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ABSTRACT 

This work is dedicated to investigate the existence and uniqueness of solutions for 

nonlinear fractional differential equations with boundary conditions involving the 

Caputo fractional derivative in a Banach space. After introducing some basic 

preliminaries and the important concepts of fractional calculus, we considered two 

models of boundary value problems of Caputo fractional derivative. The first one is 

nonlinear fractional differential equation with nonlocal four-point fractional 

boundary conditions. The second equation is nonlinear impulsive boundary value 

problem of multi-orders fractional supplemented with nonlocal four-point fractional 

boundary conditions. The existence and uniqueness of solution are obtained via 

Banach’s fixed point theorem and Schauder’s fixed point theorem for the two 

models. In addition, both results are provided by the illustrative examples to support 

them.  

Keywords: Fractional integrals and derivatives, Fractional differential equations, 

Existence, Uniqueness, Fixed point theorems, Impulse, Multi-orders. 
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ÖZ 

Bu çalışma Caputo kesirli türevi içeren sınır koşulları ile doğrusal olmayan 

fraksiyonel diferansiyel denklemlerin çözümleri varlığını ve tekliğini araştırmaktadır.  

Bazı temel tanımlar ve Kesirli analizin önemli kavramları tanıttıktan sonra Caputo 

kesirli türevi yardımıyla sınır değer problemleri için iki model verilecektir. İlki yerel 

olmayan dört nokta kesirli sınır koşulları ile doğrusal olmayan  kesirli diferansiyel 

denklemdir. İkinci denklem kesirli yerel olmayan dört nokta kesirli sınır koşulları ile 

desteklenmiş çoklu siparişlerin doğrusal olmayan dürtüsel sınır değer problemidir. 

Çözümün varlığı ve tekliği iki model için Banach'sabit nokta teoremi ve 

Schauder'sabit nokta teoremi ile elde edilir. Buna ek olarak, her iki sonuç icin de 

açıklayıcı örnekler verilmektedir.  

Anahtar kelimeler: Kesirli integraller ve türevler, Kesirli diferansiyel denklemler,  

Varlık, Teklik, Sabit nokta teoremleri, Dürtü. 
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 Chapter 1 

1 INTRODUCTION 

In this Chapter we want to provide a concise history of fractional calculus. The 

theory of fractional calculus emanated from the origin of classical calculus itself. 

Historically, classical calculus was developed by Isaac Newton and Gottfried 

Wilhelm Leibniz in the 17th century and the latter (he) first brought out the 

conception of a symbolic method, more precisely his notation, 

                                                      
𝑑𝑛𝑦

𝑑𝑥𝑛 = 𝐷 𝑦𝑛  

for the 𝑛𝑡ℎderivative of function 𝑦(𝑥), where n is a non-negative integer. 

 In [1], L’Hospital had written a letter to Leibniz in 1695 and asked about the 

likelihood of n beıng a fraction " What does (
𝑑𝑛𝑓(𝑥)

𝑑𝑋 𝑛 ) mean if n=
1

2
 ? ". Leibniz 

ascertains that “It will lead a paradox”. But predictably “from this apparent paradox, 

some day it would lead to useful consequences” [1]. In view of the increasing interest 

in the development of fractional calculus by means of many mathematicians, it can 

be extended to the 𝑛𝑡ℎ  derivative of Dny to any number, where n may be rational, 

irrational or complex number. 

Many other mathematicians such as Euler, Laplace, and Fourier have investigated 

fractional calculus in order to answer L'hospital’s question. Each of them had unique 

notations and methodology and also proposed many divergent concepts of non-
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integer order integral or derivative. The first discussion of a derivative of fractional 

order in calculus was written by Lacroix in 1819 [2]. Lacroix expressed the precise 

formula for the 𝑛𝑡ℎ derivative which is defined by 

2                         𝐷𝑛𝑥𝑚 =  
𝑚!

(𝑚−𝑛)!
𝑥𝑚−𝑛, where   n(≤ 𝑚)is integer,                      (1.1) 

and he replaced the discrete factorial function with Euler's continuous Gamma 

function and obtained the following formula 

3                                     𝐷𝛼𝑥𝛽 =
Γ(𝛽+1)

Γ(𝛽−𝛼+1)
𝑥𝛽−𝛼,                                               (1.2) 

where α and β are fractional numbers.                      

In particular, he computed  

4                                       𝐷
1

2𝑥 =
Γ(2)

Γ(3
2⁄ )

𝑥
1

2 = 2√
𝑥

𝜋
  .           (1.3) 

The first application of fractional calculus was made by Niels Henrik Abel in [3] at 

the beginning of the nineteenth century. He used mathematical tools to solve an 

integral equation which arise from the tautochrone problem. This problem sımply 

deals with the determination of curve on the (x, y) plane through the origin in vertical 

plane such that the required time for a particle with a total  mass (m) will be released 

at a time which is absolutely independent of the origin. 

In this situation the physical law states that “the potential energy lost during the 

descent of the particle is equal to the kinetic energy the particle gains”: 

5     1

2
𝑚(

𝑑𝑠

𝑑𝑡
)

2
=𝑚𝑔(𝑦0−𝑦),                                    (1.4) 
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6 where (m) is defined as the mass of the particle, 𝑠 is the distance of the particle from 

origin along the curve and 𝑔 implies acceleration due to gravity. The formula above 

can be solved by separating the variables which yields 

7 
−𝑑𝑠

√y0−y
= √2𝑔𝑑𝑡 

8 and integration from when time 𝑡 = 0 to 𝑡 = 𝑇 

9             √2𝑔𝑇 = ∫ (𝑦0 − 𝑦) 𝑑𝑠.
−

1

2𝑦0

0
                                    (1.5) 

Assuming that the time a particle needs to reach the lowest point of the curve is 

constant. So the left hand side must be a constant, say k. If we denoted the path 

length s as a function of height 𝑠 = 𝐹(𝑦), then, 
𝑑𝑠

𝑑𝑦
≡ 𝐹′(𝑦). 

By changing the variables y0 with x and y with t and putting F' = f  the tautochrone 

integral equation becomes 

10     𝑘 = ∫ (𝑥 − 𝑡)−
1

2
𝑥

0
𝑓(𝑡)𝑑𝑡,                       (1.6) 

where 𝑓 is the function to be determined. 

After multiplying both sides of the integral equation with   1

Γ(
1
2

)
, Abel got on the  right 

hand side a fractional integral of order 
1

2
 

11                             
𝑘

Γ(
1

2
)

=
1

Γ(
1

2
)

∫ (x − t)−
1

2
x

0
𝑓(𝑡)𝑑𝑡 =

𝑑
−

1
2

𝑑𝑥
−

1
2

𝑓(𝑥).           (1.7) 

Or , equivalently, 

12                  
 𝑑

1
2

𝑑𝑥
1
2

𝑘

Γ(
1

2
)

=
𝑑

1
2⁄

𝑑𝑥
1

2⁄

𝑑−1
2⁄

𝑑𝑥−1
2⁄

𝑓(𝑥) =
𝑑0

𝑑𝑥0
𝑓(𝑥) = 𝑓(𝑥).           (1.8)  
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So , we have the tautochrone solution given as follows  

13                                    𝑓(𝑥) =
1

Γ(1
2

)

d
1

2⁄

dx
1

2⁄
𝐾 =

K

π√x
  ,                            (1.9) 

where the Abel problem has a solution which ıs subjected to the condition that 

derivative constant k is not zero always. 

Here, It is necessary to note that Abel not only give a solution to the tautochrone 

problem, but also gave the solution for more general integral equation  

14    𝑓(𝑥) = ∫
𝑓(𝑡)

(𝑥−𝑡)𝛼
𝑑𝑡, 𝑥 > 𝑎, 0 < 𝛼 < 1

𝑥

0
.         (1.10) 

After Abel application of fractional operators to a problem in physics, the first series 

of papers were stated by Liouville (see e.g. [1-3]). Liouville extended the known 

integer order derivatives 𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥 to a derivative of arbitrary order α 

(formally replacing n∈Ν with  α∈ℂ ) as follows: 

15    𝐷𝛼𝑒𝑎𝑥 = 𝑎𝛼𝑒𝑎𝑥 .             (1.11) 

Liouville developed two definitions for fractional derivatives. The first definition of 

a derivative of arbitrary order α for certain class of functions involved an infinite 

series. Here the series must be convergent for some α. Based on the Gamma 

function, Loiuville formulated the second definition as follows: 

16           Γ(𝛽)𝑥−𝛽 = ∫ 𝑡𝛽−1𝑒−𝑥𝑡𝑑𝑡 ,    𝛽 > 0
∞

0
.                      (1.12) 

17            𝐷𝛼𝑥−𝛽 = (−1)𝛼 Γ(𝛼+𝛽)

Γ(𝛽)
𝑥−𝛼−𝛽 , 𝛽 > 0.                 (1.13) 

18 This definition is useful only for rational functions. 
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19 Another scholar who had contributed to the fractional calculus is Riemann [1]. 

Riemann developed the definition for fractional integral of order α of a given 

function 𝑓(𝑥). The most important definition which is known as Riemann-Liouville 

fractional integral and formulated as follows: 

20   Dα
−α𝑓(𝑥) =

1

Γ(α)
∫ (x − t)α−1x

cc 𝑓(𝑡)𝑑𝑡  , 𝑅𝑒(𝛼) > 0.        (1.14) 

When c=0, expression (1.14) is the definition of Riemann integral, and when c=−∞, 

expression (1.14) represents the Liouville definition. In this regard, it can be shown 

that 

21 𝐷𝑥
𝛼

𝑐 𝑓(𝑥) = 𝐷𝑥
𝑛−𝛽

𝑐 𝑓(𝑥) = 𝐷𝑥
𝑛

𝑐 𝐷𝑥
−𝛽

𝑐 𝑓(𝑥) 

22                  =
𝑑𝑛

𝑑𝑥𝑛 (
1

𝛤(𝛽)
∫ (𝑥 − 𝑡)𝛽−1𝑥

𝑐
𝑓(𝑡)𝑑𝑡),                                                (1.15)   

23 holds, which is known today as the Riemann-Liouville fractional derivative, where  

n=[𝑅𝑒(𝛼)] + 1 and 0< 𝛽 = 𝑛 − 𝛼 < 1 . 

On the other hand, Grünwald and Letnikov [4] generated the concept of fractional 

derivative which is the limit of a sum given by 

24   𝐷𝑑+
𝛼 𝑓(𝑥) = limℎ→0 ℎ−𝛼           𝐺𝐿 ∑ (−1)𝑘 (

𝛼
𝑘

)𝑛
𝑘=0 𝑓(𝑥 − 𝑘ℎ) , 𝛼 > 0,        (1.16) 

where (𝛼
𝑘

) is the generalized binomial coefficient . At this point in time, it is enough 

for mentioning the historical development of fractional calculus. 

In the twentieth century, the generalization of fractional calculus has been subjected 

of several approaches. That is why there are various definitions that are proved 

equivalent, and their use is encouraged by researchers in different scientific fields. 

Although a great number of results of fractional calculus were presented in this 
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century but the most interesting one was introduced by M.Caputo in [5] and was used 

extensively. Caputo  defined a fractional derivative by 

25                             𝐷α𝑓(𝑥) =
1

Γ(n−α)
∫ (𝑥 − 𝑠)𝑛−𝛼−1 (

𝑑

𝑑𝑠
)

n

𝑓(𝑠)𝑑𝑠
x

0
,    c         (1.17) 

26 where 𝑓 is a function with an (n−1) absolutely continuous derivative and n=[α]+1 . 

Nowadays, expression (1.17) named Caputo fractional derivative. This derivative 

(1.17) is strongly connected with Riemann-Liouville fractional derivative and is 

frequently used in fractional differential equations with initial conditions  x(k)(0) =

𝑏𝑘, 𝑘 = 0, 1, … , n − 1 . 

27 Fractional calculus has grown and come to light in the late twentieth century. In 

1974, the commencing conference related with the application and theory of 

fractional calculus was successfully showcased in the New Haven [6]. A number of 

books on fractional calculus have appeared in the same year. Finally in 2004 the 

huge conference on fractional differentiation and its application was held in 

Bordeaux.  

28 From its birth (simple question from L’Hospital to Leibniz) to its today's wide use in 

numerous scientific areas fractional calculus has come a long way. Although it’s as 

old as integer calculus, it has still proved good applicability on models describing 

complex real life problems. 

29 After a review of the historical development of the fractional calculus this work will 

give a brief investigation to its main goal and form a cornerstone in the application 

that arise in engineering and other sciences. It is fractional differential equation 

which has played an important role in mathematical modeling of different 
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specialization such as physics, bio-chemistry, economics, and engineering etc. We 

will be interested in the boundary conditions of fractional differential equation which 

involves Caputo derivative.  

30 Recently, problems with boundary value for non-linear FDEs draw many researchers 

attention.  For instance Ahmad, B. et al   [7], investigated non-linear FDEs with 

fractional separated boundary conditions. Also in [8] , Ahmad, B. and Sivasundaram, 

S. studied the existence of solutions for impulsive integral boundary condition of 

non-linear fractional differential condition. By following this technique, I do 

consider two types of non-linear FDEs which are not the same with boundary value 

problems. The first one is concerned with FDEs with four points non-local fractional 

boundary condition; the second is associated with non-linear impulsive fractional 

differential equation with four points non-local boundary condition. In each of these 

we will obtain the existence solutions by means of fixed point theorems. Both results 

will be illustrated by examples. 

31 The remaining structure of this work is arranged as follows: In Chapter 2, we 

presented briefly the essential facts and theorems from mathematical analysis and 

functional analysis such as functional spaces, special functions, normed space and 

fixed point theorems which are prerequisite for the upcoming chapters. In Chapter 3, 

we provide a solid foundation in fractional calculus which includes definitions. In 

Chapter 4, existence results are developed and implemented for fractional boundary 

value problems of non-linear FDEs and some useful existence and uniqueness 

theorems for boundary value problems for impulsive FDEs are given. Furthermore, 

the examples are given to explain the results. 
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Chapter 2 

2 PRELIMINARIES 

This Chapter is all about presentation of some principles, theorems and 

understandings that support what is to come in the upcoming chapters. It introduces a 

fruitful feedback from classical analysis which aim at refreshing and building a 

bridge between the fields of applied and pure mathematics and to explain the ideas 

concerned with generalization of fractional environment. Since some of the stated 

theorems are well known and one can refer to the books [9-10], Erdēlyi et al.[11], 

therefore, the proofs are omitted.  

2.1 Basic Ideas from Functional Analysis 

For the fractional calculus and its related FDEs, we need some classical methodology 

and conceptual framework from functional analysis and classical calculus. Namely, 

we require the normed space, metric space, and classical functions spaces to 

formulate some results in fractional calculus. 

Definiton 2.1.1 A linear  Vector space V on the field R or C consist of a set V with 

two different binary operations, which are the vector addition(+) defined on V×V to 

V and the scalar multiplication (∙) which is defined on ℝ ×V to V such that the 

preceding properties hold, 

1. ∀𝑢, 𝑣 ∊ 𝑉, 𝑢 + 𝑣 =  𝑣 + 𝑢  (Commutivity) 

2. ∀𝑢, 𝑣, 𝑤 ∊ 𝑉, (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤)   (Associativity) 
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3. . ∀𝑢 ∊ 𝑉, ∃! 0 ∊ 𝑉 𝑠. 𝑡. 0 + 𝑢 = 𝑢 + 0 = 𝑢 

4. ∀𝑢 ∊ 𝑉, ∃! (−𝑢) ∊ 𝑉 𝑠. 𝑡. (−𝑢) + 𝑢 = 𝑢 + (−𝑢) = 0 

5. ∀𝑢 ∊ 𝑉, 1. 𝑢 = 𝑢 

6. ∀𝑎, 𝑏 ∊ ℝ 𝑎𝑛𝑑 ∀𝑢 ∊ 𝑉, (𝑎𝑏)𝑢 = 𝑎(𝑏𝑢) 

7. ∀𝑎 ∊ ℝ 𝑎𝑛𝑑 ∀𝑢, 𝑣 ∊ 𝑉, 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑏𝑣 

8. ∀𝑎, 𝑏 ∊ ℝ 𝑎𝑛𝑑 ∀𝑢 ∊ 𝑉, (𝑎 + 𝑏)𝑢 = 𝑎𝑢 + 𝑏𝑢 

Definition  2.1.2 Let 𝑋 be a vector space over ℝ. A function ‖. ‖ : X → ℝ is called a 

norm on X if it is satisfying the three properties below for every 𝑢, 𝑣 ∊ 𝑋 and ∀𝑎 ∊

 ℝ 

1. ‖𝑢‖ ≥ 0, 𝑎𝑛𝑑 ‖𝑣‖ = 0  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑢 = 0 

2. ‖𝑎𝑢‖ = |𝑎|. ‖𝑢‖ 

3. ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ (𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦). 

A normed linear space (X,‖∙‖) is linear vector space X equipped with a norm ‖∙‖. 

In what follows, a normed linear space (X, ‖∙‖) will be written for abbreviation by X. 

Definition 2.1.3 Let X≠  Φ be a set. A function 𝑑: 𝑋 ×  𝑋 → ℝ is defined as a 

metric (or rather a distance function) if the below axioms are satisfied for ∀𝑥, 𝑦, 𝑧 ∈

𝑋. 

(i) 𝑑(𝑥, 𝑦)  ≥ 0 

(ii) 𝑑(𝑥, 𝑦) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 0 

(iii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

(iv) 𝑑(𝑥, 𝑧) ≤  𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).  (Triangle Inequality). 

The set X together with the function d is called a metric space and denoted by (X,d). 
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Remark 2.1.4: If ‖∙‖ is a norm on a vector space 𝑉 , then the function 𝑉 ×  𝑉 → ℝ+ 

given by 𝑑(𝑥1, 𝑥2) := ‖𝑥1  −  𝑥2‖ is called a metric on 𝑉. that is a normed vector 

space is automatically a metric space, by characterizing  the metric in terms of the 

norm in the usual way. Moreover, a metric space may have no algebraic (vector) 

structure that is to say, it may not be a vector space; so the idea of a metric space is a 

generalized form of the concept of a normed vector space. 

Definition 2.1.5 a. Let (X,‖∙‖) be a normed space. If every Cauchy sequence in X is 

also convergent in X, then we say X is a complete normed space or a Banach space. 

Definition 2.1.5 b. A metric space (𝑋, 𝑑) can be called a complete metric space or a 

Banach space provided every Cauchy sequence converge. 

Definition 2.1.6 Assuming, k ∈ ℕ and p ≥1. We mention the following definition. 

Lp[a, b]:={ f:[a, b] →  ℝ,  f is measurable on [a,b] and  ∫ |𝑓(𝑥)|𝑝𝑑𝑥 < ∞}
𝑎

𝑏
, 

𝐿∞[𝑎. 𝑏] ≔ { 𝑓: [𝑎, 𝑏] → ℝ; 𝑓 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑛 [𝑎, 𝑏]}, 

𝐶k[𝑎, 𝑏] ≔ {𝑓: [𝑎, 𝑏] → ℝ; f  has a continuous kth derivative }, 

For 1 ≤ 𝑝 ≤ ∞, 𝐿𝑝[a,b] is the usual Lebesgue space.  

Another function space is formulated here. 

Definition 2.1.7 A function f(x) is called absolutely continuous on a compact interval 

[a,b] , if for any 𝜀 > 0, there exist a 𝛿 > 0  so that for every finite set of pairwise non 

intersecting subintervals [𝑎𝑘, 𝑏𝑘] ⊂ [𝑎, 𝑏],  k=1,2,…,n such that  ∑ (bk − ak) <n
k=1

𝛿 implies ∑ |𝑛
𝑘=1 𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜀. The space of these functions is denoted by AC. 
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Similar way for the characterization of this space is by the following definition. 

