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ABSTRACT 

This thesis is motivated by developing a face detection system for detecting faces in 

distorted images. Interaction between face detection and perceptual image quality is 

studied and analyzed to develop this robust face detection system. It is observed that 

accuracy of existing face detection systems are degraded with increase in distortion 

which is occurred due to many factors like low resolution of cameras, during 

transmission or storing. These types of distortions are AWGN, G Blur and JPEG. To 

overcome this problem, a new set of features named QUALHOG (which is a 

combination of NSS features and HOG features) is proposed for better and accurate 

face detection which augments Histogram of Oriented Gradients (HOG) features 

with perceptual quality-aware spatial Natural Scene Statistics (NSS) features. 

Face detection system based on QUALHOG features shows a great improvement in 

detecting faces as compared to face detection system based on HOG features. A large 

set of images are used for experimentation. To facilitate these experiments, a 

distorted face database (DFD) which contains face and non-face images by a variety 

of common distortion types and levels is used. This new dataset is available for 

download and further experimentation and it contains images at 10 distortion levels.  

Precision and Recall are calculated, Precision versus distortion level and Recall 

versus Distortion level curves are obtained to show the comparison between HOG 

and QUALHOG based face detection systems. 

Furthermore obtained results are compared with known results and presented as 

AUPR versus Distortion level curves to show the feasibility of FDS. 
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ÖZ 

Bu tez, bozulmuş görüntülerde yüzleri tespit etmek için bir yüz algılama sistemi 

geliştirerek motive edilir. Yüz tanıma ve algılamalı görüntü kalitesi arasındaki 

etkileşim incelenmiş ve  sağlam bir yüz tespit sistemi geliştirilmiştir. Mevcut yüz 

tanıma sistemlerinin doğruluğunun, kameralarda düşük çözünürlük, iletim veya 

depolama gibi pek çok faktöre bağlı olarak bozulma artışı ile bozulduğu 

gözlemlenmiştir. Bu tür bozulmaların sebebi AWGN, G Blur ve JPEG'tir. Bu 

sorunun üstesinden gelmek için, QUALHOG isminde yeni bir öznitelik kümesi 

önerilmiştir. Bu yöntem, NSS vs HOG özniteliklerini içermektedir. 

QUALHOG özniteliklerini temel alan yüz tanıma sistemi, HOG özniteliklerini 

kullanan yüz tanıma sistemi ile karşılaştırıldığında, HOG özniteliklerine göre yüz 

tanımada büyük bir gelişme olduğunu gösterir. Deneyler için geniş bir görüntü grubu 

kullanılmıstır. Bu deneyleri kolaylaştırmak için, çeşitli genel çarpıtma türleri ve 

seviyeleri ile yüz ve yüz olmayan görüntüler içeren çarpık bir yüz veritabanı (DFD) 

kullanılmıştır. Bu yeni veri kümesi, indirilebilir,ileriki deneyler için kullanılabilir ve 

10 bozulma seviyesinde görüntüler içerir. Deneylerde, Hassas ve Geri Çağırma 

hesaplanmış, Hassas ve bozulma seviyesi, ve Geri Çağırma ve Çarpışma seviyesi 

eğrileri, HOG ve QUALHOG tabanlı yüz tanıma sistemleri arasındaki 

karşılaştırmayı göstermek için elde edilmiştir. 

Ayrıca elde edilen sonuçlar, bilinen sonuçlarla karşılaştırıldığında, FDS'nin 

fizibilitesini göstermek için AUPR ve Distorsiyon seviyesi eğrileri olarak 

gösterilmiştir. 
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Chapter 1 

INTRODUCTION 

The arrival of low cost digital storage device and social networking and photo 

sharing websites like Instagram, Snapchat, Facebook, Twitter etc leads to rapid 

growth of sharing visual data like photos and videos across these platforms over 

internet. Image processing and Computer vision algorithms focus on studying the 

content based on real life applications like surveillance, image exploring etc. The 

main task of Computer vision algorithms are object detection and object recognition. 

But these algorithms work well in certain limits and performance is degraded with 

the decline in image quality. Automatic face detection which is used commercially 

these days is one of the examples. Face detection is used for security purpose and 

also for surveillance but often images are subjected to be distorted due to the weather 

conditions or due to low quality of camera device and these distortion have direct 

effect on performance of detector. 

In this research, a new set of features QUALHOG [1] are studied and implemented, 

which shows more tolerance to common distortion like AWGN, GBlur and JPEG in 

images. This research inspires by the fact that perceptual quality aware feature can be 

used for modeling face detectors. Widely used and implemented Histogram of 

gradient features (HOG) based detection algorithm is used as foundation for 

implementation of this research. Perceptual quality aware features (NSS spatial) [2] 
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are also explored along with HOG [5] in order to make detector more tolerant to 

image distortions. 

The main contribution of this thesis is as follows 

 Images are distorted by using three different types of distortion techniques 

like Additive White Gaussian noise (AWGN), Gaussian Blur (G Blur) and 

JPEG at different levels. 

 A new set of features name QUALHOG, which augments perceptual quality 

aware (NSS spatial) features with HOG features are studied and 

implemented. 

 Robustness of QUALHOG is measured and calculated and compare it with 

HOG in order to show its better performance. 

 LIBLINEAR [6] and SVM Light [13] Support vector machine is studied and 

implemented for classification and prediction of facial images. 

The rest of the thesis is organized as follows. Chapter 2 contains literature review of 

FDS and problem definition. Chapter 3 contains design, implementation and testing 

of FDS. Chapter 4 contains experiments and results of FDS. Chapter 5 contains 

conclusion.  Appendices contain code of FDS and raw data on experiments with 

FDS. 
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Chapter 2 

LITERATURE REVIEW OF FDS AND PROBLEM 

DEFINITION 

2.1 Face Detection on Distorted Images Augmented by Perceptual 

Quality-Aware Features 

Overall FDS structure 
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          Model file 

 

 

 

Testing Image        QUALHOG features 

 

 

                                                                          Face or non face 

 

a. Overall FDS structure 
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feature extraction 
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feature extraction 
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model file 
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     NSS features 

 

   Distorted Image                   QUALHOG features (HOG + NSS) 

     HOG features 

 

b. Structure for QUALHOG feature extraction 

 

 

            GGD parameters 

Distorted Image            Normalized image 

            AGGD parameters 

 

       NSS features (GGD + AGGD) 

c. Structure for NSS feature extraction 

 

Distorted Image         Gaussian filter       mean    
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Normalized Image                Gaussian ratio     left and right standard  

         deviation 

 

  gammahat,unbiasedestimate and rhatnorm 

 

 

shape parameter   left and right scale parameters                 AGGD 

parameters 

 

f. Structure for estimation of AGGD parameters 

 

  Distorted Image               gradient vectors              histogram bins 

 

 

   HOG features 

g. Structure for HOG features extraction 

Figure 1: Overall structure of FDS according to [1] 

 

Figure 1 shows overall structure of FDS as it is defined in [1], in which QUALHOG 

features are extracted by augmentation of NSS and HOG features. NSS features are 

obtained by augmentation of GGD and AGGD parameters. In the end, LIBLINEAR 

SVM is used for training and testing of images. 

2.2 Distortion of images by AWGN, GBlur and JPEG 

In [1]detection of faces on distorted images mainly by Gaussian Blur, Additive white 

Gaussian noise and JPEG is considered. 
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Additive White Gaussian Noise (AGWN) - It‟s a type of distortion which is used in 

networking as well as in images processing.  In image processing, zero mean normal 

distributed noise which is Gaussian noise is added to every pixel of an image. 

AWGN is defined as 

                                                  I  i, j =  I i, j + Nij              (1) 

where,Nij  ~ N(µ , σN
2 ), µis mean,𝜍𝑁

2 is variance and I i, j is original imageandI  i, j is 

image distorted by AWGN. µis always zero in AWGN therefore distortion level 

depend on𝜍𝑁
2 . 

Gaussian Blur (G Blur) – In Gaussian blur, images are distorted using normal 

distribution or Gaussian function. Convolution of an image with its Gaussian 

function used to obtain desired distortion, new value of a pixel is obtained by taking 

weighted average of neighbor pixels. 

The Gaussian function in two dimensions is given by  

G(x,y)=
1

2πσB
2 ∗ e

−
x 2+ y 2

2σB
2

                                      (2) 

In (2), x refers to rows and y refers to column of Gaussian kernel and 𝜍𝐵 refers to 

standard deviation.  

In images processing, Gaussian function is pruned to 6𝜍𝐵 which means  

−[3𝜍𝐵]  ≤  x  ≤  [3𝜍𝐵]  and  −[3𝜍𝐵]  ≤  y  ≤  [3𝜍𝐵]  (3) 
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An image distorted by Gaussian blur can be written as  

                                      I  =  I ∗ G       (4) 

Where, „*‟ stands for convolution. 

Formula (4) can be rewritten as 

                           𝐼  𝑖, 𝑗 =    𝐼 𝑖 + 𝑥, 𝑗 + 𝑦 ∗ 𝐺(𝑥,𝑦)
[3𝜍𝐵 ]
𝑦= −[3𝜍𝐵 ]

[3𝜍𝐵 ]
𝑥= −[3𝜍𝐵 ]                      (5) 

In (5), 𝑖 is rowand 𝑗 is the column number of an image. 

Joint Picture Experts Group (JPEG) – It is a compression technique to reduce size of 

an image so that it is easy to store and send them over network medium. It is a lossy- 

compression technique in which once data is loosed in order to reduce storage space 

can‟t be recovered and quality of an image degrades with the increase in 

compression. 

Steps to perform JPEG Compression and decompression 

a. JPEG works on 8*8 blocks, an image is converted into a grayscale image and 

then is divided into sub images of size dimension 8*8 which is called blocks. 

b. As it is a grayscale image, it ranges from 0 to 255, we need to convert the 

value between -128 to 127, so we subtract 128 from each pixel of an image 

block we selected. 
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c. In this step DCT is performed on x axis and y axis, that is 2-D DCT, in order 

change image values into frequency domain. 

Mathematical expression for 2 dimensional DCT is 

 𝐺𝑢 ,𝑣 =
1

4
𝛼 𝑢 𝛼 𝑣   𝐺𝑥 ,𝑦

7
𝑦=0

7
𝑥=0 cos  

 2𝑥+1 𝑢𝜋

16
 cos[

 2𝑦+1 𝑣𝜋

16
]         (6) 

where, u and v horizontal and vertical spatial frequencies respectively and  

ranges from 0 ≤ 𝑢 < 8 𝑎𝑛𝑑 0 ≤ 𝑣 < 8 

 

𝛼 𝑢 =  

1

√2
 , 𝑖𝑓𝑢 = 0

1 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

𝐺𝑥 ,𝑦 is a pixel value at location (x,y) and 𝐺𝑢 ,𝑣 is Discrete Courier 

Transformation coefficient at location (u,v). 

After applying the above expression, image pixel values will change into 

frequency domain. 

d. This stage is called Quantization and it is the process which decides the 

image quality and compression efficiency and it is also called „Q‟ factor. 

Quantization reduces information at higher frequencies as human eye is less 

susceptible to see minor changes at higher frequency. Mathematical 

expression for Quantization can be written as 
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                         𝐵𝑗 ,𝑘 = 𝑟𝑜𝑢𝑛𝑑  
𝐺𝑗 ,𝑘

𝑄𝑗 ,𝑘
 𝑓𝑜𝑟𝑗 = 0 𝑡𝑜 7 𝑎𝑛𝑑𝑘 = 0 𝑡𝑜 7                   (7) 

 

Where, 

G = dequantized DCT coefficient 

Q = quantization matrix for an image 

B = quantized Discrete courier transform coefficient 

Coding – In this stage, components of image coded in zigzag manner which 

uses RLE (run to length algorithm which picks up same frequencies in image 

component and group them.  Huffman coding is used in later part to code 

image components. 

Decompression – It‟s the inverse of compression, Its consists of decoding, 

then de-quantized image , then apply inverse DCT on de-quantized image to 

convert it from frequency domain to its original form. 

Note – since it‟s a lossy-compression hence, original image can‟t be obtained 

after decompression. 

2.3 Extraction of QUALHOG features 

QUALHOG Features are the augmentation of NSS and HOG features. 

 2.3.1 Extraction of NSS features 

This paper [2] proposed a method of image quality assessment in spatial domain with 

no references available. This method works in spatial domain and no transformation 

is needed to another coordinated frame like DCT, wavelet, etc. hence require very 

little computation. This is done in three stages -  



10 
 

1.Compute locally normalized luminance of an image. 

It is done using normalization and local mean subtraction over an image 

            𝐼  𝑖, 𝑗 =  
𝐼 𝑖 ,𝑗  −𝜇 (𝑖 ,𝑗 )

𝜍 𝑖 ,𝑗  + 𝐶
                                                       (8) 

In equation (8),‘ I‟is the original image in which i ϵ 1,2,3…… . M 

and𝑗𝜖 1,2,3…… .𝑁where M and N are the rows and columns of an image. C is a 

constant which is always1, the role of C is to keep image stable when denominator 

goes to zero. μ and σare the mean and variance of an image.Mathematical expression 

to calculate mean and variance of an image. 

