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ABSTRACT 

Medical record classification is the process of categorizing a patient’s record as 

either having or not having a medical condition based on some given information 

(features) about the patient. Not all available features about a patient are both useful 

and relevant in the process of classification. As such, the need for selecting the 

relevant and useful features arises. Furthermore, the current growth in data 

dimensionality as a result of falling cost of data capture and storage also makes it 

necessary to feed the learning algorithm with only the required features about the 

patient. Over the years, the ML Community has used a number of algorithms for 

feature selection. One of such widely used algorithms is Genetic Algorithm (GA). 

Given that the performance of GA is depended on algorithm parameters and genetic 

operators used, this work modified the genetic operators (crossover and mutation) of 

the GA and used Extreme Learning Machine (ELM) which is a Single Layer 

Feedforward Neural Network (SLFN) with faster training time and least parameter 

tuning for the purpose of record classification. Furthermore, the work evaluated the 

performance of the proposed algorithm on 3 datasets from the UCI ML repository. 

The proposed algorithm showed a faster convergence, better classifier accuracy and 

fewer selected features than the traditional GA and other reported works. The 

proposed method is particularly useful in situation of time constraint, low 

computation power and high dimensional data.  

Keywords: Feature Selection, Filter Methods, Wrapper Methods, Classification, 

Genetic Algorithms, Convergence, Extreme Learning Machine 
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ÖZ 

Tıbbi kayıt sınıflandırma hasta hakkında bilinen tıbbi durum veya bazı verilen 

bilgilere (özellikler) dayalı olarak hastanın kaydını kategorize işlemidir. 

Sınıflandırma sürecinde hasta ile ilgili tüm bilgiler sınıflandırma için yararlı ve ilgili 

olmayabilir. Bu nedenle, yararlı ve ilgili bilgileri mevcut bilgiler arasından seçme 

ihtiyacı duymaktayız. Ayrıca, veri yakalama ve depolama maliyetini düşürme amaçlı 

hasta hakkında sadece gerekli özelliklere sahip olma ve bu özellikleri öğrenme 

algoritmalarında kullanmak için özellik seçimi önem kazanmaktadır. Yıllar geçtikçe, 

ML Topluluğu özellik seçimi için bir dizi algoritma kullanmıştır. Genetik Algoritma 

(GA) yaygın olarak kullanılan algoritmalardan biridir. GA algoritmasının 

performansı verilen papametreler ve genetic operatörlere bağlı olduğu gözönünde 

bulundurulduğundan bu çalışmada özellik seçimi için GA’nın genetic operatörleri 

(Çaprazlama ve Mutasyon) modifiye edilmiş ve kayıt sınıflandırma için hızlı 

öğrenme süresi ve az papametre kullanan Tek Katmanlı İleri Beslemeli Sinir Ağı 

(TKIBSA) ile Extreme Öğrenme Makinesi (EÖM) kulanılmıştır. Önerilen algoritma 

UCI ML deposunda bulunan 3 farklı dataset kullanılarak performansı test edildi. 

Önerilen algoritma geleneksel GA algoritmasından ve önerilen digger 

algoritmalardan  daha hızlı yakınsama, daha iyi sınıflandırma doğruluğu ve daha az 

özellik kullanımı olduğu gösterildi. Önerilen yöntem, özellikle düşük hesaplama 

gücü ve yüksek boyutsal veriler durumunda yararlıdır. 

 

Anahtar Kelimeler: Özellik Seçimi, Filtre Yöntemleri, Sarıcı Yöntemler, 

Sınıflandırma, Genetik Algoritmalar, Yakınsama, Aşırı Öğrenme Makinesi 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

Recently, the Machine Learning (ML) Community has seen a steady growth in both 

data dimensionality and sample size (see Figure 1.1 and Figure 1.2) part in due to the 

rise of fields like “the omics” [4], bioinformatics [6], natural language processing etc. 

and the falling cost of data capture and storage. This growth and the subsequent 

enormity pose a great scalability and performance issues to most of the prevalent 

learning algorithms. Concretely, highly dimensional data often contains a high 

degree of redundant (duplicate) and irrelevant (un-useful) attributes that remarkably 

degrade the efficiency of the learning algorithm used in the ML process. Therefore, 

attribute or feature subset selection proves to be an indispensable technique used in 

removing these irrelevant and redundant attributes in the ML pipeline. Especially 

when faced with a highly dimensional data. 

Another appalling reason for feature subset selection is, since the main aim of the 

ML algorithms is to understand the underlining relationship that associate the feature 

(attribute) space and the class (target) space then, it is justifiable and rational to omit 

all those input attributes with less or no influence on the relationship between the 

attributes and the target in order to obtain a small and comprehendible predicting 

model. For example, [12] proposed many criteria for learning algorithm selection 

which consider the trade-offs between accuracy and size of the predicting model. 
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Figure 1.1: Growth in Number of attributes per dataset in UCI ML repository [18] 

 

 
Figure 1.2: Growth in sample size of datasets in UCI ML repository [18] 

Furthermore, data are collected for a vast array of uses other than ML purposes. For 

instance, data which is collected for accounting, audit or as legal requirement may 

end up been used for ML purpose. On the other hand, data collected for one ML 

algorithm might end up been used for a different algorithm. Thus, many irrelevant 

and redundant attributes in respect to the second algorithm might be obtainable in the 

dataset. More so, these irrelevant and redundant features will be unidentifiable by 

mere looking at the dataset even though the attributes are generated for our target 
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algorithm. Therefore, using intelligent procedures to extract those attributes which 

are important and useful to the learning algorithm is paramount. 

In the same vein, when computational experiment is performed, we collect data 

about investigated entity. Often times, many other candidate attributes are 

incorporated even though some of these attributes are remotely associated to the 

entity been investigated; as a result, some of these incorporated attributes are 

inevitably irrelevant and or redundant. Therefore, to extract those relevant and useful 

attributes from these kinds of dataset, proven operations such as feature subset 

selection algorithm are required due to their objectivity and seeming accuracy. 

In reality, there are two main problems which may be caused by irrelevant and 

redundant features in a dataset. 

1. The irrelevant and redundant features induce more computational cost to the 

ML pipeline. For example, using a weighted linear regression [22] the 

computational expense is O(m
2
+n

2 
LogN) [22] for a single prediction where  

m is the number of attributes in the given dataset, n is the number of attributes 

to be selected with more features, the computational cost for predictions will 

increase polynomially. This is particularly true where there are a high number 

of such predictions; hence the computational cost will be immense. 

2. The irrelevant and redundant features may cause overfitting. For example in a 

medical record classification problem where the Patient’s ID is included as 

one of the attributes, an over tuned learning algorithm might conclude that the 

condition is fully or partially dependent on the patient’s ID 
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1.2 Problem Statement 

Given a dataset with m attributes, the task of feature subset selection is to find a set 

of n distinct features from m which provide the most accurate mapping of the input 

patterns (variables) to the target output (Class). This can be expressed 

mathematically as follows: 

  
  

  
 

  
     (1.1) 

Where the different permutations of n features selected from m is denoted by P,  m! 

is the factorial of m that is m  (   )  (   )     . This can also be 

expressed as  

  
  

  

(   )   
    (1.2) 

Subsequently, to obtain all possible combination of n features from m taking n=1 to 

n=m at a time can be expressed as  

∑   
  

    ∑
  

(   )   

 
      (1.3) 

Generally, the explicit combination of n features is 2
n
 i.e. 

  
    

        
         (1.4) 

Consequently, if a dataset has a total of 10 attributes then there are 2
10

 or 1024 

possible combinations. For a larger dataset which contains 100 attributes, then that 

will be 2
100 

or 1.2677 10
30

 different subset combination. Apparently, this is time 

taking and computationally expensive even in a situation where the dataset is 

relatively small. This makes the used of heuristic or guided search inevitable as it 

avoids most of the less promising search space. 
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1.3 Motivation 

Genetic Algorithm provides the required mechanism for a random search that 

compromises optimality for speed and less computational power requirement. This 

thereby increases the efficiency of the learning algorithm and subsequently improves 

classifier accuracy, model comprehensibility, faster convergence etc. Other 

advantages of using this approach include: 

 Since GA is not exhaustive search this will lead to lower time requirement for 

FS and subsequently for the whole ML pipeline. 

 Less computational requirement for FS since the whole dataset is encoded in 

a string of 0’s and 1’s 

 Least requirement for parameter tuning as GA have few parameters. 

 Easily comprehensible feature relevance metrics as a feature can either be 

selected or not selected as opposed to other methods which produce feature 

relevance metrics which are difficult to interpret e.g. regularized GD with a 

threshold of 0.5 which assigns a weight of 0.467 to an attributes is difficult to 

conclude to either select such a feature or discard it. 

1.4 Thesis Objective 

Unfortunately, even GA when faced with the task of FS for a highly dimensional 

dataset performs slowly. This is especially true where time (in online or real-time 

FS) is of great importance and computational power is limited. Therefore, enhancing 

the performance of GA in this situation is inevitable. To this end, this work modified 

the genetic operators (i.e. Crossover and Mutation) of the traditional binary GA in 

order to improve the classifier accuracy and convergence time of the learning 

algorithm. Furthermore, Extreme Learning Machine (ELM) which is a special 

Artificial Neural Network with a single hidden layer that requires low training time 
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and little parameter tuning was used to assess the efficiency of the proposed method 

using three (Pima Indians, Cleveland, Arrhythmia) datasets obtainable at the UCI 

ML Repository. 

1.5 Structure of Thesis 

This work is structured as follows: in Chapter 2 a comprehensive review of literature 

on FS is presented. Then, in chapter 3 the proposed genetic operators (crossover and 

mutation), datasets and methods used for testing and evaluating the proposed 

procedure are presented. Chapter 4 gives the experimental results. Finally, Chapter 5 

offer conclusion and recommendations. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Records Classification 

Record classification is the task of categorizing a record into a class of known classes 

based on some known training dataset [6]. Most computational problems can be 

represented as record classification task. For example, medical record diagnosis can 

be modeled as the task of classifying a patient’s record as having a condition or not, 

the task of email filtering can be modeled as classifying an email as “spam” or “non-

spam”, the task of News cataloging can be modeled as categorizing news items as 

one of many categories (e.g. “Politics”, “Sports”, Business”, “Entertainment” etc.). 

This makes record classification a pivotal field in computational application. A 

generalized process flow of a record classification is shown below: 

 
Figure 2.1: General outline of record classification [14] 
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From the above diagram, record classification process can be broken down into two 

major phases: 

The Training Phase 

In this phase, the dataset (training) is classified into classes based on the values of the 

attributes and classes conditional probabilities using either statistical, heuristics or 

other learning and induction algorithms. The attribute values and class tags can be 

categorical e.g. genotype information (“AA”,”AS”,”SS”), discrete age in years (e.g. 