Definition 2.1.8 The set of functions which have an absolutely continuous (n-1)st 

derivative are denoted by 𝐴𝐶𝑛   or 𝐴𝐶𝑛[𝑎, 𝑏] , i.e. the functions f at which there is 

(almost everywhere) a function g ∈ 𝐿1[a , b] such that 

                                      𝑓(𝑛−1)(𝑥) = 𝑓(𝑛−1)(𝑎) + ∫ 𝑔(𝑡)𝑑𝑡.
𝑥

𝑎
                               (2.1) 

In this case g is said to be the (generalized) nth derivative of f and we can write     

g=𝑓(𝑛) 

Theorem 2.1.9 (Taylor expansion) For 𝑚 ∈ 𝑁, assume that 𝑓 𝜖  𝐴𝐶𝑚[𝑎, 𝑏].Then, 

for every x, y ∈ [a,b], we have 

𝑓(𝑥) = ∑
(𝑥 − 𝑦)𝑘

𝑘!

𝑚−1

𝑘=0

𝐷𝑘𝑓(𝑦) + 𝐽𝑦
𝑚𝐷𝑚𝑓(𝑥).                     (2.2) 

Definition 2.1.10 Let f(x) ϵ𝐶n [a, b] and 𝑥0𝜖[𝑎 , 𝑏].The polynomial 

𝑇𝑛[𝑓; 𝑥0](𝑥) = ∑
(𝑥 − 𝑥0)𝑘

𝑘!

𝑛

𝑘=0

𝐷𝑘𝑓(𝑥0),                             (2.3) 

is called Taylor polynomial of degree n for f with centered at 𝑥0.  

In the sequel we shall have to deal with convolution integral operators 

             ℎ ∗ 𝜑= (ℎ∗𝜑) (𝑥) =∫ ℎ(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
∞

−∞
,              (2.4)          

where ℎ and 𝜑 belong to a certain function space. Therefore, It is obvious that 

ℎ ∗ 𝜑 = 𝜑 ∗ ℎ. 
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The boundedness theorem in 𝐿𝑝 in the following theorem which is called the 

Young's Theorem. 

Theorem 2.1.11 𝐼𝑓 ℎ(𝑡)  ∈  𝐿1( ℝ), 𝜑(𝑡) 𝜖 𝐿𝑝(ℝ),  then  

( ℎ ∗ 𝜑 )(𝑥) 𝜖 𝐿𝑝(ℝ), 1 ≤  𝑝 ≤ ∞, the inequality‖h ∗ φ‖𝑝 ≤ ‖h‖1‖φ‖𝑝 holds.  (2.5) 

Also we shall need to interchange the order of integration with the following 

theorem. 

Theorem 2.1.12 (Fubini's theorem) Let [𝑎, 𝑏] and [𝑐, 𝑑] be two intervals, and 

assume f is integrable function on [𝑎, 𝑏]  × [𝑐, 𝑑]. If g(y) =∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑏

𝑎
 exist for 

each fixed y ∈ [c,d], then g is integrable on [c,d] and  ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =
[𝑎,𝑏]×[𝑐,𝑑]

∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑏

𝑎
) 𝑑𝑦

𝑑

𝑐
.  Moreover, if ℎ(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 

𝑑

𝑐
exist for each fixed  

x∈[a,b], then ∫ (∫ 𝑓(𝑥, 𝑦
𝑑

𝑐
))

𝑏

𝑎
𝑑𝑥 =  ∫ (∫ 𝑓(𝑥, 𝑦

𝑏

𝑎
)𝑑𝑥) 𝑑𝑦 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

[𝑎,𝑏]×[𝑐,𝑑]

𝑑

𝑐
. 

Furthermore, the following relation is special case of Fubini’s Theorem namely              

∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑 =   ∫ 𝑑𝑦 ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑏

𝑦

𝑏

𝑎

𝑥

𝑎

𝑏

𝑎
.    (2.6)                                

It is supposed to be one of those integrals exist. This relation is called the Dirichlet 

formula. 

2.2 Some Special Functions 

The generalization of classical calculus to fractional calculus is connected with 

generalization of some functions, which are called special functions. Such functions 

are Gamma function which is a generalized form of the factorial function and the 

Mittag-Leffler which is a generalization of the exponential function and its takes a 

cogent position in the theory of ordinary FDEs. 
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Definition 2.2.1 The Euler's Gamma function Γ(z) is defined by  

                                  Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
.                                                               (2.7) 

Theorem 2.2.2 Euler's Gamma function satisfies the below properties 

1. For Re(z)>0 , the first part of the Definition 2.2.1 is equivalent to 

    Γ(𝑧) =  ∫ (𝑙𝑛 (
1

𝑡
))

z−1

𝑑𝑡.             
1

0
 
 

2.  For zϵ ℂ∖{0,-1,-2,-3,…} ,  Γ(z+1)=zΓ(z).                  

3. For 𝑛 ∈ ℕ, Γ(𝑛) = (𝑛 − 1)!.  

4. Euler’s Gamma function is analytic for all zϵℂ∖{0,-1,-2,-3,….}. 

5. Euler’s Gamma function is never zero. 

6. Γ(z)=lim𝑛→∞
𝑛!  𝑛𝑧

𝑧(𝑧+1)(𝑧+2)….(𝑧+𝑛−1)(𝑧+𝑛)
.                                                         (2.8)                                       

7. (Reflection Theorem). For all non-integer z ϵ ℂ,  

                                      Γ(𝑧)Γ(1 − 𝑧) =
𝜋

sin(𝜋𝑧)
. 

Directly connected to Euler's Gamma function is the definition of generalized 

binomial coefficients. 

Definition 2.2.3 The binomial coefficients are defined for α∈ℝ and for k∈ℕ0 ≔

{0,1,2,3, … } by 

(
𝛼

𝑘
) =

Γ(𝛼 + 1)

Γ(𝑘 + 1)Γ(𝛼 − 𝑘 + 1)
=

𝛼(𝛼 − 1)(𝛼 − 2) … … . . (𝛼 − 𝑘 + 1)

𝑘!
     (2.9) 

Another important special function which is related to Euler' s Gamma function is 

the Beta function as defined by the following. 
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Definition 2.2.4 The Beta function 𝐵(𝑝, 𝑞) in two variables p, q is defined by 

𝐵(𝑝 , 𝑞) = ∫ 𝑡𝑝−1(1 − 𝑡)𝑞−1𝑑𝑡  ,   𝑅𝑒 𝑝 > 0 , 𝑅𝑒 𝑞 > 0

1

0

.                  (2.10) 

Gamma and Beta functions are connected with themselves through the following 

expression 

                                          𝐵(𝑝 , 𝑞) =
Γ(𝑝)Γ(𝑞)

Γ(p+q)
    .                                                  (2.11) 

It then follows that 

                                𝐵(𝑝 , 𝑞) = 𝐵(𝑞 , 𝑝).                                                                     (2.12)  

Next, we will define the Mittag-Leffler function which again is strongly connected 

with Gamma function and plays basic role in theory of fractional calculus. 

Furthermore, information can be found in a number of books on special function 

such as 13, 14 and 15]. 

Definition 2.2.5 For z ϵℂ the Mittag-Leffler function Eα(z) is defined by 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 1)
 ,        𝛼  > 0

∞

𝑘=0

 ,                                                         (2.13) 

and the generalized ( a two-parameter ) Mittag-Leffler function  𝐸𝛼,𝛽(𝑧) has of the 

form  

 𝐸𝛼,𝛽(z) = ∑
zk

Γ(αk + β)

∞

n=0

,          𝛼 , 𝛽 > 0.                                                  (2.14) 

Theorem 2.2.6 The Mittag-Leffler function meets the following properties 
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1. The kth derivatives of one parameter and the two-parameter of Mittag-Leffer 

function are given ,respectively, by 

                             𝐸𝛼  (𝑧) = ∑
(𝑗+𝑘)!𝑧𝑗

𝑗!Γ(𝛼𝑗+𝛼𝑘+1)
 ,∞

𝑗=0                                                      (2.15)                                                      

                                   𝐸𝛼,𝛽
(𝑘)(𝑧) = ∑

(𝑗+𝑘)!𝑧𝑗

𝑗!Γ(αj+αk+β)
.                                                   (2.16)∞

𝑗=0  

 2. For |𝑧|<1, the general form of Mittag-Leffler function satisfies        

                           ∫ e−ttβ−1Eα,β(tαz)

∞

0

dt =
1

1 − z
 , |𝑧| <  1 

3. The Laplace transform of the function  𝑡𝛽−1𝐸𝛼,𝛽(𝜆𝑡𝛼) is given by 

                     ∫ e−st∞

0
𝑧𝛽−1Eα ,β(𝜆𝑧𝛼)dt =

sα−β

𝑠𝛼−𝑧
   , 𝑅𝑒(𝑠) >  |𝑧|

1

𝛼                (2.17) 

4. The Laplace transform of the Mittag-leffeler function 𝐸𝛼(𝜆𝑧𝛼) is determined by  

   sα−1

 sα−λ
                                                                                                                  (2.18)  

5. For the particular values of 𝛼 and 𝛽, the Mittag-Leffer function is given by  

       (a) 𝐸1 = 𝑒𝑧                   (b) E2(z2) = cosh(z) 

(c) E2(−z2) =cos (z)      (d) E2,2(z2) = 
sinh (𝑧)

𝑧
 .       

2.3 Some Fixed Point Theorems 

For some proofs of solutions to existence and uniqueness for the theory of FDEs, we 

need two fixed point theorems. They are Banach's fixed point theorem and 

Schauder’s fixed point theorem. A proof of these theorems may be found ,e.g. in [16] 

and [17]. In order to state Banach's fixed point theorem we introduce the following 

concept. 



16 

Definition 2.3.1 Contraction Mapping Assume that (𝑋 , 𝑑) is a metric space 

𝐹: 𝑋 → 𝑋 is said to be a contraction mapping on X if  ∃ 0 ≤ 𝛼 < 1 such that 

                                      𝑑(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝛼 𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋. 

Theorem 2.3.2 (Banach's Fixed Point Theorem) Assume that (𝑈, 𝑑) is a  

nonempty complete metric space and let the mapping  𝑇: 𝑈 → 𝑈 be a contraction, 

that is 

                                  𝑑(𝑇𝑢, 𝑇𝑣) ≤  𝛼 𝑑(𝑢, 𝑣)  ∀ 𝑢, 𝑣 ∈  𝑈, and 0 ≤ 𝛼 < 1, 

then 𝑇 possesses a unique fixed point 𝑢∗.That is 𝑇𝑢∗ = 𝑢∗. 

Also, we will use slightly different result that gives the existence without uniqueness 

of a fixed point in this thesis. But before mentioning this theorem, we will give the 

following concepts. 

Theorem 2.3.3 Let X, Y be normed spaces. An operator 𝑇: 𝑀 ⊂  𝑋 ⟶ 𝑌  is called 

compact operator or completely continuous if 

I. T is continuous. 

II. T maps bounded sets 𝑈 ⊂ 𝑀 into relatively compact sets. 

Definition 2.3.4 Let (𝐸, 𝑑)  be a metric space and F⊆ E .The set F is called 

relatively compact in E if the closure of F is a compact subset of E. 

Theorem 2.3.5 (Schauder's Fixed Point Theorem) Suppose Q is a nonempty, 

bounded, convex, closed, subset of a Banach space X, and Let T:Q⟶Q is a compact  

operator .Then T has at least one fixed point . 
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Another useful result from Analysis is very important for theory of FDEs in the 

following theorem.  

Theorem 2.3.6(Arzelà-Ascoli’s Theorem). Assume that 𝐹 is a subset of 

𝐶[𝑎, 𝑏]endowed with the Chebyshev norm. Then 𝐹 is relatively compact in 𝐶[a, b] if 

and only if 𝐹 is equi-continuous (i.e. for every 𝜀 > 0, there exists some δ> 0  such 

that for every f ∈ F and for each 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] whenever |𝑥1 − 𝑥2| < 𝛿 

implies|𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀) and uniformly bounded (i.e. ∃ a constant K > 0 so that 

‖𝑓‖∞ <  𝐾 ∀𝑓 ∈  𝐹).    
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Chapter 3 

3 FRACTIONAL CALCULUS 

In chapter 1 a brief historical stages of fractional calculus has been stated and the 

powerful connected with the development of classical calculus was established. As 

seen in the brief historical outline, more than one approach to transfer integer order 

operations to the non-integer case was developed. Anyway, the structure of this 

chapter is devoted to study some of these approaches for the fractional integration 

and differentiation and can be found in various books [21, 22, 23]. We start with the 

most common one, the Riemann-Liouville operators for fractional differentiation and 

integration. 

3.1 Riemann-Liouville Integrals 

 Definition 3.1.1 Let 𝛼𝜖ℝ+. The operator 𝐼𝑎
𝛼 , defined on 𝐿1[𝑎, 𝑏]  by 

                   ( 𝐼𝑎
𝛼𝑓 )(𝑧) =

1

𝛤(𝛼)
∫ (𝑧 − 𝑠)𝛼−1𝑧

𝑎
𝑓(𝑠)𝑑𝑠                                                  (3.1) 

for 𝑎 ≤ 𝑧 ≤ 𝑏  is said to be the Riemann-Liouville fractional integral operator of 

order 𝛼. For 𝛼 = 0, we put 𝐼𝑎
0 ≔ 𝐼 , the identity operator. 

It is worth mentioning that some books define the left-sided and right-sided 

Riemann-Liouville fractional integral as follows  

Definition 3.1.2 (see [22]). Let αϵℝ+and 𝑓 (𝑥) 𝜖  𝐿1[𝑎, 𝑏]. The left-sided and right-

sided Riemann-Liouville integrals of order α are defined respectively by                              

                     ( 𝐼 𝑎+
𝛼 𝑓 )(𝑥): =

1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡 ,𝑥 > 𝑎                                (3.2)                           
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                ( 𝐼𝑏−
𝛼 𝑓 )(𝑥): =

1

𝛤(𝛼)
∫ (𝑡 − 𝑥)𝛼−1𝑓(𝑡)𝑑𝑡 ,

𝑏

𝑥
𝑥 < 𝑏,                                (3.3) 

respectively. It is clear that the Definition 3.1.1 coincide with the first part of the 

Definition 3.1.2. So we adapt the the Definition 3.1.1 and drop the sign +.   

Lemma 3.1.3(see [22]). Let 𝑓(𝑥)𝜖∁[𝑎, 𝑏] , then 

   𝐼𝑎+
𝛼 𝐼𝑎+

𝛽
𝑓 ≡ 𝐼𝑎

𝛼+𝛽
,   𝐼𝑏−

𝛼 𝐼𝑏−
𝛽

𝑓 ≡ 𝐼𝑏−
𝛼+𝛽

                                                                     (3.4) 

 where  𝛼 > 0, 𝛽 > 0 . 

Proof.  Suppose that 𝑓 (𝑥)ϵ ∁[a,b] , then  

                           𝐼𝑎+
𝛼 𝐼𝑎+

𝛽
𝑓=

1

𝛤(𝛼)𝛤(𝛽)
∫ (𝑧 − 𝑠)𝛼−1 ∫ (𝑠 − 𝜏)𝛽−1𝑓(𝜏)𝑑𝜏𝑑𝑠

𝑠

𝑎

𝑧

𝑎
 

By Fubini's Theorem 2.12 it is possible to change the order of integration and we 

have   

𝐼𝑎+
𝛼 𝐼𝑎+

𝛽
𝑓= 

1

Γ(α)Γ(β)
∫ ∫ (𝑥 − 𝑡)𝛼−1(𝑡 − 𝜏)𝛽−1𝑓(𝜏)𝑑𝑡 𝑑𝜏

𝑥

𝜏

𝑥

𝑎
                                    

=
1

Γ(α)Γ(β)
∫ 𝑓(𝜏)

𝑥

𝑎
∫ (𝑥 − 𝑡)𝛼−1(𝑡 − 𝜏)𝛽−1𝑑𝑡𝑑𝜏 .

𝑥

𝜏
 

The substitution 𝑡 = 𝜏 + 𝑠(𝑥 − 𝑡) produces 

       𝐼𝑎+
𝛼 𝐼𝑎+

𝛽
f =

1

𝛤(𝛼)𝛤(𝛽)
∫ 𝑓(𝜏)

𝑥

𝑎
∫ [(𝑥 − 𝜏)(1 − 𝑠)]𝛼−1[𝑠(𝑥 − 𝜏)]𝛽−1(𝑥 − 𝜏)𝑑𝑠𝑑𝜏

1

0
 

                     =
1

Γ(𝛼)Γ(𝛽)
∫ 𝑓(𝜏)(𝑥 − 𝜏)𝛼+𝛽−1 ∫ 𝑠𝛽−1(1 − 𝑠)𝛼−1𝑑𝑠𝑑𝜏.  

1

0

𝑥

𝑎
                     

The term   ∫ sβ−1(1 − s)α−1ds 
1

0
  is the definition of Beta function (Definition 

2.2.11) and B(β, α) = 
Γ(𝛽)Γ(𝛼)

Γ(𝛽+𝛼)
  . Therefore, 

                    𝐼𝑎
𝛼𝐼𝑎+

𝛽
𝑓(x)=

1

Γ(𝛼+𝛽)
∫ (𝑥 − 𝑡)𝛼+𝛽−1𝑓(𝜏)

𝑥

𝑎
𝑑𝜏=𝐼𝑎

𝛼+𝛽
𝑓(𝑥).     
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In similar way we can prove the right-sided of Riemann-Louivelle fractional integral.                                                                                                                  

Remark 3.1.4 The equations in (3.4) are called semigroup property of the fractional 

integration. 

In the next subject we investigate the exchangeability of limit operation and 

fractional integration in the following theorem. 

Theorem 3.1.5 Let 𝛼 > 0 .Suppose that (𝑓𝑘)𝑘=1
∞  is a uniformly convergent sequence 

of continuous functions on [𝑎, 𝑏]. Then we can interchange between the limit process 

and integral operators, i.e. 

                                          (𝐼𝑎
𝛼 𝑙𝑖𝑚𝑘→∞ 𝑓𝑘)(𝑥) = (𝑙𝑖𝑚𝑘→∞ 𝐼𝑎

𝛼𝑓𝑘)(𝑥). 

Proof: Let the limit of the sequence (𝑓𝑘)𝑘=1
∞  be represented by f .Since the uniform 

limit of all sequence of continuous functions is also continuous, so f  is continuous. 

Then we find 

                   |𝐼𝑎
𝛼𝑓𝑘(𝑥) − 𝐼𝑎

𝛼𝑓(𝑥)| ≤ 
1

Γ(𝛼)
∫ |𝑓𝑘(𝑡) − 𝑓(𝑡)|

𝑥

𝑎
(x − t)α−1dt 

                                                 ≤ 
1

Γ(𝛼+1)
‖𝑓𝑘 − 𝑓‖∞(𝑏 − 𝑎)𝛼. 

The term ‖𝑓𝑘 − 𝑓‖∞ converges uniformly to 𝑓 as 𝑘 → ∞ ∀ 𝑥𝜖[𝑎, 𝑏]. ∎  

We will give two examples on the fractional integration. 

Example 3.1.6 Consider the power function 

                𝑓 (𝑧)=(𝑧 − 𝑤)𝑐   for some  𝑐 >  −1   and  𝛼 >  0 .Then  

                                    𝐼𝑎
𝛼𝑓(𝑧) =

𝛤(𝑐+1)

𝛤(𝛼+𝑐+1)
(𝑧 − 𝑤)𝛼+𝑐.                                          (3.5) 
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If 𝛼 ∈ ℕ  we obtain a familiar result in classical calculus. For the fractional case, 

 we have,  

𝐼𝑎
𝛼𝑓(z) =

1

𝛤(𝛼)
∫ (𝑡 − 𝑤)𝑐(𝑧 − 𝑡)𝛼−1𝑑𝑡  

𝑧

𝑤
by substituting  𝑡 = 𝑤 + 𝑠(𝑧 − 𝑤). 

We obtain  

                  𝐼𝑎
𝛼𝑓(𝑧) =

1

Γ(𝛼)
(𝑧 − 𝑤)𝛼+𝑐 ∫ 𝑠𝑐(1 − 𝑠)𝛼−1𝑑𝑠

1

0
 

                               =
Γ(𝑐+1)

Γ(𝛼+𝑐+1)
(𝑧 − 𝑤)𝛼+𝑐. 