                𝜇 𝑖, 𝑗 =    𝑤𝑘 ,𝑙
𝐿
𝑙 = −𝐿

𝐾
𝑘= −𝐾 𝐼𝑘 ,𝑙 𝑖, 𝑗                                                                 (9) 

 

           𝜍 𝑖, 𝑗 =     𝑤𝑘 ,𝑙(𝐼𝑘 ,𝑙 𝑖, 𝑗 − 𝜇 𝑖, 𝑗 )2𝐿
𝑙= −𝐿

𝐾
𝑘= −𝐾                                             (10) 

In equation (9) and (10), 𝑤𝑘 ,𝑙  is a two dimensional Gaussian filter applied circularly 

and down sampled to unit volume and three standard deviation, K = 3 and L = 3. By 

applying the above equation, locally normalized luminance image is obtained, the 

performance of the above equation fluctuate according to the window size of an 

image. 

2. Applying Generalized Gaussian distribution (GGD) [3] on normalized image. 
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Computer histograms over pixels of distorted images befitted by applying 

Generalized Gaussian distribution (GGD) and digression of that image from its 

original form comes handy to estimate type of distortion and level of distortion.  

3.Applying Asymmetric Generalized Gaussian Distribution (AGGD) [4] on 

normalized image. AGGD generalizes the Generalized Gaussian Distribution and 

comprehend it by allowing asymmetry in the distribution. The features are calculated 

along four orientations horizontal (H), vertical (V), main-diagonal (D1) and 

secondary diagonal (D2). 

𝐻 𝑖,𝑗  =  𝐼  𝑖 ,𝑗  𝐼  𝑖,𝑗+1  

𝑉(𝑖,𝑗 ) =  𝐼 (𝑖,𝑗 )𝐼 (𝑖+1,𝑗 ) 

𝐷1(𝑖,𝑗 ) =  𝐼 (𝑖,𝑗 )𝐼 (𝑖+1,𝑗+1) 

        𝐷2(𝑖,𝑗 ) =  𝐼 (𝑖,𝑗 )𝐼 (𝑖+1,𝑗−1)                     (11) 

In equations (11), AGGD parameters are calculated in horizontal, vertical, diagonal 

D1 and diagonal D2 directions. 

Estimation of GGD parameters 

In [3], two parameters, shape parameter and standard deviation are estimated for 

animage. The GGD probability density function (pdf) is given by 

   𝑓 𝑥;𝛼,𝜍2 =  
𝛼

2𝛽𝜏 1/𝛼 
exp  

−|𝑥|

𝛽
 
𝛼

            (12) 

𝛽 =  𝜍 
𝜏 1/𝛼 

𝜏 3/𝛼 
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𝜏 𝑎 =   𝑡𝑎−1

∞

0

∗ 𝑎−𝑡𝑑𝑡𝑎 > 0 

Where, 𝜏is gamma function 

In equation (12), 𝛼 is shape parameter and 𝜍 is the standard deviation. 

The steps used to calculate shape parameter (𝛼) and variance (𝜍2)  of any image are 

as follows 

a. Calculate Generalized Gaussian ratio function   

    𝑟 𝛾 =  
𝜍2

𝐸2[ 𝑋 ]
 =   

𝜏 1/𝛾 ∗𝜏 3/𝛾 

𝜏2 2/𝛾 
             (13) 

 

To calculate Gaussian ration function, Look up table is defined for parameter (𝛾). 

b. Calculate mean (𝜇𝑥) and variance ( 𝜍𝑥
2) of any image (𝑥𝑖𝑗 ) 

 

   𝜇𝑥 =   
1

𝑀
 𝑥𝑖𝑗
𝑀
𝑖=1                   (14) 

 

                                       𝜍𝑥
2 =  

1

𝑀
  𝑥𝑖𝑗 − 𝜇𝑥 

2
 𝑀

𝑖=1                                           (15) 

In equation (14) & (15), M is total number of pixel values in any image. 

c. Calculate estimate ( 𝐸  𝑋   ) for the absolute values modified mean 

                  𝐸  𝑋  =  
1

𝑀
 |𝑥𝑖𝑗 − 𝜇𝑥 |𝑀
𝑖=1              (16) 
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                 In equation (16), M is total number of pixel values in any image. 

d. Determine the ratio (𝜌) 

 

  𝜌 =   
𝜍𝑥

2

𝐸2[ 𝑋 ]
                 (17) 

e. Solve the equation  𝛾 =  𝑟−1 𝜌                                                                     (18) 

where, r is the generalized Gaussian ratio function, by using a lookup table. The 

look up can be defined by the user or by giving instructions to machine to choose 

random variable with a constant difference between two variables. 

By applying the above four steps in a image, two important features that is shape 

parameter  𝛾  and variance (𝜍2) are found. These parameters are used for examining 

distortion level in images and videos and useful for detection of faces in distorted 

images. 

Estimation of AGGD parameters 

In [4], AGGD parameters (4 parameters i.e. shape parameter, left and right standard 

deviation and statistical mean) are calculated. Probability density function for AGGD 

is given by 

  

 𝑓 𝑥;  𝛼,𝛽 =   

𝛾

2 𝛽𝑙+𝛽𝑟 𝜏(1/𝛾)
exp  

− 𝑥 

𝛽𝑙
 
α

, 𝑖𝑓𝑥 ≤ 0

𝛾

2 𝛽𝑙+𝛽𝑟 𝜏(1/𝛾)
exp  

− 𝑥 

𝛽𝑟
 
α

 , 𝑖𝑓𝑥 > 0

              (19) 
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Steps to calculate parameters 

a. Calculate Generalized Gaussian ratio𝜌 𝛼  function 

 

        𝜌 𝛼 =   
𝜏2 2/𝛼 

𝜏 1/𝛼 𝜏 3/𝛼 
                                        (20) 

 

b. Calculate left standard deviation (𝛽𝑙) ad right standard deviation(𝛽𝑟) 

 

                    𝛽𝑙 =   
1

𝑁𝑙−1
 𝑥𝑘

2𝑁𝑙
𝑘=1,𝑥𝑘<0                                       (21) 

 

                   𝛽𝑟 =   
1

𝑁𝑟−1
 𝑥𝑘

2𝑁𝑟
𝑘=1,𝑥𝑘≥0                                        (22) 

 

In equations (21) & (22), 𝛽𝑙  and 𝛽𝑟  are left and right standard deviation, 𝑁𝑙  

and 𝑁𝑟  is number of sample of 𝑥𝑘𝑤𝑒𝑛𝑥𝑘 < 0 𝑎𝑛𝑑𝑥𝑘 ≥ 0 respectively. 

c. Calculate the value of gamma hat (γ ), r  (unbiased estimate) and R  using γ  

and r  

 

    𝛾  =  
𝛽𝑙

𝛽𝑟
                                               (23) 

 

                                     𝑟 =  
  |𝑥𝑘 | 2

 𝑥𝑘
2                                                 (24) 
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                                     𝑅 =  𝑟  .
 𝛾 3+ 1 .  (𝛾 + 1)

(𝛾 2+ 1)2                                               (25) 

d.  According to 𝑅  (R hat) value  estimate (α) using the approximation of the 

inverse generalized Gaussian ratio 

 

 

                                  𝛼 =  𝜌−1 𝑅                                                                    (26) 

e. Calculate left scale parameter (𝛽 𝑙) and right scale parameter (𝛽 𝑟) 

 

                           𝛽 𝑙 =  𝛽𝑙 ∗  
𝜏 3/𝛼 

𝜏 1/𝛼 
                                                               (27) 

 

                          𝛽 𝑟 =  𝛽𝑟 ∗  
𝜏 3/𝛼 

𝜏 1/𝛼 
                                                                (28) 

f. Compute statistical mean  

 

                         𝜂 =  𝛽𝑙 − 𝛽𝑟 
𝜏 2/𝛼 

𝜏 1/𝛼 
                                                                 (29) 

2.3.2 Extraction of HOG features 

This paper [5] studies the extraction for histogram of oriented gradient features in 

images. This paper shows the superiority of Histogram of oriented gradient 

descriptor over SIFT and shape context descriptor.       

Gamma/Color normalization – RGB, grayscale, LAB color images were tested, these 

color were subject to normalization before computing gradients. 
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Gradient computation – Gradient have been computed in x and y direction. It is 

computed for every pixel of an image, It is calculated the variance in pixel value in 

horizontal and vertical direction. 

Gradient vector in x direction of pixel (hx) = 𝑥𝑙 −  𝑥𝑟                                         (30) 

Gradient vector in x direction of pixel (hy) = 𝑥𝑡 −  𝑥𝑏                         (31) 

In equations (30) and (31), hx is centrepixel ,𝑥𝑟 is a pixel right direction of center 

pixel, 𝑥𝑙  is a pixel in left direction of center pixel , 𝑥𝑡  is a pixel on top of center 

pixel and 𝑥𝑏  is a pixel in bottom of center pixel. By appending these two values we 

get out gradient vector. 

Magnitude and angle is also obtained by  

                                   Magnitude= 𝑥2 + 𝑦2                                                       (32) 

                                  Angle = arctan 
𝑥

𝑦
                                                                  (33) 

Orientation Binning – The next step is orientation binning, pixels of an image are 

grouped into cells and their magnitude is place into histogram bins, a total of 9 bins 

are used for the purpose. Histogram is ranges from 0 to 180 degrees and a total of 9 

bin so every bin there are 20 degrees. Unsigned gradients changes into signed 

gradient to fall into range of 0 to 180 degree. For each gradient vector, it‟s 

contribution to the histogram is given by the magnitude of the vector (so stronger 

gradients have a bigger impact on the histogram). Image pixel is grouped into cells, 
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every cell has 8x8 pixels that‟s a total of 64 pixels, and each pixel have it angle and 

magnitude. In histogram calculation if angles of pixel all in the range of any bin 

angle, then that pixel magnitude added into that bin. 

Normalization and descriptor block - Four cells grouped together into one block and 

normalized based on histograms value in the block and blocks have 50% overlap. 

This block normalization is executed by appending the histograms of the four cells 

within the block into a vector with 36 components (4 histograms x 9 bins per 

histogram). Divide this vector by its magnitude to normalize it. This block 

normalization is executed by appending the histograms of the four cells within the 

block into a vector with 36 components (4 histograms x 9 bins per histogram). 

Divide this vector by its magnitude to normalize it. L2 normalization followed by L1 

normalization and it followed by L1- sqrt normalization. 

 

L2 – norm = 
𝑣

 | 𝑣 |2
2+ 𝑒2

                                               (34)  

L1 – norm = 
𝑣

 | 𝑣 |1+ 𝑒 
                                    (35) 

L1 sqrt norm =  
𝑣

 | 𝑣 |1+ 𝑒 
                                                (36) 

Where, v is non-normalized vector containing all histogram in a block and | 𝑣 |𝑘  is 

its k norm for k = 1,2, and e is small value. 
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2.4 SVM Classifiers 

Liblinear and SVM Light are the two classifiers used in this research. 

2.4.1 Liblinear SVM Classifier 

The paper [6] studies about a linear Support Vector Machine Classification (SVM). 

This paper studies the feasibility of Liblinear on large scale data for classification. It 

supports two classifiers Logistic regression and linear SVM. 

It solves the following optimization problem 

                                          min
1

2
𝑤𝑇𝑤 + 𝐶  𝜀 𝑤; 𝑥𝑖 , 𝑦𝑖                                              

𝑙
𝑖=1 (37) 

Where, (𝑥𝑖 ,𝑦𝑖) are set of instant label pairs, 𝑖 = 1,…… . . , 𝑙,   𝑥𝑖 ∈ 𝑅𝑛  ,𝑦𝑖 ∈ {−1, +1} 

𝜀(𝑤; 𝑥𝑖 ,𝑦𝑖)is a loss function and C >0 is a penalty parameter. 

For prediction, the linear predictor with for a sample with feature X is given by 

                                            𝑦 = 𝑠𝑖𝑔𝑛 𝑊𝑇𝑋 + 𝑏                                                                 (38) 

In equation (38), 𝑊 =  𝑊𝐻𝑂𝐺 ,𝑊𝑁𝑆𝑆 , 𝑊𝐻𝑂𝐺  are weight corresponds to 2268 HOG 

features and 𝑊𝑁𝑆𝑆  corresponds to 36 spatial NSS features. 

This optimization problem is modified because the weight correlate with 36 

dimensional spatial NSS features (perceptual quality aware features) 𝑊𝑁𝑆𝑆  can be 

inequitably penalized in contrast to weight of 2268 dimensional HOG 

features 𝑊𝐻𝑂𝐺 . 
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The modified optimization equation can be written as 

                   𝑚𝑖𝑛 𝑚𝑖𝑛
𝑤 ,𝑏 ,{𝛏𝐢}

1

2
| 𝑊𝐻𝑂𝐺  |2

2 +
1

2
| 𝑊 𝑁𝑆𝑆 |2

2 +   λ 𝛏𝐢n
i=1                                  (39) 

Such that 𝑦𝑖 =   𝑊𝐻𝑂𝐺 ,𝑋𝑖
𝐻𝑂𝐺 +  𝑊 𝑁𝑆𝑆 ,𝐶𝑠𝑋𝑖

𝑁𝑆𝑆 +  𝑏 ≥ 1 − ξi 

In equation (39)  𝑋 𝑖 = [𝑋𝑖
𝐻𝑂𝐺  ,𝐶𝑠𝑋𝑖

𝑁𝑆𝑆]  , parameters  λ and 𝐶𝑠 are selected by cross 

validation. 

