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ABSTRACT 

On a rectangle given the Dirichlet Laplace’s equation, for its solution by finite 

differences there exist numerous direct methods and iterative methods. Examples of 

direct methods are block decomposition, block elimination, block cyclic reduction 

methods, discrete Fourier transform methods. Among the iterative methods, 

Successive Overrelaxation Methods, Accelerated Overrelaxation Method (AOM), are 

widely used methods. 

 

In this thesis we studied the Accelerated Overrelaxation Method (AOR) for the 

numerical solution of discrete Laplace’s equation on a rectangle obtained by 5-point 

difference scheme. Numerical results are given for different values of the two 

parameters, w  and r  and for mesh size .h     

 

Keywords: Successive Overrelaxation Method (SOR), Accelerated Overrelaxation 

Method (AOR), Laplace’s equation, 5-point scheme. 
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ÖZ 

Dikdörtgen üzerinde, Dirichlet sınır koşullu Laplas denklemi verildiğinde sonlu 

farklar ile sayısal çözümü için birçok doğrudan ve tekrarlama yöntemleri mevcuttur. 

Doğrudan yöntemlere örnek olarak blok ayrıştırma, blok yok etme, blok döngüsel 

indirgeme, ayrık Fourier dönüşüm yöntemleri mercuttur. Tekrarlama yöntemleri 

arasında Successive Overrelaxation yöntemi ve Accelerated Overrelaxation yöntemi     

sıkça kullanılan metodlardır. 

 

Bu tezde dikdörtgen üzerinde ayrık Laplace denkleminin 5-nokta sonlu fark şeması ile 

sayısal çözümü için Accelerated Overrelaxation yöntemi çalışılmıştır. Sayısal 

sonuçlar, 𝑤 ve 𝑟 parametrelerinin farklı değerleri için ve adım uzunluğu ℎ için verildi. 

 

Anahtar kelimeler: Successive Overrelaxation Yöntemi, Accelerated Overrelaxation  

Yöntemi, Laplace denklemi, 5-nokta şeması. 
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Chapter 1 

INTRODUCTION 

1.1 General Knowledge  

One of the aim in mathematics is often to solve problems. The solution of a problem 

is usually done based on some assumptions. A well-defined problem is solved using 

some specific formula or method. In the fields of physics, chemistry, economics, let 

us say in sciences, solving a problem usually leads to the use of some equations. There 

exists various types of equations, arising from various fields of sciences. The type of 

equation to be considered in this study is the Laplace Equation.  

Consider the following equation: 

                    
       

     

2 2 2

2 2
, 2 , ,

, , , ( , ).

u u u
L u A x y B x y C x y

x x y y

u u
D x y E x y F x y u G x y

x y

  
  

   

 
   

 

                           (1.1)        

      

This is a linear second order partial differential equation with two independent 

variables x  and ;y  one dependent variable .u  The real functions , , , ,A B C D E  and 

F  of variables x  and y  are called coefficients. Let R   be the domain over which the 

solution is desired. The coefficients , , , ,A B C D E  and F  are assumed to be twice 

differentiable with their second derivative continuous over .R  From (1.1),   

if   0L u  , ,x y R  then equation (1.1) is called homogeneous equation. If

  ( , ) 0L u G x y  with ,x y R  then equation (1.1) is called nonhomogeneous 
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equation. A quasi linear first order equation in two independent variables is an equation 

of the structure  

                    ( , , ) ( , , ) ( , , ).
u u

P x y u Q x y u S x y u
x y

 
 

 
                                      (1.2)   

 

The general form of an almost-linear second order equation in two independent 

variables is  

                    
2 2 2

2 2
( , ) 2 ( , ) ( , ) ( , , , , ).x y

u u u
A x y B x y C x y F x y u u u

x x y y

  
  

   
   (1.3) 

 

In physical problems the time is a very important parameter. It is therefore common to 

replace one of the independent variables x  or y  by the variable t , to refer to the time. 

The following are some physical well known partial differential equations. 

The one-dimensional heat equation  

                       
2

2

2
,

u u
L u G x t

t x


 
  
 

 ;  0 ;  0;  , .x L t u u x t                 (1.4) 

 

The one-dimensional wave equation 

                         
2 2

2

2 2
, 0 ;  0;  , .

u u
L u G x t x L t u u x t

t x


 
      
 

              (1.5) 

 

Laplace’s equation 

                     
2 2

2 2
0,  , .

u u
L u x y R

x y

 
   
 

                                                          (1.6) 
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Poisson equation 

                        
2 2

2 2
, ,  , .

u u
L u G x y x y R

x y

 
   
 

                                            (1.7) 

1.2 Type of Almost-Linear Equations of Two Independent Variables  

Let L  be the operator defined by 

                     

2 2

2

2

2

( , ) 2 ( , )

( , ) ( , , , , ) 0,x y

u u
Lu A x y B x y

x x y

u
C x y M x y u u u

y

 
 

  


  



                                             (1.8) 

the almost-linear equation in the real independent variables , .x y  Let the coefficients 

, ,A B C  be real-valued function with continuous second derivatives on a region 𝑅 of 

the xy -plane and assume that , ,A B C  do not vanish simultaneous. The function   

defined on 𝑅 by  

                        2( , ) ( , ) ( , ) ( , ).x y B x y A x y C x y                                             (1.9) 

 

Is called the discriminant of .L  The discriminant (1.9) helps to classify the canonical 

form of the partial differential equation (1.8). The operator L  is said to be  

1. Hyperbolic at a point ( , )x y  if ( , ) 0.x y    

2. Parabolic at a point ( , )x y  if ( , ) 0.x y   

3. Elliptic at a point ( , )x y  if ( , ) 0.x y   

1.3 Elliptic Differential Equations and Boundary Value Problems 

A problem in a class of boundary-value problems of interest in the applications is 

described as follows. Let 𝑅  be a bounded region with boundary R  and let 

,R R R   the union of R  with its boundary ,R  that is the closure of R  let L  be 
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a linear second order self-adjoin partial differential operator which is elliptic on .R  A 

solution of   

                    ( , )Lu G x y  in ,R                                                                          (1.10) 

is desired such that u  is continuous on .R  Here ( , )G x y  is continuous function on 

.R     

 

Dirichlet problem:  

Let 

                    u f on ,R                                                                                      (1.11) 

where f  is a given continuous function on the boundary .R  This problem is called 

Dirichlet problem for the region .R  Condition (1.11) is referred as Dirichlet boundary 

condition. 