1, 2, 3), ordinal e.g. order of cardiac disorder (“First”, “Second”, “Third”), real e.g. 

heart beat measurement (103.22, 99.32, 100.23). Having the fact that some learning 

algorithms and classifiers require particular form of data (e.g. discrete, real, nominal 

etc.), all attributes and class values which do not conform to an algorithm’s 

requirement need to be converted to enable the training phase learn a mapping from 

the attribute space to the class space as follows: 

f (attributes)        

The major learning algorithms and classifiers can be categorized into: 

 Statistical Learning- this set of algorithms use class conditional probability 

and training dataset distribution to learn a classification of the dataset based 

on likelihood of membership. These include algorithms such as Bayesian 

Models, Linear Regression Model, Logistic Regression Model etc. 

 

 Decision Trees- these algorithms partition data into categories based on the 

closeness or similarity measure thereby assign membership to class based on 

closeness of data instance to the nearest class collective attribute such as class 

average. Examples of these algorithms include random tree, k-nearest 

neighbor, k-means etc. 
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 Neural Network- these are nature (based on biological nervous system) 

inspired models which are used to approximate or estimate a mapping 

between a large dimensional set of inputs to the target space (usually singular 

or multiple) classes. In essence, these are biologically inspire transformation 

models from one domain (attribute domain) to another (target domain). 

 

 Kernel Based Classifiers- these classifiers construct hyperplane(s) on the 

training dataset by maximizing the class margin separability of the classes in 

the dataset. The best separability is attained by the hyperplane(s) with the 

maximum distance to the closest data item of any class. Examples include 

Support Vector Machines (SVM), Relevance Vector Machine (RVM) etc. 

 

 Ensemble Classifiers- these are a combination of heuristic and other search 

algorithm which are used for the task of classification. Examples include 

gradient descent, recommender systems etc. 

The Prediction Phase – In this phase, the mapping function or transformation 

learned in the training phase is used to categorize new data instances into the 

established classes based on the attribute values of the new data instance. Here, the 

features and class distribution of both the training and new data instances must be the 

same. This is because, both the prediction or transformation model are built on these 

premise.  

2.2 Feature Selection 

This is the most traditionally used approach for data dimensionality reduction among 

ML experts. The goal is to choose a subset of the original attribute set based on some 

metric that measures the relevance of the individual attributes selected or the quality 
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of the subset selected. This usually leads to better learning algorithm performance 

e.g. faster convergence, better accuracy, simpler model interpretability and cheaper 

computational cost. FS algorithms can be categorized depending on the training 

dataset been labeled or not. This is shown in the figure below: 

 
Figure 2.2: Feature Selection for Data Classification [18] 

From the figure above, FS can be broadly categorized into three; Supervised (labeled 

training dataset), Unsupervised (un-labeled training dataset) and Semi-Supervised 

(uses both labeled and un-labeled training dataset). The supervised FS can be further 

sub-categorized into: filter which performs FS solely based on statistical and general 

properties of the dataset, wrapper which uses performance measurement of a 

predetermined classifier or learning algorithm to select features and embedded 

models which use in-built techniques for FS. 

Unsupervised method on the other hand is an approach to FS where the training 

dataset is not labeled. These methods depend on intrinsic properties of the training 

dataset such as clustering quality [20]. Thus, many equally valid categorizations can 

be generated and subsequently the feature subset generated from this categorizations. 

Having a highly dimensional dataset, it is very impossible to get more useful subsets 

Feature Selection 

Suoervised 

(Flat Features) 

Filter Models 
Wrapper 
Models 

Embedded 
Models 
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(Streaming 
Features) 
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(Structured 
Features) 
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without considering more constraints from an optimization point of view. 

Furthermore, objectively assessing the quality of generated subsets is another 

difficulty in unsupervised methods as opposed to supervised methods. This is 

because supervised FS has a basis of measurement (i.e. the class label) while 

unsupervised methods operate on un-labeled data thereby making performance 

assessment difficult.   

In a situation where the data cannot be completely labeled, a sample thereof can be 

labeled and FS algorithm uses statistics from this sample to generalize on the 

population this is known as semi-supervised FS. Here, it should be noted that a 

sufficient sample size most be obtained to permit generalization and validate the 

performance of the FS algorithm or a Monte Carlo approach should be considered. 

Furthermore, the sample is supposed to be drawn randomly to preserve the 

population distribution. Typically, FS involve four major steps [5]; subset generation, 

subset evaluation, stopping criteria and validation. A number of candidate feature 

subsets are produced according to some search scheme in the subset generation step. 

Then, the generated subsets are evaluated based on some evaluation criteria in the 

evaluation stage. The subset with the best evaluation metrics is chosen after meeting 

the stopping criteria. Finally, the selected subset is validated using any validation 

mechanism or domain knowledge. 

2.2.1 Feature selection for classification  

Supervised FS is the widely applied technique to most of the real-world classification 

problems [25] because; the implicit class proportions and instance conditional 

probability of the data instances are known or can be modeled. Therefore, each 

instance can be categorized to a class. Unfortunately, we have little or no knowledge 
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about the features that produce the best learning model. For that, we initially include 

as much features as possible in the original dataset. These features may eventually be 

irrelevant or redundant to the target concept. Furthermore, it is practically impossible 

to extract the most reliable predictors (good features) before learning a model. 

Therefore, it is better to perform the FS before or while learning the induction model 

as this ensures the best features for the algorithm at hand are selected. Where the 

dataset has a very high dimension, then it may be a good idea to use all possible 

techniques to drastically reduce the feature set before applying supervised FS which 

works better on moderate to small datasets [25]. 

FS for classification aims to select the least sized subset at the same time meeting the 

following constrains: 

 The accuracy of the classifier or learning algorithm does not diminish. 

 The distribution of the resulting feature set is as similar to the class 

distribution of the original dataset as possible. 

Because the search algorithms in FS explore through a very big space (2
m

 where m 

the number of features in the dataset), a stopping criteria is required for heuristic and 

random search algorithms in FS in order to prevent them from behaving as 

exhaustive search (i.e. run the search infinitely). Heuristic searches trade 

performance for accuracy while on the other hand exhaustive search trade 

computational complexity for optimality. Therefore, this calls for hybridization in 

other to strike a balance between efficiency and computational cost [17]. 
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2.2.2 Approaches to Supervised Feature Selection 

Supervised FS can be categorized into three main classes as shown in the figure 

below: 

 
Figure 2.3: Figure 2.3: Approaches to Supervised Feature Selection [18] 

2.2.2.1 Filter Models 

The filter models use statistical and other intrinsic properties of the training dataset to 

extract the best feature subset without using any performance metrics of any 

induction algorithm to evaluate the goodness of the features generated or selected. 

This prevents interaction with any bias associated with the learning algorithm. Filter 

models rely on metrics like correlation, consistency, information, dependency or 

distance. Relief [30], Fisher Score [17], and information gain [22] are examples of 

filter based methods [18]. The major setback of these approaches is that the FS 

process does not consider the requirement and peculiarities of the learning algorithm 

to be used with the selected features. Filter models are preferred where the number of 

original attributes in the dataset is very large. The filter models have several 

advantages some of which are: 
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1. They do not consider learning algorithm’s biases and peculiarities. That 

means features selected can be used with different classifiers or learning 

algorithms. 

2. They generate subset faster than other methods because calculating data 

properties such as correlation, dependence, gain etc is usually cheaper than 

training and assessing the performance of a learning model. 

3. In some situation (where classification cannot learned directly from original 

data), filter methods can be used to reduce the features before other FS 

algorithms are applied. 

Below is a representation of filter model for FS 

 

 

 

 

 

 

 

 

 

Figure 2.4: Filter Model Feature Selection [14] 

 

Filter models can be broadly classified into four classes 

 Forward Selection- these begin with an empty set of selected attributes. 

Attributes from the dataset are added to the selected feature list one after the 

other (sequentially) based on some measure of goodness. Usually, a feature 

with the best evaluation criteria is selected from the yet to be selected 
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features. The number of selected features increases until when the whole 

features from the original dataset are selected. Thereafter, the features are 

ranked based on how early they were added to the list of selected features. 

Form this list number of relevant features needed for the learning algorithm 

can be selected. The Sequential Feature Generation SFG is the most general 

form of Sequential Forward Generation. It starts with a subset of one feature 

then 2 features and so on. A generalized Pseudo code of SFG is given below: 

Seq_Feat_Gen Scheme 

Input: Features – Complete feat set, U – measure of 

goodness 

initialize: Subset = {} /* S selected features * / 

repeat 

feature = FindNext(Feature) 

Subset = Subset u {feature} 

Features = Features - {feature} 

until Subset satisfies U or Features = {} 

Output: Subset 

 

Algorithm 2.1 Sequential Feature Generation [18] 

 Backward Elimination- these begin with the complete attribute set of the 

original dataset as selected features. Thereafter, attributes are dropped one 

after the other based on some measurement metrics. The attribute with the 

least evaluation metric is dropped each time. Therefore, the list of selected 

attributes reduces until there is only one attribute at the end. Here, the 

relevance of an attribute is determined by how late it was removed from the 

original attribute set. Hence the most relevant attribute is the last dropped. 

Because it is easier to discover the most relevant attribute than the least 

relevant one and sometimes the other way round, SBG and SFG usually 

complement one another. A more generic form of SBG is the Backward 

Generation BG which begins with N (number of features in a dataset) 
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attributes subset then (N-1) and so on. A generalized pseudo code of SBG is 

given below: 

Seq_Backward_Gen Scheme 

Input: Features – complete feature set, U – measure of 

goodness 

initialize: Subset = {} /*keeps the dropped attributes * 

/ 

repeat (1) feature = GetNext(Features) 

 (2) Features = Features - {Dropped} 

 (3) Subset = Subset u {Dropped} 

Until: Features satisfy U or Features = {} 

Output: Features U {Dropped} 

Algorithm 2.2: Sequential Backward Generation [18] 

 Bi-directional Generation - these start their subset generation from the two 

ends of the original dataset (i.e. two sequential searches are done in parallel; 

forward and backward). Both searches halt if either one search discovers the 

optimal attribute set or (based on supplied metrics) or both searches arrive at 

the middle of the dataset. Hence, we can say that BS leverages the advantage 

of both SFG and SBG. But it is worth noting that the attributes obtained by 

SFG and SBG may vary over a cause of experiments because their sequential 

selecting and dropping of attributes may not be deterministic. A generalized 

Pseudo code of BG is given below: 

Feat_Bi_Gen Scheme 

Input: Featuresforward, Featuresbackward – full subset set, U 

– measure of goodness 

initialize:  

Subsetforward = 0, /* forward the added */ 

Subsetbackward = 0  /* backward the dropped. */ 

repeat 

(1) If = FindNext(Featuresforward) Ibackward = 

GetNext(Featuresbackward) 

(2) Subsetforward = Subsetforward U {features} Featuresbackward 

= Featuresbackward - {fdropped} 

(3) Featuresforward = Featuresforward - {features Subsetbackward 

= Subsetbackward U{lbackward} 

until Subsetforward satisfy U or Featuresforward = 0 or 

Featuresbackward do not satisfy U or Featuresbackward = {} 

Output: Subsetforward if (a) or Featuresbackward U {fbackward} 

if (b) 

