

Analysis and Experimental Study of EMD and
GEMD Steganographic Methods

Om Essad Mohammed Lamiles

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
May 2016

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Cem Tanova
 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in
Computer Engineering.

 Assoc. Prof. Dr. Alexander Chefranov Asst. Prof. Dr.Gürcü Öz
 Co-Supervisor Supervisor

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Asst. Prof. Dr. Adnan Acan

3. Asst. Prof. Dr. Yiltan Bitirim

4. Asst. Prof. Dr. Gürcü Öz

5. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

The aim of this thesis is to analyze and experimentally study two steganographic

methods: Exploiting Modification Direction (EMD) and Generalized Exploiting

Modification Direction (GEMD). In the known experiments conducted on EMD and

GEMD, some quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Square

Error (MSE), and the embedding capacity Bit Per Pixel (BPP) are discussed, but

implementation important details such as the secret image used, data structures,

justification of methods, and the optimal cover images number calculation are not

provided. Therefore, in this thesis, the implementation of these methods is explained

in details such as the input-output data structures, the justification of the methods and

the minimum number of cover images computation are given.

 The main idea in EMD is that a separate n-pixel group of a cover image is used for

embedding of each next digit of (2n+1) -ary k-digit number representation of the

next L-bit block from a binary input stream and only one pixel in the n-pixel group

could be modified by ±1. In GEMD, L-bit blocks, L=n+1, from the input stream are

embedded in the next n-pixel group, and at least one pixel value in each group could

be changed by ±1.

 In the implementation, four grayscale 512×512 secret images, and two cover image

sizes, 512×512 and 1024×1024, are used. According to our analysis, for the both

cover image sizes results, PSNR of EMD is greater than that of GEMD by 0.06%.

For MSE, EMD has less MSE than that of GEMD by 0.5%. On the other hand,

GEMD is better than EMD in embedding capacity, BPP is greater by 0.33%. GEMD

iv

is also better than EMD in memory and time consumption by 0.006% and 0.06%

respectively for the 512x512 cover image size, while for the second size, 1024x1024

by 0.004% and 0.13% respectively. In addition, where each method is compared with

different cover image sizes, for both methods, greater cover image size has less time

consumption by 0.33% for EMD and by 0.38% for GEMD. For memory

consumption, using grater size required more memory for both methods, by 0.02%.

For comparison with known experiments with 512×512 cover size, we got the

practically the same values for PSNR, MSE, and BPP.

Keywords: Steganography, EMD algorithm, GEMD algorithm, (2n+1)-ary number,

Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Embedding

Capacity, Bit Per Pixel (BPP), memory consumption, time consumption.

v

ÖZ

Bu tezin amacı, Exploiting Modification Direction (EMD) ve Generalized Exploiting

Modification Direction (GEMD) steganographik yöntemlerini analiz etmek ve

deneysel olarak incelemektir. Literatürde, EMD ve GEMD yöntemlerinin incelendiği

referans çalışmada, Peak Signal to Noise Ratio (PSNR), Mean Square Error(MSE) ve

gömme kapasitesi Pit Per Pixel (BPP) gibi kalite ölçütleri tartışılmıştır, ancak,

kullanılan gizli görüntüler, veri yapıları, yöntemlerin ıspatı ve kaplama resimlerinin

optimal sayısının hesaplanması gibi bazı detayları verilmemiştir. Bu nedenle, bu

tezde, giriş/çıkış veri yapıları, belirtilen yöntemlerin ıspatı ve kaplama resimlerinin

optimal sayısının hesaplanması gibi uygulama detayları açıklanmıştır.

EMD yönteminin ana fikri, her biri (2n+1)-ary k-digit sayı ile belirtilen ikili giriş

akışının her bir L-bit bloğunun, n-piksel gruptan oluşan kaplama görüntüsüne, her

n-piksel grupta sadece bir pikselinin ±1 olacak şekilde gömülmesidir. GEMD’de ise

ikili giriş akışının her bir L-bloğu, L=n+1, kaplama görüntüsündeki her bir n-piksel

gruba, her grupta en az bir piksel degerinin ±1 olacak şekilde gömülmesidir.

Algoritmaların uygulamasında gizli görüntü olarak 512x512 boyutlu, gri tonlu dört

farklı görüntü, kaplama görüntüsü boyutu olarak da 512x512 ve 1024x1024 boyutları

kullanılmıştır. Deney sonuçlarının analizlerine gore, her iki boyutlu kaplama

görüntüsü için, EMD PSNR değeri GEMD PSNR değerinden %0.06 daha büyüktür.

Buna ek olarak, EMD MSE değeri GEMD MSE değerinden %0.5 daha azdır. Öte

yandan, GEMD BPP değeri, EMD BPP değerine göre %0.33 daha iyidir. Buna ek

olarak GEMD’nin bellek ve zaman tüketimi değerleri EMD’ye göre 512x512

vi

kaplama görüntü boyutu için sırasıyla %0.006 ve %0.06 daha iyi olup 1024x1024

için sırasıyla %0.004 ve %0.13 daha iyidir. Bunlara ek olarak, her metod iki farklı

kaplama görüntü boyutuna göre karşılaştırıldığında, her iki metod için de büyük

kaplama boyutunda zaman tüketimi EMD’de %0.33 GEMD de ise %0.38 daha azdır.

Bellek tüketiminde ise büyük boyutlu görüntü kullanımı her iki yöntemde de

%0.02’lik bir artış göstermiştir. İki yöntemin 512x512 kaplama boyutu için PSNR,

MSE ve BPP ölçü değerleri referans çalışmadaki deney sonuçları ile

karşılaştırıldığında tamamen aynı sonuçların elde edildiği görülmüştür.

Anahtar Kelimeler: Steganografi, EMD algoritması, GEMD algoritması, (2n+1)-

ary sayı, Tepe Sinyal Gürültü Oranı (PSNR), Kare Ortalama Hatası (MSE),

Gömülüm kapasitesi, Piksel Başına Bit (BPP), bellek tüketimi, zaman tüketimi

vii

DEDICATION

I dedicate my dissertation work to my family, and a special thank to my loving

parents for their love and support throughout my life. I also dedicate this work and

give special thanks to my husband for his support, encouragement, and contribution

to the success of my life.

viii

ACKNOWLEDGMENT

Foremost, I would like to sincerely thank my supervisors Assoc. Prof. Dr. Alexander

Chefranov, and Asst. Prof. Dr.Gürcü Öz for their guidance and support throughout

this study. Also I have to thank my department chairman Prof. Dr. Işık Aybay for

providing the facilities to students. I am also grateful to all of the department faculty

members for their help and support.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES .. xi

LIST OF FIGURESxii

LIST OF ABBREVIATIONS………………………………………….…….......…xiv

1 INTRODUCTION………………………………………………………………….1

2 RELATED WORK AND PROBLEM DEFINITION……………………………...4

 2.1 Overview of Steganography……………………………………………………4

 2.2 Categories of Steganography……………………. ... 5

 2.2.1 Text Steganography………………………………………………………..5

 2.2.2 Protocol steganography .. 5

 2.2.3 Audio/Video/Image Steganography ... 5

 2.3 Related Work…………………….….. ... 5

 2.3.1 EMD Method………………………………..……………………......... 10

 2.3.2 GEMD Method ………………….. ... 17

 2.4 Known Experiments on EMD and GEMD ………………………………….. 24

 2.5 Problem Definition ……………..……….. .. 26

 2.6 Summary of Chapter 2 …….…………. ……………………………………...27

3 EMD AND GEMD DATA STRUCTURES AND JUSTIFICATION OF THE

METHODS CORRECTNESS………………………………………………………28

 3.1 Data Structure and Justification of EMD Correctness ……............................... 28

x

 3.1.1 Data Structure for EMD Embedding ... 28

 3.1.2 Data Structure for EMD Extraction .. 31

 3.1.3 Justification of EMD Correctness ………………………………………..32

 3.2 Data Structure and Justification of GEMD Correctness……………………...33

 3.2.1 Data Structure for GEMD Embedding …………………………………....33

 3.2.2 Data Structure for GEMD Extraction ... 34

 3.2.3 Justification of GEMD Correctness …………. ... 35

 3.3 Summary of Chapter 3 ……………...………….…...………………………...39

4 IMPLEMENTATION OF THE EMD AND GEMD .. 40

 4.1 EMD Implementation ………………......………...…………………………...40

 4.2 GEMD Implementation………………. ... 45

 4.3 Summary of Chapter 4 …..…..……………...………………………………....50

5 SIMULATION AND RESULTS .. 51

 5.1 EMD Simulation ……………..………. ……………..51

 5.2 GEMD Simulation ……………………………………………………...…….59

 5.3 EMD and GEMD Comparison Results ………...…………………...………...66

 5.4 Comparison Results to Known Experiments ………………………….……...67

 5.5 Summary of Chapter 5 …..........................…………………………………....68

6 CONCLUSION AND THE FUTURE WORK ... 69

 REFERENCES ... 71

 APPENDICES ... 74

 Appendix A: EMD Algorithm…………………. ... 75

 Appendix B: GEMD Algorithm………….. ... 88

 Appendix C: Screenshots of EMD and GEMD Results ……………………… 101

xi

LIST OF TABLES

Table 2.1: EMD-versus-GEMD known comparison results for PSNR and MSE[7] .26

Table 5.1: EMD parameters for the simulations for 512×512 cover images………...52

Table 5.2: EMD parameters of the simulation for 1024×1024 cover images………. 54

Table 5.3: EMD average results for 512×512 cover images………………………...54

Table 5.4: EMD average results for 1024×1024cover images………………………55

Table 5.5: Comparison results for EMD in two sizes of cover image………………59

Table 5.6: GEMD parameters for the simulations for 512×512 cover images...........60

