for a given image. It is

implemented by Matlab code in Appendix D (line 7 to 28).

Test cases to calculate Generalized Gaussian ratio function

By using equation (13) Gaussian ration function for an image in Figure 16 is

calculated, a look up table is defined for parameter (𝛾).This is done by the following

code in Matlab in Appendix D (line 7 to 28).

To define lookup table in Matlab, two counters counter 1and counter 2 are initialized

in line 7 and 8 and their initial value set to 0.2 and 10 respectively with a difference

between of 0.001 between them (line 10) and it iterates 100 times using for loop (line

9), counter 1 decrement by 1 and counter2 increment by 2 after each iteration (line

25 and 26). These values can be adjusted according to the user need after defining

look up table. Gaussian ratio has been calculated for each value in look up table (line

11). These values can be adjusted according to the user need.

After defining look up table, Gaussian ratio 𝑟 𝛾 which is r_gam (line 11) has been

calculated for each value in look up table.

Figure 17: Values of r (γ) is shown (from position 79 to 91) which is obtained using

lookup table

At position 80, Gaussian ratio function by using look up(value at position 80 in look

up table is 0.0790) table using equation (13)

37

Gaussian ratio =
𝜏 1/0.790 ∗𝜏 3/0.790

𝜏2 2/0.790
 = 870.8142

which matches with value at position 80 in Figure 17.

Implementation and testing of mean and standard deviation

Mean and standard deviation are calculated using equations (14) and (15). It is

implemented by using Matlab code in Appendix D (line 2 to 4).

Test cases to calculate mean 𝝁𝒙and standard deviation𝝈𝒙
𝟐 of an image in Figure

16

Mean and variance is calculated by using equations (14) and (15) for a given image.

This is done by the following Code in Matlab in Appendix D in line 2 and 3

respectively. Standard deviation and mean are 0.0483 and 0.6650 respectively using

Matlab.

To calculate mean manually,

Number of pixels of given image (Figure 16) = 196 * 174 = 34104

Sum of all pixels of given image (Figure 16) = 1.648031525168372e+03

Mean = 1.648031525168372e+03 / 34104 = 0.0483

After subtracting mean value from every pixel and taking its square of the given

image (Figure 16), sum of these pixel are = 15080.41

38

Sigma = sqrt (15080.41 / 34104) = sqrt (0.4422) = 0.6650

Implementation and testing of absolute value of modified mean of a given

images

It is calculated by using equation (14). It is calculated in Matlab code in Appendix D

(line 5).

Test cases to calculate estimate 𝑬[𝑿] for the absolute values modified mean for

a given image (Figure 16)

Estimate of absolute value modified mean is calculated by using equation (16). This

is done by the following Code in Matlab in Appendix D in line 5.Estimated of

modified mean is 0.4947.

Implementation and testing of ratio

It is calculated by using equation (17) and implements using Matlab code in

Appendix D (line 6).

Test cases to determine the ratio 𝝆

Ratio (ρ) is calculated using equation (15) for Figure 17 as

ρ = [0.4422]/[0.4947]^2 = 1.8065

This is done by the following Code in Matlab in Appendix D in line 5.

39

Implementation and testing for finding shape parameter

This is calculated by using equation (18). This is done by the following code in

Matlab in Appendix D. In this code, obtained ratio value is looked in Gaussian ratio

vector and once it found on particular position, value is checked for same position in

lookup table and that is our shape parameter.

Test case to solve the equation𝜸 = 𝒓−𝟏 𝝆

where, r is the generalized Gaussian ratio function. Look up can be defined by the

user or by giving instructions to machine to choose random variable with a constant

difference between two variables.

This is done by the following Code in Matlab in Appendix D. We first calculate at

which position, rho and Gaussian function values are nearest . After determining that

array position, we check what is gam (𝛾) value at that position and that will be our

shape parameter, gam is calculated using lookup table and shape parameter.𝛾

obtained value is -4.1290.

For example, in our example rho is 1.8065, we look for same value of Gaussian

function in our table for that we check r_gam table and write down the array

position.In Figure 15, at array position 94872 in r_gam table (Gaussian function)

value is 1.8065 which is equal to rho. We check the gam (𝛾) at same array position

that is at position 94728 is -4.1290.

Figure 18: Determine array position in Gaussian ratio table (5) by using value of

ratio

40

Figure 19: Determine value in look up table corresponds to array position found in

Figure 18

So, our shape parameter in this example is -4.1290. By applying the above four steps

in an image, two important features that is shape parameter 𝛼 and standard

deviation(𝜍2) is found, which will prove to very useful later in the experiments.

And the image is down sampled and the same process is applied on down sampled

image and a total of 4 features are obtained. This is done by the following code in

Matlab in Appendix A3. Two features which are shape parameter (-4.1290) and

standard deviation (0.4422) are calculated using Generalized Gaussian distribution

on image (Figure 16) are obtained.

The image is down sampled and the same process is applied on down sampled image

and a total of 4 features are obtained. This is done by the following Code in Maltab

in Appendix A4. Two features which are shape parameter (-4.1520 and standard

deviation (0.4659) are calculated for down-sampled image using Generalized

Gaussian distribution. We got a total of 4 parameters

Figure 20: A totals of 4 parameters are calculated for a given image (Figure 16)

41

3.2.3 Implementation and testing of AGGD parameters

Four parameters that are shape, mean, left variance and right variance are calculated

in four orientations – Horizontal (H), vertical (V), main-diagonal (D1) and

secondary-diagonal (D2).

Implementation and testing spatial features in horizontal, vertical, diagonal D1

and diagonal D2 directions

It is calculated using equation (11). It is implemented using Matlab code in Appendix

B (line 19 to 21).

Test cases to calculate horizontal, vertical, diagonal D1 and diagonal D2 spatial

features of given image using equation (11)

This is done by the following Code in Matlab by Appendix C. In this code, circular

shift is used to compute pixel value at horizontal, vertical and diagonal levels as

defined by shift to get desired value (stored in pair) in horizontal, vertical and

diagonal direction (line 19 to 21).

Figure 21: Pixel value intensities (1...4, 1...5) of an image (Figure 16)

42

Figure 22: Pixel value intensities (1...4, 1...5) of an image (Figure 16) after horizontal

shift

Figure 23:Values of vector (1...7) obtained by multiplication of shifted image pixel

values in horizontal direction (Figure 22) with normalized image pixel values (Figure

21) and stored in pair

For example, using equation (11), pixel at location [1 1]

= pixel [1 1] in normalized image * pixel [1 1] in shifter image (from Figure 21 &

22)

= 1.9129 * 1.9068

= 3.6475 (from Figure 23)

Implementation and testing of Generalized Gaussian ratio

It is calculated using equation (20). It is implemented using Matlab code in Appendix

E (line 7 to 28).

43

Test cases to calculate Generalized Gaussian ratio function

This is done by the following Code in Matlab in Appendix E. Gaussian ratio function

is calculated by using equation (20), a look up table is defined for parameter gam (𝛼)

.To define lookup table in matlab, two counters counter 1and counter 2 are initialized

(line 7 and 8) and their initial value set to 0.2 and 10 respectively with a difference of

0.001 between them (line 10) and it iterates 100 times using for loop (line 9), counter

1 decrement by 1 and counter2 increment by 2 after each iteration (line 25 and 26).

These values can be adjusted according to the user need. After defining look up

table, Gaussian ratio has been calculated for each value in look up table (line 11).

Figure 24: Initial 13 values of r (α) is shown of image (Figure 13) which is obtained

using lookup table

To calculate Gaussian ratio at position 1, by using look table value at position 1

which is 0.2 using equation (20)

 =
𝜏2 2/0.2

𝜏 1/0.2 𝜏 3/0.2
 = 0.0629

which matches with the value at position 1 in Figure 24.

Implementation and testing of right standard deviation (𝜷𝒓) and left standard

deviation (𝜷𝒍)

It is calculated by using equations (21) and (22). It is implemented using Matlab code

in Appendix E (line 2 and 3).