Algorithm 2.3: Bi-directional Generation [18] 
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 Random Generation – these searches in random direction that is to say 

attributes are selected or dropped randomly based on some measurement 

metrics. The algorithm avoid been trapped in a local minima by changing 

their feature generation procedure. The size of the next generation subset 

cannot be determined unlike SFG or SBG. Although, the direction of feature 

generation (i.e. growing or shrinking) can be determined. A generalized 

pseudo code of RG is give below: 

RAND_Gen Algorithm 

Input: Features - full set, U – measure of goodness 

initialize:  

Subset = Subsetbest = {} /* Best subset set */ 

Cardbest = #(Features) /*# - cardinality of a set */ 

repeat 

Subset = RandGen(Features) 

Card = #(Subset) 

if C ≤ Cardbest ^ Subset satisfies U 

Subsetbest = Subset 

Cardbest = Card 

print Sbest 

Until: stopping condition  

Output: Subsetbest  /*Best set Obtained* / 

Algorithm 2.4: Random Generation [18] 

2.2.2 Wrapper Models 

These models base their decision of which attribute to select on the performance 

metric of a predetermined learning or induction algorithm and other factors such as 

the number of selected attributes and presence or absence of some required or 

disdained attributes. Hence for every generated subset, the wrapper models have to 

generate a learning model which makes them computationally prohibitive. But on the 

other hand, the wrapper models extract attributes which are more appropriate for the 

induction algorithm at hand. Hence, regardless of the induction algorithm the 

wrapper model is able to extract the best feature set. Given an induction algorithm or 

a classifier, the wrapper models proceed as thus: 

1. Step 1: Search the feature space and generate a subset 
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2. Step 2: Feed the selected subset to a learning or induction algorithm 

3. Step 3: Measure the goodness of the generated subset based on the 

performance       of the learning algorithm 

4. Step 4: If desired quality is not achieved repeat Steps 1, 2 and 3 else Stop 

A diagrammatic representation of a wrapper FS is shown below: 

 

 

 

 

 

 

 

 

Figure 2.5: Wrapper Model Feature Selection [14] 

Here, the feature generation module produces a subset of attributes; the evaluation 

module uses the classifier or learning algorithm’s performance metrics (usually 

classifier accuracy) to measure the goodness of the generated attribute subset. This 

information will be fed back to the feature generation module for the next round 

which helps to enhance the quality of the generated attributes in the subsequent 

rounds. Finally, the subset with the best evaluation metric gets selected. The 

goodness of this subset is verified using an independent dataset. This is known as 

cross validation [5]. For a dataset with m attributes the computation time is O(2
m
). 

Therefore, applying an exhaustive approach may be impractical except in situation 

where m is relatively small. Many search approaches can be applied to overcome the 

Select Accuracy Full Dataset 

Training 

Data 
Phase 

1 Learning 

Algorithm 
Testing 

Accurac

y 

Phase 2 

Training 

Data 

Testing 

Data 

Best Subset Classifier 

Good or 

Stop? 
Learning 

Algorithm 

Feature 

Generation 



19 

 

obstacles posed by exhaustive search. These include Best-First, Hill-climbing, 

Branch and Bound, Genetic Algorithm etc [8]. 

2.2.2.3 Embedded Models 

Embedded models find which attributes are best predictors of the target class as the 

prediction model is learned. In essence, they perform feature FS as part of the 

learning procedure and are usually specific to given algorithms. Embedded models 

are broadly categorized into three: 

 Pruning Methods – these methods use all data attributes to learn a model 

then try to remove some by making their coefficients 0 at the same time 

trying to maintain learned model performance where performance does not 

deteriorate these attributes are eliminated as irrelevant. An example is the 

recursive FS using SVM [31]. 

 

 Built-in Mechanism – these are embedded mechanism which use feature 

weight adjustment for FS and are specific to some learning algorithms.  

 

 Regularization Models- these accomplish the task of FS with the use of a 

cost function which try to minimize the errors of model learning while 

penalizing the coefficients of the less relevant features. Finally, those features 

with 0 or close to 0 coefficients are removed as irrelevant. An example of this 

is Regularized Gradient Descend RGD. 

2.3 Genetic Algorithm 

This is an optimization algorithm that imitates the Darwin’s process of natural 

selection. This algorithm (sometimes referred to as a meta-heuristic) is applied to 

solving combinatorial and other types of optimization problems where the objective 
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equations are complex to compute. GA form a part of the widely known 

Evolutionary Algorithm EA that use natural selection techniques such as crossover, 

mutation inheritance etc. to generate solutions to optimization and search problems. 

2.3.1 Brief History of Genetic Algorithm 

In 1950, Allan Turing suggested the idea of a “learning machine” to imitate the 

process of evolution of species [1]. In 1954, Nils Aall Barricelli started the 

simulation of Evolution in computing while working on the computer at the Institute 

of Advance Study in Princeton, New Jersey. In 1957, the Australian geneticist Alex 

Fraser reported a series of studies on “artificial selection of organism with multiple 

loci controlling measurable traits”. The simulation of evolution process by biologist 

became rampant in 1960 based on these publications. Here, it is worth noting that 

most of the elements of the modern genetic algorithms were part of Fraser’s initial 

simulation. 1960’s Hans-Joachin Bremermman reported some studies wherein he 

suggested “a population of solutions which go through recombination and alteration 

to solve optimization problems”. These works also had most of the properties of 

modern GA [8]. Some other pioneers on GA include John Holland, Richard 

Friedberg, George Friedman and Michael Conrad. Although the credit of simulating 

a simple evolutionary game is awarded to Barricelli, artificial evolution as a means 

of optimization method were broadly adopted due to the publications of Hans-paul 

Schwefel and Ingo Rechenberg in the 1960’s and 1970’s. 

2.3.2 Genetic Algorithm Steps 

In a GA, the process starts with a population of individuals (also known as solutions, 

chromosomes or phenotype) which strive to solve a search or optimization task. 

Then, these individuals develop through recombination and alteration to be better 

individuals (solutions). Every individual in the population is composed of traits 
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which are then recombined with those of others or altered to create better or fitter 

solutions. Normally, individuals are represented as a string of digits (i.e. 0’s and 1’s 

for binary encoding, 0-9 for permutations and real valued encodings) but other 

encodings are possible [8]. The general workings of GA can be represented as in the 

figure below: 

 
Figure 2.6: Genetic Algorithm Steps [16] 

As shown above, the evolutionary process begins with a set of randomly created 

individuals (solutions), each set of individuals in an iteration are known as a 

generation. In every iteration, each solution is assessed as to how good it solves the 

problem at hand. This is known as fitness evaluation. Better solutions are chosen to 

proceed to the next generation and new solutions are created by recombining and 

altering other individuals which ensures new individuals and traits are introduced 

into the population at each iteration. Usually this stops when a maximum iteration is 

reached or an acceptable level of fitness is achieved or there is no improvement in 

the individuals over certain generations. Generally to function well a GA requires 

1. A good encoding of individuals 
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2. A reliable measure of fitness to assess the quality of individuals. 

In FS using GA, the generally accepted encoding of individuals is an array of bits 

(i.e. 0’s and 1’s) although other data structures and encodings are possible. The 

major reason behind this is there sizes are fixed therefore, they can be easily aligned. 

This facilitates simple crossover operation. Variable length encoding of solution is 

also applicable but this makes crossover more difficult and complex. 

2.3.3 Outline of a Basic Genetic Algorithm 

INPUT {pop_size =Population size, Px= Probabilty of Crossover, Pm =Probability of 

mutation, Nbits = number of bits per individual, f() = fitness function } 

1. [Begin] Create a population of pop_size randomly generated individuals with 

Nbits alleles 

2. [Fitness] Measure the goodness of each individual in the population using f() 

3. [New population] Generate new population by doing the following until the 

required number of individuals is obtained 

1. [Selection] choose two or more individuals from the population to 

serve as parents 

2. [Crossover] with a probability Px apply crossover to parents to 

create new children 

3. [Mutation] alter the traits of a single individual to create a new 

individual with probability Pm 

4.  [Accepting] accept or reject new individuals into population based 

on some measurement 

4. [Replace] Use new population for next generation 

5. [Test] test for termination condition  

6. [Loop] go to 2 

Algorithm 2.5: Outline of a Genetic Algorithm [1] 

2.3.4 Components of a Genetic Algorithm 

2.3.4.1 Encoding of a Chromosome 

Each individual should encode information about how it solves the problem at hand. 

In FS, a string of binary is the simplest way of encoding solutions where a 1 means 

an attribute is chosen and a 0 means an attribute is not chosen e.g. 
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Chromosome One 1011001000100101 

Chromosome Two 1100001000011100 

Table 2.1: Example of Binary Chromosome Encoding 

 

From the table above, each chromosome is a string of bits equal in size usually the 

total number of attributes in the dataset. As earlier mentioned, this makes other GA 

procedures easier. 

2.3.4.2 Fitness Function 

This is a summary of how price a particular individual solution arrives at the solution 

to the problem at hand. This is because each individual is simply a string of numbers 

therefore; a summarized expression of the goodness of each individual is needed to 

decide the surviving (thriving) and non-surviving (dying) individuals. Subsequently, 

after each round of testing, some individuals (worst) are deleted and replaced by 

better individuals. Thus, each individual requires to be assigned a measure of merit 

signifying how close it came to achieving the overall goal. One of the most endearing 

tasks in using GA for optimization is the design of fitness function because this 

requires the designer to figure out both workable and efficient design that measures 

every aspect of the problem been modeled. In essence, it requires more work from 

the human designer to come up with final design of the fitness function which is the 

main driver of the GA. This is because without an expression of how well a problem 

is solved, one does not know when to stop or continue or when to conclude if the 

problem is solvable or not. If the fitness function is bad, the GA will either arrive at a 

wrong solution or not solve the problem entirely. Moreover,  the fitness function 

should not only model the aim of the optimization it should also be cheaply 

computable because the time of execution is equally valuable as the GA process must 

be repeated for a number of times in order to obtain a meaningful solution in a 
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nontrivial problem. There are instance where fitness approximation might how ever 

be appropriate. These include 

 Where the time required to compute the fitness function of a single solution is 

extremely high. 

 Where the accurate measurement of the fitness is not known 

 Where the fitness is imprecise or un-deterministic. 

2.3.4.3 Parent Selection 

In GA, traits from individuals are put together in order to produce new and better 

individuals. Therefore, this raises the need for a technique of selecting those 

individuals to be used as parents for the purpose of children creation. The most 

popular parent selection procedures are as follows: 

 Roulette Wheel: Each individual in the population is given an opportunity of 

been a parent equal to the value of its goodness. Then a number is drawn and 

the individual with fitness value less than the drawn value but greater than 

next individual in fitness is chosen as a parent. This process is iterated until 

we get the needed amount of parents. Consequently, individuals who have 

more fitness will dominate the selection process because they have more 

chances of been selected as they occupy more space on the roulette wheel. 