Table 5.7: GEMD parameters of the simulation for 1024×1024 cover images……...61

Table 5.8: GEMD average results for 512×512 cover images ………………….…..61

Table 5.9: GEMD average results for 1024×1024cover images ………………..…..62

Table 5.10: Comparison results for GEMD in two sizes of cover image…………...66

Table 5.11: The EMD-versus-GEMD results for 512×512 cover images …. 67

Table 5.12: The EMD-versus-GEMD results for 1024×1024 cover images ………. 67

Table 5.13: EMD and GEMD comparison results versus known experiments for

512×512 cover images ……………………………………………………………...68

xii

LIST OF FIGURES

Figure 2.1: Flow chart diagram of EMD embedding ……………………………… 12

Figure 2.2: Flow chart diagram for Step 2 in EMD embedding…………………… 13

Figure 2.3: Flow chart diagram of EMD Extraction ………………………………..15

Figure 2.4: Flow chart diagram of GEMD embedding…………………….………..19

Figure 2.5: Flow chart diagram for Step6-Case 2 in GEMD embedding …………..20

Figure 2.6: Flow chart diagram for Step6-Case 3 in GEMD embedding …..………21

Figure 2.7: Flow chart diagram of GEMD Extraction……………………………... 23

Figure 2.8: Cover images used in [7] ……………………………………………….25

Figure 3.1: Reshaping cover image as one-dimensional array……………………...29

Figure 3.2: EMD data structure for embedding procedure ……………………….31

Figure 3.3: EMD data structure for extraction procedure ……………….………31

Figure 3.4: GEMD data structure for embedding procedure ……………………….34

Figure 3.5: GEMD data structure for extraction procedure ………………………...35

Figure 4.1: Seven stego images in EMD implementation …………………………44

Figure 4.2: EMD implementation results in case n=2………………………………44

Figure 4.3: Extracted secret image ………………………………………………….45

Figure 4.4: Six stego images in GEMD implementation …………………………...48

Figure 4.5: GEMD implementation results in case n=2 ………………………...… .49

Figure 5.1: Gray scale secret images………………………………………………..51

Figure 5.2: Gray scale cover images used in EMD and GEMD implementation .52

Figure 5.3: PSNR of EMD using 512×512 and 1024×1024 cover image size ..……56

Figure 5.4: MSE of EMD using 512×512 and 1024×1024 cover image size ………56

Figure 5.5: BPP of EMD using 512×512 and 1024×1024 cover image size ……….57

xiii

Figure 5.6: Time consumption of EMD using 512×512 and 1024×1024 cover image

size…………………………………………………………………………………..58

Figure 5.7: Memory consumption of EMD using 512×512 and 1024×1024 cover

image size ……………………………………………………...……………………58

Figure 5.8: PSNR of GEMD using 512×512 and 1024×1024 cover image size63

Figure 5.9: MSE of GEMD using 512×512 and 1024×1024 cover image size…..... 63

Figure 5.10: BPP of GEMD using 512×512 and 1024×1024 cover image size …....64

Figure 5.11: Time consumption of GEMD using 512×512 and 1024×1024 cover

image size……………………………………………………………………………64

Figure 5.12: Memory consumption of GEMD using 512×512 and 1024×1024 cover

image size …………………………………………………...………………………65

xiv

LIST OF ABBREVIATIONS

BPP Bit Per Pixel

EMD Exploiting Modification Direction

GEMD Generalized Exploiting Modification Direction

LSB Least Significant Bit

MSE Mean Square Error

PSNR Peak Signal to Noise Ratio

1

Chapter 1

INTRODUCTION

Steganography is a technique used to protect messages from unauthorized access, by

embedding data into other media forms such as text, image, video, sound, etc., where

the hidden data likely will not be detected [1]. Two main directions in steganography

are hiding secret data in spatial domain and in frequency domain [1]. The last

direction uses digital cosine transformations that is more time consuming compared

with the spatial domain methods but provides more security. In steganography,

image file is the most common media form used because the human visual system is

not sensitive to small variation in colors. Furthermore, they could be easily used as

cover media without any doubt as they are commonly used on the Internet [2].

We consider here spatial domain methods. There are many steganographic schemes

based on direct replacement like Least Significant Bit (LSB) [3] [4] or based on

indirect replacement such as Exploiting Modification Direction (EMD) [7] [13] [14],

and Generalized Exploiting Modification Direction (GEMD) [5] [6] [7] schemes; the

latter ones will be discussed in this thesis in details which similar to frequency

domain methods provide greater security by the use of data transformations but in the

spatial domain. The known experiments conducted on EMD and GEMD, and

resulting quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Square Error

(MSE), and the embedding capacity Bit Per Pixel (BPP) are discussed in [7], but they

do not provide sufficient information for their implementation such as the secret

2

image used, data structure, justification of methods, and the number of cover images

for one secret image embedding. Therefore, in this thesis data structures and the

implementation of these methods are explained in details such as the input-output

data structures, the justifications of the methods are provided. A major characteristic

of the EMD method is that it uses a separate n-pixel group of a cover image to embed

the next digit of (2n+1)-ary k-digit number representing the next L-bit block from the

secret image input and only one pixel in the group can be changed by ±1. In GEMD

scheme the next L-bit block, L=n+1, is hidden in the next n-pixel group, and more

than one pixel value in a group may be changed by ±1, so the image quality for it

may be lower than that for EMD.

Experiments are conducted with four secret images for different n values, and for

two different sizes of cover image 512×512 and 1024×1024. The comparison

between both methods in case of using two different sizes are taken as the average

for each metric, because the comparison for each metric over n, as it is done in [7], is

not valid since n has different meaning for each method, in EMD means the number

of pixels required to embed one digit while in GEMD means the number of pixels

required to embed one block. According to our analysis, for size 512×512

comparison results, EMD stego image quality PSNR is better than that of GEMD by

0.06%, and also for MSE, EMD is better than that of GEMD by 0.5%. On the other

hand, GEMD is better than EMD in embedding capacity, BPP is greater by 0.33%,

and in memory and time consumption by 0.006% and 0.06% respectively.

For 1024× 1024 cover size, the results for metrics PSNR, MSE, and BPP are the

same of the size 512×512, but for time and memory consumption both methods take

3

less time and more memory consumption. GEMD is better than EMD in memory and

time consumption by 0.004% and 0.13% respectively.

In addition, the comparison results using two sizes are taken for each method

separately, since as we use grater cover size then we have less time consumption by

0.33% for EMD and 0.38% for GEMD. For memory consumption, using grater size

required more memory for the both methods, by 0.02%. For comparison with known

experiments with 512×512 cover size, we got the practically the same values for

PSNR, MSE, and BPP.

The rest of the thesis is organized as follows. Chapter 2 presents the related work, the

experiments on EMD and GEMD, and problem definition. Data structures for EMD

and GEMD implementation discussed with details and justification for the both

methods are given in Chapter 3. Chapter 4 introduces the implementation of EMD

and GEMD algorithms. Chapter 5 shows the experimental results and their

comparison versus the known experiments. Finally, Chapter 6 concludes the thesis

and discusses the future work.

4

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

2.1 Overview of Steganography

Steganography is a word of two syllables, its origin came from the Greek

language, the first syllable "stegano" means the "covered" or the "secret", while the

second one, "graphy", means the "drawing" or the "writing" ; this word is used

nowadays for a technique of information hiding. Such technique was used in Greece

since the 5th century BC, where the people used it for hiding information on their

slave's head [1]. First, a slave is chosen, then, his head is shaved, and a message is

written on his head. They waited till the slave's hair grew to make sure that the

message is hidden. Then the slave is sent to another place with the message on his

head, where his head is then shaved again to get the confidential message. At the

same time in Greece, steganography technique was used by Spartans against their

enemy Xerxes. The secret message was written on a wood wax tablet and covered to

form a new plane layer of wax and due to this wax looked like a blank.

Steganography technique was used in the World War II to hide the secret information

written on a paper using invisible ink: the paper looks like blank to any person in

natural light. Where the organic compounds are the simplest examples of invisible

ink which turn dark when held invisible ink a flame, such as lemon juice, milk, or

urine. Finally, information was retrieved by using liquids such as water, fruit juices

or vinegar. When the wet paper in the liquid was heated, the paper became dark and

the message written on it using invisible ink becomes visible and readable.

5

2.2 Categories of Steganography

There are many types of techniques used for steganography; they could be divided

mainly into three groups as follows [3]:

2.2.1 Text Steganography

 The hiding information in a text is one of the preferred methods of steganography.

In this type of steganography, there are many techniques used, such as extra white

space method, by appending extra white space between words or at the end of lines

and paragraphs.

2.2.2 Protocol Steganography

The technique used for embedding data within a message which used in the network

transmission is called "the protocol steganography". Hiding of data in the header of a

TCP/IP where some fields or places are either optional or never used is an example.

2.2.3 Audio/Video/Image Steganography

A secret message is hidden in an audio/video/image file. The binary sequence of

audio/video/image file is a bit differing from the main file which is hard to be

detected by the normal human eyes. In Audio/Video/ Image Steganography the most

generally used is Least Significant Bit (LSB) method, where the Least Significant Bit

of each pixel of cover file is replaced with the binary data of secret message stream,

so the changes that are made in least significant bit are too small to be detected by

human eyes.

2.3 Related Work

We briefly survey spatial domain methods [1]. Steganographic algorithms are quite

so many; each one has its own security and complexity, since the main aim for all of

them is to embed large amount of secret data with less effects on the cover file, it

means more embedding capacity Bit Per Pixel (BPP) with good image quality. One

6

of the most common techniques is the LSB replacement method, where it is simple,

fast, and has good stego image quality [2]. In this method the binary secret image is

divided into blocks having L bits, and then embedding each L- block in L LSB's of

each pixel of the cover image, where 1≤ L ≤8. In general, this method can achieve a

good image quality when L ≤3, but for 4≤ L ≤8, the image quality severely decreased

[8].

To improve LSB replacement, many steganographic methods were proposed. In

2001 Wang, & Lin proposed a method that uses an optimal LSB replacement and

genetic algorithm [12], where the genetic algorithm is presented to solve the problem

of hiding data in the L LSBs of the cover image when L is large in order to improve

the image quality and embedding capacity.

In 2002 Yu- Chee proposed a secure data hiding scheme for binary image [10], that

uses a binary cover image to embed as many as log2(mn+1)bits of secret message

into m×n block of binary cover image by changing at most two bits in the block , so

this method has good image quality and embedding capacity.

In 2003 Wu & Tsai proposed a new method called Pixel Value Differencing (PVD)

[13]. In this method, the cover image is divided into non-overlapping blocks of two

adjacent pixels. A difference value is calculated from the values of the two pixels in

each block. All possible difference values are classified into a number of ranges. The

difference value then is replaced by a new value to embed the value of a sub-stream

of the secret message. The number of bits which can be embedded in a pixel pair is

decided by the width of the range that the difference value belongs to [13]. This

method provided a better way to embed larger amount of secret data.

7

In 2005 Wu et al proposed a method based on LSB replacement and PVD methods

[14]. First, a difference value from two adjacent pixels by PVD method is obtained,

where small difference value can be located on a smooth area and the large one is

located on an edged area. In the smooth areas, the secret data is hidden into the cover

image by LSB method while using the PVD method in the edged areas. This method

provided double embedding capacity of PVD method with a good stego image

quality PSNR.

In 2006 Mielikainen proposed a modification to LSB method that uses a pair of

pixels from the cover image as a group [4], where the secret bits are carried in LSB's

of two pixels. Therefore this method has the same payload as LSB replacement

method, but with fewer changes to the cover image pixels. So the performance of this

method is better than LSB replacement, and the direction of modification to the

cover pixels is exploited for data hiding, but there exist two different modification-

directions corresponding to a same pair of secret bits to be embedded, meaning that

the exploitation is incomplete [10].

Also in 2006 Zhang and Wang proposed a new method called Exploiting

Modification Direction (EMD) [15]. The main idea of the EMD method is to use a

separate n-pixel group of a cover image to embed the next digit of (2n+1)-ary k-digit

number representing the next L-bit block from the secret image input and only one

pixel in the group can be changed by ±1. Therefore, this method has very good image

quality and better embedding capacity, but embedding capacity decreases as

increasing n.