LIBLINEAR is an efficient and straightforward package for linear classification on 

large sets of data. It is proved to be better than other large scale classification 

packages like LIBSVM. The main goal of LIBLINEAR is to classify large set of data 

in less time efficiently. 

Training using Liblinear SVM 

 Design for training images of QUALHOG and HOG features is done as shown in 

Figure 1. A total of 2731 images (1231 facial images and 1500 non-facial images) 

are used in each level for training. Training is done by extracting QUALHOG 

features for all images, store them in a vector and liblinear SVM is trained on these 

vectors to obtain a file named model. HOG features are also extracted in order to 

compare results of QUALHOG with HOG. 

 For QUALHOG feature training, NSS features are concatenated with HOG features 

and store in the form of vector, liblinear SVM is trained on these features. 

LIBLINEAR [11] which is a linear SVM is used to classification of data. The reason 

behind choosing LIBLINEAR is because of large data for testing. There are more 
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than half a million of images to be tested, so LIBLINEAR is used for the job to be 

done. 

It is an open source package and developed by National Taiwan University and it is 

written is C++ language and can be compiled in Matlab or python through make file 

easily. Training a Liblinear SVM based on solving an optimization problem given in 

equation (39). 

Steps for training images 

 Load all positive (faces) and negative (non faces) training images. 

 Calculate 36 NSS feature vector of given images (one by one). 

 Calculate HOG features of  images (one by one). 

 Concatenate both features and store them into a vector. 

 Once features for all images are computed, store them in to a matrix. 

 Classify it by using LIBLINEAR and store the result into a file. 

Detection of face in test images using Liblinear SVM 

Design for detection of face in test images is obtained as shown in Figure 1. A total 

of 17872 images (393 facial images and 17479 non-facial images) are used in each 

level for detection. Detection is done by extracting QUALHOG features for all 
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images, store them in a vector and Liblinear SVM along with model file (obtained 

from training) are used for face detection in images.NSS features are concatenated 

with HOG features and store in the form of vector, Liblinear SVM is used for testing 

by using these features. 

LIBLINEAR [11] which is a linear SVM is used to classification of data. The reason 

behind choosing LIBLINEAR is because of large data for testing. There are more 

than half a million of images to be tested, so LIBLINEAR is used for the job to be 

done. It is an open source package and developed by National Taiwan University and 

it is written is C++ language and can be compiled in Matlab or python through make 

file easily. Images are tested and predicted by using equation (38). 

Steps for testing images 

 Load all the testing data (images). 

 Calculate 36 dimensional feature vector of given image (one by one). 

 Calculate HOG features of an image (one by one). 

 Concatenate both features and store them into a vector. 

 Once features for all images are computed, store them in to a matrix. 

 Predict it by using LIBLINEAR by using a file which stored results of 

training data. 
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 LIBLINEAR predict the data by showing -1 for non-face and 1 for face. 

 Prediction accuracy is depends on variable  λ , which is selected carefully by 

cross validation. 

2.4.2 SVM Light Classifier usage 

SVM light [13] is an implementation of Support Vector Machines (SVMs) in C. The 

main features of the program are the following: 

It is a fast optimization algorithm which solves classification and regression 

problems. It solves ranking problems, computes XiAlpha-estimates of the error rate, 

the precision, and the recall. It can train SVMs with cost models and example 

dependent costs. It also handles many thousands of support vectors and supports 

standard kernel functions. It is used for training and testing of images of any size for 

face detection system. 

2.5 Known experiment results according to [1] 

2.5.1 Experiment setup 

For experiments [1], Matlab is used. In addition to Matlab 2015.For training and 

testing of images LIBLINEAR SVM [11] is used. A database for 25 GB of image 

containing images of (80x64) dimension is created by the author of article [1] to 

conduct experiments. QUALHOG and HOG method is analyzed on distorted image 

database. This database contains images distorted on 10 levels by AWGN, GBlur and 

JPEG separately. At every level 2731 images (1231 faces and 1500 non faces) are 

used for training, and 17872 images (393 faces and 17479 non faces) are used for 

testing FDS. All the images in database are scaled to a size of 80x60 [14]. A total of 

536,160 images are used for testing FDS. 
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QUALHOG is compared with HOG by calculating True positive, False positive and 

Total number of detected images distorted by all three type of distortion.  True 

positive is an image that is detected by SVM as facial image and actually is a facial 

image. False positive is an image detected by SVM as facial image and actually is a 

non- facial image. Precision and recall are calculated by using QUALHOG features 

as follows 

Precision =  
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐷𝑒𝑡𝑒𝑡𝑒𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖 𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                        (40) 

Recall =  
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                       (41) 

It is observed that AUPR and NIQE[12] is claimed to be considered in [1] but 

actually not defined. Dependence of NIQE on distortion levels and on AUPR are 

shown but not actually defined.  

2.5.2 Experiments results 

NIQE vs distortion level is given below as shown in [1] 

 
Figure 2:NIQE vs AWGN curve 
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In Figure 2, NIQE is calculated at every AWGN distortion level and curve is 

obtained. 

 
Figure 3:NIQE vsGBlur curve 

In Figure 3, NIQE is calculated at every GBlur distortion level and curve is obtained. 

 

 
Figure 4:NIQE vs JPEG curve 

In Figure 4, NIQE is calculated at every JPEG distortion level and curve is obtained. 
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Figure 5:AUPR vs AWGN curve 

 
Figure 6:AUPR vsGBlur curve 

 
Figure 7:AUPR vs JPEG curve 
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In Figure 5, 6 and 7, it is observed that with increase in distortion level (AWGN, 

GBlur and JPEG), AUPR decreases more rapidly for HOG features as compare with 

QUALHOG features, which shows better performance of FDS based on QUALHOG 

features. 

In [1] NIQE  and AUPR are calculated for distorted images at every different level 

for all the three type of distortion (AWGN, GBlur and JPEG) and NIQE vs distortion 

level and AUPR vs distortion level curves are obtained. 

2.6 Problem Definition 

In this thesis, the following problems are considered: 

 Implementation of Face Detection System using QUALHOG approach based 

of HOG and NSS features. 

 Test FDS on database of images provided by the author of paper [1]. 

 Compare experiments on the FDS developed in the conditions of paper [1] 

and compare it versus HOG. 

 Study dependence of accuracy characterized by Precision and Recall on 

distortion level of images distorted by AWGN, GBlur and JPEG. 

 Test on 100 images of any size download from internet randomly is 

conducted using sliding window. 
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QUALHOG is compared with HOG by calculating True positive, False positive and 

Total number of detected images distorted by all three type of distortion.  

2.7 Related work 

 AdaBoost based Face Detection for Embedded Systems 

This paper [7] proposed the technique of face detection in still images using 

AdaBoost which was introduced by Viola and Jones. It is the most popular 

technique used for detection mainly due to it less complex nature, higher 

accuracy. The algorithm works in four stages. Selecting Haar like features , 

taking integral of images, AdaBoost training and Cascading Classifiers. 

 Tolerance for Distorted Faces: Challenges to a Configural Processing 

Account of Familiar Face Recognition 

Configural processing means spatial relation between spatial features and it is 

widely used in Face recognition. This paper [8] concentrates on familiar faces 

and check how well configuring processing is able to recognize face. This paper 

uses three types of configural processing. Detection of first order relations which 

define important features of face like eyes above nose, above mouth. Holistic 

processing, which bind features into perceptual gestalt and sensitivity to second 

order relation which means recognizing distance among features. 

 Face Gender Classification: A Statistical Study when Neutral and 

Distorted Faces are combined for Training and Testing purposes 

This paper [9] studies gender identification on distorted faces. Three techniques 

grey level, Principal Component analysis and Local binary pattern were used to 
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extract features. Three classifiers (1 –NN, PCA + LDA, SVM) were used to 

classify images for gender recognition. 

Grey level - Images are converted into gray images and stored in a vector. 

Principal component analysis (PCA) – It is a statistical procedure which based on 

orthogonal transformation. It was introduced by Karl Pearson in 1901. It scans 

down for subspace in original space whose vectors have maximum variance 

similar to directions in the original space.  

Local Binary patterns [10] - It is used to determine image textures and for face 

detection. Every pixel in an image is described by a binary number, and it is 

computed for neighborhood of every pixel. Number 1 is assigned to 

neighborhood pixels if they are brighter than central pixel otherwise 0 value is 

assigned. Histogram of LBP values of every pixel is calculated and image is 

characterized according to these histogram values. 

Classifiers - Three classifiers are used for gender classification which are nearest 

neighbor, PCA + LDA and Support vector machine. 

Nearest neighbor – It is very simple classifier, and metric used in this Euclidean 

distance to classify sample data. 

 Neural Network based Face Detection 

This paper [11] proposed neural network based face detection system. A small 

window of an image inspect by retinally connected neural network system. 
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Multiple networks are used to improve performance of system. Bootstrap 

algorithm is used for obtaining negative images for training, Bootstrap algorithm 

adds face detections into training set as training progresses. Comparisons with 

several other state-of-the-art face detection systems are presented; showing that 

our system has comparable performance in terms of detection and false-positive 

rates. 

2.8 Conclusion 

In this chapter, articles related to implement methodology are discussed. Metrics and 

methods used in them such as HOG, NSS, Liblinear, are explained. Problems to be 

solved in the thesis are defined. 
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Chapter 3 

DESIGN, IMPLEMENTATION AND TESTING OF FDS 

USING QUALHOG 

3.1 Overall Structure of FDS 

Overall structure of FDS is we follow is shown in Figure 1. QUALHOG features are 

calculated for distorted images. These QUALHOG features are contatenation of 

HOG and NSS features. Liblinear SVM is used for training and testing of 

images.Images are taken from database provided by the author of article [1]. It 

contains facial and non-facial images distorted by AWGN, G Blur and JPEG at 10 

different levels. Training and testing is doneseparately for each level. 

3.2 Implementation and testing of NSS features 

3.2.1 Implementation and testing for image normalization 

In this section, image is normalized by using equation (8) as follows. Mean is 

calculated by using equation (9) and variance is calculated by using equation (10) in 

section 2.4 in Chapter 2. 

This is done by following code in Matlab in Appendix C.  In this code, image is 

converted into grayscale (line 2 to 7), then Gaussian filter is generated and applied 

(line 9), mean (line 13) and variance (line 13) are calculated. In the end  image is 

normalized by using these mean and variance (line 16). 
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Testing for image normalization 

 

 
Figure 8: Input Image used for testing for NSS and HOG features [1] 

We test image normalization for image Figure 8.Figure 8 is taken from database 

provided by author of article [1].  If image in Figure 8 is RGB, convert it into gray-

scale image. This is done by the following Code in Matlab in Appendix C. In 

Appendix C Code, if an image is an RGB image, it is converted to gray scale image. 

 
Figure 9: Gray scale conversion of an image in Figure 8 
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Figure 10: Pixel intensity values of image (24..29, 54..58)  from Figure 9 

In Figure 10, Pixel intensity values of image (24..29, 54..58) from Figure 9 are 

shown. 

Test cases for generating Gaussian filter 

In Matlab, fspecial()  function is used to generate random numbers satisfying 

Gaussian filter (line 9) in Appendix C. hsize is an integer specifying size of the 

square matrix of random numbers to be generated according to Gaussian distribution 

with zero mean and standard deviation sigma. This is done by the following code in 

Matlab in Appendix C.  

 
Figure 11: Generated Gaussian Filter for an image (Figure 9) 
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Figure 12: Generated Gaussian Filter for an image (Figure 6) by using code in 

Appendix K 

In Figure 12, at location [2,2] , calculated Gaussian filter is 0.0029 which matches at 

location [2,2] in Figure 11.  

Test cases for Gaussian weighted image mean value calculation using 

convolution 

Now after creating a 7x7 two dimensional Gaussian filter, it is applied on the image 

to calculate mean using equation (7). filter2 function in Matlab is used to calculate 

mean in line 13 (Appendix C), filter2 use convolution function to convolve image 

pixels with 2D Gaussian filter. 

Y = filter2(h, X) filters the data in X with the two-dimensional FIR filter in the 

matrix h. It computes the result, Y, using two-dimensional correlation, and returns 

the central part of the correlation that is the same size as X. This is done by the 

following code in Matlab in Appendix C. It is calculates by using equation (9). 
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Figure 13: Mean values of gray scale image (24...29, 54....58) are shown in Figure 9 

Test cases for Gaussian weighted image variance calculation using convolution 

After calculating mean, next step is to calculate variance using equation (10). This is 

done by the following code in Matlab in Appendix C,filter2 function is used (line 15) 

to calculate variance (same like mean). 

 
Figure 14: Variance values (24...29, 54...58) of a given image (Figure 9) 

Test cases for image normalization using Gaussian weighted mean and standard   

deviation according to (8) 

Next step is to put the values of mean, standard deviation and C=1 into equation (8). 

