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ABSTRACT 

This work is dedicated to investigate the existence and uniqueness of solutions for 

nonlinear fractional differential equations with boundary conditions involving the 

Riemann-Liouville fractional derivative. After introducing some basic preliminaries 

and the important concepts of fractional calculus, we considered the model of 

boundary value problems of Riemann-Liouville fractional derivative. The existence 

and uniqueness of solution are obtained via Banach’fixed point theorem and 

Schauder’fixed point theorem for the two models. In addition, both results are 

provided by the illustrative examples to support them.  

Keywords: Fractional integrals and derivatives, Fractional differential equations, 

Existence, Uniqueness, Fixed point theorems. 
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ÖZ 

Bu çalışma Caputo kesirli türevi içeren sınır koşulları ile doğrusal olmayan 

fraksiyonel diferansiyel denklemlerin çözümleri varlığını ve tekliğini araştırmak için 

adamıştır.bazı temel öncüller ve Kesirli analizin önemli kavramları tanıttıktan sonra 

biz Caputo kesirli türevi sınır değer problemlerinin iki model düşündü. İlki yerel 

olmayan dört nokta fraksiyonel sınır koşulları ile doğrusal olmayan fraksiyonel 

diferansiyel denklemdir.İkinci denklem kesirli yerel olmayan dört nokta fraksiyonel 

sınır koşulları ile desteklenmiş çoklu siparişlerin doğrusal olmayan dürtüsel sınır 

değer problemidir.çözümün varlığı ve tekliği iki model için Banach'fixed nokta 

teoremi ve Schauder'fixed nokta teoremi ile elde edilir. Buna ek olarak, her iki sonuç 

da, onları desteklemek için açıklayıcı örnekler tarafından sağlanmaktadır. 

Anahtar Kelimeler: Fraksiyonel integraller ve türevler, Fraksiyonel diferansiyel 

denklemler, Varlık, Teklik, Sabit nokta teoremleri, Impulse. 

 

Anahtar kelimeler: Fraksiyonel integraller ve türevler, Fraksiyonel diferansiyel 

denklemler, Varlık, Teklik, Sabit nokta teoremleri. 
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Chapter 1 

INTRODUCTION 

In this Chapter we want to provide a concise history of fractional calculus. The 

theory of fractional calculus emanated from the origin of classical calculus itself. 

Historically, classical calculus was developed by Isaac Newton and Gottfried 

Wihelm Leibniz in the 17th century and the latter (Leibniz) first brought out the 

conception of a symbolic method, more precisely his notation. 

1 
   

         

for the nth derivative of function     , where n is a non-negative integer. 

2 In [1] L’Hospital had written a letter to Leibniz in 1695, and asked about the 

likelihood of n being a fraction "What does (
      

   ) mean if n=
 

 
?". Leibniz 

ascertains that “It will lead a paradox”. But predictably “from this apparent 

paradox, some day it would lead to useful consequences”[1]. In view of the 

increasing interest in the development of fractional calculus by means of many 

mathematicians, it can be extended to the nth derivative of      to any number , 

where n may be rational , irrational or complex number. 

3  

4 Many other mathematicians such as Euler, Laplace, and Fourier have 

investigated fractional calculus in order to answer L'Hospital’s question. Each of 

them had unique notations and methodology and also proposed many divergent 

concepts of non-integer order integral or derivative. The first discussion of a 
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derivative of fractional order in calculus was written by Lacroix in 1819 [2]. 

Lacroix expressed the precise formula for the nth derivative which is defined by 

5                        
  

      
      where   n(   is integer,                            (1.1) 

6 he replaced the discrete factorial function with Euler's continuous Gamma 

function and obtained the following formula 

7                     
      

        
                                                                        (1.2) 

8 where α and β are fractional numbers                      

9 In particular, he computed 

10                 
 

   
    

    ⁄  
 

 

   
 

 
                                               (1.3) 

11  

12 The first application of fractional calculus was made by Niels Henrik Abel in[3] 

at the beginning of the nineteenth century. He used mathematical tool to solve an 

integral equation which arose from the tautochrone problem. This problem 

simply deals with the determination of curve on the (x, y) plane through the 

origin in vertical plane such that the required time for a particle with a total  

mass (m) will be released at a time which is absolutely independent of the 

origin. 

13  

14  In this situation the physical law states that “the potential energy lost during the 

descent of the particle is equal to the kinetic energy the particle gains”: 

15       
 

 
 (

  

  
)
 
   (    ),                                                         (1.4) 

16 where (m) is defined as the mass of the particle, s is the distance of the particle 

from origin along the curve and g implies acceleration due to gravity. The 

17 formula above can be solved by separating the variables which yields 
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√    

 √      

18 and integration from when time     to     

19    √    ∫         
 

 

   

 
                                   (1.5) 

20 Assuming that the time a particle needs to reach the lowest point of the curve is 

constant. So the left hand side must be a constant, say k. If we denoted the path 

length s as a function of height               
  

  
      . 

21 By changing the variables   with x and y with t and putting F' = f the 

tautochrone integral equation becomes 

22       ∫       
 

 
 

 
      ,            (1.6) 

23 Where f is the function to be determined. 

24  

25 After multiplying both sides of the integral equation with    

  
 
 
 
, Abel got on the 

right hand side a fractional integral of order 
 

 
 

26             
 

  
 

 
 
 

 

  
 

 
 
∫       

 

 
 

 
       

 
 
 
 

  
 
 
 

                                      (1.7) 

27 Or , equivalently, 

28       
 
 
 

  
 
 

 

  
 

 
 
 

 
 

 ⁄

  
 

 ⁄

   
 ⁄

    
 ⁄
     

  

                                   (1.8)  

29 So , we have the tautochrone solution given as follows 

30             
 

   
 
 

 
 

 ⁄

  
 

 ⁄
  

 

 √ 
                                                                   (1.9) 

31 where the Abel problem has a solution which ıs subjected to the condition that 

derivative constant k is not zero always. 
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Here, It is necessary to note that Abel not only give a solution to the tautochrone 

problem, but also gave the solution for more general integral equation 

32        ∫
    

      
             

 

 
                        (1.10) 

33  

34 After Abel application of fractional operators to a problem in physics, the first 

series of papers were stated by Liouville (see e.g. [1-3]). Liouville extended the 

known integer order derivatives             to a derivative of arbitrary 

order α (formally replacing n∈Ν with  α∈ℂ ) as follows: 

35                           (1.11) 

36 Liouville developed two definitions for fractional derivatives. The first 

definition of a derivative of arbitrary order α for certain class of functions 

involved an infinite series. Here the series must be convergent for some α. Based 

on the Gamma function, Loiuville formulated the second definition as follows: 

37 Γ       ∫                    
 

 
.                                  (1.12) 

38            
      

    
          .                                  (1.13) 

39  

40 This definition is useful only for rational function. 

41 Another scholar who had contributed to the fractional calculus is Riemann[1]. 

Riemann developed the definition for fractional integral of order α of a given 

function f(x). The most important definition which is known as Riemann-

Liouville fractional integral and formulated as follows: 

42     
       

 

    
∫          

                  .        (1.14) 

43 When    , expression (1.14) is  the definition of  Riemann  integral, and when  
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44       expression (1.14) represents the Liouville definition. In this regard, it 

can be shown that 

45   
 

        
   

        
 

   
  

      

46                  
  

   (
 

    
∫          

 
      )                                                 (1.15) 

47 holds, which is known today as the Riemann-Liouville fractional derivative, 

where  n=[     ]    and 0         . 