44

Test cases to calculate right standard deviation (𝜷𝒓) and left standard deviation

(𝜷𝒍)

Left and right standard deviation are calculated by using equations (21) and (22) for

an image in Figure (16). This is done by the following Code in Matlab in Appendix E

in line 2 and 3. The values of left and right standard deviation for an image (Figure

13) are 0.5554 and 0.5324 respectively.

To calculate left standard deviation manually, all the pixels less than zero value are

calculated, there are total of 13322 pixels with value less than zero in an image

(Figure 16)

Sum of square of all pixel values less than zero = 4108.92821139148

Left standard deviation = sqrt (4108.92/13322) = 0.554

Similarly, to calculate right standard deviation manually, all pixels greater than zero

values are calculated, there are total of 20782 pixels with value greater than zero in

an image (Figure 16)

Sum of square of all pixel values greater than zero = 5889.77500141591

Implementation and testing of gamma hat (𝜸), unbiased estimate (𝒓) and

𝑹 using 𝜸 and 𝒓

They are calculated by using equations (23), (24) and (25). It is implemented using

Matlab code in Appendix E (line 4,5 and 6) respectively.

45

Test cases to calculate the value of gamma hat (𝜸), unbiased estimate (𝒓) and

𝑹 using 𝜸 and 𝒓

Gamma hat (γ), r hat (unbiased estimate)andR are calculated by using equations (23)

(24) and (25) for an image in Figure (16). This is done by the following Code in

Matlab in Appendix E in line 4, 5 and 6 and the values obtained are 1.0432, 0.3333

and 0.3334 respectively for an image in Figure (16).

For manual calculation,

gamma hat (γ) = left standard deviation/ right standard deviation

 = 0.554/0.5324 = 1.04

unbiased estimate (r) =square of mean of absolute value of all pixels / square of

mean values of all pixels

= 0.0977/0.2932 = 0.3332

𝑅 is calculated= (0.3332*(1.04^3 +1)*(1.04 +1))/((1.04 ^2 +1)^2) = 0.3333

Implementation and testing to calculated shape parameter (α)

It is calculated by using equation (26). Obtained Rhatnorm(𝑅) value is looked in

Gaussian ratio vector and once it found on particular position, value is checked for

same position in lookup table and that is our shape parameter. It is implemented

using Matlab code in Appendix E (line 16).

46

Test cases to estimate α according to 𝑹 value using the approximation of the

inverse generalized Gaussian ratio

Shape parameter (𝛼) is calculated by using equation (26) for an image in Figure

(16).This is done by the following Code in Matlab in Appendix E (line 16).We first

calculate at which position, rho and Gaussian function values are nearest by using the

following code

[min_difference, array_position] = min((r_alpha - rhatnorm).^2);

After determining that array position, we check what is gam (𝛾) value at that position

and that will be our shape parameter. r_alpha is 𝜌 𝛼 , gam is calculated using lookup

table and alpha is shape parameter. Alpha value for an image (Figure 16) is

calculated as 0.5570.

For example, in our example rhatnorm is 0.3334, we look for same value of Gaussian

function in our table, in Code 5, we check r_alpha table and look for same value and

write down the array position.

Implementation and testing of left scale parameter (𝜷 𝒍) and right scale

parameter (𝜷 𝒓)

It is calculated by using equations (27) and (28). It is implemented using Matlab code

in Appendix C (line 24).

47

Test cases to compute left scale parameter (𝜷 𝒍) and right scale parameter (𝜷 𝒓)

This is done by the following Code in Matlab in Appendix C in line 24 for an image

in Figure (16). Obtained value for left scale parameter (β
l
) and right scale parameter

(β
r
) are 3.8030 and 3.6455 respectively.

Implementation and testing of statistical mean (𝜼)

It is calculated by using equation (29). It is implemented using Matlab code in

Appendix C (line 25).

Test cases to compute statistical mean (𝜼)

It is calculated by using equation (29) for an image in Figure (16). This is done by

the following Code in Matlab in Appendix C in line 25. Obtained value using Matlab

is 0.6229.

Statistical mean = (beta_l - beta_r)*(gamma(2/alpha)/gamma(1/alpha));

= (3.8030 – 3.6455) * gamma(2/0.5570)/gamma(1/0.5570)

=0.6229

Four features that are shape parameter (𝛼), left standard deviation (𝛽𝑙), right standard

deviation (𝛽𝑟) and statistical mean (𝜂) are obtained, these features are calculated in

horizontal, vertical and diagonal spatial directions in a given image by using equation

(31).

48

Figure 25: A total of 4 parameters that are shape parameter, statistical mean, left and

right standard deviation for an image (Figure 16) are estimated

Similarly features have been calculated in vertical, diagonal D1 and diagonal D2

direction and a total of 16 features have been obtained.

Figure 26: A total of 16 features in horizontal, vertical and in diagonal direction are

calculated for an image (Figure 16)

A total of 16 features obtained in horizontal, vertical, diagonal 1 and diagonal 2

directions. Circular shift in Matlab is used to compute spatial features at horizontal,

vertical and diagonal levels.After calculating 16 features, image is down sampled and

again the same process applied and we will get a total of 32 features. In the end

features obtain by estimating GGD (4 features) and by estimating AGGD (32

features) are combined together and a total of 36 features are obtained.

Figure 27: A total of 32 parameters obtained by concatenation of features from

normalized image (Figure 16) and down sampled image.

In the end we combine feature obtain by estimating GGD (4 features) and by

estimating AGGD (32 features) and we get a total of 36 features.

49

3.3 Implementation and testing of extraction of HOG features

 Histogram of Oriented Gradients (HOG) - HOG descriptor was introduced

Dalal and Triggs at the Conference on Computer Vision and Pattern

Recognition(CVPR) back in 2005.

 The purpose of HOG is to descript feature of the given image.

 It includes steps like computation of gradient vectors, then orientation

binning and blocks normalization.

3.3.1 Implementation and testing of gradient vectors

Gradient vector in x direction of pixel (hx) is calculated using equation (30) and

gradient vector in y direction of pixel (hy) is calculated using equation (31).

By appending these two values we get gradient vectors. Magnitude and angle is also

obtained by using equations (32) and (33). This is done by the following code in

Matlab in Appendix F (line 8 to 13).

Let‟s take an example, we have pixel (z) and that pixel have four neighbor pixels,

 93

56 z 94

 55

50

Gradient vector in y direction of pixel (hx) = pixel value on right– pixel value in left

 = 94 – 56 = 38

Gradient vector in y direction of pixel (hy) = pixel value on top – pixel value in

bottom

 = 93 – 55 = 38

By appending these two values we get out gradient vector ℎ𝑥
ℎ𝑦
 = 38

38

Magnitude = hx2 + hy2 = 53.74

Angle = arctan
hx

hy
 = 45 degrees

Test for calculation of gradient vectors of an image

Gradients are calculated using equations (30) and (31) for an image in Figure 9. It is

computed for every pixel of an image, it calculates the variance in pixel value in

horizontal and vertical direction.This is done by the following Code in Matlab in

Appendix F (line 8 to 11). In Matlab, derivatives of a pixel created in x and y

direction and then compute gradient vector using filter2 function of Matlab in line 10

and 11, then angles and magnitude are calculated in line 12 and13.

51

Figure 28: Gradient in x direction [2..5, 27..31] for an image (Figure 9)

Figure 29: Gradient in y direction [2..5, 27..31] for an image (Figure 9)

Atan2 function in Matlab is used to calculate to angle in line 12, atan2 returns

the four-quadrant inverse tangent (tan
-1

) of dy and dx and magnitude is calculated in

line 13.