 

eumann problem:N   

A problem of a somewhat different type is to determine a solution of (1.10) that 

satisfies  

                       
u

f
n





on ,R                                                                                (1.12) 

where 
u

n




 denotes the derivative in the direction of the exterior normal on .R  This 

problem is called Neumann problem and the condition (1.12) is called Neumann 

boundary condition. 

 

Mixed (Robin) boundary problem:  

A boundary condition of the form  
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u

a bu f
n


 


on ,R                                                                       (1.13) 

is a mixed boundary condition. It is assumed that the given function ,a b  and f  are 

continuous on R  and a  and b  do not vanish simultaneous. The problem of 

determining a solution of equation (1.10) such that the solution has continuous fist 

derivatives on R  and satisfies (1.13) on R  is called Mixed or Robin problem.  

The type of boundary value problem which will be discuss in this study is the Dirichlet 

Poisson problem, and specifically the Dirichlet Laplacian problem. It is an elliptic 

partial differential equation.  Its’ applications are found in mechanical engineering; 

electromagnetism, theoretical physic and electrostatics. The most known form of 

Poisson equation is  

                         .g                                                                                                                               (1.14) 

 

In which the symbols are identified as follows:   is called the Laplace operator. The 

functions   and g  are either real or complex functions defined on a manifold. The 

function g  is usually given and the function   is the sought function. We are usually 

concerned by real functions and therefore the manifold used is the Euclidean space. 

When the manifold is the Euclidean space, the Laplace operator is denoted by 
2  and 

the Poisson equation given by (1.14) is defined as follows: 

                           
2 ,g                                                                                               (1.15) 

And  it is  expanded  as follows in a  three  dimensional  Cartesian  coordinate  system   

                              
2 2 2

2 2 2
, , , , .x y z g x y z

x y z


   
   

   
                                     (1.16) 

 

When the function g  mentioned in (1.14), (1.15) and (1.16) is the zero function, then  
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(1.14); (1.15) and (1.16) are now called Laplace’s equation and denoted by  

                    0                                                                                                 (1.17) 

                    2 0                                                                                               (1.18) 

                     
2 2 2

2 2 2
, , 0,x y z

x y z


   
   

   
                                                  (1.19)     

respectively. 

1.4 Objectives in the Thesis 

There are various methods to solve the Laplace equation on a rectangle with Dirichlet 

boundary conditions. It can be solved using the green function, or by a numerical 

method to approach the solution. On a rectangle, given the Dirichlet Laplace’s 

equation, for its solution by finite differences there exist numerous direct methods and 

iterative methods. Examples of direct methods are block decomposition, block 

elimination, block cyclic reduction methods, discrete Fourier transform methods. 

Among the iterative methods, Successive Overrelaxation Methods, Accelerated 

Overrelaxation Method (AOM), are commonly used method. In this work, we will 

focus on an iterative method called Accelerated Overrelaxtion Method (AOM) to 

approach numerically the solution of the discrete Laplace’s equation, on a rectangle. 

In Chapter 2, we study derivation and convergence analysis of the (AOM) for weak 

diagonal dominant and irreducible matrices, for matricesL   and for consistently 

ordered matrices. The realization of the (AOM) for solving the Dirichlet Laplace 

problem on a rectangle is also studied. In Chapter 3 numerical result are given for a 

chosen test problem for various mesh size h  and different values of the two 

parameters. In Chapter 4 concluding remarks are given based on the analysis made. 
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Chapter 2 

ACCELERATED OVERRELAXATION METHOD 

(AOM) FOR THE NUMERICAL SOLUTION OF LINEAR 

SYSTEMS OF EQUATION 

 

In this Chapter we study on an iterative method known as the Accelerated 

Overrelaxation Method (AOR) to obtain the solution of linear systems of equation. 

Successive Overrelaxation Method is a reduced form of this method when the 

parameter r  is equal to the parameter .w   

2.1 Construction of (AOR) 

Let A  be n n  real matrix whose diagonal entries are different from zero. Consider 

the linear system  

                    ,Ax b                                                                                                 (2.1) 

and the splitting of the matrix A  as follow: 

                    ,A D L U
A A

- -                                                                                   (2.2)  

where the matrices D , LA  and U A  are a diagonal, a lower triangular and an upper 

triangular matrix  respectively. The numerical solution of equation (2.1) is tackle as 

follow, based on [1], we consider  

                      𝐶𝑥(𝑚+1) = 𝑅𝑥(𝑚) 𝑚 = 0, 1, 2, …,                                                   (2.3)    

where  𝐶, 𝑅 ∈ 𝑅𝑛×𝑛  and 𝐶 is nonsingular matrix. It is well know that the iteration (2.3) 

is convergent iteration if 𝜌(𝐶−1𝑅) < 1, [2], page 214. The proposed scheme is of the 

form: 

                           1

1 2 3 4 5 6 ,
m m

D L x D L U x b     


    A A A
                    (2.4) 
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with 0,1, ,m   and  1 1 6i i   are constants. The constants i  are to be sought 

with the conditions that  1 0  . The initial approximation 
(0)x  to the solution, is 

arbitrary. Dividing both sides of the equation (2.4) by 1  leads to  

                            1

2 3 4 5 6 ,
m m

D L x D L U x b    
        A A A                    

(2.5) 

with the coefficients 
1

i
i





  , 2(1)6i  . The scheme defined by (2.5) is consistent 

with the equation (2.1) under the following conditions:  

                        3 2 4 5 6 61 ,  0.A AD L U A                                                (2.6)  

