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ABSTRACT

Alzheimer’s disease (AD), an irreversible neurodegenerative dementia, occurs most
frequently in older adults which gradually destroys regions of the brain that are
responsible for memory, learning, thinking and behavior. By estimation, 5.3 million
Americans of all ages suffend from AD in 2015. This number is expected to increase

to 16 million people by 2050. AD is the only cause of death in the top 10 of
Americans that cannot be cured, prevented or slowed. Presently, there is no cure for
AD, but early detection may help to figure out the root of AD mechanisms and
improve the quality of life for patients who suffer from AD. In recent years, analysis
of neuroimaging data has attracted a lot of interest with the recent improvements for
early and accurate detection of AD. Neuroimaging techniques have become an
important field of research due to the progress in their acquisition, storage and
management in a wide range of applications including AD detection. High accurate
image-based early detection 8D could provide valuable support for clinical
treatments. High-dimensional classification methods have been a major target in the
field of machine learning for the automatic AD detection. One major issue of
automaticAD classification is the feature-selection method from high-dimensional
feature space. This study proposes novel feature selection methods for high-
dimensional pattern recognition problem aimed at high accurate detection of AD,
which uses the information from three dimensional magnetic resonance imaging

(MRI) data extracted from the brain.

MRI-based brain data used in the present study are obtained from the Alzheimer's

Disease Neuroimaging Initiative (ADNI). This work focuses on structural MRI data



and investigates extraction and selection of features, which are the main blocks in an
automatic diagnosis detection system. In this regard, Voxel-based-morphometry
(VBM) analysis of cross-sectional 3-Tesla 3D T1-weighted MRI data is utilized to
perform feature extraction. VBM is an automated technique for assessment of whole
brain structure with voxedby-voxel comparisons which has been developed to
analyze tissue concentrations or volumes between subject groups to distinguish
degenerative diseases with dementia. The significant local differences in gray matter
volumes (gray matter atrophies) based on VBM analysis are selected as 3-D volumes
of interests (VOIs). Feature extraction based on the 3D voxel clusters detected by
VBM on structural MRI (sMRI) and voxel values of VOIs are considered as raw
features. In the feature selection stage, novel methods based on probability
distribution function (PDF) and feature ranking are introduced to select most
discriminative features from high-dimensional data. In the PDF-based feature
selection approach, a novel statistical feature-selection process is employed, utilizing
the PDF of the VOI to represent statistical patterns of the respective high-
dimensional sMRI sample. PDF of the VOIs can be considered a lower-dimensional
feature vector representing sMRI images. The dimensionality of the PDF-based
feature vector can be adjusted by changing the number of bins of the PDF. In this
regard, the Fisher Criterios used to determine the optimal number of bins of the
histogram generating the PDF. In the proposed feature ranking method, all raw
features are ranked using seven different statistical measures methods, namely,
statistical dependency (SD), mutual information (MI), information gain (IG),
Pearson’s correlation coefficient (PCC), t-test score (TS), Fisher’s criterion (FC), and

the Gini index (Gl). These measures are indicators of class separability, therefore the

features with higher scores are assumed to be more discriminative. Hence it is critical
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to determine the number of top features. In the current study, to determine the
number of top features, two methods namely, Fisher criterion and classification error
are introduced. The Fisher Criterion between AD and HC groups is calculated for all
sizes of feature vectors, where the vector size maximizing Fisher Criterion is selected
as the number of top discriminative features. In a similar spirit, the estimated
classification error on training set made up of the AD and HC groups is calculated.
The vector size that minimizing this error is selected as the size of the top
discriminative feature vector. In the classification stage, the support vector machine
(SVM) classifiers with linear and non-linear kernels are employed to perform binary
classification using 10 fold cross validation between patients who suffer Afdbm

and age-matched healthy controls. Moreover, data fusion techniques are proposed to
achieve higher performance AD detection. In this regard, data fusion is introduced

to improve the classification performance, by combining scores or vectors received
from clusters obtained from MRI images based on the severity of gray matter atrophy
in the brain. In addition, a novel data fusion approach among feature ranking
methods is introduced. The results indicate that proposed approaches are reliable
techniques that are highly competitive with the state-of-the-art techniques in

classification ofAD.

Keywords: Alzheimer’s disease, Structural MRI, Voxel-based morphometry,
Statistical feature extraction, Probability distribution function, Feature ranking,

Fisher Criterion, classification error, Data fusion, , Support vector machine.



Oz

Alzheimer hastalig1 (AH), geri doniisii olmayan bir ndrodejeneratif bunaklik hastaligi
olup, siklikla yaslh eriskinlerde beynin hafiza, 6grenme, diisiinme ve davranis ile
ilgili bolgelerini yavas yavas yok ederek ortaya ¢ikmaktadir. Tahminlere goére, her
yastan 5.3 milyon Amerikali 2015 yili itibariyle Alzheimer hastaligindan
muzdariptir. Bu saymin 2050 yilinda 16 milyona yikselmesi beklenmektedir. AH,
tedavi edilebilir, 6nlenebilir ya da yavaglatilabilir bir hastalik olmayip Amerikalilar
arasinda en yiiksek ilk 10 6liim nedenleri arasinda yer almaktadir. Halen, ortada AH
tedavisi bulunmamakla birlikte erken teshis AH mekanizmalarin1 anlamaya ve bu
hastaliktan muzdarip insanlarin yagsam kalitesini artirmak i¢in yardimci olabilir. Son
yillarda, beyin goriintii verilerinin analizi ile AH’nin erken ve dogru tespiti i¢in
ortaya c¢ikan gelismeler ¢ok ilgi ¢ekmektedir. Beyin goriintiileme tekniklerindeki
gelismeler sayesinde veri edinim, depolama ve yonetimi konulart onemli bir
arastirma alan1 olusturarak AH tespiti de dahil olmak {izere genis bir uygulama
yelpazesi ortaya ¢ikarmaktadir. AH’nin yiiksek dogrulukla goriintii tabanli erken
teshisi, klinik tedaviler i¢in degerli bir destek saglayabilmektedir. Yuksek boyutlu
simiflandirma yontemleri otomatik AH tespiti i¢in makine 6grenme alaninda 6nemli
bir hedef olmustur. Otomatik AH siniflandirma yaklagimlarinda 6nemli bir konu da
yiiksek boyutlu 6znitelik uzayindan 6znitelik-segme yontemidir. Bu ¢alismada, iic
boyutlu MR beyin verilerinden ¢ikarilan bilgiler kullanilarak AH'nin yiiksek
dogrulukla tespiti hedefiyle yliksek boyutlu tanima problemi icin yeni 6zellik se¢cim
yontemleri  Onerilmektedir. Bu c¢alismada kullanilan Manyetik Resonans
Goruntileme (MRG tabanli beyin verileri Alzheimer Hastaligi Beyin Girisimi

(ADNI) tarafindan olusturulmustur.Sunulan bu c¢alismada, yapisal MRG verileri
Vi



incelenerek cikarilan ve segilen 6znitelikler otomatik teshis algilama sisteminin temel
taglar1 olarak calisilmaktadir. Bu baglamda, kesitsel 3 Tesla 3B T1 agirlikli MR
verilerinin vokselbazli morfometri (VBM) analizi 6zellik ¢ikarimini gergeklestirmek
icin kullanilmaktadir. VBM ile dejeneratif hastaliklar ile bunaklik hasta gruplarim
ayirt etmek icin doku konsantrasyonlarini veya birimleri analiz etmek miimkiin
olmaktadir. VBM teknigi ile konu gruplar1 arasindaki voksel, voksel karsilastirmalar
ile tiim beyin yapisinin degerlendirilmesi otomatik olarak miimkiin olmaktadir. VBM
analizi tabanli gri madde hacimlerinde Onemli yerel farkliliklar (gri madde
korelmesi) meydana gelmekte ve bu boélgeler 3B ilgi hacimleri (VOIs) olarak
seglmektedir. Yapisal MRG ve VOI ham voksel degerleri iizerinden VBM
tarafindan algilanan 3B voksel kiimelerine dayali 6znitelik ¢ikarimi yapilmaktadir.
Oznitelik secimi asamasinda olasihik dagilim fonksiyonu (PDF) ve 6znitelik
siralamasi tabanli yeni yontemler 6nerilmekte, yliksek boyutlu ham verilerin en ayirt
edici ozellikleri secilebilmektedir. PDF tabanli 6znitelik secimi yaklagiminda, yeni
bir istatistiki 6znitelik se¢im siireci onerilmekte ve bu baglamda ilgili yapisal MRG
orneklerden elde edilen VOI Uzeden ¢ikarilan PDF segilen yiiksek boyutlu
bolgenin istatistiksel Oriintlisiinii temsil etmek igin kullanilmaktadir. VOI'lerden
cikarilan PDFler yapisal MRI goriintiilerini temsil eden diisiik boyutlu 6znitelik

vektorleri olarak kabul edilebilmektedir.

PDF tabanli 06zellik vektoriiniin boyutu PDF bidonlarinin sayist degistirilerek
ayarlanabilmektedir. Bu baglamda, Fisher kriteri kullanilarak PDF’1 iireten histogram
bidonlarinin  optimal sayis1 belirlenebilmektedir. Onerilen 6znitelik siralama
yonteminde, tim ham Oznitkler, yedi farkli istatistiksel Ol¢iim yOntemleri
kullanilarak siralanabilmektedir. Bu yontemler sirasiyla: Istatistiksel bagimlilik (SD),
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karsilikli bilgi (MI), bilgi kazanci (IG), Pearson korelasyon katsayis1 (PCC), t-test
puani (TS), Fisher kriteri (FC) ve Gini indeksi (GI) olarak segilmistir. Bu dlctimler
siiflar arasi ayrilabilirlik 6lgiisiinii gostermektedir. Bu nedenle dl¢timlerdeki yiiksek
degerler kullanilan 6zniteliklerin daha ayrimci oldugunu gostermektedir.Dolayisiyla
en Ust Ozniteliklerin sayisin1 belirlemek ¢ok oOnemlidir. Bu ¢alismada, en iist
Ozniteliklerin sayisini belirlemek i¢in iki yontem yani Fisher kriteri ve siniflandirma
hatas1 onerilmektedir. AH ve saglikli kontol (HC) gruplar1 arasinda Fisher Kriteri,
Oznitelik vektorlerinin tiim boyutlar1 i¢in hesaplananmakta ve Fisher Kkriterini
maksimize eden vektér boyutu en iist ayrimci Oznitelik vektér boyutu olarak
secilmektedir.Benzer bir yaklagimla, AH ve HC gruplarindan olusan egitim seti
tizerinde siniflandirma hatasi hesaplanmaktadir. Bu hatayr minimize eden boyut, en

iist ayirt edici 6znitelik vektoriiniin boyutu olarak secilmektedir.

Siniflandirma asamasinda, dogrusal ve dogrusal olmayan cekirdekli destek vektor
makinesi (SVM) smiflandiricilarinin AH ve yas uyumlu saglikli kontrollerden
muzdarip haalar arasinda 10 kat ¢apraz dogrulama kullanarak ikili siniflandirma
yapmaktadir. Ayrica, veri fiizyonu teknikleri AH tespitinde daha yiiksek performans
elde etmek i¢in Onerilmistir. Bu baglamda, veri flizyonu beyinde gri madde korelme
siddetine gore MR goriintiilerinden elde edilen kiimelere alinan puanlar ya da
vektorler birlestirerek, siniflandirma performansini artirmak i¢in onerilmistir. Buna
ek olarak 6zellik siralamasinda yontemler arasinda yeni bir veri fiizyon yaklagimi
tamitilmistir. Sonuglar, Onerilen tekniklerin AH siniflandirilmasinda literatiirdeki
alternatif teknikler ile son derece rekabet¢ci ve giivenilir teknikler oldugunu

goOstermektedir.
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Chapter 1

INTRODUCTION

1.1 Introduction

In older adults, Alzheimer’s disease (AD) is a brain disorder that gradually impairs
regions of the brain that are responsible for memory, learning, and higher executive
functioning (Carter, Resnick, Mallampalli, & Kalbarczyk, 2012; Seixas, Zadrozny,
Laks, Conci, & Muchaluat Saade, 2014). Current estimates indicate that 5.3 million
Americans of all ages will suffer from AD in 2015. This number is expected to
increase to 16 million people by 2050. AD is the only disease among the top ten
causes of death in Americans that cannot be cured, prevented, or slowed
(“Alzheimer’s Association | Alzheimer's Disease and Dementia,” 2015). Presently,

no cure exists for AD, but early detection may aid in determining the root of AD
mechanisms and improve the quality of life for patients who suffer from AD
(“Alzheimer’s Association | Alzheimer's Disease and Dementia,” 2015). Currently,
clinical trials are investigating on development of new treatment to help patients
who suffer from AD to maintain mental function and manage the behavioural
symptoms. In general, changes associated with AD, occur many years before the
onset of clinical symptoms such as losing memory, aggression, preoccupation with
bodily functions, and apathy reclusive behavior, emotional lability, hoarding, and
refusal of help. The early detection of AD may help in understanding the root of AD

mechanisms as biomarkers for detection and monitoring, and also help scientists and



clinicians to develop relevant, targeted treatments. In this aim, Neuroimaging data
may help to reveal markers for the early diagnosis of AD. The aim of the current
research presented in this thesis is to use Neuroimaging data using machine learning

methods to identify patients who suffer from AD.
1.2 Neuroanatomy

The human brain, illustrated in Figure 1.2, is composed mainly of two cerebral

hemispheres, each of which is divided into four lobes: frontal, temporal, parietal and
occipital. Each hemisphere includes a cortex of grey matter containing the neuronal
cell bodies. The cortical surface is folded into ridges (gyri) and grooves (sulci). Other
cortical regions relevant to the study of AD include the cingulate gyrus and insula.

The insula is folded deep within the lateral sulcus between the frontal and temporal
lobes. On the lateral surface of the brain, it is covered by the operculum, which is

formed from portions of the frontal, temporal and parietal lobes.

parietal lobe parietal lobe - frontal lobe

frontal lobe

occipital lobe " cingulate gyrus

corpus callosum
lateral ventricle

cerebellum

(a) Lateral view (b) Medial view
Figure 0.1 Sagittal views of the right hemisphere of the brain, showing its gross
anatomy. S: superior, I: inferior, A: anterior, P: postéfidizheimer’s Association |
Alzheimer's Disease and Dementia,” 2015)



The cortex surrounds a core of white matter, consisting mainly of myelinated axons
connecting the cell bodies. The largest white matter structure in the brain is the
corpus callosum, a bundle of axons connecting the left and right cerebral
hemispheres. Embedded within the cerebral white matter are deep grey matter
structures, including the basal ganglia and thalamus. At the base of the brain,
underneath the cerebral hemispheres, are the cerebellum and brainstem. The
brainstem is continuous with the spinal cord. The brain is separated from the skull by
three layers of tissue known as meninges: the dura, the arachnoid and the pia. To
protect and support the brain, cerebrospinal fluid (CSF) fills the subarachnoid space,

as well as a continuous system of four cavities known as ventricles.
1.3 Neuroimaging

Currently, the detection of AD is based on clinical examinations and assessments of
perception and behavior as indicators emerging in the later disease stages.
Neuroimaging measures of structural changes and functional activities in the brain
may be a good method for early detection of AD. In recent years, the analysis of
neuroimaging data has attracted much interest, given the recent improvements in
early and accurate detection of AD (S. Liu et al., 2014; Weiner et al., 2015) such as
magnetic resonance imaging (MRI), positron emission tomography (PET) , single
photon emission computed tomography (SPECT) and X-ray computed tomography
(CT). Among the several available neuroimaging modalities, magnetic resonance
imaging (MRI) is more widely used in AD related studies because of its excellent
spatial resolution, high availability, good contrast, and the lack of a requirement for
the radioactive pharmaceutical injection that is needed with positron emission
tomography (PET) or single photon emission computed tomography (SPECT) (Chen,

Deutsch, Satya, Liu, & Mountz, 2013; Goérriz, Segovia, Ramirez, Lassl, & Salas-
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Gonzalez, 2011; Gray et al., 2012; Hanyu et al., 2010). In this thesis we mainly focus

on AD classification using structural MRI.
1.4 MRI biomarkers for Alzheimer's disease

Recently, several studies have used biomarkers to classify AD based on structural
MRI (Aguilar et al., 2013; I. Beheshti & Demirel, 2015b; Bron et al., 2015; M. Li,
Qin, Gao, Zhu, & He, 2014; Moradi, Pepe, Gaser, Huttunen, & Tohka, 2015;
Papakostas, Savio, Grafa, & Kaburlasos, 2015; Westman, Muehlboeck, & Simmons,
2012; D. Zhang, Wang, Zhou, Yuan, & Shen, 2011), which can be utilized to specify
brain atrophy; functional MRI (Andersen, Rayens, Liu, & Smith, 2012; Dinesh,
Kumar, Vigneshwar, & Mohanraj, 2013; Fan, Resnick, Wu, & Davatzikos, 2008),
which can be employed to describe hemodynamic response relevant to neural
activity; diffusion tensor imaging (Grafa et al., 2011; Lee, Park, & Han, 2013;
Mesrob, 2012), which can be used for local microstructural characteristics of water
diffusion; and functional/structural connectivity(Challis et al., 2015; Shao et al.,
2012; Wee et al., 2012), which can be used to characterize neurological disorders in
the whole brain at the connectivity level. In this thesis we mainly focué@®n
classification using structural MRI. Atrophy measured by structural MRI is a
powerful biomarker of the stage and intensity of the neurodegenerative aspect of AD
pathology (Vemuri & Jack, 2010).

Figure 1.2 shows brain atrophy in AD and HC using sSMRI modality.



Coronal View Axial View

Saggital View Coronal View Axial View
(b)
Figure 1.2: The sMRI of (a) healthy individuals, and (b) AD patients with atrophy

Several studies have used structural MRI feature extraction for AD classification.
These studies are variously based on morphometric methods (Huang, Yan, Jiang, &
Wang, 2008; Savio et al., 2011; J. Z. J. Zhang, Yan, Huang, Yang, & Huang, 2008),
region of interest (ROI)/volume of interest (VOI) (Fung & Stoeckel, 2007; Lao et al.,
2004; Yanxi Liu, 2004), gray matter voxels in the automatic segmentation of images
(Kléppel et al., 2008), and structural MRl measurement of the hippocampus and the
medial temporal lobe (Ben Ahmed, Benois-Pineau, Allard, Ben Amar, & Catheline,
2014; Chincarini et al., 2011; Chupin et al., 2009; Coupé, Eskildsen, Manjon, Fonov,
& Collins, 2012; Gerardin et al., 2009; S. Li et al.,, 2007; Westman et al., 2011).
Despite the recent improvements in detection of AD, the prediction of disease
progression using structural MRI alone remains challenging and requires more

investigation.