Figure 30: Angles are calculated [2..5, 27..31] for an image (Figure 9)

https://www.mathworks.com/help/matlab/ref/atan2.html#buct8h0-4

52

Figure 31: Magnitudes are calculated [2..5, 27..31] for an image (Figure 9)

3.3.2 Implementation and testing of orientation binning

In our experiment, Number of cells = window size / number of pixels in one cell

Window size = 64 x 80

Number of pixels in one cell = 8x 8

Number of horizontal cells = 64/8 = 8

Number of vertical cells = 80/8 = 10

A cell size of 8 × 8 is taken which means a total of 64 pixels and we obtain a total of

64 gradient vectors correspond to 64 pixels and place them into total of 9 histogram

bins. Unsigned angle changed to signed angle (0 to 180). For each gradient vector, its

contribution to the histogram is given by the magnitude of the vector (so stronger

gradients have a bigger impact on the histogram). Image pixel is grouped into cells,

every cell has 8x8 pixels that‟s a total of 64 pixels, and each pixel have it angle and

magnitude. This is done by the following code in Matlab in Appendix F.

53

Test for orientation binning

Calculate histogram value for each pixel and in which bin it pixel will fall according

to its histogram value. Next magnitude and angle for each 64 pixels in a cell is

calculated using equations (32) and (33). This is done by the following Code in

Matlab in Appendix F (line 18 to 53).

Figure 32: Grouping of 64 pixels (1..2, 21..28) calculated angles into a cell for Figure

9

Figure 33: Grouping of first 64 pixels (1..2, 21..28) calculated magnitudes into a cell

for Figure 9

Next step is to put gradients into histogram, In histogram calculation if angles of

pixel all in the range of any bin angle, then that pixel magnitude added into that

bin..This is done by the following Code in Matlab in Appendix F (line 18 to 53).

54

3.3.3 Implementation and testing of block normalization

This block normalization is executed by appending the histograms of the four cells

within the block into a vector with 36 components (4 histograms x 9 bins per

histogram) and L2 normalization, L1 normalization and L1 sqrt normalization are

performed which are calculated by using equation (34), (35) and (36). This is done

by the following Code in Matlab in Appendix F in line 58, 59 and 60.

Testing for block normalization

For 1
st
 block, after concatenating 4 histograms (9 bins in each histogram) of cells in a

block, 36 features have been obtained for an image in Figure 9.

Figure 34: Histogram values in 36 bins for one block for Figure 9

After obtaining 36 features, L 2, L1 and L1 sqrt normalization is performed over the

features using equations (34), (35) and (36).

Figure 35: All features in a block after L2 normalization for Figure 9

55

Figure 36: All features in a block after L1 normalization for Figure 9

Figure 37: All features in a block after L1 sqrt normalization for Figure 9

In this manner, 2268 features for the entire image are obtained.

Figure 38: First 13 features of total 2268 features for Figure 9

This conclude the final vector size to 7 blocks across x 9 blocks vertically x 4 cells

per block x 9-bins per histogram = 2268 values. These are the final features extracted

by using HOG in an image of window size 64 x 80. In the end HOG features and

NSS features are concatenated to form QUALHOG features.

3.4 Implementation and testing of Classifiers usage

3.4.1 Implementation and testing of Liblinear SVM usage

For training of Images

Training of images is done by using the code shown in Appendix A. Images are

loaded from database in line 9 and 10. HOG features are extracted in line 25, NSS

features are extracted in line 28, HOG and NSS features are concatenated in line 31.

56

Liblinear SVM is trained using these features in line 39. Results are saved as model

file in line 40. It is done separately for every level in AWGN, G Blur and JPEG.

It is implemented in Matlab by using the following command.

 For training

model = train(label_vector, instance_matrix, 's ');

save('model.mat');

Instance_matrix is extracted QUALHOG features of training images, lebel_vector

contains labels (+1 for facial image and -1 for non facial image) and s is a solver and

the result is saved in model.mat file. This is done by the Matlab code in Appendix A.

Testing of Liblinearsvm for training of images

For testing, let‟s take images distorted by level 10 in JPEG. For training on 1231

positive samples and 1500 negative samples in Figure 39.

Figure 39: Result obtained after training

Figure 39, is a screenshot of result obtained after training using Liblinear.

57

For detection of faces in test Images

It is done by using the Matlab code in Appendix B. Model file (which is an output of

training of images) is loaded in line 4, images are loaded from database in line 6.

HOG features are extracted in line 19, NSS features are extracted in line 22, HOG

and NSS features are concatenated in line 25.

It is implemented in Matlab by using the following command.

 For testing

[predict_label, accuracy, dec_values] = predict(label_vector,

instance_matrix,model);

Instance_matrix is extracted QUALHOG features of tested images, lebel_vector

contains labels (all +1) and model is file which is obtained from training section and

the result predict_ label which is vector contains +1 and -1.This is done by Matlab

code in Appendix B.

Testing of Liblinear SVM for detection of faces in test images

For testing 393 positive images in Figure 40, accuracy is obtained

Figure 40: Accuracy (percentage of true positive images) is obtained for tested

images

58

In Figure 40, 349 images out of 393 positive images are detected correctly using

Liblinear SVM. Accuracy is obtained automatically by Liblinear SVM.

3.4.2 Implementation and testing of SVM Light usage

For training of images

SVM Lite is used for training of images by using following Matlab command

model = svmlearn(X_train, y_train);

X_train are the matrix of extracted features and y_train are the labels (+1 for faces

and -1 for non faces). This is done by the Matlab code in Appendix H (line 38).

For detection of face in an image

SVM Lite is used for detection of face in an image by using following Matlab

command

. [predictions] = svmclassify(P,lebel,model);

P is the matrix of extracted features, lebel can be anything and model is output of

training of images. This is done by the Matlab code in Appendix I (line 52).

3.5 Implementation of FDS for any size of images using sliding

window

In this method face detection for any size image (unlikely 80x 64 dimensions) is

implemented by using sliding window technique. A window of 80x64 is taken and

slide over an image pixel by pixel in order to detect face. This is done by the

following code in Matlab in Appendix I. NSS features are extracted for testing and

59

training images similarly as described in section 3.2. HOG features are extracted for

training and training images similarly as described in section 3.2.1.2.

In the end, these QUALHOG features (HOG features augmented with NSS features)

are giving to SVM for classification and prediction and result is obtained. This is

done by the following code in Matlab in Appendix I.

3.6 Conclusion

In this chapter, design of FDS along with implementation and testing of FDS and its

subsystems like HOG, NSS, Liblinear SVM and SVM Light are discussed and

explained in detail.

 For testing FDS, An image from the database provided [1] is taken and testing is

done to show and prove the authenticity of FDS and its subsystems. LIBLINEAR

support vector machine is used for training and testing of data. Later sliding window

technique is applied to detect face on any size of image by extracting QUALHOG

features and using SVM Light.

Results are obtained and screenshot at every step of testing for extraction of

QUALHOG features for FDS.

60

Chapter 4

EXPERIMENTS ON FDS FOR DISTORTED IMAGES

4.1 Experiment setup

To conduct experiments, same experimental setup is used as shown in section

2.5.1.However author of [1] doesn‟t reveal which operating they used and which

version of Matlab were used for conducting experiments. In my case, Matlab 2015a

is for Window 10 operating system is used with a memory of 6GB and Intel core i3

processor is used. In addition to Matlab 2015a, Visual studio 2010 is used. For

classification LIBLINEAR SVM [6] and SVM light [13] are used. Same database

[14] which used by the author is used for getting results and conducting experiments.

Lastly 100 images containing face taken randomly from internet, and experiments

are conducted on these 100 images using SVM lite and sliding window.

QUALHOG and HOG methods are analyzed on distorted image database.

LIBLINEAR [6] is used for training and testing of images. Experiments are done on

each level separately and results are noted down manually which is shown in an

excel file available in Appendix L. True positive, True negative, False positive and

False negative are calculated at every distorted level and based on True positive,

True negative, False positive and False negative, Precision and Recall are calculated

for 10 levels of distortion. In the end Precision vs Distortion level and Recallvs

Distortion level curves for all three types of distortion (AWGN, GBlur and JPEG)

61

are obtained. Experiments on any size of images are done using SVM light for

training and testing of images through sliding window.

Training the face detector

 For each of the training set, LIBLINEAR is trained using 1231 positive images and

1500 negative images available in training dataset. Once the data is classified, it is

stored in a model.mat file in Matlab. This is done by the following code in Matlab in

Appendix A.