8

To improve EMD method Lee et al. proposed Improved EMD (IEMD) method in

2007 [9]. This method uses two pixels from the cover image as group and 8-ary

extraction function. It has greater embedding capacity than EMD, but it uses only

two pixels in a group and cannot use more.

To enhance the hiding capacity of EMD and IEMD methods, a novel information

concealing method based on Exploiting Modification Direction was proposed in

2011 [16]. This method embeds 2x secret digits in the 5-ary notational systems into

each group of (2x + 1) cover pixels, where x is a positive integer. Thus, the proposed

method can provide better hiding capacity.

In 2013 Kuo and Wang provided GEMD method [5], where it uses n-pixels from

the cover image to embed n+1 bits , and at least one pixel value in each group could

be changed by ±1. Also in this method there is no need for transformation, GEMD

maintained good image quality and good embedding capacity, and also it can adjust

the n-pixel size.

Frequency domain uses the transform coefficients to embed secret data. Moreover,

frequency domain techniques are very robust against attacks. In frequency domain

the cover image is transformed into the frequency domain coefficients before

embedding secret messages in it, where the main techniques used are: Discrete

Cosine Transform (DCT) [11], and Discrete Wavelet Transform (DWT), in Discrete

Cosine Transform [17].

 DCT method is used extensively with video and image compression e.g. JPEG

compression, since for each color component the JPEG image format uses a discrete

9

cosine transform to transform successive 8 × 8 pixel blocks of the image into 64

DCT coefficients each [11].

In DWT method [17], the cover image is divided into four sub-images such as

approximation coefficients (CA), horizontal detail coefficients (CH), vertical detail

coefficients (CV) and diagonal detail coefficients (CD). Similarly, the secret image is

decomposed into four sub-images. These sub-images are divided into non-

overlapping blocks. The blocks of approximation coefficients of cover image are

subtracted from approximation coefficient of secret image. The differences of these

coefficients are called error blocks. The replacement of an error block is being done

with the best matched CH block [17].

Though frequency domain methods are more difficult and slower than spatial domain

methods, yet they provide more security [1]. In this work two spatial domain

methods EMD and GEMD will be discussed in details which similar to frequency

domain methods provide greater security by the use of data transformations but in the

spatial domain. In addition, in [7] Kuo and Wang provided a comparison between

EMD and GEMD methods over different values of n-pixel group using the metrics

Peak Signal to Noise Raito (PSNR), Mean Square Error (MSE), and embedding

capacity Bit Per Pixel (BPP). Since they considered the embedding capacity for

GEMD is better than EMD, but the comparison in this case is not valid because the

parameter n has different meaning for EMD and GEMD. For EMD n is the number

of pixel required for one digit among k digits in one block, but for GEMD it is the

total number of pixels required for one block, where in EMD total number of pixels

required for one block is n.k not just n as in GEMD. So we need to analyze and

experimentally study these methods as they exploited the modification of direction

10

with bit differences in embedding and extracting processing, also we compare the

performance of them using the averages of the metrics PSNR, MSE, and BPP in

addition to the memory and time consumption.

2.3.1 EMD Method

Proposed in [14], it uses the next n-pixel group of a cover image to embed one digit

of (2n+1)-ary k-digit number representing the next L-bit block of the secret message

binary stream, and only one pixel value may be changed by ±1.

EMD Embedding Algorithm

Begin

Inputs: cover image, CI (M,N); M is the number of rows; N is the number of

columns; integer, n >0, pixel group size; integer, L >1, input binary stream block

size; binary secret message, S.

Output: stego image, SI(M,N).

Step 1. Get next binary secret message block having L bits, and convert it to

(2n+ 1)-ary k-digit number, where k is defined from the next relations

2L ≤ (2n+1)k

L≤ log2 (2n+1)k

 � ≤ ⌊�. ����(2� + 1)⌋

 � � = �
�

����(����)
�� , (2.1)

where ⌊x⌋ and ⌈x⌉ are floor and ceil functions.

Step 2. For each digit si, i=1, …., k,

 Begin

 Get next pixel group from cover image, CI, X=(x1,x2,...,xn), and calculate

 t=��(�) = � �� . � ��� (2� + 1)
�

�� �
 (2.2)

Calculate

11

 d=(si− t) mod (2n+1) (2.3)

Set

 X'=X (2.3.1)

If d= 0, nothing is made.

If d ≤ n, increase the dth pixel in the pixel group by 1:

 x'd= x'd+1 (2.3.2)

Otherwise, decrease ((2n+1)−d)th pixel in the pixel group by 1:

 x'(2n+1-d)= x'(2n+1-d) - 1 (2.3.3)

End of step2.

Step 3. Go to Step 1 until the secret message is embedded.

Step 4. End.

Figure 2.1 shows the flow chart diagram of EMD embedding, while Figure 2.2

shows the flow chart diagram for Step 2 in EMD embedding.

12

Figure 2.1: Flow chart diagram of EMD embedding

Start

Inputs: n >0, L >1, cover
image, CI, secret message S

Read next binary secret message
block having L bits

Convert L block to (2n+ 1)-ary k-digit number,
Set i=1

t=��(�)= � �� . � ��� (2� + 1)
�

�� �

d=(si− t) mod (2n+1)

Read next pixel group from, CI,
X=(x1,x2,...,xn)

1

3

2

4

5

6

More

blocks?

End

Output: stego image, SI.

7

8 No

Yes

EMD Embedding Procedure

13

EMD Embedding Procedure:

Figure 2.2: Flow chart diagram for EMD Embedding Procedure
(Block 6 in Figure 2.1)

X'=X

Start

d= 0?

i ≤ k ?

d ≤ n ?

x'(2n+1-d)= x'(2n+1-d) - 1

x'd= x'd+1

Yes

Yes

Yes

1

2

3

5

6

i=i+1

Go to 4 in
Figure 2.1

No

No

No

4

7

End

14

EMD Extraction Algorithm

Begin

Inputs: stego image, SI(M,N); M is the number of rows; N is the number of columns;

integer, n>0 pixel group size.

Outputs: binary secret message, S.

Step 0: Set S={ };//empty set.

Step 1. Obtain the next n-pixel block X’=(x'1,x'2,...,x'n) from stego image, SI.

Step 2. Calculate

 s=ef(x'1, x'2, . . ., x'n) = � �′� . � ��� (2� + 1)
�

�� �
 (2.4)

Step 3. Transform s into L-bit binary block and append it to the secret data stream,

S. Go to Step 1.

Step 4. End.

Figure 2.3 shows the flow chart diagram of EMD extraction.

15

Figure 2.3: Flow chart diagram of EMD Extraction

Start

Input: n >0, stego image, SI.

S={ }

s=ef(x'1,x'2,. . ., x'n) � �′� . � ��� (2� + 1)
�

�� �

More

blocks?

Transform s into L-bit binary block and append it
to the binary secret message S

Read next n-pixel block
X’=(x'1,x'2,...,x'n) from SI.

Output: binary secret message S.

1

2

3

4

5

6

7

Yes

No

End

16

EMD Embedding Example

Let we have the following binary secret message

S= 11100 01101 10101 10101 00011 11100 and CI pixel values are:

CI= 162 163 163 161 162 158 163 161

 162 159 155 164 160 155 156 156

If n=2, then we have 2 pixel groups, eg., (x1, x2) = (162 163), and L=5 bits in each

block of secret message, then we get k =3 from Eq. (2.1). For the first 5-bit block,

convert it into (2n+1)-ary k-digit number, so we have in base 5

(11100)2 = (28)10 = (103)5.

Next we take 2 pixels to embed the first digit s=1 and we apply the extraction

function as in Eq. (2.2)

t = (162×1 +163×2) mod 5 = 3

Then calculate the difference d as in Eq. (2.3)

d= (1-3) mod 5,

d= -2 mod 5 = 3.

Since d>n, then modify the pixel at position (2n+1)-d, it means at position 2, so

second pixel will decrease by one, and we get

group1 (x'1,x'2)=(162 162).

We do the same steps for second digit s=0 and second group (x1, x2) = (163 161) as

follows

t = (163×1 +161×2) mod 5 = 0

d= (0-0) mod 5 = 0

Since d=0, then no pixel in a group is modified, then group2 (x'1,x'2) = (163 161).

For third digit s=3 and group3 (x1, x2) = (162 158) we calculate

t = (162×1 +158×2) mod 5 = 3

17

d= (3-3) mod 5 = 0 then

group3 (x'1,x'2)=(162 158).

In the extracting stage if we apply the Eq (2.4) for each group, then we can get our

secret digits as follows

s1= (162×1 +162×2) mod 5 = 1

s2= (163×1 +161×2) mod 5 = 0

s3= (162×1 +158×2) mod 5 = 3

So we get 3 digits in base 5 (103)5, which are converted to binary to get our original

bits (11100)2.

2.3.2 GEMD Method

This method proposed in [5], uses n-pixel group from the cover image to embed a

block of (n+1) bits.

GEMD Embedding Algorithm

Begin

Inputs: Cover image, CI(M,N); M is the number of rows; N is the number of

columns; integer, n>0, defining bit block and pixel group size; binary secret message,

S.

Output: stego image, SI (M,N).

Step 1. Get next n-pixel group X=(x1,x2,...,xn) from cover image CI

Step 2. Get next binary secret message, S, block having (n+1) bits with decimal

value s.

Step 3. Compute ef(x1,x2,...,xn) with the pixel groups:

 t=ef(x1, x2, . . ., xn) = � �� . �2� − 1���� 2����

�� �
 (2.5)

Step 4. Compute the difference d

 d= (s − t) mod 2n+1 (2.6)

18

Step 5. If d=2� then R = 1;

 else if (d< 2�) then R = 2; else R = 3;

Step 6. Switch (R)

Case 1: Let x'n = xn + 1, x'
1 = x1 + 1 . x'

i = xi , i=2,..,n-1

Case 2: let d = (dn dn-1 dn-2… d1 d0)2

 for i =n down to 1 do

 Begin

 if (di = 0 and di-1 = 1) then x'
i = xi + 1;

 else if (di = 1 and di-1 = 0) then x'
i = xi - 1;

 else x'i = xi

 End.

Case 3: Let �′= 2��� − � . Let �′= (dn dn-1 dn-2… d1 d0)2

 for i =n down to 1 do

 Begin

 if (di = 0 and di-1 = 1) then x'
i = xi – 1

 else if (di = 1 and di-1 = 0) then x'
i = xi + 1;

 else x'i = xi

 End.

Step 7. Go to Step1 until secret the message is embedded.

Step 8. End.

Figure 2.4 shows the flow chart diagram of GEMD embedding, while Figure 2.5 and

Figure 2.6 show the flow chart diagram for Step6-Case 2 and Step6-Case 3 in GEMD

embedding respectively.