This is done by the following Code in Matlab in Appendix C in line 16. 
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Figure 15: Normalize pixel intensity values of gray scale image (24...29, 54...58) 

(Figure 9) 

imdist at location [24 54] = 86 (from Figure 9),mean at location [24 54] = 100.7049 

(from Figure 13) and variance at location [24 54] = 31.5935 (from Figure 14) 

Normalized pixel at location [24 54] =  𝑖𝑚𝑑𝑖𝑠𝑡[4 4] −𝑚𝑢[4 4]./𝑠𝑖𝑔𝑚𝑎[4 4] + 1 

 =     -0.4512 

And by using equation (8), we get normalized image. 

 
Figure 16: Normalized image 

3.2.2 Implementation and testing of GGD parameters 

Two parameters, shape parameter and standard deviation are estimated for a 

normalized image. Steps to calculate the two parameters that are shape parameter (𝛼) 

and variance (𝜍2) of an images using moment matching based approach. It is 

implemented by Matlab code in Appendix D.  
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Implementation and testing of Generalized Gaussian ratio 

Generalized Gaussian ratio is calculated by equation (13) for a given image. It is 

implemented by Matlab code in Appendix D (line 7 to 28). 

Test cases to calculate Generalized Gaussian ratio function 

By using equation (13) Gaussian ration function for an image in Figure 16 is 

calculated, a look up table is defined for parameter (𝛾).This is done by the following 

code in Matlab in Appendix D (line 7 to 28). 

To define lookup table in Matlab, two counters counter 1and counter 2 are initialized 

in line 7 and 8 and their initial value set to 0.2 and 10 respectively with a difference 

between of 0.001 between them (line 10) and it iterates 100 times using for loop (line 

9), counter 1 decrement by 1 and counter2 increment by 2 after each iteration (line 

25 and 26). These values can be adjusted according to the user need after defining 

look up table. Gaussian ratio has been calculated for each value in look up table (line 

11). These values can be adjusted according to the user need. 

After defining look up table, Gaussian ratio 𝑟 𝛾   which is r_gam (line 11) has been 

calculated for each value in look up table.  

 
Figure 17: Values of r (γ) is shown (from position 79 to 91) which is obtained using 

lookup table 

At position 80, Gaussian ratio function by using look up(value at position 80 in look 

up table is 0.0790) table using equation (13) 
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Gaussian ratio        =  
𝜏 1/0.790 ∗𝜏 3/0.790 

𝜏2 2/0.790 
 = 870.8142  

which matches with value at position 80 in Figure 17. 

Implementation and testing of mean and standard deviation 

Mean and standard deviation are calculated using equations (14) and (15). It is 

implemented by using Matlab code in Appendix D (line 2 to 4). 

Test cases to calculate mean 𝝁𝒙and standard deviation𝝈𝒙
𝟐 of an image in Figure 

16 

Mean and variance is calculated by using equations (14) and (15) for a given image. 

This is done by the following Code in Matlab in Appendix D in line 2 and 3 

respectively. Standard deviation and mean are 0.0483 and 0.6650 respectively using 

Matlab. 

To calculate mean manually, 

Number of pixels of given image (Figure 16) = 196 * 174 = 34104 

Sum of all pixels of given image (Figure 16) = 1.648031525168372e+03 

Mean = 1.648031525168372e+03 / 34104 = 0.0483 

After subtracting mean value from every pixel and taking its square of the given 

image (Figure 16), sum of these pixel are = 15080.41 
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Sigma = sqrt (15080.41 / 34104) =  sqrt (0.4422)   = 0.6650 

Implementation and testing of absolute value of modified mean of a given 

images 

It is calculated by using equation (14). It is calculated in Matlab code in Appendix D 

(line 5). 

Test cases to calculate estimate 𝑬[ 𝑿 ] for the absolute values modified mean for 

a given image (Figure 16) 

Estimate of absolute value modified mean is calculated by using equation (16). This 

is done by the following Code in Matlab in Appendix D in line 5.Estimated of 

modified mean is 0.4947. 

Implementation and testing of ratio 

It is calculated by using equation (17) and implements using Matlab code in 

Appendix D (line 6). 

Test cases to determine the ratio 𝝆 

Ratio (ρ) is calculated using equation (15) for Figure 17 as 

ρ = [0.4422]/[0.4947]^2  = 1.8065 

This is done by the following Code in Matlab in Appendix D in line 5. 
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Implementation and testing for finding shape parameter 

This is calculated by using equation (18). This is done by the following code in 

Matlab in Appendix D. In this code, obtained ratio value is looked in Gaussian ratio 

vector and once it found on particular position, value is checked for same position in 

lookup table and that is our shape parameter. 

Test case to solve the equation𝜸 =  𝒓−𝟏 𝝆  

where, r is the generalized Gaussian ratio function. Look up can be defined by the 

user or by giving instructions to machine to choose random variable with a constant 

difference between two variables. 

This is done by the following Code in Matlab in Appendix D. We first calculate at 

which position, rho and Gaussian function values are nearest . After determining that 

array position, we check what is gam (𝛾) value at that position and that will be our 

shape parameter, gam is calculated using lookup table and  shape parameter.𝛾 

obtained value is -4.1290. 

For example, in our example rho is 1.8065, we look for same value of Gaussian 

function in our table for that we check r_gam table and write down the array 

position.In Figure 15, at array position 94872 in r_gam table (Gaussian function) 

value is 1.8065 which is equal to rho. We check the gam (𝛾) at same array position 

that is at position 94728 is -4.1290. 

Figure 18: Determine array position in Gaussian ratio table (5) by using value of 

ratio 
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Figure 19: Determine value in look up table corresponds to array position found in 

Figure 18 

So, our shape parameter in this example is -4.1290. By applying the above four steps 

in an image, two important features that is shape parameter  𝛼  and standard 

deviation(𝜍2) is found, which will prove to very useful later in the experiments. 

And the image is down sampled and the same process is applied on down sampled 

image and a total of 4 features are obtained. This is done by the following code in 

Matlab in Appendix A3. Two features which are shape parameter (-4.1290) and 

standard deviation (0.4422) are calculated using Generalized Gaussian distribution 

on image (Figure 16) are obtained. 

The image is down sampled and the same process is applied on down sampled image 

and a total of 4 features are obtained. This is done by the following Code in Maltab 

in Appendix A4. Two features which are shape parameter (-4.1520 and standard 

deviation (0.4659) are calculated for down-sampled image using Generalized 

Gaussian distribution. We got a total of 4 parameters 

 
Figure 20: A totals of 4 parameters are calculated for a given image (Figure 16) 
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3.2.3 Implementation and testing of AGGD parameters 

Four parameters that are shape, mean, left variance and right variance are calculated 

in four orientations – Horizontal (H), vertical (V), main-diagonal (D1) and 

secondary-diagonal (D2). 

Implementation and testing spatial features in horizontal, vertical, diagonal D1 

and diagonal D2 directions 

It is calculated using equation (11). It is implemented using Matlab code in Appendix 

B (line 19 to 21). 

Test cases to calculate horizontal, vertical, diagonal D1 and diagonal D2 spatial 

features of given image using equation (11) 

This is done by the following Code in Matlab by Appendix C. In this code, circular 

shift is used to compute pixel value at horizontal, vertical and diagonal levels as 

defined by shift to get desired value (stored in pair) in horizontal, vertical and 

diagonal direction (line 19 to 21). 

 
Figure 21: Pixel value intensities (1...4, 1...5) of an image (Figure 16) 
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Figure 22: Pixel value intensities (1...4, 1...5) of an image (Figure 16) after horizontal 

shift 

 
Figure 23:Values of vector (1...7) obtained by multiplication of shifted image pixel 

values in horizontal direction (Figure 22) with normalized image pixel values (Figure 

21) and stored in pair 

For example, using equation (11), pixel at location [1 1]  

= pixel [1 1] in normalized image * pixel [1 1] in shifter image (from Figure 21 & 

22) 

= 1.9129 * 1.9068 

= 3.6475 (from Figure 23) 

Implementation and testing of Generalized Gaussian ratio 

It is calculated using equation (20). It is implemented using Matlab code in Appendix 

E (line 7 to 28). 
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Test cases to calculate Generalized Gaussian ratio function 

This is done by the following Code in Matlab in Appendix E. Gaussian ratio function 

is calculated by using equation (20), a look up table is defined for parameter gam (𝛼) 

.To define lookup table in matlab, two counters counter 1and counter 2 are initialized 

(line 7 and 8) and their initial value set to 0.2 and 10 respectively with a difference of 

0.001 between them (line 10) and it iterates 100 times using for loop (line 9), counter 

1 decrement by 1 and counter2 increment by 2 after each iteration (line 25 and 26). 

These values can be adjusted according to the user need. After defining look up 

table, Gaussian ratio has been calculated for each value in look up table (line 11). 

 
Figure 24: Initial 13 values of r (α) is shown of image (Figure 13) which is obtained 

using lookup table 

To calculate Gaussian ratio at position 1, by using look table value at position 1 

which is 0.2 using equation (20) 

   = 
𝜏2 2/0.2 

𝜏 1/0.2 𝜏 3/0.2 
 = 0.0629                   

which matches with the value at position 1 in Figure 24. 

Implementation and testing of right standard deviation (𝜷𝒓) and left standard 

deviation (𝜷𝒍) 

It is calculated by using equations (21) and (22). It is implemented using Matlab code 

in Appendix E (line 2 and 3). 
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Test cases to calculate right standard deviation (𝜷𝒓) and left standard deviation 

(𝜷𝒍) 

Left and right standard deviation are calculated by using equations (21) and (22) for 

an image in Figure (16). This is done by the following Code in Matlab in Appendix E 

in line 2 and 3. The values of left and right standard deviation for an image (Figure 

13) are 0.5554 and 0.5324 respectively. 

To calculate left standard deviation manually, all the pixels less than zero value are 

calculated, there are total of 13322 pixels with value less than zero in an image 

(Figure 16) 

Sum of square of all pixel values less than zero       = 4108.92821139148 

Left standard deviation         =     sqrt (4108.92/13322)   = 0.554 

Similarly, to calculate right standard deviation manually, all pixels greater than zero 

values are calculated, there are total of 20782 pixels with value greater than zero in 

an image (Figure 16) 

Sum of square of all pixel values greater than zero =   5889.77500141591 

Implementation and testing of gamma hat (𝜸 ), unbiased estimate (𝒓 ) and 

𝑹  using 𝜸  and 𝒓  

They are calculated by using equations (23), (24) and (25). It is implemented using 

Matlab code in Appendix E (line 4,5 and 6) respectively. 
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Test cases to calculate the value of gamma hat (𝜸 ), unbiased estimate (𝒓 ) and 

𝑹  using 𝜸  and 𝒓  

Gamma hat (γ ), r hat (unbiased estimate)andR  are calculated by using equations (23) 

(24) and (25) for an image in Figure (16). This is done by the following Code in 

Matlab in Appendix E in line 4, 5 and 6 and the values obtained are 1.0432, 0.3333 

and 0.3334 respectively for an image in Figure (16). 

For manual calculation, 

gamma hat (γ )  = left standard deviation/ right standard deviation 

         = 0.554/0.5324   =  1.04 

unbiased estimate (r ) =square of mean of absolute value of all pixels / square of 

mean values of all pixels 

= 0.0977/0.2932 = 0.3332  

𝑅 is calculated= (0.3332*(1.04^3 +1)*(1.04 +1))/((1.04 ^2 +1)^2)    = 0.3333 

Implementation and testing to calculated shape parameter (α) 

It is calculated by using equation (26). Obtained Rhatnorm(𝑅 ) value is looked in 

Gaussian ratio vector and once it found on particular position, value is checked for 

same position in lookup table and that is our shape parameter. It is implemented 

using Matlab code in Appendix E (line 16). 



46 
 

Test cases to estimate α according to 𝑹  value using the approximation of the 

inverse generalized Gaussian ratio 

Shape parameter (𝛼) is calculated by using equation (26) for an image in Figure 

(16).This is done by the following Code in Matlab in Appendix E (line 16).We first 

calculate at which position, rho and Gaussian function values are nearest by using the 

following code 

[min_difference, array_position] = min((r_alpha - rhatnorm).^2); 

After determining that array position, we check what is gam (𝛾) value at that position 

and that will be our shape parameter. r_alpha is 𝜌 𝛼 , gam is calculated using lookup 

table and alpha is shape parameter. Alpha value for an image (Figure 16) is 

calculated as 0.5570. 

For example, in our example rhatnorm is 0.3334, we look for same value of Gaussian 

function in our table, in Code 5, we check r_alpha table and look for same value and 

write down the array position. 

Implementation and testing of left scale parameter (𝜷 𝒍) and right scale 

parameter (𝜷 𝒓) 

It is calculated by using equations (27) and (28). It is implemented using Matlab code 

in Appendix C (line 24). 
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Test cases to compute left scale parameter (𝜷 𝒍) and right scale parameter (𝜷 𝒓) 

This is done by the following Code in Matlab in Appendix C in line 24 for an image 

in Figure (16). Obtained value for left scale parameter (β 
l
) and right scale parameter 

(β 
r
) are 3.8030 and 3.6455 respectively. 

Implementation and testing of statistical mean (𝜼) 

It is calculated by using equation (29). It is implemented using Matlab code in 

Appendix C (line 25). 

Test cases to compute statistical mean (𝜼) 

It is calculated by using equation (29) for an image in Figure (16). This is done by 

the following Code in Matlab in Appendix C in line 25. Obtained value using Matlab 

is 0.6229. 