1.5 Problem definition

High-dimensional classification method with higher performance is essential for the
success of many applications, especiaillyautomatic classification of patients who
suffer fromAD. Various high-dimensional pattern recognition algorithms have been
introduced a number of neuroimaging studies (. Beheshti & Demirel, 2015b; Fan,
Batmanghelich, Clark, & Davatzikos, 2008; Fan, Shen, & Davatzikos, 2005; Lao et
al., 2004). One major issue of high-dimensional classification is the fesdaotion

method from high-dimensional data to reduce the computational cost and improving
the performance. This process is very effective on the final results. In light of this
scope, three novel and effective feature selection approaches are introduced in the
current thesis to overcome the problem of high-dimensional pattern classification in

AD detection.
1.6 Thesis objectives

In this thesis, we propose to use the sMRI data for AD detection. In this context the
main objectives are:
¢ Using voxel-based morphometric (VBM) technique with 3D T1-weighted MRI.
The significant local differences of gray matter volume (gray matter
atrophies) revealed by VBM analysis are selected as volumes of interests
(VOIs). The voxel clusters detected by VBM are employed as VOIs, where
each voxel is considered as a feature. This process aids to extracting efficient
features in AD detection.
e Use Probability distribution function as novel feature selection method in AD
classification. The PDF of a raw feature vector extracted from VOI is a

statistical description of the distribution of occurrence probabilities of voxel



values that can be considered a feature vector representing a high-
dimensional vector in a lower-dimensional spaEerthermore, we introduce

an automatic approach based on the Fisher criterion to determine the optimal
number of bins of the histogram generating the PDF.

e Use feature ranking methods as novel feature selection method in high-
dimensional AD classification. In this regard, we propose an automatic
approach based feature ranking to select discriminative features. In this
regard, seven feature-ranking methods, namely, statistical dependency (SD),
mutual information (MI), information gain (IG), Pearson’s correlation
coefficient (PCC), test score (TS), Fisher’s criterion (FC), and the Gini
index (Gl are evaluated in proposed feature selection method. It is critical to
determine the number of top features. In order to determine the optimal
subset featuresi-C and classification errors are introduced as stopping
criteria.

e Compare the generated results with the alternative results of the other methods

available in the literature.
1.7 Thesis contributions

High-dimensional classification methods have been a major target of machine
learning for the automatic classification of patients who suffer from Alzheimer’s
disease (AD). One major issue of automatic classification is the feature-selection
method from high-dimensional data. In the last decade, several studies investigated
high-dimensional pattern classification approach in a number of neuroimaging
studies (I. Beheshti & Demirel, 2015b; Fan, Batmanghelich, et al., 2008; Fan et al.,

2005; Lao et al., 2004). In the present thesis, we introduce novel feature section



methods in high-dimensional detection of AD. The main contributions of this thesis
can be summarized as follows:

1- Utilizing voxel-based morphometrapproach, which isne of the best methods
for feature extraction from sMRI in AD to detect the MRI voxels that are best,
discriminated between the AD group versus HCs (Bron et al., 2015)

2- Introducing a novel statistical feature-selection method based on the probability
distribution function (PDF) of the VOI, which can be considered a lower-
dimensional feature vector representing sMRI images.

3- Introducing a novel and automatic feature selection method based on feature
ranking methods. In this regamle evaluated seven feature-ranking methods,
namely, statistical dependency (SD), mutual information (MI), information
gain (IG), Pearson’s correlation coefficient (PCC), the t-test score (TS),
Fisher’s criterion (FC), and the Gini index (GI) in the high-dimensional
pattern classification. In addition, we introduce three different stopping
criteria to determine the optimum number of highest-ranking features (i.e,
optimum subset). This procedure helps to determine the relevance of features
and class variables and to select the most informative/discriminative features.

4- Introducing data fusion techniques to improve the classification performance,
by combining scores or vectors received from clusters obtained from MRI
images based on the severity of gray matter atrophy in the brain and during
different feature ranking methods.

The experimental results indicate that the performance of the proposed systems are

well comparative to that of state-of- the-art classification models.



1.8 Thesis overview

Chapter 2 provides literature review of recent studies in AD detection. Chapter 3
presents the methodology used in this thesis including image acquisition, pre-
processing stage aralbackground of support vector machine as classifier. It also
contains the details of the methods with which to assess the classification
performance. Chapter 4 describes the probability distribution function-based
classification of structural MRI for the detection of Alzheimer’s disease. In Chapter

5, we introduce a novel feature selection method based on Feature-ranking and the
Fisher criterion to determine the optimal number of top features. In addition, data
fusion methods among atrophy clusters are introduced to improve the classification
performance. In Chapter 6, we present a novel feature selection method based on
Feature-ranking and the classification error to determine the optimal number of top
features. The comparison of the proposed methods is provided in Chapter 7. Finally,
Chapter 8 presents thesis conclusions on the basis of analysis and discussion and
highlights the contributions of this work. It also includes scope for improvement and

future direction of research.



Chapter 2

STATE-OF-THE ART IN AD DETECTION

2.1 Introduction

In the last decade, many researchers have investigated to develop automatic
computer-aided diagnosis (CAD) system to distinguish AD and HC based on
Nuroimaging data. It is worth noting that today’s diagnostic procedures are highly
dependent on the physiaia radiological expertise and are very time-consuming,
taking typically a few weeks to complete the evaluation (Petrella, Coleman, &
Doraiswamy, 2003). Also, the early diagnosis of AD, which is essential to improve
the efficiency of current treatments, is very complex because no characteristic pattern
of brain degeneration is well defined, and therefore automated tools may allow a
more sensitive analysis and improve diagnostic accuracy. Early detection of AD may
help in understanding the root of AD mechanisms as biomarkers for detection and
monitoring.

2.2 Biomarkers

Recently, different neuroimaging biomarkers are investigated for AD classification
such as X-ray computed tomography (CT), PET, SPECT (Cabral, Morgado, Campos
Costa, & Silveira, 2015; Gray et al., 2012; Watanabe, Ono, & Saji, 2015), MRI data
(I. Beheshti & Demirel, 2015b; Bron et al., 2015; Kim & Lee, 2013; Savio et al.,
2011), Magnetoencephalography (MEG) and Electroencephalography (EEG). Table

2-1 presents a comparison of Nuroimaging techniques in AD classification based on
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different biomarkers. Some researchers used unique source of information (l.
Beheshti & Demirel, 2015b; Duchesne et al., 2008; Stoeckel et al., 2004; Xia et al.,
2008) and some studies combined with each other (Mikhno, Nuevo, Devanand,
Parsey, & Laine, 2012; D. Zhang et al., 2011), combined with other clinically
relevant data, such as Cognitive Scores, and Mini Mental State Examination
(MMSE) (Hinrichs, Singh, Xu, & Johnson, 2011; Westman et al., 2012; D. Zhang et
al., 2011; Q. Zhou et al., 2014). This study focuses solely on s-MRI images, because
of its noninvasiveness, and its excellent spatial resolution with good tissue contrast,
and without radionuclides or radiation exposure, as is observed with PET or SPECT
(Beg, Raamana, Barbieri, & Wang, 2012; Matsuda et al., 2012; Nakatsuka et al.,

2013).
2.3 Features and feature transformations

Extraction of features from brain images play an important role in the success of
classification systems. In general, the type of features can be categorized into two
main classes: Using features based on regions of interest (ROl)/volume of interest
(VOI) (Gray, Wolz, Keihaninejad, & Heckemann, 2011; Mikhno et al., 2012; Svm,
2008), and using the whole brgif8D Brain Image-based Diagnosis of 1&8heimer’s
Disease : Bringing Medical Vision into Feature Selection,” 2012; Chaves, Ram,
Segovia, & Padilla, 2009; Magnin, Mesrob, & Kinkingnéhun, 2009; Moradi et al.,
2015; Silveira & Marques, 2010). In the ROI studies, researchers identified the
region/volume of brain that are most affected by disease. This approach helps to
reduce significantly the dimensionality of feature vectors and select more
informative features. Recently, several studies have been using the feature extraction
based on ROI/VOI, such as volume of gray matter atrophy (Mikhno et al., 2012;

Papakostas et al., 2015; Savio et al., 2011) and shape of hippocampus (Gerardin et
11



al., 2009; S. Li et al., 2007). Otherwise, using feature extraction based on ROI suffer
from defining ROI which is difficult (manual or semi-automatic extraction of regions

is unavoidable), time consuming and user dependent task. In contrast, in the whole
brain studies, all parts of brain are used in feature extraction procedure, regardless of
their meaning that depends on disease. Other feature extraction methods from
transformations of the brain volumes, such as Histograms of Gradient Magnitude and
Orientation (“Alternative Feature Extraction Methods In 3D Brain Image-Based
Diagnosis Of Alzheimer’s Disease,” 2012), 3D Haar-like featureg“Alternative
Feature Extraction Methods In 3D Brain Imdggsed Diagnosis Of Alzheimer’s
Disease,” 2012), deformation fields (Duchesne et al., 2008) or Normalized Mean
Square Error (Chaves, Ram, et al., 2009), are provided in Table 2-2 as literature
review. In this thesis, a feature extraction procedure based on VBM analysis is
applied to isolate the VOI and Voxel intensity from specific VOIs is used as feature.
VBM is an advanced method to assess the whole-brain structure usingbyoxel-
voxel comparisons (J Ashburner & Friston, 2000; Guo et al., 2010; Matsuda et al.,
2012; Moradi et al., 2015; Nakatsuka et al., 2013). It is one of the best methods for
feature extraction from sMRI in AD (Bron et al., 2015). More details related to VBM

analysis are provided in section 3.3.1.
2.4 Feature selection and dimensionality reduction

Generally, the raw feature space dimensions extracted from nuroimaging data is very
high in comparison to the number of samples. Because the sample feature vectors
spanned a very small region in the feature vector space, data reduction is desired in
post-processing. In this context, it is preferable to reduce the dimensionality of raw
feature spaceOn the other hand, the aim of feature reduction algorithm is to make a

set of new features to be used to generate low-dimensional representation of the
12



original data. In the last decade, maregearchers have investigated diffdren
dimensionality reduction and feature selection methods such as Principal Component
Analysis (PCA) (lllan et al., 2011; Xia et al., 2008), Partial Least Squares (PLS)
(Chaves, Ramirez, Goérriz, & Puntonet, 2012; Khedher, Ramirez, Gorriz, Brahim, &
Segovia, 2015; Ramirez et al., 2010; Segovia, Gorriz, Ramirez, Salas-Gonzalez, &
Alvarez, 2013) and Linear Discriminant Analysis (LDA) (Ram, Segovia, & Chaves,
2009). In this section, we provide a brief explanation of the mentioned methods.
2.4.1 Dimensionality reduction based on PCA
PCA is a statistical feature dimensionality reduction method. The aim of PCA is to
extract a set of orthogonal Principal Components (PCs) from an original data set [26]
. Linear combinations of PCs are used to represent high-dimensional original data.
Let X = [Xy, X5, ...., X, ] whereX;= (X;1,Xi2, ..., X;)T andi= 1,2,...,n, nis the
number of samples. On the other hand, matrix X is defined as follows

X1 -0 X

Xpm=| : (2.1)

X0 o Xom

PCs are eigenvectors of the covariance matrix of HafBhe covariance matrix is

defined as follow:

Wherec; , is computed by the following:

m (%, = %)% =~ X)
Cj,k=§ X, )En_lk X 23
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Wherex_j and x, are the average of columjsandk . 4, >4,>..>4 >0 are

ordered eigen-values of covariance matrix. The eigen-vectorgji&f ,covariance
matrix is defined as follow:

Cg=1q (2.4)
In the PCA dimensionality reduction, we use keigenvectors corresponding to k

largest eigenvalues (i.e A, > 4, >...> 4, ), which transfer the dimensionality from

to k as follow:

Q=[a, d, - G ] (2.5)
WhereQ e R™*,
2.4.2 Dimensionality reduction based on PLS
PLS is a statistical algorithm for modeling the relationship between two datasets:
X c R andY « R". Recently, the PLS data-reduction approach has been used
successfully in a number of applications for machine-learning in AD (Chaves et al.,
2012; Khedher et al., 2015; Ramirez et al., 2010; Segovia et al., 2013). After
observingn data samples, PLS decomposesrilkeNand thenx M matrices of zero
mean variableX andY , respectively, into the following form (Segovia et al., 2013;
Liang Tang, Peng, Bi, Shan, & Hu, 2014)

X=TP +E

Y=UQ + F (2:2)
where T andU are nx A matrices of theA extracted score vector® and Q are

Nx A and M x A matrices of loadings, and and F arenx Nand thenx M error
matrices (Segovia et al., 2013). More details about PLS algorithm is provided in

section 4.3.3.
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Data reduction methods such as PCA and PLS are able to account for combinations
of the input features during the process of dimensionality reduction, otherwise in the
feature ranking methods only one feature at a time is looked at. But in general,
ranking algorithms have lower computational cost compared to data reduction
methods. Recently, several studies investigated high-dimensional pattern
classification approach in a number of the neuroimaging studies (I. Beheshti &
Demirel, 2015b; Fan, Batmanghelich, et al., 2008; Fan et al., 2005; Lao et al., 2004)
The contribution of present thesis is to introduce novel feature selection methods for
high-dimensional pattern classification in AD.

2.5 Classification methods

Generally, the last stage in AD CAD system is classification and performance
evaluation. Recently, several classifiers are introduced in AD classifications such as
SVM, neural network (Savio et al., 2011) and Bayesian classifier (Ram et al., 2009;
Seixas et al., 2014)In this thesis, we employ SVM classifier for distinguishing AD
patients from HC based on supervised learning. Supervised classification based on
SVM has been widely used in AD classification (I. Beheshti & Demirel, 2015b; Bron
et al., 2015; Dukart et al., 2013; Magnin et al., 2009; Ortiz, Gorriz, Ramirez, &
Martinez-Murcia, 2013; Savio et al., 2011; Stoeckel & Fung, 2005; L. Zhang, Song,
Liu, Bu, & Chen, 2013). Generally, reported accuracies based on SVM learning fall
between 80% and 95% (Duchesne et al., 2008; Kloppel et al., 2008; Magnin et al.,
2009). More details related to SVM classification and performance evaluation are

provided in section 3.4.
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Table 2.1: Comparison of different Neuroimaging techniqi&&heimer’s Association | Alzheimer's Disease and Dementia,” 2015).

Biomarker CT SMRI fMRI MEG EEG PET SPECT
Type Structural Structural Functional Functional Functional Functional Functional
Radioactivity No No No No No Yes Yes
Radioactive Tracer No No No No No 150,11C,18F,13N, 99mTc-HMPAO, 99mTc-

82Rb, Pib ECD, 133Xe
Spatial resolution Low Good Good Good Good Good Good
Cost Low Low Medium Medium Low High Medium
Stimuli based No No Yes Yes Yes Yes Yes
Measures Tissue density Hemoglobin in the Haemodynamic Neuromagnetic Neuroelectrical Haemodynamic response Haemodynamic respons
blood response (Blood field potentials (CBV, glucose Metabolism) (CBF)
oxygen level)

Limitations -Bone artifacts-May -Artifacts from non- -Artifacts from non- -Can only measure -Can only measure Resolution limited by blood Resolution limited by blood

increase risk  of
cancer
-Unable to

differentiate  tissue
types accurately

-Unable to visualize
the posterior fosse
clearly

-Measures
anatomy

only

ferromagnetic
metallic objects

-Measures
anatomy

only

ferromagnetic
metallic objects

-Temporal resolution
is limited by the
reaction of the body

- Expensive, space
consuming and
immobile scanner

-Subjects are not
allowed to move at
all  while being
scanned

cortical signals and
not those deep insid
the brain

-Overall brain
imaging is beyond
its reach

-Prone to

background noise

-Has to be housed ir
a highly
magnetically
shielded room

-Highly immobile

cortical signals
and not those deeg|
inside the brain
-Overall bran
imaging is beyond
its reach

-Exerts  pressure
on subject’s head
and causes
headache
-Require
application of

conductive paste
to the skin of head
-Background noise
can cause
significant amount
of artifacts

flow

-Requires separate session 1
structural MRI

is nc
use o

-Repeated scanning
possible due to
radioactive tracers

flow

-Requires separate sessi
for structural MRI

-Repeated scanning is nc
possible due to use ¢
radioactive tracers

-Lower spatial and tempore
resolution




Table 2.2: Review aofecent studies in AD classification based on different biomarkers

Author(s) Biomarker(s) Feature(s) Feature selection Learning AD/HC ACC(%)  SEN(%) SPE(%)
Algorithm

Stoeckel et al., 200! SPECT Voxel Intensity - SVM 99/31 86.0 84.4 90.9

[13]

Duchesne et al MRI Voxel Intensity PCA SVM 75175 92.0 - -

2008[21] Deformation field

Gorriz et al., SPECT Voxel Intensity Sub-sampling SVM 39/41 88.6 - -

2008 [29]

Vemuri et al.,, 2008 MRI Metadata SVM based Wapper SVM 190/190 89.0 86.0 92.0

[26] APOE Voxel Intensity

Xia et al., 2008 FDG-PET Voxel Intensity PCA SVM 80/70 90.0 - -

[14] Genetic Optimization

Lopez et al., SPECT Voxel Intensity PCA+LDA Gaussian 42/18 93.4 94.0 92.7

2009 [15] Naive Bayes

lllan et al., PET Voxel Intensity PCA SVM 95/97 88.2 87.8 88.6

2010 [16] APOE

Chaves et al, SPECT Voxel based features PCA& PLS SVM 56/41 91.75 95.12 89.29

2012Chaves et al.

2012)

Chaves et al, PET Voxel based features PCA& PLS SVM 75175 90.00 90.67 89.33

2012Chaves et al.

2012)

Papakostas € MRI Voxel Intensity SVM 49/19 84 20 77

al,2015(Papakostas ¢

al., 2015)

Savio et al, 2011(Savit MRI Voxel Intensity -- SVM 49/49 86 80 92

etal., 2011) & ANN



Chapter 3

METHODOLOGY

3.1 Introduction

In this section, a methodology is presented to design an automatic CAD system for
MRI classification. This methodology includes image acquisition, preprocessing,

classification and performance measurement.
3.2 Image acquisition

MRI images and data used in this work are obtained from the MRI protocol of the
Alzheimer's Disease Neuroimaging Initiative (ADNI) datablaseBriefly, the
protocol included a 3 Tesla, T1l-weighted scanner (Siemens) with Acquisition
Plane=SAGITTAL, Acquisition Type=3D, Coil= Phased Arrays (PA), Flip
Angle=9.0 degree, Matrix X/Y/Z=240.0 pixels /256 pixels /176 pixels, Mfg
Model=Skyra, Pixel Spacing X/Y=1.0 mm/1.0 mm, Pulse Sequence= Gradient
Recalled (GR)/Inversion Recovery (IR), Slice Thickness=1.2 mm, and Echo Time

(TE) / Inversion Time (T1)/ Repetition Time (TR)=2.98 ms/900 ms/2300 ms.
3.3 Pre-processing

Data pre-processing is the main step in neuroimaging machine learning in order to

obtain meaningful results. In this thesis we have used voxel-based morphometry

technigue in the pre-processing phase. Recently, several studies have been used

VBM method for early detection of atrophic changes in AD (I. Beheshti & Demirel,

! www.loni.ucla.edu/ADNI
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2015a, 2015b; Matsuda et al., 2012; Moradi et al., 2015; Savio et al., 2011) and is
introduced as the top feature from sMRI in AD (Bron et al., 2015). In this thesis, data
pre-processing is performed using Statistical Parameter Mapping (SPM) software
version 8 (Welcome Trust Centre for Neuroimaging, London})Uitd the voxel-
based morphometry toolbox version 8 (VB#18mplemented in MATLAB R2014a.
3.3.1Voxel-Based Morphometry

Morphometry is the technique for investigating of the size, shape and structure of the
brain, which is one of the most studied techniques in Neuroimaging. Among the
several Morphometry technigues used in brain imaging, such as Voxel-based
morphometry (VBM), surface-based morphometry (SBA), deformation-based
morphometry (DBM) and tensor based morphometry (TBM). VBM is more widely
used in early detection atrophic changes in patients who suffer from AD and is one
of the best methods for feature extraction from sMRI in AD (Bron et al., 2015).
VBM, introduced by Ashburner and Friston (J Ashburner & Friston, 2000), is a
method used to assess whole-brain structure with \mxebxel comparisons,
which has been developed to analyze tissue concentrations or volumes between
subject groups to distinguish degenerative diseases with dementia (J Ashburner &
Friston, 2000; Nakatsuka et al., 2013). Recently, VBM has been applied to detect
early atrophic changes in AD (I. Beheshti & Demirel, 2015a; Iman Beheshti,
Demirel, & Yang, 2015; Chételat et al., 2005; Hirata et al., 2005; Karas et al., 2003;
Matsuda et al., 2012). It can provide statistical results in comparisons of patients with
AD to HCs (Baron et al., 2001; Matsuda et al., 2012). Figure 3.1 illustrates overview

of VBM on GM component.