 

 Rank Based: where there is high disparity between individual’s fitness the 

roulette wheel method will be biased towards fitter individuals. As such, to 

avoid this, rank based method proves to be more applicable. Here, each 

individual is ranked accordingly to its fitness and each rank is given a place 

on the roulette wheel. Therefore, even weaker individuals are given an 
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opportunity of been selected as parents. The figure below gives a contrast 

between roulette wheel and rank based parent selection method 

 

 

 
            Figure 2.5: Comparison of Roulette and Rank Based Selection [8] 

 Tournament: Here a tour size [8] is determined before the real selection 

process. The minimum tour size is two while the maximum is equal to the 

number of individuals in the population. Then, a random number is drawn 

over the population and a subset of the population equal to tour size is 

selected as mating pool. Then, the fittest individuals from the mating pool are 

selected as parents. 

 

 Genitor: Here, individuals are chosen to be parents using linear regression. 

Thereafter the weaker parents are dropped and substituted by better children. 
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2.3.4.4 Genetic Operators 

2.3.4.4.1 Crossover 

Crossover selects genes from multiple parents in order to create new offspring. 

Alleles from the selected parents contain information that help the offspring solve the 

problem. Therefore, an offspring created from two good parents inherits some or all 

of their good traits and defects. For binary encoded GA, the four mostly used 

crossover procedures are: 

 One point crossover: Here, a random point (known as crossover point) is 

determined then the selected parents are cut at these point and the new 

offspring are created by putting the various parts in a crossover arrangement 

[1]. The main problem with this scheme is there may be bias of positional 

arrangement due to consistency in sequential alleles. This is depicted in the 

figure below: 

 
Figure 2.8: One Point Crossover [8] 

 N-point crossover: here, two or more points are chosen as crossover points. 

Then, each parent is dissected into (N+1) points; the subsequent points are 

then arranged in an alternating arrangement from each of the parents [8]. This 

is depicted in the figure below: 

Parents 

Children 
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Figure 2.6: N-Point Crossover [8] 

 Uniform Crossover:  to tackle the bias inherent in both one point and N-

point crossover, this scheme considers each allele independently. Each allele 

is alternated between the two parents to a child with a probability of 0.5. this 

is depicted as in the figure below: 

 

 
Figure 2.7: Uniform Cross Over [8] 

 Cut and Splice:  Here, the parents are cut at different points into different 

lengths and each child is formed by assembling different parts of the parent 

accordingly. This is depicted in the diagram below: 

 
Figure 2.8: Cut and Splice Crossover [8] 
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2.3.4.4.2 Mutation 

Because the crossover operation creates offspring from information inherited from 

multiple parents, offspring recycle traits contents in the population. Therefore, in 

mutation alleles in a single individual are altered this ensures new traits are 

introduced into the population pool. In binary encoded GA the four popularly used 

mutation operations are: 

 Bit Flip: one allele (bit) at a particular point in the parent is flipped (altered 

from 0 to 1 or vice versa). This is depicted in the figure below: 

 

 

 

 

Figure 2.9: Bit-Flip Mutation [14]. 

 Insert Mutation: Two alleles (bits) are randomly selected from a single 

individual and the second allele (bit) is moved next to the first one as shown 

in the figure below: 

 

 

 

 

 

 

Figure 2.13: Insert Mutation [14]. 

 Swap mutation: Here, two random bits are selected then their respective 

positions are swapped. This is shown in the figure below: 
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Figure 2.14: Swap Mutation [14]. 

 Scramble Mutation:  n bits are chosen in an individual then each is 

randomly reassigned a new position in the resulting individual as shown in 

the figure below: 

 

 

 

 

 

 

 

Figure 10: Scramble Mutation [14]. 

 Inversion Mutation:  Here two points are chosen then the bits arrangement 

between those two points are reversed as shown in the figure below: 

 

 

 

 

 

 

 

Figure 2.16: Inversion Mutation [14]. 
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2.3.5 Related Works 

[8] Studied an approach to improve AI and ML technique for generating 

classification rules for intricate real-world dataset. The study noted that standard rule 

inducing systems generate rules which are unacceptable due to two major reasons 

 The need for minimal feature set coupled with cost of computing them. 

 Computing time of the induction systems. 

The study used Genetic Algorithm (GA) and AQ15 rule induction system wherein 

GENESIS [1] was used as the FS algorithm. The results show the potential use of FS 

techniques to improve rule induction systems. GA was shown to produce an 

impressive reduction in the amount of attributes needed for texture classification. 

The efficiency of the method proposed was compared with Sequential Basic Search 

(SBS) procedure. The study observed that the feature set extracted by the Relief [33] 

method were smaller than those obtained by heuristics algorithm (e.g. GA). 

However, GA showed a simultaneous improve in both number of discarded features 

and fitness accuracy as the number of iterations progressed while SBS only showed 

improvement in discarded features with little or no improvement in induction 

accuracy. 

In [14] Shahamat et al used GA for FS of fMRI data used in the classification of 

patient records for schizophrenia. The selected features are classified using Euclidean 

distance based classifier and majority vote method using Leave One Out (LOO) 

cross validation procedure to assess the performance of the learned model. The study 

used the public available dataset NA-MIC to perform the classification. The study 

performed preprocessing including realignment, normalization, and smoothing 

before performing FS. After running GA algorithm the selected features were passed 
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to Linear Discriminant Analysis (LDA) to further extract features which maximizes 

the proportion of inter-class and intra-class variability. Finally, Local Binary Pattern 

(LBP) was used to classify the selected features as Schizophrenic or not. The result 

obtained was compared with the result obtained without applying GA for FS. The 

study noted that the result is comparable with other state of the art procedure. 

Priyanka et al [33] investigated the performance of different classification methods 

before and after applying GA for FS. The study used the Ovarian Cancer dataset with 

a couple of classifiers. These classifiers include: Bayesnet [5], Sequential Minimal 

Optimization (SMO) [5], and simple logistic regression [5]. The performance of all 

algorithms improved dramatically after the introduction of GA for FS. Furthermore, 

the study noted that for any algorithm which is intended to be used with a large 

dataset, it has to be reduced reasonably to a subset which the learning algorithm can 

handle. Furthermore, GA been a stochastic random search provides the desired 

leverage for searching through the feature space. However, when a high rate of 

mutation is applied to the algorithm it tends to behave like other exhaustive search 

procedures. Finally, the study pointed out that GA as a tool for FS is indispensable in 

a situation where the relationship between features cannot be mathematically 

expressed or measured. 

Bir et al [8] proposed a fitness function for GA algorithm to be used for FS. The 

proposed function in addition to classification accuracy penalizes any individual 

solution with higher number of selected features than individuals with less number of 

selected features. The proposed function is expressed as follows 

                                     (2.1) 

Where  
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accuracy = classifier accuracy 

  = variable that reflects the influence of classifier accuracy 

num_features = number of selected feature by an individual solution which is 

given by 

  = variable that reflects the influence of number of selected feature 

                         (   (  
   

  
)) 

Where AES is the ensemble size and ES is the number of base classifiers.  

Here the GA does not only consider the classifier accuracy but also the number of 

selected attributes in each individual. The proposed function was used together with 

Naïve Bayes, Nearest Neighbor, SMO classification algorithms with the following 

datasets; UCI hepatitis, UCI breast cancer, auto mpg where the result of GA FS 

which uses only accuracy as fitness was compared with the proposed fitness 

function. The result showed an increase of a factor of two in convergence speed. 

However, the study suggested the investigation of premature convergence of the 

proposed method in future studies.   

Mitra et al [29] investigated ensemble FS approaches in comparison with heuristic 

approaches. The study tried to understand the factors that influence choice of a 

classifier in order to perform the task of FS. The study arrived at the conclusion that 

for ensemble methods; accuracy, information gain and voting methods are the 

determining factors of the success of FS algorithms while for heuristic; accuracy, 

fitness and diversity of individuals are more crucial in the performance of the 

algorithms. The study integrated accuracy, information gain, weighted and simple 

voting mechanism into ensemble algorithms (Naïve Bayes, Random Subspace, FSS 

and hill climbing) and compared their performance with the traditional algorithms. 
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While on the other hand; accuracy, fitness and diversity were integrated into heuristic 

algorithm (GA and SA) and the performance was compared with the traditional 

algorithm. Furthermore, the earlier integrated mechanisms were reversed for both 

ensemble and heuristic. The result of the reversal showed little or no gain in 

performance. 

In [19] Riccardo investigated the use of GA for FS in spectral data. This study noted 

the peculiarity of FS in spectral data as features are spread out throughout the 

spectrum. Therefore, exhaustive searches find it difficult to find a subset in 

reasonable time. The study however noted that GA after suitable modification 

produce more interpretable result in shorter time since the wavelength are more 

dispersed. Furthermore, the study assumed that there is autocorrelation among 

variable in spectral-data. This makes the performance of a guided search easier to 

converge.  On the other hand, the study noted the risk of applying GA as overfitting 

and this risk adds as the number of evaluated models increase because the chances of 

getting a model with good performance (due to random correlation) gets bigger. 

Finally, the study noted that the proposed GA modification did not consider 

autocorrelation between adjacent wavelength and variables that have never been used 

previously. 

2.4 Extreme Learning Machine 

These are Artificial Neural Networks composed of a single hidden node which are 

used for both classification and regression. ELM was proposed by Guang-Bin Huang 

[9]. ELM is different from other neural networks because the weight connecting the 

input nodes and the hidden layer are set once and never updated. This results in a 

faster learning process as opposed to the predominant back propagation algorithms. 
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Hence, ELM model produce superior generalization on fresh data and more 

comprehendible models than most other Neural Networks models using back 

propagation method for training. This is the reason why the model has attracted both 

academic research and practical adoption in recent years. Areas where ELM have 

recently been used include OP-ELM for evolving fuzzy systems [7], ELM for time 

series prediction [3, 9], regression with missing data [7], finding mislabeled samples 

using ELM [13], FS using ELM [9] classification for nominal data [9] etc. on the 

other hand, current areas of research on ELM include optimally pruned adaption of 

ELM [13], using GPM to accelerate ELM [7] etc. Training ELM is fast because the 

optimal output   is derived using mathematical procedure such as Ordinary Least 

Squares OLS and other regularized alternatives. A model of ELM training can be 

expressed as: 

     (    )    (2.1) 

Where   is some activation function (usually sigmoid, radial basis, Gaussian, logistic 

or any order binary or bi-polar function in the case of classification and any linear 

function in the case of regression). W1 is the vector of weights connecting the input 

and the hidden layer and W2 is the vector of weights connecting hidden layer and the 

output layer. The sequential steps of the algorithm are as follows 

1. W2 is padded by some Gaussian noise 

2. W2 is estimated using least squares to fit a response vector. 

3. Y is calculated by the pseudo inverse 
+
 having a design vector X: 

    (    )      (2.2) 
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2.4.1 Controversy 

The purported invention of ELM by Guang-Bin Huang in 2008 provoked some 

debate where some researchers called the attention of the editor of IEEE transactions 

on neural network saying “the idea of using a connected hidden layer to the inputs by 

random untrained weights was already suggested in the original work on RBF 

networks in the late 1980’s and experiments with multilayer perceptrons with similar 

randomness had appeared in about the same time frame”. Subsequently, Guang-Bin 

replied in a paper in 2015 complaining about “a very negative and unhelpful 

comments on ELM in neither academic nor professional manner due to various 

reasons and intensions” [9]. Arguing that his work “provides a unifying learning 

platform” for various types of Neural Networks.  