Prediction

For prediction, 393 positive images and 17479 negative images were taken from the

testing dataset. Since the testing data is highly skewed as compare to training dataset,

Precision and Recall is used as evaluation metrics.

4.2 Experiments results

True positive, True negative, False positive and False negative of the testing datasets

are obtained for all three type of distortions using HOG features and QUALHOG

features and both the detector compare with each other using Precision vsDistortion

level (AWGN, GBlur and JPEG) curve.

62

4.2.1 Images distorted by AWGN (Additive White Gaussian Noise)

Extracting QUALHOG features for images

Table 1: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by AWGN with different

levels using QUALHOG features, Precision and Recall are calculated.

AWGN

distortion

level(𝜍2)

True

positive

(TP)

False

negative

(FN)

False

positive

(FP)

True

negative

(TN)

Detected

positive

(TP +FP)

Precision

TP

TP + FP

Recall

TP

TP + FN

4.5×

10−5

376 17 126 17353 502 0.75 0.95

0.0001 370 23 142 17347 512 0.73 0.94

0.0003 367 26 147 17338 514 0.72 0.93

0.0009 363 30 160 17319 523 0.70 0.92

0.0025 359 34 245 17234 604 0.60 0.91

0.0065 354 39 466 17013 820 0.44 0.90

0.02 334 59 1056 16423 1390 0.25 0.85

0.05 322 71 1854 15625 2176 0.15 0.81

0.15 311 52 2698 14781 3009 0.11 0.79

0.36 299 94 3694 13785 3993 0.08 0.760

This is done by the following code in Matlab in Appendix L. Table 1 is created

manually by writing down the results of experiment done on images (parts by parts)

due to inability of machine to handle large number of images simultaneously.

63

Extracting HOG features for images

Table 2: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by AWGN with different

levels using HOG features, Precision and Recall are calculated.

AWGN

distortion

level(𝜍2)

True

positive

(TP)

False

negative

(FN)

False

positive

(FP)

True

negative

(TN)

Detected

positive

(TP +FP)

Precision

TP

TP + FP

Recall

TP

TP + FN

4.5×10−5 371 22 142 17337 513 0.73 0.94

0.0001 367 26 148 17331 515 0.71 0.93

0.0003 362 31 154 17325 516 0.70 0.92

0.0009 359 34 192 17287 551 0.65 0.91

0.0025 353 40 286 17193 639 0.55 0.89

0.0065 342 51 589 16890 931 0.37 0.87

0.02 330 59 1330 16149 1641 0.20 0.83

0.05 311 82 2307 15172 2618 0.12 0.79

0.15 301 92 3096 14383 3397 0.09 0.76

0.36 296 97 3805 13674 4101 0.07 0.75

This is done by the following code in Matlab in Appendix L. Table 2 is created

manually by writing down the results of experiment done on images (parts by parts)

due to inability of machine to handle large number of images simultaneously.

64

Figure 41: Precision vs AWGN curve for QUALHOG (red curve) and HOG (green

curve) features

In Figure 41, red curve is for QUALHOG and green curve is for HOG. It shows that

as the distortion (𝜍2) increases, Precision decreased. At distortion level4.5×10−5,

Precision is 0.75 for QUALHOG and 0.73 for HOG and as the distortion level

increase to 0.08, Precision declines to 0.08 for QUALHOG and 0.07 for HOG which

shows that QUALHOG (red curve) face detector performs better than HOG (green

curve) face detector. This is done by the following code in Matlab in Appendix J. It

is seen that QUALHOG Precision is 1-2% more accurate than HOG Precision for

detecting faces in AWGN distorted images.

65

Figure 42:Recall vs AWGN curve for QUALHOG (red curve) and HOG (green

curve) features

In Figure 42, red curve is for QUALHOG and green curve is for HOG. It shows that

as the distortion (𝜍2) increases, Recall decreased. At distortion level 4.5×10−5,

Recall is 0.95 for QUALHOG and 0.94 for HOG and as the distortion level increase

to 0.08, precision declines to 0.760 for QUALHOG and 0.75 for HOG which shows

that QUALHOG (red curve) face detector performs better than HOG (green curve)

face detector. This is done by the following code in Matlab in Appendix J. It is seen

that QUALHOG Recall is 2-4% more accurate than HOG Recall for detecting faces

in AWGN distorted images.

66

4.2.2 Images distorted by G Blur (Gaussian Blur)

Extracting QUALHOG features of images

Table 3: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by Gaussian Blur with

different levels using QUALHOG features, Precision and Recall are calculated.

G Blur

distortion

level (𝜍)

True

positive

(TP)

False

negative

(FN)

False

positive

(FP)

True

negative

(TN)

Detected

positive

(TP +FP)

Precision

TP

TP + FP

Recall

TP

TP + FN

0.4 380 13 133 17346 501 0.76 0.96

1.0 374 19 150 17329 514 0.73 0.95

2.3 373 20 367 17112 740 0.51 0.94

3.6 373 20 553 16926 926 0.41 0.94

4.5 370 23 623 16856 993 0.38 0.94

6.0 364 29 779 16700 1143 0.32 0.92

7.4 361 32 1146 16333 1507 0.24 0.91

12.0 334 59 1806 15673 2104 0.16 0.85

20.0 313 80 2550 14929 2863 0.11 0.79

32.0 282 111 3897 13582 4179 0.07 0.71

This is done by the following code in Matlab in Appendix L. Table 3 is created

manually by writing down the results of experiment done on images (parts by parts)

due to inability of machine to handle large number of images simultaneously.

67

Extracting HOG features of images

Table 4: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by Gaussian Blur with

different levels using HOG features, Precision and Recall are calculated.

G Blur

distortion

level (𝜍)

True

positive

(TP)

False

negative

(FN)

False

positive

(FP)

True

negative

(TN)

Detected

positive

(TP +FP)

Precision

TP

TP + FP

Recall

TP

TP + FN

0.4 365 28 146 17333 511 0.72 0.93

1.0 362 31 164 17315 526 0.69 0.92

2.3 358 35 402 17077 760 0.47 0.91

3.6 357 36 587 16892 944 0.38 0.91

4.5 354 39 643 16836 997 0.35 0.900

6.0 351 42 805 16674 1156 0.30 0.89

7.4 346 47 1247 16232 1593 0.21 0.88

12.0 324 69 1946 15533 2270 0.14 0.82

20.0 302 91 2895 14584 3197 0.09 0.76

32.0 266 127 4134 13345 4400 0.06 0.67

This is done by the following code in Matlab in Appendix L. Table 4 is created

manually by writing down the results of experiment done on images (parts by parts)

due to inability of machine to handle large number of images simultaneously.

68

Figure 43: Precision vs GBlur curve for QUALHOG (red curve) and HOG (green

curve) features

In Figure 43, red curve is for QUALHOG and green curve is for HOG. It shows that

as the distortion (𝜍)increases, Precision decreased. At distortion level 0.4, Precision

is 0.76 for QUALHOG and 0.72 for HOG and as the distortion level increase to 32,

Precision declines to 0.07 for QUALHOG and 0.06 for HOG which shows that

QUALHOG (red curve) face detector performs better than HOG (green curve) face

detector. This is done by the following code in Matlab in Appendix J. It is seen that

QUALHOG Precision is 1-2% more accurate than HOG Precision for detecting faces

in GBlur distorted images.

69

Figure 44: Recall vs GBlur curve for QUALHOG (red curve) and HOG (green

curve) features

In Figure 44, red curve is for QUALHOG and green curve is for HOG. It shows that

as the distortion (𝜍)increases, Recall decreased. At distortion level 0.4, Recall is 0.96

for QUALHOG and 0.93 for HOG and as the distortion level increase to 32, Recall

declines to 0.71 for QUALHOG and 0.67 for HOG which shows that QUALHOG

(red curve) face detector performs better than HOG (green curve) face detector. This

is done by the following code in Matlab in Appendix J. It is seen that QUALHOG

Recall is 3-4% more accurate than HOG Recall for detecting faces in GBlur distorted

images.