! http://www. fil.ion.ucl.ac.uk/spm
2 http://dbm.neuro.uni-jena.de/vbm
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Figure 3.1: The VBM overview processing on GM component

The main steps in VBM processing are as follows:
1- Spatial Normalization: the aim of Spatial Normalization is to provide
alignment of MRI images into a standard space (template) in order to
establish voxelo voxel correspondence across subjects (Greve, 2011). Figure

3.2: shows the details of Spatial Normalization.
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Figure 3.2: The details of Spatial Normalization on MRI. The original MRI is
normalized using the template

Segmentation: The aim of segmentation is to segment normalized MRI images into
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) components.

Figure 3.3 illustrates the segmentation process.
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(€) (d)
Figure 3.3: The details of segmentation process. (a) Original MRI, (b) segmented
GM, (c) segmented WM and (d) segmented CSF

2- Modulation Modulation step in VBM processing helps to adjust for volume
changes during normalization.
3- Smoothing: In spatial smoothing, data points are averaged with their

neighborhoods. In this regard, a low pass filter is applied to remove high
22



frequency components of data while enhancing low frequency components.
On the other hand, the aim of smoothing is to increase signal to noise ratio
(increasing sensitivity) to prepare images for further processing. In the VBM
process, the full-width-half-maximum (FWHM) Gaussian kernel is
convolved for spatial smoothing of tHdR images. Generally, Gaussian
kernel with 6-12 mm FWHM is used for MRI smoothing. Figure 3.4 shows

the smoothing process on MRI data.

Smoothing with
8mm kernel

Figure 3.4: The smoothing process on MRI data with Gaussian kernel

In this thesis, we use VBMS8 toolbox for voxel-based morphometry processing.

In the VBMS toolbox, registration to standard Montreal Neurological Institute (MNI)
space is an important process, which contains linear affine transformation and
nonlinear deformation by using high-dimensional DARTEL normalization. This
process involves using the DARTEL template generated from 550 healthy control
participants (defined by default settings of VBMS8) (Cousijn et al., 2012). Moreover,

the DARTEL algorithm provides precise and accurate localization of structural
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damage on the MRI images (Matsuda et al., 2012; Nakatsuka et al., 2013). The
normalized segmented images are modulated by using a nonlinear deformation,
which allows for comparing absolute amounts of tissue corrected for individual
differences in brain size (Cousijn et al., 2012). Finally, the segmented images are
spatially smoothed with an 8 mm full-width-half-maximum (FWHM) Gaussian
kernel. After spatial pre-processing, the smoothed, modulated, DARTEL warped and
normalized gray matter datasets are used for statistical analysis. Regional gray matter
volume changes are generated by voxel-based analysis over the whole brain. Figure
3.5 illustrates the processing pipeline of the VBM analysis. To detect gray matter

volume reductions in patients with AD, a two-sample t-test in SPM8 is used.
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Figure 3.5: The VBM processing pipeline on sMRI data in the present study

Statistical Parameter Mapping (SPM) @& advanced technique to investigate

Neuroimaging data such as sMRI, fMRI and PET. In this thesis, we use SPM

25



software version 8 as part of pre-processing in order to investigate the group-wise
comparisons between a cross-sectional structural MRI scans diseased group and
normal controls. Generally, SPM toolbox uses matrix methods (General Linear
Model) relevant to statistical inference (Friston, 2006). A General Linear Model

(GLM), can be explaineds a variableY, based on a linear combinations of the
variables as follow:

Y, =X B+ %+ X +e (3.1)
whereY, (j =1,...,J) is signal intensity at a voxel (as random variabjels number
of observationx; (I =1,....L ) is explanatory variabld, is the number of variables,
B is the unknown parameter corresponding to egcland ¢; is noise. In SPM, the
two-sample t-test is a special case of GLM, whére~ N(, ,aj) for q=1,2 are

two independent groups of random variables.and o, are the mean and standard

deviation of the samples. The GLM can be expressed by matrix notation. By

considering equation (3.1) for all observations, we can express:

Y = Xfit . XB+ .+ X B e,
Y =X b+t X[+ + XA +é (3.2)

Y = X, B+ X0+ .4 X B tE,

which has en equivalent matrix form:

! Welcome Trust Centre for Neuroimaging, London, UK; available at: ttp://www.fil@mc.uk/spm
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Y X XX | A &

Y= %%k || B[t 8 (3.3)
Yy ) [ X % X\ By €,

The equation (3.3) can be written in the following form:
Y=XB+¢ (3.4)

Where Y is column vector of observation8, is a column vector on unknown
parameters for each voxefBE[g,,.....5 ..., ]T) and ¢ is thecdumn vector of

error terms. The matriX, (X € R™") is the matrix design which contains variables
indication to which group each image belongs. Figure 3.6 shows an example of the
design matrix of the SPM analysis procedure for investigating the differences
between the two groups. In the matrix design, each row is one observation and each
column is a model parameter. The paramegease estimated, giver as follow

(Friston, 2006):

B=(X"X)tXTY (3.5)
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AD

HC

Figure 3.6 an example of the design matrix of the SPM analysis procedure

In the SPM,t or F statistics between groups are constructed based on linear
combination of the parametegs(contrasts). For example, in the binary case (AD vs.
HC), a t-contrast ofL —1] is used to investigate the differential regional effect of AD
compared to HC. On the other hand, In order to indentify global and local differences

of gray matter in patients with AD compared to healthy controls (HCs), voxel-wise t-

statistics is used as follow (Friston, 2006)

t ﬁAD _ﬂHC (3'6)

- SE
Where SE is standard error obtained from. The equation (3.6) in SPM is
equivalent to statistical t-test. Figure 3.7 shows an example of significant voxel
differences between patients with AD and age matched HCs. Six 3-D voxel clusters
of group comparison representing relative gray matter changes in patients with AD

and HCs is shown in Figure 3.8.
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Figure 3.7 Brain regions where there are significant gray matter reduction (atrophy)
in patients with AD and age matched HC subjects

Figure 3.8 Three-dimensional reconstruction of the brain showing gray matte
changes in patients with AD and age matched HC subjects. The red region reg
the region of gray matter loss

3.4 Classification and performance evaluation

3.4.1 SVM classifier

In this thesis, we classify AD patients apart from HCs by establishing the
classification model using the SVM algorithm. The SVM is powerful classifier based
on the statistical learning principles. The SVM algorithm has been used successfully

in a number of recent applicat®imn machine learning studies (Al-Kadi, 2014;
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Dimitrovski, Kocev, Kitanovski, Loskovska, & DzZeroski, 2015; Hinrichs et al., 2011,

M. Li et al., 2014; Song & Chen, 2014; Xue et al., 2011). During the training, SVM
seeks the optimal class-separating hyper-plane in the maximal margin which is the
distance between the nearest points (support vectors) on the boundary. Figure 3.9

illustrates of the construction of the SVM hyper plane.
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Figure 3.9 lllustration of the construction of the SVM hyper plane

i

Consider a labeled feature vecr{X, Y} , where X e R” (p is the dimension of

the input vector) and is the class label, which in binary classification with two

classesY e{-1,1} Inthe SVM classifier, the decision surface is defined as follows:
FO)=sigi} o yK s ¥+ b (3.7)

where % is weight constant'f("') is kernel function are support vectors atds

bias.
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As shown in Figure 3.9, the support vectors are located on the two parallel

hyperplanes y(x) =1 and y(x)=— 1), where the distance between thenﬁ\ﬂ . The

maximum distance between the two limedescribed as the constrained optimization

as follows

I '
min =w w+ C .
T W W e e

subjectto Y Wp( 3 — p>1-¢&
£20,i=12,..n

(3.8)

where(, is stack variable. The dual optimization problem is defined as follow:

.1
min=a' Qua -€'«
a 2

subjectto ya =0 (3:9)

0<¢ <C,i=12,...]
Where e is the vector of all onekjs the number of sampleC >0 is the
regularization parameter that needs to be tuned during trainin@ asdhe positive
semi-definite matrix with sizéx| as follows:

Q =¥y K(x x) (3.10)
where K(X, X ) = p(X; )Tgo()g) describes the behavior of support vectors as kernel

function. Various kernels can be used during SVM training, such as linear, quadratic,
polynomial, and radial basis function (RBF). In this thesis, we use SVM classifier
with linear and RBF kernels. Linear and RBF kernel functions are defined as follows

respectively:

%)=t (3.11)

K()g,xj):exp(—w) (3.12)
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where, y is usedto controls the kernel width. In this thesis, SVM is performed using

LIBSVM: and the linear and nonlinear (RBF) kernels.

3.4.2Validation process

A reliable measurement is achieved by obtaining all the results using the 10-fold
cross validation illustrated iRigure 3.10 The RBF model has two parameters that
need to be selected: C (regularization) and y (controls the kernel width); the
performance of the classifier depends on these parameters. The C and y parameters

are tuned using the training set, where two cross validation (CV) procedures with
grid search are combined. This approach is performed to avoid unwarp bias in the
estimation of accuracies produced by the CV procedure (Casanova, Maldjian, &

Espeland, 2011). This procedure includes two nested loops. In the outer loop, the
data set is split intl, folds (K,;=10) at each step: one fold is used as a test and
remainingK, -1 folds for training and validation. In the inner loop, training d&ta (

1 folds) are further divided int§, folds (K,=10). For each combination & andy

, the classifier is trained using training data and its performance is assessed using the

fold remaining for validation by estimating the classification accuracy. One fold is
left for validation and the remainiri§, -1 folds are used for training, combined with
grid search to determine the optimal parameters. In the grid search, the v&ue of

and y are varied among the candidate s¢&°,2*,..,0,...¢ %} and
{2%°,2%,..,0,...,2" % , respectively. The inner loop is repeatsd times,

measuring the accuracy of the classifier acrosthlds for every combination of

C andy. The optimal parameters that produce maximum average accuracy across

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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the K,folds are selected, and then the class label of the test data is predicted, which
is left out in the outer loop using the selected optimal parameters. The above
procedure is repeateld, times by leaving a different fold as test data which are used

to compute the classification accuracy. For SVM with a linear kernel, onlg the
parameter is tuned. Over-fitting is prevented by splitting the data into 10 parts, where
the training set gets 9 parts and the test set gets 1 part. The data in the training set are
used for parameter estimation, whereas the data in the test set are used to measure the
performance. This process is repeated 10 times in the context of 10-fold cross
validation, where no overlap of the testing sets occurs in this process (Heijden &

Ridder, 2004).

Data Set

Training Set (K, — 1 folds) Separate Data Sef|to Test Set (1 fold)

K, folds
A
K, -1 folds Separate Train Da w1 fold
Set tok, folds
A A
l— Training Set Validation Se
Parameter
Estimation
¥ A A
Classifier | Train | Optimized - Test Set
Parameters|] | Classification | Classifier "| Classification
y

Cflassification Resu)c

Figure 3.1010-fold cross validation method used for parameter tuning and
performance testing
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3.4.3Performance evaluation
The classification results are evaluated by means of accuracy (ACC), sensitivity

(SEN), specificity (SPE) and area under the curve (AUC), based on 10-fold cross

validation. These parameters are defined as follows:

ACC— (TP+TN) 3.13)
(TP+ FP+ FN+ TN
TP
SEN= T N (3.14)
TN
SPE=
TN+ FP (3.15)

where TP, TN, FN, andFP are the number of true positives, true negatives, false

negatives, and false positives, respectivély, TN, FN, andFP are determined as

follows:

TP: By counting the number of patients with AD correctly identified as AD.
TN: By counting the number of HCs correctly identified as HCs.
FN: By counting the number of patients with AD incorrectly identified as HCs.

FP: By counting the number of HCs incorrectly identified as AD.
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Chapter 4

PROBABILITY DISTRIBUTION FUNCTION-BASED
CLASSIFICATION OF ALZHEIMER’S DISEASE

4.1 Introduction

In this chapter, we introduce a novel statistical feature selection method based on the
probability distribution function (PDF) of the VOI, which can be considered a lower-
dimensional feature vector representing sMRI images. The PDF is assumed to
represent the statistical pattern of the VOI representing the entire sMRI. The
dimensionality of the PDF-based feature vector can be adjusted by changing the
number of bins of the PDF. The proposed PDF-based method not only extracts the
selected statistical features but also reduces the dimensionality of the input vectors to
feature vectors. The PDF-based feature vector calculation process does not require
matrix operations, making the feature extraction process computationally cheaper
compared to alternative dimensionality reduction methods such as partial least
squares (PLS). In this context, it is apparent that the computational cost of PDF
calculation is negligibly low when compared to PLS. The proposed wsrk
accomplished using four steps to develop an automatic computer-aided diagnosis
(CAD) technique for AD diagnosis. First, a statistical mettsodsed based on the

VBM technique plus Diffeomorphic Anatomical Registration using the
Exponentiated Lie algebra (DARTEL) approach to analyze group-wise comparisons

between a cross-sectional structural MRI scans diseased group and normal controls (J
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Ashburner & Friston, 2000; Cabral et al., 2015; Vemuri & Jack, 2010). Based on the
VBM plus DARTEL approach, overall and regional structural gray matter alterations
are investigated to define regions with a significant decline of gray matter in patients
with AD compared to the healthy controls (HCs). Second, these specified areas (gray
matter loss in AD patients) are employed as masks with the template and extracted
voxel values from the VOI to form the raw feature vectors. These raw feature vectors
go through further data reduction or selection processes before being used by the
classifier. Third, a novel statistical feature vector generation using probability
distribution functions (PDFs) extracted from the respective 3D mask regions of SMRI
is used for classification. The PDF approach can help in two ways: 1) dimensionality
reduction and 2) compressing the statistical information of the high-dimensional data
into a lower-dimensional vector. PDF pattern recognition has been used successfully
in a number of applications, including face recognition (H Demirel & Anbarjafari,
n.d.; Hasan Demirel & Anbarjafari, 2008, 2009). In addition, an automatic approach
based on the Fisher criteritmused to determine the optimal number of bins of the
histogram generating the PDF. This approach adaptively determines the number of
PDF bins based on the training data in each fold instead of using a fixed one. Fourth,
the performance of the proposed statistical feature-selection techsiqualuated

using SVM classifiers.

4.2 Material

4.2.1Image acquisition
MRI images and data used in this work are obtained from the 3 T MRI protocol of
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database

(www.loni.ucla.edu/ADNI). Briefly, the protocol included T1-weighted MRI images

based on a scanner by Siemens with acquisition plane=sagittal, acquisition type=3D,
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coil=PA, flip angle=9.0 degrees, matrix X/Y/Z=240.0/256/176 pixels, mfg
model=Skyra, pixel spacing X/Y=1.0/1.0 mm, pulse sequence=GR/IR, slice
thickness=1.2 mm, and TE/TI/TR=2.98/900/2300 ms.

4.2.2 Subjects

The group of patients with AD contains 130 people aged 57 to 91 years (mean
75.88+7.54 years). The Mini Mental State Examination (MMSE) and Clinical
Dementia Ratio (CDR) scores ranged from 10 to 28 (mean 22.33+3.27) and 0.5 to 2
(mean 0.80+0.37), respectively. The second group contains 130 HCs aged 56 to 88
years (mean 74.49+6.13 years). The MMSE for this group ranged from 27 to 30
(mean 29.26+0.80) and the CDR is zero. In a direct comparison between the HC and
AD groups, there are no significant differences in age or the number of gender

subjects.
4.3 Methodology of the CAD system

In this section, the methodology is presented based on the PDF approach to design an
automatic CAD system for MRI classification. First, the VBM plus DARTEL
approach process used to perform pre-processing on 3D MRI data. Second, a
feature-extraction methotés employed based on VBM plus DARTEL analysis.
Third, an adaptive PDF-based data-selection metisogproposed, as a novel
statistical data-selection mechanism representing the statistical pattern of VOI of
high-dimensional sMRI data in a low-dimensional space. The dimension of the PDF-
based vector depends directly on the number of bins used in the histogram of the
VOlI, whichis then normalized into the PDF. The optimal number of lsimbtained

by maximizing the Fisher criterion among the possible number of bins. Finally, to
evaluate the proposed technique, classifiers such as SVM are used. Figure 4.1

illustrates the framework of the proposed CAD system.
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Figure 4.1: The framework of proposed PDF-based CAD system classifying AD

4.3.1 MRI data pre-processing

Data pre-processings performed using SPM8 and the VBMS8 toolbox. VBM,
introduced by Ashburner and Friston, is a method used to assess whole-brain
structure with voxeby-voxel comparisons, which has been developed to analyze
tissue concentrations or volumes between subject groups to distinguish degenerative
diseases with dementia (J Ashburner & Friston, 2000; Nakatsuka et al., 2013)
Recently, VBM has been applied to detect early atrophic changes in AD (Chételat et
al., 2005; Hirata et al., 2005; Karas et al., 2003; Matsuda et al., 2012). It can provide
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statistical results in comparisons of patients with AD to HCs (Baron et al., 2001;
Matsuda et al., 2012). To enhance inter-subject registration of the MRI images,
DARTEL is applied (John Ashburner, 2007; Modi, Bhattacharya, Singh, Tripathi, &
Khushu, 2012), which has been found to optimize the sensitivity of such analyses by
using the Levenberg-Marquardt strategy as compared to standard VBM (Klein et al.,
2009; Modi et al., 2012). Moreover, the DARTEL algorithm provides precise and
accurate localization of structural damage on the MRI images (Matsuda et al., 2012,
Nakatsuka et al., 2013). In the VBM8 toolbox, registration to standard Montreal
Neurological Institute (MNI) space is an important process, which contains linear
affine transformation and nonlinear deformation by using high-dimensional
DARTEL normalization. This process involves using the DARTEL template
generated from 550 healthy control participants (defined by default settings of
VBMB8) (Cousijn et al., 2012). The normalized segmented images are modulated by
using a nonlinear deformation, which allows for comparing absolute amounts of
tissue corrected for individual differences in brain size (Cousijn et al., 2012). Finally,
the segmented images are spatially smoothed with an 8 mm full-width-half-
maximum (FWHM) Gaussian kernel. After spatial pre-processing, the smoothed,
modulated, DARTEL warped and normalized gray matter datasets are used for
statistical analysis. Regional gray matter volume changes are generated by voxel-
based analysis over the whole brain. To detect gray matter volume reductions in
patients with AD, a two-sample t-test in SPM&ised. Agas applied into the matrix
design as a nuisance variable. To avoid possible edge effects between gray matter
and white matter or cerebrospinal fluid (CSF), the absolute threshold masRidg
Significanceis set at a pralue of <0.01 with correction for family-wise error (FWE)

and an extent threshold of 1,400 adjacent voxels for two-sample comparisons.
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Between-group differences in demographics and clinical parameters among or
between subgroups are executed by Statistical Package for Social Sciences software
(SPSS version 16.0) by using an independent samgde #nd p<0.05 is considered
significant.