 

From (2.2), equations (2.6) yields a two parameters solution given by  

631 ,    2 4 6        and 5 6 ,      with the  parameters r  and 0w   as;  

                  2 3 4,  1 ,  =w , r w r         5 6,  and .w w                                   (2.7) 

 

Therefore (2.5) can be written as: 

                              1
1

m m
I rL x w I w r L wU x wc


         ; 0,1, ,m     (2.8) 

where L D L-1

A
= , U D U-1

A
= , c D b-1

=  and I  is n n  identity matrix. The scheme 

(2.8) is known as the Accelerated Overrelaxation Method (AOM). It is also called the 

, r wM  and reduces to the following methods as given in Table 2.1; for some specific 

values of r  and .w   
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Table 2.1: , r wM method for some specific values of r  and  w  

,  ( )r w  Method 

0,  1( )        
0, 1

M  : Jacobi method 

1,  1( )        
1, 1

M  : Gauss- Seidel method 

0,  ( )w        
0, w

M : Simultaneous Overrelaxation method 

,  ( )w w        , w wM : Successive Overrelaxation method 

 

 

At   this   point, r  and w  are  called    acceleration   and   overrelaxation   parameters  

 

respectively.    Recalling   the   scheme   described by the equation (2.8), the iterative  

 

matrix is represented in that case by , r wL  and 

                         
1

, 1 .r wL I rL w I w r L wU


                                         (2.9) 

 

Let  , r wL  denote the spectral radius of , .r wL  When 0r  , the Accelerated 

Overrelaxation Method (AOM) is a form extrapolated Successive Overrelaxation 

Method (SOR) with the Overrelaxation parameter r  and extrapolation parameter 

w
s

r
   . One can easily prove that  , , 1 .r w r wL sL s I    Therefore  if we 

consider v  to be an eigenvector of  , 0r wL r   and  we consider ,  to be the 

corresponding eigenvalue of , r wL  then the following relation holds: 

                     1 .sv s                                                                                        (2.10)  

 

For the following sections, our aim will be to study the constraints and conditions on  
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r  and w  under which the , r wM  method is convergent 

 2.2 Convergence Analysis for Irreducible Matrices with Weak 

Diagonal Dominance and L-matrices 

Let ( )G A  be the directed graph of .A   

Definition 1: [2], page 126. If, to each ordered pair of disjoint point ,  i jp p  in a 

directed graph ( )G A  there exist a directed path 
0, 1,i ip p  

1, 2i ip p ,…, 1,ir ir
p p  with 

,io i  ir j   then ( )G A  is called strongly connected.  

    

Theorem 1: [2], page 126. A matrix A  is irreducible matrix if and only if ( )G A  is 

connected. For an irreducible matrix A  which has weak diagonal dominance the 

following theorem holds and can be proved. 

 

Theorem 2: [1], page 151. Let A  be an irreducible matrix which has weak diagonal 

element dominance, thus the , r wM  -method is convergent for all 0 1r   and 

0 1w  . 

Proof: [1], page 151. Assuming for some eigenvalue   of , wrL  that we have 1  . 

For this particular eigenvalue the following relationship holds, 

                     , det 0.r wL I                                                                             (2.11) 

 

From (2.9) and (2.11) 

 1det ( ) [(1 ) ( ) ] 0I rL w I w r L wU I         

 1det ( ) [(1 ) ] 0I rL w I wL rL wU I r L            
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1det( ) 0I rL     thus det[(1 ) ] 0w I wL rL wU I r L          

det[ ( 1) ( ) ] 0w I w r r L wU            

( )
det ( 1) 0

( 1) ( 1)

w r r w
w I L U

w w




 

   
        

     
  

                    
( 1)

det 0.
1 1

r w w
I L U

w w



 

  
        

                                      (2.12) 

 

Let 
( 1)

1 1

r w w
Q I L U

w w



 

 
  

   
 we get 

                    det 0.Q                                                                                             (2.13) 

 

To prove that the coefficients of L  and U  in (2.12) satisfy 
( 1)

1
1

r w

w





 


 
 and 

1
1

w

w


 
 respectively, it is suffices to prove the following relations in order to 

prove the previous statement. 

                       1 1w r w       and 1 .w w                                      (2.14) 

 

If the inverse of  , say 1 iqe    with the coefficients   and q  being real such that

0 1q  , then the left side inequality in (2.14) is  

                     1 1 .w r w                                                                        (2.15) 

 

Let z  be a complex number. The polar representation of z  is [cos sin ]z r i    

and in exponential form ,z re  where ,r z  arg( ).z   So for this eigenvalue   

we have 1 [cos sin ]iq q i      , if R  , 1 1




   and 
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1 1 1 1
( ) ( )

1 1
[cos( ) sin( )] [cos sin ].

i iqe e
q

i i
q q

  

   

      

    

                                                  (2.16)      

  

Substitute (2.16) into (2.15) we get 

   
1 1

( cos 1 ) sin ( cos ) sin
r r

w i r w i
q q q q

                     

2 2 2 21 1
( cos 1 ) ( sin ) ( cos ) ( sin ) .

r r
w r w

q q q q
              

Squaring both sides of the inequality above lead us to 

                    

2
2 2 2 2

2 2 2

2
2

2

1 2 1
cos cos ( 1) ( 1) sin cos

2
sin cos ( ) ( )

r
w w

q q q q

r r
w r w r

q q

   

 

      

    

          (2.17) 

multiply both sides of (2.17) by 2q   

2 2 2 2 21 2 cos ( 1) ( 1) 2 cos ( ) ( )q w q w r rq w r q w r             

 2 2 2(1 ) 2 cos ( 1) ( 1) 2 cos 0r q w q w rq w r            

2 2 2 2(1 ) 2 cos [ 1 ( )] ( 1) 0r q w r w r q w q           

2 2 2 2 2(1 ) 2 cos [ 1 ] 2 cos [1 ] [( 1) ( ) ] 0r q r q w r q w w r               

2 2 2 2(1 ) 2 cos [ 1] 2 cos [1 ] [ 2 2 1] 0r q r q w r q w wr r              

                      
     

