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ABSTRACT

In this thesis we introduce the concept of classical orthogonal polynomials which are
Hermite, Laguerre and Jacobi polynomials. We first provide the necessary overview
on special functions. Then we give several properties of orthogonal polynomials in
Chapter 2. In Chapter 3, we start to classical orthogonal polynomials firstly we obtain
the orthogonality relation, Rodrigues formulas and we give the norm of the classical
orthogonal polynomials. Finally we divide the examples of classical orthogonal
polynomials into three chapters and for each of them we give the weight function,
interval of the orthogonality, second order differential equation, hypergeometric

representation.

Keywords: classical orthogonal polynomials, hypergeometric function, second order

differential equation, Rodrigues formula.
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Bu tezde klasik ortogonal polinomlar olan Hermite, Laguerre ve Jacobi polinomlari
tanimlanmistir. Ik olarak 6zel fonksiyonlar hakkinda 6n bilgi verilmistir. Ikinci
béliimde ortogonal polinomlarin bazi dzellikleri ¢alistimistir. Ugiincii boliimde klasik
ortogonal polinomlar tanimlanmis ve ilk olarak ortogonallik iliskisi, Rodrigues
formilii verilmis ve klasik ortogonal polinomlar i¢in norm hesab1 yapilmistir. Son
olarak Klasik ortogonal polinom 6rnekleri 3 boliime ayrilmis ve herbiri i¢in agirlik
fonksiyonlar1, ortogonallik araligi, ikinci dereceden diferansiyel denklemi ve

hipergeometrik gosterimi verilmistir.

Anahtar Kelimeler: Klasik ortogonal polinomlar, hipergeometrik fonksiyon, ikinci

dereceden diferansiyel denklem, Rodrigues formdilii.
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Chapter 1

INTRODUCTION

1.1 Mathematical Background
Definition 1.1 (Inner Product Space)
Let X be a vector space. The scalar valued function <,>:X «* X - K where K =
R or C is called the inner product space, if it satisfies the following conditions and

denoted by (X, <>).

1) Vx,y,z€X <x+y,z>=<x,z>+<y,z>,

2) Vx,yeEX andk €K <kx,y>=k<x,y>,

) Vx,yEX <x,y>=<y,x> ,

4) VxeX <x,x>=20 or <x,x>=0 x=0.

Example 1.2. C[a, b] being the space of all real-valued continuous functions on a
closed interval [a, b] is an inner product space, whose inner product is defined by

< f,g>= [, f(x).h(x)dx where f,g € C[a,b] .

Definition 1.3 (X, <>) be an inner product space and x and y be any elements of X.
We can say that x and y are orthogonal to each other if and only if < x,y >= 0.

Example 1.4 Let f(x)and h(x) be two functions defined on [a, b] .We can say that

they are orthogonal on an interval [a,b] if their inner product is zero

b
ff(x).h(x)dx = 0.

1



Definition1.5 (Hypergeometric Equation)

The second order differential equation

A()p"(x) + B(x)p'(x) + ap(x) =0,

is called hypergeometric equation where A(x) has degree at most 2, B(x) has degree
at most 1 and « is a constant.

Theorem1.6 All the derivatives of the solutions of hypergeometric equation satisfy a

hypergeometric equation.

Proof. For proof of this theorem, we first differentiate both sides with respect to the

variable x;

A'()p" () + A)p"" (x) + B'(x)p'(x) + B(x)p" (x) + ap'(x) = 0
AQ)p™ (x) + [A'(x) + B()]p" (x) + [B'(x) + a]p’(x) = 0. (1.1

Now let us set v, (x) = p’(x) and substitute into the equation (1.1),

A() vy (0)+B; ()1 (x) + pyv1 (x) = 0.

This equation form a hypergeometric equation since A(x) has degree at most 2 and
B;(x) has degree 1, where B;(x) = A'(x) + B(x) and u; = B'(x) + a.

If we differentiate hypergeometric equation m times again we obtain the generalized
hypergeometric equation which has the following form;

AV (%) + By ()i (%) 4 mvm (x) = 0, where v,,,(x) = p™(x),

Bn,(x)= B(x) +mA'(x) and u, =a+mB(x)+ %m(m - 1DA"(x).

In Chapter 2 we are going to construct the polynomial solutions of hypergeometric

equation corresponding to given a.



Definition1.7 When pu,,= 0 generalized hypergeometric equation has the particular

solution v,,,(x) = constant.

Since v, (x) = p™(x) , when a = a,,= —m B'(x) — %m(m - 1DA" (%),

The equation of hypergeometric type has a particular solution of the form p(x) =
pm(x) which is a polynomial of degree m. We shall call such solutions, polynomials
of hypergeometric type.

Definition1.8 (Gamma Function) The Gamma function of y is defined as

(0]

ry) = j e ttY ldt , vy € R{...,—2,—1,0}. (1.2)
0

Some Properties of Gamma function

1L Tiy+1)=yIr'(y),

2. T(y+1)=y!,

3. I'y+n)=(aI'),
«r(Q)=vE

Theorem1.9 The following result
J e_xzdx =

holds true.

Proof:

Since

00_2 00_2
jexdx=2jexdx
—00 0



We get by letting x2 =t that
" ®1 1

2f e ™ "d, =f tze~td, = r(—) =T
0 0

J. e™*’d, =

Definition1.10 (Beta Function) The beta function has the form;

1
B(x,z) = f t*"1(1—-t)?'dt where Re(x),Re(z) >0, (1.3)

0

and we can represent the beta function in terms of the gamma function as;

rr@)

B2 =t

(1.4)

Definition1.11 (Pochhammer Symbol) The (y),, notation will be used to denote the

Pochhammer, where m is a non-negative integer and y is a real or complex number.

MDm=y@+DH+2).(y+m-1). (1.5)

Some Properties of Pochhammer Symbol:

r(y+m)
r)

1L W=

2. (" Vm=CD"@-m+ 1y,
b Onmm(2) ()

4. (y)m+n = (y)m(y + m)n '

=)™ (=p)!
5 Wnm= (_y—_m;

-1 )m
6. 0)om =Gy

(-Dkn!
GOV

7. (n—k)!=

ny _ _n _ (D"(n)g
8. (k) T k(n-k)! k! '



1.

3.

Definition 1.12 (Hypergeometric Functions) The generalized hypergeometric series,

mFn, is defined to be;

N (@01(a)1 - ()i ¥
= (b1)1(b2); ... (b)), U

mE,(ay,a, ...ay; by, by .. by X) (1.6)

Properties of Hypergeometric Functions:

r(b)r(b,—a,—as)
r(by—a)r(b;—ayz)’

2Fi(ay,az;b151) =

(b—a)n
2F1(—Tl, a, b; 1) = W s

1Fola;—x) = (1—x)7%.
Definition1.13  (Differential Equations of Hypergeometric Functions)

Hypergeometric functions which is defined as

o (ai(@p) X!
.Fi(ay, az;b;x) = TF

1=0
has the differential equation as follows;

x(1—-x)p" +[b—-(a; +a,+ Dx]p’' —a,a,p =0 (1.7)



Chapter 2

ORTHOGONAL POLYNOMIALS

Definition2.1. The set of infinite sequence of polynomials , Py(x), P;(x),.. where
P,(x), has degree n, if any two polynomials in the set are orthogonal to each other

,then we can say that the set of polynomials form an orthogonal polynomials set.

To define the orthogonality of polynomials we need an orthogonality interval [a, b]
(this interval is not necessary to be finite) and also we need the weight function w(x)
> 0.

There are two types of orthogonal polynomials:

v' Continuous orthogonal polynomials

v" Discrete orthogonal polynomials.

Definition2.2. If the weight function w(x) is continuous or piecewise continuous or

integrable then the polynomials form a continuous orthogonal polynomial set.

Orthogonality relation can be written in the form;

b
[ PuGIPm W = G5 @.1)

a

where m,n € {0,1,2...} and §,,, is Kronecker delta defined by

— {O,m Fn

Sn 1 m=n" m,n € {0,1,2...}.



Here we can define moments by using the weight function which exist on the interval

[a,b].

b
Up = fw(x)x”dx , n=01.2.... 0 <y, < oco.

a

Definition2.3. If the weight function w(x) is a jump function, which means at the
point x, the left and right limit exists but they are not equal, then the polynomials

form a discrete orthogonal polynomial set.

Then the orthogonality relation can be written in the form;

Z Pm (OPn (X)Wy = 0,8,

XEX

where m,n € {0,1,2...N} it is possible N— oo.

Definition2.4. Now let us define a,, which is called the normalization function ,

b
Op = J (P () w(x)dx, (2.2)

where n = 1,2, .... for continuous orthogonal polynomials

or

On = ) (pn(0)) W, 23)

xX€EX

wheren = 1,2,....N for discrete orthogonal polynomials where N — oo is possible.
2.1 Properties of Orthogonal Polynomials

e Any polynomial @, (x) which has degree n, can be written in terms of

Do , P1, ---, Py, and there exists coefficients y;,, such that



Qn(x)

= > Vb, 24
i=0

The coefficients y;,,’s can be determined by using orthogonality property.

Finding y;,,’s;

b b n
[ eutomwead. = [ D vunnwed,

The integral is non-zero only when i = i from the orthogonality property so,

write it as a;

b b

| 0uComCowede = vin [ PRCOWE) s
where
b
| pRwEd, = 0000,
SO,
b
V= 5 ). QalOPCOWEIA (25)

e {po(x),p;(x),....} be an orthogonal set of polynomials, each polynomial
pn(x) is orthogonal to any polynomial of degree < n.

o If {py(x),p1(x),....} is a sequence of orthogonal polynomials on the interval
[a, b] with respect to the weight function w(x), then the polynomial p,,(x) has

exactly n real simple zeros in the interval [a, b].