Statistical mean     =   (beta_l - beta_r)*(gamma(2/alpha)/gamma(1/alpha)); 

= (3.8030 – 3.6455) * gamma(2/0.5570)/gamma(1/0.5570) 

=0.6229 

Four features that are shape parameter (𝛼), left standard deviation (𝛽𝑙), right standard 

deviation (𝛽𝑟) and statistical mean (𝜂) are obtained, these features are calculated in 

horizontal, vertical and diagonal spatial directions in a given image by using equation 

(31). 

 



48 
 

 
Figure 25: A total of 4 parameters that are shape parameter, statistical mean, left and 

right standard deviation for an image (Figure 16) are estimated 

Similarly features have been calculated in vertical, diagonal D1 and diagonal D2 

direction and a total of 16 features have been obtained. 

 
Figure 26: A total of 16 features in horizontal, vertical and in diagonal direction are 

calculated for an image (Figure 16) 

A total of 16 features obtained in horizontal, vertical, diagonal 1 and diagonal 2 

directions. Circular shift in Matlab is used to compute spatial features at horizontal, 

vertical and diagonal levels.After calculating 16 features, image is down sampled and 

again the same process applied and we will get a total of 32 features. In the end 

features obtain by estimating GGD (4 features) and by estimating AGGD (32 

features) are combined together and a total of 36 features are obtained. 

 
Figure 27: A total of 32 parameters obtained by concatenation of features from 

normalized image (Figure 16) and down sampled image. 

In the end we combine feature obtain by estimating GGD (4 features) and by 

estimating AGGD (32 features) and we get a total of 36 features. 
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3.3 Implementation and testing of extraction of HOG features 

 Histogram of Oriented Gradients (HOG) - HOG descriptor was introduced 

Dalal and Triggs at the Conference on Computer Vision and Pattern 

Recognition(CVPR) back in 2005.  

 The purpose of HOG is to descript feature of the given image.  

 It includes steps like computation of gradient vectors, then orientation 

binning and blocks normalization. 

3.3.1 Implementation and testing of gradient vectors 

Gradient vector in x direction of pixel (hx) is calculated using equation (30) and 

gradient vector in y direction of pixel (hy) is calculated using equation (31). 

By appending these two values we get gradient vectors. Magnitude and angle is also 

obtained by using equations (32) and (33). This is done by the following code in 

Matlab in Appendix F (line 8 to 13). 

Let‟s take an example, we have pixel (z) and that pixel have four neighbor pixels, 

 

 93  

56 z 94 

 55  
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Gradient vector in y direction of pixel (hx) = pixel value on right– pixel value in left 

            = 94 – 56 = 38 

Gradient vector in y direction of pixel (hy) = pixel value on top – pixel value in 

bottom 

            = 93 – 55 = 38 

By appending these two values we get out gradient vector  ℎ𝑥
ℎ𝑦
   =   38

38
  

Magnitude =   hx2 + hy2 = 53.74 

Angle = arctan  
hx

hy
 = 45 degrees 

Test for calculation of gradient vectors of an image 

Gradients are calculated using equations (30) and (31) for an image in Figure 9. It is 

computed for every pixel of an image, it calculates the variance in pixel value in 

horizontal and vertical direction.This is done by the following Code in Matlab in 

Appendix F (line 8 to 11). In Matlab, derivatives of a pixel created in x and y 

direction and then compute gradient vector using filter2 function of Matlab in line 10 

and 11, then angles and magnitude are calculated in line 12 and13. 
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Figure 28: Gradient in x direction [2..5, 27..31]  for an image (Figure 9) 

 

 

Figure 29: Gradient in y direction [2..5, 27..31]  for an image (Figure 9) 

Atan2 function in Matlab is used to calculate to angle in line 12, atan2 returns 

the four-quadrant inverse tangent (tan
-1

) of dy and dx and magnitude is calculated in 

line 13. 

 
Figure 30: Angles are calculated [2..5, 27..31]  for an image (Figure 9) 

https://www.mathworks.com/help/matlab/ref/atan2.html#buct8h0-4
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Figure 31: Magnitudes are calculated [2..5, 27..31]  for an image (Figure 9) 

3.3.2 Implementation and testing of orientation binning 

In our experiment, Number of cells = window size / number of pixels in one cell 

Window size = 64 x 80 

Number of pixels in one cell = 8x 8 

Number of horizontal cells = 64/8 = 8 

Number of vertical cells = 80/8 = 10 

A cell size of 8 × 8 is taken which means a total of 64 pixels and we obtain a total of 

64 gradient vectors correspond to 64 pixels and place them into total of 9 histogram 

bins. Unsigned angle changed to signed angle (0 to 180). For each gradient vector, its 

contribution to the histogram is given by the magnitude of the vector (so stronger 

gradients have a bigger impact on the histogram). Image pixel is grouped into cells, 

every cell has 8x8 pixels that‟s a total of 64 pixels, and each pixel have it angle and 

magnitude. This is done by the following code in Matlab in Appendix F. 
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Test for orientation binning 

Calculate histogram value for each pixel and in which bin it pixel will fall according 

to its histogram value. Next magnitude and angle for each 64 pixels in a cell is 

calculated using equations (32) and (33). This is done by the following Code in 

Matlab in Appendix F (line 18 to 53). 

 
Figure 32: Grouping of 64 pixels (1..2, 21..28) calculated angles into a cell for Figure 

9 

 
Figure 33: Grouping of first 64 pixels (1..2, 21..28)  calculated magnitudes into a cell 

for Figure 9 

Next step is to put gradients into histogram, In histogram calculation if angles of 

pixel all in the range of any bin angle, then that pixel magnitude added into that 

bin..This is done by the following Code in Matlab in Appendix F (line 18 to 53). 
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3.3.3 Implementation and testing of block normalization 

This block normalization is executed by appending the histograms of the four cells 

within the block into a vector with 36 components (4 histograms x 9 bins per 

histogram) and L2 normalization, L1 normalization and L1 sqrt normalization are 

performed which are calculated by using equation (34), (35) and (36). This is done 

by the following Code in Matlab in Appendix F in line 58, 59 and 60. 

Testing for block normalization 

For 1
st
 block, after concatenating 4 histograms (9 bins in each histogram) of cells in a 

block, 36 features have been obtained for an image in Figure 9. 

 
Figure 34: Histogram values in 36 bins for one block for Figure 9 

After obtaining 36 features, L 2, L1 and L1 sqrt normalization is performed over the 

features using equations (34), (35) and (36). 

 
Figure 35: All features in a block after L2 normalization for Figure 9 
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Figure 36: All features in a block after L1 normalization for Figure 9 

 
Figure 37: All features in a block after L1 sqrt normalization for Figure 9 

In this manner, 2268 features for the entire image are obtained. 

 
Figure 38: First 13 features of total 2268 features for Figure 9 

This conclude the final vector size to 7 blocks across x 9 blocks vertically x 4 cells 

per block x 9-bins per histogram = 2268 values. These are the final features extracted 

by using HOG in an image of window size 64 x 80. In the end HOG features and 

NSS features are concatenated to form QUALHOG features. 

3.4 Implementation and testing of Classifiers usage 

3.4.1 Implementation and testing of Liblinear SVM usage 

For training of Images 

Training of images is done by using the code shown in Appendix A. Images are 

loaded from database in line 9 and 10. HOG features are extracted in line 25, NSS 

features are extracted in line 28, HOG and NSS features are concatenated in line 31. 
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Liblinear SVM is trained using these features in line 39. Results are saved as model 

file in line 40. It is done separately for every level in AWGN, G Blur and JPEG. 

It is implemented in Matlab by using the following command. 

 For training 

model = train(label_vector, instance_matrix, 's '); 

save('model.mat');   

Instance_matrix  is extracted QUALHOG features of training images, lebel_vector 

contains labels ( +1 for facial image and -1 for non facial image) and s is a solver and 

the result is saved in model.mat file. This is done by the Matlab code in Appendix A. 

Testing of Liblinearsvm for training of images 

For testing, let‟s take images distorted by level 10 in JPEG. For training on 1231 

positive samples and 1500 negative samples in Figure 39. 

 

 
Figure 39: Result obtained after training 

Figure 39, is a screenshot of result obtained after training using Liblinear. 
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For detection of faces in test Images 

It is done by using the Matlab code in Appendix B. Model file (which is an output of 

training of images) is loaded in line 4, images are loaded from database in line 6. 

HOG features are extracted in line 19, NSS features are extracted in line 22, HOG 

and NSS features are concatenated in line 25.  

It is implemented in Matlab by using the following command. 

 For testing 

[predict_label, accuracy, dec_values] = predict(label_vector, 

instance_matrix,model);  

Instance_matrix is extracted QUALHOG features of tested images, lebel_vector 

contains labels ( all +1) and model is file which is obtained from training section and 

the result predict_ label which is vector contains +1 and -1.This is done by Matlab 

code in Appendix B. 

Testing of Liblinear SVM for detection of faces in test images 

For testing 393 positive images in Figure 40, accuracy is obtained 

 
Figure 40: Accuracy (percentage of true positive images) is obtained for tested 

images 
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In Figure 40, 349 images out of 393 positive images are detected correctly using 

Liblinear SVM. Accuracy is obtained automatically by Liblinear SVM. 

3.4.2 Implementation and testing of SVM Light usage 

For training of images 

SVM Lite is used for training of images by using following Matlab command 

model = svmlearn(X_train, y_train); 

X_train are the matrix of extracted features and y_train are the labels (+1 for faces 

and -1 for non faces). This is done by the Matlab code in Appendix H (line 38). 

For detection of face in an image 

SVM Lite is used for detection of face in an image by using following Matlab 

command 

. [predictions] = svmclassify(P,lebel,model); 

P is the matrix of extracted features, lebel can be anything and model is output of 

training of images. This is done by the Matlab code in Appendix I (line 52). 

3.5 Implementation of FDS for any size of images using sliding 

window 

In this method face detection for any size image (unlikely 80x 64 dimensions) is 

implemented by using sliding window technique. A window of 80x64 is taken and 

slide over an image pixel by pixel in order to detect face. This is done by the 

following code in Matlab in Appendix I. NSS features are extracted for testing and 
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training images similarly as described in section 3.2.  HOG features are extracted for 

training and training images similarly as described in section 3.2.1.2. 

In the end, these QUALHOG features (HOG features augmented with NSS features) 

are giving to SVM for classification and prediction and result is obtained. This is 

done by the following code in Matlab in Appendix I. 

3.6 Conclusion 

In this chapter, design of FDS along with implementation and testing of FDS and its 

subsystems like HOG, NSS, Liblinear SVM and SVM Light are discussed and 

explained in detail. 

 For testing FDS, An image from the database provided [1] is taken and testing is 

done to show and prove the authenticity of FDS and its subsystems. LIBLINEAR 

support vector machine is used for training and testing of data. Later sliding window 

technique is applied to detect face on any size of image by extracting QUALHOG 

features and using SVM Light. 

Results are obtained and screenshot at every step of testing for extraction of 

QUALHOG features for FDS. 
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Chapter 4 

EXPERIMENTS ON FDS FOR DISTORTED IMAGES 

4.1 Experiment setup 

To conduct experiments, same experimental setup is used as shown in section 

2.5.1.However author of [1] doesn‟t reveal which operating they used and which 

version of Matlab were used for conducting experiments. In my case, Matlab 2015a 

is for Window 10 operating system is used with a memory of 6GB and Intel core i3 

processor is used. In addition to Matlab 2015a, Visual studio 2010 is used. For 

classification LIBLINEAR SVM [6] and SVM light [13] are used. Same database 

[14] which used by the author is used for getting results and conducting experiments. 

Lastly 100 images containing face taken randomly from internet, and experiments 

are conducted on these 100 images using SVM lite and sliding window. 

QUALHOG and HOG methods are analyzed on distorted image database. 

LIBLINEAR [6] is used for training and testing of images. Experiments are done on 

each level separately and results are noted down manually which is shown in an 

excel file available in Appendix L. True positive, True negative, False positive and 

False negative are calculated at every distorted level and based on True positive, 

True negative, False positive and False negative, Precision and Recall are calculated 

for 10 levels of distortion. In the end Precision vs Distortion level and Recallvs 

Distortion level curves for all three types of distortion (AWGN, GBlur and JPEG) 
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are obtained. Experiments on any size of images are done using SVM light for 

training and testing of images through sliding window. 

Training the face detector 

 For each of the training set, LIBLINEAR is trained using 1231 positive images and 

1500 negative images available in training dataset. Once the data is classified, it is 

stored in a model.mat file in Matlab. This is done by the following code in Matlab in 

Appendix A. 

Prediction 

For prediction, 393 positive images and 17479 negative images were taken from the 

testing dataset. Since the testing data is highly skewed as compare to training dataset, 

Precision and Recall is used as evaluation metrics. 

4.2 Experiments results 

True positive, True negative, False positive and False negative of the testing datasets 

are obtained for all three type of distortions using HOG features and QUALHOG 

features and both the detector compare with each other using Precision vsDistortion 

level (AWGN, GBlur and JPEG) curve. 
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4.2.1 Images distorted by AWGN (Additive White Gaussian Noise) 

Extracting QUALHOG features for images 

Table 1:  Calculation of True positive, False negative, False positive, True negative, 

Detected positive, precision and recall for images distorted by AWGN with different 

levels using QUALHOG features, Precision and Recall are calculated. 
 