   

2 2 2 2

2

1 1 1 2 cos

1 2 cos 1 2 0,

r r q r q

r qw r q w





    

    
                                              (2.18) 

which holds for 1r  ; For 1r   (2.18) becomes  

                               2 2 21 1 1 2 cos 1 2 cos 1 2 0.r r q r q r qw r q w             (2.19) 
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Because of the nonnegativeness of (2.19) it holds for all real number   if and only if 

it holds for the value cos 1  . Thus (2.19) yields: 

                        1 1 1 2 0.q r q qw                                                                               (2.20) 

                              

Similarly second inequality in (2.14) is also equivalent to  

                     2 21 2 1 cos 2 0.q q w q w                                                        (2.21) 

 

This relation must be satisfied for all   if it also hold for cos 1.   This leads us to 

the following inequality 

                       1 1 2 0q q qw      .                                                                  (2.22) 

 

Because of the properties of the matrix ,A  which is irreducible with weak diagonal 

dominance. 1D A I L U     Satisfy the same properties. All these hold for the matrix 

Q  because the coefficients of L  and U  satisfy (2.14). This means the matrix, Q  is 

nonsingular, this contradicts to (2.13) and also contradicts to (2.11). Thus 

 , 1.r wL 
 
Let us consider the , r wM  method with the following corresponding 

pairs ,  0,  1( ) ( ),r w    1,  1 0,  ( ),( )w , and ,  ( ).w w   

 

Corollary 1: [1], page 152. Gauss-Seidel, Jacobi, Successive Overrelaxation, and 

Simultaneous Overrelaxation (the last two method for 0 1w  )  converge, if a matrix 

A  is irreducible with weak diagonal dominancy. 
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Definition 2: [1], page 152. An L-matrix is a matrix which elements  , 1 1ija i j n  

satisfy the relationship  0 1 1
ii

a i n   and  0 , , 1 1
ij

a i j i j n   . 

  

Theorem 3: [1], page 152. Let A  be an L-matrix. , r wM  method converges if and 

only if 
0, 1

M  method converges and r  and w  satisfy 0 1r w     0w   

Proof: [1], page 152. It is clear that when the , r wM  method converges so does the 

0, 1
M  method. Let us assume that  , 1.r wL    Based on these assumptions we 

get  

   1 0w I w r L wU      and also that   

                       
1 2 1 1... ... 0.N NI rL I rL r L r L
                                      (2.23) 

 

We therefore have for the iterative matrix that 

     
1

, 1 0.r wL I rL w I w r L wU


          Because the matrix , r wL  is 

nonnegative,   is an eigenvalue of , .r wL  Let 0v   be the corresponding 

eigenvector, we then have , r wL v v  which we get 

       1
1  I rL w I w r L wU v v


         multiplying by  I rL  result 

      1  w I w r L wU v I rL v        

 ( ) ( )  (1 )  w r L wU v I rL v w I v         

 ( )   (1 )w r L wU v v rL v w v         

   ( ) 1w r L wU rL v w v          
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   ( ) 1w r r L wU v w v         dividing by 0w  , we get 

                      
1

.
w r r w

L U v v
w w

     
  

 
                                                     (2.24) 

 

This implies that 
 1 w

w

  
 is an eigenvalue of ,

w r r
L U

w

  
 

 
 corresponding 

to the eigenvector .v    

Therefore,                    

                     
1

.
w w r r

L U
w w

 

    

  
 

                                                       (2.25) 

 

On the other hand, it is clear that 1
w r r

w

 
 , which implies that  

                       , 0 1
0 .

w r r w r r w r r
L U L U L

w w w

       
             (2.26) 

 

From the relationships (2.25) and (2.26) it can be deduced that 

   , 0 1
1 w w r r L        which leads to  , 0 1

1.L   We have previously 

proved that when 1,   then  0, 1
1,L   we directly obtain that  0, 1

1L   

implies readily 1   such a way that if the 
0, 1

M  method  is convergent then so does 

also the , r wM  method.  

2.3 Convergence Analysis for Consistently Ordered Matrices 

Definition 3: [3], page 144. the matrix A  of order n  is consistently ordered if for 

some t  there exist disjoint subsets 1 2, ,..., tS S S  of {1,2,3,..., }w N  such that 
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1

t

k
k

S w


  and such that if i  and j  are associated, then 1kj S   if j i  and 

1kj S   if j i  where kS  is subset containing .i   

 

Assume that A  is consistently ordered matrix. This means that the determinant 

expression  1det L UA A D     is   independent  of ,   for 0   and  for all  . 

The following three Lemmas are necessary to understand what will follow in this 

Section. 

Lemma 1: [1], page 153.   Let A   have  nonvanishing  diagonal   elements   and   let  

A   be a consistently ordered matrix. If 0   is an eigenvalue of 
0, 1

L  with 

multiplicity ,p  this   implies  that   is   also  an eigenvalue of 
0, 1

L  with   the  same  

multiplicity p. 

 

Lemma 2: [1], page 153. Let A  have nonvanishing diagonal elements and let A  be a 

consistently ordered matrix. If   is an eigenvalue of 
0, 1L  and v  satisfies  

                    
2 2 21 ,v r r v                                                                             (2.27) 

then v  is also an eigenvalue of , r rL  and vice versa. 