48  

49 On the other hand, Grünwald [4] and Letnikov [5] generated the concept of 

fractional derivative which is the limit of a sum given by 

50    
                            ∑      (

 
 
) 

                        (1.16) 

51 where( 
 
)is the generalized binomial coefficient . At this point in time, it is 

enough for mentioning the historical development of fractional calculus. 

52  

53 In the twentieth century, the generalization of fractional calculus has been 

subjected of several approaches. That is why there are various definitions that 

are proved equivalent, and their use is encouraged by researchers in different 

scientific fields. Although a great number of results of fractional calculus were 

presented in this century but the most interesting one was introduced by 

M.Caputo in [6] and was used extensively. Caputo  defined a fractional 

derivative by 

54              
 

      
∫           (

 

  
)
 

      
 

 
                                   (1.17) 

55 Where f a function with an (n−1) absolutely continuous derivative and n=[α]+1 . 

56 Nowadays, expression (1.17) named Caputo fractional derivative. This 

derivative (1.17) is strongly connected with Riemann-Liouville fractional 
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derivative and is frequently used in fractional differential equations with initial 

conditions                          

57  

58 Fractional calculus has grown and come to light in the late twentieth century. In 

1974, the commencing conference related with the application and theory of 

fractional calculus was successfully showcased in the New Haven [7]. And a 

number of books on fractional calculus have appeared in the same year .Finally 

in 2004 the huge conference on fractional differentiation and its application was 

held in Bordeaux.  

59  

60 From its birth (simple question from L’Hospital to Leibniz) to its today's wide 

use in numerous scientific areas fractional calculus has come a long way. 

Although it’s as old as integer calculus, it has still proved good applicability on 

models describing complex real life problems. 

61  

62 After a review of the historical development of the fractional calculus this work 

will give a brief investigation to its main goal and form a cornerstone in the 

application that arise in engineering and other sciences. It is fractional 

differential equation which has played an important role in mathematical 

modeling of different specialization such as physics, bio-chemistry, economics, 

and engineering etc. We will be interested in the boundary conditions of 

fractional differential equation which involves Caputo derivative.  

63  

64 Recently, problems with boundary value for non-linear FDEs draw many 

researchers attention.  For instance Ahmad,B. et al   [8], investigated non-linear 
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FDEs with fractional separated boundary conditions. Also in [9] , Ahmad,B. and 

Sivasundaram,S. studied the existence of solutions for impulsive integral 

boundary condition of non-linear fractional differential condition. By following 

this technique, I do consider two types of non-linear FDEs which are not the 

same with boundary value problems. 

65  

66 The first one is concerned with FDEs with four points non-local fractional 

boundary condition; the second is associated with non-linear impulsive 

fractional differential equation with four points non-local boundary condition. In 

each of these we will obtain the existence solutions by means of fixed point 

theorems. Both results will be illustrated by examples. 
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Chapter 2 

RIEMANN-LIOUVILLE FRACTIONAL INTEGRO-

DIFFERENTIAL EQUATIONS WITHFRACTIONAL 

NONLOCAL INTEGRAL BOUNDARY CONDITIONS 
 

2.1 Introduction 

Differential equations are an important part of mathematical sciences. The  

applications in many other sciences such as Physics, chemistry, etc. the theoretically 

deep studies on differential equation are brought the mathematicians and researchers 

to the idea of evaluating various types of differential equations that might exist. In 

this work we study  nonlinear fractional integro-differential equation defined by 

(1.1). Our major interest is to investigate existence and uniqueness of the solution of 

the problem (1.1). 

 

Consider the following equation.   

     
              , , , ,   0, ,   1,2 ,D w k k w k w k w k k K      

         
 1.1  

the equation (1.1)  is subject to a fractional boundary condition defined as follows: 

     
 1 0 0,D w  

                                                                                                
 1.2

                           

   2 1    0 ,  0< ,   the value  is constant,D w I w K       
                        

 1.3
 

with  D   being the R-L Fractional derivative that has the order     [   ]      

     is continuous, and 

  

             
0 0

  , ,   , ,

k k

x k k x d x k k x d             
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with the functions   and   being continuous on the intervals given by 

   0, 0, .K K  

 

The nonlinear differentials equation of fractional type have been under investigation 

recently by many researchers. Most of their results are designed  fractional 

derivatives as a necessary tool to solve the boundary values problems. 

2.2 Preliminaries 

Let us remind the definitions as follows: 

Def 2.2.1: (Riemann-Liouville). The Riemann-Liouville Fractional integral (R-L  

fractional integral) of order 0   for a continuous function           is given  

by the equation: 

      
 

   
1

0

1
,

k

I w k k w d
   




 
   

 under the assumption that mentioned integral is defined.  

 

Def 2.2.2: Consider a continuous function defined as follows            the 

RLFD of order  0,  m 1    (    is considered to be  the integer part from the 

truncation of the real  number   ) is given as follows: 

     

 
 

     
1

0

1
,

m mk
m md d

D w k k w d I w k
m dk dk

   


     
     
     

  

provide it exists. 

 

For 0,   let us assume that .D w I w  Considering also that for  0, ,   the 

following holds .D I w I w     
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Considering 1,  -1, -2,..., -m,       lead us to 

     

 

 

1
,

1
D k k   



 


 


  

 

and 

     0,   j =1,2,..., .jD k m    

 

For the particular case where a constant function is defined by   1,w k   we obtain 

     
 

1
1 ,

1
D k 




 

 

      

 

For  ∈    we surely get, 1 0D   this because of the numerical computation value 

of  gamma function given at the  points defined by the following integers 0, 1, 2,...  . 

 

Considering 0,   the homogeneous equation has general solution given by 

     
  0,D w k   

in
 

   0, 0,C K L K  is  

     
  1 2 1

0 1 2 1... ,m m

m mw k c k c k c k c k       

       

where
 

,  1,2,..., 1,jc j m   are real numbers randomly selected. 

 

The following relation always holds ,D I w w    as well as  

     
    1 2 1

0 1 2 1... .m m

m mI D w k w k c k c k c k c k         

        

To solve the nonlinear problem which is defined by (1.1) and (1.2)-(1.3) we first 

consider the linear equations given below by  
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       ,  1,2 ,  k 0, ,  0,D w k k K K     

                                            
 2.1

 

where  0, .C K  

 

We define 

  

 

 

 

 

21 2 2

0

 
    ,

1 2 1
d

       
 

 

  
  

                                                           
 2.2  

such that  .    

 

 The general solution of equation (2.1) is given as follows 

          1 2

1 0 ,w k c k c k I k                                                                       2.3  

with  I   the usual Riemann-Liouville fractional integral of order .  

 

From (2.3) 

     
     1 1

1 ,D w k c I k     
                                                                       

 2.4  

     
       2 2

1 0 1 .D w k c k c I k         
                                                

 2.5  

 

By using the condition (1.2) and (1.3) in (2.4) and (2.5), we find that 0 0c   and  

 

 

 

 

 
 

2

1

0 0

      ,
1

x
c x dx d

   
 

 


  

          
   

with   given  by (2.2). 