70

4.2.3 Images distorted by JPEG

Extracting QUALHOG features of images

Table 5: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by JPEG in different

levels (Q factor) using QUALHOG features, Precision and Recall are calculated.

JPEG

distortion

level „Q‟

True

positive

(TP)

False

negative

(FN)

False

positive

(FP)

True

negative

(TN)

Detected

positive

(TP +FP)

Precision

TP

TP + FP

Recall

TP

TP + FN

90 381 12 155 17324 536 0.710 0.970

60 373 20 173 17306 546 0.683 0.950

40 373 20 180 17299 553 0.674 0.950

25 373 20 194 17285 567 0.657 0.950

15 371 22 201 17278 572 0.648 0.944

10 364 29 216 17263 580 0.628 0.926

7.5 358 35 231 17248 589 0.607 0.910

5.0 356 37 405 17074 761 0.468 0.905

3.0 350 43 746 16733 1096 0.320 0.890

2.0 349 44 779 16700 1128 0.309 0.888

This is done by the following code in Matlab in Appendix L. Table 5 is created

manually by writing down the results of experiment done on images (parts by parts)

due to inability of machine to handle large number of images simultaneously.

71

Extracting HOG features of images

Table 6: Calculation of True positive, False negative, False positive, True negative,

Detected positive, precision and recall for images distorted by JPEG in different

levels (Q factor) using HOG features, Precision and Recall are calculated.

JPEG

distortion

level „Q‟

True

positive

(TP)

False

negative

(FN)

False

positive

(FP)

True

negative

(TN)

Detected

positive

(TP +FP)

Precision

TP

TP + FP

Recall

TP

TP + FN

90 381 12 158 17321 539 0.70 0.96

60 370 20 197 17282 567 0.65 0.94

40 368 20 199 17280 567 0.64 0.93

25 366 20 205 17274 571 0.64 0.93

15 359 22 215 17264 574 0.62 0.91

10 353 29 223 17256 576 0.61 0.90

7.5 348 35 244 17235 592 0.58 0.88

5.0 344 37 417 17062 761 0.45 0.87

3.0 334 43 805 16674 1139 0.29 0.84

2.0 328 45 846 16633 1174 0.26 0.82

This is done by the following code in Matlab in Appendix L. Table 6 is created

manually by writing down the results of experiment done on images (parts by parts)

due to inability of machine to handle large number of images simultaneously.

72

Figure 45: Precision vs JPEG curve for QUALHOG (red curve) and HOG (green

curve) features

In Figure 45, red curve is for QUALHOG and green curve is for HOG. It shows that

as the distortion „Q‟ which mean Quality of an image (Quality decreased with

increase in compression) increases, Precision increases. At Quality rate 2.0, Precision

is 0.309 for QUALHOG and 0.26 for HOG and as the Quality rate increase to 90,

Precision increases to 0.71 for QUALHOG and 0.70 for HOG which shows that

QUALHOG (red curve) face detector performs better than HOG (green curve) face

detector. This is done by the following code in Matlab in Appendix J. It is seen that

QUALHOG Precision is 2-3% more accurate than HOG Precision for detecting faces

in JPEG distorted images.

73

Figure 46: Recall vs JPEG curve for QUALHOG (red curve) and HOG (green curve)

features

In Figure 46, red curve is for QUALHOG and green curve is for HOG. It shows that

as the distortion „Q‟ which mean Quality of an image (Quality decreased with

increase in compression) increases, Recall increases. At Quality rate 2.0, Recall is

0.888 for QUALHOG and 0.82 for HOG and as the Quality rate increase to 90,

Recall increases to 0.970 for QUALHOG and 0.96 for HOG which shows that

QUALHOG (red curve) face detector performs better than HOG (green curve) face

detector. This is done by the following code in Matlab in Appendix J. It is seen that

QUALHOG Recall is 4-5% more accurate than HOG Recall for detecting faces in

JPEG distorted images.

74

4.3 Comparison with known results

Known results use NIQE vs Distortion level and AUPR vs Distortion level curves (as

shown is Figure (2 - 7) to show FDS based on QUALHOG are better than FDS based

on HOG for distorted images. However, NIQE and AUPR are not properly defined in

paper [1]. It is impossible to obtain the same results for NIQE and AUPR as shown

in paper [1] due to the lack of defining NIQE and AUPR.

 Hence, Precision vs distortion level (AWGN, GBlur and JPEG) and Recall vs

distortion level (AWGN, GBlur and JPEG) curves are obtained for both QUALHOG

and HOG to show FDS based on QUALHOG performs better than FDS based on

HOG on distorted images.

As shown in Figure 5, For AWGN at distortion level 4.5×10−5 AUPR is around 0.96

and it declines with increases in distortion level. While looking at Figure 41 and 42,

For AWGN at distortion level 4.5×10−5 Precision is 0.75 and Recall is around 0.95

and it declines with increase in distortion level for QUALHOG.

Similarly as shown in Figure 6, For GBlur at distortion level 0.4 AUPR is around

0.96 and it declines with increases in distortion level. While looking at Figure 43 and

44, For GBlur at distortion level 0.4 Precision is 0.76 and Recall is 0.96 and it

declines with increase in distortion level for QUALHOG.

Similarly as shown in Figure 7, For JPEG at Quality level 90 AUPR is around 0.97

and it declines with increases in distortion level (decrease in quality level). While

looking at Figure 45 and 46, For JPEG at quality level 90 Precision is 0.71 and

Recall is 0.97 and it declines with increase in distortion level for QUALHOG.

75

It is seen that at less distortion level AUPR is more close to Precision and at higher

distortion level, AUPR is more close to Recall.

4.4 Experiments on images of any size using sliding window

technique

A small patch of 100 images are taken to test the extended method using SVM light.

These images are downloaded from internet. True positive, true negative are

calculated for QUALHOG and HOG and it is observed that QUALHOG method

proves to be effective and works effectively in detecting faces in distorted images.

4.4.1 Training

SVM light is trained with scaled images (80x64) at different level of distortion.

4.4.2 Prediction

Images taken from different cameras with common distortion are taken from internet

for testing.

4.4.3 Results of experiments

True positive and false positive are calculated for all three types of distortion at

different levels for 100 images.

For images distorted by AWGN

Extracting QUALHOG features of images

Table 7: True positive and false positive are obtained for images distorted by AWGN

at different log scale
AWGN distortion level True positive False positive

0.0001 94 6

0.02 87 13

0.36 75 25

76

This is done by the following code in Matlab in Appendix I.

Extracting HOG features of images

Table 8: True positive and false positive are obtained for images distorted by AWGN

at different log scale

AWGN distortion level True positive False positive

0.0001 94 6

0.02 84 16

0.36 69 31

This is done by the following code in Matlab in Appendix I.It is shown from Table 7

& 8, that accuracy (True positives) for QUALHOG is higher that HOG in all three

level of distortions.

For images distorted by G Blur

Extracting QUALHOG features of images

Table 9: True positive and false positive are obtained for images distorted by G Blur

at different log scale

G Blur distortion level True positive False positive

1.0 95 5

6.0 84 16

20.0 71 29

This is done by the following code in Matlab in Appendix I.

77

Extracting HOG features of images

Table 10: True positive and false positive are obtained for images distorted by G

Blur at different log scale

Gblur distortion level True positive False positive

1.0 93 7

6.0 79 21

20.0 73 27

This is done by the following code in Matlab in Appendix I.It is shown from Table 9

& 10, that accuracy (True positives) for QUALHOG is higher that HOG in all three

level of distortions.

For images distorted by JPEG

Extracting QUALHOG features of images

Table 11: True positive and false positive are obtained for images distorted by JPEG

at different log scale

JPEG distortion level True positive False positive

90 97 3

10 91 9

2 80 20

This is done by the following code in Matlab in Appendix I.