 

Lemma 3: [1], page 153. Consider the real   and   to be the roots of the quadratic 

equation given by 2 0      then   and   are less than one in modulus if and 

only if the following relations hold:               

                    2 0                                                                                        (2.28) 

                    1,  1   ,                                                                               (2.29) 
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Proof: [2], page 172. Assume that 1r  and 2r  are real the roots of (2.28). Then if  1 1r   

and 2 1r  , lead to 1,   because of that 1 2r r   and also 1 2r r    we have                      

                    1 2 1 2 1 21 1 ( ) (1 )(1 ) 0,r r r r r r                                           (2.30) 

if 1 2 0,r r   and  

                    1 2 1 2 1 21 1 (1 )(1 ) 0,r r r r r r                                              (2.31) 

if 1 2 0.r r   Otherwise 1 .    On the other side, if the relation (2.29) holds, it 

follows that the relations (2.30) or (2.31) hold. If (2.30) holds, thus the real 1r  and 2r  

are either all less than one or greater than one at the same time. But the case where 

there are all greater than one is impossible because 1 2 1r r    if we have 1 1r    or 

2 1r    it follows that, since 1 2 0r r   we would obtain 1 1r   or 2 1r   impossible or 

simply absurd. This help us to conclude that 1 1r   and 2 1.r   We use a similar 

argument when 1 2r r  is negative. 

 

Theorem 4: [1], page 153. Let A  have nonvanishing diagonal elements and let A  be 

a consistently ordered matrix. If   is an eigenvalue of the matrix 
0, 1

L  and if   

satisfies  

                        
2 21 1 ,w w r w                                                              (2.32) 

then   is also an eigenvalue of the matrix , r wL  and vice versa. 

 

Theorem 5: [1], page 153. Let A  have nonvanishing diagonal elements and let A  be 

a consistently ordered matrix. If 
0, 1

L  has real eigenvalue say  1 1 ,i i N   with the 

values mini i   and max ,i i   then the , r wM  method is convergent if and 
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only if the 
, 0 1

M  method is convergent and the parameters r  and w  has their values 

on ,rI  wI  respectively, which are given as in Table 2.2 for 0,   and in Table 2.3 

for 0,   with 

                      2 21 1 1
2 2

2 2
z w z w w

wz


 
    

 
 and    

1
2z wz w

z
    .     (2.33) 

Table 2.2: Intervals rI  and wI  for 0   

rI  

 

wI  

 2 2( ),  ( )      0,  2  

 

 

 

Table 2.3: Intervals rI  and wI  for 0   

rI  wI  

 

  2 2( ),  ( )     

 
1/2

2

2
,  0

1 

 
 

 
 

 

 2 2( ),  ( )      0,  2  

 

 2 2( ),  ( )     

 
1/2

2

2
2,  

1 

 

 

 
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Proof: [1] page 154. Let us first notice that the matrix A  satisfies the requirement of 

the Theorem 4. So the eigenvalues   of the matrix , r wL  holds the property (2.32) 

with   being the eigenvalue of matrix 
0, 1

.L  The equation (2.32) can be written as  

                          
22 2 22 1 1 0.w rw w r w w                               (2.34) 

 

, r wM  method converges if and only if , ( ) 1.r wL   Therefore form (2.34)   

                    2 2( 1) ( ) 1,  w r w w                                                                    (2.35) 

                    2 2 22(1 ) 1 ( 1) ( ) .w rw w r w w                                            (2.36) 

 

From equation (2.35), 

2 2( 1) ( ) 1,  w r w w        

2 2 2 22 1 1w w rw w          

2 2 2 22 2rw w w w         

                    2 2 22 2 (1 ) .rw w w                                                                  (2.37) 

 

Moreover 2 2( 1) ( ) 1,  w r w w      

2 2 2 22 1 1w w rw w        

2 2 2 22rw w w w        

                    2 2 2(1 ) 2 .rw w w                                                                       (2.38) 

 

From equation (2.36) we obtain 

2 2 22(1 ) 1 ( 1) ( )w rw w r w w           
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2 2 2 22 4 4rw w w w         

2 2 22 4 4 (1 )rw w w         

                    2 2 21
2 2 (1 ) .

2
rw w w                                                               (2.39) 

 

Also  

2 2 22(1 ) 1 ( 1) ( )w rw w r w w          

2 20 (1 )w    dividing both side by 2w  we get 

                    2 1.                                                                                                                                  (2.40)   

 

The inequality (2.40) provides one of the necessary and sufficient conditions for the 

, r wM  method to be convergent, that is 1.   The inequalities (2.37), (2.38), (2.39) 

can be combined as 

                       2 2 2 2 21
1 2 2 1 2 .

2
w w rw w w                                  (2.41) 

 

From which results the relation  2 21 4.w   Obviously this gives the next 

inequality   

                    

   
1/2 1/2

2 2
0

2 2
  

1 1
w

 
  

 
.                                                    (2. 42) 

 

At this point, all the possible values of the overrelaxation parameter w  are determined 

using the above. From inequality (2.41), let us now find the corresponding values of 

r  based on the analysis of the following two cases. 

Case 1: 0.   if 0,w   then equation (2.41) is written as  
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                        2 21 1 1 1
2 2 2 ,

2 2
z w z w w r wz w z

wz z
 

 
         

 
(2.43)  

with 2.z   It is clear that the parameter r  in (2.43) is bounded by  

                        max  min  .
zz

z r z                                                                (2.44) 

 

If the 0w , then (2.41) is now equivalent to    ;z r z    for this case 

inequalities are fulfilled for r  satisfying 

                         max  min  .
zz

z r z                                                                (2.45)   

 

The sing of partial derivatives of  z  and  z  with respect to the variable ,z  are 

given by Table 2.4 to present the behavior of these functions, depending on .z   

   
1

2z wz w
z

    , which can be written as 1 1( ) 2z w wz z      taking the 

derivative of ( )z  we get  

  2 2 22 [ 2]z wz z z w         , with 
2

4

1
.z


  Thus   2( 2)z z w     

substituting 2 4z    we get   4 4( 2) ( ( ))w w         Similarly  

  2 21 1 1
2 2

2 2
z w z w w

wz


 
    

 
, differentiating with respect to z  we get 

  2 2 2

1 2 2

2
z w

z z wz


 
    

 
and substituting 2 4z   we get 

  4 41 2
2 ( ( )).