4.3.2 Feature extraction and data reduction and selection

A feature-extraction procedure based on VBM plus DARTEL analysapplied to

isolate the VOI. The regions of decreased gray matter volume obtained using VBM
plus DARTEL analysis in patients who suffered from AD are segmented using a 3D
mask. This masks applied to the gray matter density volumes resulting from the
VBM plus DARTEL analysis to extract voxel values as raw feature vectors. It is
important to separate the data used for VBM 3D mask generation from the data used
for classification. In other words, the data to model the 3D mask must explicitly
come from the training set. In this context, we divided the dataset for VBM mask
generation within each outer cross-validation fold separately. In other words, we
randomly divided our subjects into 10 folds with the same number of AD and HC
subjects in each fold. In each iteration, we used one fold for testing and 9 folds for
training. Based on each training dataset, we performed VBM plus DARTEL analysis
to reveal regions of decreased gray matter volume in patients as a 3D mask. In total,
we defined 10 different masks with different lengths (e.g. from 59,395 to 69,170
voxels). The respective 3D masks are used in the respective iteration to extract
features from the training and testing datasets. The raw feature space in the VBM
extracted feature s& very high in comparison to the number of samples. Because
the sample feature vectors spanned a very small region in the feature vector space,

data reductioms desired in post-processing. In this context, it is preferable to reduce
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the dimensionality of SMRI datasets. Therefore, the dimensionality of extracted raw
feature vectors is reduced statistically by means of PLS and PDF.
4.3.3 Feature reduction based on PLS

PLS is a statistical algorithm for modeling the relationship between two datasets:

X < R' andY « R". Recently, the PLS data-reduction approach has been used
successfully in a number of applications for machine-learning in AD (Chaves et al.,
2012; Khedher et al., 2015; Ramirez et al., 2010; Segovia et al., 2013). After
observingn data samples, PLS decomposesrleNand thenx M matrices of zero
mean variableX andY , respectively, into the following form (Segovia et al., 2013;

Liang Tang et al., 2014)

X=TP + E
Y=UQ +F
whereT andU are nx A matrices of theA extracted score vector®, and Q are

(4.1)

Nx A and M x A matrices of loadings, anfl and F arenx Nand thenx M error
matrices (Segovia et al., 2013). In this study, in each fold the PLS algasthm
applied toX (training dataset) and (training data label) in order to obtain score

and loading matrices. In addition, a weight maigxobtained from the training
dataset to compute a score matrix for the testing dataset (Segovia et al., 2013). Next,
score vectors obtained from the training and test datasets are used as feature vectors
by SVM classifiers. Figure 4.2 illustrates the pipeline of the PLS feature-reduction

procedure.
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Figure 4.2 Diagram of the PLS based feature extraction (Segovia et al., 2013)

4.3.4 Statistical feature selection based on PDF

The PDF of a raw feature vector extracted from VOI is a statistical description of the
distribution of occurrence probabilities of voxel values that can be considered a
feature vector representing a high-dimensional vector in a lower-dimensional space.
In a mathematical sense, a PDF can be defined as a vector of probabilities
representing the probability of the voxel values that fall into various disjointed
intervals, known as bins. Given a raw vector extracted from VOI, the ADIBf the

raw vector met the following conditions (Hasan Demirel & Anbarjafari, 2008, 2009):

H=[p, P Bseees R, pz%, i=1,2,..,T 4.2)

wheren,, is the number of voxels falling into th& bin, m is the number of bins,

and N is the total number of voxels in the 3D mask. In the classification stage, the

PDF, H, of raw vectorss used in the representation of the training and test data.

42



The number of bins adjusts the dimensionality of a PDF vector. In this work, the
number of bings assumed to vary from 2 to 100.
4.3.5 Optimal number of bins based on Fisher criterion

To select the optimal number of bins, an automatic methaged, based on the

Fisher criterion,J(w) , given in Equation (4.3):
WS w (4.3)
J(w) = :
W=l

where S; is the between-class scatter matrix dgg is the within-class scatter
matrix, respectively (Gao, Liu, Zhang, Hou, & Yang, 2012). For the two claSses,

and C,, the between-class scatter and within-class scatter matrices are defined as:

Sp = (=) —p1)' (4.4)

S =D oe (H—m)(H=)" + X (H=p)(H-pp)  45)
where 4, is the mean of the PDF vectors in class 1 apds the mean of the PDF
vectors in class 2, and= S, (14, — ,) . The main steps in the proposed algorithm
are summarized in the pseudo code shown in algorithm 4.1. The number of bins (
N,,,) of histogramH, is iteratively incremented from 2 to 100, using a training set
of each fold for calculating the respective Fisher criterion values. The optimal

number of binslN,,, maximizing the Fisher criteriois selected to be used as the

optimal dimension of the test and training data in each fold through the cross-

validation process.
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Algorithm 4.1. Optimal number of bins selection procedure

1. V<«component s¢t Datg,, Labgl)
2: number of bin— @, me =100

3  for n=2to N, do

4 H, <~ compute_ histograi X )
. (S,, §,) « compute scatter,H Label))
6: < mear{ H,oq)
7: Hy < mear{ H,o)
8: W= S (4~ 1)
r
o e
10:  end for

N, <= arg maxp )

H ne (2, Ny

4.4 Experimental results and discussion

In this section, the experimental results of VBM plus DARTEL analysis on 3D MRI
are reported to reveal the significance of the volumetric regions with atrophy in
patients, contributing to VOI. The performance of the classification of AD using a
10-fold cross-validation is also presented for four cases: 1) performance of the raw
features (VBM features) dataset, 2) performance of the PLS method, 3) performance
of the proposed PDF technique, and 4) performance of the PDF technique using the
optimal number of bins. Two types of SVM classifiers, namely SVM-linear and
SVM-RBF, are used for AD classificatioACC (%), SEN (%), SPE (%), andAUC

(%) performance metrics are used to assess the different scenarios.
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4.4.1Voxel-based morphometry on gray matter

VBM plus DARTEL revealed a significant decline of gray matter volume in the right
hippocampus, left hippocampus, right inferior parietal lobe, and right anterior
cingulate in patients with AD compared to the HCs. Figure 4.3 shows the brain
regions where theres significant atrophy in gray matter volume in AD patients
compared to HCs in fold 1 training. The voxel locations of these significant regions
are used as a 3D mask in each fold. This nmslpplied to the gray matter density
volume results from the segmentation step in the VBM plus DARTEL analysis to

extract voxel values as raw feature vectors.

¥

-

Figure 4.3. Comparison of gray matter volume among 117 patients with AD and 117
HCs in fold 1 training by VBM using SPM8 (FWE corrected at p < 0.01 and extend
threshold K = 1400)

4.4.2 Performance of raw feature representation

The complete MRI dataset from the ADNI database consisted of 260 samples. Table
4.1 presents the ACC, SEN, SPE, and AUC obtained by 10-fold cross validation
using SVM-linear and SVM-RBF classifiers for raw feature vectors obtained by

masking after VBM plus DARTEL analysis.
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Table 4.1 Performance comparison on VBM features data sets on 10 fold cross
validation for raw feature vectors

Classifier ~ ACC(%) SEN(%) SPE(%) AUC (%)

SVM-linear 83.58 82.04 85.12 92.10

SVM-RBF 86.02 89.70 82.35 93.13

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.

4.4 .3 Performance of PLS method

The feature reduction using Plissaccomplished by extracting raw feature data from
VOI obtained from VBM analysis. The extracted raw feature vectors are reduced to
lower-dimensional feature vectors of up to 100 components using PLS. Table 4.2 (a)
presents theACC, SEN SPE andAUC obtained from 10-fold cross-validation for
SVM classifiers for changing dimensionality. According to Table 4.2(a), it is clear
that the maximum accuracy (90.76%) is yielded with SVM-RBF when the
dimensionality is 80. The accuracy is 4.74% higher than the same classifier with all
raw features used in Table 4.1. The reset of the results in Table 4.2 (a) are also higher
than the raw data foBEN SPE,and AUC. The results reported in Table 4.1 and
Table 4.2 (a) indicate that the PLS performance using SVM-linear and SVM-RBF
classifiers is higher than with the raw data.

4.4.4 Performance of proposed PDF-based technique

The feature selection using P¥accomplished by extracting raw feature data from
VOI obtained using VBM analysis. The extracted raw feature vectors are reduced to
lower-dimensional feature vectors of up to 100 components by changing the number
of bins of the PDF. Table 4.2 (b) and Figure 4.4 presenA@€ SEN SPE and

AUC obtained by 10-fold cross-validation using SVM-linear and SVM-RBF
classifiers. The results reported in Table 4.2 (a) and Table 4.2 (b) show that the PDF-
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based method is with higher ACC than the PLS-based method in most of the
dimensions using linear and SVM-RBF classifiers. For example, for 20 components,
the PDF-based ACC performance is 88.50% while PLS ACC performance is 81.96%
using SVM-linear. There are few cases in which PLS ACC is higher. The same
observation is valid for AUC and SPE, where the PDF-based method is mostly
superior to the PLS-based method. On the other hand, although for SEN the PDF-
based method is better than the PLS-based method in SVM-linear, the PLS-based

method is higher for the SVM-RBF classifier.
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Table 4.2 Performance analysis of the PDF based method in comparison to PLS
based method

(a) Performance comparison on PLS reduced features data sets on 10 fold
cross validation

No. of components ACC(%) SEN(%) SPE(%) AUC(%) Classifier
2 87.34 84.65 90.03 95.33
10 8542 81.57 89.26 93.31
20 81.96 81.57 82.34 92.25
30 81.19 80.03 82.34 91.66
40 81.96 80.03 83.88 92.19 SVM
50 82.73 80.03 8542 9249 k‘é‘ren‘;‘afl
60 82.73 80.03 8542 92.66
70 83.88 82.34 8542 92.90
80 8426 82.34 86.19 93.14
90 85.03 83.88 86.19 93.26
100 85.03 83.88 86.19 93.31
2 86.53 88.46 84.61 91.60
10 74.61 96.15 53.07 90.41
20 79.23 9461 63.84 93.20
30 86.76 93.07 78.46 94.50
40 88.84 9230 85.38 94.73 SVM
50 88.07 90.76 85.38 95.27
RBF Kernel
60 88.46 90.76 86.15 95.38
70 90.38 90.76 90.00 95.74
80 90.76  90.76  90.76 95.86
90 90.76  90.76 90.76 95.92
100 90.76  90.76 90.76 95.92

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.
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Table 4.2: Performance analysis of the PDF based method in comparison to PLS
based method
(b) Performance comparison on PDF reduced features data sets on 10 fold cro:

validation
No. of component ACC(%) SEN(%) SPE(%) AUC(%) Classifier
2 86.19 83.88 88.50 94.85
10 87.73 86.19 89.26 95.62
20 88.50 86.19 90.80 95.50
30 88.50 88.50 88.50 94.73
40 86.96 83.88 90.03 9491 SVM
50 87.34 86.96 87.73 94.91 Linear
Kernel
60 88.11 86.96 89.26 95.15
70 87.34 87.73 86.96 95.21
80 88.50 89.26 87.73 95.80
90 86.96 86.96 86.96 94.62
100 88.50 87.73 89.26 96.21
2 88.07 87.69 88.46 95.86
10 89.61 89.23 90.00 96.39
20 88.84 86.92 90.76 96.51
30 90.00 90.00 90.00 96.09
40 88.84 88.46 89.23 95.92 SVM
50 89.61 88.46 90.76 96.15
RBF
60 89.61 90.00 89.23 96.27 Kernel
70 88.84 86.92 90.76 96.21
80 90.00 90.00 90.00 96.75
90 90.00 88.46 91.53 96.75
100 90.76 90 91.53 97.04

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.
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Figure 4.4: Classifier performance based on PLS and PDF feature selection: (a)
Accuracy(%), (b) Sensitivi({o), (c) Specificity(%) and (d) Area Under Curve(%)

4.4.5Performance of PDF technique using optimal number of bins

As proposed in section 4.3.5, the optimal number of bins is determined by
maximizing the Fisher criterion applied to the two classes (AD and HC) of the
training data in each fold through the cross-validation process. Table 3 presents the
average of the performances of the classifiers with the optimal number of bins

obtained in each fold, through 10-fold cross-validation. The proposed method of
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determining the optimal number of components (i.e. the number of bins) is also
applied to PLS. By examining the results of Table 4.1, aoserved that the overall

performance of the proposed PDF-based method with the optimal number of bins is
superior to PLS for SVM-linear, where the results of both methods are comparable

for SVM-RBF.

Table 4.3: Performance results of the PDF and PLS based methods with optimal
number of bins

Classifier ACC(%) SEN(%) SPE(%) AUC (%)
PDF-SVM-linear 89.65 87.73 91.57 95.33
PDF-SVM-RBF 88.83 87.73 90.03 95.39
PLS-SVM-linear 85.42 84.65 86.19 93.32
PLS-SVM-RBF 89.26 89.26 89.26 95.09

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; PDFaliilibb
Distribution Function; PLS, Partial Least Squares; SVM, Support Vector Machine, RBEB| Basis
Function.

4.5 Performance comparison to other methods

Recently, several studies have reported classification results to distinguish AD and
HC based on MRI. Zhang et al. (D. Zhang et al., 2011) used multimodal
classification of AD based on the combination of MRI, CSF, and PET. They reported
ACCs of 86.2%, 82.1%, and 86.5% in the classification of AD/HC by MRI, CSF,
and PET imaging modalities, respectively. Also, they achieved a high accuracy
performance (93.2%) by combining the MRI, CSF, and PET results. Querbes et al.
(Querbes et al., 2009) achieved an ACC of 85% based on the cortical thickness
feature from MRI data. Hinriches et al. (Hinrichs, Singh, Xu, & Johnson, 2009)
reported an ACC of 75.27% based on MRI data and increased it to 81% by

combining MRI and PET. Vemuri et al. (Vemuri et al., 2008) announced an
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SEN/SPE of 86/86% in 380 subjects using the STructural Abnormality iNDex
(STAND) score from MRI data. Westman et al. (Westman et al., 2012) presented an
ACC of 87% from MRI data and increased it to 91.8% by combining MRI data with
CSF measures. Papakostas et al. (Papakostas et al., 2015) applied two methods to
analyze MRI data, namely, VBM and deformation-based morphometry (DBM), on
98 female subjects. They extracted features based on three different models: MSD,
displacement magnitude (DM), and Jacobian determinant (JD). They also
investigated their methods with several classifiers. They reported ACCs of 85%,
84%, and 79% for the three models, respectively. Aguilar et al. (Aguilar et al., 2013)
used FreeSurfer software to compute cortical thickness and volumetric measures,
yielding an ACC of 84.9% for the artificial neural network (ANN) classifier from
MRI data and of 88.8% for the SVM classifier by combining MRI data with
educational and demographic data. Zhou et al. (Q. Zhou et al., 2014) employed
FreeSurfer software to calculate 55 volumetric variables from MRI data. They
reported an ACC of 78% for MRI data and 92.4% by combining MRI data with the
MMSE. Savio et al. (Savio et al., 2011) studied the feature-extraction process with
VBM analysis on 98% female subjects only and achieved the best results with 86%
accuracy for the RBRB-SVM classifier. Khedher et al. (Khedher et al., 2015)
reported an ACC of 88.49% by combining GM and WM modalities in MRI. Klbppe

et al. (Kloppel et al., 2008) employed leave-one-out as a validation method in three
different groups (Groups |, Il, and 1ll) with different severity of atrophy in AD. The
ACC of Group lis 95%, of Group llis 92.9%, and of Group llils 81.1%. The
severity of atrophy in Groupis the highest, making this group the most successful
among the three. A study by Cuingnet et al. (Cuingnet et al., 2011) comprised 10

methods using the ADNI database. They reported a SEN of 81% and a SPE of 95%
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as the best performances. In this chapter, a set of a total of 260 MRI saanysed

in the AD and HC groups, with superior results with respect to ACC, SEN, and AUC
in Table 4 except for the results of Kloppel et al. (Kl6ppel et al., 2008) for Groups |
and Il. One of the main reasons for this observation stems from the fact that the
severity of the atrophy of Groups | andiglhigher than that of Group Il and our
dataset. Additionally, using the leave-one-out method already gives an advantage to
the method employed by Kloppel et al. (Kl6éppel et al., 2008) against the 10-fold
cross-validation technique used in the proposed method. The experimental results
using the proposed PDF-based approach with SVM by linear Kernel generates
89.65% accuracy, 87.73% sensitivity, 91.57% specificity, and 95.33% AUC. The
details of the parameters used in classification performance with different methods
by using MRI data are provided in Table 4.4. Some of the results reported in Table
4.4 use ADNI data-set, where the others use different or private data-sets.
Additionally, the results from ADNI data-set are using different number of AD/HC
samples. In order to have comparable results, we have used ADNI data-set with high
number of samples (130 AD and 130 HC), which we believe provides a suitable

ground for acceptable comparisons.
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Table 4.4Supervised classification results of Alzheimer’s disease and healthy
control subjects on MRI data

Author Source AD/HC Validation ACC(%) SEN(%) SPE(%) AUC (%)
of data method

Zhang et al.,2011(D.  ADNI 51/52 10 Fold 86.20 86.00 86.30 -

Zhang et al., 2011)

Querbes etal.,2009  ADNI  130/130 10 Fold 85.00 - - -

(Querbes et al., 2009)

Hinrichs et al., 2009 ADNI 77182 10 Fold 75.27 63.06 81.86 82.48

(Hinrichs et al., 2009)

Vemuri et al., 2008 ADRC  190/190 4 Fold - 86.00 86.00 -

(Vemuri et al., 2008)  /ADPR

Westman et al., 2012 ADNI 96/111 10 Fold 87.00 83.30 90.10 93.00

(Westman et al., 2012}

Papakostas et al, 201¢ OASIS 49/49 10 Fold 85.00 78.00 92.00 -

(Papakostas et al.,

2015)

Aguilar et al.2013 ADNI 116/110 10 Fold 84.90 80.20 90.00 88.00

(Aguilar et al., 2013)

Zhou et al.,2014 (Q. ADNI 59/127 2 Fold 78.20 68.50 81.70 -

Zhou et al., 2014)

Savio et al., OASIS 49/49 10 Fold 86.00 80.00 92.00 -

2011(Savio et al.,

2011)

Khedher et al., 2015  ADNI 188/229 10 Fold 88.49 85.11 91.27 -

(Khedher et al., 2015)

Kloppel et al., 2008 Private 20/20 Leaveone 95.00 95.00 95.00 -

(KIBppel et al., 2008) out

Kloppel et al., 2008 Private 14/14 Leaveone 92.90 100 85.70 -

(KlBppel et al., 2008) out

Kloppel et al., 2008 Private 33/57 Leaveone 81.10 60.60 93.00 -

(KIBppel et al., 2008) out

Cuingnet et al., ADNI 162/137 2 Fold - 81.00 95.00 -

2011(Cuingnet et al.,

2011)*

Proposed method ADNI 130/130 10 Fold 89.65 87.73 91.57 95.33

*This paper by Cuingnet et al. Compares ten methods and the bestrzerée is given here

4.6 Conclusion

In this chapter, an automatic CAD techniqige introduced based on a novel
statistical feature-selection process, namely, PDF of VOI, for the classification of