78

Extracting HOG features of images

Table 12: True positive and false positive are obtained for images distorted by JPEG

at different log scale

JPEG distortion level True positive False positive

90 96 4

10 88 12

2 76 24

This is done by the following code in Matlab in Appendix I.It is shown from Table

11 & 12, that accuracy (True positives) for QUALHOG is higher that HOG in all

three level of distortions.

Figure 47: A tested example of true positive (left) and false positive (right) detection

in two distorted images

Figure 47 is a result of FDS in which a box is created claiming face to be present

inside the box by SVM.

79

4.5 Conclusion

Comparison of proposed face detector (QUALHOG) and face detector (HOG) is

done by training and testing of images. 2731 images (1231 faces and 1500 non faces)

are used for training and 17872 images (393 faces and 17479 non faces) are used for

testing at 10 levels for all the three types of distortions. It showed that QUALHOG

shows higher tolerance to distortion as compared to HOG. Later 100 random images

are taken and comparison of proposed face detector (QUALHOG) and face detector

(HOG) is done by training and testing of images. Images are distorted at 3 different

levels for all three types of distortion.

LIBLINEAR is used for training and testing of data because of the large database for

testing and training. It is observed that LIBLINEAR performs better and is faster as

compared to other SVM while testing on large database. Later SVM Light is used for

training and testing of 100 images.

True positive and false positive are calculated at every level in all three types of

distortion and degradation in performance of QUALHOG face detector was seen

with increase in distortion level. Precision and Recall are obtained by using true

positives, false positives and detected positives numbers as defined paper [1].

Precision vs distortion level (AWGN, G Blur and JPEG) and Recall vs distortion

level (AWGN, G Blur and JPEG) curves are plotted and these curves are compared

with the knows experimental results which are AUPR vs distortion level (AWGN, G

Blur and JPEG) curves used by the author of article [1].

QUALHOG face detector shows improved results (1-5% overall) for face detection

as compare to HOG face detector when trained on distorted images. Adding

80

perceptual quality aware features makes QUALHOG face detector more tolerant to

images.

81

Chapter 5

CONCLUSION

In this research, articles related to implemented methodology (Face detection in

distorted images augmented by perceptual quality aware features) are discussed.

Metrics and methods used in them such as HOG, NSS, Liblinear and SVM Light are

explained. Problems to be solved in this thesis are defined. Design of FDS along with

implementation and testing of FDS and its subsystems like HOG, NSS, Liblinear

SVM and SVM Light are discussed and explained in detail.

 For testing FDS, an image from the database is taken and testing is done to show

and prove the authenticity of FDS and its subsystems. LIBLINEAR support vector

machine is used for training and testing of data. Later sliding window technique is

applied to detect face on any size of image by extracting QUALHOG features and

using SVM Light. Results are obtained at every step of testing for extraction of

QUALHOG features for FDS.

Comparison of proposed face detector (QUALHOG) and face detector (HOG) is

done by training and testing of images. 2731 images (1231 faces and 1500 non faces)

are used for training and 17872 images (393 faces and 17479 non faces) are used for

testing at 10 levels for all the three types of distortions. The results showed that

QUALHOG shows higher tolerance to distortion as compared to HOG. Later, 100

random images are taken and comparison of proposed face detector (QUALHOG)

82

and face detector (HOG) is done by training and testing of images. Images are

distorted at 3 different levels for all three types of distortion.

LIBLINEAR is used for training and testing of data because of the large database for

testing and training. It is observed that LIBLINEAR performs better and is faster as

compared to other SVM while testing on large database.Later SVM Light is used for

training and testing of 100 images.

True positive and false positive are calculated at every level in all three types of

distortion and degradation in performance of QUALHOG face detector was seen

with increase in distortion level. Precision and Recall are obtained by using true

positives, false positives and detected positives. Precision versus distortion level

(AWGN, G Blur and JPEG) and Recall versus distortion level (AWGN, G Blur and

JPEG) curves are plotted and these curves are compared with the known experiment

results which are AUPR versus distortion level (AWGN, G Blur and JPEG) curves.

QUALHOG face detector shows improved results (1-5% overall) for face detection

as compare to HOG face detector when trained on distorted images. Adding

perceptual quality aware features makes QUALHOG face detector more tolerant to

images.

83

REFERENCES

[1] Gunasekar, S., Ghosh, J., & Bovik, A. C. (2014). Face detection on

distorted Images augmented by augmented by perceptual quality - aware

features. IEEE Transactions on Information Forensics and Security, 9(12),

2119-2131.

[2] Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image

quality assessment in the spatial domain. IEEE Transactions on Image

Processing, 21(12), 4695-4708.

[3] Sharifi, K., & Leon –Garia, A. (1995). Estimation of shape parameter

generalized gaussian distribution in subband decomposaition of video. IEEE

Transaction on Circuits and Systems for Video Techonology, 5(1), 52-56.

 [4] Lasmar, N.E., Stitou, Y., & Berthoumieu, Y. (2009, November). Multiscale

skewed heavy tailed model for texture analysis. In Image Processing (ICIP)

2009 16th IEEE International Conference on (pp. 2281-2284). IEEE.

 [5] Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE.

[6] Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008).

 LIBLINEAR: A library for large linear classification. Journal of machine

learning research, 9(Aug), 1871-1874.

84

 [7] Yang, M., Crenshaw, J., Augustine, B., Mareachen, R., & Wu, Y.

(2010).AdaBoost-based face detection for embedded systems. Computer Vision

and Image Understanding, 114(11), 1116-1125.

[8] Sandford, A., & Burton, A. M. (2014). Tolerance for distorted faces:

Challenges to a configural processing account of familiar face

recognition. Cognition, 132(3), 262-268.

[9] Andreu, Y., García-Sevilla, P., &Mollineda, R. A. (2014). Face gender

classification: A statistical study when neutral and distorted faces are combined

for training and testing purposes. Image and Vision Computing, 32(1), 27-36.

[10] Gudla, Gudla, B., Chalamala, S. R., & Jami, S. K. (2015, December). Local

Binary Patterns For Gender Classification. In Artificial Intelligence, Modelling

and Simulation (AIMS), 2015 3rd International Conference on (pp. 19-22).

IEEE.

 [11] Rowley, H. A., Baluja, S., &Kanade, T. (1998). Neural network-based face

detection. IEEE Transactions on pattern analysis and machine

intelligence, 20(1), 23-38.

 [12] Mittal, A., Soundararajan, R., &Bovik, A. C. (2013). Making a “completely

blind” image quality analyzer. IEEE Signal Processing Letters, 20(3), 209-212.

 [13] SVM Light. (2016, November 20). Retrieved from

http://svmlight.joachims.org/

http://svmlight.joachims.org/

85

[14] DFD. (2016, November 15). Retrieved from www.live.ece.utexas.edu/ research

/ Quality / index.htm.

http://www.live.ece.utexas.edu/

86

APPENDICES

87

Appendix A: Code for training images using Liblinear SVM

1. close all

2. clear all

3. clc

4. hog.numBins = 9;

% The number of cells horizontally and vertically.

5. hog.numHorizCells = 8;

6. hog.numVertCells = 10;

% Cell size in pixels (the cells are square).

7. hog.cellSize = 8;

% Compute the expected window size (with 1 pixel border on all sides).

8. hog.winSize = [(hog.numVertCells * hog.cellSize + 2), (hog.numHorizCells *

hog.cellSize + 2)];

% Load all training windows and get their HOG descriptors.

% Get the list of all images in the directory.

9. posFiles = getImagesInDir('./dataset/noise/V9/pos/', true);

10. negFiles = getImagesInDir('./dataset/noise/V9/negS/', true);

% Create the category labels.

11. y_train = [ones(length(posFiles), 1); -ones(length(negFiles), 1)];

%y_train = double(y_train);

% Combine the file lists to get a list of all training images.

12. fileList = [posFiles, negFiles];

% Build a matrix of all of the descriptors, one per row.

13. X_train = zeros(length(fileList), 2304);

%X_train = double(X_train);

14. fprintf('Computing descriptors for %d training windows: ', length(fileList));

% For all training window images...

15. for i = 1 : length(fileList)

 % Get the next filename.