Proof:

Letuswrite p,(x)asa p,(x) = (x —x;) (x — x3)... (x — x;) and assume that zeros
are not simple which means roots are repeteated.

If 1 <n p,(x)will be p,(x) = (x — x)*(x —x)™ ... (x — x)) ¢

At least one of the k,m, i > 1 since we have the repeated root

Now let define

1ifk=0

k

qi(x) = .
| |(x—x Yfor0<k<n
b=1 ’

The product of p,, (x) with g; (x) will be;
Pr(0)q(x) = (x — x)** (x — )™ L (x — x) !
If k,m,iareodd - k+ 1,m + 1,i + 1 are even which means sign will not change

for x € (a, b) which implies

12 pa () g COW(x)dx £ 0 for k <m.

This is the contradiction since the polynomials are orthogonal integral have to be 0 for
k < n from the above property. Which implies that k = n so the polynomial p,,(x)
which has degree n, has n simple roots in the [a, b].
o {po(x),p1(x),....} be an othogonal set of polynomials, the polynomials in this set
has a three term recurrence relation, that is,
XPr (%) = apPns1(x) + Bupn(x) + 8ppp—1(x) n=12,.. (2.6)

where the coefficients «, 8, § depend on n.



Proof: We can write

n+1

xpn(x) = z YinPi(%),

and from (2.5)

1 b
-5 | P W,

xpn(x) = YonPo (x) + V1inD1 (x) + o+ yn—l,npn—l(x) + )/nnpn(x)
+ Vn+1,npn+1(x)-
Since xp; (x) has degree i + 1, from the orthogonality property of p,, (x) the

coefficients y;;,, = 0 when i + 1 < n which implies that;

xpn(x)zyn—l,npn—l(x) + YnnPn (x) + yn+1,npn+1(x)-

Let us compare the coefficients of p,,_;(x), p, (x), pr+1(x) of the equations;

In = Vn+1,n
Bn = Ynns

6, = Yn-1n-
Write the y;,, one more with changing the index,
1 b
Vo= 5 ). PP COWE,

1 b
Yot = | P oweds

YinOn(x) = Ynio;(x)

= yino-n(x)
)/nl O_l(x)

10



Turn back to ;
Uy = Yni1n andtaken - n—1

An—1 = Vnn-1 define n—1=1

_ Yinon(x)
a; = Vni— o)
on(x) on(x)
i = O_i(x) ym - an_l = m'}/n_ln Where 67’1 = yn—l,n
Op—1(x)

)

Ay 1 =—
n-1 O_n(x) n

on(X)

on =t T

n

Now we are going to use usual representation of p,, (x) with the three term recurrence

relation;
Pn(x) = apx™ + ap_1x" 1+ -+ aq

xpn(x) = anpn+1(x) + ﬁnpn(x) + Cnpn—l(x)
Ay x™ 1t +a,_x"+ -+ ag
= pane 1 X"+ apx™ + -+ ap
+ Balanx™ + ap_1x™ 1+ agl + cpan_1 x4 ap_px™ 2
+ o+ ag]

Compare the coefficients of the terms n+l

x and x™:

ap = ApQnyq

2.7)

11



Leta,_1=¢, , a,=cCpyq-

Bn=—"7"— (2.8)

an—-1

2@ \vhere a,_, =

Since we have; 6, = «a,,_
n n 1Un—1(x) an

_ An-1 O'n(x)
ap Op_1(X)

6n (2.9)

e By using three-term recurrence relation we can create Christoffel-Darboux formula

=
;) o0 P Or(y)
1 ay pre1)pa(y) — Praa ()pn(x)
00 (%) Apaa (x—v) (2.10)
Proof:

Write the three term recurrence relation with x and y terms;

ap-1 O-n(x)

XPu(3) = T Pua () + Bupn() + = ()
an an-1 O-n(x)
yon (¥) =a—+1pn+1(y)+ﬁnpn(y)+ " mpn_l(y)

Multiply the first equation with p,, () and the second one with p,, (x)

1Pu (PR D) = D1 (PR ) + b (IP(Y)

n+1

ap-1 On (x)

an Op—1(X)

Pn-1(0)pn(y)

12



an

ypn(y)pn(x) = a pn+1(y)pn(x) + .Bnpn(y)pn(x)

n+1

an-1 Gn(x)
ap Op_1(X)

Pn—1(Y)pn ().

Subtract the equations;

an

(x = P (P (y) = [Pr+1(OPn (V) — Prs1 (Mpn ()] +

an+1

n— Tl( )
aa_nlo':——jx) [pn—l(x)pn(y) - pn—l(y)pn(x)]

Ay Pn+1(OPn (V) — Pre1 (M (x)
+
An+1 (x - y)

P () (y) =

An—1 0n(X) Pr—1(OPn(y) — Pr-1()Pn(x)
an O-n—l(x) (x - Y)

an Pn+1(O)Pn (V) = Pre1(Npn(x) _
An+1 (x - y)

129692969

_ Un(x) an—1 pn—l(x)pn(y) - pn—l(y)pn(x)
Gn—l(x) an (X - y)

(2.11)

We can get the second term into the RHS by taking n — n — 1 in (2.11) equation.

A1 Pn () Pn-1() = P (¥)Pp-1(x)
an (X - J’)

= Pp-1()Pp-1(y) —

On-1(%) @n_2 Pn—2()Pn-1(¥) — Pn—2(Y)Pn-1(x)
on(X) an-1 (x—y)

Put this into the equation with multiplying -1.

An Prs1()Dr (V) — Prs1(pn(x)
An+1 (x - y)

= () aa’jf’(‘i) [Pt (Pna ) +

13



On-1(%) @nz Pn—2()Pn-1(Y) — Pn-2(Y)Pn-1(%)
Gn(x) an—1 (x — y)

Again we can find the last term of this equation by taking n - n — 2 in (2.11) equation

Ap—2 Pn-1()Pn-2(Y) — Pr—1(¥)Pn—2(x)
an-1 (x - y)

= Pp—2(X)Pn-2(y)

_ On—2 (%) an-3 Pn—3()Pn—2(¥) — Pn-3(Y)Pn—2(x)
On—3(X) an_ (x—y)

Put this equation to the (2.1.9)

An—1 Pn () Pn-1() — P (Y)Pp-1(x)
an (x - y)

0,(x)

= Pp-1()Pp-1(y) + ﬁpn—l(x)pn—l(y) -

on(x) 0np_q1(x)
On-1 (x) O-n—z(x)

—Pn—2()Pn_2(y)

On—2(%) Qn_3 Pn—3(0)Pn-2(¥) — Pn—3(¥)Pn-2(x)
+
O-n—3(x) an—2 (x - Y)

An_Prt1(OPn () = Put1 (IPa(x) _
An+1 (X - J’)

P 0) + 22 a0+ s () —
Un—l(x) Un—Z(x)

n(x) an_3Pn-3(0Pn—2(¥) = Pr—s(¥Y)Pp—2(x)
Un—3(x) an—2 (x - y)

If we continue to iterate the equation we get;

an Pn+1(OPr (V) = Prs1(Npn(x)
An+1 (x—y)

14



= pn(OPn(y) + ——= Tn (%) Prn-1(X)Pr-1(y) + (%) ————DPn—2(O)pr—2(y) + -
n 1( ) n 2( )

= Z:gg Po(X)po(¥).
an Prnr1(OPn(Y) — Prs1(V)pn(x) _ = o,(x)
An+1 (x—y) - ; (x) Pr )P (¥)
Zn: (D) = —— 2 Pt (DPn () ~ Pras (P ()
£ 0y, (x) PP ) = 5 () e x—9)

15



Chapter 3

CLASSICAL ORTHOGONAL POLYNOMIALS

Definition3.1. If the polynomial p, (x) satisfy the hypergeometric type differential

equation which has form A(x)p;, (x) + B(x)p,,(x) + a,p,(x) = 0 with the Pearson
equation :—x [A(x).w(x)] = B(x).w(x) then we say that p,(x) form a classical

orthogonal polynomials set.

To show it let us write the equation again with p,, (x) and p,,, (x)
AQ)py (x) + B(x)pn(x) + anpy(x) =0

AP (x) + BOPm () + ampm(x) = 0.

Multiply both equation with w(x)
A)w(x)pr (x) + BOW(x)pr(x) + apw(x)pa(x) = 0

AQW () pm () + BW () pm (x) + amw (X)pm (x) = 0.

Since they satisfy the Pearson equation we can write them in the self adjoint form in

such a way that,
[AC)W () pn ()] + anw(X)p,(x) =0 (3.1)

[ACOW () pm ()] + amw (X)pm (x) = 0. (3.2)

Now multiply equation (3.1) with p,,, (x) and equation (3.2) with p,, (x)

16



[ACW () pp ()] pm (%) + amw (X)pp ()P (x) = 0

[ACOW ()P ()] P (%) + W ()P (x) P () = 0.

Subtract the equations;
[AGW () pn ()] Prm (x) — [AGC)IW ()P ()] D ()

= (am — ap)W(O)Pm (X)py ().

Apply the product rule for derivatives:
[ACOW ()] pr () pm () + AW () py () pm (X) = [AC)W ()] P () pn () —
AW ()P ()P (%) = (@ — @)W ()P ()Py (x)
[ACW )] (P (OPm (X) = P ()P (X)) + AW () [Py, ()P ()
— pm ()P (%)

= (am — ap)w()pm ()P, ().

Here we use the definition of Wronskian of two functions for simplify our equation;

U v()] = det (;‘,((’j}) ;’,((’;))) = w(V' () — o (D)

d
2 Cuv)] = u)v” () +u' ()v'(x) —u" (D)v(x) —u' ()v'(x)

=ulx)v'"(x) —u"(x)v(x).