Example 3.1.7 Assume 𝑓 (𝑥) = 𝑒𝑥𝑝(𝜆𝑥)   for some  >  0 , then 

                                       𝐼𝑎
𝛼𝑓(𝑥) = 𝑥𝛼𝐸1,𝛼+1(𝜆𝑥),                                                      (3.6) 

where  𝐸1,𝛼+1(λx)   is the Mittag-Leffler  function of two parameters. 

In the case α ϵ ℕ, we clearly have  𝐼0
𝛼𝑓(𝑥) = 𝜆−𝛼𝑒𝑥𝑝 (𝜆𝑥) .  

In the case α∉ ℕ then by utilizing from the expansion of exponential function of the 

power series, Theorem 3.1.5 and Example 3.1.6 we have  

                        𝐼0
𝛼(𝑓𝑥) = 𝐼0

𝛼 [∑
(𝜆𝑥)𝑘

𝑘!

∞
𝑘=0 ]                                                                           

                                  = ∑
𝜆𝑘

𝑘!
𝐼0

𝛼(𝑥)𝑘∞
𝑘=0                                                                                    

                                      =  𝑥𝛼 ∑
(𝜆𝑥)𝑘

𝛤(𝑘+𝛼+1)
∞
𝑘=0 = 𝑥𝛼𝐸1,𝛼+1  (𝜆𝑥)                  

Corollary 3.1.8 Assume that 𝑓 is analytic function in (𝑑 − ℎ, 𝑑 + ℎ )  for some h>0, 

and let 𝛼 > 0 .Then    

𝐼𝑑
𝛼𝑓(𝑥) = ∑ (−1)𝑘 (𝑥−𝑑)𝑘+𝛼

𝛤(𝑘+1+𝛼)
∞
𝑘=0 𝐷𝑘𝑓(𝑥), for  𝑑 ≤ 𝑥 < 𝑑 +

ℎ

2
  and 

                𝐼𝑑
𝛼𝑓(𝑥) = ∑

(𝑥−𝑑)𝑘+𝛼

𝛤(𝑘+1+𝛼)
∞
𝑘=0 𝐷𝑘𝑓(𝑑) , for 𝑑 ≤ 𝑥 ≤ 𝑑 + ℎ. In particular, 𝐼𝑑

𝛼𝑓 is 

analytic in(𝑑, 𝑑 + ℎ). 
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Proof. Because of the analyticity of 𝑓, it can be written by a power series round 𝑥. 

And since 𝑥 ∈ [𝑑, 𝑑 +
ℎ

2
) ,the power series is convergent in the whole interval of 

integration. By Theorem 3.1.5, it is allowing to exchange summation and integration. 

Then by using the formula (3.5) in Example 3.1.6, we get the first result. The second 

result can be achieved in a similar way by representing 𝑓 into the power series round 

𝑎 not 𝑥 .The analyticity of 𝐼𝑎
𝛼𝑓comes from the second statement. 

3.2 Riemann-Liouville Derivatives  

Associated with the fractional integration, it is natural to define the fractional 

derivative and investigate its properties. So we have the following definition. 

Definition 3.2.1 Let 𝛼𝜖ℝ+ and = [𝛼] + 1 , where [α]  the integer part of α. The 

operator  Da
α , defined by  

            𝐷𝑎
𝛼𝑓(𝑥) ≔ 𝐷𝑛𝐼𝑎

𝑛−𝛼𝑓(𝑥) =
1

𝛤(𝑛−𝛼)
(

𝑑

𝑑𝑥
)

𝑛

∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡               (3.7) 

for  𝑎 ≤ 𝑥 ≤ 𝑏, is said to be the Riemann-Liouville operator of order α . 

Remark 3.2.2 If 𝛼 ∈ ℕ, say 𝛼 = 𝑚 then 𝐷𝑎
𝛼𝑓 = 𝐷𝑚𝑓. This means that the operator  

𝐷𝑎
𝛼 coincide with the usual operator 𝐷𝑚.   

Again, as the same of fractional integrals definitions, the left-sided and right-sided 

fractional derivatives may be defined as follow  

Definition 3.2.3 The left-sided 𝐷𝑎+
𝛼 𝑓  and right-sided 𝐷𝑏−

𝛼 𝑓 Riemann-Liouville 

derivatives 𝐷𝑎+
𝛼 𝑓and 𝐷𝑏−

𝛼 𝑓  of order αϵℝ+ are defined by  



23 

  (𝐷𝑎
𝛼𝑓 )(𝑥):=(

𝑑

𝑑𝑥
)

𝑛

𝐼𝑎
𝑛−𝛼𝑓(𝑥) = (

𝑑

𝑑𝑥
)

𝑛

∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡,                             (3.8) 

where 𝑛 = [𝛼] + 1, 𝑥 >  𝑎   and  

       (𝐷𝑏−
𝛼 𝑓 )(𝑥): = (−

𝑑

𝑑𝑥
)

𝑛

𝐼𝑏−
𝑛−𝛼𝑓(𝑥) =

1

𝛤(𝑛−𝛼)
(−

𝑑

𝑑𝑥
)𝑛 ∫ (𝑡 − 𝑥)𝑛−𝛼−1𝑓(𝑡)𝑑𝑡

𝑏

𝑥
, (3.9) 

where 𝑛 = [𝛼] + 1, 𝑥 < 𝑏. 

We see that the Definition 3.2.1 match the first part of the Definition 3.2.2, so we 

drop the sign +.  

Lemma 3.2.4 Let αϵℝ+ and let 𝑛 ∈ ℕ so that 𝑛 ≥ 𝛼.Then  

𝐷𝑎
𝛼 = 𝐷𝑛𝐼𝑎

𝑛−𝛼. 

Proof: The assumption on  𝑛  yields 𝑛 ≥ 𝑚 = [𝛼] + 1. Thus, 

                                         𝐷𝑛𝐼𝑎
𝑛−𝛼 = 𝐷𝑚𝐷𝑛−𝑚𝐼𝑎

𝑛−𝑚𝐼𝑎
𝑚−𝛼 = 𝐷𝑚𝐼𝑎

𝑚−𝛼 = 𝐷𝑎
𝛼. 

According to the semigroup property of fractional integral (3.4) and the fact that the 

integer derivative is left inverse to the integer integration.                              

The following Lemma provides a simple condition which is sufficient for the 

existence of 𝐷𝑎
𝛼𝑓. 

Lemma 3.2.5 Let 𝑓 ∈ 𝐴𝐶[𝑎, 𝑏] and 0<α<1 .Then 𝐷𝑎
𝛼𝑓  exists almost everywhere in 

[a,b] .Furthermore   𝐷𝑎
𝛼𝑓 ∈ 𝐿𝑝[𝑎, 𝑏]  for  1 ≤ 𝑝 <

1

𝛼
   and   

𝐷𝑎
𝛼𝑓(𝑥) =

1

𝛤(1 − 𝛼)
( 

𝑓(𝑎)

(𝑥 − 𝑎)𝛼
+ ∫ 𝑓′(𝑡)(𝑥 − 𝑡)−𝛼𝑑𝑡)

𝑥

𝑎

. 

Proof: since 𝑓 ∈ 𝐴𝐶[𝑎, 𝑏] by assumption we employ the Riemann-Liouville 

differential operator .This yields 

          𝐷𝑎
𝛼𝑓(𝑥) =

1

𝛤(1−𝛼)

𝑑

𝑑𝑥
∫ (𝑥 − 𝑡)−𝛼𝑓(𝑡)𝑑𝑡

𝑥

𝑎
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                       = 
1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫ [(𝑓(𝑎) + ∫ 𝑓′(𝑢)𝑑𝑢](𝑥 − 𝑡)−𝛼𝑑𝑡

𝑡

𝑎

𝑥

𝑎
                                                                                                   

                         =  
1

Γ(1−𝛼)

𝑑

𝑑𝑥
[𝑓(𝑎) ∫

𝑑𝑡

(𝑥−𝑡)𝛼 + ∫ ∫ 𝑓′(𝑢)(𝑥 − 𝑡)−𝛼𝑑𝑢𝑑𝑡)]
𝑡

𝑎

𝑥

𝑎

𝑥

𝑎
                                                                                                                                                        

                         =  
1

Γ(1−𝛼)
[ 

𝑓(𝑎)

(𝑥−𝑎)𝛼
+  

𝑑

𝑑𝑥
∫ ∫ 𝑓′(𝑢)(𝑥 − 𝑡)−𝛼𝑑𝑢𝑑𝑡]

𝑡

𝑎

𝑥

𝑎
. 

Then we apply Fubini's theorem to alternate the integration order .This yields  

                            𝐷𝑎
𝛼𝑓(𝑥) =

1

𝛤(1−𝛼)
[ 

𝑓(𝑎)

(𝑥−𝑎)𝛼
+

𝑑

𝑑𝑥
∫ 𝑓′(𝑢)

(𝑥−𝑢)1−𝛼

1−𝛼
𝑑𝑢]

𝑥

𝑎
  

                                       = 
1

Γ(1−𝛼)
[ 

𝑓(𝑎)

(𝑥−𝑎)𝛼 + ∫ 𝑓′(𝑡)(𝑥 − 𝑡)−𝛼𝑑𝑡
𝑥

𝑎
]. 

This is obtained from the rules on the derivatives of parameter integrals thus we get 

the required result. 

It remains to prove that 𝐷𝑎
𝛼𝑓 ∈ 𝐿𝑝[𝑎, 𝑏]  for    1 ≤ 𝑝 <

1 

𝛼
 . To do this we will use the 

following Minkowsky inequality    

                                              ‖𝑓 + 𝑔‖𝐿𝑝
≤  ‖𝑓‖𝐿𝑝

+ ‖𝑔‖𝐿𝑝
  , 

where  ‖𝜑‖𝐿𝑝
(Ω) = {∫ |𝜑(𝑥)|𝑝𝑑𝑥

Ω
}

1

𝑝
  and  Ω = [𝑎, 𝑏]  ,    −∞≤𝑎<𝑏≤∞ . 

So, we get  

                       ‖𝐷𝑎
𝛼𝑓‖𝐿𝑝

≤  
1

𝛤(1−𝛼)
(|𝑓(𝑎)|‖(𝑥 − 𝑎)−𝛼‖𝐿𝑝

+ ‖∫ 𝑓′(𝑡)(𝑥 − 𝑡)−𝛼𝑥

𝑎
‖

𝐿𝑝
)  

The first term belongs to  𝐿𝑝 and the second term we apply Young's Theorem 

(Theorem 2.11) since 𝑓 ∈ 𝐴𝐶[𝑎, 𝑏] implies 𝑓′ ∈ 𝐿1[𝑎, 𝑏] and (𝑥 − 𝑡)−𝛼 ∈

𝐿𝑝[𝑎, 𝑏]  because 1 ≤ 𝑝 <
1

𝛼
 . ∎                                                                                      
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Example 3.2.6 Let 𝑓(𝑥) = (𝑥 − 𝑎)𝑐  with some c > −1 and α>0. Then according to 

Example 3.1.6, we have  

                                          𝐷𝑎
𝛼𝑓(𝑥) = 𝐷𝑛𝐼𝑎

𝑛−𝛼𝑓(𝑥) =
𝛤(𝑐+1)

𝛤(𝑛−𝛼+𝑐+1)
𝐷𝑛(𝑥 − 𝑎)𝑛−𝛼+𝑐  ,   

 where 𝑛 = [𝛼] + 1. 

In the case(−𝛼 + 𝑐) ∈ ℕ, the RHS is the 𝑛𝑡ℎ  derivative of a classical polynomial of 

degree (𝑛 − 𝛼 + 𝑐) ∈ {0,1,2, … , 𝑛 − 1} and thus yields the following result    

                                    𝐷𝑎
𝛼[(𝑡 − 𝑎)𝛼−𝑛](𝑥) = 0   for  𝑛𝜖 {1,2 … , [𝛼]. 

In the case (−𝛼 + 𝑐)  ∉ ℕ we find  

                                  𝐷𝑎
𝛼[(𝑡 − 𝑎)𝑐](𝑥) =

𝛤(𝑐+1)

𝛤(𝑐+1−𝛼)
(𝑥 − 𝑎)𝑐−𝛼 . 

From example above we see that the Riemann-Liouville derivative of a constant is 

not zero that differs from the integer calculus. 

Having presented both of definition, Riemann-Liouville integral and differential 

operator, we can now investigate the interaction between each other. One of the most 

important results is concerned with the inverse property of both operators. 

Theorem 3.2.7 Let 𝛼 ≥ 0 and for each𝑓 ∈ 𝐿1[𝑎, 𝑏]. 

 Then we have        

             𝐷𝑎
𝛼𝐼𝑎

𝛼𝑓 = 𝑓 

almost everywhere .Moreover, if there is a function 𝑔 ∈ 𝐿1[𝑎, 𝑏] such that  𝑓 = 𝐼𝑎
𝛼𝑔, 

then  

                               𝐼𝑎
𝛼𝐷𝑎

𝛼𝑓 = 𝑓       almost everywhere. 
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We see from the first statement of the theorem above  that the Riemann-Liouville 

operator is actually left inverse to the Riemann-Liouville integral operator .while in 

the second statement reads that the Riemann-Liouville operator is the right inverse to 

Riemann-Liouville differential operator under the constraint 𝑓 = 𝐼𝑎
𝛼𝑔 , which is 

similarly  for  the integer case. 

If 𝑓 does not verify this condition then we obtain a different characterization for 

𝐼𝑎
𝛼𝐷𝑎

𝛼𝑓 which is given in the following theorem. 

Theorem 3.2.8 (see [24]). Let 𝛼 > 0 and 𝑛 = [𝛼] + 1. Suppose that 𝑓 is such that 

𝐼𝑎
𝑛−𝛼𝑓 ∈ 𝐴𝐶𝑛[𝑎, 𝑏]. Then we have  

                      𝐼𝑎
𝛼𝐷𝑎

𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑
(𝑥−𝑎)𝛼−𝑘−1

Γ(𝛼−𝑘)
 lim𝑧⟶𝑎+ 𝐷𝑛−𝑘−1 𝐼𝑎

𝑛−𝛼𝑓(𝑧)𝑛−1
𝑘=0  . 

In particular, for  0 < 𝛼 < 1  we have    

                    𝐼𝑎
𝛼𝐷𝑎

𝛼𝑓(𝑥) = 𝑓(𝑥) −
(𝑥−𝑎)𝛼−1

Γ(𝛼)
lim𝑧⟶𝑎+ 𝐼𝑎

1−𝛼 𝑓(𝑧) . 

Unfortunately, the Riemann-Liouville derivatives have determined drawbacks when 

atempting to model complex real life proplems relating with FDEs. Therefore, we 

study the most important modification for the idea of a fractional derivative. 

3.3 Caputo Operator  

Definition 3.3.1 Let  𝛼 ∈ ℝ+and 𝑛 = [𝛼] + 1. The operator   𝐷𝑎
𝛼𝐶   defined by  

            𝐷𝑎
𝛼𝑓(𝑥) ≔ 𝐼𝑎

𝑛−𝛼𝑐 𝐷𝑛𝑓(𝑥) =  
1

Γ(𝑛−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1 (

𝑑

𝑑𝑡
)

𝑛

𝑓(𝑡)𝑑𝑡
𝑥

𝑎
          (3.10) 

for   a≤ 𝑥 ≤ 𝑏 , when 𝐷𝑛𝑓(𝑥) ∈ 𝐿1[𝑎, 𝑏] is called the Caputo differential operator of 

order 𝛼. 
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We begin the analysis of this operator with a  simple example. 

Example 3.3.2  Let  𝛼 ≥ 0 , 𝑛 = [𝛼] + 1  and  𝑓(𝑥) = (𝑥 − 𝑎)𝑐  with some   

 𝑐 ≥ 0.Then                 

               𝐷𝑎
𝛼𝑐 = {

0
Γ(𝑐+1)

Γ(𝑐+1−𝛼)
(𝑥 − 𝑎)𝑐−𝛼            

𝑖𝑓 𝑐 ∈ {0,1,2, … , 𝑛 − 1}

𝑖𝑓 𝑐 ∈  𝑎𝑛𝑑 𝑐 ≥ 𝑛           
𝑜𝑟 𝑐 ∉ ℕ 𝑎𝑛𝑑 𝑐 > 𝑛 − 1.

       

A first connection result between Riemann-Liouville derivative and Caputo 

derivative as follows 

Theorem 3.3.3 (see [21]). Let  𝛼 ≥ 0 and 𝑛 = [𝛼] + 1.Furthermore, let’s assume 

  𝑓 ∈ 𝐴𝐶𝑛[𝑎, 𝑏]. It follows that  

                                                𝐷𝑑
𝛼𝑓 = 𝐷𝑑

𝛼[𝑓 − 𝑇𝑛−1[𝑓; 𝑑]]𝑐 , 

 where 𝑇𝑛−1[𝑓; 𝑑] stands for the Taylor polynomial with  𝑛 − 1 degrees with the 

function 𝑓,with a center 𝑑 .       

Remark 3.3.4 We see for 𝛼 ∈ ℕ that 𝛼 = 𝑛 , then  

                      𝐷𝑑
𝛼𝑓 = 𝐷𝑑

𝛼[𝑓 − 𝑇𝑛−1[𝑓; 𝑑]] = 𝐷𝑛 − 𝐷𝑛(𝑇𝑛−1[𝑓; 𝑑]) = 𝐷𝑛𝑐  . 

  Since 𝑇𝑛−1[𝑓; 𝑑]  is a polynomial with 𝑛 −1 degrees that is vanished by with the 

operator 𝐷𝑛, so in this case the Caputo derivative gives a conventional 𝑛𝑡ℎ derivative 

of the function 𝑓(𝑡). 

We will also mention in this regard an important thing that is in the Caputo setting 

the initial conditions associated with FDEs coincide with those in integer case.  

Another way to state the correlation between the Riemann-Liouvelle operator and the 

Caputo operator is formulated by the following lemma. 
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Lemma 3.3.5 Let 𝛼 ≥ 0 and 𝑛 = [𝛼] + 1. Suppose that 𝑓 is such that both 𝐷𝑎
𝛼𝑓𝑐  

and  𝐷𝑎
𝛼𝑓  exist .Then  

                               𝐷𝑎
𝛼𝑓(𝑥) = 𝐷𝑎

𝛼𝑓(𝑥) − ∑
𝐷𝑘𝑓(𝑎)

Γ(𝑘−𝛼+1)
(𝑥 − 𝑎)𝑘−𝛼𝑛−1

𝑘=0
𝑐    

Proof: By using Theorem 3.3.3 and and Example 3.2.6 we have   

                         𝐷𝑎
𝛼𝑓(𝑥) = 𝐷𝑎

𝛼𝑓(𝑥) − ∑
𝐷𝑘𝑓(𝑎)

𝑘!
𝐷𝑎

𝛼[(𝑡 − 𝑎)𝑘](𝑥)𝑛−1
𝑘=0

𝑐   

                                           =𝐷𝑎
𝛼𝑓(𝑥) − ∑

𝐷𝑘𝑓(𝑎)

Γ(𝑘−𝛼+1)
(𝑥 − 𝑎)𝑘−𝛼𝑛−1

𝑘=0    . ∎           A particular case of this lemma is    

Lemma 3.3.6 Let 𝛼 ≥ 0 and 𝑛 =  [𝛼] + 1. Suppose that   𝑓   is such that both  𝐷𝑎
𝛼𝑓𝑐  

and 𝐷𝑎
𝛼𝑓  exist. Furthermore, let 𝐷𝑘𝑓(𝑎) = 0 , 𝑘 = 0,1,2, … , 𝑛 − 1. Then,    

                                                         𝐷𝑎
𝛼𝑓 = 𝐷𝑎

𝛼𝑓𝑐  .  