16. imgFile = char(fileList(i));

 % Print the current iteration

17. printIteration(i);

 % Load the image into a matrix.

18. img = imread(imgFile);

19. img = double(img);

20. if(size(img,3)==3)

21. img = uint8(img);

22. img = rgb2gray(img);

23. end

24. img = double(img);

88

 % Calculate the HOG descriptor for the window.

25. H = HOG(img);

26. H = H';

27. H = normalise(H);

28. M = brisque_feature(img);

29. M = (36/2268)* M;

 30. M = normalise(M);

 31. L = [H M];

 32. L = normalise(L);

 % Add the descriptor to the rest.

33. X_train(i, :) = L';

 34. end

 35. X_train = sparse(X_train);

 36. libsvmwrite('data.txt', y_train, X_train) ;

 37. [label_vector, instance_matrix] = libsvmread('data.txt');

%Train Liblinear SVM

 38. fprintf('\nTraining linear SVM classifier...\n');

 39. model = train(label_vector, instance_matrix, 's2 -c 0.25000 ');

 40. save('model.mat');

 41.end

Appendix B: Code for testing images using Liblinear SVM

1. close all

2. clear all

3. clc

4. load('model.mat');

5. fcount = 1;

6. testImPath = './test images/noise/V9/V9/pos/';

7. imlist = dir([testImPath '*.bmp']);

8. fprintf('Computing descriptors for %d training windows: ', length(imlist));

9. for j = 1:length(imlist)

 % Get the next filename.

10. imgFile = struct(imlist(j));

 % Print the current iteration

11. printIteration(j);

12. img = imread([testImPathimlist(j).name]);

13. img = double(img);

14. if(size(img,3)==3)

15. img = uint8(img);

16. img = rgb2gray(img);

17. end

18. img = double(img);

19. M = HOG(img);

20. M = M';

89

21. M = normalise(M);

22. T = brisque_feature(img);

23. T =(36/2268)* T;

24. T = normalise(T);

25. featureVector{fcount} = [M T];

26. featureVector{fcount} = normalise(featureVector{fcount});

27. featureVector{fcount} = featureVector{fcount}';

28. fcount = fcount+1;

29. end

30. P = cell2mat(featureVector);

31. P = P';

32. lebel = ones(length(featureVector),1);

33. X = sparse(P);

34. libsvmwrite('data1.txt', lebel,X) ;

35. [label_vector, instance_matrix] = libsvmread('data1.txt');

% Evaluate the liblinear SVM on the descriptor.

36. [predict_label, accuracy, dec_values] = predict(label_vector,

instance_matrix,model);

37. end

Appendix C: Code for calculating NSS features

1. function feat = brisque_feature(imdist)
2. imdist = double(imdist);
3. if(size(imdist,3)==3)
4. imdist = uint8(imdist);
5. imdist = rgb2gray(imdist);
6. end

7. imdist = double(imdist);
8. scalenum = 2;
9. window = fspecial('gaussian',7,7/6);
10. window = window/sum(sum(window));

11. feat = [];
12. for itr_scale = 1:scalenum

13. mu = filter2(window, imdist, 'same');
14. mu_sq = mu.*mu;
15. sigma = sqrt(abs(filter2(window, imdist.*imdist, 'same') - mu_sq));
16. structdis = (imdist-mu)./(sigma+1);
17. [alpha overallstd] = estimateggdparam(structdis(:));
18. feat = [feat alpha overallstd^2];

19. shifts = [0 1;1 0 ; 1 1; -1 1];

90

20. for itr_shift =1:4
21. shifted_structdis = circshift(structdis,shifts(itr_shift,:));
22. pair = structdis(:).*shifted_structdis(:);
23. [alpha leftstdrightstd] = estimateaggdparam(pair);
24. const =(sqrt(gamma(1/alpha))/sqrt(gamma(3/alpha)));
25. meanparam

=(rightstdleftstd)*(gamma(2/alpha)/gamma(1/alpha))*const;
26. feat =[feat alpha meanparam leftstd^2 rightstd^2];
27. end
28. imdist = imresize(imdist,0.5);
29. end

Appendix D: Code for calculating GGD parameters

1. function [gamparam sigma] = estimateggdparam(vec)
2. mu = mean(vec);
3. sigma_sq = mean((vec - mu).^2)
4. sigma = sqrt(sigma_sq);
5. E = mean(abs(vec - mu));
6. rho = sigma_sq/E^2;

7. counter_1 = 0;
8. counter_2 = 10 ;
9. for v = 1:100
10. gam = counter_1:0.001:counter_2;
11. r_gam = (gamma(1./gam).*gamma(3./gam))./((gamma(2./gam)).^2);
12. [min_difference, array_position] = min(abs(rho - r_gam));
13. previous_array_position = array_position - 1;
14. disp(array_position - 1)
15. disp(array_position)
16. if min_difference == min(abs(rho - r_gam));
17. gamparam = gam(array_position);
18. fprintf('shape_parameter_found');
19. else
20. fprintf('shape_parameter_not_found');
21. end
22. if(gam >= rho)
23. break;
24. end
25. counter_1 = counter_1 - 1;
26. counter_2 = counter_2 + 1;
27. end
28. end

91

Appendix E: Code for calculating AGGD parameters

1. function [alpha leftstdrightstd] = estimateaggdparam(vec)
2. leftstd = sqrt(mean((vec(vec<0)).^2));
3. rightstd = sqrt(mean((vec(vec>0)).^2));
4. gammahat = leftstd/rightstd;
5. rhat = (mean(abs(vec)))^2/mean((vec).^2);
6. rhatnorm = (rhat*(gammahat^3 +1)*(gammahat+1))/((gammahat^2

+1)^2);

7. counter_1 = 0.2;
8. counter_2 = 10 ;
9. for v = 1:100

10. gam = counter_1:0.001:counter_2;
11. r_alpha = ((gamma(2./gam)).^2)./(gamma(1./gam).*gamma(3./gam));

12. [min_difference, array_position] = min((r_alpha - rhatnorm).^2);
13. previous_array_position = array_position - 1;
14. disp(array_position - 1)
15. disp(array_position)
16. if min_difference == min((r_alpha - rhatnorm).^2);

17. alpha = gam(array_position);
18. fprintf('array_value_found');
19. else
20. fprintf('array_position_not_found');
21. end
22. if(gam >= rhatnorm)
23. break;
24. end
25. counter_1 = counter_1 - 1;
26. counter_2 = counter_2 + 1;
27. end
28. end

Appendix F: Code for extracting HOG features

1. function HOGv = HOG(Img)

2. I = double(Img);

3. if(size(I,3)==3)

4. I = uint8(I);

5. I = rgb2gray(I);

6. end

7. I = double(I);

92

% Compute the gradient vector at every pixel in the image.

% Create the operators for computing image derivative at every pixel.

8. hx = [-1,0,1];

9. hy = hx';

% Compute the derivative in the x and y direction for every pixel.

10. dx = filter2(hx, double(I));

11. dy = filter2(hy, double(I));

% Convert the gradient vectors to polar coordinates (angle and magnitude).

12. angles = atan2(dy, dx);

13. magnit = ((dy.^2) + (dx.^2)).^.5;

% Make the angles unsigned by adding (180 degrees) to all negative angles.