A diagrammatic representation of an ELM is shown below 

 
Figure 2.17: Representation of ELM with multiple outputs [16]. 

In the figure above, the model represents a multi-class categorization problem. A 

dataset of N observations with samples {xi,yi} is assumed. Where xi   R
d 

and yi   {1, 

2,…, c} and c is the total number of different classes. A binary variable is used to 
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encode the target T. Here, T is the vector of class tags where Tij=1 if and only if yi = j 

(that is the instance 1 is a member of class j) Else Tij=0. In the case of a bi-class 

classification problem, a single output variable is enough since membership to a class 

can be expressed using a threshold. An SLFN with d input node and M hidden nodes 

can therefore be represented as  

 ( )  ∑    (     )
 
      (2.3) 

Where    are the weights of the output layer, h(.) is a non-linear activation function, 

wk is weights of the hidden layer, x is the input vector to the model,  f(.) is a c-

dimensional vector which represent the output of the model. Membership to a class is 

assigned based on the biggest element of the output vector. From a linear algebraic 

point of view, the problem is that of calculating the least square of the following 

matrix equation 

     where    (     )   (2.4) 

The model bias are represented by concatenating a 1 to each xi or appending a 

column of 1’s to the matrix H. for N different observations of {xi, yi} where xi = 

[xi1,xi2,…xin]
T   R

n
 and t = [ti1,ti2,…tin]

T
   R

m
, a single layer feedforward neural 

network with   hidden nodes and g(x) activation function can be written as 

∑     (  )
 
    ∑    (        )    

 
             (2.5) 

Where     [              is the vector of weights between the i
th 

hidden node and 

the output nodes wi = [wi1,wi2,…win]
T
 is the vector of weights between the i

th
 hidden 

node to the output nodes. bi is the threshold of the i
th

 hidden node. Hence, wi,xj 

represent the inner product of wi and xj. Subsequently, this single layer feedforward 

neural network with N hidden nodes and g(x) activation function can deduce N 
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samples with 0 error mean that is ∑ ‖    ‖
 
   = 0. This means there is a bi,wi such 

that  

∑    (        )              
     (2.5) 

The system above can be summarized as 

H =T      (2.6) 

Where  
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   (2.7) 

H is the matrix output of the hidden layer; the i
th 

column of H represent the hidden 

output associated to x1,x2,…xN. If the activation function g in the system above is 

infinitely differentiable then, we can show that the required hidden nodes of the 

model is Ñ  N 

2.4.2 Related Work 

The applications of computational methods in medicine have shown a tremendous 

adoption of Artificial Intelligence (AI) and specifically Machine Learning (ML) 

approaches in the diagnosis of patient medical conditions. One remarkable area 

which has shown success is the application of soft computing methods such as ANN, 

pattern recognition, fuzzy principles, signal processing and image processing in the 

classification, clustering and regression of patient records. In this vein, a generation 

of expert systems which achieve a remarkable accuracy and efficiency has been 

reported by researchers in many different areas of medicine ranging from genomics, 
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personalized medicine, protein to protein interaction, disease-drug relation etc. 

Consequently, ELM been a specialized ANN have widely been used applied in the 

diagnosis and classification of medical records; results obtained from these studies 

have so far shown an incredible accuracy and speed of ELM in medical record 

classification. 

In [13] Electroencephalogram (EEG) was used to detect the presence of epilepsy 

seizures in participants. The study used sample entropy as a means of FS for 

performing the task of classification of EEG signals which are normal (ictal) or 

abnormal (intrical). Here, the value of the sample entropy plays the role of sample 

ceiling in the procedure. It was observed that the value of sample entropy falls 

suddenly in data with presence of epilepsy which delineates the occurrences or 

absence of epilepsy. The study used the Analytical Hierarchical Process (AHP) 

method to select the input weights and hidden biases for the ELM. The study 

observed that using sample entropy and hybridized ELM a better accuracy and speed 

was achieved. 

Similarly, ELM was used in [2] for the identification of Erythematic Squamous Skin 

disease. Here, the researchers used ELM to classify a patient record into one of seven 

classes (psoriasis, seborrheic plegmatis, lichen planus, pityriasis rosea, chronic 

dermatitis and absence of the disease). Due to the close clinical features of the 

diseases, other classification algorithms perform poorly on this problem. In contrast, 

ELM performed astoundingly better with an accuracy of 84.74% as opposed to other 

methods such as the classical ANN which reported an accuracy of 77.26% on 

average based on the UCI Erythematic dataset. However, the study noted that ELM 

performs slightly better when the percentage of training sets decreases with an 
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increase in the testing sets which is a rare ability. More so, the study discovered that 

ELM was able to maintain a consistency in the face of missing entries in both the 

training and test sets.  

Karpagavalli et al [9] used Electrocardiography (ECG) signal to detect cardiac 

disease using ELM classifier. The study compared the performance of ELM and 

Relevance Vector Machine (RVM) on MIT-BIH dataset. The result showed the 

superiority of the RVM on unprocessed dataset and vice versa on a processed dataset 

i.e. the ELM out performed RVM on a selected feature set in both accuracy and 

speed while the RVM performed better on the raw data. Furthermore, both 

approaches were compared with traditional classifiers such as ANN where the results 

indicate the superiority of the two approaches. However, the study noted the 

advantages of ELM over RVM as requiring less or no parameter tuning, learning 

speed and more comprehendible model due to the absence of hidden transformation. 

Finally, the research suggested the use of ELM in a situation where (1) data 

preprocessing can be performed, (2) where speed is of higher importance and learned 

model need to be understandable. While RVM is better applied in a situation where; 

preprocessing cannot be performed, speed is of low or no importance in the learning 

process and model comprehensibility is of low or no importance.   

Muthanantha et al [7] proposed Optimized Extreme Learning Machine (OELM) for 

the classification of Encephalogram (EEG) with emphasis on epileptic seizure 

detection. The proposed method does not require selection of hidden neurons, 

adjustment of hidden weight and biases. The performance of the proposed classifier 

was compared against traditional classifiers such as Linear Regression, ANN, SVM 

and traditional ELM. The study showed that the speed and accuracy of the traditional 
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ELM was enhanced by ranking the neurons using Minimum Redundancy Maximum 

Relevance (MRMR) algorithm and selection of the most relevant neurons thereby 

reducing the size of the ELM and the computational requirement of the model in 

general. This reduction there by boost speed and accuracy of the learned model. The 

study observed that ELM needs more hidden nodes than Backpropagation methods 

but much less than SVM. Furthermore, ELM models tend to have problems when 

irrelevant (uncorrelated) and redundant variables are present in the training set. For 

this it is advised to perform pruning of the irrelevant and redundant variables using 

information gain approaches such as MRMR before applying ELM consequently 

their proposed method embed this algorithm making it a candidate in high 

performing ELM flavors.  

[21] Used a distributed ELM with Mapreduce framework which can cover the 

shortage of the traditional ELM whose learning ability in huge dataset is weak. The 

study found out that most expensive computational part of the ELM is the Matrix 

Moore-Penrose generalized inverse operator in the output weight vector calculation. 

As the Matrix multiplication operator is decomposable, a distributed ELM based on 

the Mapreduce framework can calculate the matrix multiplication efficiently and 

accurately in parallel and then the corresponding output weight vector is calculated 

centrally. Consequently, the study outlined the importance of their proposed method 

in a situation where the data volume to be analyzed exceeds the computing capacity 

of a single machine. Due to generalization performance, rapid training speed and 

little parameter tuning, ELM has demonstrated it is indispensable in the area of 

online or real time classification of huge dataset. However, the study noted that the 

proposed method can only be applied in a situation where the matrix multiplication is 

decomposable and the corresponding output weight vector can be centrally 
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computed. In conclusion, the study proved the theoretically that most expensive 

computational part of the ELM can be distributed to any parallel computing pipeline 

to improve performance and speed. However, where the output weight cannot be 

summed or averaged over the entire distributed computing pipeline, this will pose a 

problem to the proposed Algorithm. 

Xiaolong [3] et al used ELM for a study on the diagnosis Attention-

Deficit/Hyperactivity Disorder (ADHD). They studied the effects of data volume on 

the performance of both SVM and ELM on the classification of which parts of the 

brain are associated with ADHD. The study employed a high resolution Magnetic 

Resonance Imaging (MRI) images from patient with and without ADHD. Multiple 

brain attributes e.g. cortical thickness was measured. The LOO cross-validation 

procedure was used to verifiy the performance of both classifiers. The result showed 

that ELM achieved 90.18% accuracy compared to SVM which achieved 86.55%. 

The study found a profound difference between patients with and without ADHD in 

the frontal, temporal and occipital lobes and in the insular parts of the brain. The 

research noted the speed and accuracy of the ELM algorithm and minimal 

interference requirement. In conclusion, the research proposed the use ELM in real-

life examination of ADHD. 



42 

 

Chapter 3 

DATA AND PROPOSED METHOD 

3.1 Introduction 

In this chapter, we will discuss the proposed algorithm, dataset and validation 

methods used in evaluating the proposed algorithm. Furthermore, we will discuss the 

measurement metrics employed to assess the performance of the proposed algorithm. 

This thesis selected three different datasets obtainable at the UCI ML repository. 

These include: Pima Indians dataset which has a total of 8 attributes including the 

class attribute, Cleveland dataset which contains 75 attributes including the class 

attributes and Arrhythmia dataset which has 279 attributes including the class 

attributes. This is in order to test the proposed algorithm against dataset with small, 

medium and high number of attributes. 

3.2 Datasets 

3.2.1 Heart disease Datasets 

This dataset is made up of four different databases which were contributed to the 

repository by Andras Janosi of Hungarian Institute of Cardiology Budapest, William 

Steinbrunn of University Hospital Zurich, Matthias Pfisterer of University Hospital 

Basel Switzerland and Robert Detrano of V.A. Medical Center Long Beach and 

Cleveland Clinic Foundation. Each database contains 76 attributes although not all 

studies on the dataset refer to all the attributes. Rather, most studies are performed on 

a reduced attribute of 14 features in particular; the Cleveland dataset is the most 

widely used. In this dataset the attributes represent the presence or absence of heart 
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disease. Where 0 stands for absence and 1, 2, 3, 4 represent the absence of the 

disease. Although most researches (including this thesis) pay more attention on 

classifying only presence and absence, classes 1, 2, 3, 4 represent different classes of 

heart diseases. Recently, the names and social security numbers of patients were 

replaced with dummy values for privacy and security reasons. See Appendix A1 for 

attribute information on this dataset. This dataset is obtainable at: 

https://archive.ics.uci.edu/ml/datasets/Heart+Disease 

3.2.1.2 Information Summary 

Set 
Characteristics:   

Multivariate 
Number of 
Instances: 

303 Area: Life 

Attribute 
Characteristics: 

Categorical, 
Integer, Real 

Number of 
Attributes: 

75 Date Donated 
1988-
07-01 

Associated 
Tasks: 

Classification 
Missing 
Values? 