So equation get the form;

d
2 (AW 0lpr (Opm (DI} = (@m — an)w ()P ()Pn ().
Now integrate both sides with respect to x from a to b

17



b
ACOWE) 0[prOPmCONE = (@ — ) f W ()P ()P () d.

Since the w[p, (x)p,(x)] is a polynomial in x instead of w[p,,(x)p,, (x)] write x*.
If function w(x) satisfy the condition

Ax)w(x)x¥b =0 ,for k=0,1,2,.. (3.3)

We get the orthogonality relation

b
f WP (PR () dy = 0 (3.4)

for a,#*a, - m#*n
3.1 Properties of Classical Orthogonal Polynomials
v They satisfy an orthogonality relation.

v They have a Rodrigues formula, where the generalized Rodrigues formula is as

follows for classical orthogonal polynomials.

Ky d™

Pm (%) = Zrsom W), AT (x0)].
v They have a hypergeometric representation.

v {ps(x)} form a system of orthogonal polynomial.

v' They satisfy the hypergeometric type differential equation which has form
A()pr (x) + B(x)pp(x) + aypa(x) = 0.

3.2 Examples for the Classical Orthogonal Polynomials

1. Hermite Polynomials: H,, (x).

2. Laguerre Polynomials: L% (x) where a > —1.

3. Jacobi Polynomials: P,f“'ﬁ)(x) where a > -1 , B> —1.

18



3.3 Rodrigues Formula for Classical Orthogonal Polynomials
Definition3.2: Classical orthogonal polynomials can represented by using rodrigues
formula, which is the formula that consists the nth term derivative of polynomials.

Obtain the Rodrigues formula:

Start from the differential equations;
A()p" (x) + B()p'(x) + app(x) = 0

AV () + B () v (%) + pimvm (x) = 0.

Multiply first equation with w(x) and second equation with w,,, (x)
A)w()p" (x) + Bw(x)p' (x) + apw(x)p(x) = 0

AWy () V5 (X) + By () Wi () Uy (X) + i Wi (X) 0 (x) = 0.

Then write the equations in the self adjoint form;
[ACOw()p' ()] + anw(x)p(x) =0

[ACOWm () Vi (O] + Wi () U (x) = 0.

From the property of self adjoint form the equations must satisfy the following
differential equation;
[A()w(x)] = B(x)w(x) (3.5)

[ACOWm (X)]" = By (X)W, (). (3.6)

Now, let us construct the relation between w(x) and w,, (x);
Divide (3.6) with w,,, (x)

[AC)Wm ()]’

w, (%) = By (%),
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use the fact that;
B,,(x) = B(x) + mA'(x) and from (3.5) we get

[AGw I

B0 =0
AW = 4'Gw() + AW ()
[ACOW (O] = AW () + Wh(DAG)

A" ()W (%) N Win(0)AX) _ A'()w(x) N AQ)w' (x)

Wi (X) wm(x)  w(x) w(x)
W (X)AX)  A()w'(x) ,

WG weo A
Divide both side with A(x)

W) W x| A
W) - w(x) AR

After integrating both sides with respect to x we find that;
Inwy(x) =lnwx)+minA(x) »>m=0,1,2..
W (x) = w(x).A™(x).
Lettakem =m+1 in (3.7)
Wit () = w(x). A™ 1 (x) = w(x).A™(x).A(x)
Win+1 (%) = Wi (x). A(x)
[ACO) W )V ()] + Wi () V3 (x) = 0

Win (U () = [ W1 ()1 (D]

We know that V() = p™(x) = v}, (x) = Vypq (%)

Letm=0 wy(x)vo(x) = w(®p(x) = = [ wi(@®w1(x)]"

We can find the term inside the derivative by taking m=1

20
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w100V (0) = [ o (v, (0T

w(p(®) = —[ w1 O] = == [ wa(X)r, (01"

Iterate it up to m

WOP() = == L [W (v (0]

Let us define

WP = o= Wi () V()]

If the polynomial p(x) isdegreem — p(x) = p,(x)

WP () = £ [Win COPR ()] since pfi (x) = const

w()p,(x) = @ Wy, ()] | use the fact that w,,(x) = w(x).A™(x)

Pm (%)

Pn(2) = 4 s W Q). AT () 10

_pmre
pn() = 4 TS WG AT ()

Let us combine the constants as a;

_ pm(x)
Kn =~
K, dm
Pm(x) = W) A [w(x). A™(x)]. (3.9)
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Obtain the generalized Rodrigues Formula:

Theorem: Since the derivatives p,(lm) (x) = vy (x) are polynomials of degree n — m

and satisfy the equation A(x) vy, (x) + By () Vmn () + UmnVmn(x) = 0 we can

derive the Rodrigues formula for y,g"” (x).

Proof: Write the equation into the self adjoint form;
[ACOWi () Vinn ()] + i Win (X) U (x) = 0.
By using the properties ; v, (x) = Vmns1(X) , Wip1 (X)) = wy, (x). A(x)

[Win+1 () Vimn+1 (O] + U Wi () Vi (x) = 0

Wm(x)vmn(x) = M[Wm+1(x)vmn+1(x)],- (3.10)

In equation (3.10) let ustakem - m + 1

-1
Hm+1n

W41 () Vmnsr (X) = W42 () V42 ()]

Let us put it into equation (3.10)

-1 -1

Wm(x)vmn(x) - mﬂm+1n

[Wm+2(x)vmn+2 (x)]” . (3'11)

In equation (3.10), let us take m instead of m + 2 .

-1
Hm+2n

W42 () Vmnia (X) = Wint3 () V3 (0] .

Let us put it into equation (3.11)

-1 -1 -1 i
Win () Uy () = W43 () Vimne3(x)]”" iterate upton —m
Umn Um+1n Bm+2n
_ -1 -1 -1 (n-m)
Wm(x)vmn(x) = [Wn(x)vn(x)] .

Umn Bm+1n Bm+2n Hn-1n

Let us define
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m-—1
Apn = (D™ 1_[.“111 ) (3.12)
1=0
where y, = a, —
1 1
tin = —nB'(x) =z n(n = DA" () — [-1B'(x) 51— DA" ()]

= B'(x)[l—n] — %A”(x)[nz —n—12+1]

= —(n—10) [B'<x) + %HA"(x)]. (3.13)
m-—1
A —n—!nB’()+Ll_1A”( ] 314
mn_(n_m)!l_o[ X 2 X)] (' )
and since v, (x) = py (x) is constant;
A pn(x) dn—m
Wm(x)vmn(x) =—Trr n-m [Wn(x)]
Ann dx
We know that w,,(x) = w(x). A (x) and K,, = 212
M (6) = () = 0L ). (315)
Pr X0 = Vmn ) = 0y Am ) arm ) ' :
Applications of Generalized Rodrigues Formula:
1. Lettake m = 1 in equation (3.15)
) = e Ly ) = A D ano)
Pl = (). A di? ' T W) it '

W) = w().A™(x) m=1w(x) = w(x).A(x) w(x)= 'M:(S;)
What is A1,,? Ay = (=1) wyy = —a, + ay=—a,,

—a,K,d" 1
wy(x) dyt

pn(x) = [A" (0w (x)]

multiply RHS

Kn—1
Kn—1
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—a Ky Ky d™ 1t

) = L A O ()
since
() = 55 e WG, A7)
form=n-1
Kp_id™1

Pres () = L o W0 A (O

We get;

—a, K,
pp(x) = ——— w  Pn- 1(x)
n-1

2. We know that polynomials have the form p,(x) = a,x™ + ¢, x™ 1 + -+

try to find the coefficinets a,, and c,,.

Proof: Start to take the derivative from p,(x) = a,x™ + c,x™ 1 + ---
Pn(x) = na,x™t + (n— 1)cyx™ 2 + -
P (x) = n(n — Dapx™ % + (n — 1D (n — 2)cpx 3 + -

(n 1)(x) =nla,x+(n—1)!c, +

Turn back to equation;

P () = —Amnkn A an ()
n W) AT () &7 ’

andtakem =n—1

Ap_1nKn d

(n 1)
(x) = w(x). A" 1(x )d

[w(x). A" (x)].

Use the facts;

win(x) = w().Am(x) = w1 (x) = w(x). A" (x)
24
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(3.17)



Wn1(X) = Wy (x). A(x)

[AC)Wm ()] = By (X)wy ().

I (x) = Anciniy, 4@y gny) = ik Dy o)
n w(x). A" (x) dy w). A1 () dy o "
ATl n d An—n
= o T W DA = L W (0B (0]

pI M (%) = An_1nKnBp_1(x). (3.18)

Now let compare the equations (3.17) and (3.18)

pI P (x) = nlapx + (n— D™ + -

P (%) = An1nKnBn_1 (%)
nla,x+ (m—1Dlcy, + - = Ap_17KpBp_1(x) . (3.19)
a) for finding a,, take derivative with respect to x in equation (3.19).
nl @, = Ap_1,KnBp_1 (x)

An 1nK

an = n—1(x)

And since B,(x) = B(x) +nA'(x) - B,_1(x)= Bx)+(n—-1A(x) take

derivative B),_;(x) = B'™ + (n — 1)A/'(x)_

And since
m-1
n! n+1l— N
Amn=mn[3()+ > A()]
“1=0
takem=n—-1
n—2
Ap_1p=nl| [[B'(x) + A" (x)]

We get
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n—-1
Knl_[ B0+ T ey (3.20)

=0

b) For finding c,, take x = 0 in equation (3.18)

Bn-1(0)
(n—1)!c, = Ap_1nKnBpn_1(0) = ay,n! —
n n-imSnn-1 n Bn—l(x)
B,-1(0)
Ch =Nap = . 3.21

Theorem 3.3: From the property that we mentioned in the preliminaries part;
derivatives of the functions of hypergeometric type are all functions of hypergeometric
type.