2
w w

w
   

 
      

 
 

Figure 2.1 represents the function ( ) ( 2),w w    and Figure 2.2 displays the 

function 
1 2

( ) 2 .
2

w w
w

     
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Table 2.4 represents the sign of     and     on the intervals wI  obviously the 

sign of     is given by the sign of ( ) ( 2)w w    and the sign of     is given 

by the sign of 
1 2

( ) 2
2

w w
w

    , 

 

Figure 2.1: Graph of  0w   
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Figure 2.2: Graph of  
1 2

2 ,
2

w w
w

     0w   

Table 2.4: Sign of     and     on wI  

wI    4( ( )).w      

 

  4( ( ))w      

 
1/2

2

2
( ,  0)

1 




 

negative negative 

 0,  2  Positive                negative 

 
1/2

2

2
2,  

1 

 

 

 

 

Positive Positive 

 

 
Based  on the   equations (2.44) and (2.45) and   also  on the Table 2.4, one can build  

 

easily   a table  which  shows the values range of rI  for  the  parameter ,r  and this is  

given in Table 2.5.  

-50

-40

-30

-20

-10

0

10

20

30

-8 -6 -4 -2 0 2 4 6 8
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Table 2.5: Values range of rI  for the intervals wI  

wI  rI  

 

 
1/2

2

2
,  0

1 

 
 

 
 

 
    2 2,       

 

 0,  2      2 2,       

 

 
1/2

2

2
2,  

1 

 

 

 

                                  
    2 2,                             

 

 

 

It is  clear  that  the  first case and the  third case   exist   provided that  the  following   

   2 2     and    2 2     hold respectively. 

Case 2:
 

0.   Since the inequality (2.41) must be satisfied for 0   and 0   , two 

sub cases have to be distinguished.  If the minimum value 0,   then the relationships 

(2.41)
 
leads to 0 2,w   whereas if 0,   then the analysis given in the study of 

Case 1 is still valid as well as the values demonstrated in Table 2.5. For this case w  

and r  are given from the intervals respectively  0,2wI   and 

    2 2,rI      respectively, because they must satisfy (2.41). 

 

Theorem 6: [1], page 155. Let A  have  nonvanishing   diagonal  elements and   be a 

consistently ordered matrix, and if 
 0, 1

L  has real  eigenvalues | 1(1)
i

i n   such that 

0     min max 1i i i i     , then for 
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2 1/2

2 2 1/2
,  

2(1 (1 ) ) 1
( ) ,

(1 )
r w



 

  
  

 
 or 

2 1/2 2 1/2

2 1
,

1 (1 ) (1 ) 

 
 
   

, 

, ( ) 0.r wL    

Proof: [1], page 155. Based on Lemma 1,   will be an eigenvalue of 
0, 1

.L  Because 

2  has unique fixed value it is easy to determine for 0r   so that (2.27) has two roots 

expressed as:  

                    
2 1/2

1 2

2(1 (1 ) )
r





 
  , 2 2 1/2

2

1 (1 )
r




 
                                          (2.46) 

and a double root v with the value 

                    
2 22(1 )

.
2

r r
v

 
                                                                             (2.47) 

 

Because v  is a   double  root  we  can determine w  from (2.10) so that 0.   For this  

we must have  

                    .
(1 )

r
w

v



                                                                                        (2.48) 

 

Thus from (2.46), (2.47) and (2.48) we finally obtain 

                    1 2 1/2

1

(1 )
w







 ,  2 2 1/2

1
.

(1 )
w





 

, ( ) 0r wL   for the calculated values ,  
1 1

( )r w  and ,  
2 2

( ).r w      

2.4 Realization of Accelerated Overrelaxation Method (AOR) for the 

Solution of Laplace’s Equation with Dirichlet Boundary Conditions 

on a Rectangle 
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Let {( , ) : 0 ,0 }R x y x a y b      be an open rectangle ,  1.2.3.4j j   be the 

sides of this rectangle which the vertices are included. Let the numbering be in 

counterclockwise direction starting from the side 0.y   The Dirichlet Laplace’s 

equation on a rectangle is   

                           

2 2

2 2
0 on R

u u
u

x y

 
   

 
                                                                                        (2.49) 

                               ,  1,2,3,4m
mu on m                                                                                      (2.50) 

2.4.1 The Discrete Laplace Problem  

Based on [4], let us draw two systems of parallel lines on the plane: 

                    0 .ix x ih x                                                                                       (2.51) 

 

Consider the node  ,i k  of the net, and take the four nodes closest to it which are  

 1,  , ( ,  1),( 1,  ), ( ,  1)i k i k i k i k     as shown in the figure below 

                                                            
, 1i k

u


                              

                                                                                                 

 

                         
1, i k

u


                       
, i k

u                       
1, i k

u


 

 

 

                                                  

                                                  

                                                             
, 1i k

u


                                     

                                       Figure 2.3: 5-point Stencil. 
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We aim to find an approximate expression for u  at the node ( ,  ).i k  From Taylor’s 

formula the expressions for the neighboring points of 
ik

u  are as follows: 

                         
2 3 4

2 3 41, , 
...

2! 3! 4!
x x x xi k i k

h h h
u u hu u u u


        

                         
2 3 4

2 3 41, , 
...

2! 3! 4!
x x x xi k i k

h h h
u u hu u u u


        

                         
2 3 4

2 3 4, 1 , 
...

2! 3! 4!
y y y yi k i k

h h h
u u hu u u u


       

                         
2 3 4

2 3 4, 1 , 
...

2! 3! 4!
y y y yi k i k

h h h
u u hu u u u


                         (2.52) 

we look for u  as linear combination of the differences in (2.52). The expression is 

obtained for u  depending on the derivatives by adding the equations in (2.52) term 

by term.  

                     
     2 4

2 4 6

2 4 6 6

, 1, . 1 1, , 
4

2 ...
2! 4! 6!y yx x x y

i k i k i k i k i k
u u u u u

h h h
u u u uu u

  
    

 
    

 
 

                   (2.53) 

 

Which yields 

                       
2 , , 

1
i k i k

u u E
h

                                                                           (2.54) 

where  

                         
2 4

4 4 6 6, 

2 2
...