 

The substitution of the values of 0c  as well as the value 1c  in the equation (2.3), lead 

to get the unique solution of equation  (2.1) provided the boundary conditions (1.2)-

(1.3) which are defined above are satisfied as follows: 
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 
 

 
 

 

 

 

 

 
 

 

 

1

0

21

0 0

1 1
2 1

0

  

              +
1

          = ( ) ( ).      
( ) ( )

k

k

k
w k d

xk
x dx d

k k
d k



 

 



  



  
 

 

 
    

 





 







  
         




  



 



                            

                                                                                                                               
 2.6

 

2.3 Main Results  

Let     [   ]     denoted the Banach space is defined on all continuous function 

defined  from  0,K  to    endow with the following norm sup ( ) ,w w k   

 0, .k K  

 

If  w  is a solution of (1.1) and (1.2)-(1.3), then

 

 

 

1

0

1

1

1

0

       w( ) ( , ( ), ( )( ), ( )( ))
( )

                    ( , ( ), ( )( ), ( )( )) ,
2 1

k k
k w w w d

k w w w d








      



 
       










 




 

 





 

where 

 1       .
( )







 
 

 

We define an operator :P b b  as

 
 

 

 
 

1

0

1

1

1

0

       ( ) ( , ( ), ( )( ), ( )( ))
( )

                          ( , ( ), ( )( ), ( )( )) ,      k 0, .
2 1

k k
Pw k w w w d

k w w w d K








      



 
       










 




  

 





 



13 

 

It is clear that the problems given by the equations (1.1) ;  (1.2)-(1.3)  have a solution 

for the unique condition that the  operator defined by the equation Pw w  admitted  

a fixed point. 

 

Lemma 2.3.1:  Operator P  is compact. 

Proof : 

(i)  Let set B be bounded  in the set  0, .C K  There is a real value constant M s.t:

        , , , ,  k w k w k w w M w     B,   0, .k K  Thus 

 
   

 

1 2 2

1

1

0 0

2 1

11

        ( )
( ) 2 1

                         ,
( 1) (2 )

k k
Pw k M d M k d

K
MK

 







  
  

 

 

 

 







 
 

  

 
      

 

2 1

11         ( ) .
( 1) (2 )

K
Pw MK



  

 




 

         

 

Thus, P (B) is bounded uniformly. 

 

(ii)  1 2, 0, ,  wk k K  B, 

      

   

 

 

 
 

 

 
 

1

2

1 2

1

1

0

1

2

0

2 2

1 1

1 1 2

0

1

( ) ( )

     ( , ( ), ( )( ), ( )( ))
( )

           ( , ( ), ( )( ), ( )( ))
( )

            ( , ( ), ( )( ), ( )( ))
2 1

1
     

k

k

Pw k Pw k

k
w w w d

k
w w w d

k k w w w d

M k







 




      




      



 
       












 



 


 




 




  

 

 








 
 

 
1 2

1

1 1 1

2 2

0

1
k k

k

k d k d
 

   


 


     
  


 
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 
 

 

2 2

1 1

1 1 2 1 2

0

           0 as k .
2 1

k k d k



 
 

 




 


   
 


  

 

Hence, the operator P (B) is an equicontinuous operator. As consequence, P  is a 

compact operator.  

 

The fixed point theorem as given below is essential to demonstrate the existence and 

uniqueness for the solution obtained by solving the problem as defined. 

Theorem 2.3.1: Consider a  Banach space .F   Assume that operator  :G F F  is 

completely continuous and the set: 

 | ,  0 1y F y Gy        is bounded. 

Under these assumptions, G  has a unique FP in .F  

 

Theorem 2.3.2: Assume the existence of a constant 0N   s.t:  

         ( , ( ), ( )( ),( )( )) ,   0, ,k w k w k w k N k K         ∈    

The problem (1.1) ; (1.2)-(1.3) has at least one solution in the closed interval  0, .K  

Proof :  we consider the following set 

           { ∈              } 

and show that the set   is bounded. Let ,w   then ,  0< <1.w Pw   For any 

 0, ,k K  we have 

 
 

1

0

         ( , ( ), ( )( ), ( )( ))
( )

k k
w k w w w d




       


 
 


  

 

 

1

1

1

0

                          ( , ( ), ( )( ), ( )( )) .
2 1

k w w w d



  
       








  
  
  
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As in part (i) of  lemma (2.3.1), we have 

       

2 1

11( ) .
( 1) (2 )

K
Pw MK



  

 




 

        

 

 

This lead to conclusion that  is a bounded set regardless of  0,1 .
 
From lemma 

(2.3.1) combined with theorem (2.3.1), it follows that the bounded operator P  has at 

least one FP.  It follows that the problems defined by the equations  (1.1); (1.2)-(1.3) 

has at least a solution.   

 

Theorem 2.3.3: Assume   

 1A the existence of a positive function      1 2 3,  ,  Q k Q k Q k  such a way that 

       
( , ( ),( )( ),( )( )) ( , ( ),( )( ),( )( ))k w k w k w k k k k k         

                
     1 2 3 ,Q k w Q k w Q k w               ∈    

 

    1

2 1 1 2 0 0 = 1 1,A K          with 

       

 
 

 
 

 
  

 

0 0
0,1 0,1

0 0

1 1 2 3
0,

2 1 2 1 2 1

2 1 2 3

sup , ,   sup , ,

sup ( ) ,  ( ) ,  ,

max ( ) ,  ( ) ,  ( ) .

k k

k k

k K

k d k d

I Q k I Q k I Q k

I Q I Q I Q

  

  

       



   

 



  

 





 

 

 

Hence the problems are given by the equations  (1.1) ;  (1.2)-(1.3) has a solution on

 0, .C K  which is unique. 

Proof :  Denoted by 
 0,

sup ( ,0,0,0) ,
k K

k M


  and consider t such that  
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.

1

M
 

 
 

 

Hence we can prove that ,PB B   where the set  : .B y C w      The 

following relation holds 

  

 

 

 

 

 

 
 

1

0,
0

2 2

1

1

0

1

0,
0

 

       sup ( , ( ), ( )( ), ( )( ))
( )

                ( , ( ), ( )( ), ( )( ))
2 1

        sup ( , ( ), ( )( ), ( )( )) ,0,0,0
( )

     

k

k K

k

k K

Pw k

k
w w w d

k w w w d

k
w w w d










      



 
       




        
















 




 

 

 
  
 








  

 

 
 

   

 

 

2 2

1

1

0

1

1 2 3
0,

0

          ,0,0,0

               ( , ( ), ( )( ), ( )( )) ,0,0,0
2 1

               ,0,0,0

        sup ( ( ) ( ) ( ) ( )( ) ( ) ( )( ) )
( )

     

k

k K

d

k w w w d

d

k
Q y Q y Q y M d







  

 
         



  


       














  

 



 
    
 






 

 

 

 

 

 

2 2

1

1 1 2 3

0

1

1 2 3
0,

0

2 2

1

1 1

0

          ( ( ) ( ) ( ) ( )( ) ( ) ( )( ) )
2 1

        sup ( ( ) ( ) ( ) ( )( ) ( ) ( )( ) )
( )

               ( ( ) ( )
2 1

k

k K

k Q y Q y Q y M d

k
Q y Q y Q y M d

k Q y











 
        




       



 
  
















    
 


 
    
 



 

 







 
  

 

            
 

  