This lemma plays an essential role of differential equations of fractional order .It 

states, when the initial conditions are homogeneous then the differential equations 

corresponding to Riemann-Liuovile derivative agree with those equations 

corresponding to Caputo derivative.  

On the other hand, in comparison with Example 3.2.6 for 𝑓(𝑥) = 1 and  𝛼 >0 

, 𝛼 ∉ ℕ we deduces that it cannot be replaced 𝐷𝑎
𝛼𝑐   by  𝐷𝑎

𝛼  here. This difference is 

confirmed by the following lemma. 

Lemma 3.3.7 Let 𝛼 > 0 ,𝛼 ∉ ℕ and 𝑛 = [𝛼] + 1. Furthermore if 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏]. Then, 

𝐷𝑎
𝛼𝑓 ∈ 𝐶[𝑎, 𝑏]𝑐  and  𝐷𝑎

𝛼𝑓(𝑎) = 0𝑐  . 

Proof: We will use the Definition 3.3.1 and Theorem 3.3.3 .Since  

𝐷𝑎
𝛼𝑓 = 𝐼𝑎

𝑛−𝛼𝐷𝑛𝑓𝑐   and 𝐷𝑛 𝑓 is continuous by assumption, then according to 
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classical theory of integrals involving parameter we deduce that 𝐼𝑎
𝑛−𝛼𝑓𝜖𝐶[𝑎. 𝑏] , 

hence 𝐷𝑎
𝛼𝑓 ∈ 𝐶[𝑎, 𝑏]𝑐 . Moreover, since 𝐷𝑎

𝛼𝑓 ≔ 𝐷𝑎
𝛼(𝑓 − 𝑇𝑛−1[𝑓; 𝑎])𝑐 , we have  

   𝐷𝑎
𝛼𝑓(𝑎) = 𝐷𝑎

𝛼[𝑓(𝑎) − 𝑇𝑛−1[𝑓; 𝑎](𝑎)] = 𝐷𝑎
𝛼[𝑓(𝑎) − 𝑓(𝑎)] = 0𝑐   . ∎ 
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Chapter 4 

4 EXISTENCE RESULTS FOR FRACTIONAL 

DIFFERENTIAL EQUATIONS WITH FRACTIONAL 

BOUNDARY CONDITIONS 

5  

The area of fractional differential equations (FDEs) has been widely researched in 

the last two decades and many features of this field of calculus have been examined. 

One of the causes for famousness of the fractional calculus is the nonlocal property 

of the fractional order operators which takes into consideration the hereditary 

characteristics of various materials and processes. Actually, FDEs are found to be 

more appropriate model than analogous of integer differential equations. More 

precisely, it has furnished a fine tool for the nature of many phenomena in different 

real word problems. Also, boundary value problems (BVP) of fractional order 

containing the collection boundary conditions have been studied by a number of 

researchers. It has chiefly due to the natural circumstance of FDEs in many fields of 

engineering and sciences. For more details and examples one can see the books [22-

28].The recent development of this topic can be obtained in a series of papers (for 

example [30-38]. In this chapter, we investigate two models of BVP involving the 

Caputo fractional derivative. The first one is the BVP of nonlinear fractional 

differential equation with nonlocal four-point fractional boundary conditions. The 

second it deals with nonlinear impulsive BVP of multi-orders fractional with 

nonlocal four-point fractional boundary conditions. Moreover, we obtain some 

existence results for both these issues by means of Banach’s fixed point theorem and 
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Schauder’s fixed point theorem. In fact, the existence of the solutions is the major 

results of my thesis. 

4.1 Existence of Solutions for Nonlinear Fractional Differential 

Equations Subject to Nonlocal Four-point Fractional Boundary 

Conditions 

As we have seen above, the BVP of fractional order play a vital role in mathematical 

modeling of systems and processes in applied sciences such as physical processes, 

chemistry, biology, chemical, engineering, economics, and so on. Therefore, it has 

encouraged the researchers to investigate the existence of solution of these PVB by 

using some fixed point theorems.  

Recently, new existence results for nonlinear fractional differential equations with 

three-point integral boundary conditions are obtained in [39], existence of solution 

for nonlinear fractional q-difference integral equations with two fractional orders and 

nonlocal fractional differential equations are discussed in [40] and the existence  of 

solutions for nonlinear factional  differential equations with ant-periodic type 

fractional boundary conditions are investigated in [41]. 

Stimulated mentioned works above, we consider the following nonlinear FDEs 

subject to nonlocal four-point fractional boundary conditions (FBCs).  

𝐷                  𝑐 𝛼 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 1 <  𝛼 ≤ 2,   𝑡 𝜖 𝐽 =  [0, 𝑇], 𝑇 > 0,     

 𝑥(0) +  𝜇0 𝑥(𝑇) = 𝜎0 𝑥(𝜂0),          0 < 𝜂0 < 𝑇                        (4.1)

 𝐷𝑐 𝛼 𝑥(0) +  𝜇1 𝑐𝐷
𝑝 𝑥(𝑇)  =  𝜎1𝑥(𝜂1),    0 < 𝜂1 < 𝑇, 0 < 𝑃 < 1,   
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 where 𝐷𝑐 𝛼  represents the Caputo fractional derivative of order 𝛼 and  

𝜇0,  𝜇1, 𝜎0 , 𝜎1 are real constants and 𝑓: [0, 𝑇]x ℝ → ℝ is a continuous function. Here, 

(ℝ,‖ . ‖) is a Banach space and 𝐶 = 𝐶([0, 𝑇], ℝ) denotes the banach space of all 

continuous functions from [0, T] → ℝ with sup-norm ‖𝑥‖ = sup𝑡∈[0,𝑇]|x(t)|  . 

Before proof of the new results, we will draw down the auxiliary lemmas.  

Lemma 4.1.1(see [29]). For  𝛼 > 0, the general solution of the fractional 

differential equation  𝐷𝑐
0+
𝛼 𝑥(𝑡) = 0 is given by  

                                     x(t)  = 𝑐0 + 𝑐1𝑡 + 𝑐2 𝑡2 + ⋯ + 𝑐𝑛−1𝑡𝑛−1,                          (4.2) 

 where 𝑐𝑖 ∈ ℝ, i = 0,1, … , n − 1, (𝑛 = [𝛼] + 1) 

In view of Lemma 4.1.1, it follows that  

      𝐼0+
𝛼 𝐷𝑐

0+
𝛼 x(t) =  x(t) +  𝑐0t + 𝑐1t +  𝑐2 𝑡2  + ⋯ +  𝑐𝑛−1𝑡𝑛−1.                      (4.3) 

The following lemma will play an important role in the forthcoming analysis. 

Lemma 4.1.2 For any 𝑓(𝑡) 𝜖 𝐶 ([0, 𝑇], ℝ), the unique solution of the boundary value 

problem 

𝐷𝑐 𝛼𝑥(𝑡) = 𝑓(𝑡)   𝑡𝜖 [0, T], 0 <  𝛼 ≤ 2                      (4.4) 

𝑥(0) + 𝜇0𝑥(𝑇) =  𝜎0 𝑥(𝜂0), 0 < 𝜂0 < 𝑇 

𝐷𝐶 𝛼 𝑥(0) + 𝜇1 𝐷𝐶
0+
𝑝

𝑥(𝑇) = 𝜎1𝑥(𝜂1) , 0 < 𝜂1 < 𝑇,  

with 0 < 𝑃 < 1 and    𝜇0, 𝜇1, 𝜎0, 𝜎1 ∈ ℝ 

is given by 

𝑥(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠

𝑡

0

+ 𝜔0(𝑡)𝐼𝛼𝑓(𝜂0) + 𝜔1(𝑡)𝐼𝛼𝑓(𝜂1) + 𝜔2(𝑡)𝐼𝛼𝑓(𝑇) 
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+𝜔3(𝑡)𝐼𝛼−𝑝𝑓(𝑇),                                                                                                    (4.5)  

where 

𝜌 = (1 + 𝜇0 − 𝜎1) (
𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) + 𝜎1(𝜇0𝑇 − 𝜎0𝜂0) ≠ 0,                        (4.6) 

𝜔0(𝑡) =
𝜎0

𝜌
(

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) +

𝜎0𝜎1

𝜌
𝑡,                                                             (4.7) 

𝜔1(𝑡) = −
𝜎0

𝜌
(𝜇0𝑇 − 𝜎0𝜂0) +

𝜎1(1+𝜇0−𝜎1)

𝜌
𝑡,                                                          (4.8) 

𝜔2(𝑡) = −
𝜇0

𝜌
(

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) −

𝜇0𝜎1

𝜌
𝑡,                                                         (4.9) 

𝜔3(𝑡) = −
𝜇1

𝜌
(𝜇0𝑇 − 𝜎0𝜂0) −

𝜇1(1+𝜇0−𝜎1)

𝜌
𝑡.                                                        (4.10) 

Proof: Observe that the general solution of FDE (4.4) is given by 

𝑥(𝑡) = 𝐼𝛼𝑓(𝑡) − 𝑐0 − 𝑐1𝑡 =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠

𝑡

0
− 𝑐0 − 𝑐1𝑡                      (4.11) 

Using the fact  

𝐷𝑝𝑐 𝑐 = 0 (𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 𝐷𝑝𝑐 𝑡 =
𝑇1−𝑝

𝛤(2 − 𝜌)
, 𝐷𝑝𝑐 𝐼𝛼𝑓(𝑡) = 𝐼𝛼−𝑝𝑓(𝑡), 

 𝐷𝑝𝑐 𝑥(𝑡) =
1

𝛤(𝛼−𝜌)
∫ (𝑡 − 𝑠)𝛼−𝑝−1𝑓(𝑠)𝑑𝑠

𝑡

0
−

𝑐1

𝛤(2−𝜌)
𝑡1−𝑝. 

Applying boundary conditions, we find that 

−𝑐0 + 𝜇0 [
1

𝛤(𝛼)
∫ (𝑇 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠

𝑇

0

− 𝑐0 − 𝑐1𝑇] = 

𝜎0 [
1

𝛤(𝛼)
∫ (𝜂0 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠

𝜂0

0

− 𝑐0 − 𝑐1𝜂0] 

𝜇1 [
1

𝛤(𝛼 − 𝑝)
∫ (𝑇 − 𝑠)𝛼−𝑝−1𝑓(𝑠)𝑑𝑠

𝑇

0

−
𝑐1

𝛤(2 − 𝑝)
𝑇1−𝑝] = 

𝜎1 [
1

𝛤(𝛼)
∫ (𝜂1 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠

𝜂1

0
− 𝑐0 − 𝑐1𝜂1]. 

By solving these two equations and arranging we get 

−𝑐0(1 + 𝜇0 − 𝜎0) − 𝑐1(𝜇0𝑇 − 𝜎0𝜂0) = 𝜎0𝐼𝛼𝑓(𝜂0) − 𝜇0 𝐼𝛼𝑓(𝑇) 
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𝑐0𝜎1 − 𝑐1 (
𝜇1

𝛤(2 − 𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) = 𝜎1𝐼𝛼𝑓(𝜂1) − 𝜇1𝐼𝛼−𝑝𝑓(𝑇) 

−𝑐0𝜎1(1 + 𝜇0 − 𝜎0) − 𝑐1𝜎1(𝜇0𝑇 − 𝜎0𝜂0) = 𝜎1𝜎0𝐼𝛼𝑓(𝜂0) − 𝜇0𝜎1𝐼𝛼𝑓(𝑇),    

𝑐0𝜎1(1 + 𝜇0 − 𝜎0) − 𝑐1(1 + 𝜇0 − 𝜎0) (
𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) =  

𝜎1(1 + 𝜇0 − 𝜎0)𝐼𝛼𝑓(𝜂1) − 𝜇1(1 + 𝜇0 − 𝜎0)𝐼𝛼−𝑝𝑓(𝑇).    

−𝑐1 [𝜎1(𝜇0𝑇 − 𝜎0𝜂0) + (1 + 𝜇0 − 𝜎0) (
𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1)] = 𝜎1𝜎0𝐼𝛼𝑓(𝜂0) −

𝜇0𝜎1𝐼𝛼𝑓(𝑇) + 𝜎1(1 + 𝜇0 − 𝜎0)𝐼𝛼𝑓(𝜂1) − 𝜇1(1 + 𝜇0 − 𝜎0)𝐼𝛼−𝑝𝑓(𝑇), 

Set  𝜌 = 𝜎1(𝜇0𝑇 − 𝜎0𝜂0) + (1 + 𝜇0 − 𝜎0) (
𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1). 

−𝑐1 =  
𝜎1𝜎0

𝜌
𝐼𝛼𝑓(𝜂0) −

𝜇0𝜎1

𝜌
𝐼𝛼𝑓(𝑇) +

𝜎1(1+𝜇0−𝜎0)

𝜌
𝐼𝛼𝑓(𝜂1) −

𝜇1(1+𝜇0−𝜎0)

𝜌
𝐼𝛼−𝑝𝑓(𝑇). 

−𝑐0(1 + 𝜇0 − 𝜎0) (
𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) − 𝑐1(𝜇0𝑇 − 𝜎0𝜂0) (

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝𝜎1𝜂1) =

𝜎0 (
𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) 𝐼𝛼𝑓(𝜂0) − 𝜇0 (

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) 𝐼𝛼𝑓(𝑇), 

−𝑐0𝜎1(𝜇0𝑇 − 𝜎0𝜂0) − 𝑐1(𝜇0𝑇 − 𝜎0𝜂0) (
𝜇1

𝛤(2 − 𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) = 

             −𝜎1(𝜇0𝑇 − 𝜎0𝜂0)𝐼𝛼𝑓(𝜂1) + 𝜇1(𝜇0𝑇 − 𝜎0𝜂0)𝐼𝛼−𝑝𝑓(𝑇).   

      −𝑐0 =
𝜎0

𝜌
(

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) 𝐼𝛼𝑓(𝜂0) −

𝜇0

𝜌
(

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) 𝐼𝛼𝑓(𝑇) −

       
−𝜎1

𝜌
(𝜇0𝑇 − 𝜎0𝜂0)𝐼𝛼𝑓(𝜂1) +

𝜇1

𝜌
(𝜇0𝑇 − 𝜎0𝜂0)𝐼𝛼−𝑝𝑓(𝑇).  

Replacing  −𝑐0 and −𝑐1 in (2.13), we get the solution (2.7) where 

         𝜔0(𝑡) =
𝜎0

𝜌
(

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1) +

𝜎0𝜎1

𝜌
𝑡, 

        𝜔1(𝑡) = −
𝜎1

𝜌
(𝜇0𝑇 − 𝜎0𝜂0) +

𝜎1(1+𝜇0−𝜎0)

𝜌
𝑡, 

       𝜔2(𝑡) = −
𝜇0

𝜌
(

𝜇1

𝛤(2−𝑝)
𝑇1−𝑝 − 𝜎1𝜂1) −

𝜇0𝜎1

𝜌
𝑡, 

       𝜔3(𝑡) = +
𝜇1

𝜌
(𝜇0𝑇 − 𝜎0𝜂0) −

𝜇1(1+𝜇0−𝜎0)

𝜌
𝑡. 
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Due to Lemma(4.1.2), Let an operator 𝐹: 𝐶 → 𝐶 be defined by  

(𝐹𝑥)(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0
+ 𝜔0(𝑡)𝐼𝛼𝑓(𝜂0) + 𝜔1(𝑡)𝐼𝛼𝑓(𝜂1) +

                           𝜔2(𝑡)𝐼𝛼𝑓(𝑇) + 𝜔3(𝑡)𝐼𝛼−𝑝𝑓(𝑇).                                                        (4.12)                                                                           

Now for proving the main theorems, we put the following for the computational 

convenience: 

|
𝜎0

𝑝
(

𝜇1

𝛤(2−𝜌)
𝑇1−𝑝 − 𝜎1𝜂1)| + |

𝜎0𝜎1

𝜌
| 𝑇 = 𝑍0,                                                           (4.13) 

|−
𝜎0

𝜌
(𝜇0𝑇 − 𝜎0𝜂0)| + |

𝜎1(1+𝜇0−𝜎0)

𝜌
| 𝑇 = 𝑍1,                                                        (4.14) 

|−
𝜇0

𝜌
(

𝜇1

𝛤(2−𝑝)
𝑇1−𝑝 − 𝜎1𝜂1)| + |

𝜇0𝜎1

𝜌
| 𝑇 = 𝑍2,                                                       (4.15) 

|
𝜇1

𝜌
(𝜇0𝑇 − 𝜎0𝜂0)| + |

𝜇1(1+𝜇0−𝜎0)

𝜌
| 𝑇 = 𝑍3.                                                           (4.16) 

Let us set 

Ω =
1

𝛤(𝛼+1)
[𝑇𝛼 + 𝑍0𝜂0

𝛼 + 𝑍1𝜂1
𝛼 + 𝑍2𝑇𝛼] +

𝑍3𝑇𝛼−𝑝

𝛤(𝛼−𝑝+1)
 .                                         (4.17) 

Theorem 4.1.3 Assume 𝑓: [0, 𝑇] ×  ℝ → ℝ  is a jointly continuous function and 

satisfies Lipschitiz condition (that is) 

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦|, ∀ 𝑡 ∈ [0, 𝑇], 𝐿 > 0, 𝑥, 𝑦 ∈ ℝ, where 𝐿 is Lipschitiz 

constant, with  𝐿Ω < 1, where Ω is given by (4.17). Then the boundary value 

problem (4.1) has a unique solution. 

Proof: setting 𝑠𝑢𝑝𝑡∈[0,𝑇]|𝑓(𝑡, 0)| = 𝑀 and choosing  𝑟 ≥
𝑀Ω

1−𝐿Ω
 , we show that  

𝐹𝐵𝑟 ⊂ 𝐵𝑟 where 𝐵𝑟 = {𝑥 ∈ 𝐶: ‖𝑥‖ ≤ 𝑟}.  For  𝑥 ∈ 𝐵𝑟 we have 
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        |𝐹(𝑥)(𝑡)| ≤
1

𝛤(𝛼)
∫ (𝑡 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣))|𝑑𝑣

𝑡

0

 

+
𝑍0

𝛤(𝛼)
∫ (𝜂0 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣))|𝑑𝑣 

𝜂0

0

+
𝑍1

𝛤(𝛼)
∫ (𝜂1 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣))|𝑑𝑣

𝜂1

0

+
𝑍2

𝛤(𝛼)
∫ (𝑇 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣))|𝑑𝑣

𝑇

0

+  
𝑍3

𝛤(𝛼 − 𝑝)
 ∫ (𝑇 − 𝑣)𝛼−𝑝|𝑓(𝑣, 𝑥(𝑣))|𝑑𝑣

𝑇

0

 

            ≤
1

𝛤(𝛼)
∫ (𝑡 − 𝑣)𝛼−1(|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 0)| + |𝑓(𝑣, 0)|)𝑑𝑣

𝑡

0

 

             +
𝑍0

𝛤(𝛼)
∫ (𝜂0 − 𝑠)𝛼−1(|𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 0)| + |𝑓(𝑠, 0)|)𝑑𝑠

𝜂0

0

 

                           +
𝑍1

𝛤(𝛼)
∫ (𝜂1 − 𝑣)𝛼−1(|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 0)| + |𝑓(𝑣, 0)|)𝑑𝑣

𝜂1

0

           

+
𝑍2

𝛤(𝛼)
∫ (𝑇 − 𝑣)𝛼−1(|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 0)| + |𝑓(𝑣, 0)|)𝑑𝑣      

𝑇

0

+
𝑍3

𝛤(𝛼 − 𝜌)
∫ (𝑇 − 𝑣)𝛼−𝑝(|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 0)| + |𝑓(𝑣, 0)|)𝑑𝑣

𝑇

0

    

≤ (𝐿𝑟 + 𝑀) [
1

𝛤(𝛼 + 1)
([𝑇𝛼 + 𝑍0𝜂0

𝛼 + 𝑍1𝜂1
𝛼 + 𝑍2𝜂2

𝛼])      

+
𝑍3𝑇𝛼−𝑝

𝛤(𝛼 − 𝜌 + 1)
] ≤ (𝐿𝑟 + 𝑀)Ω ≤ 𝑟 . 