By using this property we can say that derivatives of the classical orthogonal
polynomials p!,(x) are also classical polynomials and they are orthogonal with weight
function w,(x) = w(x).A"(x) on the interval (a,b). Then we can write the

orthogonality relation as a;

b
f O pD W) dx = 1By - (3.22)

a

3.4 Finding the Normalization function for Classical Orthogonal
Polynomials

For the polynomial p},(x) = v, we have the differential equation;
Ay () + By (), (%) + i Vin (x) = 0
AW, ()1 (x) + B ()wi () V1, (%) + timinwi ()11 (x) = 0

which has the self adjoint form;

[AC)W, () v (0] + Wi () v (x) = 0.

Now use the facts;
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Wpe1 (0) = wp(0).A(x) and pL(x) = vy, (x) - v}, (x) = pii(x)
[Wis1 (PRt (0] + pnwi )y (x) = 0 multiply the equation with pr (x)

[Wi1 COPE O] PR(X) + w1 () [pr(x)]? = 0 integrate from a to b.

b b
f Wis1 COPEL (O] PL (X d, + f o (O [P (T2 = 0.

Use integration by parts for the first integral,
u=php(x) > dy =p;(x)dy

dy = W1 (PR ()] dy = v = wip ()pht(x)

b b
WA COPEL P OIE = | Wier O Pl + 1 [ WGl

=0.

First term is going to be zero from the condition of orthogonality. From the

orthogonality relation first integral is o, 1, and the second integral is ¢;,,. So we get

—01+1n+MHinOm = 0 - O1+1n = UinOin (3-23)

Let iterate the equation (3.23)

Forl =0 o01n = HonOon

Forl =1 03, = tt1n01n = H1nMonOon
Forl =2 03, = 0020 = UanlinHonOon

Forl =n—10ny = Un-1n0n-1n = Hn-1n - K2nt1inbonOon WhHEre oo, = op

n—-1
Onn = | | Ugn Oon-
k=0

Let m=0
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Gnn

(3.24)

Omn = =77 .
k=m nl'lkn

Turn back to equation (3.22) andtakem =n, [ =n

b
lﬁﬁbmwmw=%n

b
f[p,(ln)(x)]zw(x).An(x)dx = Opp - (3.25)

Now turn back to Rodrigues formula ;
Amnk, nom

(m) —
P (0 = U0 Am )

[w(x).A™(x)],

and take m =n

)y = Al 1y an ]
Pn ) = 0G0 an(ao) W '

p (%) = ApnK, , let us put it into equation (3.25)

b
J[AnnKn]Zw(x).A”(x)dx = Opn. (3.26)

By using

m-—1

n! n+l-1
Amn = —m)! H[B(x) t———A4" ()],

" k=0

and lettingm =n
n-1
n+l-1
Apy = nl [B(x) + TA”(x)].

Also from,
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n+l-—
an = Ky [B(x) t— 2 A”( )]
=0
a
Ay, = n!K_Z (3.27)
Let put (3.27) into equation (3.26);
b
a, 1?
f[n!—Kn] w(x).A"(x)dx = o,
K
a
b
j[n!an]zw(x).A”(x)dx = Opn (3.28)
a
nn _ -H" Ann L
From oy, = 0, = m - an—ann% > Opn = 0, 25 puL this into
equation (3.26)
b
n Ann
Tl'l’lKn W(x) A (x)dx O-Tl( 1)n
a
Op = (—1)"AnnKﬁfw(x).A"(x)dx . (3.29)
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Chapter 4

HERMITE POLYNOMIALS

4.1 Finding the Generating Function for Hermite Polynomials

Let us start with the equation

o)

et 2 3 ) (@)

n!
n=0

From there we can find the form of the Hermite Polynomials,

— Use the fact that ;

o (2x8)" <O (—t2)k

_42 42
2xt—t? _ p2xt,—t? _

¢ n! k!
n=0 k=0
B had (Zx)ntn ® (_1)kt2k
- Z n! Z k!
n=0 k=0
B Z) kzo n! k!
n= =

ii/l(k,n) =§: A(k,n — 2k),

so in the equation above get n — 2k instead of n.
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i i (Zx)ntn (- 1)kt2k

n=0 k=

o

B had (zx)n—Zktn—Zk (_1)kt2k
B Z (n — 2k)! k!

B i (_1)k(2x)n—2ktn

ol (n—20)k!
© Hn(x) n
- Z n! t
n=0
So we get the relation ;
B
(—D*2x)" _ H,(x)
Z (n—2k)k! —  n!
[g] (_1)k(2x)n_2kn!

k=0
So,

nl(x)""2  nl(x)"* _

(n-2)'12! (n—4)!3!

Hp(x) = (2x)™ —

the highest degree of H,, (x) is n.

And also we can represent the polynomial as follows;
H,(x) =2"x™ + 1,_,(x) Where t,_,(x) is a polynomial of degree (n — 2) in

X.

— If nis even the polynomial H,(x) is even,

If n is odd the polnomial H,, (x) is odd polynomial.
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H,(x) if niseven

Hn(=x) = { —H,(x) if nis odd

4.2 CompUting H2n+1(0) ’ HZn(O) »HIZn(O) :H,2n+1(0)

Let us take n = 2n and x = 0 in equation (4.1)

e(_t)z — HZTL(O) t2n

Gt (4.3)
n=0
5 ® —1 ng2n
o7 — Z_( Y)l! v (4.4)
n=0

which is the even function.

Combine the equations (4.3) and (4.4). And we can seperate the equation (4.3)

corresponding with even and odd functions.

z (_1)nt2n — HZn(O) th + H2n+1(0) t2n+1
n! (Zn)! (2n+1)!
n=0 n=0 n=0

H,,+1(0) = 0 since the RHS of equation is even.

(=D"t*™  Hp(0)
= t
n! 2n!

(o) = T2

From the third property of pochhammer symbol;

D20 = 2" QDu(Dn - @)= 22(3) nl

n

Hyn(0) = (=1)"22"(3) .

n

Let us take derivative with respect to x in equation (4.1)

©o
!
2t92xt—t2 — Hn(x) t‘l’l
. n! '
n=
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andletn =2n,x=0

Hén(o) th

—t? _
2te~t" = ,2n)! (4.5)
n=
o -1 nth had 2(—1 nt2n+1
23 N S
n=0 | n=0 |

which is the odd function.

Combine the equations (4.5) and (4.6). And we can seperate the equation (4.5)

corresponding with even and odd functions.

Z 2(_1)nt2n+1 — Hén(o) th Hén+1(0) t2n+1
n! (Zn)! (2n+1)!
n=0 n=0 n=0

H;,(0) = 0, since the LHS of the equation is odd function.

2(=1)"  H3,(0)
nl  (2n+1)!

i - 211

From the third and fourth property of pocahammer symbol,;
1 = (2)n = 22" (1), (2
(Dzns1 = D2n = 22" (3)

Hini1(0) = 2(=1)"22" (3)

n

Hins1(0) = (~1)"221 (3) .

4.3 Hypergeometric Representation of Hermite Polynomials

In equation (4.2) take (2x)™ factor to the outside of the summation since it is not

dependent on k.
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2] Clfm 102 2] y ik
Ha(x) = (22)" ;m(ﬂ> = (20" ; 22k(n—2k)!k!<x_2> '

From the seventh and third property of pocahemmer symbol;

(—1)%kn!

(n—2k)' Zm

! —ny —n+1
(n —nZk)! = (-1)z = 2% (Tn)k< anr )k

[%] g2k (TN —n+1
Ha() = 20" ) & z’ék(k, - )k(_l)k

k=0

x2

Ho(x) = 20" Ry (5757 =5). 7)

4.4 Recurrence Relations for Hermite Polynomials

Let say

H(x,t) = e?*t=t* (4.8)

Take the partial derivative with respect to x and ¢.

_H = Qte2xt—t?

0x ’

OH
Frin 2(x — t)e2xt=t?,

If we combine the equations of partial derivatives we get the following equality;

R (4.9)

Since



[ce]

o0H H! (x

== Z ’;l(, ) n, (4.10)
n=0 ’

0H ~ H

Zy n—’;f,") g1, (4.11)
n=1 )

Put (4.10) and (4.11) into equation (4.9)

(x—t)Z%(!x)t" —thH”n—(!x)t”‘l =0
n=0

n=1

[0e]

xz Hy (x) o _ Z Hy (x) et _ 2 an(x) o,
n! n! n!

n=0 n=0 n=1

For the last term we can start n from 0 since we have the factor n inside the
summation.

For the second term take n — 1 instead of n.

Z Hy (x) it Hy_1(x) i n_ Z nH‘r,l—l(x) i
n! n-1! n n!
n=0 n=1 n=0

H! (x = H' . (x - H. (x
xzﬁtn_znwtn_znﬁho
n! n! nl

n=0 n=0 n=0

3 [ () — nHy 4 () — o ()] = 0

n=0

xHy(x) —nH,_,(x) —nH,(x) =0. (4.12)

2xt—t2 o Hn(x)

—> e = Ymeo t™ take derivative with respect to x.
n

o

2t t-t* = Z ) o

n!
n=0

o

n=0 n=0
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o)

) z Hy, (x) pnbt _ z Hy (x) o
n! n! ’

n=0 n=0

for the LHS of the equation take n — 1 instead of n.

N H,_,(x = H! (x
n=1 '

n=1(n—1)!
O o (Hni (0 HL O\
;t <(n—1)!_ nl )‘0

Hy_1(x) Hp(x)
n—-1)! nl

0

Hyp1(x)  Hp(x)
n—1)! nn-10!