0 2 0 3

1 0 2 0 3
0,

2 1
2 1 2 1 2 11

1 1 0 2 0 3

11 1

1 1 2 0 0

( ) ( ) ( ) ( ) )

        sup ( ) ( )
1

               
2

        1
( 1)

k K

Q y Q y M d

Mk
I Q k I Q k I Q k

M
k I Q I Q I Q

K
K MK


  


  



 

      

  



      



 
     






  

 


 




     


     

     
 

1

(2 )

 
   

        .M       
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Considering  1 ,A  for every  0, ,k K  we have 

   

 

 

 

 

 

1
1

1

0,
0

2 2

1

1

0

1

0,

( ) ( )

     sup ( , ( ), ( )( ), ( )( )) ( , ( ), ( )( ), ( )( ))
( )

        ( , ( ), ( )( ), ( )( )) ( , ( ), ( )( ), ( )( ))
2 1

    sup

k

k K

k K

Pw k P k

k
w w w d

k w w w d

k










              



 
               















 
   
 



   
 









 
      

 

 
      

 
  

        

1
1

1 2 3

0

2 2

1

1 1 2 3

0

1 0 2 0 3
0,

2 1 2 1 2 11

1 1 0 2 0 3

( )

        
2 1

    sup ( ) ( )

        ( ) ( )

    

k

k K

Q w Q w L w d

k Q w Q w Q w d

I Q k I Q k I Q k w

K I Q I Q I Q w







  

  


       



 
        



  

      









  


      
 



      
 


   

   







  1

1 1 2 0 01 .K w w            

 

By assumption  2 ,  <1,A   this leads to the conclusion that, the operator P  is a 

contraction mapping. Therefore, by BFP theorem, we can say that P  consist of only 

one FP. This unique fixed point is also the unique solution affirmed by the problem 

(1.1) and (1.2)-(1.3).  

 

Theorem 2.3.4: (Krasnoselskii's fixed point theorem). Let   be a closed, convex 

and nonempty subset of a Banach space .Y  Let ,  A B  be the operator such that  

(i) Ax By   whenever ,x y  ; 

(ii) A is compact and continuous; 

(iii) B is contraction mapping. 

Then there exist z   such that .z Az Bz   
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Theorem 2.3.5:  Suppose the following assumption   [   ]          is a 

continuous function . Under this assumption, the specific relations hold: 

 1

         ( , ( ), ( )( ), ( )( )) ( , ( ), ( )( ), ( )( ))

H

k w k w k w k k k k k d        
 

       1 2 3         ,   0, ,Q w Q w Q w k K                    ∈    

 

     2  , ,H k w k         ∈ [   ]      and   ∈   [   ]      

If 

 

1 2 1

1
          1,

2

K   



 




   

the BVPs are defined by the equations  (1.1) and (1.2)-(1.3) admitted at least one 

solution given on the interval 0, .K  

Proof : By letting    0,
sup ,

k K
k 


  we fix 

1

11     ,
( 1) (2 )

K
K



  
 

 




 

      

 

and consider  : .B w C w     we define the operator 1 2 and  on rP P B  as 

  
 

  
 

 

1

1

0

2 2

1

2 1

0

      ( , ( ), ( )( ), ( )( )) ,
( )

      ( , ( ), ( )( ), ( )( )) .
2 1

k k
Pw k w w w d

Pw k k w w w d








      



 
       










 




 

 





 

 

For , ,rw B  we find that 

1

11

1 2     .
( 1) (2 )

K
Pw Pw K



  
 

 




 

        
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Thus 1 2 .Pw Pw B   Consider the assumption  1H  and by equation (3.1) we 

conclude that 2P  is a contraction mapping. Since function   is continuous, this 

indicate the continuity of the operator 1P  .  

 

Moreover, the operator 1P  is bounded uniformly on the set B   as 

       
 1 .

1

w K
Pw





 

 

 

The compactness of 1P  is proved as follows. 

 

Considering the hypothesis  1 ,H  we define: 

     , , , 0,
sup , , , ,

r r rk y y y K B B B
k y y y

 
  

   
   and as consequence we have the 

following relation: 

     

 
   

 
 

 
 

1

2

1

1 1 1 2

1 1

1 2

0

1

2

2 1 1 2

    

1
          ( , ( ), ( )( ), ( )( ))

1
             ( , ( ), ( )( ), ( )( ))

          2 ,
1

k

k

k

Pw k Pw k

k k w w w d

k w w w d

k k k k

 



  

        


       






 





     
 

  


   
 




 

which is not dependent on  w and that approaches to the zero value as 2 1.k k  That 

means the mapping 1P  is compact locally on the set .B   By A-A theorem,  it follows 

that, operator 1P  is a compact on .B   which satisfies the assumptions of theorem 

(2.3.4). As conclusion from this theorem, it is said that the problems given by 
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problem (1.1) ; (1.2)-(1.3)  with boundaries conditions possesses at  least one 

solution on the compact set  0, .K  
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Chapter 3 

A STUDY OF NONLINEAR FRACTIONAL 

DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER 

WITH RIEMANN-LIOUVILLE TYPE MULTISTRIP 

BOUNDARY CONDITIONS 

 
3.1 Introduction 

In the recent decades, the fractional calculus has been widely expanded. Many 

researchers have been interested in a lot due to his application found in various fields 

of sciences ranges from chemistry, astronomy, physics, engineering mechanics etc. 

In recently bibliography, one can find the modeling of dynamical system based on 

fractional differential equations. In all this topics, the current state and the past state 

of a process are always needed to well describe and forecast the processes. 

 

Concerning the fractional differential equations, the periodicity of the equation, its 

asymptotic behaviors as well as numerical method of approaching the solution are 

sought. There exists various of FDE, one of great the interest being the nonlinear. We 

are interested in solving differential equation with fractional arbitrary order with the 

consideration of boundaries values. The R-L integral type with boundaries conditions 

will be considered  

       

      

       

     

2

1

, ,   0, ,

0 0,   0 0,...,   0 0,

,j j

c

m

n

j j j

j

D y k k y k k K

y y y

y K I y I y



 



  





 

  

  
 

                                                      
       1
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where  cD 
  stands  for  Caputo  fractional  derivative  type  with  the order  ,      a

 

continuous function and jI


anti derivative of order 0,  1,2,..., ,j j n    it is called 

R-L fractional integral where 1 1 2 20 ... ,n n K              and   ∈   are 

constant. 

 

Strip conditions occurs often in the modeling of some real problems. In this work, 

the following nonlocal strip condition is considered 

     

   

 

2

1

1 ,   0 1,

                                     1,2,..., 2 .

j

j

m

j j j

j

y y d

j m





    




   

 

 
                                                           2  

 

We studied above the R-L type integral with a multiple stripe boundaries conditions. 

Such problem can be found a direct application in the engineering. 

 

In this section, an alternative way to solve the problem given in the previous section 

is investigated. The well known fixed point theorem will be used the show the 

existence of some solution to the problem solved preciously. 

3.2 First Result 

Consider the following basic definitions: 

Def. 3.2.1: Let    , ,nf k AC c d  the following derivative is called Caputo 

derivative. It is a fractional derivative of order   (  a real number) 

      

 
 

     

   

11

                = ,   1 ,   1,

k
m mc

a

a

m m

a

D f k k f d
m

I D f y m m m





  


 





 



 
 

    


                                   3  

with symbol     being the  truncated  integer part of the  given the  real  number .   
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The symbol  ,nAC c d  is the space of functions  f k  (space of all real valued 

functions)  which have continuous  derivatives with order up to 1m   on the  interval  

 ,c d  such a way that    1 , .mf k AC c d    

 

Def. 3.2.2: The integral below is called the R-L fractional integral of order :  

      

 
 

 

 
1

0

1
,   0,

k f
I f k d

k






 

 


 
 

                                                     
       

 4  

with the assumption of the existence of the integral. 