4! 6!x y x yi k

h h
E u u u u                                    (2.55) 

is the remainder term. Taking the values of derivatives up to fourth orders, and 

evaluating the fourth order derivative at the mean points 
, i k

E  becomes an expression 

of the form 
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2

4, 

4

4!i k

h
E cM                                                                             (2.56) 

where, 

                          
4 4

4 4 4
max{ ,  }.

u u
M

x y

 


 
                                                                    (2.57)  

 

For the Laplace’s equation (2.50) and ignoring the remainder term 
, i k

E  in (2.54)  we 

get 

                         
2 , 

1
0.

i k
u

h
                                                                                      (2.58) 

 

Assign a square mesh ,
h

R  with 
1 2

1 2

,  2,  2
a b

h n n
n n

     are integers, obtained 

with the lines in (2.51) as 1 20 ,  0 ,      0,1,..., ,  0,1,..., .x ih y kh i n k n       

Denoting the set of grids on  by ,  1,2,3,4kh

k k    and 4

1 ,  k khh
U 

h
R   

 U 
h h

R   we obtain the following difference problem for (2.49), (2.50). 

                              
h h h

u Bu on R                                                                           (2.59)  

                              ,    1,2,3,4.m mh h h
u on m                                               (2.60) 

 

mh
 is the trace of m on mh

  and  

              ( ,  ) ( ( ,  ) ( ,  ) ( ,  ) ( ,  )).Bu x y u x h y u x h y u x y h u x y h           (2.61) 

 

Consider the difference problem given in equations (2.59), (2.60) for grid values on 

the boundary ,  mh
  1,2,3,4,m    

, i k
u  is known for the boundary data (2.60), 
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                   1, 0
( ,  0)

i h
u ih  for 10,1,...,i n    

                   12
1, 

( ,  )
n k h

u n h kh  for 20,1,...,k n                                                  (2.62) 

                   23
2, 

( ,  )
i n h

u ih n h  for 10,1,...,i n   

                   40, 
(0,  )

k h
u kh  for 20,1,...,k n .  

 

The number of unknown 
, i k

u  is 1 2( 1) ( 1)n n    which is the number of inner grid 

points. The algebraic system of equations is obtained by using lexicographical  

ordering [5] for the inner points and by eliminating the boundary values (2.62) which 

appears in (2.59), we form the commonly used matrix form ,Ax b  where A  is of 

order 1 2( 1)( 1).n n      

The coefficient matrix A  obtained for the difference problem (2.59), (2.60) using 

Lexicographical ordering has the following structure as given in Figure 2.4   

 

        D   I                                                               4    -1                                         

       I   D   I                                                        -1    4     -1                

              I   D   I                                                         -1      4     -1 

                                                                                     

A =                                                                   D    

                                                                                                             

                                                    D   I                                                         4       -1 

                                                   I    D                                                          -1      4 

 

Figure 2.4: Structure of the Coefficient Matrix Using 5-point Scheme and 

Lexicographical Ordering 
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Chapter 3 

NUMERICAL APPLICATIONS AND RESULT 

 
3.1 Introduction 

 
A test problem is chosen and its solution is obtained via numerical simulation by 

implementing the (AOR) method to solve the algebraic linear systems obtained.  

3.2 Description of the Problem 

Let us consider a rectangle R  defined as follows 

 { , : 0 1,0 1}R x y x y     , consider the problem: 

0u   on R   

32u x x   on 1 :{0 1,  0}x y      

21 3u y   on 2 :{0 1,  1}y x       

35u x x   on 3 :{0 1,  1}x y      

0u             on 4 {0 1,  0}.y x       

The exact solution of this problem is 3 2( , ) 2 3 .u x y x x xy    This model problem, 

is represented in Figure 3.1, with mesh step 
1

.
4

h   
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                          y                                 
3 35   u x x on  

                 
                                   

 

40,   u on                         7u                  8u                9u                    2 21 3   u y on                                                           

                                            4u                  5u                6u   

                                             1u                  2u               3u                                        

                                                                                                                                                        x  
3 12   u x x on    

Figure 3.1: The Model Problem and Representation of Inner Grids for 
1

4
h   

 

To control the iterations in (2.8) we used 
( )mr 


  where ( ) ( )m mr A bx   and   

is the preassigned accuracy. All the calculations are carried in Matlab. Table 3.1, Table 

3.2, Table 3.3 and Table 3.4 represent the maximum errors and iteration numbers for 

various mesh size h  when 0.6,w   0.5r   are fixed and 

3 4 510 ,  10 ,  10        and 610   respectively.  Analyzing these results we see 

that for each value of the mesh step h  given as 
1 1

,  
4 8

h h   and 
1

16
h   the iteration 

number increases when   decreases. 

Table 3.2, Table 3.5 and Table 3.6 represent the maximum errors and iteration numbers 

for various values of h  and for fixed value of 40.6,  10w     with respect to 

different values of r  as 0.5,  0.3r r   and 0.9r   respectively. One can view firm 

these Tables that when 0.9,r   for the fixed value of 0.6w   and 410 ,   the 

iteration numbers are fewer, for each value of step size 
1 1

,  
4 8

h h   and 
1

.
16

h   

Table 3.3, Table 3.7, Table 3.8 and Table 3.9 display the maximum errors and iteration 
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numbers for various mesh sizes h  when 0.5r   and 410   are fixed and w  is   

changing as 0.6,  0.3w w  , 0.9w   and 1.2w   respectively. Analyzing these 

tables we conclude that the number of iterations are fewer in Table 3.10 when 

0.5,  1.2r w   for 410 ,   for 
1 1

,  
4 8

h h   and 
1

.
16

h     

Table 3.1: Maximum errors and iteration numbers for the test problem when 

0.6,w   0.5r   and 
310 ,   for 

1 1 1
,  ,  

4 8 16
h    

h 

 
i

r


 
h

u u


  Iterations 

1

4
 

7.719953428551030E-4 5.789965071413272E-4 33 

1

8
 

8.854114214058573E-4 7.747349937301251E-4 106 

1

16
 

9.773674105089114E-4 8.086305468561761E-4 339          

Table 3.2: Maximum errors and iteration numbers for the test problem when w=0.6, 

0.5r   and, 410 ,   for 
1 1 1

,  ,  
4 8 16

h    

h 

 
ir 

 
h

u u


  iterations 

1

4
 

8.661972382340011E-5 6.496479286755008E-5 42 

1

8
 

9.685021519501014E-5 8.473938295633587E-5 142 

1

16
 

9.284305543472954E-5 9.219661438568394E-5 478 
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Table 3.3: Maximum errors and iteration numbers obtained for the choice of 0.6,w   