19

Figure 2.4: Flow chart diagram of GEMD embedding

Start

Inputs: n >0, cover image, CI, secret
message S

Read next n-pixel group X=(x1,x2,...,xn)
from CI

Read next block having (n+1) bits with
decimal value s from binary secret message S

t=ef(x1, x2, . . ., xn) = � �� . �2� − 1���� 2����

�� �

d= (s − t) mod 2n+1

d=2� ?

d <2n ?

x'n = xn + 1,
x'

1 = x1 + 1
x'

i = xi

More

blocks?

Yes

Yes

No

No

No

Yes

1

2

3

4

5 6

7
8

10

9

11

Case 2

Case 3

End

Output: Stego image SI

20

Case 2:

Figure 2.5: Flow chart diagram for Step6-Case 2 in GEMD embedding
(Block 8 in Figure 2.4)

i ≥1 ?

i=n

d = (dn dn-1 dn-2… d1 d0

i=i-1

di = 0 &
di-1 = 1 ?

di = 1 &
di-1 = 0 ?

x'
i = xi

x'
i = xi + 1

x'
i = xi - 1

Yes

Yes

No

No

No

Yes

1

2

3

4

6

7

8

5

9

Start

End

21

Case 3:

Figure 2.6: Flow chart diagram for Step6-Case 3 in GEMD embedding

 (Block 9 in Figure 2.4)

i=n

�′= 2��� − �
d' = (dn dn-1 dn-2… d1 d0)2

i=i-1

di = 0 &
di-1 = 1 ?

di = 1 &
di-1 = 0 ?

x'
i = xi

x'
i = xi - 1

x'
i = xi + 1

Yes

Yes

No

No

No

Yes

1

2

3

4

6

7

8

5

9

Start

End

i ≥1 ?

22

GEMD Extraction Algorithm

Begin

Inputs: stego image, SI(M,N); M is the number of rows; N is the number of columns;

integer, n>0, defining binary block and pixel group size.

Outputs: binary secret message, S.

Step 0. Set S={};//empty set

Step 1. Get next n-pixel group, x=(x1,x2,...,xn), from stego image, SI.

Step 2. Calculate

 s=ef(x'1,x'2,. . ., x'n) = � �′� . �2� − 1���� 2����

�� �
 (2.7)

Step 3. Append s as (n+1)-bit binary block to binary output secret data stream, S.

Step 4. If SI has not processed blocks, go to step1.

Step 5. End

Figure 2.7 shows the flow chart diagram of GEMD extraction.

23

Figure 2.7: Flow chart diagram of GEMD Extraction

Start

 S={ }

s=ef(x'1,x'2,. . ., x'n) = � �′� . �2� − 1���� 2����

�� �

More

blocks?

Append s as (n+1)-bit binary block to binary

output secret data stream, S.

Read next n-pixel block
 X’=(x'1,x'2,...,x'n) from s SI.

1

2

3

4

5

6

7

Yes

No

End

Input: n >0, stego image, SI.

Output: binary secret message S.

24

GEMD Embedding Example

In GEMD method we embed (n+1)-bit blocks in the n-pixel groups, so in the

condition of Example 2, for n=2, we embed 3 bits in 2 pixels, then

Block1= (111)2 = (7)10 =s1

group1 (x1,x2)=(162 163).

From Step 3 in GEMD embedding algorithm

t = (162×1 +163×3) mod 8 =3

From Step 4,

d = (7-3) mod8=4

As d=4=2n, and from Step 6, Case1, the first and last pixels are increased by 1, then

group1 (x'1,x'2)=(163 164).

If we apply the extraction function as in Eq. (2.7)

s1= (163×1 +164×3) mod 8=7

So we get the number (7)10, which if converted to binary gives our original bits

(111)2.

2.4 Known Experiments on EMD and GEMD

In [7] the performance of EMD and GEMD was evaluated using the following

quality metrics.

1. Mean Square Error (MSE) is defined as mean squares differences between

the original cover image and image after embedding [7]:

 2

1 1

1
((,) (,))

M N

c r

MSE CI r c SI r c
M N

 (2.8)

where M is the number of rows and N is the number of columns of the cover and

stego images.CI (r,c) is the original image pixel value and SI(r,c) is stego image

pixel value .

2. Signal Peak to Noise Ratio (PSNR) is calculated as follows

25

 ���� = 10�����
���× ���

���
 dB (2.9)

where 255 is the maximum value of pixels for grey scale images.

3. Embedding capacity Bit Per Pixel (BPP) is defined as the number of secret bits

embedded in each pixel of cover file. For EMD, log2(2n+1) bits that represent a

(2n+1)-ary digit embedded in n pixels, while in GEMD (n+1)- bit values are

embedded in n-pixel group [14]. BPP is calculated for EMD and GEMD as follows

[7]:

 BppEMD =
���� (����)

�
 (2.10)

Where number of bits embedded = log2 (2n+1)

 BppGEMD=
���

�
 (2.11)

The results taken for PSNR and MSE from [7] are shown in Table 2.1, and the

Figure 2.8 shows the four cover images that are used in [7].

Figure 2.8: Cover images used in [7]

26

Table 2.1: EMD-versus-GEMD known comparison results for PSNR and MSE [7]

n=2 n=3 n=4 n=5

EMD GEMD EMD GEMD EMD GEMD EMD
GEM

D

PSNR

(dB)
52.11 50.17 53.57 50.79 54.66 51.00 55.53 51.09

MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18
0.50

(BPP) 1.16 1.50 0.93 1.33 0.79 1.25 0.69
1.20

From Table 2.1, the EMD scheme has very good image quality. Also for EMD

method, the largest embedding capacity is 1.16 BPP when n= 2 and its capacity is

less than 1 BPP when n≥3. For GEMD it maintains good stego image quality, and the

embedding capacity is greater than 1 BPP when number of pixels in each group of

cover image increases [7]. But the comparison in Table 2.1 is not valid because the

parameter n has not the same meaning for both methods. In EMD n is the number of

pixel required for one digit, not for one block as in GEMD.

In the experiments conducted in this thesis, we tried to find the best values of EMD

and GEMD parameters that achieved the results mentioned in Table 2.1 with

minimum number of cover images, and the comparison between both methods will

be taken as the average over the metrics PSNR, MSE, BPP, time and memory

consumption.

2.5 Problem Definition

In this research, two steganographic algorithms, EMD and GEMD, are studied. They

are selected as representing a perspective direction in steganographic methods

combining features from the main two directions: embedding in the space domain (as

LSB-like methods embedding secret data directly in the cover image) and embedding

in the frequency domain [1]. EMD and GEMD embed in the space domain but

27

similar to frequency domain methods use data transformations. In the papers on

EMD and GEMD, justification for the methods is not provided; hence, we prove

their correctness. Also, information is not provided such as data structures and the

implementation details like the input-output data structures. They are experimentally

investigated for image size 512x512, and we extend experiments to 1024x1024 size

images.

Data structures for the both methods and the justification of their correctness will be

explained in Chapter 3. Implementation details will be explained in Chapter 4. The

simulation with the best values for EMD and GEMD parameters that required

minimal number of cover images will be discussed and our results will be compared

first between the both methods and then with the known experiments in Chapter 5.

In Chapter 6, we give conclusions and discuss the future work.

2.6 Summary of Chapter 2

Thus, in this chapter we have presented an overview of steganography and the

related work: we explained two algorithms, EMD, and GEMD with an example for

each of them. We considered the experiments conducted in [7], and finally we

defined the problem.

28

Chapter 3

EMD AND GEMD DATA STRUCTURES AND
JUSTIFICATION OF THE METHODS CORRECTNESS

In this chapter the details of data structures used in the implementation of EMD and

GEMD algorithms will be discussed, such as the input-output data structures.

Justification of EMD and GEMD correctness are given.

3.1 Data Structure and Justification of EMD Correctness

EMD method is described in Section 2.3.1. Now we consider necessary for its

implementation data structures and of EMD correctness.

3.1.1 Data Structure for EMD Embedding

Inputs structure:

1. Integers, n>0, pixel group size; L>1, bit block size.

2. Binary message, S, sized |S| bits, we consider as a sequence of blocks Bi sized

|Bi|=L bits, i=[0,1,…H-1] where the number of blocks H is defined as follows:

 �� = �
|�|

�
�� (3.1)

The last block is padded by zeros when | BH-1 |≠L, Ŝ =S+ zeros (L-|S| mod L), where

+ stands for concatenation, each Bi is converted into k-digit number in the (2n+1)-ary

notational system. Input, S, may be represented as a sequence of digits:

Sdig= [s0,s1,…..si.k+j,…..., s(H-1).k+(k-1)], i=[0,1,…H-1], j=[0,1,…k-1], where si.k+j is j
th

(2n+1)-ary digit of ith k digits (2n+1)-ary number, k is specified as in Eq.(2.1).

3. Grayscale cover image number j from the set of cover images CI is represented as

a matrix CIj [M,N] ,where M is the number of rows and N is the number of columns,

29

(,)jCI r c [0,1,........ 255] . 0≤ r≤ M-1, 0≤ c≤ N-1 ,0≤ j≤ Ñ-1,where Ñ is the number

of cover images that is necessary to embed secret message S defined by following

relation

 Ñ = |��|= �
� × �

�
� (3.2)

 � = �
� × �

�
� (3.3)

where � is the number of n-pixel groups fitting one cover image

Output: Stego images jSI [M, N], with embedded message, 0≤ j≤ Ñ-1.

A cover image is represented by one-dimensional array Xj ={ xj0, xj1,….., xj.(M.N-1)}

by scanning each row of image from left to right and from top to bottom (Row major

order C-style) as in Fig. 3.1:

Figure 3.1: Reshaping cover image as one dimensional array

The one dimensional cover image Xj is divided into non-overlapping groups of n

pixels. Each j-th digit si.k+j of ith k-digit (2n+1)-ary number from Sdig, where Sdig is a

secret message represented as sequence of (2n+1)-ary digits of k-digit numbers,

i=[0,1,…H-1], j=[0,1,…k-1], is embedded in a group of n-pixels

30

 x=[x(i.k+j)n,…… x(i.k+j).n+n-1], i=[0,1,…H-1], j=[0,1,…k-1] that is illustrated by

Figure 3.2.

Figure 3.2: EMD data structure for embedding procedure

For instance, let L=5 bits, n=2 pixels in each group, then 5- bit binary blocks are

converted to 5-ary numbers with k=3 digits, where k is defined by (2.1), so we need 3

groups to embed these 3 digits and each group has 2 pixels, it means that three out of

six pixels will be changed at most.

Example 1. If we have a binary secret message with size |S|=100 bits, and L=5 bits

in each block, then number of these blocks is

� =
|�|

�
 =

���

�
 = 20 blocks

And S may be represented as sequence of blocks [B0, B1……… B19].

If the number of pixels n is two for each group, then (2n+1)-ary is 5-ary. To embed S

we need H .k groups of n pixels, i.e. number of pixels is H.k.n=20.3.2=120 pixels.

31

3.1.2 Data Structures for EMD Extraction

Input structures:

Integer, n>0; defining pixel group size.