AWGN 

distortion 

level(𝜍2) 

 

True 

positive 

(TP) 

 

False 

negative 

(FN) 

 

False 

positive 

(FP) 

 

True 

negative 

(TN) 

 

Detected 

positive 

(TP +FP) 

 

Precision 

TP

TP + FP
 

 

Recall 

TP

TP + FN
 

4.5×

10−5 

376 17 126 17353 502 0.75 0.95 

0.0001 370 23 142 17347 512 0.73 0.94 

0.0003 367 26 147 17338 514 0.72 0.93 

0.0009 363 30 160 17319 523 0.70 0.92 

0.0025 359 34 245 17234 604 0.60 0.91 

0.0065 354 39 466 17013 820 0.44 0.90 

0.02 334 59 1056 16423 1390 0.25 0.85 

0.05 322 71 1854 15625 2176 0.15 0.81 

0.15 311 52 2698 14781 3009 0.11 0.79 

0.36 299 94 3694 13785 3993 0.08 0.760 

This is done by the following code in Matlab in Appendix L. Table 1 is created 

manually by writing down the results of experiment done on images (parts by parts) 

due to inability of machine to handle large number of images simultaneously. 

 



63 
 

Extracting HOG features for images 

Table 2: Calculation of True positive, False negative, False positive, True negative, 

Detected positive, precision and recall for images distorted by AWGN with different 

levels using HOG features, Precision and Recall are calculated. 
 

AWGN 

distortion 

level(𝜍2) 

 

True 

positive 

(TP) 

 

False 

negative 

(FN) 

 

False 

positive 

(FP) 

 

True 

negative 

(TN) 

 

Detected 

positive 

(TP +FP) 

 

Precision 

TP

TP + FP
 

 

Recall 

TP

TP + FN
 

4.5×10−5 371 22 142 17337 513 0.73 0.94 

0.0001 367 26 148 17331 515 0.71 0.93 

0.0003 362 31 154 17325 516 0.70 0.92 

0.0009 359 34 192  17287 551 0.65 0.91 

0.0025 353 40 286 17193 639 0.55 0.89 

0.0065 342 51 589 16890 931 0.37 0.87 

0.02 330 59 1330 16149 1641 0.20 0.83 

0.05 311 82 2307 15172 2618 0.12 0.79 

0.15 301 92 3096 14383 3397 0.09 0.76 

0.36 296 97 3805 13674 4101 0.07 0.75 

This is done by the following code in Matlab in Appendix L. Table 2 is created 

manually by writing down the results of experiment done on images (parts by parts) 

due to inability of machine to handle large number of images simultaneously. 
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Figure 41: Precision vs AWGN curve for QUALHOG (red curve) and HOG (green 

curve) features 

In Figure 41, red curve is for QUALHOG and green curve is for HOG. It shows that 

as the distortion (𝜍2) increases, Precision decreased. At distortion level4.5×10−5, 

Precision is 0.75 for QUALHOG and 0.73 for HOG and as the distortion level 

increase to 0.08, Precision declines to 0.08 for QUALHOG and 0.07 for HOG which 

shows that QUALHOG (red curve) face detector performs better than HOG (green 

curve) face detector. This is done by the following code in Matlab in Appendix J. It 

is seen that QUALHOG Precision is 1-2% more accurate than HOG Precision for 

detecting faces in AWGN distorted images. 
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Figure 42:Recall vs AWGN curve for QUALHOG (red curve) and HOG (green 

curve) features 

In Figure 42, red curve is for QUALHOG and green curve is for HOG. It shows that 

as the distortion (𝜍2) increases, Recall decreased. At distortion level 4.5×10−5, 

Recall is 0.95 for QUALHOG and 0.94 for HOG and as the distortion level increase 

to 0.08, precision declines to 0.760 for QUALHOG and 0.75 for HOG which shows 

that QUALHOG (red curve) face detector performs better than HOG (green curve) 

face detector. This is done by the following code in Matlab in Appendix J. It is seen 

that QUALHOG Recall is 2-4% more accurate than HOG Recall for detecting faces 

in AWGN distorted images. 
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4.2.2 Images distorted by G Blur (Gaussian Blur) 

Extracting QUALHOG features of images 

Table 3:  Calculation of True positive, False negative, False positive, True negative, 

Detected positive, precision and recall for images distorted by Gaussian Blur with 

different levels using QUALHOG features, Precision and Recall are calculated. 
 

G Blur 

distortion 

level (𝜍) 

 

True 

positive 

(TP) 

 

False 

negative 

(FN) 

 

False 

positive 

(FP) 

 

True 

negative 

(TN) 

 

Detected 

positive 

(TP +FP) 

 

Precision 

TP

TP + FP
 

 

Recall 

TP

TP + FN
 

0.4 380 13 133 17346 501 0.76 0.96 

1.0 374 19 150 17329 514 0.73 0.95 

2.3 373 20 367 17112 740 0.51 0.94 

3.6 373 20 553 16926 926 0.41 0.94 

4.5 370 23 623 16856 993 0.38 0.94 

6.0 364 29 779 16700 1143 0.32 0.92 

7.4 361 32 1146 16333 1507 0.24 0.91 

12.0 334 59 1806 15673 2104 0.16 0.85 

20.0 313 80 2550 14929 2863 0.11 0.79 

32.0 282 111 3897 13582 4179 0.07 0.71 

This is done by the following code in Matlab in Appendix L. Table 3 is created 

manually by writing down the results of experiment done on images (parts by parts) 

due to inability of machine to handle large number of images simultaneously. 
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Extracting HOG features of images 

Table 4: Calculation of True positive, False negative, False positive, True negative, 

Detected positive, precision and recall for images distorted by Gaussian Blur with  

different levels using HOG features, Precision and Recall are calculated. 
 

G Blur 

distortion 

level (𝜍) 

 

True 

positive 

(TP) 

 

False 

negative 

(FN) 

 

False 

positive 

(FP) 

 

True 

negative 

(TN) 

 

Detected 

positive 

(TP +FP) 

 

Precision 

TP

TP + FP
 

 

Recall 

TP

TP + FN
 

0.4 365 28 146 17333 511 0.72 0.93 

1.0 362 31 164 17315 526 0.69 0.92 

2.3 358 35 402 17077 760 0.47 0.91 

3.6 357 36 587 16892 944 0.38 0.91 

4.5 354 39 643 16836 997 0.35 0.900 

6.0 351 42 805 16674 1156 0.30 0.89 

7.4 346 47 1247 16232 1593 0.21 0.88 

12.0 324 69 1946 15533 2270 0.14 0.82 

20.0 302 91 2895 14584 3197 0.09 0.76 

32.0 266 127 4134 13345 4400 0.06 0.67 

This is done by the following code in Matlab in Appendix L. Table 4 is created 

manually by writing down the results of experiment done on images (parts by parts) 

due to inability of machine to handle large number of images simultaneously. 
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Figure 43: Precision vs GBlur curve for QUALHOG (red curve) and HOG (green 

curve) features 

In Figure 43, red curve is for QUALHOG and green curve is for HOG. It shows that 

as the distortion (𝜍)increases, Precision decreased. At distortion level 0.4, Precision 

is 0.76 for QUALHOG and 0.72 for HOG and as the distortion level increase to 32, 

Precision declines to 0.07 for QUALHOG and 0.06 for HOG which shows that 

QUALHOG (red curve) face detector performs better than HOG (green curve) face 

detector. This is done by the following code in Matlab in Appendix J. It is seen that 

QUALHOG Precision is 1-2% more accurate than HOG Precision for detecting faces 

in GBlur distorted images. 
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Figure 44: Recall vs GBlur curve for QUALHOG (red curve) and HOG (green 

curve) features 

In Figure 44, red curve is for QUALHOG and green curve is for HOG. It shows that 

as the distortion (𝜍)increases, Recall decreased. At distortion level 0.4, Recall is 0.96 

for QUALHOG and 0.93 for HOG and as the distortion level increase to 32, Recall 

declines to 0.71 for QUALHOG and 0.67 for HOG which shows that QUALHOG 

(red curve) face detector performs better than HOG (green curve) face detector. This 

is done by the following code in Matlab in Appendix J. It is seen that QUALHOG 

Recall is 3-4% more accurate than HOG Recall for detecting faces in GBlur distorted 

images. 

 

 



70 
 

4.2.3 Images distorted by JPEG 

Extracting QUALHOG features of images 

Table 5: Calculation of True positive, False negative, False positive, True negative, 

Detected positive, precision and recall for images distorted by JPEG in different 

levels (Q factor) using QUALHOG features, Precision and Recall are calculated. 
 

JPEG 

distortion 

level „Q‟ 

 

True 

positive 

(TP) 

 

False 

negative 

(FN) 

 

False 

positive 

(FP) 

 

True 

negative 

(TN) 

 

Detected 

positive 

(TP +FP) 

 

Precision 

TP

TP + FP
 

 

Recall 

TP

TP + FN
 

90 381 12 155 17324 536 0.710 0.970 

60 373 20 173 17306 546 0.683 0.950 

40 373 20 180 17299 553 0.674 0.950 

25 373 20 194 17285 567 0.657 0.950 

15 371 22 201 17278 572 0.648 0.944 

10 364 29 216 17263 580 0.628 0.926 

7.5 358 35 231 17248 589 0.607 0.910 

5.0 356 37 405 17074 761 0.468 0.905 

3.0 350 43 746 16733 1096 0.320 0.890 

2.0 349 44 779 16700 1128 0.309 0.888 

This is done by the following code in Matlab in Appendix L. Table 5 is created 

manually by writing down the results of experiment done on images (parts by parts) 

due to inability of machine to handle large number of images simultaneously. 
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Extracting HOG features of images 

Table 6: Calculation of True positive, False negative, False positive, True negative, 

Detected positive, precision and recall for images distorted by JPEG in different 

levels (Q factor) using HOG features, Precision and Recall are calculated. 
 

JPEG 

distortion 

level „Q‟ 

 

True 

positive 

(TP) 

 

False 

negative 

(FN) 

 

False 

positive 

(FP) 

 

True 

negative 

(TN) 

 

Detected 

positive 

(TP +FP) 

 

Precision 

TP

TP + FP
 

 

Recall 

TP

TP + FN
 

90 381 12 158 17321 539 0.70 0.96 

60 370 20 197 17282 567 0.65 0.94 

40 368 20 199 17280 567 0.64 0.93 

25 366 20 205 17274 571 0.64 0.93 

15 359 22 215 17264 574 0.62 0.91 

10 353 29 223 17256 576 0.61 0.90 

7.5 348 35 244 17235 592 0.58 0.88 

5.0 344 37 417 17062 761 0.45 0.87 

3.0 334 43 805 16674 1139 0.29 0.84 

2.0 328 45 846 16633 1174 0.26 0.82 

This is done by the following code in Matlab in Appendix L. Table 6 is created 

manually by writing down the results of experiment done on images (parts by parts) 

due to inability of machine to handle large number of images simultaneously. 
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Figure 45: Precision vs JPEG curve for QUALHOG (red curve) and HOG (green 

curve) features 

In Figure 45, red curve is for QUALHOG and green curve is for HOG. It shows that 

as the distortion „Q‟ which mean Quality of an image (Quality decreased with 

increase in compression) increases, Precision increases. At Quality rate 2.0, Precision 

is 0.309 for QUALHOG and 0.26 for HOG and as the Quality rate increase to 90, 

Precision increases to 0.71 for QUALHOG and 0.70 for HOG which shows that 

QUALHOG (red curve) face detector performs better than HOG (green curve) face 

detector. This is done by the following code in Matlab in Appendix J. It is seen that 

QUALHOG Precision is 2-3% more accurate than HOG Precision for detecting faces 

in JPEG distorted images. 
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Figure 46: Recall vs JPEG curve for QUALHOG (red curve) and HOG (green curve) 

features 

In Figure 46, red curve is for QUALHOG and green curve is for HOG. It shows that 

as the distortion „Q‟ which mean Quality of an image (Quality decreased with 

increase in compression) increases, Recall increases. At Quality rate 2.0, Recall is 

0.888 for QUALHOG and 0.82 for HOG and as the Quality rate increase to 90, 

Recall increases to 0.970 for QUALHOG and 0.96 for HOG which shows that 

QUALHOG (red curve) face detector performs better than HOG (green curve) face 

detector. This is done by the following code in Matlab in Appendix J. It is seen that 

QUALHOG Recall is 4-5% more accurate than HOG Recall for detecting faces in 

JPEG distorted images. 
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4.3 Comparison with known results 

Known results use NIQE vs Distortion level and AUPR vs Distortion level curves (as 

shown is Figure (2 - 7) to show FDS based on QUALHOG are better than FDS based 

on HOG for distorted images. However, NIQE and AUPR are not properly defined in 

paper [1]. It is impossible to obtain the same results for NIQE and AUPR as shown 

in paper [1] due to the lack of defining NIQE and AUPR. 

 Hence, Precision vs distortion level (AWGN, GBlur and JPEG) and Recall vs 

distortion level (AWGN, GBlur and JPEG) curves are obtained for both QUALHOG 

and HOG to show FDS based on QUALHOG performs better than FDS based on 

HOG on distorted images. 