0.5r   and, 510 ,   when 
1 1 1

,  ,  
4 8 16

h   

h 

 
i

r


 
h

u u


     iterations 

1

4
 

9.7190114395725978E-6 7.3892607967944833E-6 51 

1

8
 

7.790860572676195E-6 6.817003001091671E-6 184 

1

16
 

 

9.7190114395725978E-6 9.277454353084913E-6 626 

 

Table 3.4: Results obtained for the choice of 0.6,  0.5w r   and, 610 ,   when 

1 1 1
,  ,  

4 8 16
h   

h 

 
i

r


 
h

u u


  iterations 

1

4
 

8.552102821468566E-7 6.414077116101424E-7 61 

1

8
 

9.636935358603438E-7 8.432318438778008E-7 218 

1

16
 

9.354819796580927E-7 8.77014355929619E-7 777 

 

Table 3.5: Results obtained for the choice of 0.6,  0.3w r   and 410 ,   when 

1 1 1
,  ,  

4 8 16
h   

h 

 
i

r


 
h

u u


  iterations 

1

4
 

9.17405713736219E-5 6.880542853021643E-5 46 

1

8
 

8.936046951735221E-5 7.819041082768319E-5 161 

1

16
 

9.730621214387725E-5 9.122457388488492E-5 535 
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Table 3.6: Maximum errors and iteration numbers when 0.6,  0.9w r   and,

410   when 
1 1 1

,  ,  
4 8 16

h    

h 

 
i

r


 
h

u u


  iterations 

1

4
 

7.431212691799693E-5 5.647721645767767E-5 34 

1

8
 

8.952204016410281E-5 7.833178514358996E-5 108 

1

16
 

9.908821543369584E-5 1.471871658512147E-5 458 

Table 3.7: Maximum errors and iteration numbers when  0.3,  0.5w r   and 

410   when 
1 1 1

,  ,  
4 8 16

h   

h 

 
i

r


 
h

u u


  iterations 

1

4
 

9.687479335678772E-5 6.815699561759079E-5 89 

 

1

8
 

4.370856289259706E-5 3.824499253102243E-5 195 

 

1

16
 

9.848360080422225E-5 9.232837575395836E-5 888 

 

Table 3.8: Maximum errors and iteration numbers when 0.9,  0.5w r   and 

410   when 
1 1 1

,  ,  
4 8 16

h   

h 

 
i

r


 
h

u u


  iterations 

1

4
 

9.02344145394806E-5 6.7675810990461050E-5 26 

1

8
 

5.646451917806772E-5 4.9406454208080925E-5 108 

1

16
 

7.883796281715760E-5 7.3910590108525964E-5 351 
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Table 3.9: Maximum errors and iteration numbers obtained for the choice of  1.2,w   

0.5,r   and 410   where 
1 1 1

,  ,  
4 8 16

h     

h 

 
i

r


 
h

u u


  iterations 

1

4
 

7.381525327199157E-5 5.536143995399367E-5 26 

1

8
 

9.378812138116643E-5 8.20646062088526E-5 70 

1

16
 

9.718071447006871E-5 9.110691981568941E-5 238 

Figure 3.2 presents the maximum error hu u


  with respect to the first 20 iterations, 

when 
1

,
16

h    0.5r   and 410   for various values of .w  It can be viewed that 

0.5, 1.4M  does not converge to the exact solution for 
1

8
h   and 

1
.

8
h  This happens 

because  0.5, 1.4 1L   for the chosen step sizes 
1 1

,  
8 16

h   as presented in Table 

3.10. In table 3.11 we present the  0.5, 1.2L  for the chosen step size 
1 1 1

, , .
4 8 16

h    

Table 3.10: Spectral radius   0.5, 1.4L  

h   0.5, 1.4L  

1

4
 

0.94654348123091 

1

8
 

1.063405009247968 

1

16
 

1.085530200275997 
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Table 3.11: Spectral radius   0.5, 1.2L  

h   0.5, 1.2L  

1

4
 

0.668465843842649 

1

8
 

0.880764899425652 

1

16
 

0.969000123805952 

hu u



 

 

Figure 3.2: Maximum error hu u


  with respect to iteration numbers when 

1
0.5,  

16
r h   and 410   

 

 

 

 

 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

iteration

w=0.9 w=0.6 w=0.3 w=1.4



 
 

37 

 

Chapter 4 

CONCLUSION 

In this thesis we analyed the solution of Discrete Laplace equation on a rectangle with 

Dirichlet boundary conditions by (AOR) method. The matrix obtained from the 

difference problem using 5-point scheme is symmetric and diagonally dominent 

matrix which is consistenly ordered. A is also on L-matrix we choosed a test problem 

and solved this problem by (AOR) method using different values of the two parameters 

r  and w and for mesh step 
1 1 1

,  ,  .
4 8 16

h   The numerical results obtained show that 

for the mesh sizes
1 1 1

,  ,  
4 8 16

h   when 1.2,  0.5w r   the iteration numbers are 

fewer than the iteration number for other choices of w and r  which considered, for 

410 .   Also when 1.4w   and 0.5r   the method showed divergence form the 

solution for 
1 1 1

,  ,  
4 8 16

h   because  0.5, 1.4 1L   for these values of ,h  as 

presented in Table 3.10. 
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