Now for any 𝑥, 𝑦 ∈ 𝐶 and for each 𝑡 ∈ [𝑡, 0], we obtain 
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|(𝐹𝑥)(𝑡) − 𝐹𝑦(𝑡)|

≤
1

𝛤(𝛼)
∫ (𝑡 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 𝑦(𝑣))|𝑑𝑣

𝑡

0

   

+
𝑍0

𝛤(𝛼)
∫ (𝜂0 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 𝑦(𝑣))|𝑑𝑣

𝜂0

0

+
𝑍1

𝛤(𝛼)
∫ (𝜂1 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 𝑦(𝑣))|𝑑𝑣

𝜂1

0

+
𝑍2

𝛤(𝛼)
∫ (𝑇 − 𝑣)𝛼−1|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 𝑦(𝑣))|𝑑𝑣

𝑇

0

+
𝑍3

𝛤(𝛼 − 𝜌)
∫ (𝑇 − 𝑣)𝛼−𝑝|𝑓(𝑣, 𝑥(𝑣)) − 𝑓(𝑣, 𝑦(𝑣))|𝑑𝑣

𝑇

0

 

                           ≤ 𝐿|𝑥 − 𝑦| [
1

𝛤(𝛼)
∫ (𝑡 − 𝑣)𝛼−1𝑑𝑣

𝑡

0

+
𝑍0

𝛤(𝛼)
∫ (𝜂0 − 𝑣)𝛼−1𝑑𝑣

𝜂0

0

+
𝑍1

𝛤(𝛼)
∫ (𝜂1 − 𝑣)𝛼−1𝑑𝑣

𝜂1

0

+
𝑍2

𝛤(𝛼)
∫ (𝑇 − 𝑣)𝛼−1𝑑𝑣

𝑇

0

+
𝑍3

𝛤(𝛼 − 𝑝)
∫ (𝑇 − 𝑣)𝛼−𝑝𝑑𝑣

𝑇

0

]

≤ 𝐿|𝑥 − 𝑦| [
1

𝛤(𝛼 + 1)
([𝑇𝛼 + 𝑍0𝜂0

𝛼 + 𝑍1𝜂1
𝛼 + 𝑍2𝜂2

𝛼])

+
𝑍3𝑇𝛼−𝑝

𝛤(𝛼 − 𝜌 + 1)
] = 𝐿Ω|𝑥 − 𝑦|, 

where Ω is given by (3.5). We note that Ω dependent only on the parameters in the 

problem (4.1). Then by assumption of theorem 𝐿Ω < 1, therefore 𝐹  is a contraction. 

Thus by Banach fixed point theorem we conclude that F possesses a unique fixed 

point which is a unique solution of boundary value problem (4.1) on [0,T].∎ 

The second existence result is based on Schauder’s fixed point theorem. 
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Theorem (4.1.4): Assume that 𝑓: [0, 𝑇] × ℝ → ℝ is continuous function and there 

exist 𝑣 ∈ 𝐶([0, 𝑇], ℝ+) such that |𝑓(𝑡, 𝑥)| ≤ 𝑣(𝑡) for all (𝑡, 𝑥) ∈ [0, 𝑇] × ℝ with 

‖𝑣‖ = max𝑡∈[0,𝑇]|𝑣(𝑡)| . Then the BVP (4.1) possesses at least one solution on 

[0, 𝑇]. 

Proof: let us fix 

                   𝑟̅ ≥
‖𝑣‖

𝛤(𝛼+1)
([𝑇𝛼 + 𝑍0𝜂0

𝛼 + 𝑍1𝜂1
𝛼 + 𝑍2𝑇𝛼]) +

‖𝑣‖𝑍3𝑇𝛼−𝑝

𝛤(𝛼−𝜌+1)
,                    (4.18) 

  or     𝑟̅ ≥ ‖𝑣‖Ω  for a positive constant 𝑟̅ and Ω is given by the relation (4.17).Now 

consider 𝐵𝑟̿ = {𝑥 ∈ 𝐶([0, 𝑇], ℝ): ‖𝑥‖ ≤ 𝑟̅} it is easy to know that  𝐵𝑟̅ is a nonempty, 

closed, bounded and convex subset of 𝐶([0, 𝑇]), ℝ). Now we define an operator on 

𝐵𝑟̅̿ as: 

(Φ𝑥)(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0
+ 𝜔0(𝑡)𝐼𝛼𝑓(𝜂0) + 𝜔1(𝑡)𝐼𝛼𝑓(𝜂1) +

 𝜔2(𝑡)𝐼𝛼𝑓(𝑇) + 𝜔3(𝑡)𝐼𝛼−𝑝𝑓(𝑇)                      (4.19) 

We show that Φ: 𝐵𝑟̅ → 𝐵𝑟̅. Let 𝑥 ∈ 𝐵𝑟̅, then we have  

      ‖(Φ𝑥)(𝑡)‖ ≤
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1|𝑓(𝑠, 𝑥(𝑠))|𝑑𝑠

𝑡

0

+ |𝜔0(𝑡)|‖𝐼𝛼𝑓(𝜂0)‖

+ |𝜔1(𝑡)|‖𝐼𝛼𝑓(𝜂1)‖ + |𝜔2(𝑡)|‖𝐼𝛼𝑓(𝑇)‖ + |𝜔3(𝑡)|‖𝐼𝛼−𝑝𝑓(𝑇)‖

≤ ‖𝑣‖ {
1

𝛤(𝛼 + 1)
([𝑇𝛼 + 𝑍0𝜂0

𝛼 + 𝑍1𝜂1
𝛼 + 𝑍2𝑇𝛼]) +

𝑍3𝑇𝛼−𝑝

𝛤(𝛼 − 𝜌 + 1)
}

≤ 𝑟̅,                                                                                                            (4.20) 

which means that Φ𝐵𝑟̅ ⊂ 𝐵𝑟̅ . 

Continuity of 𝑓 means that the operator Φ is continuous on𝐵𝑟̅ and Φ is uniformly 

bounded on 𝐵𝑟̿ since  

                                     ‖Φx‖ ≤ ‖𝑣‖Ω.                                                               (4.21) 
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By assumption of theorem, we define 𝑠𝑢𝑝(𝑡,𝑥)∈[0,𝑇]×𝐵𝑟̅
‖𝑓(𝑡, 𝑥)‖ = 𝑓𝑚𝑎𝑥 . Now 

showing that Φ maps bounded sets into equicontinuous sets of 𝐶([0, 𝑇], ℝ). For 

arbitrary 𝑠1, s2 ∈ [0, T] with 𝑠1 < s2 and 𝑥 ∈ 𝐵𝑟̿, where 𝐵𝑟̿ is bounded set of 

𝐶 ∈ ([0, 𝑇], ℝ). Then we have  

‖(Φ𝑥)(𝑠2) − (Φ𝑥)(𝑠1)‖

= ‖∫
(𝑠2 − 𝑠)𝛼−1

𝛤(𝛼)
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

𝑠2

𝑠1

+ ∫
(𝑠2 − 𝑠)𝛼−1 − (𝑠1 − 𝑠)𝛼−1

𝛤(𝛼)
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

𝑠1

0

+
𝜎0𝜎1

𝜌
(𝑠2 − 𝑠1)𝐼𝛼𝑓(𝜂0) +

𝜎1(1 + 𝜇0 − 𝜎0)

𝜌
(𝑠2 − 𝑠1)𝐼𝛼𝑓(𝜂1)

−
𝜇0𝜎1

𝜌
(𝑠2 − 𝑠1)𝐼𝛼𝑓(𝑇) −

𝜇1(1 + 𝜇0 − 𝜎1)

𝜌
(𝑠2 − 𝑠1)𝐼𝛼−𝑝𝑓(𝑇)‖ 

                           ≤ 𝑓𝑚𝑎𝑥 {
1

𝛤(𝛼 + 1)
[2(|𝑠2 − 𝑠1|)𝛼 + |𝑠2

𝛼 − 𝑠1
𝛼| + |

𝜎0𝜎1

𝜌
| (𝑠2 − 𝑠1)𝜂0

𝛼

+ |
𝜎1(1 + 𝜇0 − 𝜎0)

𝜌
| (𝑠2 − 𝑠1)𝜂1

𝛼 + |
𝜇0𝜎1

𝜌
| (𝑠2 − 𝑠1)𝑇𝛼]

+ |
𝜇1(1 + 𝜇0 − 𝜎0)

𝜌
|

(𝑠2 − 𝑠1)𝑇𝛼−𝑝

𝛤(𝛼 − 𝜌 + 1)
}.                                              (4.22) 

As 𝑠2 → 𝑠1, the RHS of the  inequality above tends to zero independently of 𝑥 ∈ 𝐵𝑟̅. 

Thus Φ𝑥 is equicontinuous on interval [0, 𝑇]. Hence, by Arezola-Ascoli’s theorem, 

the set {Φ𝑥; 𝑥 ∈ 𝐵𝑟̿} is a relatively compact subset of  𝐶([0, 𝑇], ℝ). Thus Φ: 𝐵𝑟̅ → 𝐵𝑟̅ 

is compact operator. So by Schauder’s fixed point theorem, we can say Φ has a fixed 

point on 𝐵𝑟̅ which is a solution of BVP (4.1) on [0,T].  

Example 4.1.5 Consider the following nonlinear four-point fractional boundary 

value problem: 
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𝐷
3
2 𝑐 𝑥(𝑡) =

1

12(𝑡 + 4)3
tanh(𝑥) , 𝑡 ∈ [0,4] 

                                                  𝑥(0) +
1

2
𝑥(4) = 3𝑥(1)                                                                                                                                                               

                                                      𝐷
1
2

𝑐 𝑥(0) +
1

3
𝐷

1
2

𝑐  𝑥(4) = 𝑥(3

2
) .             (4.23) 

Here, 𝛼 =
3

2
 , 𝜇0 =

1

2
 , 𝑇 = 4 , 𝜎0 = 3 , 𝜂0 = 1 , 𝑝 =

1

2
  , 𝜇1 =

1

3
 , 𝜎1 = 1 , 𝜂1 =

3

2
 

𝑓(𝑡, 𝑥) =
1

12(𝑡+4)3
tanh 𝑥(𝑡), with the given data, it is found that 

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| 

                           ≤ |
1

12(𝑡 + 4)3
| |tanh(𝑥) − tanh(𝑦)|  ≤

1

768
|tanh(𝑥) − tanh(𝑦)|

≤
1

768
|𝑥 − 𝑦|. 

Here in the last step we use mean value theorem for tanh 𝑥(𝑡). (Since 

tanh′ 𝑥(𝑡) = (
2

𝑒𝑥+𝑒−𝑥)
2

< 1 ). 

So  𝐿 =
1

768
  . To find Ω, we calculate 𝜌, 𝑍0, 𝑍1, 𝑍2 𝑎𝑛𝑑 𝑍3. 

𝜌 = (1 +
1

2
− 3) (

4

3√𝜋
− (1) (

3

2
)) + (1) (

1

2
(4) − 3(1)) = 1.6216, 

𝑧0 = |
3

1.6216
(

4

3√𝜋
− (1) (

3

2
))| +

(3)(1)(4)

1.6216
= 6.0167, 

𝑧1 = |
−1

2(1.6216)
(

1

2
(4) − 3(1))| + |

(1) (1 +
1
2 − 3)

1.6216
| . 4 = 3.8511, 

 𝑧2 = |
−1

2(1.6.216)
(

4

3√𝜋
− (1) (

3

2
))| +

1
2 (1)(4)

1.6216
= 1.0027, 

𝑧3 = |
1

3(1.6216)
(

1

2
(4) − (3)(1))| + |

(
1
3) (1 +

1
2 − 3)

1.6216
| . 4 = 1.4389, 
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Ω =
4

3√𝜋
[8 + (6.0167)(1) + (3.8511)(1.5)1.5 + (1.0027)(8)] + (1.4389)(4) 

     =  26.2301 .  

Thus  𝐿Ω =
1

768
26.2301 = 0.03415 < 1.                                                         

Therefore all the assumptions of Theorem 4.1.3 are fulfilled. Hence, by the finalized 

form of Theorem 4.1.3, the problem (4.23) has a unique solution on [0,4]. 

Example 4.1.6 we still consider the same boundary value problem in Example 4.1.5 

but 𝑓(𝑥) =
𝑒−𝑥(𝑡)4

5√1+𝑡
ln (3 + 𝑠𝑖𝑛𝑥(𝑡)), t∈ [0,4] .i.e. 

𝐷
3
2 𝑐 𝑥(𝑡) =

𝑒−𝑥(𝑡)4

5√1+𝑡
ln (3 + 𝑠𝑖𝑛𝑥(𝑡)), 𝑡 ∈ [0,4] 

𝑥(0) +
1

2
𝑥(4) = 3𝑥(1),          

𝐷
1
2 

                                                                            𝑐 𝑥(0) = 1

3
𝐷

1

2
𝑐  𝑥(4) = 𝑥(3

2
) .                             (4.24) 

Obviously, |𝑓(𝑡, 𝑥(𝑡))| ≤
ln(4)

5√1+𝑡
= 𝑣(𝑡) with ‖𝑣(𝑡)‖ =

ln (4)

5
. 

Therefore, the condition of Theorem 4.1.4 holds. Hence by applying the conclusion 

of Theorem 4.1.4, we get the BVP (4.24) has at least one solution on [0,4].  

Here, we get the positive constant 𝑟̿ which is assigned in a proof of Theorem 4.1.4 

from the formula Ω‖𝑣‖ ≤ 𝑟̿. So, 𝑟̿ ≥
ln(4)

5
× (26.2301) =7.2725. 
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4.2 Four-point Impulsive Multi-Orders Fractional Boundary Value 

Problems 

Impulsive differential equations have extensively been studied in the past two 

decades. Impulsive differential equations are used to describe the dynamics of 

processes in which sudden, discontinuous jumps occur. Such processes are naturally 

seen in harvesting, earthquakes, diseases, and so forth. Recently, fractional impulsive 

differential equations have attracted the attention of many researchers. For the 

general theory and application of such equations we refer the interested reader to see 

the monographs of Bainov and Simeonov [48], Lakshmikantham et al.[49] and 

Benchohra et al.[50] and the references therein. 

In [52], Kosmatov considered the following two impulsive problems: 

𝐷𝛼𝑐 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 1 < 𝛼 < 2, 𝑡 ∈ [0,1]\{𝑡1, 𝑡2, … , 𝑡𝑝}, 

𝐷𝛾𝐶 𝑢(𝑡𝑘
+) − 𝐷𝛾𝑢(𝑡𝑘

−) = 𝐼𝑘(𝑢(𝑡𝑘
−)), 𝑡𝑘 ∈ (0,1), 𝑘 = 1, … , 𝑝, 

𝑢(0) = 𝑢0, 𝑢′(0) = 𝑢0, 0 < 𝛾 < 1, 

and 

𝐷𝛼𝐿 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 0 < 𝛼 < 1, 𝑡 ∈ [0,1]\{𝑡1, 𝑡2, … , 𝑡𝑝}, 

𝐷𝛾𝐿 𝑢(𝑡𝑘
+) − 𝐷𝛾𝐿 𝑢(𝑡𝑘

−) = 𝐼𝑘(𝑢(𝑡𝑘
−)), 𝑡𝑘 ∈ (0,1), 𝑘 = 1, … , 𝑝, 

 𝐼1−𝛼𝑢(0) = 𝑢0, 0 < 𝛾 < 𝛼 < 1. 

In [53], Feckan et al. studied the impulsive problem of the following form: 

𝐷𝛼𝐶 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 0 < 𝛼 < 1, 𝑡 ∈ [0,1]\{𝑡1, 𝑡2, … , 𝑡𝑝}, 

𝑢(𝑡𝑘
+) − 𝑢(𝑡𝑘

−) = 𝐼𝑘(𝑢(𝑡𝑘
−)), 𝑡𝑘 ∈ (0,1), 𝑘 = 1, … , 𝑝, 

 𝑢(0) = 𝑢0, 0 < 𝛾 < 𝛼 < 1. 
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Wang et al. [54] obtained some existence and uniqueness results for the following 

impulsive multipoint fractional integral boundary value problem involving multi-

orders fractional derivatives and deviating  

𝐷𝑡𝑘

𝛼𝑘𝑐 𝑢(𝑡) = 𝑓 (𝑡, 𝑢(𝑡), 𝑢(𝜃(𝑡))) , 1 < 𝛼𝑘 < 2, 𝑡 ∈ [0, 𝑇]\{𝑡1, 𝑡2, … , 𝑡𝑝}, 

                        ∆𝑢(𝑡𝑘) = 𝐼𝑘(𝑢(𝑡𝑘
−)),   ∆𝑢′(𝑡𝑘) = 𝐽𝑘(𝑢(𝑡𝑘

−)),   𝑡𝑘 ∈ (0, 𝑇), 𝑘 = 1, … , 𝑝 

                       𝑢(0) = ∑ 𝜆𝑘𝐼𝑡𝑘

𝛽𝑘𝑢(𝜂𝑘),     𝑡𝑘 < 𝜂𝑘 < 𝑡𝑘+1
𝑝
𝑘=0 , 

                       𝑢′(0) = 0. 

Yukunthorn et.al. [55] Studied the similar problem for multi-order Caputo-Hadamard 

fractional differential equations with nonlinear integral boundary conditions. 

Motivated by the above works, in this section, we study the existence of solutions for 

nonlocal four-point boundary value problems of nonlinear impulsive equations of 

fractional order  

𝐷𝑡𝑘

𝛼𝑘𝑐 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡)), 1 + 𝛽 ≤ 𝛼 ≤ 2, 𝑡 ∈ [0, 𝑇]\{𝑡1, 𝑡2, … , 𝑡𝑝}, 

∆𝑢(𝑡𝑘) = 𝐼𝑘(𝑢(𝑡𝑘
−)), ∆𝑢′(𝑡𝑘) = 𝐽𝑘(𝑢′(𝑡𝑘

−)), 𝑡𝑘 ∈ (0, 𝑇), 𝑘 = 1, … , 𝑝, 

 𝛼1𝑢(0) + 𝜇1 𝐷0+
𝛽𝑐 𝑢(0) = 𝜎1𝑢(η1), 0 < η1 < t1 < 𝑇, 

𝛼2𝑢(𝑇) + 𝜇2 𝐷𝑡𝑝

𝛽𝑐 𝑢(𝑇) = 𝜎2𝑢(η2), 0 < t𝑝 < η2 < 𝑇, 0 < 𝛽 < 1,                     (4.25) 

where 𝐷𝑡
𝛼𝑘𝑐 , 𝑘 = 1, … , 𝑝 is the Caputo derivative,  f  : |0,T| × ℝ × ℝ → ℝ is 

continuous function 𝐼𝑘, 𝐽𝑘; ℝ → ℝ, ∆𝑢 (𝑡𝑘) =  u (𝑡𝑘
+) – u (𝑡𝑘

−) , ∆𝑢′(𝑡𝑘)= 𝑢′(𝑡𝑘
+)  − 

𝑢′(𝑡𝑘
−), 𝑢 (𝑡𝑘

+) and 𝑢 (𝑡𝑘
−) represent the right hand limit and left hand limit of 

function 𝑢 (𝑡) at 𝑡 = 𝑡𝑘; and sequence {𝑡𝑘} satisfy that 0 = t0 < 𝑡1 < …. < tp < tp+1          

= 𝑇. 
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The main difficulty of this problem is that the corresponding integral equation is very 

complex because of the impulse effects. By applying Banach’s fixed point theorem 

and Schauder’s fixed point theorem, some existence results are obtained. 

The material in this section is basic in some sense. So, in order to prove the results 

we present in the following some useful preliminaries and notations. 