14. angles(angles < 0) = angles(angles < 0) + 180;

15. feature=[]; %initialized the feature vector

16. rows=size(I,1);

17. cols=size(I,2);

% Iterations for Blocks

18. for i = 0: rows/8 - 2

19. for j= 0: cols/8 - 2

20. mag_patch = magnit(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16);

21. ang_patch = angles(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16);

22. block_feature=[];

 %Iterations for cells in a block

23. for x= 0:1

24. for y= 0:1

25. angleA =angles(8*x+1:8*x+8, 8*y+1:8*y+8);

26. magA =magnit(8*x+1:8*x+8, 8*y+1:8*y+8);

27. histr =zeros(1,9);

 %Iterations for pixels in one cell

28. for p=1:8

29. for q=1:8

30. alpha= angleA(p,q);

 % Binning Process (Bi-Linear Interpolation)

31. if alpha>=0 && alpha<=20

32. histr(1)=histr(1)+ magA(p,q);

33. elseif alpha>20 && alpha<=40

34. histr(2)=histr(2)+ magA(p,q);

35. elseif alpha>40 && alpha<=60

36. histr(3)=histr(3)+ magA(p,q);

37. elseif alpha>40 && alpha<=60

38. histr(4)=histr(4)+ magA(p,q);

39. elseif alpha>60 && alpha<=80

40. histr(5)=histr(5)+ magA(p,q);

41. elseif alpha>80 && alpha<=100

42. histr(6)=histr(6)+ magA(p,q);

43. elseif alpha>100 && alpha<=120

93

44. histr(7)=histr(7)+ magA(p,q);

45. elseif alpha>120 && alpha<=140

46. histr(8)=histr(8)+ magA(p,q);

47. elseif alpha>140 && alpha<=160

48. histr(9)=histr(9)+ magA(p,q);

49. elseif alpha>=160 && alpha<=180

50. histr(9)=histr(9)+ magA(p,q);

51. end

52. end

53. end

 % Concatenation of Four histograms to form one block feature

54. block_feature=[block_featurehistr];

55. end

56. end

 % Normalize the values in the block using L2-Norm

57. e = 0.0001;

58. block_f=block_feature/sqrt(norm(norm(block_feature))^2+.01);

 %Normalize the values in the block using L1-Norm

59. L_1 = block_f/(norm(block_f)+ 0.0001);

 % Normalize the values in the block using L1 sqrt-Norm

60. L1_sqrt = sqrt (L_1/ (norm(L_1)+ 0.0001));

61. feature=[feature L1_sqrt]; %Features concatenation

62. end

63. end

Appendix G: Code for normalize images features between -1 and +1

1. function [H_norm] = normalise(x)
2. fmin = -1;
3. fmax = 1;
4. minn = min(x);
5. maxx = max(x);
6. H_norm = (x - minn) ./ (maxx - minn);
7. H_normm = H_norm .* (fmax - fmin) + fmin;
8. end

Appendix H: Code for training of images in test images using SVM

light

1. close all

2. clear all

3. clc

94

4. hog.numBins = 9;

% The number of cells horizontally and vertically.

5. hog.numHorizCells = 8;

6. hog.numVertCells = 10;

% Cell size in pixels (the cells are square).

7. hog.cellSize = 8;

% Compute the expected window size (with 1 pixel border on all sides).

8. hog.winSize = [(hog.numVertCells * hog.cellSize + 2), (hog.numHorizCells *

hog.cellSize + 2)];

% Load all training windows and get their HOG descriptors.

% Get the list of all images in the directory.

9. posFiles = getImagesInDir('./dataset/noise/V9/pos/', true);

10. negFiles = getImagesInDir('./dataset/noise/V9/negS/', true);

% Create the category labels.

11. y_train = [ones(length(posFiles), 1); -ones(length(negFiles), 1)];

%y_train = double(y_train);

% Combine the file lists to get a list of all training images.

12. fileList = [posFiles, negFiles];

% Build a matrix of all of the descriptors, one per row.

13. X_train = zeros(length(fileList), 2304);

%X_train = double(X_train);

14. fprintf('Computing descriptors for %d training windows: ', length(fileList));

% For all training window images...

15. for i = 1 : length(fileList)

 % Get the next filename.

 16. imgFile = char(fileList(i));

 % Print the current iteration

 17. printIteration(i);

 % Load the image into a matrix.

18. img = imread(imgFile);

19. img = double(img);

20. if(size(img,3)==3)

21. img = uint8(img);

22. img = rgb2gray(img);

23. end

24. img = double(img);

 % Calculate the HOG descriptor for the window.

25. H = HOG(img);

26. H = H';

 27. H = normalise(H);

 28. M = brisque_feature(img);

 29. M = (36/2268)* M;

 30. M = normalise(M);

95

 31. L = [H M];

 32. L = normalise(L);

 % Add the descriptor to the rest.

 33. X_train(i, :) = L';

 34. end

 35. X_train = sparse(X_train);

 36. libsvmwrite('data.txt', y_train, X_train) ;

 37. [label_vector, instance_matrix] = libsvmread('data.txt');

%Train SVM light

 37. fprintf('\nTraining linear SVM classifier...\n');

 38. model = svmlearn(X_train, y_train, '-t -c ');

 39. save('model.mat');

 40.end

Appendix I: Code for testing images using SVM light through

sliding window

1. clear all

2. close all

3. clc

%% Detection

4. load ('model.mat');

5. tSize = [64, 80];

6. testImPath = './test images/';

7. imlist = dir([testImPath '*.bmp']);

8. for j = 1:length(imlist)

9. img = imread([testImPathimlist(j).name]);

10. img = imresize(img,0.8);

11. imshow(img,[]);

12. img = double(img);

13. if(size(img,3)==3)

14. img = uint8(img);

15. img = rgb2gray(img);

16. end

17. img = double(img);

18. axis equal; axis tight; axis off;

19. hold on;

20. detect(img,model,tSize);

21. saveas(gcf, ['./results (2)/' imlist(j).name], 'jpg');

22. end

23. function detect(im,model,wSize)

24. topLeftRow = 1;

25. topLeftCol = 1;

96

26. [bottomRightColbottomRightRow d] = size(im);

27. fcount = 1;

% this for loop scan the entire image and extract features for each sliding window

28. for y = topLeftCol:bottomRightCol-wSize(2)

29. for x = topLeftRow:bottomRightRow-wSize(1)

30. p1 = [x,y];

31. p2 = [x+(wSize(1)-1), y+(wSize(2)-1)];

32. po = [p1; p2];

33. img = imcut(po,im);

34. if size(img,3) >1

35. img = rgb2gray(img);

36. end

37. H = HOG(double(img));

 38. H = normalise(H);

 39. M = brisque_feature(img);

 40. M = normalise(M);

 41. M = (2268/36)* M;

 42. M = M';

 43. featureVector{fcount} = vertcat(H,M);

 44. boxPoint{fcount} = [x,y];

 45. fcount = fcount+1;

46. x = x+1;

47. end

 48. end

 49. lebel = ones(length(featureVector),1);

 50. P = cell2mat(featureVector);

 51. P = P';

 52. [~, predictions] = svmclassify(P,lebel,model); % classifying each window

 53. [a,indx]= max(predictions);

 54. bBox = cell2mat(boxPoint(indx));

 55. rectangle('Position',[bBox(1),bBox(2),64,80],'LineWidth',1, 'EdgeColor','r');

 56. end

Appendix J: Code for generating curve QUALHOGvs HOG

1. (x1,y1) = Qualhog features;
2. (x2,y2) = HOG features;
3. figure,plot(x1,y1,'--rs',x2,y2,'--gs',...
4. 'LineWidth',2,...
5. 'MarkerSize',5,...
6. 'MarkerEdgeColor','b',...
7. 'MarkerFaceColor',[0.0001,0.0001,0.0001]);
8. xlabel('xlabel');
9. ylabel('ylabel');
10. title('Qualhogvs Hog');

97

Appendix K: Code for generating Gaussian filter without using

Matlab function

1. clear all

2. close all

3. clc

% Read am image

4. Img = imread(„image_0057.bmp‟);

5. I = double(Img);

6. If (size(I,3)==3)

7. I = uint8(I);

8. I = rgb2gray(I);

9. End

10. I = double (I);

% Design the Gaussian kernel

11. Sigma = 1; %standard deviation

12. Sz = 3*sigma; %Window size

13. [x,y] = meshgrid(-sz:sz, -sz:sz);

14. M = size(x,1) -1; % Find the size of each dimension of matrix M

15. N = M;

16. Exp_comp = -(x.^2+y.^2) / (2*sigma*sigma);

17. Kernel = exp (Exp_comp) / (2*pi*sigma*sigma);

18. end

98

Appendix L: Manually created table for saving experiment results

99