Yes 
Number of 
Web Hits: 

343800 

Table 3.1: Cleveland Heart Disease Dataset Information Summary 

3.2.2 Pima Indians Diabetes Data Set  

This dataset documents the relationship between the numbers of times women were 

pregnant and the BMIs of Pima Indian Women older than 21 years old, it has been 

used by researchers to predict diabetes pedigree of respondents. Variables such as 

whether the women have diabetes and their diabetes pedigree function are outline in 

this dataset. Several constraints were placed on the selection of these instances from 

a larger database by donors of the dataset. In particular, it is worth noting that all 

patients here are females at least 21 years old of Pima Indian heritage. See appendix 

A2 for attribute information on this dataset. This dataset is obtainable at: 

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes 

 

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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3.2.2.2 Information Summary 

Data Set 
Characteristics:   

Multivariate 
Number of 
Instances: 

768 Area: Life 

Attribute 
Characteristics: 

Integer, Real 
Number of 
Attributes: 

8 Date Donated 
1990-
05-09 

Associated 
Tasks: 

Classification 
Missing 
Values? 

Yes 
Number of 
Web Hits: 

199047 

Table 3.2: Pima Indians Diabetics Dataset Information Summary 

3.2.3 Arrhythmia Data Set 

This dataset is made up of 279 attributes including the class attribute. Of this 

attributes, 206 are linear while the remaining are nominal. The dataset was generated 

from a study by H. Altay Guvenir [27] to classify patient record as having or not 

having cardiac arrhythmia. In the target attribute, 01 means absence of disease, while 

02-15 refer to different types of cardiac arrhythmia. The names and ID numbers of 

the patients were recently replaced with dummy values by the donor of the dataset 

for security and privacy issues. For attribute information on this dataset, see 

appendix A3. This dataset is obtainable at: 

https://archive.ics.uci.edu/ml/datasets/Arrhythmia 

3.2.3.2 Information Summary 

Data Set 
Characteristics:   

Multivariate 
Number of 
Instances: 

452 Area: Life 

Attribute 
Characteristics: 

Categorical, 
Integer, Real 

Number of 
Attributes: 

279 
Date 
Donated 

1998-
01-01 

Associated 
Tasks: 

Classification 
Missing 
Values? 

Yes 
Number of 
Web Hits: 

116696 

Table 3.3: Arrhythmia Dataset Information Summary 

 

https://archive.ics.uci.edu/ml/datasets/Arrhythmia
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3.3 Proposed Crossover and Mutation 

As in the traditional GA, the proposed method begins by creating a population of 

randomly generated individuals. Then these individuals are evaluated using a fitness 

function (this thesis used two different fitness functions to assess the performance of 

the algorithm), after the normal elitism, crossover and mutation; a special process of 

parent selection which uses the elite individuals is performed to select individuals 

into the mating pool. Then, the special crossover and mutation are then applied to 

these individuals to generate new offsprings. Finally, offspring created from the 

normal and special GA operations are put together and the best individuals are 

selected to next generation. This is repeated until a stopping criterion is met.  

To ensure we retain the randomness of the GA, the special mutation generates a little 

number of offspring of the next generation. Furthermore, crossover and mutation are 

only applied to elite individuals to encourage greediness of the algorithm. In 

addition, the minimum requirement to serve as parent is averaged over the whole 

population. This procedure is suitable for FS because we are only interested in alleles 

which have higher relationship with target class. Therefore, only alleles agreed upon 

by elite individuals are considered as important.  

3.3.1 Generating a New Population 

A new population of chromosomes at every iteration is generated by three different 

recombination and alteration operations. These are 

 Conventional Elitism 

 Conventional Crossover and Mutation  

 Special Crossover and Mutation 
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 Conventional Elitism – This is the process by which individual 

chromosomes are sent to the next generation without been altered. Usually, a 

percentage of the best individuals or individuals that meet some criteria are 

sent to the next generation in order to preserve good traits over generations 

hence, the name elitism. As in conventional GA, the rate of elitism used 

affects the convergence of the algorithm and the average fitness of 

individuals in a population. In the proposed algorithm, N’ (a parameter pass 

to the algorithm or the conventional elitism rate might be used) individuals 

are selected as elite individuals to the next generation. 

 

 Conventional Crossover and Mutation – next, the conventional crossover 

and mutation which is the process of individuals generation through 

recombination and alteration is used to generate N’’ number of individuals in 

the next generation. As in the conventional GA, the type of crossover and 

mutation operations used greatly affects the fitness of the generated 

individuals. Hence, a good crossover and mutation operations are required for 

a better performance. 

 

 Special Crossover and Mutation – The remaining (N’’’) individuals in the 

population are generated using the proposed crossover and mutation 

operations which will is discussed in the next section. This operation 

produces fitter individuals because the elite individuals and voting 

mechanism are used to generate individuals at the same time average 

population fitness is used for performance measurement to prevent premature 
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convergence. Therefore, the composition of the next generation at any 

iteration can be diagrammatically represented as in the figure below: 

   

 

 

 

Figure 3.1: Generation of individuals in a population 

3.3.2 Formulation of the New Individual 

In a GA with a population of N individuals where each individual is composed of M 

alleles, then this population can be represented as a matrix of N M dimension. The 

fitness of each individual is denoted by f (indivn), the fitness required to be 

considered as a good parent is denoted as fg, the average fitness in the population is 

denoted by Favg. indivn:f(indivn)   fg  are selected to undergo the special crossover 

and mutation to create a new individual. That is to say out of N individuals, N’ good 

individuals (those with fitness   fg) are selected for the proposed reproduction. The 

value of fg is obtained using  

fg = g   Favg     (3.1) 

Where g is a constant [0, 1] which signifies the relevance of the average fitness in the 

process and Favg is the average fitness in the population and is given by 

Favg = 
∑  (      ) 

 

 
      (3.2) 

Overall 

Population 

N’ Individuals 

N’’ Individuals 

N’’’ Individuals 

Through Elitism 

Through Conventional 

Crossover and Mutation 

Through Proposed 

Crossover and Mutation 
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If g=1 then, fg will be equal to Favg. The reason for selecting g [0, 1] is to ensure that 

the whole search space is been explored. After obtaining the minimum requirement 

to be selected as a parent (i.e. Favg and fg ), the sum of 1’s alleles across both 

horizontal and vertical directions of the matrix (N M) is obtained. The sum of alleles 

in the horizontal direction serves as indicator of the number of alleles which should 

be present in the new individual and is obtained as  

L = h   Lavg     (3.3) 

Where L is the number of 1’s in the parent h is a constant [0, 1] and Lavg is the 

average 1’s alleles in the horizontal direction and is given as 

Lavg= 
∑   

  
   

 
      (3.4) 

Where Ln is the sum of occurrences of 1’s alleles in the horizontal direction which 

represents the number of attributes selected by an individual and is given by  

Ln=∑    
 
        (3.5) 

And the sum of 1’s in the vertical direction is the voting weight of a selected feature 

that determines which allele should be a 1 in the generated offspring and defined by 

Vm=∑    
 
        (3.6) 

The created offspring will be composed of 1 alleles selected from the highest 

constant Vm m=1 to M. A single individual is considered for mutation using bit flip 

mutation where a single allele with a bi value of one standard deviation below the 

mean (i.e. 1 value below Lavg is flipped from a zero to a 1 to generate another 

individual. More individuals are generated by repeating this procedure for all other 

alleles with one value below Lavg until the required number of N’’’ is obtained 
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Figure 3.2: Flow chart of the proposed Procedure 
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Figure 3.3: Example of Proposed Crossover and Mutation Technique 

In the example above, Lavg =7 and l = Lavg. Hence, the new individual will have 7 1’s 

alleles. For us to get these alleles we use the biggest vertical alleles which are found 

at m=13, 12, 6, 10, 9, 2, 3 with values 9,8, 8, 7, 7, 7, 6 respectively, these alleles are 

then ranked based on Vm  and the top l ranked alleles are chosen. Here, we chose 6 

which is the next rank allele because 7 cannot be chosen. 

3.4 Data Partition 

3.4.1 Training Set 

In ML, a training set is composed of patterns and target vectors which are used by a 

learning algorithm to formulate a classification model (for example Neural Network 

or Naïve Bayes classifier). In these fields, emphasis are placed on avoiding to overfit, 

so as to achieve the best possible generalization performance on an independent 

dataset known as the  test set that follows the same probability distribution as the 

training set. This thesis used 60% of each dataset as training set. This is the prevalent 

amount used for training by most researchers in the ML community. This amount 

ensures that the learning algorithm will see more than half (50%) example of data 

instances which is a precursor to a good generalization. 
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3.4.2 Validation Set 

In order to avoid overfitting in any learning algorithm, it is necessary to have a 

validation set apart from the training and test sets. For example, in a situation where 

the best classifier for the problem is sought after, the training set is employed to train 

the various candidate algorithms, then the validation set is used to contrast their 

various performances and conclude which one to use, finally, the test set is used to 

obtain the performance of the selected algorithm. The validation set serves a myriad 

of functions: it is a training set used by testing the algorithm, but neither as part of 

the final testing, nor as part of the low-level training. A simple procedure is to set 

aside a part of the training set and it as validation set. This is referred to as the 

holdout method. Alternatively, this partitioning process can be repeated, where the 

original training set is partitioned into training and validation sets; this is referred to 

as the cross-validation. These repeated partitioning can be performed in a number of 

ways, such as splitting the dataset into two sets and using them as training-validation 

and then validation-training, or repeatedly selecting a random subset of the dataset as 

a validation set this is  known as k-fold cross-validation. 

3.4.3 Purpose of Cross-validation 

In a learning process where the task is to fit a model with multiple parameters on a 

given dataset, the induction algorithm tends to optimize these parameters as best as 

possible on the given dataset. This is known as overfitting. This is more probable in a 

case where the data observations are few or the model parameters are many. To 

overcome this, an independent set of data is used to measure how the algorithm has 

fit the learning model. This can also be useful in a situation where we have to choose 

from among competing algorithms. Thus, a learning algorithm with the least fit 

algorithm is selected. 
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3.4.4 k-Fold Cross-validation 

In this type of cross-validation, the dataset is randomly segmented into k equal 

partitions. A single partition is kept aside for cross-validation and the remaining k-1 

partitions are used for training. This procedure is iterated for n (folds) times. Then, 

an average performance is obtained thereof which signifies the performance of the 

algorithm been evaluated. This process of cross-validation has a benefit over others 

because each data item is used for training and validation. Each observation is used 

for training n times for training and once for validation. In this thesis n=10 is used 

and is the most commonly used regiment [6] but k is variable. Where k is equal to n 

(sample size), then this becomes a Leave One Out (LOO) cross-validation. Usually, k 

is chosen to make the mean response value over all the folds equal. However, for bi-

class classification this means every fold will contain almost the same proportions of 

the two classes. A diagrammatic representation of k-fold cross validation is shown 

below: 

 
Figure 3.3: K-fold Cross validation [25] 
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Chapter 4 

EXPERIMENTAL RESULTS 

4.1 Introduction 

In this chapter the results obtained from the computational experiment are presented. 