AD. The proposed feature-selection method compresses the statistical information of
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high-dimensional data into a lower-dimensional vector. This apprsaoked for
high-dimensional classification, especially for feature-extracted VOI of gray matter
atrophy. The PDF-based feature-selection appraacbmpared to the standard PLS-
based classification using SVM classifiers. The results clearly indicated that the
PDF-based feature-selection method is a reliable alternative to the PLS-based
method, in which the performance of the proposed PDF-based method with the
optimal number of bins is superior to PLS for SVM-linear, and the results of both
methods are comparable for SVM-RBF. Moreover, PDF generation does not require
complex matrix operations, making the feature-extraction process computationally
cheaper than alternative dimensionality-reduction methods, such as PLS. The
proposed PDF-based method not only extracts the selected statistical features but
also reduces the dimensionality of the input vectors to feature vectors with
acceptably low dimensions. It is apparent that the computational cost of PDF
calculation is negligibly low when compared to PLS. As part of future prospects on
PDF-based pattern recognition in neuroimaging, it is suggested to use data fusion
techniques for the proposed MRI modality with other modalities, such as PET, CSF,
and WM, and to combine them using the proposed PDF-based approach in order to
achieve higher accuracy. The PDF-based data fusion technique has already been used
successfully in recent studies for the improvement of face-recognition performance

(H Demirel & Anbarjafari, n.d.; Hasan Demirel & Anbarjafari, 2009).
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Chapter 5

STRUCTURAL MRI-BASED DETECTION OF
ALZHEIMER’S DISEASE USING FEATURE
RANKING AND FISHER CRITERION

5.1 Introduction

This chapter describes the use of a statistical feature ranking approach using t-test as
part of a novel feature selection process. The number of highest ranking features
selected is determined by using the Fisher Criterion, which maximizes the class
separation between AD and HC groups. The Fisher Criterion aids in finding an
optimal number of features with the most discriminative information for the
classification process. The proposed feature selection method is applied to different
atrophy clusters of voxels, which correspond to the volumes of interest (VOIS) in the
gray matter of the MRI obtained through the voxel-based morphometry (VBM)
analysis in the preprocessing. In this context, data fusion is introduced to increase the
classification performance, which utilizes a majority-voting-based score fusion and a
feature vector concatenation-based source fusion. In the proposed system, we use
only MRI data, unlike several recent studies where MRI is combined with other
different data such as PET, Cognitive Scores, and Mini Mental State
Examination(MMSE) to increase the classifier performance (Hinrichs et al., 2011;
Westman et al., 2012; D. Zhang et al., 2011; Q. Zhou et al., 2014). The proposed

system is accomplished by the systematic use of several ideas at five levels. At the
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first level, the VBM technique is employed to analyze group-wise comparisons
between cross-sectional structural MRI scans, in order to find the MRI voxels that
are best discriminated between the AD group and the HC dibéshburner &
Friston, 2000; Matsuda et al., 2012; Moradi et al., 2015; Nakatsuka et al., 2013). The
inter-subject registration of the MRI images is promoted by employing the
Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm
(DARTEL) (Matsuda et al., 2012). This algorithm provides precise, accurate
localization of structural damage of the MRI images (Matsuda et al.,; 2012
Nakatsuka et al., 2013). Based on the VBM plus DARTEL approach, the overall and
regional structural gray matter alterations are investigated to define regions with
significant atrophy of gray matter in the patients who suffer from AD. The results
obtained from 68 patients with AD, when compared to 68 HCs, show significant gray
matter decline in right/left hippocampuses and in the inferior parietal and anterior
cingulate regions in patients with AD. Instead of making a single global classifier,
the multiple individual classifiers based on atrophy clusters obtained using VBM
plus DARTEL analysis are proposed for use with data fusion techniques for more
accurate classification. Based on these clusters, five different VOIs are defined as
follows: 1) VOI,includes the right hippocampus region, V&I, includes the left
hippocampus region, 3)0OI; contains the right inferior parietal lobule region, 4)
VOI, includes the right anterior cingulate region, and VB)l,; contains an
accumulation of all atrophy cluster regions. At the second level, specified VOlIs are
used as 3D masks to extract voxel values from the VOIs to generate raw feature
vectors. These raw feature vectors can be used in the data selection processes before
use by the classifiers. At the third level, the extracted features are systematically

ranked, based on the t-test values of the respective features obtained from the
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training set. The t-test can be considered as a statistical indicator showing the level of
separation/discrimination between two groups (AD and HC) in the training set. For
this reason, ranking according to the t-test, followed by the use of a subset of highest
ranking features, would increase the classification performance. The t-test feature
ranking has been used successfully in a number of pattern recognitions
studies(Chaves, Ramirez, et al., 2009; M. Liu, Zhang, & Shen, 2012; D. Wang,
Zhang, Liu, Lv, & Wang, 2014). In addition, an automatic approach based on the
Fisher Criterion is proposed to determine the number of top features. This approach
adaptively determines the optimum number of top features and identifies a
discriminative subset of high performance features based on training data in each
fold, instead of using a fixed number of features. At the fourth level, the performance
of the proposed feature selection technique is evaluated using support vector machine
(SVM) classifiers. In the present work, the SVM classifier with both linear (linear
SVM) and nonlinear (RBF SVM) kernels is trained to discriminate between the
classes. In the final level, data fusion techniques among atrophy clusters (VOIs) are
proposed to increase the overall performance. Data fusion improves the classification
performance by integrating data (vectors, classifiers) from different atrophy clusters.
To this purpose, source and score data fusion techniques are used to achieve higher
performance. A direct comparison shows that the experimental results using the
proposed t-test feature selection and data fusion-based approach indicate superior
performance when compared to classifiers that use all raw features and a data
reduction method involving principal component analysis (PCA). In summary, the
aim of this chapteis to introduce a novel and automatic statistical feature selection
method based on the combination of t-test feature ranking and the Fisher Criterion of

the VOI, which can be considered a lower-dimensional feature vector representation
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of sSMRI. The dimensionality of the feature vector can be adjusted by maximizing the
Fischer Criterion in the training data-set. The proposed feature selection method not
only selects the top discriminative features but also reduces the dimensionality of the
input vectors to feature vectors. In addition, data fusion techniques are used to
improve the AD classification performance among gray matter atrophy clusters. The
performance of the proposed system is tested on 136 subjects (including 68 AD and
68 HC) from an ADNI dataset using 10-fold cross validation. The experimental
results, when compared to those obtained with state-of-the-art techniques, show that
the proposed system is highly competitive in terms of accuracy (96.32%), specificity

(98.52%), and AUC (99.93%) for AD classification.
5.2 Material

5.2.1 Subjects

The diagnostic classificatiols conducted by selecting a total of 136 subjects from
the ADNI database and grouping them as AD and HC. The AD group contained 68
subjects ranging in age from 61.4 to 89.2 (74.33+6.41) years. The Mini Mental State
Examination (MMSE) and Clinical Dementia Ratio (CDR) scores ranged from 15 to
25 (mean 22.83+2.65) and 0.5 to2 (mean 0.75%0.41), respectively. The HC group
contained 68 healthy controls ranging in age from 60.8 to 84.4 (74.14+4.95) years.
The MMSE ranged from 28 to 30 (mean29.38+0.71) and the SQ2Bro. A direct
comparison revealed that the AD patients’ mean MMSE and CDR are significantly
distinct when compared to the HC subjects. No significant group differences are
noted in age or sex ratio. Details of the demographics and clinical characteristics of

the sample used in this chapter are presented in Table 5.1.
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Table 5.1 Demographic and clinical details of the patients with AD and HC subjects

AD HC t-value M.D
(n=68) (n=68)
Age 74.3316.41 74.14+4.95 0.19 0.18Ns
MMSE 22.83+2.56 29.38+0.71 14.76 - 65
CDR 0.75+0.41 0.0+0 -20.26 0.75
[0/0.5/1/2] [0/44/19/5] [68/0/0/0]

Note: All data present in mean * standard deviation mode.Afheimer’s Disease patients; CDR,
Clinical Dementia Rating; HC, Healthy Control patients; MMSE, Mini-Mental State Examination;
MD, Mean Difference; NS, Non-Significant; , p<0.0001.

5.3 Proposed AD Classification System

This section proposed a new AD classification system using a novel approach based
on a combination of t-test feature ranking and the Fisher Criterion for the optimal
selection of feature vectors for high performance MRI classification of AD. The
system involves five levels of processing. The pipeline of the proposed system is
illustrated in Figure 5.1. First, the VBM plus DARTEL approach is employed to
perform pre-processing on 3D MRI data. Second, a feature extraction method is
used, based on VBM plus DARTEL analysis. Third, the extracted features are ranked
based on the t-test values of the respective features, in the training set. In addition, an
automatic approach based on the Fisher Criterion is adopted to determine the number
of top ranking features. This approach adaptively determines the optimum number of
top features and identifies a discriminative subset of high performance features based
on training data in each fold. Hence, the feature vectors taken from VOIs of high
dimensional s-MRI data are reduced into a low dimensional space, with improved
discrimination capability. Fourth, the proposed technique is evaluated using state-of-
the-art SVM classifiers. The performance analysis comprises an experimental setup
based on 136 samples from the ADNI dataset. A 10-fold cross validation is

employed throughout the performance analysis, which implies having 122 (90%)
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samples in the training and 14 (10%) samples in the testing processes in each
iteration. Finally, data fusion techniques among atrophy clusters are engaged to

improve the classification performance.

1) Pre-processing 2) Feature Extraction
.............................................................. Lececcccccccccccccccccccccccccccccccccccccccccccccccanaas
Original NifTi VBM + DARTEL L 3D Mast Feature Extraction basgd [ Voxel values as rayv__
volumes analysis T 7 onVBM analysis feature vector

Classification & Validation Data fusion among . . -
— atrophy clusters t-test feature ranking Fisher CI’ItEI’;}‘—

Figure 5.1 The pipeline of proposed system for classifying AD

5.3.1 MRI data preprocessing and statistical analysis

The MR images are pre-processed using the SPM8 and the VBM8 toolbox. VBM is
an automated technique for assessment of the whole brain structure witlbyoxel-
voxel comparisons, developed to analyze tissue concentrations or volumes between
subject groups for distinguishing degenerative diseases with dementia (J Ashburner
& Friston, 2000; Nakatsuka et al., 2013). In more detail, VBM techniques investigate
structural differences in areas with poorly defined structural landmarks (e.g.,
prefrontal areas) and provide explorative analysis of structural differences (John
Ashburner, 2009; Cousijn et al., 2012; Takao, Hayashi, & Ohtomo, 2015). Recently,
VBM has been applied to detect early atrophic changes in AD (Chételat et al., 2005;
Hirata et al., 2005; Karas et al., 2003; Matsuda et al., 2012). It can provide statistical
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results for comparisons of patients with AD and HCs (Matsuda et al., 2012). The
inter-subject alignment of the MRI imagesincreased by applying the DARTEL
approach, which has been reported to optimize the sensitivity of this type of analysis
over standard VBM by using the Levenberg-Marquardt strafdgiyn Ashburner,
2007, 2009; Kasahara, Hashimoto, Abo, & Senoo, 2012; Klein et al., 2009; Modi et
al., 2012). Moreover, the VBM8 toolbox benefits from the unified segmentation
model with a maximum a posterior (MAP) technique (Rajapakse, Giedd, &
Rapoport, 1997) and partial volume estimation (PVE) to account for partial volume
effects (Tohka, Zijdenbos, & Evans, 2004), which results in a more subtle
segmentation of subcortical areas. In addition, the VBM toolbox uses a spatially
adaptive nonlocal means (SANLM) filter for denoising and removal of MRI in
homogeneities (Manjén, Coupé, Marti-Bonmati, Collins, & Robles, 2010). The
signalio-noise ratio is improved by employing a spatial constraint based on a
classical Markov random field (MRF) model (Cuadra, Cammoun, Butz, Cuisenaire,
& Thiran, 2005). Registration to a standard MNI-space (http://www.mni.mcgill.ca/)
consists of a linear affine transformation and a nonlinear deformation using high-
dimensional DARTEL normalization(John Ashburner, 2007). In the current work,
sample homogeneity prior to calculating 2nd level analyses is ensured by inspecting
the quality of gray matter images using the VBMS8 toolbox. All MR images are
corrected for bias field in homogeneities and then they are normalized and
segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). The normalized and segmented images are modulated using a nonlinear
deformation. In this work, only GM images are used. Finally, the 8 mm full-width-
half-maximum (FWHM) Gaussian kernel is used for spatial smoothing of the GM

images. After spatial pre-processing, the normalized, smoothed, modulated,
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DARTEL-warped gray matter datasets are analyzed using a voxel-wise parametric
mapping. The absolute threshold masking of around 0.1 is used to avoid possible
edge effects around the border between gray matter and white matter or CSF. The
regional gray matter volume changes are generated by voxel-based analysis over the
whole brain. The framework of the general linear model is employed to detect gray
matter volume changes in patients with AD using voxel-wise two sample t-test in
SPMB8. Age is engaged into the matrix design as a nuisance variable. The whole brain
analysis is implemented using significance set@vaue of < 0.01, with correction

for family-wise error (FWE) and a minimum cluster size of 1400 voxels for two-
sample comparisons. Between-group differences in demographics and clinical
parameters among or between groups of this work are evaluated using an
independent two-sample t-test with the SPSS 16.0 package. (http://www.spss.com/).
p < 0.05 is set as the level of significance.

5.3.2 Feature extraction

The feature extraction procedure based on VBM plus DARTEL analysis is applied to
isolate the VOIs. The brain regions that show significantly decreased gray matter
volumes, obtained using VBM plus DARTEL analysis, in AD patients relative to HC
are segmented using 3D masks. For the segmented regions, the MarsBaR region of
interest toolbox is employed (http://marsbar.sourceforge.net/) to generate cluster-
specific binary masks. The center coordinates of each mask are defined by the local
maximum revealed by VBM plus DARTEL analysis on the whole brain. These
masks are applied to all the smoothed gray matter density volumes resulting from the
VBM plus DARTEL analysis, to extract voxel values as raw feature vectors.

5.3.3 Feature selection
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The dimensionality of raw feature spaces in the VBM extracted s-MRI voxel features
is very high in comparison to the number of samples. The feature vectors span a very
small region in the high dimensional vector space; consequently, a feature selection
mechanism is desired in the post-processing. Feature selection can be considered in
the form of a standard dimensionality reduction via a standard method, such as PCA.
Alternatively, feature selection can be considered in the form of choosing the most
discriminative subset of the available features in the raw feature vector. In this
context, the proposed method can be employed, as it is the combination of t-test
feature ranking and the Fisher Criterion, which not only reduces the dimensionality,
but also increases the discriminability.

5.3.3.1PCA dimensionality reduction

Principal component analysis is a statistical dimensionality reduction method that
extracts a set of orthogonal principal components (PCs) from an original dataset
(Haq et al., 2015; Lihua Tang et al., 2013). In this work, a 10-fold cross validation is
used for measuring the performance of the classifiers. With136 samples, a 10-fold
cross validation implied having 122 PCs through the PCA process. The number of
PCsh, used to generate the projection vectors of the training and testings data
chosen ah=122.

5.3.3.2The general framework of feature ranking

The aim of feature ranking is to measure the relevance of features and class variables
to aid in the selection of the most informative/discriminative features, thereby
speeding up the learning process and promoting the performance of classifier

models, especially when the dimensionality of the datasets is very large (N. Zhou &

Wang, 2007). Le'rD:[Xl,XZ,...,XN]T be a dataset containing samples, where
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X = (%1, %5,-.» % )is @ vector oM values and each val¥gof this vector shows a
feature of that sample. The vectbr=(x;,%; .-, X, Y is a vector of values of a
featuref, . On the other hand, D represents>éM matrix, where rowis the subject
X;and each columpis the featurd; . A feature-ranking algorithm applied to dataset

D generates an ordered list of the featWfes|f.,f.%....,f'], where the superscript

denotes the position in the ranked list of a featirand this list is ordered by
reduction importance. Based on feature ranking, we can select theramjed
features[f.,f.%....£*] , k< M where k can be determined by the user or adjust
experimentally(Prati, 2012). In this chapter, we use t-test feature-ranking approach,

as follows (Kamkar, Gupta, Phung, & Venkatesh, 2014):

TS= ucl B ﬂcz

%a, % (5.1)

ncl nc2
whereT Sis the t-test value ang,, o, N, and x4, , 05, N, are the mean, variance

values, and number of samples of two classasdc,, respectively. The top

informative features are selected by ranking all features according ta®ealues.
5.3.3.30ptimal number of features based on Fisher Criterion

In addition to the feature-ranking algorithm based on the discriminative performance
of the features, we propose the use of an automatic approach based on the Fisher
Criterion,J(w) , given in Eq.(5.2), to determine the number of top discriminative
features, thereby reducing the dimensionality of the prospective feature vectors

(Diaf, Boufama, & Benlamri, 2013; Gao et al., 2012).
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w'Sw

J(w) = WS, W (5.2)

Where S; and S, represent the determinants of between class and within class

scatter matrices, respectively. For two classasdc,, the between class scatter and

within class scatter matrixes are defined as:

S = (:“cl_:ucz)(/”cl_ﬂcz)T (5.3)

S = z (O = #1a) (X = 1eg)" + z (X—21)( X—p.,)" (5.4)

X €q X€G
Wherew= S (1, — 1) andy, is the mean of data in each class. This approach

helps in adaptively determining thetop discriminative features based on ranked t-
test values using training data in each fold instead of using a kixednce the
features are ranked, the number of top ranked features iteratively increases from 1 to
M (number of features) by calculating the respective Fisher Criterion. The number
of top ranked features maximizing the Fischer Criterion is selected to be the optimal
number of top ranked featurésThe framework of the proposed feature selection

method is illustrated in Figure 5.2.
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Figure 5.2 Schematic representation of proposed feature selection approach

5.3.4 Data fusion among atrophy clusters

This chapter introduces data fusion technique among atrophy clusters (VOIs) to
improve the performance of the proposed AD classification method. The aim of the
data fusion technique is to integrate the data from two or more distinct multiple
sources (vectors, classifiers) to improve performance. In the current work, two
different fusion techniques are used: source fusion and score fusion.