Grayscale stego images SIj [M,N] ,where M is the number of rows and N is the

number of columns, (,)jSI r c [0,1,… 255] , 0≤ r≤ M-1 ,0≤ c≤ N-1 ,0≤ j≤ Ñ-1,

where Ñ is the number of stego images that is defined by Eq. (3.2).

Output: Binary secret message, S.

The stego images are represented as one dimensional arrays as in Figure.3.1. One-

dimensional stego image Xj is divided into non-overlapping groups of n pixels. For

each n-pixel group of Xj calculate (2.4). Data structure for extraction procedure is

illustrated in Figure 3.3.

Figure 3.3: EMD data structure for extraction procedure

32

3.1.3 Justification of EMD Correctness

Statement 1.

Let's assume that EMD algorithm from Section 2.3.1 is applied, and digit si is

embedded in a group of n pixels x=(x1,……,xn) resulting in stego image group

x'=(x'1,…x'n). Then by applying Step2 of EMD extraction algorithm, Eq. (2.4), value

of si is returned.

Statement 1 Justification.

From (2,4)

��(��) = � (��
� . �) ��� (2� + 1)

�

�� �

Consider three cases for d calculated by (2.3).

Case 1. d=0. In this case, from (2.3.1), no pixel was modified, and x'= x

��(��) = � (�� . �) ��� (2� + 1)
�

�� �
 (3.4)

From (2.2) , ��(��) = � (3.5)

From (2.3), si= (t+d) mod (2n+1) (3.6)

For d=0, from (3.6), si= t , then from (3.5)

ef(x') =si q.e.d.

 Case 2. d≤n . Then according to (2.3.1), (2.3.2)

�′� = �
�� + 1, � = �

��, � ≠ �
 � = 1,2,. . �� (3.7)

From (2.4), (3.7),

��(��) = � (��
� . �) ��� (2� + 1)

�

�� �

= (�
�� �

�� �
�� . � + �(�� + 1)+ � �� . �

�

�� ���

) ��� (2� + 1)

33

= (�
�

�� �
�� . � + 1. �) ��� (2� + 1)

= (�+ �)��� (2� + 1) , then from (2.5)

��(��) = �� q.e.d.

Case 3. n< d<2n. Let

�� = (2� + 1 − d), �′ ∈ {1,… ,�} (3.8)

� = (2� + 1 − ��)��� (2� + 1)

 = − �′ ��� (2� + 1) (3.9)

 From (2.3.3),

�′� = �
�� − 1, � = �′

��, � ≠ �′
 � = 1,2,. . �� (3.10)

Then, from (2.4), (3.9), (3.10)

��(��) = � (
�

�� �
�′� . �) ��� (2� + 1)

= (�
��� �

�� �
�� . � + ��(��� − 1)+ � �� . �

�

�� ����

) ��� (2� + 1)

= (∑ �
�� � �� . � − 1. ��)��� (2� + 1) (3.11)

= (∑ �
�� � �� . � + 1. �)��� (2� + 1)

= (�+ �)��� (2� + 1) (3.12)

Then, from (2.3), (3.12),

��(��) = �� q.e.d.

3.1 Data Structure and Justification of GEMD Correctness

In GEMD, (n+1) bits are embedded in n adjacent pixels and at least one-pixel value

in each group could be changed.

3.2.1 Data Structure for GEMD Embedding

Input structures:

34

1. Integer, n, n>0, defining pixel group and bit block size.

2. Binary message S sized |S| bits. It is divided into blocks Bi sized |Bi |=L, where

L=n+1 bits, i=0,1,..…H-1, and H is the number of blocks defined as in Eq.(3.1). The

last block is padded by zeros when | BH-1 |≠L, S =S+ zeros (L-|S| mod L).

3. Grayscale cover images CIj [M,N], where M is the number of rows and N is the

number of columns, (,)jCI r c [0,1,… 255] , 0≤ r≤ M-1, 0≤ c≤ N-1, 0≤ j≤ Ñ-1. Ñ

is the number of cover images that is defined by Eq. (3.2) , and is represented by

one-dimensional array as in Figure 3.1.

Output: Stego images jSI [M,N], with embedded message S , 0≤ j≤ Ñ-1 . Data

structure for GEMD embedding is illustrated by Figure 3.4.

Figure 3.4: GEMD data structure for embedding procedure

3.2.2 Data Structure for GEMD Extraction

Input structures:

1. Integer, n, n>0, defining pixel group and bit block size.

35

2. Grayscale stego image SIj [M,N], where M is the number of rows and N is the

number of columns, (,)jSI r c [0,1… 255], 0≤ r≤ M-1, 0≤ c≤ N-1, 0≤ j≤ Ñ-1.

Output: Binary secret message, S. Figure 3.5 shows data structure for GEMD

extraction.

Figure 3.5: GEMD data structure for extraction procedure

3.2.3 Justification of GEMD Correctness

Statement 2.

Let's apply GEMD embedding algorithm with parameter n from Section 2.3.2,

resulting in Ñ modified stego images with embedded secret message S. Then,

application of GEMD extraction algorithm to these stego images results in original

secret message S.

36

Statement 2 Justification.

Let's consider next n pixel block from the stego image X'=(x'1,…x'n) which was

obtained by embedding of (n+1)-bit block number s from the input secret binary

stream S, by Step3-Step6 transformation of the original stego image block

X=(x1,…xn).

From (2.7)

��(�′)= � �′� . �2� − 1���� 2����

�� �
 (3.13)

Consider in (2.6) d=2�, then from Step 6, Case1, we have

x'
n = xn + 1, x'

1 = x1 + 1, i=1,…,n (3.14)

Then, from (3.13), (3.14)

��(��) = ((�� + 1)(2� − 1)+ � �� . �2� − 1�+ (�� + 1)(2� − 1))��� 2���

�� �

�� �

= (� �� . �2� − 1�+ 1. (2� − 1)+ 1. (2� − 1))��� 2���

�

�� �

= (� �� . �2� − 1�+ 2�) ��� 2����

�� �
 (3.15)

From (2.5), (2.6), (3.15), we get

s= (t+d) mod 2n+1 = ��(��) , q.e.d.

Consider in (2.6), d<2�.

Let binary representation of d is as follows:

d=� �� . 2��

�� �
, and dn=0 (3.16)

If, for simplicity,

d=2k, k<n (3.17)

Then, according to Step6, Case2,

x'k+1=xk+1+1 (increase left neighbor) (3.18)

x'k=xk -1 (decrease current position) (3.19)

37

Then from (2.7), (3.18), (3.19)

��(�′)= � �′� . �2� − 1���� 2���

�

�� �

= (�
�� �

�� �
�� �2� − 1�+ (�� − 1)(2� − 1)+ (���� + 1)(2��� − 1)

+ � �� �2� − 1�

�

�� ���

) ��� (2���)

=(� �� . �2� − 1�− 2� + 1 + 2��� − 1)��� 2����

�� �

=(��(�)+ 2�)��� 2��� (3.20)

From (2.5), (2.6), (3.17), (3.20),

��(��) = (��(�)+ �)��� 2��� = (�+ �)��� 2��� = � .

Thus, GEMD works correctly in the case when binary representation of d has just

one 1. In the case of several consecutive ones in the binary representation of d, let,

dk+1=0, dk=dk-1=…..=dj=1, dj-1=0, j<k. (3.21)

Applying for each di =1,i=j,…,k, considered above embedding, i.e. x'i+1=xi+1+1,

x'i=xi -1, i=j,..,k, we see that as far as each x'i; i=j+1,…, k, is modified twice, once

increased as a left neighbor, and once decreased as being in the current position,

hence ultimately, only x'k+1 ,and x'j are modified:

x'k+1=xi+1+1, x'j=xj -1, that just corresponds to Case 2 modifications of Step6 in the

GEMD Embedding algorithm. q.e.d.

38

For example, we have n=5 pixels in a group, and d is as follows in binary:

 x5 x4 x3 x2 x1 pixels

d5 d4 d3 d2 d1 d0

0 1 1 1 0 0 Binary

values

 k=4 J=2

Then we have 3 consecutive ones in positions 4,..,2,k=4, j=2 in (3.21). According to

(3.18), (3.19), the first change from 0 to 1 is at position k=4, so

x'5=x5+1, x'4=x4-1 (3.22)

Then d3=1, and by (3.18), (3.19),

x'4=x4+1, x'3=x3-1 (3.23)

Then d2=1, and by (3.18), (3.19),

x'3=x3+1, x'2=x2-1 (3.24)

Then we get from (3.22), (3.23), (3.24)

x'5=x5+1

x'4=x4-1 and x'4=x4+1 , so x'4=x4 (3.25)

x'3=x3-1 and x'3=x3+1 , so x'3=x3

x'2=x2 - 1

Hence for this case of k=4, j=2, we have ultimately for (3.25) x'5=x5+1, x'2=x2 – 1,

x'i=xi , i=j+1,….,k, that complies with Step6, Case2 of the GEMD Embedding

algorithm. q.e.d.

Consider in (2.6), d>2�,

�� = 2��� − � < 2� , so, � = − �� ��� 2��� , and in binary

d'= (dn dn-1 dn-2… d1 d0)2 , i.e.

 d'= � �′� . 2��

�� �
 <2� (3.26)

39

Let

 d'=2k , k<n (3.27)

Then similar to the Case2, but now considering according to Step6, Case3 of the

GEMD Embedding algorithm, we used decreasing, and x'k+1=xk+1 -1, x'k=xk+1. Then

we have from (2.7), (3.27)

��(�′)= � �′� . �2� − 1���� 2���

�

�� �

= � �
�� �

�� �
�� �2� − 1�+ (�� + 1)(2� − 1)+ (���� − 1)(2��� − 1)

+ � �� �2� − 1�

�

�� ���

� ��� 2���

 =(� �� . �2� − 1�+ 2� − 1 − 2��� + 1)��� 2����

�� �

 = (��(�)− 2�)��� 2���

 = (��(�)− �′)��� 2��� (3.28)

As we have � = − �� ��� 2���, then from (2.7), (2.8), (3.28),

��(��) = (��(�)+ �)��� 2��� = �

In the case of several consecutive ones appearance in d' is considered just as in the

Case2. q.e.d.

3.2 Summary of Chapter 3

Thus, in this chapter we have considered details of data structures for input, output of

EMD and GEMD that is necessary for their implementation and proved correctness

of them. In the next Chapter 4 the implementation of the methods will be discussed.

40

Chapter 4

IMPLEMENTATION OF THE EMD AND GEMD

In this chapter, we will show the implementation of EMD and GEMD schemes. In

testing the algorithms, a personal computer with the following characteristics was

used; CPU: Intel ®Core (MT) i3 3210M 2.10 GHz, with a memory of 2GB,

Windows 7 operation system, and MATLAB 2013 was used for simulation.