As shown in Figure 5, For AWGN at distortion level 4.5×10−5 AUPR is around 0.96 

and it declines with increases in distortion level. While looking at Figure 41 and 42, 

For AWGN at distortion level 4.5×10−5 Precision is 0.75 and Recall is around 0.95  

and it declines with increase in distortion level for QUALHOG. 

Similarly as shown in Figure 6, For GBlur at distortion level 0.4 AUPR is around 

0.96 and it declines with increases in distortion level. While looking at Figure 43 and 

44, For GBlur at distortion level 0.4 Precision is 0.76 and Recall is 0.96 and it 

declines with increase in distortion level for QUALHOG. 

Similarly as shown in Figure 7, For JPEG at Quality level 90 AUPR is around 0.97 

and it declines with increases in distortion level (decrease in quality level). While 

looking at Figure 45 and 46, For JPEG at quality level 90 Precision is 0.71 and 

Recall is 0.97 and it declines with increase in distortion level for QUALHOG. 
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It is seen that at less distortion level AUPR is more close to Precision and at higher 

distortion level, AUPR is more close to Recall. 

4.4 Experiments on images of any size using sliding window 

technique 

A small patch of 100 images are taken to test the extended method using SVM light. 

These images are downloaded from internet. True positive, true negative are 

calculated for QUALHOG and HOG and it is observed that QUALHOG method 

proves to be effective and works effectively in detecting faces in distorted images. 

4.4.1 Training 

SVM light is trained with scaled images (80x64) at different level of distortion.  

4.4.2 Prediction 

Images taken from different cameras with common distortion are taken from internet 

for testing. 

4.4.3 Results of experiments 

True positive and false positive are calculated for all three types of distortion at 

different levels for 100 images. 

For images distorted by AWGN 

Extracting QUALHOG features of images 

Table 7: True positive and false positive are obtained for images distorted by AWGN 

at different log scale 
AWGN distortion level True positive False positive 

0.0001 94 6 

0.02 87 13 

0.36 75 25 
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This is done by the following code in Matlab in Appendix I. 

Extracting HOG features of images 

Table 8: True positive and false positive are obtained for images distorted by AWGN 

at different log scale 

AWGN distortion level True positive False positive 

0.0001 94 6 

0.02 84 16 

0.36 69 31 

This is done by the following code in Matlab in Appendix I.It is shown from Table 7 

& 8, that accuracy (True positives) for QUALHOG is higher that HOG in all three 

level of distortions. 

For images distorted by G Blur 

Extracting QUALHOG features of images 

Table 9: True positive and false positive are obtained for images distorted by G Blur 

at different log scale 

G Blur distortion level True positive False positive 

1.0 95 5 

6.0 84 16 

20.0 71 29 

 

This is done by the following code in Matlab in Appendix I. 
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Extracting HOG features of images 

Table 10: True positive and false positive are obtained for images distorted by G 

Blur at different log scale 

Gblur distortion level True positive False positive 

1.0 93 7 

6.0 79 21 

20.0 73 27 

 

This is done by the following code in Matlab in Appendix I.It is shown from Table 9 

& 10, that accuracy (True positives) for QUALHOG is higher that HOG in all three 

level of distortions. 

For images distorted by JPEG 

Extracting QUALHOG features of images 

Table 11: True positive and false positive are obtained for images distorted by JPEG 

at different log scale 

JPEG distortion level True positive False positive 

90 97 3 

10 91 9 

2 80 20 

This is done by the following code in Matlab in Appendix I. 
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Extracting HOG features of images 

Table 12: True positive and false positive are obtained for images distorted by JPEG 

at different log scale 

JPEG distortion level True positive False positive 

90 96 4 

10 88 12 

2 76 24 

This is done by the following code in Matlab in Appendix I.It is shown from Table 

11 & 12, that accuracy (True positives) for QUALHOG is higher that HOG in all 

three level of distortions. 

 

 
Figure 47: A tested example of true positive (left) and false positive (right) detection 

in two distorted images 

Figure 47 is a result of FDS in which a box is created claiming face to be present 

inside the box by SVM. 
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4.5 Conclusion 

Comparison of proposed face detector (QUALHOG) and face detector (HOG) is 

done by training and testing of images. 2731 images (1231 faces and 1500 non faces) 

are used for training and 17872 images (393 faces and 17479 non faces) are used for 

testing at 10 levels for all the three types of distortions. It showed that QUALHOG 

shows higher tolerance to distortion as compared to HOG. Later 100 random images 

are taken and comparison of proposed face detector (QUALHOG) and face detector 

(HOG) is done by training and testing of images. Images are distorted at 3 different 

levels for all three types of distortion. 

LIBLINEAR is used for training and testing of data because of the large database for 

testing and training. It is observed that LIBLINEAR performs better and is faster as 

compared to other SVM while testing on large database. Later SVM Light is used for 

training and testing of 100 images. 

True positive and false positive are calculated at every level in all three types of 

distortion and degradation in performance of QUALHOG face detector was seen 

with increase in distortion level. Precision and Recall are obtained by using true 

positives, false positives and detected positives numbers as defined paper [1]. 

Precision vs distortion level (AWGN, G Blur and JPEG) and Recall vs distortion 

level (AWGN, G Blur and JPEG) curves are plotted and these curves are compared 

with the knows experimental results which are AUPR vs distortion level (AWGN, G 

Blur and JPEG) curves used by the author of article [1]. 

QUALHOG face detector shows improved results (1-5% overall) for face detection 

as compare to HOG face detector when trained on distorted images. Adding 
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perceptual quality aware features makes QUALHOG face detector more tolerant to 

images. 
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Chapter 5 

CONCLUSION 

In this research, articles related to implemented methodology (Face detection in 

distorted images augmented by perceptual quality aware features) are discussed. 

Metrics and methods used in them such as HOG, NSS, Liblinear and SVM Light are 

explained. Problems to be solved in this thesis are defined. Design of FDS along with 

implementation and testing of FDS and its subsystems like HOG, NSS, Liblinear 

SVM and SVM Light are discussed and explained in detail.  

 For testing FDS, an image from the database is taken and testing is done to show 

and prove the authenticity of FDS and its subsystems. LIBLINEAR support vector 

machine is used for training and testing of data. Later sliding window technique is 

applied to detect face on any size of image by extracting QUALHOG features and 

using SVM Light. Results are obtained at every step of testing for extraction of 

QUALHOG features for FDS. 

Comparison of proposed face detector (QUALHOG) and face detector (HOG) is 

done by training and testing of images. 2731 images (1231 faces and 1500 non faces) 

are used for training and 17872 images (393 faces and 17479 non faces) are used for 

testing at 10 levels for all the three types of distortions. The results showed that 

QUALHOG shows higher tolerance to distortion as compared to HOG. Later, 100 

random images are taken and comparison of proposed face detector (QUALHOG) 
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and face detector (HOG) is done by training and testing of images. Images are 

distorted at 3 different levels for all three types of distortion. 

LIBLINEAR is used for training and testing of data because of the large database for 

testing and training. It is observed that LIBLINEAR performs better and is faster as 

compared to other SVM while testing on large database.Later SVM Light is used for 

training and testing of 100 images. 

True positive and false positive are calculated at every level in all three types of 

distortion and degradation in performance of QUALHOG face detector was seen 

with increase in distortion level. Precision and Recall are obtained by using true 

positives, false positives and detected positives. Precision versus distortion level 

(AWGN, G Blur and JPEG) and Recall versus distortion level (AWGN, G Blur and 

JPEG) curves are plotted and these curves are compared with the known experiment 

results which are AUPR versus distortion level (AWGN, G Blur and JPEG) curves. 

QUALHOG face detector shows improved results (1-5% overall) for face detection 

as compare to HOG face detector when trained on distorted images. Adding 

perceptual quality aware features makes QUALHOG face detector more tolerant to 

images. 
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Appendix A: Code for training images using Liblinear  SVM 

 

1. close all 

2. clear all 

3. clc 

4. hog.numBins = 9; 

% The number of cells horizontally and vertically. 

5. hog.numHorizCells = 8; 

6. hog.numVertCells = 10; 

% Cell size in pixels (the cells are square). 

7. hog.cellSize = 8; 

% Compute the expected window size (with 1 pixel border on all sides). 

8. hog.winSize = [(hog.numVertCells * hog.cellSize + 2),  (hog.numHorizCells * 

hog.cellSize + 2)]; 

% Load all training windows and get their HOG descriptors. 

% Get the list of all images in the directory. 

9. posFiles = getImagesInDir('./dataset/noise/V9/pos/', true); 

10. negFiles = getImagesInDir('./dataset/noise/V9/negS/', true); 

 

% Create the category labels. 

11. y_train = [ones(length(posFiles), 1); -ones(length(negFiles), 1)]; 

%y_train = double(y_train); 

% Combine the file lists to get a list of all training images. 

12. fileList = [posFiles, negFiles]; 

 

% Build a matrix of all of the descriptors, one per row. 

13. X_train = zeros(length(fileList), 2304); 

%X_train = double(X_train); 

14. fprintf('Computing descriptors for %d training windows: ', length(fileList)); 

 

% For all training window images... 

15. for i = 1 : length(fileList) 

 

    % Get the next filename. 

16.  imgFile = char(fileList(i)); 

 

    % Print the current iteration  

17.  printIteration(i); 

 

    % Load the image into a matrix. 

18. img = imread(imgFile); 

19. img = double(img); 

20. if(size(img,3)==3) 

21. img = uint8(img); 

22. img = rgb2gray(img); 

23. end 

24. img = double(img); 
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 % Calculate the HOG descriptor for the window. 

25.  H = HOG(img); 

26. H = H'; 

 

27. H = normalise(H); 

28. M = brisque_feature(img); 

29. M = (36/2268)* M; 

 30. M = normalise(M); 

 31.  L = [H M]; 

 

 32.  L = normalise(L);  

 % Add the descriptor to the rest. 

33.  X_train(i, :) = L'; 

  34.  end 

  35.  X_train = sparse(X_train); 

  36. libsvmwrite('data.txt', y_train, X_train) ; 

  37. [label_vector, instance_matrix] = libsvmread('data.txt');  

%Train Liblinear SVM  

  38. fprintf('\nTraining linear SVM classifier...\n'); 

  39. model = train(label_vector, instance_matrix, 's2 -c 0.25000  '); 

  40. save('model.mat'); 

  41.end 
 

Appendix B: Code for testing images using Liblinear SVM 

1. close all 

2. clear all 

3. clc 

4. load('model.mat'); 

5. fcount = 1; 

6. testImPath = './test images/noise/V9/V9/pos/'; 

7. imlist = dir([testImPath '*.bmp']); 

8. fprintf('Computing descriptors for %d training windows: ', length(imlist)); 

9. for j = 1:length(imlist)   

      % Get the next filename. 

10. imgFile = struct(imlist(j)); 

    % Print the current iteration  

11. printIteration(j);     

12. img = imread([testImPathimlist(j).name]); 

13. img = double(img); 

14. if(size(img,3)==3) 

15. img = uint8(img); 

16. img = rgb2gray(img); 

17. end 

18. img = double(img); 

19. M = HOG(img); 

20.  M = M'; 
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21. M = normalise( M ); 

22. T = brisque_feature(img); 

23. T =(36/2268)* T; 

24.   T = normalise( T ); 

25. featureVector{fcount} = [M T]; 

 

26. featureVector{fcount} =  normalise(featureVector{fcount}); 

27. featureVector{fcount} =  featureVector{fcount}'; 

28. fcount = fcount+1; 

29.  end 

30. P = cell2mat(featureVector); 

31. P = P'; 

32. lebel = ones(length(featureVector),1); 

33. X = sparse(P); 

34. libsvmwrite('data1.txt', lebel,X) ;  

35. [label_vector, instance_matrix] = libsvmread('data1.txt');  

 

% Evaluate the liblinear SVM on the descriptor. 