5.3.4.1Source data fusion

In the scheme of source data fusion, the top features selected based on our approach,

described in section 3.3, from different VOIS, are concatenated into a single feature
vector. Assumingfv, fv,,..., fv. are feature vectors generated using proposed feature

selection method for each atrophy cluster. The feature vector fusion (FVF) is then:

fvf =[fv, fv,,..., fvn]lxi (5.5)
m

i=1

wherem is the vector length fofv; . This concatenated feature vector is then used

for classification. The source data fusion relies on procedures for feature contraction.
5.3.4.2Score data fusion
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Score data fusion includes multiple classifiers and a combination method. The
number of classifiers is determined based on the number of atrophy clusters obtained
using the VBM plus DARTEL approach in the pre-processing. In this work, the
majority voting method is employed as the score data fusion technique. Majority
voting is one of the most versatile combination methods, because of its simplicity
and performance on real data(Narasimhamurthy, 2005). The adopted score data

fusion framework is illustrated in Figure 5.3.
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Figure 5.3 Majority voting based score data fusion

5.4 Experimental results and discussion

This section considers the experimental results obtained through the pre-processing
phase using VBM plus DARTEL analysis on 3D Tlweighted MR imaging, as an
indicator disclosing the significance of decreased gray matter volumes in AD
contributing to VOIs. The performance of the proposed feature selection method
based on t-test ranking and the Fisher Criterion is also measured. Finally, the
performance results obtained through data fusion are presented and analyzed. The
performance of the classification using SVM classifiers with 10-fold cross validation

is reported for the following cases: 1) performance of raw feature vectors directly
extracted from VBM, 2) performance of the PCA data reduction method, 3)

performance of proposed of t-test feature-ranking technique using the optimal
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number of top features based on the Fisher Criterion, 4) performance of the proposed
data fusion techniques among atrophy clusters of GM. The ACC (%), SEN (%), SPE
(%) and AUC (%) performance metrics are used for the performance assessment.
5.4.1 Differences in gray matter volume between ADs and HCs

The gray matter volume atrophy differences between patients who suffer from AD
and HC are summarized in Table 5.2. The group comparison by VBM plus DARTEL
reveals a significant decline in GM volume in the right hippocampus (Talairach
coordinates 26,-11,-9,x,y,z;z = Inf), left hippocampus ( -25,-15,-8,X,y,z;z = Inf), right
inferior parietal lobule ( 55,-44,25,x,y,z;z = 7.22), and right anterior cingulate (
8,42,2,x,y,2;z = 6.54) (see Table 5.2 and Figure 5.4 for more details ) in patients with
AD when compared to the HCs. Figure 5.5 illustrates six three-dimensional views of
group comparison representing relative gray matter atrophy in patients with AD
compared to HCs. The voxel location of the significant atrophy regions are used as
3D VOI masks. These3D VOI masks are applied to the gray matter density volume
results from the segmentation step in the VBM plus DARTEL analysis in order to
extract voxel values into raw feature vectors for use in feature selection and
classification. Based on these atrophy clusters, we define five different VOIs as

follows:

VOI; includes the right hippocampus and amygdala regions. The center of this mask
is at Talairach coordinates x=26, y=-11, z3/0], contains 16069 voxel values as a

raw feature vector.
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VOI, includes the left hippocampus-lateral globus pallidus regions. The center of this
mask is at Talairach coordinates x=-25, y=-15, z¥@l, contains 16974 voxel

values as a raw feature vector.

VOI; includes the right inferior parietal lobule regions. The center of this mask is at
Talairach coordinates x=55, y=-44, z=3%1, contains 1454 voxel values as a raw

feature vector.

VOI, includes the right anterior cingulate regions. The center of this mask is at
Talairach coordinates x=8, y=42, z3I, contains 2032 voxel values as a raw

feature vector.

VOIL,;; includes all regions of gray matter loss (atropMl,; contains all four
clusters above, with 36529 voxel values as a raw feature vector.
Note that the center of the mask in the Talairach coordinates corresponds to the

center of the mass of the respective 3D VOI.
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Table 5.2 Clusters of gray matter atrophy (68 AD vs. 68 HC)
Talairach Z value T value

Location of  Hemisphere Cluster size
peak voxels (no of coordinates (x,y,z) (peak (peak voxel)
voxels) voxel)
Hippocampus- R 16069 26 -11 -9 Inf 10.94
Amygdala
Hippocampus- L 16974 -25 -15 -8 Inf 10.36
lateral
globuspallidus
Inferior R 1454 55 -44 25 7.22 8
Parietal
Lobule
Anterior R 2032 8 42 2 6.54 6.54

Cingulate
Note: Anatomical regions are derived from the Talairach Client programftlhémaisphere; R, right

hemisphere; (FWE-corrected@t 0.01 ).

8
‘ L:'*.- "'R 5 ,.‘.

Figure 5.4:Brain regions where there are significant gray matter reduction (atrophy)
in 68 patients with AD and 68 age matched HC subjects (FWE corrected at P < 0.01
and extend threshold K = 1400)
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Figure 5.5 Three-dimensional reconstruction of the brain showing gray matte
atrophy using VBM technique plus DARTEL. The regions of gray matter loss
shown from anterior, posterior, right lateral, left lateral, inferior and superior vi

respectively. The red region represents the region of gray matter loss

5.4.2 Performance of the raw feature vectors

The complete MRI dataset consists of 68 AD and 68 HC samples. The ACC, SEN,
SPE, and AUC that are obtained by 10-fold cross validation using the SVM classifier
(Linear and RBF kernels) on raw feature vectors from five different VOIs are shown
in Table 5.3. The results indicate that the average performance, in terms of ACC,
SEN, SPE, and AUC obtained from five atrophy clusters using RBF SVM, is
marginally better than Linear SVM. The RBF kernel is generally more flexible than

the linear kernel so it generally can model more functions with its function space.
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Table 5.3 Raw feature vectors performance of atrophy clusters using 10 fold cross
validation
Linear SVM RBF SVM

ACC(%) SEN(%) SPE(%) AUC(%) | ACC(%) SEN(%) SPE(%) AUC(%)

VOl 80.14 79.41 80.88 85.37 82.35 80.88 83.82 88.71
VoI, 77.20 77.94 76.47 84.93 79.41 76.47 82.35 87.69
VOI; 71.32 70.58 72.05 75.65 75.00 72.05 77.94 80.75
VOl, 69.85 69.11 70.58 77.82 70.58 73.52 67.64 77.99

VOI,y, 77.20 79.41 75.00 84.49 83.82 83.82 83.82 86.00

Average 75.14 75.29 74.99 81.65 78.23 77.34 79.11 84.22

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.

5.4.3 Performance of the PCA method

The PCA based data reduction method is utilized to extract raw feature vectors. For
each dataset, the features extracted are reduced to lower dimensional features using
PCA, with 122 PCs. Table 5.4 presents the classifier performance obtained using 10-
fold cross validation for SVM classifiers in terms of ACC, SEN, SPE, and AUC. The
average accuracy of feature vectors with 122 PCs for linear and RBF SVM classifiers
iIs74.20% and 78.08%, respectively, while the average accuracy using the raw feature
vectors without dimensionality reductios 75.14% and 78.23%, respectively. As
observed, PCA introduces dimensionality reduction and generates comparable

performance with the raw data.
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Table 5.4PCA performance of atrophy clusters using 10 fold cross validation with
122 PCs
Linear SVM RBF SVM

ACC(%) SEN(%) SPE(%) AUC(%) | ACC(%) SEN(%) SPE(%) AUC(%)

VoI, 79.41 82.35 76.47 86.80 81.61 86.76 76.47 88.27
VoI, 74.26 76.47 72.05 83.06 82.35 82.35 82.35 87.59
VOI; 70.58 73.52 67.64 72.48 69.85 69.11 70.58 78.33
VOl, 69.58 69.11 70.58 80.54 71.32 66.17 76.47 79.35

VOI,y, 77.20 79.41 75.00 87.49 85.29 86.47 83.82 88.74

Average 74.20 76.17 72.34 82.07 78.08 78.17 77.93 84.45

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.

5.4.4 Performance of the proposed feature selection using t-test ranking and the
Fisher Criterion

As proposed in section 5.3.3.3, the feature selection technique uses the t-test for
ranking the features. The Fisher Criterion is used to determine the optimal number of
top features. The Fisher scores for the samples in the training set from fold 1 of
VOl are plotted in Figure 5.6 for the top 250 ranked features. As Figure 5.6 shows,
the maximum Fisher score is located at 111, which means that 111 top-ranked
features are to be used in the classification process. Typical Fisher scores are
observed between 30 and 150 for all folds of 5 different VOIs. Figure 5.7 shows all
of the t-test values for the same data. The contribution of features on the accuracy is
studied separately and plotted in Figure 5.8 with linear SVM. As expected, the
contribution of the features in relevance to their t-test values is highly correlated. A
higher t-test rank implies higher performance of the respective feature. A logarithmic
scale is used to cover the entire feature space. Additionally Figure 5.9 is included to

show the improvement in the accuracy obtained by using progressive inclusion of the
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ranked features in the feature vector with linear SVM. The performance increases
with the increased number of ranked features used in the classification. However,
after a certain maximum, which corresponds to 111 top ranked features in this fold,
the performance does not increase further. The SVM-based classifiers are used to
observe the classification performance of the selected feature vectors from five
different VOIs. The results of classifiers are presented in Table 5.5. Examination of
Tables 5.3 and 5.5 confirms that the proposed feature section method significantly
improves the prediction capability of AD subjects when compared to prediction
using raw features. The average accuracy for raw data for linear and RBF SVM
classifiers is 75.14% and 78.23%, respectively, while the average accuracy for the
proposed feature selection method is 86.76% and 86.76%, respectively. The
improvement is around 10% for all performance indicators: ACC, SEN, SPE, and

AUC.
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Figure 5.6 Fischer scores for the respective ranked features in fold 1 training of

VOI,y,
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Figure 5.8 Classification accuracies of linear SVM with respect to different
numbers of features selected in fold 1 trainingv/ofl,;,
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Table 5.5: Performance results of the proposed feature selection method
Linear SVM RBF SVM

ACC(%) SEN(%) SPE(%) AUC(%) | ACC(%) SEN(%) SPE(%) AUC(%)

VoI, 91.17 92.64 89.70 96.9 90.44 89.70 91.17 95.07
VOI, 92.64 91.17 94.11 97.93 94.11 92.64 95.58 98.74
VOI; 76.47 73.52 79.41 84.93 76.47 75.00 77.94 84.66
VOl, 79.41 75.00 83.82 86.67 80.14 73.52 86.76 89.29

VOI,y, 94.11 95.58 92.64 98.33 92.64 94.11 91.17 98.13

Average  86.76 85.58 87.93 92.95 86.76 84.99 88.52 93.17

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.

5.4.5Performance of data fusion among atrophy clusters

The performance improvement aided by data fusion of five clusters is shown in

Table 5.6. The performance of both types of data fusion techniques is around 10%
higher than the average performance obtained with individual clusters. The

performance of the majority voting (score fusion) approach is always higher than or

equal to the performance of the source concatenation (source fusion) approach. Table
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5.6 shows that data fusion among atrophy clusters of GM volumes integrates

information by improving the classification performance in all terms.

Table 5.6 Performance of proposed data fusion technique among atrophy clusters of

GM
Linear SVM RBF SVM
ACC(%) SEN(%) SPE(%) AUC(6) | ACC(6)  SEN(%) SPE(E) AUC()
SOUrCe  gooe 9411 97.05 9752 | 9558 9411  97.05  97.31
Concatenation
Majority 9632 9411 9852 9993 | 9559 9411  97.05  99.82
Voting

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM, 8uppo
Vector Machine; RBF, Radial Basis Function.

5.5 Performance comparison to the other methods

Several recent studies have reported classification results to distinguish AD and HC
based on MRI. Zhang et al.(D. Zhang et al., 2011) used multimodal classification of
AD based on the combination of MRI, CSF, and PET. They reported an ACC of
86.2% in the classification of AD/HC by MRI image modality. They also achieved a
high ACC performance of 93.2% by combining the MRI, CSF, and PET results.
Westman et al.(Westman et al., 2012) reported an ACC of 87% from MRI data and
increased it to 91.8% by combining MRI data with CSF measures. Zhou et al. (Q.
Zhou et al., 2014)employed FreeSurfer software to calculate 55 volumetric variables
from MRI. They reported an ACC of 78% for MRI data and 92.4% for combining
MRI data with MMSE. In the present work, only the MRI modality with 136 samples
from the ADNI dataseis used, with highly comparable results to those reported in
other MRI-only studies. The performance of the proposed feature selection and data
fusion techniques outperforms the alternative techniques are given in Table 5.7. The
detail parameters of classification performance with different methods on MRI data

are also provided in Table 5.7. The results reported in Table 5.7 show that the
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performance of the proposed system is highly competitive for the performance terms
including ACC, SPE, and AUC when compared to the other systems reported in the
literature. The only exception is SPE, where the performance of the proposed system
is lower than for results reported by Kloppel et al., 2008 (Kl6ppel et al., 2008) for
groups | and II. Our results are highly competitive with the rest of the systems. The
performance improvement over the previous work, shown in Table 5.7, can be
attributed to the automatic statistical feature-selection method based on the
combination of t-test feature ranking and the Fisher Criterion of the VOI. Due to t-
test ranking, the proposed feature selection method is capable of sorting
discriminative features in descending order. The optimal dimension is of the feature
vector is adjusted by maximizing the Fischer Criterion in the training dataset.
Finally, data fusion techniques among gray matter atrophy clusters provide further

improvement on the AD classification performance.
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Table 5.7 Supervised classification results of Alzheimer’s disease and healthy
control subjects on MRI data

Author Imaging Source AD/HC  Valida ACC SEN SPE AUC
Modality of data tion (%) (%) (%) (%)
metho
d
Zhang et MRI ADNI 51/52 10 86.2 86.0 863 -
al.,2011(D. Fold
Zhang et al,
2011)
Zhang et MRI + ADNI 51/52 10 93.2 930 933 -
al.,2011(D. CSF + Fold
Zhang et al., PET
2011)
Westman et al. MRI ADNI  96/111 10 87 83.3 901 93.0
2012 (Westmar Fold
etal., 2012)
Westman et al. MRl + ADNI 96/111 10 91.8 885 946 958
2012 (Westmar CSF Fold
etal., 2012)
Zhou et MRI Private 127/59 2Fold 78.2 685 817 -
al.,2014 Q.
Zhou et al.,
2014)
Zhou et MRI + Private 127/59 2Fold 924 84.0 96.1 -
al.,2014(Q. MMSE
Zhou et al.,
2014)
Kloppel et al., MRI Private 20/20 Leave- 95.0 950 950 -
2008 (Kloppel (Group one-
et al., 2008) 1) out
Kloppel et al., MRI Private 14/14 Leave- 929 100 85.7 -
2008 (Kloppel (Group one-
et al., 2008) 1) out
Kloppel et al., MRI Private 33/57 Leave- 81.1 606 93.0 -
2008 (Kloppel (Group one-
et al., 2008) 1)} out
Hinrichs et al., MRl + ADNI 48/66 10 876 789 938 -
2011(Hinrichs  PET Fold
etal., 2011)
Hinrichs et al., MRl + ADNI 48/66 10 924 86.7 96.6 -
201YHinrichs PET + Fold
etal., 2011) CSF +
APOE
+Cogniti
ve
Scores
Proposed MRI ADNI  68/68 10 96.32 94.11 98.52 99.93
method Fold
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5.6 Conclusion

This chapter proposes a feature selection method using t-test-based feature ranking,
which is used for the classification of AD. The optimal size of the selected features is
determined using the Fisher Criterion, which maximizes the class separation between
AD and HC. The feature selection is applied to all voxels that pass through masks
modelled by overall atrophy clusters, determined by using VBM analysis. Linear and
RBF kernel-based SVM classifiers are used for the classification of the extracted
feature vectors after the proposed feature selection method. A performance
improvement is also proposed by applying data fusion among the individual atrophy
clusters, as well as the overall atrophy clusters. Standard data fusion techniques, such
as source and score fusion, are used to obtain improved performance in the
classification of AD. The performance of the proposed system is measured on 136
subjects (68 AD and 68 HC) from the ADNI dataset using 10-fold cross validation.
The experimental results show that the performance of the proposed approach for
ACC, SPE, and AUC is highly competitive with the state-of-the-art techniques using

MRI data reported in the literature.
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Chapter 6

STRUCTURAL MRI-BASED DETECTION OF
ALZHEIMER’S DISEASE USING FEATURE
RANKING AND CLASSIFICATION ERROR

6.1 Introduction

This chapter describes the application of an automatic CAD system, which uses
statistical feature-ranking methods as part of a novel feature-selection process,
followed by estimation of the classification error in AD and healthy control (HC)
groups to determine the optimum number of highest-ranking features to be selected.
In the training set, resubstitution and cross-validation error estimators are used as
classification errors to measure the quality of a classifier. We used these
classification error metrics as stopping criteria among the ranked features to estimate
the optimal number of features with the most discriminative information in the
classification process. We evaluated seven feature-ranking methods, namely,
statistical dependency (SD),mutual information (MI), information gain(IG),
Pearson’s correlation coefficient (PCC), the t-test score (TS), Fisher’s criterion (FC),

and the Gini index (GI) in the proposed CAD system. In the proposed approach,
high-dimensional feature spacds reduced into lower dimensional space by
employing the minimized classification error as the dimensionality selection criterion
in an iterative process of incrementing the number of ranked features. The proposed

feature-selection methad applied to gray matter (GM) atrophy clusters of voxels,
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which corresponded to the volume of interests (VOIs) of the sMRI data obtained
through the voxel-based morphometry (VBM) analysis during preprocessing. VBM
is an advanced method used to assess the whole-brain structure usingywameeadt
comparisons (J Ashburner & Friston, 2000; Guo et al., 2010; Matsuda et al., 2012;
Moradi et al., 2015; Nakatsuka et al., 2013). It is one of the best methods for feature
extraction from sMRI in AD(Bron et al., 2015). In the proposed system, we used
only sMRI data. The proposed CAD systerapplied in four stages in a systematic
manner. In the first stage, the VBM techniqige employed, in addition to
diffeomorphic anatomical registration using the exponentiated Lie algebra
(DARTEL) (Matsuda et al., 2012). This approashused to analyze group-wise
comparisons between cross-sectional structural MRI scans to detect the MRI voxels
that are best discriminated between the AD group versus HCs (J Ashburner &
Friston, 2000; Matsuda et al., 2012; Moradi et al., 2015; Nakatsuka et al., 2013).
Based on the VBM and DARTEL approach on a global brain scale, and regional
structural GM alterations, regions with significant atrophy of GM are investigated
and specified in the patients who suffer from AD. In the second stage, specified
VOls are used as 3D masks for extracting voxel intensity values from the VOlIs to
generate feature vectors. These feature vectors are subjected to further data-selection
processes before they are used by the classifier. In the third stage, the extracted
features are ranked based on the statistical scores (i.e., SD, M|, IG, PCC, TS, FC, and
Gl) of the AD and HC groups in the training set. The ranking scores can be
considered an indicator of the level of separation/discrimination between the AD and
HC groups in the training set. Feature ranking has been used successfully in a
number of pattern-recognition studies (Chang & Lin, 2008; Duch, Wieczorek,

Biesiada, & Blachnik, 2004; Geng, Liu, Qin, & Li, 2007; Prati, 2012; Ruiz,
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Riquelme, & Aguilar-Ruiz, 2003; Slavkov, Zenko, & Dzeroski, 2010). In addition,
an automatic approach based on classification error estimatised to determine

the number of top features using the AD and HC groups in the training set. This
approach adaptively determines the optimum number of top features and identifies a
discriminative subset of high-performance features based on the training data in each
fold instead of using a fixed number of features. In the fourth stage, the performance
of the proposed feature-selection technigsieevaluated using a support vector
machine (SVM) classifier. In this work, the SVM classifier with a linear keisel
trained to discriminate between the classes. In addition, instead of using a single
feature ranking method, the results of multiple individual feature ranking methods
are combined through the proposed data fusion technique for improved classification

performance.