4.1 EMD Implementation

 In EMD implementation, four gray scale secret images with same size 512×512

pixels are used; also the cover images are in the size 512×512. First, we need to

specify the number of pixels n in each group of cover image, and then the number of

bits L in each block of secret message which will be represented by k-digit (2n+1)-

ary number, where k is calculated in the main program as follows (full code is in

Appendix A.1):

1.addpath('cover_set/');addpath('secret_set/');

2.img_name = 'P';sec_name='S';
3. M=512; N=M;

4. L=input('Input L: the number of bits in a block ');

5. n=input(' Input n: the number of pixels in a group ');

6. k=ceil(L/(log2(2*n+1)))

7. Bpp=(log2(2*n+1))/n

8. Sec = imread([sec_name, '',num2str(1) '.jpg']);

9. S =reshap_im(sec,M,N);

10.[Bin]= conv2binary(S);

11.s_size=numel(Bin)

12.SS=[Bin zeros(1,(L-(mod(s_size,L))))]

13. H=ceil(s_size /L);

14.Cover_im = ceil((H*k)/C);

41

In line 3 we specify the size of cover image and secret image, rows M, and columns

N as 512×512. In line 6 we calculate the number of digits k as (2.1), and in line 7 we

calculate the embedding capacity BPP as in (2.10). In line 8 we read the first secret

image as we have four gray scale secret images and in line 9 we reshape it into one

dimensional array by reshap_im function (A.2). In line 10, we convert each pixel of

the secret image into binary by calling conv2binary function (A.3). In line 12 last

block of binary secret message may padded by zeros, and in lines 13, 14, the

number of blocks H and the number of cover image are calculated as (3.1), (3.2)

respectively, then the result is as follows.

Input L: the number of bits in a block 16

Input n: the number of pixels in a group 2

k = 7

H= 131072

Cover_im = 7

Necessary for CI number formulas were derived in ch3. In the main program (A.1)

the functions are called as follows

1. Covers = uint8(zeros(M,N,Cover_im));

2. Stegos = uint8(zeros(M,N,Cover_im));

3. [Dig] = BTO2NP1(SS,L,k,n,H);

4. h=1;

5. for i=1:Cover_im

6. tic

7. CI = imread([img_name, '',num2str(i) '.tif']);

8. Covers(:,:,i)=CI;

9. ci1 =reshap_im(CI,M,N);

10. x=1;

11. for r=1:C

12. group= ci1((x-1)*n+1:x*n);

13. [em_group]=embed(group,Dig(h),n);

14. ci1((x-1)*n+1:x*n)=[em_group];

15. h=h+1;

16. x=x+1;

17. end

18. ci2 =reshap_im2(ci1,M,N);

42

19. Stegos(:,:,i)=ci2;

20. tim(i)=toc

21. mem= memory

22. end

In line 3 we convert each L-bit block of secret message SS into k-digit (2n+1)-ary

number by BTO2NP1 function (A.4). In lines 6 and 20 we calculate the time

consumption in seconds with a function that starts timer, tic, in line 6, and stop it by

toc in line 20 as one cover image is embedded completely, while in line 21 memory

consumption is calculated in MB. As we get n-pixel group from cover image in line

12, one digit is embedded each time in n-pixel group by embed function given in

Appendix A.5, according to description in Section 2.3.1 as follows

function [em_group] = embed(group, Dig,n)

sum=0;

 for i=1:n

 sum =sum +double(group(i))*i ;

 end

t=mod(sum,(2*n+1));

d=mod((Dig -t),(2*n+1));

if (d<=n && d>0)

 group(d)=(group(d))+1;

elseif (d>n)

 group(((2*n+1))-d)=(group(((2*n+1))-d))-1;

end

em_group= group;

end

From main program code, in line 18, we reshape stego image into two dimensional

array as in Appendix A.11, and then in line 19 it is saved in array of set stego images

that presented by the code in Appendix A.6. The results are available in Appendix

A.8.1.

43

disp('===')

disp('stego image PSNR MSE Time Memory Capacity')

disp(' dB sec MB bpp ')

disp('==')

set(gcf, 'name', ' Secret Image in case n=2');

 for i=1:Cover_im

subplot(3,3,i) ; imshow((Stegos(:,:,i)));

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i));

title(['PSNR = ',num2str(PSNR)]);

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),me

m,Bpp)

disp('===')

sum_time=sum_time+tim(i);

sum_psnr=sum_psnr+PSNR(i);

sum_mse=sum_mse+MSE(i);

 end

psnr_avg=sum_psnr/Cover_im

mse_avg=sum_mse/Cover_im

tim_avg=sum_time/Cover_im

sprintf('Average ')

disp('===')

sprintf('%f%f %f%f %f',psnr_avg,mse_avg,tim_avg,mem,Bpp)

Image quality PSNR (2.9) and MSE (2.8) are calculated in the following function

given in Appendix A.7:

function [My_psnr MSE] = My_PSNR(I,J)

 X = double(I);

 Y = double(J);

 MSE = sum((X(:)-Y(:)).^2) / prod(size(X)) ;

 My_psnr = 10*log10(255 * 255/MSE);

End

As a sample output of our implementation, the results for first gray scale secret

image (Balloon) that embedded in 7 cover images when n=2, L= 16 bits are shown

Figures 4.1 and 4.2.

44

Figure 4.1: Seven stego images in EMD implementation Appendix A.8.1 (1) Lena;

(2) Baboon.; (3) F16; (4) Barbara. (5) Monaliza; (6) Tiffany; (7) Girl.

Figure 4.2: EMD implementation results in case n=2. Appendix A.8.1

For extraction stage in the following code, as we extract binary message from

EXTRACTION function, Appendix A.10, we convert each 8 bits to decimal to

represent a pixel, and then we reshape the steam of numbers into two dimensions,

45

Appendix A.11, to get our secret message as shown in Figure 4.3, and in the next

code, Appendix A.9.

for j=1:Cover_im

 Stegos1(1,:,j)=reshap_im(Stegos(:,:,j),M,N);

end

 [secret_message]= EXTRACTION(Stegos1,k,n,H,L);

 v=1;

for i=1:M*N

 bmess=secret_message((v-1)*8+1:v*8);

 a=bin2dec(num2str(bmess));

 d_msg=[d_msg a];

 v=v+1;

 end

 secret_im=reshap_im2(d_msg,M,N);

 set(gcf,'name',' Extracted Secret image');

 imshow(uint8(secret_im));

Figure 4.3: Extracted Secret image

4.2 GEMD Implementation

In this method no need for transformation, so L= (n+1) bits are embedded in n pixel

group. Use already defined formulas. After specifying n and L in the main program,

Appendix B.1, we read the secret image and reshape it into one dimensional array,

46

Appendix B.2, then convert it to binary by conv2binary function, Appendix B.3.

Binary secret message stream is divided then into (n+1)-bit blocks and then to

decimal numbers by next function, Appendix B.4:

function [Num] = GET_B(S,L,H)

 Num=[];

 for i=1:H

 B= S((i-1)*L+1:i*L);

 d=bin2dec(num2str(B));

 Num=[Num d];

 end

end

Embedding function, Appendix B.5, is as follows.

function [em_group] = GEMDembed(group,num,n)

1 sum=0;

2 for i=1:n

3 sum = sum + double(group(i)) *((2^i)-1);

4 end

5 t=mod(sum,(2^(n+1)));

6 d=mod(num -t,(2^(n+1)));

7 if (d==2^n) R=1;

8 elseif(d<(2^n)) R=2;

9 else R=3;

10 end

11 switch R

12 case 1

13 group(n)= group(n)+1;

14 group(1)= group(1)+1;

15 case 2

16 d=dec2bin(d,(n+1));

17 for i=0:n-1

18 if ((d(i+1)=='1')&&(d(i+2)=='0'))

19 group(n-i)=group(n-i)-1;

20 elseif ((d(i+1)=='0')&&(d(i+2)=='1'))

21 group(n-i)=group(n-i)+1;

22 end

23 end

24 case 3

25 d=(2^(n+1))-d;

47

26 b=dec2bin(d,(n+1));

27 for j=0:n-1

28 if((b(j+1)=='1')&&(b(j+2)=='0'))

29 group(n-j)= group(n-j)+1;

30 elseif((b(j+1)=='0')&&(b(j+2)=='1'))

31 group(n-j)= group(n-j)-1;

32 end

33 end

34 end

35 em_group= group;
end

In lines 1-5, we calculate the extraction function (2.5) described in Section 2.3.2, and

(2.6) in line 6. Then lines 7- 10 are the Step 5 in GEMD embedding algorithm. Step

6, Case 1 is implemented in the lines 12-14, and in lines 15-23, we apply Step 6,

Case 2; lines 24-35 are the Step 6, Case3 in GEMD embedding algorithm. Here in

lines 16-17 and lines 26-27 we did not change the positions of d bits, since Matlab

starts from left to right, it means from most to least significant bit as we have in the

GEMD embedding algorithm. GEMD results are presented by the following code,

Appendix B.6, PSNR (2.9), MSE (2.8), GEMD embedding capacity BPP (2.11), time

and memory consumption, Appendix B.1, results are available in Appendix B.8.1.

disp('===')

disp('stego image PSNR MSE Time Memory Capacity')

disp(' dB sec MB bpp ')

disp('==')

set(gcf, 'name', ' Secret Image in case n=2');

 for i=1:Cover_im

subplot(2,3,i) ; imshow((Stegos(:,:,i)));

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i));

title(['PSNR = ',num2str(PSNR(i))]);

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),me

m,Bpp)

disp('===')

sum_time=sum_time+tim(i);

sum_psnr=sum_psnr+PSNR(i);

48

sum_mse=sum_mse+MSE(i);

 end

psnr_used=(sum_psnr- PSNR(Cover_im))/(Cover_im-1);

mse_ used =(sum_mse - MSE(Cover_im))/(Cover_im-1);

tim_ used =(sum_time- tim(Cover_im))/(Cover_im-1);

psnr_set=sum_psnr/Cover_im;

mse_set=sum_mse/Cover_im;

tim_set=sum_time/Cover_im;

sprintf(' Average on fully used ')

disp('===')

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_used,mse_used,tim_use

d, mem,Bpp)

sprintf(' Average on fully set ')

disp('===')

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_set,mse_set,tim_set,m

em,Bpp)

Figure 4.4: Six stego images in GEMD implementation. Appendix B.8.1

49

Figure 4.5: GEMD implementation results in case n=2. Appendix B.8.1

As a sample output of our implementation in Figures 4.4 and 4.5, we see that last

image has greater PSNR and less MSE since fewer pixels are changed because it was

not embedded completely, where number of cover image is calculated according to

(3.2). Also from Figure 4.5 the average on fully used is taken for the first 5 images

that are fully embedded, while the average on fully set is taken for all stego images,

since the last image not fully embedded. In the extraction code in main program,

Appendix B.9, we call the extraction function, Appendix B.10, and then convert each

8 bits to decimal to represent a pixel, then reshape into two dimensions, Appendix

B.4, to get our secret message. Next is the extraction function code, Appendix B.10:

function [B_msg]= EXTRACTION(Stegos1,H,n)

B_msg=[];

 for i=1:H

 group= Stegos1((i-1)*n+1:i*n);

 sum=0;

 for j=1:n

 sum = sum + double(group(j)) *((2^j)-1);

 end

 t=mod(sum,(2^(n+1)));

50

 bin=dec2bin(t,n+1);

 B_msg=[B_msg bin];

 end

 B_msg;

 end

4.2 Summary of Chapter 4

Thus, in this chapter we have implemented and explained EMD and GEMD codes as

we take n=2 pixels as an example in both methods, and the results in this case were

shown. Furthermore the results for different values of n and full codes for all

functions in both methods are available in Appendix.