2nH,_,(x) — H)(x) = 0. (4.13)

Let’s use the equation (4.12) in (4.13);
xHy (x) —nH,_;(x) —nH,(x) =0
2nH,_1(x) —Hp(x) =0 - Hp(x) = 2nH,_1(x)

2xnHy,_;(x) —nH,_;(x) —nH,(x) = 0.

Divide both sides of the above equation with n,

Hy(x) = 2xHyp_1(x) — Hy_1 (x). (4.14)

Let us take n + 1 instead of n in equation (4.14)
Hp11(x) = 2xHy (x) — Hp(x)
then differentiate both sides with respect to x.

Hp1q(x) = 2Hy (%) + 2xHp (x) — Hy (x)
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2(n+ 1)H,(x) = 2H,,(x) + 2xH,,(x) — H)/ (x).

Collect all terms into the one side;
H, (x) — 2xH;(x) + 2nH,(x) = 0. (4.15)
We reach the hypergeometric type equation with;
Alx) =1,
B(x) = —2x,
0, = 2n.
4.5 Orthogonality Relation for Hermite Polynomials

Write the hypergeometric equation for index m and n.
H) (x) — 2xH,(x) + 2nH,(x) =0

H);(x) — 2xH,,(x) + 2mH,,(x) = 0.

Multiply both equations with e*" and write the equations into the self adjoint form;
e‘sz,’l’(x) - 2xe"‘2H,’l(x) + Zne‘szn(x) =0

[e=*H, ()] + 2ne=*"H,(x) = 0 (4.16)

e " H!! (x) — 2xe ™ * H.,(x) + 2me ™ H,,(x) = 0

[e‘sz,’n(x)], + 2me *"H,,(x) = 0. (4.17)

Multiply (4.16) with H,,,(x) and (4.17) with H,,(x).
[e=%" H}, (0] Hyn () + 2ne ™" Hy, (x) Hy (x) = 0
[e‘sz,’n(x)],Hn(x) + 2me*’ m()H,(x) = 0.

Subtract the equations;

67" Hy, ()] Hyn () = [ Hpy (0)] H(x) = 2(m — ) €7 Hyy (X) Hyy ()
37



Open the derivatives;
xe‘sz,’l(x)Hm(x) + e_xZHT’l’(x)Hm(x) — 2xe‘x2H,’n(x)Hn(x) —
e~ H!" (x)H,(x) = 2(m—n) e~ H,(x)H,,(x).

[e ™" [H}, () Hp (x) — Hi (O Hn (0)]]' = 2(m — 1) ™" Hy, () Hp ().

Integrate both sides from —oo to oo,

€™ [Hy () Hyn (%) = Hip GO Hp ()] 20 = 2(m — Tl)f €™ Hy, (x) Hyn ().

The left hand sides going to be zero by the conditions of orthogonality which gives us

the orthogonality of Hermite Polynomials,
| e m@tn@ =0,

where the orthogonality interval is (—oo, ) with weight function: w(x) = e’
4.6 Rodrigues Formula for Hermite Polynomials

Now we can give the Rodrigues formula for Hermite polynomials;

where the K, = (—1)™.

n

H,(x) = (-1)"e* %(e-xz) . (4.18)

4.7 Derivative of Hermite Polynomials

From the equation

—a,K, d"1?
w(0). A(x) di T

pn(x) = pn(x) = [w(x). A" (x)],

we can easily obtain the derivative of Hermite.

First us let find what is a,,? By using a,,= —m B'(x) — %m(m —1A"(x)
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a, = —n(—2) = 2n.

d —Zn(—l)" dn—1 . 2n(—1)n+1 dn—l 2
_Hn(x) = o—x? d;}_l [e * ] = o~ X2 d}Tcl—l [e * ]

dx

Zn(_l)Z(_l)n—l dn—l 2
= e_xz d;:_l [e ]

And since

n-1

2 d 2
Hy1(x) = (1) e F(e‘x )
X

d
aHn(x) = 2nH,_,(x) . (4.19)

4.8 Finding the Coefficinets a,, and c,, for Hermite Polynomials

v For a,, we have the formula

[—-1
an =K | [ B0 +—5—24" ()
=0
n-1
an = (-1 | [l-21=2"
=0
a, = 2" (4.20)
v For c,, we have the formula
o Bua(0)
n n B;l_l(x)’
where B,(x) = B(x) + nA'(x)
B,(x) = =2x B,_1(0)=0
Bi(x) = —2 Bj_4(x) = 2
cp, =n2"0 - ¢, = 0. (4.21)

4.9 Normalization Function for Hermite Polynomials

b
Op = f(Hn(x))zw(x)dx
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b
o, = (—1)"A,,K? f w(x). A™(x)dx

a

m—1
n! n+l—1
Amn = | |IB'®) +—5—4"()

(n—m)! L 2

n-1
App =nl| |(=2) =nl(=2)"
]

(0]

o, = (—D*(=2)"n! (-1)*" f e " dx = 2"nlvVn

— 00

o, = 2", (4.22)

By using the norm of Hermite Polynomials we can give the generalized form for the

orthogonality which is equation (2.1)

(0]

me(x)Hn(x)e‘xzdx = 2"\, . (4.23)

— 00
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Chapter 5

LAGUERRE POLYNOMIALS

5.1 Rodrigues Formula and Hypergeometric Representation of

Laguerre Polynomials

—-a,x Jn
e

_(e—x n+a) (5_1)

La(x) = n! dp

Remember the leibniz formula fort the n-th derivative ;

U@l =y (eI

k=0

Apply this rule for the term Z—Z (e *x™*%) where f(x) = e, g(x) = x™7,

n+a e X (k) n+a](n—k)

k=0
= ;}m_n—;)'k' [(-D*e*(n+a)(n+a—-1)n+a—-2)..(n
+a—n+k+ 1)xn+a—n+k]

- !
= Z m [(-Dfe™n+a)n+ta-1)n+a-2)..(a
k=0

+ k + 1)x%*k].

Use the fact that;
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(a+1),
((X + 1)k

(a+1)(a+2) (a+1+k—-D(a+1+k)(a+1+k+1).. (a+1+n—1)
(a+D(a+2)..(a+1+k-1)

where

(a+1),

(a_l_l)k:(a+k+1)...(a+n—1)(a+n).

dr = (—Dkn! (a+ 1),

g (e = L (n— 91! (@ + 1)y

-X ., a+k
T [ ]

dn (-1 (@ + 1y

Z (p—Xnta) —
ar e LK @+ D,

[e —xxa+k]

)

put it into equation  (5.1)

fey = S CME @t Daxmeer Z e

! k' (a+1)k n! k'(a‘l‘l)k
We reach the hypergeometric representation of Laguerre polynomials since

n

(_n)k Kk _ ) ]
=Omx = 1F1(—n; (a + 1); x)
L% (x) = (@ :|1)n 1F1(—n; a + 1; x). (5.2)

5.2 Representation of Laguerre Polynomials with Gamma Functions

(- (@+Dux*

a J—
() = L@+, K
Since we have
(—=D*n!
n—Kk)'= ,
(—n)k
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(—n), (=D
nl (n—k)!

And from first property of pocahhammer symbol,

41 _I(k+14+n)
(k+Dn = rk+1)

(—D* r'la+1+n) I'l+a) x*
i (n—k)! T(a+1) Ftk+1+a)k!

La(x) =

wrn ST(a+1+n) (—x)k
In(x) = LT+ 1+l m—lk -3)

5.3 Generating Function for Laguerre Polynomials

Generating function of Laguerre polynomials has the form;

oo 1 —xz
Z) L2" = o reis (5.4)
n=

Proof:

Start from the LHS;

oo n

N 1207 (¥ (a+1),x"2" o (—0F O (@+1),2"
;Ln(X)Z ,Zkz n—k)!(a+1), k! _k=0(a+1)kk!n=k n—k)!

= =0

in the second summation let’s taken » n + k

> 15z = (D" @t Doz
] I
] e, (a + 1),k! ] n!
_ i i (=% (@ + 1)pygz™*
B (a+ 1), k!n!

Since ;
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(0( + 1)n+k
((X + 1)k

_(a+D@+2)..(a+l+k—D(@+1+k)(a+1+k+1)..(a+1+n+k—-1)
B (a+D(a@+2)..(a+1+k—-1)

=(a+1+K)(a+1+k+1)..(a+1+n+k—-1)=(a+1+k),

k=0 n=0

Use the fact that;

o (x 1
nl (1 -x)¥

n=0

so the second summation going to be ; FEPTTET:

o & 1 1 S ()
nZ;)Ln(x)Z —kz=0 k! (1— Z)a+1+k - (1- Z)a+1k§=;) (1- Z)kk!