In summary, the aim of this chapisrto design an automatic CAD system based on
statistical feature ranking and classification errors as part of a novel feature-selection
method. The proposed system utilizes feature ranking based on statistical scores,
followed by the determination of resubstitution and cross-validation error estimators
to identify the number of ranked features that minimizes the error in the training set.
This process helps to identify a selected discriminative subset of high-performance
features into a lower-dimensional feature vector space representing SMRI images. In
addition, a data fusion technique proposed to improve the AD classification
performance among different feature ranking methods. The performance of the
proposed systems assessed using a data set from #ieheimer’s Disease
Neuroimaging Initiative (ADNI) containing 260 subjects (130 AD patients and 130
HCs) using 10-fold cross-validation. The experimental results showed that the
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accuracy (ACC) (92.48%), sensitivity (SEN) (91.07%), specificity (SPE) (93.89%),
and area under the curve (AUC) (96.30%) of the proposed system are well
comparatively to results obtained with state-of-the-art techniques in terms of AD

classification.
6.2 Materials

6.2.1 MRI acquisition

The MR images and data used in this chapter are obtained from the ADNI database
(www.loni.ucla.edu/ADNI). All the participants initially underwent a number of
neuropsychological examinations, resulting in several clinical characteristic
indicators, including the Mini Mental State Examination (MMSE) score and Clinical
Dementia Ratio (CDR) score. The HC group contained 130 participants, with ages
ranging from 56 to 88 years (mean 74.49+6.13 years), MMSE scores ranging from
27 to 30 (mean of 29.26+0.80), and a CDR score of zero. The AD group contained
130 patients, and their ages ranged from 57 to 91 years (mean of 75.88+7.54 years).
Their MMSE and CDR scores ranged from 10 to 28 (mean of 22.33+3.27), and 0.5 to

2 (mean of 0.80+0.37).
6.3 Proposed CAD classification system

In this section, an automatic CAD system, which is based on feature ranking,
followed by optimal selection of a number of top features using a classification error
for high-performance AD classification, is introduced. An outline of the proposed
ranking-based CAD system is illustrated in Figure 6.1. First, the VBM and DARTEL
approach are employed to preprocess3D T1-weightedMRI data. Second, voxel-based
feature extractioms performed. Third, the extracted features are ranked based on the
score values of the respective features in the training set. The optimal number of top

ranked featuress automatically obtained by minimizing the classification error
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among the possible number of features. These approaches resulted in high-
dimensional sMRI data of VOI in a low-dimensional space with a discriminative
subset of high-performance features based on the training data in each fold. Fourth,
to evaluate the performance of the proposed feature-selection method, a linear SVM
classifieris employed. In addition, a data fusion technique among different feature

ranking methodss engaged to improve the classification performance.
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Figure 6.1: The pipeline of proposed ranking-based CAD system for classifying AD

6.3.1 MRI data preprocessing
The 3D T1-weighted brain images are pre-processed using the SPM8 package and
VBM 8 toolbox. Recently, several studies have been used VBM method for detection
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atrophic changes in AD (Bron et al., 2015; Hirata et al., 2005; Matsuda et al., 2012;
Moradi et al., 2015; Son, Han, Min, & Kee, 2013; Xu, Wu, Chen, & Yao, 2015). In
this study, DARTEL approacts employed with VBM to increase enhancement of
inter-subject registration provide precise, accurate localization of structural damage
of the MRI images. DARTEL template is generated from 550 healthy control
participants (defined by default setting of VBMS8 toolbox) (Cousijn et al., 2012). In
the VBMS toolbox, all the sMRI data are bias-corrected and segmented into white
matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) components. The
normalized segmented images are modulated by applying a nonlinear deformation.
This allows the comparison of absolute amounts of tissue corrected for individual
differences in brain size(Cousijn et al., 2012). The deformation is applied to
segmented images to create an image which is in voxel-for-voxel registration with
the template(Greve, 2011). In the present thesis, we used only GM component.
Finally, the all GM components are spatially smoothed with an 8 mm full-width-half-
maximum Gaussian smoothing kernel. After spatial preprocessing, the smoothed,
modulated, DARTEL-warped and normalized GM datasets are subjected to a
statistical analysis using awvatue of <0.01 with correction for family-wise error
(FWE). The extent threshold adjusted at 1,400 voxels for two-sample comparisons.
Regional changes in GM volumes are detected by a voxel-based analysis of the entire
brain.

6.3.2 Feature extraction

The brain regions containing significantly decreased GM volumes obtained using the
VBM plus DARTEL analysis in the AD patients relative to the HCs. Based on the
VBM and DARTEL results, a 3D masik modeled to identify VOIs for further

processing. This masg applied to the GM density volumes resulting from the VBM
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and DARTEL analyses to extract voxels as feature vectors. The subjects are
randomly divided into 10 folds, with the same number of AD and HC subjects in
each fold. In each iteration, one of the foisisised for testing, and nine of the folds

are used for training. A VBM analysis of each training datéasgatrformed to reveal
regions of decreased GM volume in the patients through a 3D mask for the MRI
samples in the respective training fold. In total, 10 different masks with different
lengths (i.e., from 59395 to 69170 voxels) are defined. The respective 3D masks are
used in the respective iteration to extract features from the training and testing data
sets.

6.3.3 Proposed feature selection

The dimensionality of raw feature spaces, whghkery high, changed in line with

the dimensionality of the 3D masks (i.e., from 59395 to 69170 voxels). It is expected
that the feature vectors span a smaller region in the high-dimensional vector space.
The aim of feature selection is to select the best features for improving the efficiency
of learning, component al cost and classification performance. Feature selection
using feature ranking is a reasonable approach to reduce the dimensionality and
improve the performance ,as the most discriminative subset of features are employed
as the top features representing the samples. Recently, several studies have used
different feature ranking methods as part of feature selection in pattern recognition
field (Chang & Lin, 2008; Duch et al.,, 2004; Geng et al., 2007; Pohjalainen,
R&sanen, & Kadioglu, 2015; Ruiz et al., 2003; Slavkov et al., 2010; W. Yan, 2007).
6.3.3.1Feature ranking

Feature ranking aids to achieve knowledge of data and identify relevant features and
sort the features with respect to their relevance. on other hand, feature ranking makes

it easier to determine the relevance of features and class variables and to select the
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most informative/discriminative features, thereby improving the performance of
classifier models and speeding up the learning process, especially when the

dimensionality of a data setis very large (N. Zhou & Wang, 2007). Let

®=[ff?%.,f"]be a features set containing features, where the vector
fl=(x,%,...,4 7 is a vector of the values of a featufd,, N is the number of

samples, and each valgeof this vector shows a feature of that sample. A feature-
ranking algorithm applied to data setgenerates an ordered list of the features

v =[f' £7..,£"]. The superscript denotes the position in the ranked list of a
feature,f. ,and the list is ordered by the reduction importance. Based on the feature

ranking, we can select the tggranked featurepf’, £.%,...,£9] <M , whereqcan

be determined by the user or adjusted experimentally (Prati, 2012). In the present
work, { is automatically estimated by minimizing the classification error of the
training set in each fold. In the present thesis, we used the following seven feature-

ranking approaches. In each approach, the score of each femtamemputed

independently and sorted based on the respective score.

1. SD: SD measures the level of dependency between the values of a feature and
the associated class labels. The SD between feature X/alue class label

can be obtained as follows (Pohjalainen et al., 2015) :

_Pxig) 6.1)
SD= 2.2 ) Bpe)
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whereP(x;, ¢, )is the frequency count of data X with valign the class,
P(x;) is the frequency count of data X with valug, and P(c,) is the

frequency count of class C with valage. SD is nonnegative in the range of

[0, 1], with SD=0 indicating no correlation and SD=1 denoting thaan be
inferred onceX is known. A larger SD means higher dependency between the
feature value and class labels.

2. MI: Ml measures the relevance of the feature vafuand class labeC by

(Cabral et al., 2015; Pohjalainen et al., 2015; W. Wang et al.,:2014)

P(x..C
MI :ZZP(Xi’Cj)b%% (6.2)

Ml is similar to SD.P(x;,c)is the frequency count of data X with valge
in the classc;, P(x;) is the frequency count of data X with valyg and

P(c,)is the frequency count of class C with valye Ml is nonnegative in

the range of [0, 1], with MI=0 indicating no correlation, and MI=1 meaning
thatC can be inferred onc€is known.
3.1G: IG is a measure of the dependence between the features and class label. The
IG of feature valueX and class labeC is calculated as follows(Zhao et al.,

2010)

IG =H(X)-H(X|O) (6.3)

H(X|C)

where 1 (X) and are the entropy ofX and the entropy ofX,

respectively, after observirg as follows:

H(X) ==2_ P(x)log,(F(x)) 6.4)
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HX[O)=-2 X Ry Qlog,(R ¥ 9) (65

The maximum value of IG is 1. Features with higher IG are more relevant.

4. PCC: PCC is a measure of the relevance between the features and class label.
PCC of the feature valu¥ and class labeC is calculated as follows (W.
Wang et al., 2014):

cov(X,C)

Jvar(X) var(C) (6.6)

which in binary classification becomes:

PCC=

2 06— ,)(G — )
PCC=——"L 6.7)

\/Z()ﬁ _/ux) Z(CI _luc)

Where PCC is Pearson’s correlation value, ands, andu, are the mean of all

samples oK andC, respectivelyPCChas a value in the range of [-1, 1]. PCC=0
indicates independency ok and C, PCC=1 denotes the highest positive
correlation of them, and PCC=-1denotes the highest negative correlation. To
select the top informative features, all the features are ranked according to their
absolute PCC values.

5.TS: The TS measures the statistical significance of the value differences between

the two classes. Theest is performed kigamkar et al., 2014)

TS= /uc; B :uc22
04,05 (6.8)

ncl nCZ

whereTSis the t-test value ang:,,o’,n,and 4, , o, , N,are the mean,

variance values, and number of samples of two clagsasdc,. To select the
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6.

top informative features, all the features are ranked according to their absolute
TSvalues.
FC: FC measures between-class and within-class scatter matrices between two

classes, as shown below:

_wS§w (6.9)
w's, w

FC

where S; and S, represent the determinant of the between-class and within-

class scatter matrices, respectiyelp et al., 2012)For two classegandc,, the

between-class scatter and within-class scatter matrixes are defined as follows:

SB = (ﬂcl _/ucz)(ﬂd_/'lcz)T (6-10)
Sv =2 (=)= 1) + D (¥= 1) X= )" (6.11)
X€EQ X€G

wherewv = S, (1, — 11,,) andy,, are the mean of the data in each class.

To select the top informative features, all the features are ranked according to

their FC values.

7.Gl: The Gl is a measure used to quantify the ability of a feature to distinguish

between classes. The Gl for a featdires as follows(zZhao et al., 2010):

c 2
GI(f)=1-3[ p(i|f ] (6.12)
i=1
In the binary classification, the maximum value of the Gl is 0.5, and features with

a smaller Gl are more relevant.

6.3.3.2 Classification error

Consider a labeled feature vecr{X, T} , where X € R (p is the dimension of
the input vector) and is the class label, which in binary classification with two

classesT €{-1,1} .The pair{ X, T} has a joint probability distributiof, ,which is

93



unknown in practice. Let a classifier be trained with a setnoeindependent

observations, §, ={(Xy, {),....,(X,,t,)} , which are drawn fromF . Let
AR’ {4,18} "xRP4 £1} be a mapping input space to target as a
classification rule, which mais onto a classifierp, : R* —{-1,1} (Sima, Braga-

Neto, & Dougherty, 2011). The classification ermris the probability of an

erroneous classification, which is calculated as follows (Sima, Braga-Neto, &

Dougherty, 2005; Sima et al., 2011):

& =He(X)=T8S,) (6.13)

In practice, the classification error is unknown, and the error must be estirdated (

).In the present work, two different classification error estimators are used: a
resubstitution erroré= ¢, ) and across-validation erroé € €,,).
6.3.3.2.1 Resubstitution error

Consider a classifieg, , which is trained with a se§, ={(x,, t),....(X,,,t,)}, wheren
is the number of samples. In the resubstitution ergqy,, we design a classifies,

and test it onS, to estimate the respective error, as follows:

e =IT-a,00), 614)

resub

Wherd =1,...n, andv||, is the zero-norm counting the number of nonzero entries in

V. The resubstitution estimator is nhonrandomized, and it is very fast to compute in

comparison to other error estimators, such as the cross-validation error estimator
(Braga-Neto, 2009). This estimator is always optimistically biased.

6.3.3.2.2 Cross-validation error estimator

The cross-validation error estimator is a randomized estimator obtained by randomly
selectingK folds. In theK-fold cross-validation error estimator, the data are split into
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K folds at each steKE€10): one fold is used as a te§,={(X; ©),....(X,. t,)}), and

the remaining folds are used for training,(={(x, t),...,(X,,t,)}), wherem andf

are the number of samples in the test and training sets, respectively. The above
procedure is repeatddtimes by leaving a different fold as test data, which are used
to compute (estimate) the classification error. In each iteration, the estimated

respective error is calculated as follows:

1
& = (T =%, (6.15)

Where =1,...m.The total errois calculated using the average of the errors in each

iteration.
K
D 3P (6.16)

In this chapter, we used the standiirtearest-neighbor&-{NN) estimator, withk=3,

to compute the classification error estimation. kKHéN estimatoris chosen due to

its lower computational cost relative to that of a state-of-the-art SVM estimator.
6.3.3.3 Optimal number of features based on the classification error

In addition to the feature-ranking algorithm based on the discriminative performance
of the features, we propose to use an automatic approach based on classification error
estimation to determine the number of top discriminative features and, hence, reduce
the dimensionality of prospective feature vectors. Using this approach, it is simpler
to automatically determine thg top discriminative features based on the ranked
values in the training data in each fold instead of using a fix€dhce the features

are ranked, the number of top ranked features iteratively increased from (I"to

<<M) in the respective training error estimatidw.is the number of features in the
respective feature vectors in each fold, which had values from 59395 to 69170 voxels
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in our experimentsqg is searched within the firsi' dimensions, wherd" is
heuristically chosen to be 1500 to reduce the computational cost. Tgpahles of
between 10and 1300 are observel img is regarded as the optimal number of top
ranked features that minimizes the classification error in the training set. The
proposed algorithm to determiggis given in the pseudo code shown in algorithm
6-1. The number of top features iteratively incremented from 1oI", using a
training set of each fold to calculate the respective classification error estimation
values by thé&-NN estimator. Using a cross-validation process, the optimal numbers
of top featuresq, minimizing the classification error estimation in training phiase
selected for use as the optimal dimension in the test and the training data in each

fold. Figure 6.2 shows the details of the proposed feature selection procedure.

Algorithm 6.1. Optimal number of top feature selection procedure based on the

classification error.

1. V < component sét Datg,, Labgl)

2: Ranked features- feature rankifg Daia,  Lahg)
2. number of top features @, I'=1500

3: forn=1toI'do

4: &(n) < Ranked featur€s. ,n Labgl)

5. end for

6 gq<«—argminé(n)

ne{l,...,F}
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Figure 6.2 Detailed illustration of the proposed feature selection approach

6.3.4 Data fusion among different feature ranking methods

This chapter introduces a data fusion technique among different feature ranking
methods to improve the performance of the proposed feature-ranking-based AD
classification. The aim of the data fusion technique is to integrate the data from two
or more distinct multiple sources to improve performance. The pipeline of the
proposed data fusion system combining different feature ranking methods is

illustrated in Figure 6.3. In the scheme of proposed data fusion, thereogked
featureq f.!, £.%,...,£9] selected based on approaches, described in section 6.3.3.1,
from different feature ranking methods, are combined into a single feature vector
using union operator. AssumingRV, FRV,,..., FRY are feature ranked vectors

generated using different feature ranking methods. The feature vector fusion (FVF) is

then:

FVF=[FRVU FRVU..U FRY,, (6.17)
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whereg is the vector length for FVF, z is the number of ranked method$ and.

This concatenated feature vectthen used for post-feature ranking. In this regard,
the MI based feature ranking used, because of its better performance in
comparison to other ranking methods (see Table 6.2). The ranked feature vector
fusion, followed by the determination of resubstitution and cross-validation error
estimators to select the top features that minimizes the error in the ranked feature

vector fusion set.

Feature ranking 1

Feature ranking 2

Classification error
MI Feature ranking H (using KNN estimator) Select the top features |

Feature ranking 7

=y

Figure 6.3 The pipeline of the proposed data fusion system combining different
feature ranking methods

6.4 Experimental results and discussion

In this section, the experimental results obtained through the preprocessing phase
using VBM plus DARTEL analysis on 3D T1lweighted MR Imaging are considered,
as an indicator disclosing significance of decreased gray matter volumes in ADs
contributing to VOI. The experimental data consisted of 260 samples from an ADNI
data set. A 10-fold cross-validatioils employed throughout the performance
analysis, with 234 (90%) samples in the training sample and 26 (10%) samples in the
testing processes in each iteration. The performance of the classification is reported
for the following cases: 1) The performance of raw feature vectors directly extracted
from the VBM and 2) The performance of the proposed feature-ranking technique

using the optimal number of top features based on the classification error. 3) The
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performance of the proposed data fusion technique among different feature ranking
methodsThe ACC (%), SEN (%), SPE (%), and AUC performance metrics are used
for the performance assessment. The AUC is a widely used measure of performance
for classification and diagnostic rules(Hand, 2009).

6.4.1VBM of GM analysis in AD versus HC

VBM plus DARTEL of GM analysis specified significant GM atrophy in the
right/left hippocampus, right inferior parietal lobe, and right anterior cingulate in the
ADs compared to the HCs. For an example, comparison of gray matter volume
among 117 ADs and 117 HCs in fold 1 training is illustrated in Figure 6.4. The voxel
locations of these significant regions are segmented as a 3D mask in each fold. This
maskis employed to the gray matter density volume results from the segmentation

step in the MRI data pre-processing to extract voxel values as raw feature vectors.

‘ L““R | : R

Figure 6.4: Brain regions with significant atrophy in gray matter volume in the 117
ADs compared to 117 HCs in fold 1

6.4.2 Performance of raw feature vectors
The complete MRI data set consisted of 130 AD and 130 HC samples. The ACC,
SEN, SPE, and AUC obtained in the 10-fold cross validation using a linear SVM

classifier on raw feature vectors are presented in Table 6.1.

99



Table 6.1 Raw feature vectors performance of atrophy clusters using 10 fold cross
validation
Classifier =~ ACC(%) SEN(%) SPE(%) AUC (%)

SVM-linear 83.58 82.04 85.12 92.10

SVM-RBF 86.02 89.70 82.35 93.13

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve.

6.4.3Performance of the proposed feature-selection method using feature
ranking and classification error
As introduced in Section 6.3.3.3, the proposed feature-selection techngjues
evaluated by using seven different feature-ranking methods (SD, MlI, IG, PCC, TS,
FC, and Gl),followed by two different classification errors(resubstitution and cross-
validation error) to determine the optimal number of top features. Figure 6.5 shows
the improvement in the ACC obtained by using progressive inclusion of the ranked
features in the feature vector. A logarithmic sdalased to cover the entire feature
space. This performance is reported for fold 1 after the Ml feature ranking. The ACC
is 80.76% and 92.30% on raw feature vectors and top 1500 ranked features after the
MI feature ranking. The ACC performance improved with an increased number of
ranked features, up to 96.15%. The performance level corresponded to the number of
top ranked features, 479, which minimized the cross-validation error. The number of
features that minimized the resubstitution erso864, with an ACC performance of
92.30%. Table 6.2 shows the overall performances of the proposed feature-selection
method. The results clearly show the performance improvement provided by the
proposed feature-selection method. Among the seven different feature-ranking
methods, in general, the MI generated the highest performance for both classification

errors to determine the optimal size of the sample vectors. Regarding the
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classification errors, thee ..-based approach gives a higher performance than the
€. -Pased method. The superior performance of ehe, -based approach is
attributed to the randomization in the cross validation, withethe-based approach

reducing the bias, which is the main problem of ¢hg, -based method. Among the

alternative methods tested, the results indicate that the Ml feature ranking gives the
highest or equal performance in terms of the ACC(%), SEN(%), SPE(%), and
AUC(%), when compared with the other seven ranking methods. Recently, MI
feature selection approach has been widely used for feature selection in pattern

recognition studies (Z. Yan, Wang, & Xie, 2008; Yu & Lee, 2012).
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Table 6.2 Performance results of the proposed feature selection method with linear
SVM

resubstitutionerror .. ;) Cross validation error€,..)