 

The following lemma is as a results of the study carried out on equation (1), it is 

important in the generalization of the main result. 

Lemma 3.2.1: Considering  0, ,h C K  the fractional BVP 

     

       

       

     
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n
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j
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y K I y I y



 



  





   

  

  
 

                                                    5  

has a unique solution    0,ny k AC K  given by 

       

 
 

   

 
   

   
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j
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
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 
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where 

       

   

 

1 1

1

1

0.

j jm m
n

j jm

j j

m
K

m

 
 




   





  
   
  
 

                                                 
 7  

Proof : Consider the equation (5), a general form of solution is given as follows 

       

 
 

   
1 1

0 1 1

0

1
... .

k

m

my k k h d c c k c k


  


 

     
                              

 8  

 

By  using the given  boundary conditions, it is  found  that  0 1 20,  0,..., 0.nc c c     

 

Now the integral given by the operator 
jI



 of  Riemann-Liouville on (8), leads us to 
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 
 

 
   

   
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 9  

 

By using the condition 
1

( ) ( ) ( ) ,j j

n

j j j

j

y K I y I y
 

  


  
   together with the fact 

that 

        
 

 
 

 

1
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j
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

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 

 

 
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 
  

                                                     
 10  

we obtain 
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 11  

which yields 
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 12  

where   is given by (7). By substituting the value of 0 1 2 1,  ,...,  ,  m mc c c c   from (8), 

we find (6).  

3.3 General Results  

Let     [   ]    be a Banach space which contains all continuous function 

which are defined on the interval [   ]    on which a uniform convergence 

topology is defined with the following norm   y 
   0,

sup .
k K

y k

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From lemma (3.2.1), the operator :P    is defined as 
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                                                                           0, .k K

      

 13  

 

It is clear  that the problem (1) may have  a solution  only if the following associated 

fixed point equation Py y  possesses a solution; that means admitted a fixed point. 

Previously, the Banach's contraction mapping was used to show existence and the 

uniqueness of  solution to problem (1). 

 

Let us consider the following notation for convenience 
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Theorem 3.3.1: Assume the continuous real valued function   [   ]      

satisfies the following assumption: 
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 

   

3     

            , , ,

A

k y k x L y x                                

                  0,1 ,  0,k L         ∈                                                                    15
 

 

The boundary value problem (1) is defined above may have a unique solution under 

the condition 

            

1
,L 

                                                                                                         
 16  

with   defined by (14). 

Proof : consider    1 ,M L      we define     :  ,B y y      where 

 M   0,
sup

k K
   and   is given as defined by (14). Then we prove that

 
PB  

.B  For ,y B  by means of the inequality        , , ,0y y           

 ,0 ,L y M L M       it can easily be proved that  

      
  .Py L M    

                                                                                       
 17

 

 

Now,  for ,y x   and for each  0, ,k K  we obtain 
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The value   is a function of the parameter of the problem. Since 1,L   the 

application P  is a contraction mapping. Therefore, by the Banach's contraction 

mapping fixed point theorem, the problem (1) has a unique solution on the interval 

 0, .K   

Example 3.3.1:  Examine the boundary four-strip nonlocal valued problem: 
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where

 

1 1 2 2 3 3 4

4 1 2 3 4 1 2 3 4

9 / 2, 5, 1/ 4, 1/ 2, 2 / 3, 1, 5 / 4, 4 / 3, 3 / 2,

7 / 4, 5, 10, 15, 25, 5 / 4, 7 / 4, 9 / 4, 11/ 4.
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Consider the numerical value of the parameters as given above, it follows that 
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Let us chose 
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, tan 4 3sin 2 .

8
k y k y k

k
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                                             
 21  

 

Obviously, 1/ 2L   as      , , 1/ 2k y k x y x     and 1/ ,L    where 

            Theorem (3.3.1) is satisfied, therefore problem (19) has an unique 

solution where   ,k y k is defined by  (21). 

 

Consider the unbounded nonlinear equation: 
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, tan 4 3sin 2 ,

7 8
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 22  

we have 9 /14L   and     ⁄                Previously, the problem (19) with 

  ,k x k  defined by  (22)  has a unique solution. 

 

 The Leray-Schauder alternative is used for the purpose in what the follows: 

Theorem 3.3.2: Assume the existence 1 0L 
 
s.t:   1, ,k y L   for  0, ,k K  

 ∈    Then equation (1) has at least one solution. 

Proof : We prove here that operator P  is completely continuous. You might also 

observe the continuity of  operator P  through the continuity of .f  Consider    

a bounded set. Assume that   1, ,k y L   for ,y   lead us to 
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that  implies that   2.Py L  Furthermore, we find the  
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  Finally, for  1 2, 0, ,k k K  we have the following inequality: 

    

 

           
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2 1 3 2 1 .

k

k

Py k Py k Py L k k                                         
 26  

 

That  proved  equicontinuity  of  the  operator  P  on  the  Interval   0, .K   By  A-A  
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theorem, :P    is completely continuous operator. 

 

Let us consider the set 

        
 | ,  0 1 ,y y Py       

                                                                   
 27  

and prove that the set   is bounded let ,y   then ,  0 1.y Py    k 

 0, ,K  
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Thus, 1y M  for any  0, .k K  So, the set   is bounded. Therefore, by Theorem 

(3.3.2), the operator P  admits at least one fixed point. Which mean equation  (1) has 

at least a solution.     
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Example 3.3.2:  Let us consider now the BVP as given previously in example 1, as 

well as the function defined by 

          

  
  

  

  

3
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k y k
y k


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 


                        29

 

 

One can easily see, that   1,k y L   with 
 

 
2 2

1 1 ln 25 .L e   Therefore the 

conditions of theorem (3.3.3) holds. So by theorem (3.3.3),  equation (19) with 

  ,k y k  is defined. Equation (29) indicate that it has at least one real value 

which is solution. 

 

In what follows, we show another existence of the result for problem (1), based on 

the following well known result. 

Theorem 3.3.3: Let Y be Banach space, and   is bounded, open  subset of Y with 

   , let :K Y  be completely continuous operator s.t: 

            
,   .Kw w w  

                                                                             
 30

 

 

 K has a fixed point in .  

 

Theorem 3.3.4:  Let us assume the existence of a small number 0   s.t: 

 ,k y y   for 0 ,y    with 0 1/ ,    with   is defined by (14). As a 

consequence   at least one solution to the equation (1). 

Proof : We define  |P y y      and take y   such that ,y   that is, 

.y P  Previously, the completely continuity of the operator P is easy to show. 
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by regarding the condition  1 ,   it follows that ,  y .rPy y P   Therefore, 

by theorem (3.3.4), the operator P  is admitted at least one  FP,  which means the 

problem (1) admitted at least one solution.    

                                                                  

Example 3.3.3: Consider the following problem  
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If y is small enough and if all its power are neglected then 
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Pick 1/ ,b    the assumptions of  theorem (3.3.5) is verified. Thus, from theorem 

(3.3.5) the problem (19) with   ,k y k  is defined by (32) has at least a solution. 