C 1 —xz
ZL (X)Zn _Wel—Z.
n=0

5.4 Recurrence Relations for Laguerre Polynomials

Let

H(x,z) = z L% (x)z™. (5.5)

n=0

(1 Z)a+1

Take partial derivative with respect to z in (5.5);

oH g X g1 X —Xz
Fri (a+1)(1-2) el-z+ (1 —2) 1=22 el-z
1 —xz —x =Xz 1 —xz —x
= (a + 1)m91—2 +m61—2 = mel—z [(l +1-— 1= Z]'
0H 1 1 Xz

D e A

(1- z)zz—lg =H(x,2) [(a+ 1)1 —2) —x].
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So we get the first recurrence relation;
0H
(1- Z)Zg +[x—(a+1)(1—-2)]H(x,2) =0. (5.6)

Since
H(x,z) = Z L% (x)z",
n=0

aH [00] oo
Pt Z nl%(x)z" ! = Z(n + DLE, (x)z".
n=0

n=1

Put them into the recurrence relation;

(1 - 2)? Z(n + 1)L, , (02" + [x — (@ + (1 = 2)] Z 12 (x)z" = 0

n=0 n=0

(1-2z+ 2% Z(n + DLE ()" + [x—a+az—1+ 2] Z LE(x)z" =0

n=0 n=0

Z(n + I, (X)2" — ZZZ(n + DI, (X)2" + 22 z(n IS, ()7 +
n=0 n=0 n=0

x Z LE(x)z" — «a Z LE(x)z™ — z LE(x)z"+ (a+ 1)z z LE(x)z" =0
n=0 n=0 n=0

n=0

(o]

D @t DELs (07" =2 ) (4 DL (2™ + ) (4 DL, (2™ +
n=0 n=0

n=0

X Z L (x)z" — «a Z L% (x)z™ — Z LE(x)z" + (a + 1) z L% (x)z™*1 = 0.
n=0 n=0 n=0

n=0

For the second summation;n - n—1

o [(00]

Z nl(x)z" = Z nlL% (x)z™,

n=1 n=0
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for the third summation; n » n — 2

Z(n - DI @27 = Z(n - DLW

for the last summation; n » n— 1

iL @ (x)zm+1 = ZLn (02"

n=0

Z(n +1)LE, ()2 — 2n z 12 (x)z" + Z(n DI ()7 + x Z 1% (x)z"

- Z L& (x)z" — ; LE(0)Z" + (a + 1) ; L8, (x)z" =

n=0

m+DLS )+ (2n+x—a—-DLE(x)+(n—1+a+ 1)LS_,(x) =0.

We get the three term recurrence relation as;
m+DLE )+ x—2n—a—-DLE(x)+ (n+a)Lf_1(x) =0. (5.7)

Forn=1,2,..

Now turn back to equation;

Ho2) = z)a+1 ZL 02",

n=0
take partial derivative with respect to x,

J0H —Z 1 —xz —Z Hx,2)
— - =
dx 1—z(1—z)“+1e 1—z W2

0H
(1—Z)E= —z H(x, z)

0H
(1—Z)E+ zH(x,z) =0. (5.8)
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Since

H(x,z) = 2 12 (x)2"

Let put them into recurrence relation (5.8);

(o] d [ee]
(1-2) Z ()" + zz 12(x)z" = 0
n=0 x n=0
> d = d
Z d_ La (X) zd_ & (X) n+1 + z L% (x)Zn+1 =0.
n=0 n=0 n=0
For the first and second summation letn » n—1
= d = d
_Ira n+1 _ _
> 7L =) L 7L )
n=0 n=1
D 5@ = ) 18,07
n=0 n=1
N d a N d n N a n
Zd— L@ = ) LGl + ) L (2" =
n=0 n=1 n=1

So we get;

4 e 4 e ¢ (x)=0 5.9
d_[Ln(x)] _d_x[Ln—l(x)] + Ln—l(x) = V. ( . )

Turn back to three term recurrence relation;

mM+DLS )+ x—2n—a—-DLEx)+(n+)LS_;(x) = 0.

Write the second term again as a;
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(x—2n—a—1)L%(x) =xL%(x) — (n+ DL (x) — (n+ a)L%(x)
M+ DLE () + xLE(x) —(n+ DLE(x) —(n+ )LE(x) + (n + a)LE_ 1 (x)
=0

xLa(x) + (n+ DL, (0) = La(0)] = (n+ ) [La(x) = L7, ()] = 0. (5.10)

Differentiate (5.10) with respect to x;

12 () + xS (2G0T + (n + 1) [iux (x) — iva(x)] _

(n+ ) [ 1500~ 15, ()] = 0

500 + = (L] — (1 + DLEE) + (0 + )L () = 0

x [5G0 = nlEG) — (n + )Ly (0, (5.11)

Differentiate (5.11) with respect to x;

2

d d d d
g LG + x5 (1G] = n g L50I] = () oL ()

—(n+a) d L“(x)—iLn 10| —a— d

P L5 (x)

=—-(+a)ls_(x) — a—L 7 (x)

2

d d
= [La (O] + x — [La (x)]x

d d
dx az — [LE ()] — nLE(x) — a— L% (x)

d dx

2

dz [L¥()]+ (A1 +a— x) d [L“ (x)] + nL%(x) = 0.

We reach the hypergeometric type equation with;

A(x) = x,
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B(x)=14+a—x,
0, =n.
5.5 Orthogonality Relation for Laguerre Polynomials

Write the hypergeometric equation for index m and n.

dz a d a a
d2 [LEC)]+ (A +a—x) —[Ln(x)] + nl%(x) =0

dz a d a a
dz [Lm(x)] + (1 t+a-— X) e [Lm(x)] + mLm(x) = 0.

Multiply both equation with e *x“.

2
a+1

2! i[L‘i‘l(ac)] + ne*x*L%(x) =0

1@ 1 _ —-X .
@]+ A +a—x)e*x P

e *x

2

-x a+1d_ a _ —-X
e *x S [Ln ()] + (1 +a—x)e ™ x

d
P — [L5 ()] + me™x*L§,(x) = 0.
X

dx

Write the equations in the self adjoint form;

[e*xt1 dd [LE(x0)]] + ne ™ x%L%(x) =0

[e*xat1 dd [L%,(x)]] + me ™x*L% (x) = 0.

Multiply first equation with L%, (x) and the second one with L% (x)

[e™x*! dd [L2 COIN Lin(x) + ne™ x*L7(x) L (x) = 0

[e‘xx““dd [L%, ()] LE (x) + me™*x*L% (x)L%(x) = 0.

Subtract the equations;
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d d
le™x LG GO Lin () — [ ™% = [Li GO L ()

= (m—n) e *x“L3(x) L7 (x)

2

X0+l d a a —Xya+l d a a
dx [e X ]d [L (x)] Lm(x) +e d2 [Ln(x)] Lm(x)
d —-X.,a+t d a a —-x .0+ d? a a
- dx [e X 1] dx [Lm(x)] Ln(x) - [e X 1] d_gzc [Lm(x)]l‘n(x)

=(m—n)e *x*L%(x) L%, (x)

d d
{le™x* ][~ [Ln(D]L7 () = —— [Ln (O] La()]Y

= (m—n) e *x*L%(x) L%, (x).

Integrate both sides from 0 to co.

d
o) [ (1500 1,0 — - [ 0] LECONIE

=(m-— n)f0 *x®L%(x) L%, (x)d,.

The left hand side going to be zero by the conditions of orthogonality which gives us

the orthogonality of Laguerre Polynomials.
f ~Xx@[a(x) % (x)d, = 0. (5.12)
0

Orthogonality interval: [0, o)

Weight function: w(x) = e ™*x*

Here we can give the rodrigues formula again for the Laguerre Polynomials;
Where the K,, = —

x—a Xd?’l
i ICE XY (5.13)
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5.6 Derivative of Laguerre Polynomials

From the equation

—a,K, d*1?

w(x). A(x) a1

pn(x) = pn(x) = [w(x). A" (x)],

we can easily obtain the derivative of Laguerre.

First let find what is a,,? By using a,,= —m B'(x) — %m(m —1A"(x)

a, = n.

d —n  dnl ~1 dn-1

_Ja — —X Nty — —x n-1+a+1
dx In(x) e Xxl+apn] gn-1 (e™x™) e~ Xx1+a(n — 1)1 dr-1 (e™x )
and since

x—a+1ex dn—l

Lo¥i(x) = -
n-l (n— 1) dnt

(e—xxn+a)_

d a+
al‘n(x) = —L5*i (). (5.14)

5.7 Finding the Coefficients a,, and c,, for Laguerre Polynomials

v For a,, we have the formula

n—1
-1
a, =K, | [[B'(x) + > A" (x0)].
=0
n—-1
1
=] Jev
"1=0
(="
= ——. (5.15)
v For c,, we have the formula
_ By4(0)
Cn

=na 2
"B _,(x)
where

51



B,(x) = B(x) +ndA'(x). B,(x)=1+a—x+n
Bp_i(x)=14+a—-x+n—-1=a—x+n
Bp1(0) =a+n Bp1(x) = -1

(D *a+n
n! -1

Ch =1

_ =D e+

Cn =1 (5.16)

5.8 Normalization Function for Laguerre Polynomials

b
o, = (D" A, Kz f w(x). A" (x)dx

a

m-—1

A — n—' H[B'(x) + LHA”(x)]
™ (n—m)! 2 2

n-1
App =nl! (=) =nl(-D"
|

1 (o]
o, = (—1)?"n! (ﬁ)zf e X x"tdx
0

_I'(n+a+1)

— (5.17)

On

By using the norm of Laguerrre Polynomials we can give the generalized form for the

orthogonality which is equation (2.1)

o)

f LE(x) L% (x)e *x™%dx =
0

rn+a+1)

— S (5.19)
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Chapter 6

JACOBI POLYNOMIALS

6.1 Rodrigues Formula and Hypergeometric Representation of

Jacobi Polynomials

Definition6.1: The rodrigues formula for Jacobi Polynomails are defined as

R“P (x)

= (2—n1)|" (1—x)"%1+x)~ B il [(1 — ) (1 +x)Fm]. (6.1)

There are 4 different hypergeometric representation for the Jacobi Polynomials.

— To obtain the first representation start from the term [(1 X)) (1 + x)F*

and apply the leibnz formula for f(x) = (1 —x)%** and g(x) = (1 + x)F+?

n[(l x)a+n(1+x),8+n — (1 x)a+n](k)[(1+x),8+n](n k)

L D e D@t m ok D
=k'( k)|af n)la n 4 n X

B+n)B+n—1)..(B+n+k+ 1)1 +x)FHE

Now turn back to seventh property of pochhammer symbol;
n! (=1)k
k!'(n—k)!
53
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and change the term;
(@a+n)(a+n—-1)..(a+n—k+1) = (D*(~a —n),.