ACC(%) SEN(%) SPE(%) AUC(%) | ACC(%) SEN(%) SPE(%) AUC(%)

SD 86.92 83.07 90.76 94.38 89.61 88.46 90.76 95.74

Mi 88.84 86.92 90.76 94.20 91.53 90.00 93.07 95.80

IG 88.07 87.69 88.46 94.93 88.07 86.92 89.23 94.50

PCC 86.15 86.92 85.38 94.97 89.23 91.53 86.92 94.62

TS 86.15 86.92 85.38 94.97 89.23 91.53 86.92 94.62

FC 86.15 86.92 85.38 94.97 89.23 91.53 86.92 94.62

Gl 86.15 85.38 86.92 93.67 87.30 86.14 88.45 93.96

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; abstial
dependency; MI, mutual information; IG, information gain; P@€&ason’s correlation coefficient;
TS, t-test score; FC, Fisher criterion; Gl, Gini index.

102



Table 6.3 Performance results of the proposed feature selection method with
nonlinear SVM

resubstitutionerror &)

Cross validation error€, .. )

ACC(%) SEN(%) SPE(%) AUC(%) | ACC(%) SEN(%) SPE(%) AUC(%)
SD 88.07 85.38 90.76 9456 89.23 90.00 88.46  95.33
Ml 89.61 89.23 90.00 94.32 90.38 89.23 9153  95.15
IG 86.92 86.92 86.92 94.26 87.30 88.46 86.15  94.44
PCC  85.76 86.15 85.38 94.38 86.53 86.15 86.92  94.44
TS 85.76 86.15 85.38 94.38 86.53 86.15 86.92  94.44
FC 85.76 86.15 85.38 94.38 86.53 86.15 86.92  94.44
Gl 85.38 83.84 86.92 93.73 86.15 84.61 87.69  92.78

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; tabstial
dependency; MI, mutual information; IG, information gain; P@€&ason’s correlation coefficient;
TS, t-test score; FC, Fisher criterion; Gl, Gini index.
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6.4.4Performance of proposed data fusion among different feature ranking

methods
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The performance improvement aided by proposed data fusion of seven different

feature ranking methods is shown in Table 6.4. The performance ef thédased

approach is always higher than the performance ogthg-based method.

Table 6.4 Performance of proposed data fusion technique among feature ranking
methods

resubstitutionerror€.,) Cross validation errore,,.)

ACC(%) SEN(%) SPE(%) AUC(%) | ACC(%) SEN(%) SPE(%) AUC(%)

88.84 86.92 90.76 94.20 92.48 91.07 93.89 96.30

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve.

6.5 Discussion

This chapter investigated the feature ranking and classification errors as part of a
novel feature-selection method to design an automatic CAD system for high-
dimensional pattern classification in AD. In the proposed system, we evaluated seven
feature ranking approaches to rank the features with respect to their statistical
relevance. In addition, we proposed an automatic criterion to select the subset of top
ranked features based on classification error in the training part. In this context,
resubstitution and cross-validation error estimators are employed to identify the
number of ranked features. By investigation Table 1 and Table 2, it is clear that
proposed feature selection method significantly improved the performance with
respect to raw feature vectors. For example, feature selection using Ml ranking and
cross-validation error estimator provided 8% improvement in accuracy in
comparison to raw feature vectors. Many researchers studied Random Forest as
alternative feature selection method in machine learning, because of its relatively

good accuracy and robustness (Diaz-uriarte & Andrés, 2006; Ebina, Toh, & Kuroda,
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2011; Genuer, Poggi, & Tuleau-malot, 2010). Otherwise, using Random Forest
suffer from biased towards features with many categories and with correlated
features, more informative features can end up with low scores (Strobl, Boulesteix,
Zeileis, & Hothorn, 2007). In addition, several studies investigated high-dimensional
pattern classification approach in a number of neuroimaging studies (I. Beheshti &
Demirel, 2015b; Fan, Batmanghelich, et al., 2008; Fan et al., 2005; Lao et al., 2004)
For example in (Fan, Batmanghelich, et al., 2008), the authors presented an advanced
guantitative pattern analysis and classification of brain atrophy in MCI and AD
patients. In (Fan et al., 2005) authors introduced a method based on Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) technique for feature ranking
and they used SVM classifier for classification. Data used in the presenissthdy
same as the one described in our previous study (I. Beheshti & Demirel, 2015b),
including pre-processing steps and feature extraction. In (I. Beheshti & Demirel,
2015b), we introduced a novel statistical feature selection method based on the
probability distribution function (PDF) of the VOI. In more detail, PBntroduced

to generate statistical pattern of the VOI representing the entire sMRI. Using
proposed PDF-based method, we obtained 89.65% accuracy with linear 18\
present study, instead of generation of the statistical pattern of the VOI, we
introduced an automatic statistical feature selection method based on the
combination of feature ranking and the classification error of the VOI, which can be
considered a lower-dimensional feature vector representation of sSMRI. The
dimensionality of the feature vector can be adjusted by minimizing the classification
error in the training data-set. The proposed feature selection method not only selects
the top discriminative features but also reduces the dimensionality of the input

vectors to feature vectors. Finally, we proposed a data fusion technique among the
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different feature ranking methods and obtained 91.97 % accuracy with linear SVM.
As part of future studies on AD classification, we suggest considering feature
ranking-based feature selection for high-dimensional pattern classification such as
the deformation-based analysis. Another priority for future studiés use other
registration methods as described in(Klein et al., 2009). These methods could further
be used to evaluate the accuracy of inter-subject registration in GM volume changes

in patients withAD.
6.6 Performance comparison to other methods

Recently, several studies have reported classification results to distinguish AD
patients and HCs based on MRI and ADNI dataset. Aguilar et al. (Aguilar et al.,
2013) employed FreeSurfer software to compute cortical thickness and volumetric
measures. Based on an artificial neural network classifier and MRI data, they
achieved an ACC of 84.9% and an ACC of 88.8% using an SVM classifier and a
combination of MRI data with educational and demographic data. Querbes et al.
(Querbes et al., 2009) reported an ACC of 85%using a cortical thickness feature
from MRI data. Khedher et al. (Khedher et al., 2015) achieved an ACC of 88.49% by
combining GM and white matter modalities in MRI data. Cuingnet et al. (Cuingnet et
al., 2011) tested 10 methods. They presented an SEN of 81% and an SPE of 95% as
the best performances. Zhang et al.(D. Zhang et al., 2011) used a multimodal
classification of AD based on a combination of MRI, CSF, and PET data. They
reported an ACC of 86.2% in the classification of AD/HC using the MRI data. By
combining the MRI, CSF, and PET results, they achieved a high ACC of 93.2%.
Westman et al.(Westman et al., 2012) reported an ACC of 87% using MRI data and
increased the ACC to 91.8% by combining the MRI data with CSF measures.

Beheshti et al.(l. Beheshti & Demirel, 2015b) employed a PDF-based approach using
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MRI data and reported an ACC of 89.65%. A comparison of the classification
performance using the different methods and MRI data is provided in Table 6.5. The
results show that the performance of the proposed feature-selection method using
only MRI data is higher or comparable to that of other methods reported in the

literature.

107



Table 6.5Supervised classification results of Alzheimer’s disease and healthy
control subjects based on MRI from ADNI data-set

Author AD/HC Validation ACC SEN SPE  AUC
method (%) (%) (%) (%)

Aguilar et al.2013 116/110 10 Fold 84.90 80.20 90.00 88.00
(Aguilar et al., 2013)
Querbes et al.,200' 130/130 10 Fold 85.00 - - -
(Querbes et al., 2009)
Khedher et al, 201t 188/229 10 Fold 88.49 85.11  91.27 -
(Khedher et al., 2015)
Cuingnet et al., 162/137 2 Fold - 81.00 95.00 -
2011(Cuingnet et al.
2011)*
Zhang et al.,2011(D 51/52 10 Fold 86.20 86.00 86.30 -
Zhang et al., 2011)
Westman et al, 201 96/111 10 Fold 87.00 83.30 90.10 93.00
(Westman et al., 2012)
Beheshti et al.,2015( 130/130 10 Fold 89.65 87.73 9157 95.30
Beheshti & Demirel,
2015b)
Proposed method 130/130 10 Fold 92.48 91.07 93.89 93.30

*This paper compares ten methods and the best performance is presented here.

6.7 Conclusion

This chapter proposed an automatic CAD system for the classification of AD based
on seven feature-ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) and
classification errors (i.e., resubstitution and cross-validation errors). The optimal size
of the selected featurels determined by classification error estimation, which
minimized the classification error in the training phase. This apprgaapplied to
extracted raw features obtained from GM atrophy clusters of VOIs, which are
determined using a VBM analysis. An SVM classifgeused for the classification of

the extracted feature vectors after the feature selection. A performance improvement
is also proposed by applying data fusion among the different feature ranking based.

The performance of the proposed sysismvaluated with 10-fold cross validation
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using an ADNI data set made up of 260 subjects (130 AD patients and 130 HCs).
The results clearly showed that the proposed feature-selection methagliable
technique for high-dimensional data. The experimental results showed that the
performance of the proposed approach using only MRIiddteher or comparable

to that of alternative methods reported in the literature.
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Chapter 7

COMPARISON OF PROPOSED METHODS

7.1 Introduction

The presented thesis introduces three main methods feature selection agfovach
high-dimensional classification of AD and HC. MRI biomarkeused for feature
extraction, selection and classification. In the current study, the feature selsction
applied to overall atrophy clusters determined by using VBM analysis. This
procedure helps to select some regions of btaimeveal significant differences
between ADs and HCs and select most discriminative features from btan.
current thesis has investigated several advanced feature selection agpaiaell

at the high accurate identification of AD and HC. In Chapter 4, an automatic
statistical feature-selection method, namely, PDF, is proposed for the classification
of AD which can be considered a lower-dimensional feature vector representation of
sSMRI images. The proposed feature-selection method compresses the statistical
information of high-dimensional data into a lower-dimensional vector. This approach
is used for high-dimensional classification, especially for feature-extracted VOIs of
gray matter atrophy. In addition, an automatic approach based on the Fisher criterion
is introduced to determine the optimal number of bins of the histogram generating
the PDF. This approach adaptively determines the number of PDF bins based on the
training data in each fold instead of using a fixed one. The proposed PDF-based

feature-selection method is evaluated using 130 AD and 130 HC MRI data with 10-
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fold cross validation. The experimental results using the proposed PDF-based
approach with SVM by linear Kernel generates 89.65% accuracy, 87.73% sensitivity,
91.57% specificity, and 95.33% AU the chapter 5, a novel feature selection
approach based on t-test feature ranking and Fisher Criterion is proposed for high-
dimensional pattern recognition in AD detection. In the proposed approach, the
number of top featurds determined by using Fisher Criterion, which maximizes the
class separation between AD aH&. In addition, data fusion techniques among
different gray matter atrophy clusters in the brain are introduced to improve the
classification performance. The performance of proposed system on 136 subjects
(including 68 AD and 68 HC) is investigated using 10 fold cross validation. The
proposed method yields accuracy (96.32%), sensitivity (94.11%), specificity
(98.52%) and AUC (99.93%) for AD classification. finally, in the Chapter 6, an
automatic and novel feature selection approach based on different feature ranking
and classification error is investigated. In this regard, seven feature-ranking methods,
namely, SD, MI, IG, PCC, TS, FC, and Gl are evaluated in proposed feature
selection method. Regarding to stopping criteria of the increasing dimensionality
among the ranked features, the resubstitution and cross-validation error estimators
are employed to estimate the optimal number of features with the most
discriminative information in the classification process. In addition, a data fusion
technique is proposed to improve the AD classification performance among different
feature ranking methods. The performance of the proposed system is evaluated using
a data set containing 260 subjects (130 AD patients and 130 HCs) using 10-fold
cross-validation. The experimental results gemeaaturacy (92.48%), sensitivity
(91.07%), specificity (93.89%), and area under the curve (96.30%) of the proposed

method. Table 7.1 presents a comparison of the classification results based on
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proposed approaches for high dimensional pattern recognition in AD detection. In
order to provide a fair comparison, all methods esevaluated using common
dataset described in chapter 4, containing 260 subjects (130 AD patients and 130

HCs) using 10-fold cross-validation strategy.
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Table 7.1: Comparison of classification performance from Chapters 4,5 and 6 with
linear SVM
Method Stopping criteria  ACC(%) SEN(%) SPE(%) AUC(%)

FC 89.65 87.73 91.57 95.33

PDF based € ecut 88.46 86.15 90.76 95.95
esu

e 89.23 86.92 91.53 96.57
cross

FC 87.30 86.92 87.69 95.38

SD e 86.92 83.07 90.76 94.38
esub

e 89.61 88.46 90.76 95.74
cross

FC 88.07 86.92 89.23 95.27

Ml e 88.84 86.92 90.76 94.20
esub

e 91.53 90.00 93.07 95.80
cross

FC 86.53 83.07 90.00 93.67

IG e 88.07 87.69 88.46 94.93
esub

e 88.07 86.92 89.23 94.50
Ranking cross

FC 86.92 85.38 88.46 94.08

based

PCC e 86.15 86.92 85.38 94.97
esub

e 89.23 91.53 86.92 94.62
cross

FC 86.92 85.38 88.46 94.08

TS e 86.15 86.92 85.38 94.97
esub

e 89.23 91.53 86.92 94.62
cross

FC 86.92 85.38 88.46 94.08

FC e 86.15 86.92 85.38 94.97
esub

e 89.23 91.53 86.92 94.62
cross

FC 86.92 85.38 88.46 94.08

Gl e 86.15 85.38 86.92 93.67
esub

e 87.30 86.14 88.45 93.96

Cross

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; tabstial
dependency; MI, mutual information; IG, information gain; P@€&ason’s correlation coefficient;
TS, t-test score; FC, Fisher criterion; Gl, Gini index; PDF, probability distributicrtifum
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Regarding the accuracy, the MI-based ranking followe@ .y shows the highest

result in comparison to the other methods (90.53%). According to sensitivity, the

maximum is achieved with PCC, TS, FC which are categorized in ranking-based

methods followed by, .(91.53%). Based on specificity, the higher achievement is
obtained with Ml-based ranking followed l&y,..(93.07%) and regarding the AUC,

the maximum is attained using MI feature ranking followedehy, (95.70%). In

PDF-based feature selection, selecting the number of PDF bins using FC shows

higher performance in ACC, SEN and SPE in comparison to the other stopping
criteria. The only exception is AUC, where the performance ugipg is higher
than FC. Among the adapted stopping criteria to select the optimum number of top

features,e

oss SNOWS better performance in comparisothe other stopping criteria
such asg., and FC among the alternative ranking methods. In determining the

stopping criteria, error estimation, not only the most discriminative features are
selected, but also the classification error in training pisasenimized. Minimizing

this error corresponds to maximizing training accuracy and learning in the
classification process. As an example, Table 7.2 shows the training accuracy based

on Ml-based feature ranking and three different stopping criteria using linear SVM.

As shown in Table 7.2, it is clear that training accuracy ofethg-based approach
is higher tharg,,,, and FC due to the randomization in the cross validation which

helps to reduce the bias, which is the main problem ofethe-based method.

Additionally, PCC, FC and TS ranking based approaches show the similar

performances among the alternative stopping methods.

114



Table 7.2 Training accuracy base on Ml feature ranking and three different stopping

criteria
Stopping ACC(%) SEN(%) SPE(%) AUC (%)
Criteria
FC 90.29 88.71 91.88 95.70
€, ose 92.43 91.53 93.33 96.80
€ esub 92.05 90.68 93.41 96.20

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve.

Table 7.3 shows the performance improvement by the help of proposed data fusion

among seven different ranking methods as described in section 6.3.4. The

performance of the, -based approach is always higher than the performance of

the FC ande,,-based method.

Table 7.3 Performance of data fusion techniqgue among feature ranking methods

Stopping ACC(%) SEN(%) SPE(%) AUC
Criteria
FC 87.30 86.92 87.69 95.38
€. 92.48 91.07 93.89 96.30
€. 88.84 86.92 90.76 94.20

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve.
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Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In summary, the aim of this study to introduce novel and automatic statistical
feature selection methods for high-dimensional pattern recognition for AD detection.
In Chapter 4, an automatic CAD technigiseintroduced based on a statistical
feature-selection process, namely, PDF of VOI, for the classification of AD. The
proposed feature-selection method compresses the statistical information of high-
dimensional data into a lower-dimensional PDF vector. This applicagbed for
high-dimensional classification, especially for VOI of gray matter atrophy. The PDF-
based feature-selection approadd compared to the standard PLS-based
classification using SVM classifiers. Chapter 4 demonstrated that the PDF-based
feature-selection method is a reliable alternative to the PLS-based method. The
proposed PDF-based method not only extracts the selected statistical features but
also reduces the dimensionality of the input vectors to feature vectors with
acceptably low dimensions. In addition, dimensionality is determined using changing
bin size based on the Fisher criterion to determine the optimal number of bins of the
histogram generating the PDF. The optimal number of bins is obtained by

maximizing the Fisher criterion among the possible number of bins.

Chapter 5 presented a feature selection method using t-test based feature ranking

whichis used for the classification of AD. The optimal size of the selected feaures
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determined by using Fisher Criterion, which maximizes the class separation between
AD and HC. A performance improvemeistalso proposed by applying data fusion
among the individual atrophy clusters as well as the overall atrophy cluster. In
Chapter 6, a CAD system for the classification of AD based on feature-ranking
method and classification errois proposed. In this regard, seven-feature ranking
method (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of
the selected features determined by the classification error estimation, which
minimizes the classification error in the training phase. Among the alternative
methods tested, the results indicate that the MI feature ranking gives the highest or
equal performance, when compared with the other seven ranking methods. In
addition, a data fusion approach among feature ranking methods is introduced to
improve the classification performance. Finally, Chapter 7 provided a comparison
based on proposed approaches for high dimensional pattern recognition in AD
detection. In summary, the results indicate that the MI feature ranking gives the
highest performance, when compared with the other methods. The optimal size of the
selected features is determined using the FC and classification error as stopping
criteria. In this regarde, .. showsa superior performance compared to e,

and FC.

8.2 Future work

As part of future studies on AD classification, we suggest considering feature
ranking-based and PDF-based feature selection for high-dimensional pattern
classification such as the deformation-based analysis and diffusion tensor imaging
(Stebbins & Murphy, 2010; Teipel et al., 2007). Another priority for future stuslies

to use other registration methods sad{Klein et al., 2009). These methods could

further be used to evaluate the accuracy of inter-subject registration in GM volume
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changes in patients with AD. In addition, it is suggested to use data fusion techniques
for the proposed MRI modality with other modalities, such as PET, CSF, and WM,
and to combine them using the proposed approaches in order to achieve higher
accuracy. For example, the PDF-based data fusion technique has already been used
successfully in recent studies for the improvement of face-recognition performance
(H Demirel & Anbarjafari, n.d.; Hasan Demirel & Anbarjafari, 2009). One
interesting area for further research could be to use the heuristic methods such as
genetic algorithm to select an optimal feature subset. Another priority for future
studiesis to employ 3D wavelet analysis in pre-processing stage and use data fusion

techniques among different sub-bands to increase the performance.
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