 

Lemma 3.3.1: (Nonlinear alternative for single valued maps) 

Let Banach space H  be closed, convex subset D  of ,H and W an open subset of 

D  with 0 .W  Assume :F W D  is continuous and compact mapping (i.e., 

 F W  is a relatively compact subset of D ) map, Then: 

   (i)  H has a FP in  ,W  otherwise 

   (ii) ,w W   W D  and  0,1   s.t:   .w F w  

 

Theorem 3.3.5: Consider the following assumptions 

 1A     ∈   [   ]    function and a nonlinear decreasing function         s.t:

     , ,k y k y    for all      ∈ [   ]     

 2A   a constant 0M   s.t: 

         
 

1.
M

M 


                                                                                              
 34

 

 

Then problem (1) defined above has a solution with  boundary value conditions on 

the interval  0, .K  

Proof : Let us define the  operator :P    as given in (13). Let us prove that the 

operator P  maps  any bounded sets into another bounded sets in   [   ]      

 

Consider      and    { ∈   [   ]    ‖ ‖   } a bounded set in   [   ]     
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We  demonstrated that F  maps all  bounded sets into equicontinuous sets  

  [   ]    Let  , 0,1k k   where k k   and ,y B  with B  a bounded set 

which comes from   [   ]     

     
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 

 
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  
  
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   
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It is clear to see that the RHS of the inequality given above approaches zero 

independently of the variable y B  as 0.k k   As     [   ]    

  [   ]    is satisfied the assumptions above. It's follows from  A-A theorem P  is 

completely continuous. 

 

Assume  y a solution  of  the  equation. Consider  any  real  number   0, ,k K  and  
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perform similar computation as above, leads to
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


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   

 
 

   



                      

                                                                                                                                
 37  

 

In consequence, we have  

          
 

1.
y

y 


                                                                                            
 38  

 

Thus by  2 ,A  there exists a constant M such  that
 

.y M  Let us defined the set  

           { ∈   [   ]    ‖ ‖     } 
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The defined operator    ̅    [   ]    is continuous moreover it is completely 

continuous operator. Based on ,  choice, there does not exists y  |  y P y

for some value of  0,1   Finally, the nonlinear alternative of  Leray-Schauder 

type (Lemma 3.3.1), we conclude that the operator P  has a fixed point y U  that 

fixed point is the solution of  equation (1) as stated above.    

 

Example 3.3.4: Recall the  Example (3.3.1) with its boundary conditions 

         

      
1

, 1 .
14

y
k y k k y

yk
 

 
       

                                     
 40  
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Then   1/ 4k k    and   2.y   By using 1/ 2,               the 

condition  2A  leads us previously to  .M    Thus all the assumptions provided on 

the  Theorem (3.3.6) are satisfied. As conclusion, based on the theorem (3.3.6),  the 

problem which is given by (19) with   ,k y k  and given by (40) has a solution. 

If  the unbounded nonlinearity is chose by: 

        

  
1

, 1 .
1 24

y y
k y k

yk


 
      

                                                        
 41  

 

Then       ,k y k t y    with   1/ 4k k    and   2 2.y y  

By  using the earlier arguments, with 1/ 2,               we find that 

1,M M               Hence, the problem (19) with   ,k y k  which is 

given by (41) has at least one solution. 
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Chapter 4 

NONLOCAL HADAMARD FRATIONAL INTEGRAL 

CONDITIONS FOR NONLINEAR RIEMANN-

LIOUVILLE FRACTIONAL DIFFERENTIAL 

EQUATIONS 

 
4.1 Introduction 

Existence and the uniqueness of the solution of  nonlinear  R-L Fractional type of 

differential equation was considered a nonlocal Hadamard Fractional integral 

boundary conditions which is  defined as follows: 

      
      , ,   0, ,RL D k k k k K  

                                                          
 1.1  

      

     
1

0 0,        ,j

m
p

j H j

j

K I    


                                                          
 1.2  

whenever 1 2,  RL D 

 
is recognized as standard R-L Fractional derivative of 

order ,  jp

H I   recognized as Hadamard Fractional integral of order ,  0,j jp p 

 0, ,j K     [   ]       and   ∈   
 
j 1,2,...,m  are real constant such that 

 

1

1

1
.

1
j

m j j

pj
K




 











  

 

There are several important and interesting results about the existence and the 

uniqueness of the solutions as well as the stabilities of the solutions. The analytic and 

numerical methods have both been used in recent research to investigate the solution 

of differential equation of fractional type. 
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Naturally,  fractional-order operators are nonlocal with consideration of properties 

arising from many processing or phenomena. Also fractional calculus is a powerful 

tool for modeling a lot of real world situation or problems. However, it is obvious 

that the majority of work in the fields involve fractional derivatives of either RLFD 

or fractional derivatives of Caputo type. Beyond these two derivatives type, the HFD  

is another type of fractional derivative which was introduced by Hadamard year 1892 

. In this chapter, the solution to the same problem as defined from the beginning is 

going to be approach based on Hadamard fractional derivative. The difference 

between these methods studied previously is going to be highlighted in the course of 

the chapter.  

4.2 First Results 

In this section, important results and definitions are introduced as well as some result 

that will be proved in the course of the work. The definitions are basically from the 

fractional calculus. 

Def 4.2.1:  The equation below is called the R-L Fractional derivative of  real order

0  . The derivative is defined on a continuous function   [   ]    as follows: 

         

 
 

   
1

0

1
 ,   m -1 ,

m k
m

RL

d
D k k d m

m dk

    


  
      

   
  

where
 

   1,  m      (the integer part)  and   is recognized as the gamma 

function,  it is defined as: 

        
  1

0
.e d   


     

 

Def 4.2.2:  The  R-L  Fractional  integral  of  order  0    is a  continuous  function  

  [   ]     is describe as  
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 
 

   
1

0

1
 .

k

RL I k k d
   




   

   

 

Def 4.2.3: The Hadamard derivative of fractional order   for a function   [   ]  

  is express as: 

 
 

 
 

1

0

1
log  ,   -1 ,  1,

m mk

H

d k
D k k d m m m

m dk






  
  

 
   

        
     



where    log log ,e    provided the integral exists. 

 

Def 4.2.4: The Hadamard fractional integral of order  ∈    for a function   ,k

0,k   is define as: 

          

 
 

 
1

0

1
log  ,

k

H

k d
I k



 


  



 
   

  
  

Provides the integral exists. 