36. [predict_label, accuracy, dec_values] = predict(label_vector, 

instance_matrix,model);  

37. end 
 

Appendix C: Code for calculating NSS features 

1. function feat = brisque_feature(imdist) 
2. imdist = double(imdist); 
3. if(size(imdist,3)==3) 
4. imdist = uint8(imdist); 
5. imdist = rgb2gray(imdist); 
6. end 

 
7. imdist = double(imdist); 
8. scalenum = 2; 
9. window = fspecial('gaussian',7,7/6); 
10. window = window/sum(sum(window)); 

 
11. feat = []; 
12. for itr_scale = 1:scalenum 

 
13.  mu            = filter2(window, imdist, 'same'); 
14. mu_sq         = mu.*mu; 
15. sigma         = sqrt(abs(filter2(window, imdist.*imdist, 'same') - mu_sq)); 
16. structdis     = (imdist-mu)./(sigma+1); 
17. [alpha overallstd]       = estimateggdparam(structdis(:)); 
18. feat                     = [feat alpha overallstd^2];  

 
19. shifts                   = [ 0 1;1 0 ; 1 1; -1 1]; 
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20. for itr_shift =1:4  
21. shifted_structdis        = circshift(structdis,shifts(itr_shift,:)); 
22. pair                     = structdis(:).*shifted_structdis(:); 
23. [alpha leftstdrightstd] = estimateaggdparam(pair); 
24. const                    =(sqrt(gamma(1/alpha))/sqrt(gamma(3/alpha))); 
25. meanparam               

=(rightstdleftstd)*(gamma(2/alpha)/gamma(1/alpha))*const; 
26. feat                     =[feat alpha meanparam leftstd^2 rightstd^2];  
27. end 
28. imdist                   = imresize(imdist,0.5); 
29. end 

 
Appendix D: Code for calculating GGD parameters 

1. function [gamparam sigma] = estimateggdparam(vec) 
2. mu                               = mean(vec); 
3. sigma_sq                         = mean((vec - mu).^2) 
4. sigma                            = sqrt(sigma_sq); 
5. E                                = mean(abs(vec - mu)); 
6. rho                              = sigma_sq/E^2; 

 
7. counter_1 = 0; 
8. counter_2 = 10 ; 
9.  for v = 1:100    
10. gam = counter_1:0.001:counter_2; 
11. r_gam    = (gamma(1./gam).*gamma(3./gam))./((gamma(2./gam)).^2);   
12. [min_difference, array_position] = min(abs(rho - r_gam)); 
13. previous_array_position = array_position - 1; 
14. disp(array_position - 1)  
15. disp(array_position) 
16.  if min_difference == min(abs(rho - r_gam));            
17. gamparam = gam(array_position); 
18. fprintf('shape_parameter_found');     
19. else 
20. fprintf('shape_parameter_not_found');           
21.  end        
22.  if(gam >= rho)  
23.    break;        
24.  end 
25.  counter_1 = counter_1 - 1; 
26.  counter_2 = counter_2 + 1;     
27. end 
28. end 
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Appendix E: Code for calculating AGGD parameters 

1. function [alpha leftstdrightstd] = estimateaggdparam(vec)  
2. leftstd            = sqrt(mean((vec(vec<0)).^2)); 
3. rightstd           = sqrt(mean((vec(vec>0)).^2)); 
4. gammahat           = leftstd/rightstd; 
5. rhat               = (mean(abs(vec)))^2/mean((vec).^2); 
6. rhatnorm           = (rhat*(gammahat^3 +1)*(gammahat+1))/((gammahat^2 

+1)^2); 
 

7. counter_1 = 0.2; 
8. counter_2 = 10 ; 
9. for v = 1:100 

 
10. gam      = counter_1:0.001:counter_2; 
11. r_alpha    = ((gamma(2./gam)).^2)./(gamma(1./gam).*gamma(3./gam)); 

 
12. [min_difference, array_position] = min((r_alpha - rhatnorm).^2); 
13. previous_array_position = array_position - 1; 
14. disp(array_position - 1)  
15. disp(array_position) 
16. if min_difference == min((r_alpha - rhatnorm).^2); 

 
17. alpha = gam(array_position); 
18. fprintf('array_value_found'); 
19.  else 
20. fprintf('array_position_not_found');                
21.  end       
22.  if(gam >= rhatnorm)           
23.  break;        
24. end       
25. counter_1 = counter_1 - 1; 
26. counter_2 = counter_2 + 1;     
27.  end 
28. end 

 

Appendix F: Code for extracting HOG features 

1. function HOGv = HOG(Img) 

2. I = double(Img); 

3. if(size(I,3)==3) 

4.  I = uint8(I); 

5. I = rgb2gray(I); 

6. end 

7.  I = double(I); 
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% Compute the gradient vector at every pixel in the image. 

% Create the operators for computing image derivative at every pixel. 

8. hx = [-1,0,1]; 

9. hy = hx'; 

% Compute the derivative in the x and y direction for every pixel. 

10. dx = filter2(hx, double(I)); 

11. dy = filter2(hy, double(I));  

% Convert the gradient vectors to polar coordinates (angle and magnitude). 

12. angles = atan2(dy, dx); 

13. magnit = ((dy.^2) + (dx.^2)).^.5; 

 

% Make the angles unsigned by adding (180 degrees) to all negative angles. 

14. angles(angles < 0) = angles(angles < 0) + 180; 

15. feature=[]; %initialized the feature vector 

16. rows=size(I,1); 

17. cols=size(I,2); 

% Iterations for Blocks 

18. for i = 0: rows/8 - 2 

19.   for j= 0: cols/8 - 2  

20. mag_patch = magnit(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16); 

21. ang_patch = angles(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16); 

22. block_feature=[]; 

 

        %Iterations for cells in a block 

23.  for x= 0:1 

24.    for y= 0:1 

25. angleA =angles(8*x+1:8*x+8, 8*y+1:8*y+8); 

26. magA   =magnit(8*x+1:8*x+8, 8*y+1:8*y+8);  

27. histr  =zeros(1,9); 

 

                %Iterations for pixels in one cell 

28.          for p=1:8 

29.            for q=1:8                      

30.                 alpha= angleA(p,q); 

 

                        % Binning Process (Bi-Linear Interpolation) 

31.             if alpha>=0 && alpha<=20 

32. histr(1)=histr(1)+ magA(p,q);                     

33. elseif alpha>20 && alpha<=40                    

34. histr(2)=histr(2)+ magA(p,q);                  

35. elseif alpha>40 && alpha<=60          

36. histr(3)=histr(3)+ magA(p,q);                

37. elseif alpha>40 && alpha<=60 

38. histr(4)=histr(4)+ magA(p,q);                

39. elseif alpha>60 && alpha<=80 

40. histr(5)=histr(5)+ magA(p,q);          

41. elseif alpha>80 && alpha<=100 

42. histr(6)=histr(6)+ magA(p,q);                   

43. elseif alpha>100 && alpha<=120 
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44. histr(7)=histr(7)+ magA(p,q);               

45. elseif alpha>120 && alpha<=140 

46. histr(8)=histr(8)+ magA(p,q);               

47. elseif alpha>140 && alpha<=160 

48. histr(9)=histr(9)+ magA(p,q);                       

49. elseif alpha>=160 && alpha<=180 

50. histr(9)=histr(9)+ magA(p,q);                

51.                 end        

52.            end 

53.        end 

                % Concatenation of Four histograms to form one block feature 

54. block_feature=[block_featurehistr];  

55.      end 

56.  end 

        % Normalize the values in the block using L2-Norm 

57.   e = 0.0001; 

58. block_f=block_feature/sqrt(norm(norm(block_feature))^2+.01);  

        %Normalize the values in the block using L1-Norm  

59.   L_1 = block_f/( norm(block_f)+ 0.0001); 

    % Normalize the values in the block using L1 sqrt-Norm   

60.  L1_sqrt = sqrt (L_1/ ( norm(L_1)+ 0.0001)); 

61.    feature=[feature L1_sqrt]; %Features concatenation 

62.  end 

63. end 

 

Appendix G: Code for normalize images features between -1 and +1 

1. function [ H_norm ] = normalise( x ) 
2. fmin = -1; 
3. fmax = 1; 
4. minn = min(x); 
5. maxx = max(x); 
6. H_norm =  (x - minn) ./ (maxx - minn); 
7. H_normm = H_norm .* (fmax - fmin) + fmin;   
8. end 

 

Appendix H: Code for training of images in test images using SVM 

light 

1. close all 

2. clear all 

3. clc 
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4. hog.numBins = 9; 

% The number of cells horizontally and vertically. 

5. hog.numHorizCells = 8; 

6. hog.numVertCells = 10; 

% Cell size in pixels (the cells are square). 

7. hog.cellSize = 8; 

% Compute the expected window size (with 1 pixel border on all sides). 

8. hog.winSize = [(hog.numVertCells * hog.cellSize + 2),  (hog.numHorizCells * 

hog.cellSize + 2)]; 

% Load all training windows and get their HOG descriptors. 

% Get the list of all images in the directory. 

9. posFiles = getImagesInDir('./dataset/noise/V9/pos/', true); 

10. negFiles = getImagesInDir('./dataset/noise/V9/negS/', true); 

 

% Create the category labels. 

11. y_train = [ones(length(posFiles), 1); -ones(length(negFiles), 1)]; 

%y_train = double(y_train); 

% Combine the file lists to get a list of all training images. 

12. fileList = [posFiles, negFiles]; 

 

% Build a matrix of all of the descriptors, one per row. 

13. X_train = zeros(length(fileList), 2304); 

%X_train = double(X_train); 

14. fprintf('Computing descriptors for %d training windows: ', length(fileList)); 

 

% For all training window images... 

15. for i = 1 : length(fileList) 

 

    % Get the next filename. 

 16.  imgFile = char(fileList(i)); 

 

    % Print the current iteration  

 17.  printIteration(i); 

 

    % Load the image into a matrix. 

18. img = imread(imgFile); 

19. img = double(img); 

20. if(size(img,3)==3) 

21. img = uint8(img); 

22. img = rgb2gray(img); 

23. end 

24. img = double(img); 

 % Calculate the HOG descriptor for the window. 

25.  H = HOG(img); 

26. H = H'; 

 

 27. H = normalise(H); 

 28. M = brisque_feature(img); 

 29. M = (36/2268)* M; 

 30. M = normalise(M); 
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 31.  L = [H M]; 

 

 32.  L = normalise(L);  

 % Add the descriptor to the rest. 

  33.  X_train(i, :) = L'; 

  34.  end 

  35.  X_train = sparse(X_train); 

  36. libsvmwrite('data.txt', y_train, X_train) ; 

  37. [label_vector, instance_matrix] = libsvmread('data.txt');  

%Train SVM light 

  37. fprintf('\nTraining linear SVM classifier...\n'); 

  38. model = svmlearn(X_train, y_train, '-t -c '); 

  39. save('model.mat'); 

  40.end 

 

 

Appendix I: Code for testing images using SVM light through 

sliding window 

1. clear all 

2. close all 

3. clc 

%% Detection  

4. load ('model.mat'); 

5. tSize = [64, 80]; 

6. testImPath = './test images/'; 

7. imlist = dir([testImPath '*.bmp']); 

8. for j = 1:length(imlist) 

9. img = imread([testImPathimlist(j).name]); 

10. img = imresize(img,0.8); 

11. imshow(img,[]); 

12. img = double(img); 

13. if(size(img,3)==3) 

14. img = uint8(img); 

15. img = rgb2gray(img); 

16. end 

17. img = double(img); 

18.  axis equal; axis tight; axis off; 

19.  hold on; 

20. detect(img,model,tSize); 

21. saveas(gcf, ['./results (2)/' imlist(j).name], 'jpg'); 

22. end 

 

 

23. function detect(im,model,wSize) 

24. topLeftRow = 1; 

25. topLeftCol = 1; 
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26. [bottomRightColbottomRightRow d] = size(im); 

27. fcount = 1; 

% this for loop scan the entire image and extract features for each sliding window 

28. for y = topLeftCol:bottomRightCol-wSize(2)     

29.   for x = topLeftRow:bottomRightRow-wSize(1) 

30.   p1 = [x,y]; 

31.  p2 = [x+(wSize(1)-1), y+(wSize(2)-1)]; 

32. po = [p1; p2]; 

33. img = imcut(po,im);    

34.  if size(img,3) >1  

35. img = rgb2gray(img);  

36.  end 

37.   H = HOG(double(img)); 

      38.  H = normalise(H); 

      39.   M = brisque_feature(img); 

      40.   M = normalise(M); 

      41.   M = (2268/36)* M; 

      42.   M = M'; 

      43.  featureVector{fcount} = vertcat(H,M);      

      44.  boxPoint{fcount} = [x,y]; 

      45.  fcount = fcount+1; 

46. x = x+1; 

47. end 

     48. end 

     49. lebel = ones(length(featureVector),1); 

     50. P = cell2mat(featureVector); 

     51. P = P'; 

     52. [~, predictions] = svmclassify(P,lebel,model); % classifying each window 

     53. [a,indx]= max(predictions); 

     54.  bBox = cell2mat(boxPoint(indx)); 

     55. rectangle('Position',[bBox(1),bBox(2),64,80],'LineWidth',1, 'EdgeColor','r'); 

     56. end 
 
 

Appendix J: Code for generating curve QUALHOGvs HOG 

1. (x1,y1) = Qualhog features; 
2.  (x2,y2) = HOG features; 
3. figure,plot(x1,y1,'--rs',x2,y2,'--gs',... 
4.  'LineWidth',2,... 
5. 'MarkerSize',5,... 
6.  'MarkerEdgeColor','b',... 
7.  'MarkerFaceColor',[0.0001,0.0001,0.0001]); 
8. xlabel('xlabel'); 
9. ylabel('ylabel'); 
10. title('Qualhogvs Hog'); 
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Appendix K: Code for generating Gaussian filter without using 

Matlab function 

1. clear all 

2. close all 

3. clc 

% Read am image 

4. Img = imread(„image_0057.bmp‟); 

5. I = double(Img); 

6. If (size(I,3)==3) 

7. I = uint8(I); 

8. I = rgb2gray(I); 

9. End 

10. I = double (I); 

% Design the Gaussian kernel 

11. Sigma = 1; %standard deviation 

12. Sz = 3*sigma; %Window size 

13. [x,y] = meshgrid(-sz:sz, -sz:sz); 

14. M = size(x,1) -1; % Find the size of each dimension of matrix M 

15. N = M; 

16. Exp_comp = -(x.^2+y.^2) / (2*sigma*sigma); 

17. Kernel = exp (Exp_comp) / (2*pi*sigma*sigma); 

18. end 
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Appendix L: Manually created table for saving experiment results 

 

 



99 
 

 

 