Let [0, 𝑇]− = [0, 𝑇]\{𝑡1, 𝑡2, … , 𝑡𝑝} and  

𝑃𝐶([0, 𝑇], ℝ) = {𝑥: [0, 𝑇] → ℝ ∶ 𝑥(𝑡) is continuous everywhere except for some 𝑡𝑘 

at which 𝑥(𝑡𝑘
+), 𝑥(𝑡𝑘

−) exist and 𝑥(𝑡𝑘
−) = 𝑥(𝑡𝑘), 𝑘 = 1, … , 𝑝}  and  

𝑃𝐶1([0, 𝑇], ℝ) = {𝑥 ∈ 𝑃𝐶([0, 𝑇], ℝ); 𝑥′(𝑡) is continuous everywhere except for 

some 𝑡𝑘 at which 𝑥′(𝑡𝑘
+), 𝑥′(𝑡𝑘

−) exist and 𝑥′(𝑡𝑘
−) = 𝑥′(𝑡𝑘), 𝑘 = 1, … , 𝑝}, 

where 𝑃𝐶([0, 𝑇], ℝ) and 𝑃𝐶1([0, 𝑇], ℝ) are Banach spaces with the norms ‖𝑥‖𝑃𝐶 =

sup {|𝑥(𝑡)|; 𝑡 ∈ [0, 𝑇]} and ‖𝑥‖𝑃𝐶1 = max {‖𝑥‖𝑃𝐶  , ‖𝑥′‖𝑃𝐶}. 

Definition 4.2.1 Let 𝑋 = 𝑃𝐶1([0, 𝑇], ℝ)⋂𝐶2([0, 𝑇]−, ℝ). A function 𝑥 ∈ 𝑋 whose 

Caputo derivative of order 𝛼𝑘, 𝑘 = 1, … , 𝑝  exists on [0, 𝑇]− is called a solution of 

problem (4.25) if it satisfies (4.25). 

Throughout this section we will use the following notations.   

ρ = 𝜎1η1(1 − 𝜎2) + (𝑇 + 𝜇2

𝑇1−𝛽

Γ(2 − 𝛽)
− 𝜎2𝜂2) (1 − 𝜎1), 

𝐴0 =
𝜎1

1 − 𝜎1
−

𝜎1

𝜌

𝜎1η1

1 − 𝜎1
, 𝐵0 =

𝜎1

𝜌
, 

𝐴𝑝 =
(1 − 𝜎1)

𝜌

𝜎1η1

1 − 𝜎1
, 𝐵𝑝 =

1 − 𝜎1

𝜌
. 

𝐹𝑘(𝑦, 𝑢, 𝑢′)(𝑡) =
1

Γ(𝛼𝑘)
∫ (𝑡 − 𝑠)𝛼𝑘−1𝑦(𝑠)𝑑𝑠

𝑡

𝑡𝑘
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                          + ∑
1

Γ(𝛼𝑗 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−1

𝑦(𝑠)𝑑𝑠 + ∑ 𝐼𝑗 (𝑢(𝑡𝑗
−))

𝑘

𝑗=1

𝑡𝑗

𝑡𝑗−1

 

                           + ∑ (𝑡 − 𝑡𝑗)
1

Γ(𝛼𝑗−1 − 1)

𝑘

      𝑗=1

∫ (𝑡 − 𝑠)𝛼𝑗−1−2𝑦(𝑠)𝑑𝑠
𝑡𝑗

𝑡𝑗−1

+ ∑(𝑡 − 𝑡𝑗)𝐽𝑗 (𝑢(𝑡𝑗
−)) ,

𝑘

𝑗=1

 

𝐺𝑘(𝑦, 𝑢, 𝑢′)(𝑡) =
1

Γ(𝛼𝑘 − 𝛽)
∫ (𝑡 − 𝑠)𝛼𝑘−𝛽−1𝑦(𝑠)𝑑𝑠

𝑡

𝑡𝑘

 

                        +
𝑡1−𝛽

Γ(2 − 𝛽)
∑

1

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

𝑦(𝑠)𝑑𝑠
𝑡𝑗

𝑡𝑗−1

 

                       +
𝑡1−𝛽

Γ(2 − 𝛽)
∑ 𝐽𝑗

𝑘

𝑗=1

(𝑢′(𝑡𝑗
−)). 

    𝐹′
𝑘(𝑦, 𝑢, 𝑢′)(𝑡) =

1

Γ(𝛼𝑘 − 1)
∫ (𝑡 − 𝑠)𝛼𝑘−2𝑦(𝑠)𝑑𝑠

𝑡

𝑡𝑘

 

                              + ∑
1

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

𝑦(𝑠)𝑑𝑠 + ∑ 𝐽𝑗 (𝑢′(𝑡𝑗
−)) .

𝑘

𝑗=1

𝑡𝑗

𝑡𝑗−1

 

The following lemma will take a major role to define the solutions of the problem 

(4.25).  

 Lemma 4.2.2 Let 𝑦 ∈  𝐶 [0,1]. A function u ∈ 𝑃𝐶1[0, 𝑇] is a solution of the 

boundary value problem 

𝐷𝑡𝑘

𝑎𝑘𝑢(𝑡) = 𝑦(𝑡), 1 < 𝛼𝑘 ≤ 2, 𝑡 ∈ [0, 𝑇]\{𝑡1, 𝑡2, … , 𝑡𝑝}, 

∆𝑢(𝑡𝑘) = 𝐼𝑘(𝑢(𝑡𝑘
−)), ∆𝑢′(𝑡𝑘) = 𝐽𝑘(𝑢′(𝑡𝑘

−)), 𝑡𝑘 ∈ (0, 𝑇), 𝑘 = 1, … , 𝑝, 

𝑢(0) + 𝜇1𝐷𝛽𝑢(0) = 𝜎1𝑢(η1), 0 < η1 < t1 < 𝑇, 

              𝛼2𝑢(𝑇) + 𝜇𝐷𝑡𝑝

𝛽
𝑢(𝑇) = 𝜎2𝑢(η2), 0 < t𝑝 < η2 < 𝑇, 0 < 𝛽 < 1,              (4.26) 
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If and only if                                                                                                                            

𝑢(𝑡) = 𝐹𝑘(𝑦, 𝑢, 𝑢′)(𝑡) −
𝜎1

1 − 𝜎1
𝐹0(𝑦, 𝑢)(η1)                                   

−
σ1

𝜌
(

σ1η1

1 − σ1
+ 𝑡) 𝐹0(𝑦, 𝑢, 𝑢′)(η1)                                                        

+
σ2(1 − σ1)

𝜌
(

σ1η1

1 − σ1
+ 𝑡) 𝐹𝑝(𝑦, 𝑢, 𝑢′)(η2)                                         

−
(1 − σ1)

𝜌
(

σ1η1

1 − σ1
+ 𝑡) 𝐹𝑝(𝑦, 𝑢, 𝑢′)(T)                                                

                −
𝜇2(1 − σ1)

𝜌
(

σ1η1

1 − σ1
+ 𝑡) 𝐺𝑝(𝑦, 𝑢, 𝑢′)(T).                                               (4.27) 

Proof.  Suppose that u is a solution of (4.26). For 0 ≤ t ≤𝑡1, we have  

                       𝑢(𝑡) = 𝐼
0+
𝛼0𝑦(𝑡) − 𝑐1 − 𝑐2𝑡 

                                    =
1

Γ(𝛼0)
∫ (𝑡 − 𝑠)𝛼0−1𝑦(𝑠)𝑑𝑠 − 𝑐1 − 𝑐2𝑡, 𝑐1, 𝑐2 ∈ ℝ  

𝑡

0
          (4.28) 

Then differentiating (4.28), we get                                                                                              

𝐷0+
𝛽

𝑢(𝑡) =
1

Γ(𝛼0 − 𝛽)
∫ (𝑡 − 𝑠)𝛼0−𝛽−1𝑦(𝑠)𝑑𝑠 − 𝑐2

𝑡1−𝛽

Γ(2 − 𝛽)

𝑡

0

, 

𝑢′(𝑡) =
1

Γ(𝛼0−1)
∫ (𝑡 − 𝑠)𝛼0−2𝑦(𝑠)𝑑𝑠 − 𝑐2.

𝑡

0
  

If 𝑡1 < 𝑡 ≤ 𝑡2 , then for some 𝑑1, 𝑑2 ∈ 𝑅 we have 

𝑢(𝑡) =
1

Γ(𝛼1)
∫ (𝑡 − 𝑠)𝛼1−1𝑦(𝑠)𝑑𝑠 − 𝑑1 − 𝑑2(𝑡 − 𝑡1),

𝑡

𝑡1

 

𝑢′(𝑡) =
1

Γ(𝛼1 − 1)
∫ (𝑡 − 𝑠)𝛼1−2𝑦(𝑠)𝑑𝑠 −

𝑡

𝑡1

𝑑2, 

𝐷
𝑡1

+
𝛽

𝑢(𝑡) =
1

Γ(𝛼1 − 𝛽)
∫ (𝑡 − 𝑠)𝛼1−𝛽−1𝑦(𝑠)𝑑𝑠 − 𝑑2

𝑡1−𝛽

Γ(2 − 𝛽)

𝑡

𝑡1

. 

Thus, 

𝑢(𝑡1
−) =

1

Γ(𝛼0)
∫ (𝑡1 − 𝑠)𝛼0−1𝑦(𝑠)𝑑𝑠 − 𝑐1 − 𝑐2𝑡1,

𝑡1

0
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𝑢(𝑡1
+) = −𝑑1 

𝑢′(𝑡1
−) =

1

Γ(𝛼0 − 1)
∫ (𝑡1 − 𝑠)𝛼0−2𝑦(𝑠)𝑑𝑠 − 𝑐2,

𝑡1

0

 

𝑢′(𝑡1
+) = −𝑑2. 

In view of 

𝑢(𝑡1
+) − 𝑢(𝑡1

−) = 𝐼1(𝑢(𝑡1
−)), 𝑢′(𝑡1

+) − 𝑢′(𝑡1
−) = 𝐽1(𝑢′(𝑡1

−)), 

we find that 

−𝑑1 =
1

Γ(𝛼0)
∫ (𝑡1 − 𝑠)𝛼0−1𝑦(𝑠)𝑑𝑠 + 𝐼1(𝑢(𝑡1

−)) − 𝑐1 − 𝑐2𝑡1,
𝑡1

0

 

−𝑑2 =
1

Γ(𝛼0 − 1)
∫ (𝑡1 − 𝑠)𝛼0−2𝑦(𝑠)𝑑𝑠 + 𝐽1(𝑢′(𝑡1

−)) − 𝑐2.
𝑡1

0

 

Hence we obtain for 𝑡1 < t ≤ 𝑡2 

𝑢(𝑡) =
1

Γ(𝛼1)
∫ (𝑡 − 𝑠)𝛼1−1𝑦(𝑠)𝑑𝑠

𝑡

𝑡1

 

         +
1

Γ(𝛼0)
∫ (𝑡1 − 𝑠)𝛼0−1𝑦(𝑠)𝑑𝑠 + 𝐼1(𝑢(𝑡1

−))
𝑡1

0

 

         +(𝑡 − 𝑡1)
1

Γ(𝛼0 − 1)
∫ (𝑡1 − 𝑠)𝛼0−2𝑦(𝑠)𝑑𝑠 + (𝑡 − 𝑡1)𝐽1(𝑢′(𝑡1

−))
𝑡1

0

 

         −𝑐1 − 𝑐2𝑡1, 𝑡1 < 𝑡 ≤ 𝑡2.  

In a similar way, for 𝑘 =  1, 2, … , 𝑝 we can obtain 

        𝑢(𝑡) =
1

Γ(𝛼𝑘)
∫ (𝑡 − 𝑠)𝛼𝑘−1𝑦(𝑠)𝑑𝑠

𝑡

𝑡𝑘

 

        + ∑
1

Γ(𝛼𝑗−1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−1

𝑦(𝑠)𝑑𝑠 + ∑ 𝐼𝑗 (𝑢(𝑡𝑗
−))

𝑘

𝑗=1

𝑡𝑗

𝑡𝑗−1

 

        + ∑(𝑡 − 𝑡𝑗)
1

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

𝑦(𝑠)𝑑𝑠
𝑡𝑗

𝑡𝑗−1
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         + ∑(𝑡 − 𝑡𝑗)𝐽𝑗 (𝑢′(𝑡𝑗
−))

𝑘

𝑗=1

− 𝑐1 − 𝑐2𝑡,       𝑡𝑘 < 𝑡 ≤ 𝑡𝑘+1.                                      (4.29) 

Moreover, 

𝐷𝑡𝑘

𝛽𝑐 𝑢(𝑡) =
1

Γ(𝛼𝑘 − 𝛽)
∫ (𝑡 − 𝑠)𝑎𝑘−𝛽−1𝑦(𝑠)𝑑𝑠

𝑡

𝑡𝑘

 

+
𝑡1−𝛽

Γ(2 − 𝛽)
∑

1

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

𝑦(𝑠)𝑑𝑠
𝑡𝑗

𝑡𝑗−1

 

+
𝑡1−𝛽

Γ(2 − 𝛽)
∑ 𝐽𝑗 (𝑢′(𝑡𝑗

−))

𝑘

𝑗=1

− 𝑐2

𝑡1−𝛽

Γ(2 − 𝛽)
. 

Now applying the boundary conditions 

𝑢(0) + 𝜇1𝐷
0+
𝛽

𝑢(0) = 𝜎1𝑢(η1), 0 < η1 < t1 < 𝑇, 

𝑢(𝑇) + 𝜇2𝐷𝑡𝑝

𝛽
𝑢(𝑇) = 𝜎2𝑢(η2), 0 < t𝑝 < η2 < 𝑇, 0 < 𝛽 < 1,  

we get 

       −𝑐1 = 𝜎1𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) − 𝜎1𝑐1 − 𝑐2𝜎1𝜂1, 

     𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝑇) − 𝑐1 − 𝑐2𝑇 + 𝜇2𝐺𝑝(𝑦, 𝑢)(𝑇) − 𝜇2𝑐2

𝑇1−𝛽

Γ(2 − 𝛽)

= 𝜎2𝐹𝑝(𝑦, 𝑢, 𝑢′)(η2) − 𝑐1𝜎2 − 𝑐2𝜎2𝜂2. 

By solving this system for 𝑐1 and  𝑐2 we find that  

                 −𝑐1(1 − 𝜎1) + 𝑐2𝜎1η1 = 𝜎1𝐹0(𝑦, 𝑢, 𝑢′)(η1), 

              −𝑐1 − 𝑐2 (𝑇 + 𝜇2
𝑇1−𝛽

Γ(2−𝛽)
− 𝜎2𝜂2) = 𝜎2𝐹𝑝(𝑦, 𝑢, 𝑢′)(η2) − 𝐹𝑝(𝑦, 𝑢)(𝑇) −

                       𝜇2𝐺𝑝(𝑦, 𝑢, 𝑢′)(𝑇) − 𝑐1(1 − 𝜎1) + 𝑐2𝜎1η1 = 𝜎1𝐹0(𝑦, 𝑢, 𝑢′)(η1), 
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                −𝑐1(1 − 𝜎1) − 𝑐2 (𝑇 + 𝜇2

𝑇1−𝛽

Γ(2 − 𝛽)
− 𝜎2𝜂2) (1 − 𝜎1)  

= 𝜎2(1 − 𝜎1)𝐹𝑝(𝑦, 𝑢, 𝑢′)(η2) − (1 − 𝜎1)𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝑇)

− 𝜇2(1 − 𝜎1)𝐺𝑝(𝑦, 𝑢, 𝑢′)(𝑇) . 

      𝑐2 (𝜎1𝜂1 + (𝑇 + 𝜇2

𝑇1−𝛽

Γ(2 − 𝛽)
− 𝜎2𝜂2) (1 − 𝜎1)) =  

𝜎1𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) − 𝜎2(1 − 𝜎1)𝐹0(𝑦, 𝑢, 𝑢′)(𝜂2) + (1 − 𝜎1)𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝑇)

+ 𝜇2(1 −)𝐺𝑝(𝑦, 𝑢, 𝑢′)(𝑇). 

−𝑐2 = −
𝜎1

𝜌
𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) +

𝜎2(1 − 𝜎1)

𝜌
𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝜂2)

−
(1 − 𝜎1)

𝜌
𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝑇)     −

𝜇2(1 − 𝜎1)

𝜌
𝐺𝑝(𝑦, 𝑢, 𝑢′)(𝑇). 

−𝑐1 =
𝜎1

1 − 𝜎1
𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) − 𝑐2

𝜎1𝜂1

1 − 𝜎1

=
𝜎1

1 − 𝜎1
𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) −

𝜎1𝜂1

1 − 𝜎1

𝜎1

𝜌
𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1)

+
𝜎2(1 − 𝜎1)

𝜌

𝜎1𝜂1

1 − 𝜎1
𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝜂2) 

−
(1 − 𝜎1)

𝜌

𝜎1𝜂1

1 − 𝜎1
𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝑇) −

𝜇2(1 − 𝜎1)

𝜌

𝜎1𝜂1

1 − 𝜎1
𝐺𝑝(𝑦, 𝑢, 𝑢′)(𝑇). 

After inserting these values of 𝑐1 and 𝑐2 into (4.29) we get  

                     𝑢(𝑡) = 𝐹𝑘(𝑦, 𝑢, 𝑢′)(𝑡) +
𝜎1(1−𝜎2)

1−𝜎1
𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) − 𝑐2 (

𝜎1𝜂1

1−𝜎1
+ 𝑡) 

= 𝐹𝑘(𝑦, 𝑢. 𝑢′)(𝑡) +
𝜎1(1 − 𝜎2)

1 − 𝜎1
𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) 

−
𝜎1(1 − 𝜎2)

𝜌
(

𝜎1𝜂1

1 − 𝜎1
+ 𝑡) 𝐹0(𝑦, 𝑢, 𝑢′)(𝜂1) 

                                     +
𝜎2(1 − 𝜎1)

𝜌
(

𝜎1𝜂1

1 − 𝜎1
+ 𝑡) 𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝜂2) 
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 −
(1−𝜎1)

𝜌
(

𝜎1𝜂1

1−𝜎1
+ 𝑡) 𝐹𝑝(𝑦, 𝑢, 𝑢′)(𝑇) 

                  −
𝜇2(1 − 𝜎1)

𝜌
(

𝜎1𝜂1

1 − 𝜎1
+ 𝑡) 𝐺𝑝(𝑦, 𝑢. 𝑢′)(𝑇), 

where 𝜌 = 𝜎1𝜂1(1 − 𝜎2) + (𝑇 + 𝜇2
𝑇1−𝛽

Γ(2−𝛽)
− 𝜎2𝜂2) (1 − 𝜎1).       