 

Lemma 4.2.1: Consider two positive real number 0   ; 0.m   The formula below 

hold: 

           
  m m

H I k m k   and    .m m

H D k m k    

 

Lemma 4.2.2:  Consider a positive real number 0   and    0, 0, .C K L K    

The following  FDE 

           
  0RL D k   

has a unique solution 

            
  1 2

1 2 ,m

mk c k c k c k         
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where    ∈    1,2,..., ,j m  and 1 .m m    

  

Lemma 4.2.3: Let 0.   Then for    0, 0,C K L K    we have 

            
  1 2

1 2 ,m

RL RL mI D k c k c k c k           

where    ∈   
 

1,2,..., ,j m  and 1 .m m    

 

Lemma 4.2.4: Let 

     1 1

1
1 ,  1 2,  0,

jm p

j j jj
K p     


        ∈    0, ),   1,2,...j K j  

, ,m  and  ∈  [   ]     It follows that the nonlocal HFI  problem for the nonlinear 

R-L fractional differential equation 

         
    ,   0 ,RL D k k k K   

                                                                  
 2.1  

with  the boundary conditions 

           

     
1

0 0,        ,j

m
p

j H j

j

K I    


                                                     
 2.2  

has a unique solution given by  

           

        
1

1

,j

m
p

RL RL j H RL j

j

k
k I k I K I I


       







 
   

 
         

 2.3  

where 

          
 

1

1

1

: 0.
1

j

m
j j

p
j

K




 










  


                                                                        
 2.4  

Proof : By using lemmas (2.2)-(2.3), the equation  (2.1) is equivalent to the integral 

equation below 

         
    1 2

1 2 ,RLk I k c k c k       
                                                           

 2.5  
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for      ∈    The first condition of (2.2) implies that 2 0.c   We considering the 

HFI type of order 0jp   for (2.5) it follows from the properties of the HFI which  

given by: 

      
    1 11 ,

jj
pp

H I k k  
     

that 

          
 

1
1

1 1 .
1

j j j j

j

p P p P

H H RL H H RL p

k
I k I I k c I k I I k c


     




   


 

 

 The second condition of (2.2) implies that 

      

    
 

1

1

1 1

1 1

.
1

j

j

m m
p j j

RL j H RL j p
j j

I K c K I I c



  
 

   






 

  


   

 

Thus, 

        

    1

1

1
.j

m
p

RL j H RL j

j

c I K I I    
 

 
  

 
  

 

Substitute the values of 1c  and 2c  lead to the solution of (2.3).    

4.3 General Results 

In order to ensure convenience, throughout this chapter the following expressions are 

used: 

       

   
 

      
1

0

1
,  ,  ,    z , ,

z

RL I z z d k K
        




    

   

for
 

 0,k K  and  
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   
   

 
  
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1

1
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,
                                                                                     ,
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j

p
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j
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p

d d

 





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

  
   







 
   

   


 

 
 

where
 

 0,j K   for 1,2,..., .j m  

 

 Let set      [   ]    be a Banach space (space of all continuous functions) 

define from the interval 0,T  which has the norm given by    0,
sup .

k K
k 


  

Similarly to the Lemma 2.4, the operator is define :C C   by 

    

      

        
1

1

,

                  , , .j
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m
p

RL j H RL j

j

k I k

k
I k I I




 

   

       






  

 
    

 
   

                                                                                                                                
 3.1

 

 

It is obviously that problem (1.1)-(1.2) possesses a solution provided that the 

operator   has a fixed point. 

 

In what follow, for convenience, we defined a constant 

      
     

2 1 1

1

.
1 1 1

j

m
p q

j j

j

K K K  

  
    

 




   
     

                                
 3.2

 

 

In the next subsection we show the existence, as well as the uniqueness results, for 

the BVP (1.1)-(1.2) based on a new formulation of the  fixed point theorems. 

4.3.1 Existence and Uniqueness Result Through BFP Theorem 

Theorem 4.3.1: Let us assume that: 
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which implies that .x L x       As 1,  L   is a contraction. The 

B'sFP theorem  is used to conclude the operator A possesses one and only one fixed 

point. This FP is exactly the solution of the BVP given by (1.1)-(1.2).   

4.3.2 Existence, Uniqueness  of  Fixed Point  Through Banach's Fixed Point and 

Holder Inequality 

Theorem 4.3.2: Suppose   [   ]      a continuous function which satisfies 

the following condition: 
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  [   ]   

              ∈      . 
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thus the BVP (1.1)-(1.2) has a unique solution. 
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 The BFP theorem is used to conclude that the operator A possesses one and only one 

fixed point. The solution of the BVP described by (1.1)-(1.2) is the fixed point.      

4.3.3 Existence and Uniqueness of the Solution Through Nonlinear Contractions 

Def 4.3.1: Let E  be a Banach space and : E E   be a mapping.   is nonlinear 

contraction mapping if there is a continuous and nondecreasing function      

   s.t:  0 0   and   ,   0   with the property: 

           
  ,   , E.x x x         

 

Lemma 4.3.1: Consider the space E  a Banach space and : E E   a nonlinear 

contraction then the mapping   has a unique FP in the Banach space .E  

 

Theorem 4.3.3: Let   [   ]      be a continuous mapping that satisfied the 

assumption: 

       3    , , ,  
x

H k k x k
H x


 




  

 
for  0, ,   , 0,k K x   where 

  [   ]      is continuous with the constant H   defined as: 
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It follows that the BVP (1.1)-(1.2) has a unique solution on the said interval above. 
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It   follows   that   .x x       Therefore,  operator   A  is   nonlinear 
 

contraction. The lemma (4.3.1) is then used to conclude that the operator A has one 

and only one FP. The solution of the BVP describe by (1.1)-(1.2) is the fixed point.
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4.3.4 Existence of Solution Through Krasnoselskii's Fixed Point Theorem (KFP) 

Theorem 4.3.4:  Consider the function   [   ]      to be continuous and  

satisfying the hypothesis  1H . To that, let us add: 

     4  , ,H k k          ∈    and  ∈   [   ]       

 

Thus the BVP (1.1)-(1.2) possesses at least on solution on the interval  0,K is  

given by 
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
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          

  


 

 

It  shows that 1 2 .x B    It is obvious to see by using (3.5) that 2  is a 

contraction mapping. 

 

1  
is continuous because   is continuous. On the other hand, 1  is uniformly 

bounded on B  because 

            
 1 .

1

K 

 


 
 

 

 

Let us now prove that the operator
 1  is compact.  

 

Consider      , 0,
sup , ,

k y K B
k




 
   it follows that  
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
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which holds independently of 0y   as 2 1.k k  Thus,
 1  is equicontinuous. 

 

This means that the operator 1  is relatively compact on the interval ,B  by A-A 

theorem, the operator 1  is compact on the interval .B  These hold with the 



53 

 

conditions of  the lemma (4.3.2).  It follows by the lemma that the BVP (1.1)-(1.2) 

has at least one solution on the interval  0, .K  

4.3.5 Existence of the Solution Through Leray-Schauder's Nonlinear 

Alternative 

Theorem 4.3.5:  Assume that 

 5H
 
  a continuous nondecreasing function    : 0, 0,     and a function 

 ∈   [   ]      such that 

       
     , ,k w k      for each      ∈ [   ]     

 6H   a constant 0Q   s.t:  

        
 

1,
Q

Q


 
 

where   given by (3.2). 

 

The BVP (1.1)-(1.2) has at least one solution on the interval  0, .K  

Proof : Consider the mapping   to be defined as in  (3.1). Let us prove first that the 

operator   is a mapping of  bounded sets into bounded sets in   [   ]     0,   

let    { ∈   [   ]    ‖ ‖   } be a bounded ball in   [   ]     Then for 

 0,k K  we have  
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and consequently, 

         
  .       

 

Consequently, we show that operator A maps every bounded sets into 

equicontinuous set of   [   ]      Let  1 2, 0,K    with 1 2   and .B   It 

follows that 
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As 2 1 0,    the RHS of the inequality above approaches zero not depending on 

the parameter .B   It follows from A-A theorem that operator     [   ]    

  [   ]    is  completely continuous. 

 

Consider   to be a solution.  0, ,k K   similar to the previous computations, 

       
    ,k      

which leads to 
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 

1.