And change the term;

(1 + P
B+n)B+n—-1..B+n+k+1)= T D).
ar O () (1D (—a — ) (1 + B, i
- _ a+n B+n] — _ a+n—k
77—+ 08 ] 2, AICEEIN 1-x)
« (L+x)PHe . (6.2)

Let write (6.2) into the rodrigues formula and we get

O (—n)(—DF (= = 1) (1 + B (D"

(a.) _ — )
P, (x) = 2, AIETOP S (1 — )" k(1 + x)*
P@h) () = 5 (—n)(—a = (1 + By (x — D™ (1 + 2)*
n B L k'(1+ By 2l (x — 1)k
@~ (= DMA+ B O (~n)p(—a — n), (1 +x)*
B0 = 2nn] LA+, - DF (6.3)
P,fa'ﬁ) (x) = (xT—1)” (1;—[:))71 2 F (—n, -n—a; B+ 1; E) (6.4)

— To obtain the second representation in similar way start from the term

i [(1 —x)** (1 + x)#+"] and apply the leibnz formulafor f(x) = (1 + x)F+?

az
and g(x) = (1 — x)**L,

dn

dz

[ ==+ 0] = 3 ()1 = DR+ x)m®

k=0

=l (—1)n K

= kzom(a+n)(a+n— D (a+k+ 1D —x)k «
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B+n)B+n—-1)..(B+n—k+1(1+x)PFmk

Now turn back to seventh property of pochhammer symbol;

n!(-DF
=~ e

and the term;

1+ a),

(a+n)(a+n—1)...(a+k+1)=(1+a)k,

and the term;

B+n)B+n—-1)..B+n—k+1) = (DB -n)

;i_: [(1 _ x)a+n(1 + x)ﬁ+n]

_ z CMR D" U+ DB =M | o
k=0

k! (1 + af)k

x (14 x)FHn-k

Let write (6.5) into the rodrigues formula and we get

@By _ S (—) ()" (—B — n) (1 + @)y (—1)"
R0 = kK'(1+ a)y oyl

k=0

@ O (=B =) (1 + @), (1 + 200" (x — 1)¥
B = ; K (1+a), 2nnl (1 + %)k

P iy = (A (L D (EMi (B i (= D

n
2 ) LTRA+ay, A+
PP (x)
1+x\"(1+a), 1+4+x
_< 2 ) n! 2F1<_”’_”_B’“+1’x—1)'

v" For the third representation we are going to use equation (6.3) as a
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(a ﬁ)( ) (x - 1)n(1 + ,B)n (_n)k(_a - n)k (1 + x)k
B 2nn! L k! A+pB)r (x—1k

x—11"(1+ B), - (—n)(—a — n)y (x + 1>k

(a.) _
B0 = 2 n! i k'(1+ B x—1

6.7)

Where

) -5
x—1) x—1/)"°
and now we are going to use binomial expression

n

(a+b)" = Z (Z) akpnk,

k=0

(12 =Y ()

=0

let write this term into (6.7),

And also instead of terms let write

_ (=DFn!

(=) = (n—k)
_(=D*(n+a)!
(@ =) = (n+a—k)!’

(1+B), T'B+1+n) I'B+1)  (B+n)
1+pB, TB+1) IrB+k+1) B+k)"

n k
@), _ (X~ 1\" (—Dkn! (=D*(n + a)!
o m‘( 2 )ZZ(n—k)!n!(n+a—k)!

k=01=0

l

(B +n)! 2
*(,8+k)!(k—l)!l!(x—1>

& (n+a)! B+ n)! 2\
ZZ(n—k)!(n+a—k)!(ﬁ+k)!(k—l)!l!<x—1)
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l

- (xgl) ZZ(n— kg?(: jT-)c!x—k)!(ﬁ -i-gcﬁ)'-;:T l)!l!<x31> '

Lettake k > k + 1

nnnl

(n+ a)!
mn—k-Dn+a—-k-1!

o= (5

=0 k=0

(B +n)! 2 3\
*(/3+k+l)!k!l!<x—1> ’

and now lettake [ » n — 1

R (n+ a)!
ZZ(l—k)!(a—k+l)!

2
1=0 k=0
(B +n)! 2\
*(,8+k+n—l)!k!(n—l)!<x—1>

Let’s change the terms;

(D!
s
(=D
==

(m+a)!=T(a+1+n),
(m+p)!=TB+1+n),
(@—k+D!'=T(@—k+1+1)
=T(a+l+Da+1+1)_,

_T@—k+1+1)(=D"
- (—a — Dy

B+k+n-D'=TPB+k+n—-1+1)=TB+n—-1+1)B+n—-1+1),.
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n

@po (- 1\"OC T+ 1+n)(-n),
b (x)‘( 2 )ZZ(—I)ln!F(a-i-l-i-l)(—l)"

=0 k=0

n-l1

* r+n—-1+1DPB+n—-1+1)k'(—1D4! (x — 1)

Fra+1+n)r(+1+n)

PP (x) = ,
n.
. - (=n), (1—x>l - (=Dy(—a — Dy
lzor(a+l+1)r(,8+n—l+1)l! 2 kzo(ﬁ+n—l+1)k
P,f“"g)(x) _ ra+1+ nzlll“(ﬁ +1+n)
- () (f+n+a+1), 1—x\'
*l=01“(a+1)(a+1)1F(ﬂ+n—l+1)(ﬂ+n—l+1)ll!< 2 )
Pn(a’ﬁ)(x) _ Fa+1+ nzll!“(ﬁ +1+4+n)
C (—n)(B+n+a+1) 1—x\
*lzor(a+1)(a+1)lr(,8+n—z+1)(ﬁ+n—z+1)lu< 2 )
AP ()

l

_TIla+1+n)(f+1+n) = () (B+n+a+ 1), 1-—x
B n! ;F(a+1)(a+1)ll"(,8+n+1)l!< 2 )

n
P () = Frla+1+n)o(Cn)(B+n+a+1) (1 — x)’
" n!I'(a+1) L (a + 1),1! 2
P,f“’ﬁ)(x) =% o Fy (—n,ﬁ+n+a+1;a+1;%). (6.8)

— In asimilar way we can get the last representation of the Jacobi Polynomials which

is

P () =

(—1)"% + Dy JF, <—n,,8 +n+a+1;8+ 1;%)- (6.9)
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6.2 Symmetry Property of Jacobi Polynomials

From the equation

& () (D (—a =) (1 + B), (D"

@By _
B () = KL (L+ B)x 2nn]

(1—2x)"%(1 + x)*

k=0

(x = D" + 0k,

Pn(a,ﬁ’)(x) — Z (_n)k(_a - n)k(l + ﬁ)n 1

| nnl
P k! (1+B)k 2™n!

let’s change the terms;

_ (=DFn!
(_n’)k - (n _ k)'l
3 (=D*(n + a)!
o= = e~

(1+B), T'B+1+n) I'B+1)  (B+n)
1+pB, TB+1) IrB+k+1) @B+k)"

We get;

(x — DPR(L + 0)k

(@) 1¢ (Dl (Dkm + a)! (B + n)!
B = Zk'(ﬁ+k)'(n+a—k)'(n il

@, 1N (n+a)! (B +n)!
Fa (x)_Z”Z)k!(ﬁ+k)!(n+a—k)!(n—k)!

A0 =5y (1) (T )= v (6:10)

(x — D™ *(1 + x)*

Let take x = —x.

k=0
k=0
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From (6.10) and (6.11) we get symmetry relation as a

PP (—x) = (~1)"BFD (). (6.12)

From this relation easily we can say that Jacobi polynomials are odd or even function

depending on the degree n, of the polynomial.

@+,

PP () = —

PP (-1) =

DB+ Dy
n! '

6.3 Generating Function of Jacobi Polynomials

P,fa'ﬁ)(x) = (_1)7155 * Dn ,F (—n,ﬁ +n+a+1;8+1; 1 : x)
@p, @+ D0 ()t a+p+ 1D 1—x"

— n (_1)k(—n)k(n+a+ﬁ+1)k(a+1)n X—l]k

o 1nl
P (a + 1) k!n! 2

(-D*(=n), 1
n! (n=k)!

(C(+ﬁ + 1)n+k
(a+p+1),

m+a+pf+1) =

@By _ C (@+ B+ Dpyr(a+ 1), x— 11"
b (x)_kzzo(n—k)!k!(a+1)k(a+ﬁ+1)n 2

Now let us check the term ;

@+ 1), ki@t 2 &

n=0

o (@ + B+ DR ot i i (@+B+ Vs [x— 17"
- (n [
n=0 k=0
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letn->n+k

> e e

n=0 k=0

From the fourth property of pochhammer symbol;

(@+B+Dpiok =@+ B+ 1) (a+ L+ 1+ 2k),.

O (a4 B+ 1), PP (ot
(a+1),

n=0

_ c (a+ L+ 1)y [t(x— 1)]"5: (a+ﬁ+1+2k)ntn
2 n!
n=0

SN CESVW
~ 1 S (@ + B+ Doy [t — DT
T - TP L (@ + Dk! [ 2 ] '

From the third property of pochhammer symbol;
(@+ B+ D =22/ B+ a+ D)y B+ a+2)

= (a+ B + 1), PP (o) em
(a+1),

n=0

o)

1 22k (L) (B + a + DY/ (B + a +2))i e (x — D
> ==

= (1 _ t)a+,8+1+2k — (a + 1)kk!

oo

1 Z Ay B +a+ 1)y (B +a+2)) [22t(x NG

T (1 - )athrl L (@ + D)ik! 2(1 - £)2

o)

1 Z Ay B+ a+ 1)/ B+ a+ 2)) 2t (x — 1Y

T (1 - )athHl £ (@ + 1)k! (1-¢t)2

> (a+ B+ 1), PP (o) em 1
= *
(a+ 1), (1 —t)xth+1

n=0
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2t(x—-1)
(1-t)2 ).