Conversely, assume that 𝑢 is a solution of the impulsive fractional integral equation 

(4.27). Then by a direct computation, it follows that the solution given by (4.27) 

satisfies (4.26).This complete the proof.   ∎                             

Now, before investigating the existence and uniqueness of the solutions of BVP 

(4.25) we put the following assumption. In this sequel we assume that 

(A1) 𝑓: [0, 𝑇] × ℝ × ℝ → ℝ is continuous function such that 

|𝑓(𝑡, 𝑥1, 𝑦1) − 𝑓(𝑡, 𝑥2, 𝑦2)|

≤ 𝑙𝑓(|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|),  𝑙𝑓 > 0,

0 ≤ 𝑡 ≤ 𝑇 , 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℝ 

(A2) 𝐼𝑘, 𝐽𝑘: ℝ → ℝ are continuous and satisfy 

|𝐼𝑘(𝑥) − 𝐼𝑘(𝑦)| ≤ 𝑙1(𝑥 − 𝑦), 

|𝐽𝑘(𝑥) − 𝐽𝑘(𝑦)| ≤ 𝑙2(𝑥 − 𝑦), 

𝑙1 > 0, 𝑙2 > 0, 0 ≤ 𝑡 ≤ 𝑇 , 𝑥, 𝑦 ∈ ℝ , 

and for convenience, we will give some notations: 

                          𝑇∗ = 𝑚𝑎𝑥{𝑇𝛼𝑘: 0 ≤ 𝑘 ≤ 𝑝},   Γ∗ = 𝑚𝑖𝑛{Γ(𝛼𝑘): 0 ≤ 𝑘 ≤ 𝑝}                 

∆1= ∑
(𝑡𝑗 − 𝑡𝑗−1)𝛼𝑗−1

Γ(𝛼𝑗−1 + 1)
   ,   ∆2= ∑

(𝑇 − 𝑡𝑗)(𝑡𝑗 − 𝑡𝑗−1)𝛼𝑗−1−1

Γ(𝛼𝑗−1)

𝑝

𝑗=1

 

𝑝

𝑗=1

,       
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∆3=
𝑇1−𝛽

Γ(2 − 𝛽)
∑

(𝑡𝑗 − 𝑡𝑗−1)𝛼𝑗−1−1

Γ(𝛼𝑗−1)

𝑃

𝐽=1

 ,   ∆4= ∑
(𝑡𝑗 − 𝑡𝑗−1)𝛼𝑗−1−1

Γ(𝛼𝑗−1)
 ,

𝑝

𝑗=1

 

                          Λ𝐹 ≔ 𝑙𝑓
𝑇∗

Γ∗
+ 𝑙𝑓∆1 + 𝑙𝑓∆2 + 𝑝𝑙1 + 𝑙2𝑝𝑇, 

                           Λ𝐺 ≔ 𝑙𝑓
𝑇∗

Γ∗ + 𝑙𝑓∆3 + 𝑙2𝑝
𝑇1−𝛽

Γ(2−𝛽)
 , 

                           Λ𝐹′ ≔ 𝑙𝑓
𝑇∗

Γ∗ + 𝑙𝑓∆4 + 𝑙2𝑝 . 

Lemma 4.2.3 𝐹𝑘(𝑓, 𝑢, 𝑢′) and 𝐺𝑘(𝑓, 𝑢, 𝑢′) are Lipschitzian operators  

                 |𝐹𝑘(𝑓, 𝑢, 𝑢′) − 𝐹𝑘(𝑓, 𝑣, 𝑣′)| ≤ Λ𝐹‖𝑢 − 𝑣‖𝑃𝐶1 , Λ𝐹 > 0, 

 |𝐺𝑘(𝑓, 𝑢, 𝑢′) − 𝐺𝑘(𝑓, 𝑣, 𝑣′)| ≤ Λ𝐺‖𝑢 − 𝑣‖𝑃𝐶1 ,  Λ𝐺 > 0,   𝑢, 𝑣 ∈ 𝑃𝐶1([0, 𝑇], ℝ). 

 Proof:  For 𝑢, 𝑣 ∈ 𝑃𝐶1([0, 𝑇], ℝ), we have 

|𝐹𝑘(𝑓, 𝑢, 𝑢′) − 𝐹𝑘(𝑓, 𝑣, 𝑣′)| ≤  

 
1

Γ(𝛼𝑘)
∫(𝑡 − 𝑠)𝛼𝑘−1|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠)) − 𝑓(𝑠, 𝑣(𝑠), 𝑣′(𝑠))|𝑑𝑠

𝑡

𝑡𝑘

 

+ ∑
1

Γ(𝛼𝑗−1)
∫ (𝑡𝑗 − 𝑠)

𝛼𝑗−1−1
|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠)) − 𝑓(𝑠, 𝑣(𝑠), 𝑣′(𝑠))|𝑑𝑠

𝑡𝑗

𝑡𝑗−1

𝑘

𝑗=1

 

         + ∑|𝐼𝑗(𝑢(𝑡𝑗
−) − 𝐼𝑗(𝑣(𝑡𝑗

−)|

𝑘

𝑗=1

 

 + ∑
(𝑡 − 𝑡𝑗)

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

× ∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠)) − 𝑓(𝑠, 𝑣(𝑠), 𝑣′(𝑠))|𝑑𝑠
𝑡𝑗

𝑡𝑗−1

    

  + ∑(𝑡 − 𝑡𝑗) |𝐽𝑗 (𝑢′(𝑡𝑗
−)) − 𝐽𝑗 (𝑣′(𝑡𝑗

−))|

𝑘

𝑗=1

  

   ≤ 𝑙𝑓

1

Γ(𝛼𝑘)
∫(𝑡 − 𝑠)𝛼𝑘

𝑡

𝑡𝑘

(|𝑢(𝑠) − 𝑣(𝑠)| + |𝑢′(𝑠) − 𝑣′(𝑠)|)𝑑𝑠                                              
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+𝑙𝑓 ∑
1

Γ(𝛼𝑗−1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)𝛼𝑗−1−1

𝑡𝑗

𝑡𝑗−1

(|𝑢(𝑠) − 𝑣(𝑠)| + |𝑢′(𝑠) − 𝑣′(𝑠)|)𝑑𝑠                              

+𝑙1 ∑|𝑢(𝑡𝑗
−) − 𝑣(𝑡𝑗

−)| + 𝑙𝑓 ∑
1

Γ(𝛼𝑗−1 − 1)
(𝑡 − 𝑡𝑗)                                                              

𝑘

𝑗=1

𝑘

𝑗=1

 

                

    × ∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

𝑡𝑗

𝑡𝑗−1

(|𝑢(𝑠) − 𝑣(𝑠)| + |𝑢′(𝑠) − 𝑣′(𝑠)|)𝑑𝑠     

    +𝑙2 ∑(𝑡 − 𝑡𝑗)|𝑢′(𝑡𝑗
−) − 𝑣′(𝑡𝑗

−)|           

𝑘

𝑗=1

 

    ≤ Λ𝐹‖𝑢 − 𝑣‖𝑃𝐶1 . 

Similarly, 

         |𝐺𝑘(𝑓, 𝑢, 𝑢′)(𝑡) − 𝐺𝑘(𝑓, 𝑣, 𝑣′)(𝑡)|  

   ≤
1

Γ(𝛼𝑘 − 𝛽)
∫(𝑡 − 𝑠)𝛼𝑘−𝛽−1

𝑡

𝑡𝑘

|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠)) − 𝑓(𝑠, 𝑣(𝑠), 𝑣′(𝑠))|𝑑𝑠                

     +
𝑇1−𝛽

Γ(2 − 𝛽)
∑

1

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)𝛼𝑗−1−2

𝑡𝑗

𝑡𝑗−1

|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠))    

− 𝑓(𝑠, 𝑣(𝑠), 𝑣′(𝑠))|𝑑𝑠      

    +
𝑡1−𝛽

Γ(2 − 𝛽)
∑ |𝐽𝑗 (𝑢′(𝑡𝑗

−)) − 𝐽𝑗 (𝑣′(𝑡𝑗
−))|

𝑘

𝑗=1

  

≤ (𝑙𝑓

(𝑇 − 𝑡𝑘)𝛼𝑘

Γ(𝛼𝑘 − 𝛽 + 1)

+ 𝑙𝑓

𝑇1−𝛽

Γ(2 − 𝛽)
∑

(𝑡𝑗 − 𝑡𝑗−1)
𝛼𝑗−1−1

Γ(𝛼𝑗−1)
+

𝑇1−𝛽

Γ(2 − 𝛽)
𝑙2

𝑘

𝐽=1

) ‖𝑢 − 𝑣‖𝑃𝐶1  

≤ Λ𝐺‖𝑢 − 𝑣‖𝑃𝐶1  . 
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Also, we have 

 |𝐹𝑘
′(𝑓, 𝑢, 𝑢′)(𝑡) − 𝐹𝑘

′ (𝑓, 𝑣, 𝑣′)(𝑡)| ≤ Λ𝐹′‖𝑢 − 𝑣‖𝑃𝐶1. ∎ 

In view of Lemma 4.2.2 we define an operator  Θ: 𝑋 → 𝑋 by  

                   (Θ𝑢)(𝑡) = 𝐹𝑘(𝑓, 𝑢, 𝑢′)(𝑡) + (𝐴0 − 𝐵0𝑡)𝐹0(𝑓, 𝑢, 𝑢′)(𝜂1) 

+𝜎2(𝐴𝑝 + 𝐵𝑝𝑡)𝐹𝑝(𝑓, 𝑢, 𝑢′)(𝜂2) − (𝐴𝑝 + 𝐵𝑝𝑡)𝐹𝑝(𝑓, 𝑢, 𝑢′)(𝑇) 

                      −𝜇2(𝐴𝑃 + 𝐵𝑝𝑡)𝐺𝑝(𝑓, 𝑢, 𝑢′),   

where  

𝐴0 =
𝜎1

1 − 𝜎1
−

𝜎1

𝜌

𝜎1𝜂1

1 − 𝜎1
,        𝐵0 =

𝜎1

𝜌
 , 

𝐴𝑝 =
(1 − 𝜎1)

𝜌
,       𝐵𝑝 =

1 − 𝜎1

𝜌
 .              

Let                                         

                                   ΛΘ ≔ max {Λ𝐹, Λ𝐺 , Λ𝐹′}. 

Theorem 4.2.4 Suppose that the assumption (𝐴1),(𝐴2)  are satisfied. If  

Λ: = ΛΘ𝑚𝑎𝑥 {
(1 + |𝐴0| + |𝐵0|𝑇 + (|𝜎2| + |𝜇2| + 1)(|𝐴𝑝| + |𝐵𝑝|𝑇)

, (1 + |𝐵0| + (|𝜎2| + |𝜇2| + 1)|𝐵𝑝|)
} < 1

,
, 

then the BVP (4.25) has a unique solution on [0, 𝑇]. 

Proof. Let 𝑢, 𝑣 ∈ 𝑃𝐶1([0, 𝑇], ℝ).For 𝑢, 𝑣 ∈ (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1, … , 𝑝, we have  

|(Θ𝑢)(𝑡) − (Θ𝑣)(𝑡)| ≤ |𝐹𝑘(𝑓, 𝑢, 𝑢′)(𝑡) − 𝐹𝑘(𝑓, 𝑣, 𝑣′)(𝑡)|     

                                   +|𝐴0 − 𝐵0𝑡||𝐹0(𝑓, 𝑢, 𝑢′)(𝜂1) − 𝐹0(𝑓, 𝑣, 𝑣′)(𝜂1)| 

                                   +|𝜎2||𝐴𝑝 + 𝐵𝑝𝑡||𝐹𝑃(𝑓, 𝑢, 𝑢′)(𝜂2) − 𝐹𝑝(𝑓, 𝑣, 𝑣′)(𝜂1)| 

                                   +|𝐴𝑃 + 𝐵𝑝𝑡||𝐹𝑝(𝑓, 𝑢, 𝑢′)(𝑇) − 𝐹𝑝(𝑓, 𝑣, 𝑣′)(𝑇)| 

                                   +|𝜇2||𝐴𝑃 + 𝐵𝑝𝑡||𝐺𝑝(𝑓, 𝑢, 𝑢′)(𝑇) − 𝐺𝑝(𝑓, 𝑣, 𝑣′)(𝑇)| 
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                      ≤ ΛΘ(1 + |𝐴0| + |𝐵0|𝑇 + (|𝜎2| + |𝜇2| + 1)(|𝐴𝑝| + |𝐵𝑝|𝑇))‖𝑢 − 𝑣‖𝑃𝐶1. 

 Similarly, for 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1] we have  

 |(𝜃𝑢)′(𝑡) − (𝜃𝑣)′(𝑡)| ≤ |𝐹𝑘
′(𝑓, 𝑢, 𝑢′)(𝑡) − 𝐹𝑘

′(𝑓, 𝑣, 𝑣′)(𝑡)| 

        +|𝐵0||𝐹0(𝑓. 𝑢. 𝑢′)(𝜂1) − 𝐹0(𝑓. 𝑣. 𝑣′)(𝜂1)| 

               +|𝜎2||𝐵𝑝||𝐹𝑝(𝑓, 𝑢, 𝑢′)(𝜂2) − 𝐹𝑝(𝑓. 𝑣. 𝑣′)(𝜂2)| 

     + |𝐵𝑝||𝐹𝑝(𝑓, 𝑢, 𝑢′)(𝑇) − 𝐹𝑝(𝑓, 𝑣. 𝑣′)(𝑇)| 

             +|𝜇2||𝐵𝑝||𝐺𝑝(𝑓, 𝑢, 𝑢′)(𝑇) − 𝐺𝑝(𝑓, 𝑣, 𝑣′)(𝑇)| 

                                         ≤ ΛΘ(1 + |𝐵0| + (|𝜎2| + |𝜇2| +  1)|𝐵𝑝|)‖𝑢 − 𝑣‖𝑃𝐶1 . 

It follows that  

                                             ‖Θ𝑢 − Θ𝑣‖𝑃𝐶1 ≤ Λ‖𝑢 − 𝑣‖𝑃𝐶1 .            

Since Λ < 1, Θ is a contraction. According to the Banach fixed point theorem Θ has a 

unique fixed point that is the problem (4.25) has a unique solution. ∎ 

Again, to study the existence of solutions of BVP (4.25), we precede it with the 

following conditions: 

(𝐴3)  𝑓: [0, 𝑇] × ℝ → ℝ is continuous function and there exists ℎ ∈ 𝐶([0, 𝑇], ℝ+) 

such that 

|𝑓(𝑡, 𝑢, 𝑣)| ≤ ℎ(𝑡) + 𝑏1|𝑢|𝜚1 + 𝑏2|𝑣|𝜚2 , (𝑡, 𝑢, 𝑣) ∈ [0, 𝑇] × ℝ × ℝ, 0 < 𝜚1, 𝜚2 < 1. 

(𝐴4)   𝐼𝑘, 𝐽𝑘: ℝ → ℝ are continuous functions and there are  𝐿2 > 0, 𝐿3 > 0 such 

that  

                                |𝐼𝑘(𝑥)| ≤ 𝐿2,      |𝐽𝑘(𝑥)| ≤ 𝐿3,     𝑥 ∈ ℝ. 

For convenience, we will give some notations: 

𝐶1 ≔ (1 + |𝐴0| + |𝐵0|𝑇 + (|𝜎2| + 1)(|𝐴𝑝| + |𝐵𝑝|𝑇))   



55 

         × ((
𝑇∗

𝛤∗
+ 𝛥1 + 𝛥2) (‖ℎ‖) + 𝑝𝐿2 + 𝑃𝑇𝐿3) 

      +|𝜇2|(|𝐴𝑝| + |𝐵𝑝|𝑇) ((
𝑇∗

Γ∗
+ Δ3) (‖ℎ‖) + 

𝑇1−𝛽

Γ(2 − 𝛽)
𝑝𝐿3) + (

𝑇∗

Γ∗
+ Δ4) (‖ℎ‖), 

𝐶2 ≔ (1 + |𝐴0| + |𝐵0|𝑇 + (|𝜎2| + 1)(|𝐴𝑝| + |𝐵𝑝|𝑇)) (
𝑇∗

Γ∗
+ ∆1 + ∆2) 

+|𝜇2|(|𝐴𝑝| + |𝐵𝑝|𝑇) (
𝑇∗

Γ∗
+ ∆3) +

𝑇∗

Γ∗
+ Δ4.                                                             

Lemma4.2.5 

If  

𝑅 ≥ max {3𝐶1, (3𝑏1𝐶2)
1

1−𝜚1 , (3𝑏2𝐶2)
1

1−𝜚2} , 

then Θ maps 𝐵(0, 𝑅) into itself, where  𝐵(0, 𝑅) ≔ {𝑢 ∈ 𝑃𝐶1([0, 𝑇], ℝ): ‖𝑢‖𝑃𝐶1 ≤

𝑅}. 

Proof. Assume that 

𝑅 ≥ max {3𝐶1, (3𝑏1𝐶2)
1

1−𝜚1 , (3𝑏2𝐶2)
1

1−𝜚2} . 

Then for𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 0, … , 𝑝, we have  

  |𝐹𝑘(𝑓, 𝑢, 𝑢′)(𝑡)|    

           ≤
1

Γ(𝛼𝑘)
∫(𝑡 − 𝑠)𝛼𝑘−1

𝑡

𝑡𝑘

|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠))|𝑑𝑠          

                   + ∑
1

Γ(𝛼𝑗−1)
∫ (𝑡𝑗 − 𝑠)𝛼𝑗−1−1

𝑡𝑗

𝑡𝑗−1

𝑘

𝑗=1

|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠))|𝑑𝑠 + ∑|𝐼𝑗(𝑢(𝑡𝑗
−))|

𝑘

𝑗=1

 

                   + ∑
(𝑡 − 𝑡𝑗)

Γ(𝛼𝑗−1 − 1)
∫ (𝑡𝑗 − 𝑠)𝛼𝑗−1−2

𝑡𝑗

𝑡𝑗−1

𝑘

𝑗=1

|𝑓(𝑠, 𝑢(𝑠), 𝑢′(𝑠)|𝑑𝑠 
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                + ∑(𝑡 − 𝑡𝑗) |𝐽𝑗 (𝑣′(𝑡𝑗
−))|

𝑘

𝑗=1

, 

     |𝐹𝑘(𝑓, 𝑢, 𝑢′)(𝑡)|  

              ≤
1

Γ(𝛼𝑘)
∫(𝑡 − 𝑠)𝛼𝑘−1

𝑡

𝑡𝑘

(ℎ(𝑠) + 𝑏1|𝑢(𝑠)|𝜚1  + 𝑏2|𝑢′(𝑠)|𝜚2)𝑑𝑠 

      + ∑
1

Γ(𝛼𝑗−1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−1

𝑡𝑗

𝑡𝑗−1

(ℎ(𝑠) + 𝑏1|𝑢(𝑠)|𝜚1 + 𝑏2|𝑢′(𝑠)|𝜚2𝑑𝑠 

                  + ∑|𝐼𝑗(𝑢(𝑡𝑗
−))|

𝑘

𝑗=1

 

                + ∑
(𝑡 − 𝑡𝑗)

Γ(𝛼𝑗−1 − 1)

𝑘

𝑗=1

∫ (𝑡𝑗 − 𝑠)
𝛼𝑗−1−2

𝑡𝑗

𝑡𝑗−1

(ℎ(𝑠) + 𝑏1|𝑢(𝑠)|𝜚1 + 𝑏2|𝑢′(𝑠)|𝜚2)𝑑𝑠 

                + ∑(𝑡 − 𝑡𝑗)𝐽𝑗 (𝑢(𝑡𝑗
−))

𝑘

𝑗=1

 

            ≤
𝑇𝛼𝑘

Γ(𝛼𝑗−1 − 1)
(‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) 

                + ∑
(𝑡𝑗 − 𝑡𝑗−1)𝛼𝑗−1

Γ(𝛼𝑗−1 + 1)
(

𝑝

𝑗=1

‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) + 𝑝𝐿2 

                + ∑
(𝑡 = 𝑡𝑗)(𝑡𝑗 − 𝑡𝑗−1)

𝛼𝑗−1−1

Γ(𝛼𝑗−1)

𝑝

𝑗=1

(‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2 + 𝑝𝑇𝐿3, 

          ≤ (
𝑇∗

Γ∗
+ ∆1 + ∆2) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) + 𝑝𝑙2 + 𝑝𝑇𝐿3, 

 |𝐺𝑘(𝑓, 𝑢, 𝑢′)(𝑡)| 

       ≤
𝑇𝛼𝐾−𝛽

Γ(𝛼𝐾 − 𝛽 + 1)
(‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) 
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   +
𝑇1−𝛽

Γ(2 − 𝛽)
∑

(𝑡𝑗 − 𝑡𝑗−1)
𝛼𝑗−1−1

Γ(𝛼𝑗−1)
(‖ℎ‖ + 𝑏1

𝑝

𝑗=1

‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) +
𝑇1−𝛽

Γ(2 − 𝛽)
𝑝𝐿3 

     ≤ (
𝑇∗

Γ∗
+ Δ3) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) +

𝑇1−𝛽

Γ(2 − 𝛽)
𝑝𝑙3 + 𝑝𝐿3 

     ≤ (
𝑇∗

Γ∗
+ ∆4) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) + 𝑝𝑙3.                                  