 


 
 

 

Based on  6 ,H
 
  a real value M such that .M   Assume that       

        { ∈   [   ]    ‖ ‖   }  

 

It is clear to observe that    ̅    [   ]    is continuous , moreover, it is 

completely continuous. A suitable choice of the set ,W  implies that there is no 

W   such that .     By choosing  0,1 ,  the nonlinear alternative of 

Leray-Schauder type is enough to conclude that the operator   has a fixed point 

U   . The FP of  the unique solution to the BVP  (1.1)-(1.2).    

4.3.6  Existence Result Through Leray-Schauder's Degree Theory  

Theorem 4.3.6:  Let   [   ]       be a continuous function. Assume that 

 5H   a constants  , 
10     and 0Q   s.t: 

       
 ,k Q      for all      ∈ [   ]     

  is as defined by (3.2). 

 

Thus  BVP (1.1)-(1.2) has at least one solution on  0, .K  

Proof : Define an operator :C C  as in (3.1),  in view of the FP  problem  

         .  
                                                                                                         

 3.7  

 

Let demonstrate the existence of at least one  solution  0,C K   that satisfied 

(3.7). Consider  0, ,B C K   as: 
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          0,
: max ,

k K
B C 


     

with 0.   Let us prove that  : 0,B C K   satisfies the conditions  

       
 ,    B ,   0,1 .         

                                                                  
 3.8  

 

We set 

          
   , ,   C,  0,1 .H         

 

 

As proved in the Theorem 3.6 ,  operator   is continuous, equicontinuous, and 

uniformly bounded. Therefore, by A-A theorem, a continuous map   defined by 

   ,H             is completely continuous.  When the equation (3.8) 

holds, it follows from the Leray-Schauder degree are well defined, and by the 

homotopy invariance of topological degree we have the relation 

       

   
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where I  is unit operator. The nonzero property of the Leray-schauder degree leads 

us to  1 0A       that holds for at least one .B   Assume that      for 

a real value  0,1   and  0,k K   s.t: 
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which, on taking the norm    0,
sup

k K
k 


  and solving the equation for ,  

yields  

             
.

1

Q








 

 

If 1,
1

Q




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
 the inequality given by (3.8) holds.   

4.4 Examples  

The illustrations of our results is given via some examples in this section 

Example 4.4.1: Consider a nonlocal Hadamard FICs for nonlinear R-L Fractional 

differential equation: 
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 4.1  

 

Here 1 2 3 1 2 33/ 2,  m 3,  K 3, 4 / 5,  3 / 2,  5,  2,  ,  p p p             

1 2 31/ 2, 3 / 4, 3 / 2, 9 / 4     , and          
2

2, sin 3 1kk k e       .  

 

Since      , , 1/16 ,k k x x      1H  is satisfied with 1/16.L   By using    

a Maple program, we can find that 
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Therefore, 0.4524938142 1.L  Consequently, the BVP (4.1) has unique solution 

on the closed interval  0,3  according to theorem (4.3.1). 

 

Example 4.4.2: Consider the nonlocal Hadamard FICs for nonlinear R-L Fractional 

differential equation: 
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Here 

1 2 3 4 14 / 3,  m 4,  K 3/ 2,  1/ 5,  2 / 3,  1/ 3,  / 2,  1/ 4p                

2 3 4 1 2 3 2 / 2,  6 / 5,  3,  3 /10,  3 / 5,  9 /10,p p p          and
 4 6 / 5.   

 

Since       , , 2 8 ,k kk k x e e x        then  2H   satisfies with  k

 2 8k ke e   and 1/ 2,   with the help of  Maple program, we show that: 
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It follows directly from the theorem (4.3.2), the BVP (4.2) has a unique solution on 

the interval  0,3 / 2 .  

 

Example 4.4.3: Consider the nonlocal Hadamard FICs for nonlinear R-L Fractional 

differential equation: 
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 4.3  

 

Here 

1 2 3 1 2 37 / 6,  m 3,  2,  2,  2 / 3,  3,  ,  5 / 4,  3 / 7,K p p p            

1 2 32 / 5,  4 / 3,  3 / 2,      and        
22, 2 1 3 4 / 5 ,k k k k       

pick   2 / 4k k   and 

        

     
1 1

1

:

      0.6432886158.
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p
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j
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 
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 

 




  



  

 

Clearly, 

         

   
 

2

2

2

, ,
12

                             .
4 0.6432886158

xk
k k x

x xk

xk

x




 






  

  

 
     

 

 

  theorem (4.3.3), that the BVP (4.3) has a unique solution on the closed interval 

0, 2 .  
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Example 4.4.4: Consider nonlocal Hadamard FICs for nonlinear R-L Fractional 

differential equation: 

          

 
 

 

 

 
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 

 

 

26

5
2

1/2 3/4

4/5 4/3 2/3

sin 2 1
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3 2
2 3

3 4 3

1 4 5
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9 3 3

k
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H H H

ke k k
D k k

kkk

I I

I I I


 





 
   

 
   

 
   





    
     

   


   
     
                        

 4.4
 

 

Here 

1 2 3 4 5 15 / 4,  m 5,  2 ,  3,  3 / 4,  1,  1/ 9,  2,  1/ 2K p                 

2 3 4 5 1 2 3 43/ 4,  4 / 5,  4 / 3,  2 / 3,  / 3,  2 / 3,  ,  4 / 3,p p p p               

5 5 / 3,  and
 

             
2 22, sin 2 3 1 1 1 .kf k y e k y k y k k       

 

Since      , , 1/16 ,f k y f k x P y x    1H  satisfied with 1/ 36.L   By using 

a Maple program, we show that 

       
   

2 1 1

1

0.9518560542 1.
1 1
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Clearly,  
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From Theorem (4.3.4), it follows that  the BVP (4.4) has at least one solution on the 

interval  0,2 .  
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Example 4.4.5: Consider nonlocal Hadamard FICs for nonlinear R-L Fractional 

differential equation: 

          

   
   
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     
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 4.5  

 

Here 

1 2 3 1 2 16 / 5,  m 3,  ,  1/ 2,  5,  3,  2,  3,  5K e p p p              

1 2 31/ 2,  2 / 3,  1,      and
 

          2 2, 1/ 64 1 1 2 1k k       

  1/ 2 .   It is easy to verify that  

            
     

2 1 1

1

: 3.905177250.
1 1 1
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Clearly, 
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2 21 1 1
, 1 1 1 .
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By choosing     21/ 64 1k k    and   1,     we can show that 

          
 

1,
Q

Q


 
 

we implying that 1.048704821.Q   It follows from Theorem (4.3.6), that the BVP 

(4.5) has at least one solution on the interval  0, .e  
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Example 4.4.6: Consider nonlocal Hadamard FICs for nonlinear R-L Fractional 

differential equation as follows: 

          

   
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 4.6  

 

Here 

1 2 1 2 1 27 / 4,  m 2,  K 1,  3,  2,  1/ 2,  3 / 2,  1/ 2,  3 / 4p p               

and
 

         , 1/ 2 sin 2 1 1.k          We can show that  

             
     

2 1 1

1

: 1.582207843.
1 1 1

j

m
p

j j

j

K K K  
  

    

 




    
     

  

 

Since 
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 

 
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 5H
 
is satisfied with 1/ 4   and 1Q   such that 

             

1 1
0.6320282158.

4
   


 

 

From the  Theorem (4.3.7), it follows that the BVP (4.6) has at least one solution on 

the interval  0,1 . 
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