Fil/y B+a+1) Yy (B +a+2)ia+1;
6.4 Orthogonality Relation for Jacobi Polynomials

Let PP (x) = y,,(x).

Write the hypergeometric equation for index m and n.
(1-x?) y" O+ —a — 2+ a+ Pxlyp(x) +n(l +n+ a+ By, (x) =0

(1-x?) Y " ()*+[B —a — 2 + a + P)x]ym(x) + m(1 + m + a + By, (x) = 0.

Multiply both equation with (1 — x)*(1 + x)#.
(1= 1+ 20D 1 [f—a— 2+ a+px](1— )L + 1)y (x)
+n(l+n+a+p)A—x)*A+x)Py,(x) =0
(1 =)L+ 0y @ + [B—a — 2+ a + B)x] (1 — 0)%(1 + x)Pyh (x)

+mA+m+a+p)A—x)%1+ x)By,(x) = 0.

Now write the equations into the self adjoint for
[(1 —x)**1(1 + x)ﬁﬂyn’(x)]’ +n(l+n+a+ A -1+ x)By,(x)

=0 (6.13)
[(1 —x)*1(1 + x)B“ym’(x)]’ +mA+m+a+p)A—-x)1+ x)By,(x)

= 0. (6.14)

Multiply (6.13) with y,,, (x) and (6.14) with y,, (x)
[(1—x)* (1 + x)B“yn'(x)],ym(x) +nl+n+a+p)(1—x)*x

(1 + )Py () ym(x) = 0 (6.15)
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[(1—x)** (1 + x)3+1ym’(x)]'yn(x) +m(A+m+a+p)(1—x)“

* (14 )Py () y,(x) = 0. (6.16)

Subtract the equations (6.15) and (6.16)

[(1 = D)@ + 01, 0] Y () = [(L = 1)1 + )Py ()] Y () =
mA+m+a+p)— n(l+n+a+p)] A -2+ x)Py, () y,(x)

(1 =D A+ 0P (Yaym — Y va] = (M=) +n+a+f+1)

(1 =01 + )Py () ym ().

Integrate both sides from —1 to 1.

[(1 =) (1 + )P pym — ymya) |11

1
=(m-n)(m+n+a+f+1) f (1= 2)%(1 + )Py, () ym ().

Since the left hand side is zero we get the orthogonality relation as

1
f (1—20%(1 + x)PPP (x) PP (x) = 0. 6.17)

Orthogonality interval: [—1,1]
Weight function: w(x) = (1 — x)%(1 + x)~.
6.5 Finding the Coefficinets a,, and c,, for Jacobi Polynomials

v For a, we have the formula
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n-1

a0, == (—a—ﬁ—2+n+;_1(—2)>

!

=0
(_1)nn—1
an = Zn 1:0[(“+,8+n+l+1)
="
= (a+B+n+D(a+B+n+2)..(a+f+n+1+n—-1)

=(a+pf+n+1),

=(a+ﬁ+n+1)n_ I'a+p+1+2n)

n 2nn] T @+t B+1+n) (6.18)
v For ¢, we have the formula
c, = na Bn_l(O)
"B ()
where
B,(x) = B(x) + nd'(x).
B(x)=f—a—(a+B+2x+n(—2x) =B —a—(a+f+2+2n)x
By (x)=pB—a—-—(a+B+2n)x B,_,(0)=pL—-«
B/*) = —(a + B + 2n).
F(a+B+1+2n) B—a
o T@+ B+ 1+n) (—D(@+ B + 2n)
I'a+p+2n)(a—p) (6.19)

‘M- DIT(@a+B+1+n)
6.6 Normalization Function for Jacobi Polynomials

b
o, = (—1D)"A4,,K? J w(x). A" (x)dx

a

m—1

n! n+l—-1
Amn [ [5®+=—=—a")

- (n—m)! L
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n-1

=n! [—a—ﬁ—z

=0

"H_ - (- 2)]—11'( 1)"1_[[a+,8+n+l+1]

App =l (D" (a+B+n+1),.

_ o

2nn!’

Where K,

)TI.

2
T ] f (1+0"E(1 - ed,

o, = (—1)"n! (- 1)n(a+,8+n+1)n[(

(a+p+n+1),
On = 22nnl

1
f (1 +x)"B(1 — x)**d,.
-1

Let us calculate the integral
1
j (1 +0mA(1 — x)m+ad,
-1

Lettake 1+ x =2t d, = 2d;

x=—-1 t=0,x=1 t=1

1 1
f (1+x)™B(1 —x)"%, =2 f 2t)"E(2 — 20)™%d,
-1 0

1
— 21+a+ﬁ+2nf (t)n+,8(1 _ t)n+adx
0

=etptim B+ B+ 1,n+a+1)

rm+p+Dr(n+a+1)
ren+a+p+2)

— 21+a+[:’+2n

(6.20)

Na+pB+2n+1) I'h+p+Drn+a+1)
2220 Frn+a+ B+ 1) r2n+a+p+2)

o, = 21+a+f+2n

rm+pB+1Drn+a+1)

_21+a+ﬁ )
nr'n+a+p+1D)2n+a+p+1)

o, =

(6.21)
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By using the norm of Jacobi Polynomials we can give the generalized form for the

orthogonality which is equation (2.1)

1
f P,f“'ﬁ )(x)Pfl“'ﬁ ) (x)e *x™%dx
m

-1

rm+B+Drn+a+1)

=21+0(+[)’ )
nrn+a++1DC2n+a+p+1) ™

(6.22)

6.7 Three Term Recurrence Relation for Jacobi Polynomials
Since the Jacobi Polynomials satisfy the relation

xpn(x) = anpn+1(x) + ﬁnpn(x) + Snpn—l(x)'
with the coefficients

an

a, = )
Ap41

Cn Cn+1
Bn=—"-

- )]
an Apt1

ap-1 % On (x)

0, = .
" an Un—l(x)

We can find the general relation for the Jacobi.

_ T(a+p+1+2n) 2"+ D!'T(a+f+2+n)
= o T(a+ B+ 1+n) I(@+p+3+2n)

2m+1)(n+a+pL+1)

T@nt2+a+Ppntltatp) (6.23)

_ Tla+p+2n)(a—p) 2"n!l(a+f+1+n)
S 2t(n—=DIT(@+B+1+n) I'(a+B+1+2n)

Bn

Fa+p+2n+2)(a—p)2"" (n+ D' T'(a+ B +2+n)
C 2t niT(a+ B+ 2 +n) F'(a+pB+3+2n)

_ (@=B @m+D@=-p)
T a+f+2n a+pf+2n+2
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_n@-P)la+p+2n+2)—(n+1(a—p)a+p+2n)
B (a+ B +2n)(a+ B +2n+2)

ﬁZ_aZ

Bn:(a+,[>’+2n)(a+,8+2n+2)'

(6.24)

'a+pB—1+2n) 2™ T(a+B+1+n)

O = T DT (@t f+7) T(a+ B+ 1+2n)

2B+ B+ DIn+a+1) m-D'IIn+a+pCn+a+p-1)
i nIr'n+a+pf+1)2n+a+p+1) 214a+Br(n+ B)r'(n + a)

_2[(@+p+2n)(n+p)(n+a) 2n+p)(n+ a)
B rn+a+p+2) T nta+p+2)2nta+p+1)

5 = 2n+pB)(n+ a)
" n+a+pB+2)2n+a+p+1)°

(6.25)

Let’s put (6.23) , (6.24) and (6.25) in three term recurrence relation.

(.B)
P =
P () Cn+2+a+p2n+1+a+p)

(x) +

f o PP () +
(a+p+2n)(a+p+2n+2) "

2(n+ B(n+ a) p(@p)
Cn+a+p+2)2n+a+p+1) "t

(x).  (6.26)

6.8 Derivative of Jacobi Polynomials

From the equation

—a,K, d*?!
w(x). A(x) d?!

Pr(x) = pa(x) = [w(x). A" ()],

we can easily obtain the derivative of Laguerre.

First let find what is a,,?

By using a,,= —m B'(x) — %m(m —1DA"(x)
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ay =n(a+pf+2) - n(n—1)(=2) =n(a+p +n+1).

Where K,, = S
2Mn!
d D""n(a+p+n+1)d*?
(a,B) _ a+n B+n
—P = 1- 1
PRI Rl Ty g vsre prapn s i LG O S

o =DAPEDT e+ B+ 1) A
T 227 - DI — 0 A+ 0P

[(1 _ x)a+n(1 + x)[f’+n],

Where

(_1)71—1 dn—l
2 1(n— DI (1 — )1 (1 + x)B+1 471

R () = [1-0“"a

+ x)Fn],

(a+p+n+1)

. P (). (6.27)

d
d—Prfa'B) (x) =
X
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CONCLUSION

The first and second chapters of this thesis constitute an introduction to orthogonal
polynomials. They provide a survey of some general properties satisfied by any set of
orthogonal polynomials. . An iterative process to produce a set of polynomials which
are orthogonal to one another are given and then a number of properties satisfied by
any set of orthogonal polynomials are described. The classical orthogonal polynomials
arise when the weight function in the orthogonality condition has a particular form.
These polynomials having a further set of properties and in particular satisfy a second
order differential equation are studied in Chapter 3. Each subsequent chapter
investigated the properties of a particular polynomial set starting from its differential
equation. These are classical orthogonal polynomials named as Hermite, Laguerre and
Jacobi polynomials. In these chapters, important characteristics of classical orthogonal
polynomials such as the weight function, interval of the orthogonality, second order

differential equation, Rodrigues formula, hypergeometric representation are given.
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