It follows that  

|(Θ𝑢)(𝑡)| 

     ≤ (1 + |𝐴0| + |𝐵0|𝑇 + (|𝜎2| + 1)(|𝐴𝑝| + |𝐵𝑝|𝑇)) 

     × ((
𝑇∗

Γ∗
+ ∆1 + ∆2) (‖ℎ‖ + 𝑏1‖ℎ‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) + 𝑝𝐿2 + 𝑝𝑇𝐿3) 

     +|𝜇2|(|𝐴𝑝| + |𝐵𝑝|𝑇) ((
𝑇∗

Γ∗
+ Δ3) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2 +

𝑇1−𝛽

Γ(2 − 𝛽)
𝑝𝐿3) 

     ≤ 𝐶1 + 𝐶2𝑏1‖𝑢‖𝜚1 + 𝐶2𝑏2‖𝑢′‖𝜚2 , 

and   

|(Θ𝑢)′(𝑡)| 

≤ (
𝑇𝛼𝑘−1

Γ(𝛼𝑘)
+ ∑

(𝑡𝑗 − 𝑡𝑗−1)
𝛼𝑗−1−1

Γ(𝛼𝑗−1)

𝑘

𝑗=1

) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) + 𝐿3𝑝 

        +(|𝐵0| + |𝜎2||𝐵𝑝| + |𝐵𝑝|) (
𝑇∗

Γ∗
+ Δ1 + Δ2) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) 

         +𝑝𝐿2 + 𝑝𝑇𝐿3 + |𝜇2||𝐵𝑝| (
𝑇∗

Γ∗
+ Δ3) (‖ℎ‖ + 𝑏1‖𝑢‖𝜚1 + 𝑏2‖𝑢′‖𝜚2) 

        +
𝑇1−𝛽

Γ(2 − 𝛽)
𝐿3 

       ≤ 𝐶1 + 𝐶2𝑏1‖𝑢‖𝜚1 + 𝐶2𝑏2‖𝑢′‖𝜚2 . 

Thus,  
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                 ‖(Θ𝑢)‖𝑃𝐶1 ≤ 𝐶1 + 𝐶2𝑏1𝑅𝜚1 + 𝐶2𝑏2𝑅𝜚2 ≤
𝑅

3
+

𝑅

3
+

𝑅

3
  = 𝑅. ∎ 

Theorem 4.2.6 Assume that the conditions (𝐴3) and (𝐴4) are satisfied. Then the 

problem (4.25) has at least one solution. 

Proof. Firstly, we prove that Θ: 𝑃𝐶1([0, 𝑇], ℝ) →  𝑃𝐶1([0, 𝑇], ℝ) is completely 

continuous operator. It is clear, the continuity of functions 𝑓, 𝐼𝑘 and 𝐽𝑘 implies the 

continuity of the operator Θ. 

Let Ω ⊂ 𝑃𝐶1([0, 𝑇], ℝ) be bounded. Then there exist positive constants 𝐿1,𝐿2 and 

𝐿3  such that  

                       |𝐹𝑘(𝑓, 𝑢, 𝑢′)| ≤ 𝐿1,    |𝐼𝑘(𝑢)| ≤ 𝐿2,   |𝐽𝑘(𝑢)| ≤ 𝐿3, 

for all 𝑢 ∈ Ω. Thus, for any 𝑢 ∈ Ω, we have  

                       |𝐹𝑘(𝑓, 𝑢, 𝑢′)(𝑡)| ≤ 𝐿1 (
𝑇∗

Γ∗ + Δ1 + Δ2) + 𝑝𝐿2 + 𝐿3𝑝𝑇. 

Similarly,  

                           |𝐺𝑘(𝑓, 𝑢, 𝑢′)(𝑡)| ≤ 𝐿1 (
𝑇∗

Γ∗
+ Δ3) +

𝑇1−𝛽

Γ(2 − 𝛽)
𝑃𝐿3. 

It follows that  

                        |(Θ𝑢)(𝑡)| ≤ ΛΘ
1 , where ΛΘ

1  is constant. 

In a like manner, 

                        |𝐹𝑘
′(𝑓, 𝑢, 𝑢′)(𝑡)| ≤ 𝐿1 (

𝑇∗

Γ∗ + Δ4) + 𝐿3𝑃. 

It follows that   

|(Θ𝑢)′(𝑡)| 

                 ≤ 𝐿1 (
𝑇∗

Γ∗
+ Δ4) + 𝐿3𝑃 + (|𝐵0| + |𝜎2||𝐵𝑝| + |𝐵𝑝|)Λ𝐹 

                      +|𝜇2||𝐵𝑝|Λ𝐺 ≔ ΛΘ
2  , where ΛΘ

2  is a constant. 
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Thus, 

                 ‖(Θ𝑢)‖𝑃𝐶′ ≤ ΛΘ
1 + ΛΘ

2 = ψ, where 𝜓 is constant. 

On the other hand, for 𝜏1, 𝜏2 ∈ (𝑡𝑘, 𝑡𝑘+1] with 𝜏1 < 𝜏2 and we have  

                 |(Θ𝑢)(𝜏2) − (Θ𝑢)(𝜏1)| ≤ ∫ |(Θ𝑢)′(𝑠)|𝑑𝑠 ≤ ΛΘ
2 (𝜏2 − 𝜏1)

𝜏2

𝜏1

. 

Similarly, 

|(Θ𝑢)′(𝜏2) − (Θ𝑢)′(𝜏1)| ≤ ΠΘ(𝜏2 − 𝜏1), 

where ΠΘ is constant. This implies that Θ𝑢 is equicontinuous on all 𝑡 ∈

(𝑡𝑘, 𝑡𝑘+1], 𝑘 = 0,1 … , 𝑝. Consequently, Arzela-Ascoli theorem ensures us that the 

operator Θ is a completely continuous operator and by Lemma 4.2.5 Θ: 𝐵(0, 𝑅) →

𝐵(0, 𝑅). Hence, we conclude that Θ: 𝐵(0, 𝑅) → 𝐵(0, 𝑅) is completely continuous. It 

follows that from Schauder’s fixed point theorem that Θ has at a least one fixed 

point. That is the problem (4.2.5) has at least one solution on[0, 𝑇].∎ 

Example 4.2.7 For p= 1, 𝑡1 =
1

4
, 𝑇 = 1, 𝛽 =

1

2
, 𝜇1 = 2, 𝜎1 =

1

2
, 𝜇2 = 3, 𝜎2 =

1

10
 , 𝜂1 =

1

5
 , 𝜂2 =

2

3
 , 𝛼0 =

3

2
 , 𝛼𝑘 =

3

2
 , we consider the following impulsive multi-

orders fractional differential equation: 

𝐷𝑡𝑘

𝛼𝑘𝑢(𝑡) =
1

100
cos 𝑢(𝑡) +

|𝑢′(𝑡)|

|𝑢′(𝑡)|+100
+ 𝑡,𝑐    0 ≤ 𝑡 ≤ 1 , 𝑡 ≠

1

4
, 

∆𝑢 (
1

4
) =

|𝑢 (
1
4)|

|𝑢 (
1
4)| + 50

 ,     ∆𝑢′ (
1

4
) =

|𝑢′ (
1
4)|

|𝑢′ (
1
4)| + 70

 , 

                              𝑢(0) + 2 𝐷0+

1
2 𝑢(0) =

1

2
𝑢 (

1

5
) ,𝑐  

                              𝑢(1) + 3 𝐷0+

1

2 𝑢(1) =
1

10
𝑢 (

2

3
) .𝑐                                                    (4.30) 
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It is clear that  

|𝑓(𝑡, 𝑥, 𝑥1) − 𝑓(𝑡, 𝑦, 𝑦1)| 

≤ 0.02(|𝑥 − 𝑦| + |𝑥1 − 𝑦2|),   0 ≤ 𝑡 ≤ 1 , 𝑥, 𝑦, 𝑥1, 𝑦2  ∈ ℝ .   

One can easily calculate that  

Λ = 0.2178 < 1. 

Therefore, all assumptions of Theorem 4.2.4 hold. Thus, the impulsive multi-orders 

fractional BVP (4.30) has a unique solution on [0,1]. 

 

 

 

  



61 

REFERENCES 

[1] Debnath, L. (2004). A brief historical introduction to fractional calculus. 

International Journal of Mathematical Education in Science and Technology, 

35(4), 487-501. 

[2] David, S. A., Linares, J. L., & Pallone, E. M. J. A. (2011). Fractional order 

calculus: historical apologia, basic concepts and some applications. Revista 

Brasileira de Ensino de Física, 33(4), 4302-4302. 

[3] Weilbeer, M. (2005). Efficient numerical methods for fractional differential 

equations and their analytical background. Papierflieger. 

[4] Hilfer, R. (Ed.). (2000). Applications of fractional calculus in physics (Vol. 

128). Singapore: World Scientific. 

[5] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency 

independent—II. Geophysical Journal International, 13(5), 529-539. 

[6] Ross, B. (1975). A brief history and exposition of the fundamental theory of 

fractional calculus. In fractional calculus and its applications (pp. 1-36). 

Springer Berlin Heidelberg. 



62 

[7] Ahmad, B., & Ntouyas, S. K. (2012, April). A note on fractional differential 

equations with fractional separated boundary conditions. In Abstract and 

Applied Analysis (Vol. 2012). Hindawi Publishing Corporation. 

[8] Ahmad, B., & Sivasundaram, S. (2010). Existence of solutions for impulsive 

integral boundary value problems of fractional order. Nonlinear Analysis: 

Hybrid Systems, 4(1), 134-141. 

[9] Rudin, W. (1964). Principles of mathematical analysis (Vol. 3). New York: 

McGraw-Hill. 

[10] Siddiqi, A. H. (1986). Functional analysis with applications. Tata McGraw-

Hill. 

[11] Kreyszig, E. (1989). Introductory functional analysis with applications (Vol. 

81). New York: wiley. 

[12] Kolmogorov, A. N., Fomin, S. V., & Fomin, S. V. (1999). Elements of the   

theory of functions and functional analysis (Vol. 1). Courier Corporation. 

[13] Carlson, B. C. (1977). Special functions of applied mathematics. Academic 

Press. 

[14] Lebedev, N. N., & Silverman, R. A. (1972). Special functions and their 

applications. Courier Corporation. 



63 

[15] Torokhti, A., & Howlett, P. (1974). The fractional calculus theory and 

applications of differentiation and integration to arbitrary order (Vol. 111). 

Elsevier. 

[16] Tse, O. (2012). Nonlinear functional analysis with applications to partial 

differential equations. New York 

[17] Smart, D. R. (1980). Fixed point theorems (No. 66). CUP Archive. 

[18] Mhamdi, T., Hasan, O., & Tahar, S. (2010). On the formalization of the 

Lebesgue integration theory in HOL. In interactive theorem proving (pp. 387-

402). Springer Berlin Heidelberg. 

[19] Hall, A. R. (2002). Philosophers at war: the quarrel between Newton and 

Leibniz. Cambridge University Press. 

[20] Bonilla, B., Rivero, M., & Trujillo, J. J. (2007). On systems of linear fractional 

differential equations with constant coefficients. Applied Mathematics and 

Computation, 187(1), 68-78. 

[21] Odibat, Z. M. (2010). Analytic study on linear systems of fractional differential 

equations. Computers & Mathematics with Applications, 59(3), 1171-1183. 

[22] Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals 

and derivatives, theory and applications. Gordon and Breach, Yverdon, 1993. 



64 

[23] Podlubny, I. (1998). Fractional differential equations: an introduction to 

fractional derivatives, fractional differential equations, to methods of their 

solution and some of their applications (Vol. 198). Academic press. 

[24] Diethelm, K. (2010). The analysis of fractional differential equations: an 

application-oriented exposition using differential operators of Caputo type. 

Springer. 

[25] Sabatier, J., Agrawal, O. P., & Machado, J. T. (2007). Advances in fractional 

calculus (Vol. 4, No. 9). Dordrecht: Springer. 

[26] Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and 

fractional differential equations. 

[27] Leela, S., & Lakshmikantham, V. (2010). Theory of causal differential 

equations (Vol. 5). Springer Science & Business Media. 

[28] Tarasov, V. E. (2011). Fractional dynamics: applications of fractional calculus 

to dynamics of particles, fields and media. Springer Science & Business Media. 

[29] Kilbas, A. A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and 

applications of fractional differential equations (Vol. 204). Elsevier Science 

Limited. 



65 

[30] Agarwal, R. P., Benchohra, M., & Hamani, S. (2010). A survey on existence 

results for boundary value problems of nonlinear fractional differential 

equations and inclusions. Acta Applicandae Mathematicae, 109(3), 973-1033. 

[31] Agarwal, R. P., Belmekki, M., Benchohra, M., & Cabada, A. (2009). A survey 

on semilinear differential equations and inclusions involving Riemann-

Liouville fractional derivative. Advances in Difference Equations, 2009, 67. 

[32] Ahmad, B. (2010). Existence of solutions for irregular boundary value 

problems of nonlinear fractional differential equations. Applied Mathematics 

Letters, 23(4), 390-394. 

[33] Ahmad, B., & Sivasundaram, S. (2010). On four-point nonlocal boundary 

value problems of nonlinear integro-differential equations of fractional order. 

Applied Mathematics and Computation, 217(2), 480-487. 

[34] Băleanu, D., & Mustafa, O. G. (2010). On the global existence of solutions to a 

class of fractional differential equations. Computers & Mathematics with 

Applications, 59(5), 1835-1841. 

[35] Agrawal, O. P. (2002). Solution for a fractional diffusion-wave equation 

defined in a bounded domain. Nonlinear Dynamics, 29(1-4), 145-155. 

[36] Ahmad, B., & Ntouyas, S. K. (2011). A four-point nonlocal integral boundary 

value problem for fractional differential equations of arbitrary order. Electron. 

J. Qual. Theory Differ. Equ, 22, 2011. 



66 

[37] Ford, N., & Morgado, M. (2011). Fractional boundary value problems: analysis 

and numerical methods. Fractional Calculus and Applied Analysis, 14(4), 554-

567. 

[38] Ahmad, B., & Ntouyas, S. K. (2015). Existence results for a coupled system of 

Caputo type sequential fractional differential equations with nonlocal integral 

boundary conditions. Applied Mathematics and Computation, 266, 615-622. 

[39] Ahmad, B., Ntouyas, S. K., & Alsaedi, A. (2011). New existence results for 

nonlinear fractional differential equations with three-point integral boundary 

conditions. Adv. Differ. Equ, 2011. 

[40] Ahmad, B., Nieto, J. J., Alsaedi, A., & Al-Hutami, H. (2014). Existence of 

solutions for nonlinear fractional q-difference integral equations with two 

fractional orders and nonlocal four-point boundary conditions. Journal of the 

Franklin Institute, 351(5), 2890-2909. 

[41] Ahmad, B. (2013). Nonlinear fractional differential equations with anti-

periodic type fractional boundary conditions. Differential Equations and 

Dynamical Systems, 21(4), 387-401. 

[42] Ahmad, B., & Nieto, J. J. (2010). Existence of solutions for anti-periodic 

boundary value problems involving fractional differential equations via Leray-

Schauder degree theory. Topological Methods in Nonlinear Analysis, 35(2). 



67 

[43] Benchohra, M., Henderson, J., Ntouyas, S. K., & Ouahab, A. (2008). Existence 

results for fractional order functional differential equations with infinite delay. 

Journal of Mathematical Analysis and Applications, 338(2), 1340-1350. 

[44] Mahmoud, H. (2015). On existence of solutions for nonlinear fractional                                       

differential equations with four-point nonlocal fractional boundary               

conditions. Journal of Pure and Applied Mathematics: Advances and      

Applications, Vol.13,No.2,pp.137-151. 

[45] Ahmad, B., & Nieto, J. J. (2012). Anti-periodic fractional boundary value 

problems with nonlinear term depending on lower order derivative. Fractional 

Calculus and Applied Analysis, 15(3), 451-462. 

[46] Agarwal, R. P., Lakshmikantham, V., & Nieto, J. J. (2010). On the concept of 

solution for fractional differential equations with uncertainty. Nonlinear 

Analysis: Theory, Methods & Applications, 72(6), 2859-2862. 

[47] Liu, X., & Liu, Z. (2012, December). Existence results for fractional 

differential inclusions with multivalued term depending on lower-order 

derivative. In Abstract and Applied Analysis (Vol. 2012). Hindawi Publishing 

Corporation. 

[48] Bainov, D., & Simeonov, P. (1993). Impulsive differential equations: periodic 

solutions and applications (Vol. 66). CRC Press. 



68 

[49] Lakshmikantham, V., Baĭnov, D., & Simeonov, P. S. (1989). Theory of 

impulsive differential equations (Vol. 6). World scientific. 

[50] Bai, C. (2012). Existence result for boundary value problem of nonlinear 

impulsive fractional differential equation at resonance. Journal of Applied 

Mathematics and Computing, 39(1-2), 421-443. 

[51] Cao, J., & Chen, H. (2011). Some results on impulsive boundary value problem 

for fractional differential inclusions. Electronic Journal of Qualitative Theory 

of Differential Equations, 11, 1-24. 

[52] Kosmatov, N. (2013). Initial value problems of fractional order with fractional 

impulsive conditions. Results in Mathematics, 63(3-4), 1289-1310. 

[53] Fec, M., Zhou, Y., & Wang, J. (2012). On the concept and existence of 

solution for impulsive fractional differential equations. Communications in 

Nonlinear Science and Numerical Simulation, 17(7), 3050-3060. 

[54] Guo, T. L., & Wei, J. (2012). Impulsive problems for fractional differential 

equations with boundary value conditions. Computers & Mathematics with 

Applications, 64(10), 3281-3291. 

[55] Wang, G., Liu, S., Baleanu, D., & Zhang, L. (2014, June). A new impulsive 

multi-orders fractional differential equation involving multipoint fractional 

integral boundary conditions. In Abstract and Applied Analysis (Vol. 2014). 

Hindawi Publishing Corporation. 



69 

[56] Yukunthorn, W., Ahmad, B., Ntouyas, S. K., & Tariboon, J. (2016). On 

Caputo–Hadamard type fractional impulsive hybrid systems with nonlinear 

fractional integral conditions. Nonlinear Analysis: Hybrid Systems, 19, 77-92. 

[57] He, Z., & Yu, J. (2002). Periodic boundary value problem for first-order 

impulsive ordinary differential equations. Journal of Mathematical Analysis 

and Applications, 272(1), 67-78. 

[58] Ibrahim, R. W. (2015). Stability of sequential fractional differential equation. 

Appl. Comput. Math. 

[59] Luo, Z., & Shen, J. (2009). Stability of impulsive functional differential 

equations via the Liapunov functional. Applied Mathematics Letters, 22(2), 

163-169. 

[60] Tiwari, S., & Kumar, M. (2015). An initial value technique to solve two-point 

non-linear singularly perturbed boundary value problems. Applied and 

Computational Mathematics, 14(2), 150-157. 

[61] Wang, H. (2012). Existence results for fractional functional differential 

equations with impulses. Journal of Applied Mathematics and Computing, 

38(1-2), 85-101. 

[62] Wang, G., Ahmad, B., & Zhang, L. (2011). Impulsive anti-periodic boundary 

value problem for nonlinear differential equations of fractional order. 

Nonlinear Analysis: Theory, Methods & Applications, 74(3), 792-804. 



70 

[63] Wang, G., Ahmad, B., & Zhang, L. (2011). Some existence results for 

impulsive nonlinear fractional differential equations with mixed boundary 

conditions. Computers & Mathematics with Applications, 62(3), 1389-1397. 

[64] Wang, X. (2011). Existence of solutions for nonlinear impulsive higher order 

fractional differential equations. Electronic Journal of Qualitative Theory of 

Differential Equations, (80), 1-12. 

[65] Wang, J., Zhou, Y., & Fec, M. (2012). On recent developments in the theory of 

boundary value problems for impulsive fractional differential equations. 

Computers & Mathematics with Applications, 64(10), 3008-3020. 

[66] Guo, T. L., & Jiang, W. (2012). Impulsive fractional functional differential 

equations. Computers & Mathematics with Applications, 64(10), 3414-3424. 

 