51

Chapter 5

SIMULATION AND RESULTS

In this chapter we discuss the results of EMD and GEMD simulations for different

number of pixels n in a group used in the cover images.

5.1 EMD Simulation

Gray scale secret images of size 512×512 used in the experiments are shown in

Figure 5.1. Also cover images used in the experiments are shown in the Figure 5.2.

To investigate the effect of using different sizes, the results are taken for two cover

image sizes 512×512 and 1024×1024.

Figure 5.1: Gray scale secret images (1) Balloon; (2) Tiffany; (3) Boat; (4) Pepper

52

Figure 5.2: Gray scale cover images used in EMD and GEMD simulation

EMD optimal parameters used in the simulations are given in Table 5.1. Where k is

calculated as (2.1), and number of cover images Ñ as (3.2).

Table 5.1: EMD parameters of the simulation with 512×512 cover images

parameter
Number of pixels n for one digit

2 3 4 5

L bits 16 16 32 64

k digits 7 6 11 19

cover images Ñ 7 10 11 12

From Table 5.1, and for n= 2, L= 16, and k = 7, where k is calculated as in (2.1) then

number of cover images Ñ necessary for one secret image is calculated as follows

First, we find the number of blocks H, according to (3.1) �� = �
|�|

�
��

Where |S| is the size of binary secret image S, |S| = 512×512×8=2097152 bits

�� = �
2097152 bits

16 ����
��= 131072 ������

From (3.2)

 Ñ = �
� × �

�
�= �

������× �

�
�

53

From (3.3), � = �
� × �

�
� = �

���× ���

�
�=131072 n-pixel groups

Then,

Ñ= �
������× �

�
�= 7 cover images.

For n=3 pixels, L= 16 bits, and k = 6 digits, then

�� = �
2097152 bits

16 ����
��= 131072 ������

Ñ = �
������× �

�
���× ���

�
�

� = 10 cover images

For n=4 pixels, L= 32 bits, and k = 11 digits, then

�� = �
2097152 bits

32 ����
��= 65536 ������

Ñ = �
�����× ��

�
���× ���

�
�

� = 11 cover images

For n=5 pixels, L= 64 bits, and k = 19 digits, then

�� = �
2097152 bits

64 ����
��= 32768 ������

Ñ = �
�����× ��

�
���× ���

�
�

� = 12 cover images

For 1024×1024 cover image, and with the same EMD parameters (L and k) in Table

5.1, we got different numbers of cover images required for one secret image using

(3.1), (3.2), and (3.3) in each case of n as shown in Table 5.2.

54

Table 5.2: EMD parameters of the simulation for 1024×1024 cover images

parameter
Number of pixels n for one digit

2 3 4 5

L bits 16 16 32 64

k digits 7 6 11 19

cover images Ñ 2 3 3 3

From Table 5.2 we note that as we increase cover image size then we need less

number of cover images. Table 5.3 shows the EMD average results using 512×512

cover image size for different values of n that obtained from the Appendix A.8. As in

some cases we have two averages, fully used and fully set, where the average fully

used indicates to the averages of PSNR, MSE, memory and time consumption for the

fully images used (without the last image that not fully embedded), while the average

fully set refers to the averages for the fully images set (with the last image that not

fully embedded).

Table 5.3: EMD average results for 512×512 cover images

Metric average
Number of pixels n for one digit

2 3 4 5

PSNR

(dB)

Fully

used
52.11 53.57 54.66 55.53

Fully

set
 58.45 55.70

MSE

Fully

used
0.40 0.28 0.22 0.18

Fully

set
 0.25 0.17

Time

(sec)

Fully

used
7.81 6.38 4.66 3.97

Fully

set
 5.76 3.82

Memory (MB) 481 486 490 496

Capacity (BPP) 1.16 0.93 0.79 0.69

55

Table 5.4 shows the EMD average results for 1024×1024 cover images, the results

are obtained from Appendix A.8.

Table 5.4: EMD average results for 1024×1024 cover images

Metric average
Number of pixels n for one digit

2 3 4 5

PSNR

(dB)

Fully

used
52.11 53.57 54.66 55.53

Fully

set
52.73 55.58 55.08 55.68

MSE

Fully

used
0.40 0.28 0.22 0.18

Fully

set
0.37 0.21 0.20 0.18

Time

(sec)

Fully

used
5.72 4.31 3.02 2.18

Fully

set
5.36 4.14 2.91 2.12

Memory (MB) 493 495 497 500

Capacity (BPP) 1.16 1.16 0.93 0.69

From Table 5.3 and Table 5.4 The comparison for metrics are taken for fully used

averages since the fully set average is not found in some cases in 512×512 cover

images Table 5.3. For both sizes we got the same results for PSNR and MSE since in

EMD embedding algorithm only one pixel in a group could be changed by ±1, it

means not depends on the size, also for embedding capacity that calculated according

to (2.10)For both sizes the PSNR for fully used average is better than 52 dB as the

number of pixels in the cover image increases which is illustrated in Figure 5.3.

56

Figure 5.3: PSNR of EMD using 512×512 and 1024×1024 cover image size

Also from Table 5.3 and Table 5.4, MSE decreases from 0.40 to 0.18 as n increases

from 2 to 5 pixels as shown in Figure 5.4.

Figure 5.4: MSE of EMD using 512×512 and 1024×1024 cover image size

Figure 5.5 sows the EMD embedding capacity for both sizes in Table 5.3 and Table

5.4 that decreases from 1.16 BPP to 0.69 BPP when n ranges from 2 to 5 pixels.

57

Figure 5.5: BPP of EMD using 512×512 and 1024×1024 cover image size

From Table 5.3 and Table 5.4 we note that for memory and time consumption we got

different values. For time consumption, EMD using 1024×1024 cover images takes

less time than using 512×512 cover images, since in using 512×512 cover images

takes more cover image in each case of n it means more time consumption for

processing data. From Table 5.3 Time consumption decreases with n for fully set

average; it decreases from 7.81 sec to 3.97 sec, while in Table 5.4 it decreases from

5.72 sec to 2.18 sec when n ranges from 2 to 5 pixels as shown in Figure 5.6.

58

Figure 5.6: Time consumption of EMD using 512×512 and 1024×1024

cover image size

For memory consumption, EMD using 1024×1024 cover images in Table 5.4 takes

more memory than using 512×512 cover images as in from Table 5.3 where memory

consumption increases with n for fully set average; it increases 481MB to 496 MB.

On the other hand using 1024×1024 cover images Table 5.4, memory consumption

increases from 493 MB to 500 MB when n ranges from 2 to 5 pixels as shown in

Figure 5.7.

Figure 5.7: Memory consumption of EMD using 512×512 and 1024×1024

cover image size

59

From Table 5.3 and Table5.4 we can summarize the results in Table 5.5 as

comparison results using 512×512 and 1024×1024 size of cover image for EMD

method.

Table 5.5: Comparison results for EMD in two sizes of cover image

metric
EMD method

512×512 1024×1024

PSNR(dB) 53.97 53.97

MSE 0.27 0.27

Time (sec) 5.71 3.81

Memory (MB) 488 496

Capacity (BPP) 0.89 0.89

From Table 5.5 we find that as we use grater size of cover image then we have less

time consumption by 0.33% for EMD, since in case of using 512 × 512 cover

images, we need more cover images and then more time for data processing. For

memory consumption, using 1024 × 1024 cover images required more memory by

0.02%. On the other hand, for both sizes we get the same results for EMD metrics

PSNR, MSE, and embedding capacity BPP. The results for both cover image sizes

are obtained from appendix A.

5.2 GEMD Simulation

In GEMD, we take L=n+1 bits to embed in n pixels. GEMD parameters used in the

simulations are given in Table 5.6. Number of cover images is calculated as (3.2).

60

Table 5.6: GEMD parameters of the simulation for 512×512 cover images
parameter Number of pixels n for one block L

2 3 4 5

L bits 3 4 5 6

cover image Ñ 6 7 7 7

From Table 5.3, and for n =2, L= 3, then

�� = �
2097152 bits

3 ����
��= 699051 ������

Ñ = �
������

�
���× ���

�
�
� = 6 cover images

For n=3 pixels, L= 4 bits, then

�� = �
2097152 bits

4 ����
��= 524288 ������

Ñ = �
������

�
���× ���

�
�
� = 7 cover images

For n=4 pixels, L= 5 bits, then

�� = �
2097152 bits

5 ����
��= 419431 ������

Ñ = �
������

�
���× ���

�
�
� = 7 cover images

For n=5 pixels, L= 6 bits, then

�� = �
2097152 bits

6 ����
��= 349526 ������

Ñ = �
������

�
���× ���

�
�
� = 7 cover images

61

For 1024×1024 cover image, and with the same GEMD parameter L in Table 5.6,

we got different numbers of cover images required for one secret image using (3.1),

(3.2), and (3.3) in each case of n as shown in Table 5.7.

Table 5.7: GEMD parameters of the simulation for 1024×1024 cover images
parameter Number of pixels n for one block L

2 3 4 5

L bits 3 4 5 6

cover images Ñ 2 2 2 2

From Table 5.6 and Table 5.7 we note that as we increase cover image size then we

need less number of cover images. Table 5.8 shows the GEMD average results for

both cover image sizes that are obtained from Appendix B.

Table 5.8: GEMD average results for 512×512 cover images

Metric average
Number of pixels n for one block L

2 3 4 5

PSNR

(dB)

Fully

used
50.17 50.79 51.01 51.09

Fully

set
50.96 57.72 51.58 51.33

MSE

Fully

used
0.62 0.54 0.51 0.50

Fully

set
0.55 0.46 0.47 0.48

Time

(Sec)

Fully

used
7.61 5.84 4.40 3.60

Fully

set
6.80 5.03 4.18 3.42

Memory (MB) 480 484 487 491

Capacity (BPP) 1.50 1.33 1.25 1.20

62

Table 5.9: GEMD average results for 1024×1024 cover images

Metric average
Number of pixels n for one digit

2 3 4 5

PSNR

(dB)

Fully

used
50.16 50.79 51.01 51.09

Fully

set
52.55 52.30 52.11 51.97

MSE

Fully

used
0.62 0.54 0.51 0.50

Fully

set
0.42 0.41 0.41 0.42

Time

(sec)

Fully

used
4.61 3.77 2.92 2.02

Fully

set
4.26 3.31 2.47 1.97

Memory (MB) 491 493 496 498

Capacity (BPP) 1.50 1.33 1.25 1.20

From Table 5.8 and Table 5.9, we have in GEMD results two averages, the first one

for the averages without the last image, while the second one for the averages with

the last image that not fully embedded as we calculated above for all cases of n. For

both sizes we got the same results for PSNR and MSE since in GEMD embedding

algorithm more than one pixel in a group could be changed by ±1, it means not

depends on the size, also for embedding capacity that calculated according to (2.11).