Here, Genetic Algorithm with the proposed crossover and mutation methods was 

used against the three selected datasets (Pima Indians, Cleveland and Arrhythmia) 

and the performance was compared with the performance of the traditional 

algorithm. Furthermore, the GA used two different fitness functions in this research 

(1) a fitness function which penalizes individual chromosomes which select more 

features as proposed by [5]. (2) a fitness function which uses only the classifier 

accuracy. The performance was evaluated and finally, the proposed GA operator was 

added to the GA and the performance was evaluated. The evaluation metrics used in 

this thesis included: 

(1) Accuracy of the classifier  

(2) Convergence of the algorithm  

(3) Average individual fitness  

(4) Diversity of individuals  

(5) Number of features selected by best individual.  

Other investigated issues include effect of parent pool size on the proposed 

algorithm, effect of population size on the convergence of the algorithm and stability 

of the GA using the proposed algorithm, the effect of probability of mutation and 
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crossover on the proposed method. Finally, from the Extreme Learning Machine 

(ELM) point this study reported specificity and sensitivity of the model trained using 

the selected features, ROC of the model and the confusion matrix. The experiment 

started with the traditional algorithm then a special fitness function was added to the 

GA. Thereafter, the proposed crossover and mutation was added with and without 

the fitness function. Here, an ELM (with 10 hidden neurons on both Pima Indians 

and Cleveland Datasets, 20 Hidden neurons on Arrhythmia datasets and a sigmoid 

activation function) was trained to access the performance of the proposed method. 

Finally, the accuracy, sensitivity, specificity and ROC of the trained model for 

Cleveland dataset were reported. 

4.2 Results 

This study started by investigating the performance of the traditional GA on the three 

datasets (Pima Indians, Cleveland, Arrhythmia). The GA used a population size of 

50, maximum iteration of 100, elitism of 25%, and crossover rate of 20% and 

mutation rate of 2% as suggested by [21]. While in each dataset the number of bits is 

equal to the total number of features in the dataset. Thus at the end of an experiment, 

the number of alleles with a 1 signifies those features which are selected for example 

a chromosome with the following alleles 0011101 on the Pima Indians dataset means 

the 3
rd

,4
th

,5
th

 and 7
th

 were selected. The result of traditional GA is presented in the 

figure below: 
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Figure 4.1: Result for Traditional GA without special crossover and mutation, 

without special fitness function. (A)Pima Indians (B) Cleveland (C) Arrhythmia 

In the figure above, the convergence of the traditional GA on the three test datasets is 

presented. Here, the fitness function did not penalized individuals with higher 

number of selected features. It can be seen that the algorithm achieved an accuracy of 

0.76 which is below the average reported accuracies [1, 8, 11, 14] and the algorithm 

converged at the 30
th

 iteration in the case of Pima Indians dataset which has a small 

feature set of 8 features, 80
th

 in the case of Arrhythmia dataset which has a large 

dataset of 279 features. Furthermore, the best fitness achieved here is 0.76 while the 

average fitness is 0.54 which points to the wide gap between individual fitness using 

this algorithm. Therefore, in situations where multiple equally fit individuals are 

C 

B 

A 
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required this algorithm may not be of any use. Again the fact that the algorithm 

improved even at the 80
th

 iteration can be seen as yet to converge because the 

achieved accuracy is below the baseline reported accuracies as earlier noted  

Next the GA was integrated with a special fitness the function which penalizes an 

individual for selecting more features as discussed above. Theoretically, this is 

expected to force all individuals to conform to some environmental factors thereby 

making them more fit and so the population will be highly qualitative. The result of 

this experiment is presented below: 

 

 

 
Figure 4.2: Result for Traditional GA without special crossover and mutation with 

special fitness function. (A)Pima Indians (B) Cleveland (C) Arrhythmia 

A 

B 

C 
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In the figure above, all the other algorithm parameters and settings were kept same as 

in the first experiment only the special fitness function was introduced. The result 

indicates a relative improvement in the convergence time but the achieved accuracy 

remained the same. At the end of this experiment the algorithm selected 4 features 

(insulin, sugar, no of pregnancies and age) out of the 8 original features as the best 

indicators for the Pima Indians dataset. More so, it selected 34 features out of the 

original 76 features as the best indicators in the case of the Cleveland dataset and 126 

features out of 276 features for Arrhythmia dataset. This indicates that the algorithm 

with this parameters and settings performed below the reported baseline performance 

[1, 8, 11, 14] 

 

A 

B 
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Figure 4.3: Result for GA with special crossover and mutation without Special 

fitness function. (A)Pima Indians (B) Cleveland (C) Arrhythmia 

In the figure above, the proposed crossover and mutation were introduced to the GA. 

As in the two previous experiments, all other parameters and settings were 

unchanged. Furthermore, a simple fitness function which uses only the classifier 

accuracy (does not penalize individuals with higher selected features) was used. The 

result showed a leap in achieved accuracy of the classifier from 0.76 in the 

experiment two above to 0.84. Proportionately, the algorithm converged at the 20
th

 

iteration for Pima Indians dataset, 25
th

 iteration for Cleveland and 50
th

 iteration for 

Arrhythmia dataset which is an improvement over the two earlier reported 

experiments. Furthermore, it can be seen that the difference between the best and 

average fitness in the population over have stabilized over the after the convergence 

of the algorithm for all the datasets: 

C 
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Figure 4.4: Result for Traditional GA with special crossover and mutation and fitness 

function. (A)Pima Indians (B) Cleveland (C) Arrhythmia 

 

In the figure above, the proposed crossover and mutation was used in addition to a 

fitness function which uses both classifier accuracy and higher selected feature 

penalty. All other algorithm parameters and settings were kept constant. This is to 

maintain consistency in the test setup for all the three datasets. It can be seen that the 

difference between the best and average fitness was relatively low in the case of 

Cleveland and Arrhythmia datasets and much lower in the case of Pima Indians 

dataset. Furthermore, the achieved classifier accuracy improved tremendously from 

what was reported in all the other experimental setups. More so, the number of 

selected features for Pima Indians is 3 features (which is less than the baseline report 

[17] while in the case of Cleveland this experimental setup selected 8 features which 

A 

B 

C 
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is also less than the 13 reported by most studies [1, 8, 11, 14]. Finally, it is worth 

noting that the average individual fitness in this setup is almost close to the best 

fitness which is an added advantage of the algorithm. This is useful in situations 

where more than one solution is required. 

As discussed in section 3.3 one of the parameter settings of a GA is elitism size. This 

parameter determines which individuals go to the next generation without been 

changed thereby, preserving good traits in the population. This parameter was also 

used as a determinant of the parent pool size in the proposed algorithm, therefore, 

this thesis investigated the effect of elitism on the performance of the proposed 

algorithm using the Cleveland dataset and the result is presented in the table below: 

Elitism No Iteration Before 

Convergence 

Classifier 

Accuracy 

No of Features 

Selected 

0 65 0.751 31 

10 19 0.81 10 

20 27 0.0.792 11 

30 51 0.79 13 

40 24 0.0.78 18 

50 32 0.765 21 

60 62 0.76 23 

70 67 0.756 25 

Table 4.1: Result of algorithm convergence for different elitism size on the proposed 

algorithm 

In the table above, it can be seen that as the size of elitism increased the convergence 

performance of the algorithm, classifier accuracy dropped and the number of selected 

features increased. This is expectedly from the fact that as the parent pool size 

increase the sum of vertical important alleles will increase thereby making much 
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allele important. Therefore, the algorithm will be unable to drop as much 

unimportant alleles as possible and will require more iterations to converge. It is 

expected that using a very high rate of mutation will solve this problem as mutation 

will introduce new information into the population. In this case, a bit flipping 

mutation is the only applicable mutation. This is subject to further research. 

Another parameter of GA which affects the behavior of the algorithm is population 

size. This parameter represents the number of solutions generated in each iteration 

and thus a variation in the population size will determine how long it takes to get the 

best individual. Hence, this thesis investigated the effect of population size on the 

performance of the proposed algorithm the Cleveland dataset and result is presented 

in the table below: 

Population 

Size 

No Iteration Before 

Convergence 

Classifier 

Accuracy 

No of Features 

Selected 

20 62 0.74 24 

25 58 0.76 21 

30 52 0.765 21 

35 44 0.78 19 

40 32 0.786 17 

45 21 0.792 16 

50 18 0.818 12 

Table 4.2: Result of algorithm convergence for different population size on the 

proposed algorithm 

In the table above, it can be seen that as the size of the population increased the 

convergence performance of the algorithm improved. This is because at each 

iteration the number of individuals created or recombined is high. Therefore, the 
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probability of obtaining the best individual is increased as the number of individuals 

in an iteration increased. 

In GA, the crossover rate is the probability of an individual to undergo the 

recombination process. This parameter controls the intensity of the search process in 

the GA. Been one of the proposed techniques in this thesis, we investigated how 

different values of the parameter affects the learning process. Whence, different 

values of crossover rate where set for the GA with the Cleveland dataset using the 

same parameters as in the other experiments. The result is presented below: 

 

Crossover Rate No Iteration Before 

Convergence 

Classifier 

Accuracy 

No of Features 

Selected 

40 43 0.77 19 

45 39 0.79 19 

50 26 0.793 18 

55 22 0.798 17 

60 20 0.80 15 

65 16 0.804 13 

70 14 0.81 10 

Table 4.3: Result of algorithm convergence for different probability of cross over on 

the proposed algorithm 

 

From the table above, it can be seen that the number of iteration before convergence, 

classifier accuracy and number of selected features selected improved slowly as the 

crossover rate increased. This may be due to the high number of individuals that 

undergo recombination and the subsequent number of created individuals per 

iteration. Thus, as the intensity of the search increased, the required number of 

iteration reduced and more number of good individuals were generated which 

improved the classifier performance. 
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Mutation rate is the probability that an individual will undergo asexual reproduction 

i.e. new individuals will be generated from it without combining its traits with those 

of other individuals. This thesis investigated the effect of mutation rate on the 

proposed technique and the result obtained is presented below: 

 

Mutation 

Rate 

No Iteration Before 

Convergence 

Classifier 

Accuracy 

No of Features 

Selected 

0.4 62 0.78 22 

0.5 51 0.78 21 

0.6 48 0.79 19 

0.7 44 0.81 16 

0.8 35 0.812 14 

0.9 28 0.82 12 

1 22 0.83 12 

Table 4.4: Result of algorithm convergence for different probability of mutation on 

the proposed algorithm 

Here, the mutation rate had more impact on the number of iteration before 

convergence but had little impact on the classifier performance. This can be from the 

fact that as mutation is increased the GA search diversity increases and the search 

tends to behave more like a random search. Thereby, requiring more iterations to 

converge but not affecting its ability to find better individuals faster.  

One of the most desirable properties of an algorithm is its stability i.e. how it behaves 

when the experiment is repeated a number of times. In this study, the proposed 

algorithm was repeated for 10 times with Pima Indians dataset and the convergence 

iteration of the algorithm in each of the experiments was compared with that of the 

traditional GA. The result is presented in the figure below: 
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Figure 4.5: Convergence Comparison of Traditional and Modified GA 

It can be seen from the table above the proposed algorithm has consistently 

converged before the 20
th

 iteration. While, by comparison the traditional algorithm 

has always converged after the 20
th

 iteration. In essence, the worst performance of 

the proposed method is the same as the best performance of the traditional algorithm 

in all the experiments. 

A Receiver Operating Characteristic (ROC) curve shows the accuracy performance 

of a classification or induction model as its discrimination threshold is varied. The 

curve is created by plotting the False Positive Rate (FPR) against the True Positive 

Rate (TPR) at various threshold settings. The ROC curve is thus the sensitivity as a 

function of fall-out. The ROC curve for the trained model on Pima Indians dataset 

with proposed techniques is shown below: 
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Figure 4.6: ROC Curve for the trained Model on Pima Indians Dataset 

In general, the probability distributions for both detection and false alarm rate of the 

learned model are high. The Area Under the curve AUC of the learned model is 

0.782 which points to its accuracy. 

In statistical classification, a confusion or error matrix is a table that shows the 

performance of a classifier or induction algorithm, normally a supervised 

learning algorithm. Each column of the table shows the instances of predicted classes 

while each row shows the instances of the actual class (or vice-versa). The confusion 

matrix of the trained model on Pima Indians dataset with the proposed techniques is 

shown below: 

 Diabetic Non-Diabetic 

Diabetic 408 72 

Non-Diabetic 51 237 

Table 4.5: Trained Model Confusion Matrix on Cleveland dataset 
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Chapter 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This work reviewed the problem of data dimensionality growth in ML in current 

times. Furthermore, it reviewed the current approaches used for the task of feature 

subset selection in a situation where speed and computational cost are of high 

importance. 

Subsequently, a new crossover and mutation technique was introduced to the 

traditional GA which is used in the task of FS for medical record classification. Pima 

Indians, Cleveland and Arrhythmia datasets of UCI ML Repository were used to test 

the performance of the proposed method. In addition, a fitness function which 

penalizes individuals for selecting more features as proposed by [33] was used to 

enhance the performance of the proposed method. 

The main aim of the study is to provide a recombination procedure for GA which 

facilitates the convergence of the algorithm and improves the accuracy of the 

classifier by reducing the number of redundant and irrelevant features from the 

dataset. Here, Extreme Learning Machine (ELM) was used as a classifier because it 

requires less or no parameter tuning and is faster than most backpropagation learning 

algorithms. The obtained result was verified using a stratified 10-fold cross 
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validation on all the three datasets where 60-40 data partition was used for training 

and testing respectively. 

The result obtained suggest the superiority of the proposed method over the 

traditional algorithm in convergence, classifier accuracy and population diversity. To 

this end, the proposed method also performed better than some of the reported 

performances [2, 3, 8]. 

Additionally, issues that affect the performance of the proposed method such as 

probability of crossover and mutation, elitism and population size were also 

investigated. The result obtained showed that the proposed algorithm performed 

better when elitism and crossover rate were high and population size and mutation 

rate are low. 

Finally, it is worth noting that in a situation where all individuals in the mating pool 

give the same importance to all features in the dataset (i.e. equal vote for all alleles) 

this algorithm may not be applicable. 

5.2 Recommendation for future work 

Based on the received results from this study, an investigation of the proposed 

method for premature convergence is highly recommended. This is because of the 

seeming fast convergence of the algorithm. Furthermore, the compatibility of the 

algorithm with other proposed fitness function such as [22, 23, 23] is a subject of 

research as the classifier accuracy is greatly suppressed by some of this proposed 

fitness function when they are intended to be used with the proposed algorithm. 
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Appendix A: Dataset Attributes Documentation 

A1: Cleveland Dataset 

1 id: patient identification number  

2 ccf: social security number (I replaced this with a dummy value of 0)  

3 age: age in years  

4 sex: sex (1 = male; 0 = female)  

5 painloc: chest pain location (1 = substernal; 0 = otherwise)  

6 painexer (1 = provoked by exertion; 0 = otherwise)  

7 relrest (1 = relieved after rest; 0 = otherwise)  

8 pncaden (sum of 5, 6, and 7)  

9 cp: chest pain type  

-- Value 1: typical angina  

-- Value 2: atypical angina  

-- Value 3: non-anginal pain  

-- Value 4: asymptomatic  

10 trestbps: resting blood pressure (in mm Hg on admission to the hospital)  

11 htn  

12 chol: serum cholestoral in mg/dl  

13 smoke: I believe this is 1 = yes; 0 = no (is or is not a smoker)  

14 cigs (cigarettes per day)  

15 years (number of years as a smoker)  

16 fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)  

17 dm (1 = history of diabetes; 0 = no such history)  

18 famhist: family history of coronary artery disease (1 = yes; 0 = no)  
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19 restecg: resting electrocardiographic results  

-- Value 0: normal  

-- Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or 

depression of > 0.05 mV)  

-- Value 2: showing probable or definite left ventricular hypertrophy by Estes' 

criteria  

20 ekgmo (month of exercise ECG reading)  

21 ekgday(day of exercise ECG reading)  

22 ekgyr (year of exercise ECG reading)  

23 dig (digitalis used furing exercise ECG: 1 = yes; 0 = no)  

24 prop (Beta blocker used during exercise ECG: 1 = yes; 0 = no)  

25 nitr (nitrates used during exercise ECG: 1 = yes; 0 = no)  

26 pro (calcium channel blocker used during exercise ECG: 1 = yes; 0 = no)  

27 diuretic (diuretic used used during exercise ECG: 1 = yes; 0 = no)  

28 proto: exercise protocol  

1 = Bruce  

2 = Kottus  

3 = McHenry  

4 = fast Balke  

5 = Balke  

6 = Noughton  

7 = bike 150 kpa min/min (Not sure if "kpa min/min" is what was written!)  

8 = bike 125 kpa min/min  

9 = bike 100 kpa min/min  

10 = bike 75 kpa min/min  
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11 = bike 50 kpa min/min  

12 = arm ergometer  

29 thaldur: duration of exercise test in minutes  

30 thaltime: time when ST measure depression was noted  

31 met: mets achieved  

32 thalach: maximum heart rate achieved  

33 thalrest: resting heart rate  

34 tpeakbps: peak exercise blood pressure (first of 2 parts)  

35 tpeakbpd: peak exercise blood pressure (second of 2 parts)  

36 dummy  

37 trestbpd: resting blood pressure  

38 exang: exercise induced angina (1 = yes; 0 = no)  

39 xhypo: (1 = yes; 0 = no)  

40 oldpeak = ST depression induced by exercise relative to rest  

41 slope: the slope of the peak exercise ST segment  

-- Value 1: upsloping  

-- Value 2: flat  

-- Value 3: downsloping  

42 rldv5: height at rest  

43 rldv5e: height at peak exercise  

44 ca: number of major vessels (0-3) colored by flourosopy  

45 restckm: irrelevant  

46 exerckm: irrelevant  

47 restef: rest raidonuclid (sp?) ejection fraction  

48 restwm: rest wall (sp?) motion abnormality  
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0 = none  

1 = mild or moderate  

2 = moderate or severe  

3 = akinesis or dyskmem (sp?)  

49 exeref: exercise radinalid (sp?) ejection fraction  

50 exerwm: exercise wall (sp?) motion  

51 thal: 3 = normal; 6 = fixed defect; 7 = reversable defect  

52 thalsev: not used  

53 thalpul: not used  

54 earlobe: not used  

55 cmo: month of cardiac cath (sp?) (perhaps "call")  

56 cday: day of cardiac cath (sp?)  

57 cyr: year of cardiac cath (sp?)  

58 num: diagnosis of heart disease (angiographic disease status)  

-- Value 0: < 50% diameter narrowing  

-- Value 1: > 50% diameter narrowing  

(in any major vessel: attributes 59 through 68 are vessels)  

59 lmt  

60 ladprox  

61 laddist  

62 diag  

63 cxmain  

64 ramus  

65 om1  

66 om2  
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67 rcaprox  

68 rcadist  

69 lvx1: not used  

70 lvx2: not used  

71 lvx3: not used  

72 lvx4: not used  

73 lvf: not used  

74 cathef: not used  

75 junk: not used  

76 name: last name of patient (I replaced this with the dummy string "name") 
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A2: Pima Indians Attributes Documentation 

1. Number of times pregnant  

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test  

3. Diastolic blood pressure (mm Hg)  

4. Triceps skin fold thickness (mm)  

5. 2-Hour serum insulin (mu U/ml)  

6. Body mass index (weight in kg/(height in m)^2)  

7. Diabetes pedigree function  

8. Age (years)  

9. Class variable (0 or 1)  
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A3: Arrhythmia Attribute Documentation: 

1 Age: Age in years , linear  

2 Sex: Sex (0 = male; 1 = female) , nominal  

3 Height: Height in centimeters , linear  

4 Weight: Weight in kilograms , linear  

5 QRS duration: Average of QRS duration in msec., linear  

6 P-R interval: Average duration between onset of P and Q waves in msec., linear  

7 Q-T interval: Average duration between onset of Q and offset of T waves in msec., 

linear  

8 T interval: Average duration of T wave in msec., linear  

9 P interval: Average duration of P wave in msec., linear Vector angles in degrees on 

front plane of:, linear  

10 QRS  

11 T  

12 P  

13 QRST  

14 J  

15 Heart rate: Number of heart beats per minute ,linear Of channel DI: Average 

width, in msec., of: linear  

16 Q wave  

17 R wave  

18 S wave  

19 R' wave, small peak just after R  

20 S' wave  
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21 Number of intrinsic deflections, linear  

22 Existence of ragged R wave, nominal  

23 Existence of diphasic derivation of R wave, nominal  

24 Existence of ragged P wave, nominal  

25 Existence of diphasic derivation of P wave, nominal  

26 Existence of ragged T wave, nominal  

27 Existence of diphasic derivation of T wave, nominal Of channel DII:  

28 .. 39 (similar to 16 .. 27 of channel DI) Of channels DIII:  

40 .. 51 Of channel AVR:  

52 .. 63 Of channel AVL:  

64 .. 75 Of channel AVF:  

76 .. 87 Of channel V1:  

88 .. 99 Of channel V2:  

100 .. 111 Of channel V3:  

112 .. 123 Of channel V4:  

124 .. 135  Of channel V5:  

136 .. 147  Of channel V6:  

148 .. 159  Of channel DI: Amplitude , * 0.1 milivolt, of  

160 JJ wave, linear  

161 Q wave, linear  

162 R wave, linear  

163 S wave, linear  

164 R' wave, linear  

165 S' wave, linear  

166 P wave, linear  
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167 T wave, linear  

168 QRSA , Sum of areas of all segments divided by 10, ( Area= width * height / 2 ), 

linear  

169 QRSTA = QRSA + 0.5 * width of T wave * 0.1 * height of T wave. (If T is 

diphasic then the bigger segment is considered), linear Of channel DII:  

170 .. 179 Of channel DIII:  

180 .. 189 Of channel AVR:  

190 .. 199 Of channel AVL:  

200 .. 209 Of channel AVF:  

210 .. 219 Of channel V1:  

220 .. 229 Of channel V2:  

230 .. 239 Of channel V3:  

240 .. 249 Of channel V4:  

250 .. 259 Of channel V5:  

260 .. 269 Of channel V6:  

270 .. 279 

 

 