Also for both tables, image quality PSNR for GEMD is nearly 51 dB as illustrated in

Figure 5.8.

63

Figure 5.8: PSNR of GEMD using 512×512 and 1024×1024 cover image size

On the other hand MSE decreases with n; for both sizes it decreases from 0.62 to

0.50 as shown in Figure 5.9.

Figure 5.9: MSE of GEMD using 512×512 and 1024×1024 cover image size

For both sizes, embedding capacity BPP, it decreases from 1.50 BPP to 1.20 BPP as

n increases from 2 to 5 pixels as shown in Figure 5.10.

64

Figure 5.10: BPP of GEMD using 512×512 and 1024×1024 cover image size

From Table 5.8 and Table 5.9 we note that for memory and time consumption we got

different values. For time consumption, GEMD using 1024×1024 cover images takes

less time than using 512×512 cover images, where time consumption decreases with

n for fully set average; from Table 5.8 it decreases from 7.61 sec to 3.60 sec, while in

Table 5.9 it decreases from 4.61 sec to 2.02 sec when n ranges from 2 to 5 pixels as

shown in Figure 5.11.

Figure 5.11: Time consumption of GEMD using 512×512 and 1024×1024 cover

image size

65

For memory consumption, GEMD using 1024×1024 cover images in Table 5.9 takes

more memory than using 512×512 cover images, since using greater size required to

reserve greater locations in memory for array image size. In from Table 5.8 memory

consumption increases with n for fully set average; it increases from 480MB to 491

MB. On the other hand using 1024×1024 cover images Table 5.9 memory

consumption increases from 491 MB to 498 MB when n ranges from 2 to 5 pixels as

shown in Figure 5.12.

 Figure 5.12: Memory consumption of GEMD using 512×512 and 1024×1024 cover

image size

From Table 5.8 and Table 5.9 we can summarize the results in Table 5.10 as

comparison results using 512×512 and 1024×1024 size of cover image for GEMD

method.

66

Table 5.10: Comparison results for GEMD in two sizes of cover image

metric
GEMD method

512×512 1024×1024

PSNR(dB) 50.77 50.77

MSE 0.54 0.54

Time (sec) 5.36 3.33

Memory (MB) 485 494

Capacity
(BPP)

1.32 1.32

From Table 5.10 we find that as we use grater size of cover image then we have less

time consumption by 0.38% for GEMD. Since in case of using 512 × 512 cover

images, we need more cover images and then more time for data processing. For

memory consumption, using 1024 × 1024 cover images required more memory by

0.02%. On the other hand, for both sizes we get the same results for metrics PSNR,

MSE, and embedding capacity BPP. The GEMD results for both cover image sizes

are obtained from appendix B.

5.3 EMD and GEMD Comparison Results

The comparison results for both methods are obtained for MSE (2.8), PSNR (2.9),

embedding capacity Bit Per Pixel BPP (2.10), (2.11), memory and time consumption,

where the average is taken for each metric over n because n for each method has

different meaning. It means for EMD the number of pixels required to embed one

digit from the block, while in GEMD it is the number of pixels required to embed

one block. Table 5.11 shows EMD-versus-GEMD comparison results using 512×512

cover images, where the results are obtained from Table 5.3, Table 5.8.while Table

5.12 shows EMD-versus-GEMD comparison results using 1024×1024 cover images,

where the results are obtained from Table 5.4, Table 5.9

67

Table 5.11: The EMD-versus-GEMD results for 512×512 cover images

method
Metric

PSNR
(dB)

MSE
Time
(Sec)

Memory
(MB)

Capacity
 (BPP)

EMD 53.97 0.27 5.71 488 0.89

GEMD 50.77 0.54 5.36 485 1.32

Table 5.12: The EMD-versus-GEMD results for 1024×1024 cover images

method
Metric

PSNR
(dB)

MSE
Time
(Sec)

Memory
(MB)

Capacity
 (BPP)

EMD 53.97 0.27 3.81 496 0.89

GEMD 50.77 0.54 3.33 494 1.32

From Table 5.11 and Table 5.12, we find that EMD stego image quality PSNR is

better than 53 dB, since in embedding procedure only one pixel among n-pixel group

is modified, while in GEMD it is nearly 51 dB, because more than one pixel in each

n-pixel group could be modified. So in both sizes PSNR in EMD is better than

GEMD by 0.06. For MSE comparison result, in both sizes EMD has less error than

GEMD by 0.5%, since fewer pixels are changed. On the other hand, GEMD is better

in embedding capacity, BPP, by 0.33%. GEMD has less memory and time

consumption for both sizes. For 512×512 cover images in Table 5.11, GEMD is

better in memory and time consumption by 0.006% and 0.06% respectively. While

for using 1024×1024 cover images in Table 5.12, GEMD is better in memory and

time consumption by 0.004% and 0.13% respectively.

5.4 Comparison Results to Known Experiments

From the known experiments conducted in Section 2.4, Table 2.1 and our results

using 512×512 cover images in Table 5.3 and Table 5.8, we get the same results for

the image quality PSNR, MSE and the embedding capacity BPP different cases of n

as shown in Table 5.13.

68

 Table 5.13: EMD and GEMD comparison results versus known experiments for
512×512 cover images

5.5 Summary of Chapter 5

Thus, in this chapter we have discussed and compared EMD and GEMD results with

same size and also with different size of cover images which are obtained from

Appendixes, as we also compare these results with known experiments [7] presented

in Section 2.4.

Result Metric
n=2 pixels n=3 pixels n=4 pixels n=5 pixels

EMD GEMD EMD GEMD EMD GEMD EMD GEMD

[7]

PSNR 52.11 50.17 53.57 50.79 54.66 51.00 55.53 51.09

MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18 0.50

BPP 1.16 1.50 0.93 1.33 0.79 1.25 0.69 1.20

Our

PSNR 52.11 50.17 53.57 50.79 54.66 51.01 55.53 51.09

MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18 0.50

BPP 1.16 1.50 0.93 1.33 0.79 1.25 0.69 1.20

69

Chapter 6

CONCLUSION AND THE FUTURE WORK

This thesis analyzes two steganographic methods; EMD and GEMD. The algorithms are

explained in details such as the input, output, data structure, the justification of their

correctness and the best values for their parameters which required a minimum number

of cover images to maintain good image quality PSNR and minimum MSE, time and

memory consumption, then the experiments results compared between both methods and

then with known experiments conducted on EMD and GEMD.

The results were obtained for four gray scale secret images, and for two different sizes

of cover images, where the number of cover image required for a secret image is defined

according to some parameters such as the number of bits in each block of secret image,

and the number of pixels n in each group of the cover image. The experiments were

conducted with four different values of n, as we tried to find the best value for the

number of bits in each block L of the secret image and the maximum digit k in (2n+1)-

ary in each case of n to achieve the best case of EMD and GEMD which taking less

number of cover image. According to our analysis, and for both sizes cover image, EMD

stego image quality PSNR is better than GEMD, since fewer pixels values are modified.

On the other hand, GEMD has less memory and time consummation, since increasing of

cover size takes more memory and less time for both methods. For MSE comparison

result EMD has less error than GEMD, because in EMD at most only one pixel is

changed by ±1 in a group, while in GEMD more than one pixel in a group could be

70

modified. But also GEMD has greater embedding capacity for both sizes. In addition to

greater cover size required less number of cover images and for both sizes GEMD

required less number of cover images

As a comparison between the results using different size of cover image, we find that as

we use greater size then we need less number of cover images, and less time

consumption. On the other hand we need more memory consumption. For other metrics,

PSNR, MSE, and embedding capacity BPP, we get the same results.

However, the both methods have the same aim for hiding data, but one of them, EMD, is

better in image quality, PSNR and MSE, while GEMD is better in memory and time

consumption and also better embedding capacity.

As a future work, I propose to study and implement these methods by using color

images in order to improve the performance of them.

71

REFERENCES

[1] Cheddad, A., Condell, J., Curran, K., & Kevitt, P. M. (2010, October). Digital

Image Steganography: Survey and Analysis of Current Methods. Signal

Processing, pp. 727-752. Vol 90. No.3.

[2] Devi, M., & Sharma, N. (2014, March). Improved Detection of Least Significant

Bit SteganographyAlgorithms in Color and Gray Scale Images. IEEE, Recent

Advances in Engineering and Computational Sciences (RAECS) , pp. 1-5. Vol 34.

No.7.

[3] Hegde, R., & S, J. (2015, July). Design and Implementation of Image

Steganography by Using LSB Replacement Algorithm and Pseudo Random

Encoding Technique. International Journal on Recent and Innovation Trends in

Computing and Communication, pp.4415 - 4420. Vol 3. No.7.

[4] Jarno, M. (2006, May). LSB Matching Revisited. IEEE, Signal Processing

Letters, pp. 285- 287. Vol 13 No.5.

[5] Kuo, W.-C., & Wang, C.-C. (2013, October). Data Hiding Based on Generalised

Exploiting Modification Direction Method. The Imaging Science Journal,

pp.484-490. Vol 61. No.10.

[6] Kuo, W. C., Chen, Y. H., & Chuang, C.-T. (2014, April). High-Capacity

Steganographic Method Based on Division Arithmetic and Generalized

72

Exploiting Modification Direction. Journal of Information Hiding and

Multimedia Signal Processing, pp. 213-222. Vol 5. No.2.

[7] Kuo, W. C., Wang, C. C., & Hou, H. C. (2015, August). Signed Digit Data

Hiding Scheme. Information Processing Letters, pp. 15-26. Vol 5. No.2.

[8] Kieu, T. D. & Chang, C. C. (2011, April) A Steganographic Scheme by Fully

Exploiting Modification Directions, Expert Systems with Applications,

pp.10648-10657. Vol 38. No.8.

 [9] Lee .C.F; Wang. Y & Chang. C (2007, August). A Steganographic Method with

High Embedding Capacity by Improving Exploiting Modification Direction.

Proceedings of the Third International Conference on Intelligent Information

Hiding and Multimedia Signal Processing(IIHMSP07), pp.497-500. Vol 5. No.2.

[10] Pan, H. K., Tseng, Y. C & Chen Y. Y. (2002, August). A Secure Data Hiding

Scheme for Binary Images. IEEE Trans. Commun., pp. 1227-1231.Vol.

50.No.8.

[11] Rita, C. & Deepika, B. (2014, September), An Improved DCT based

Steganography Technique, International Journal of Computer Applications, pp.

46-49. Vol 102. No.14.

[12] Wang, R. Z; Lin, C. F.; & Lin, J. C (2001, May). Image Hiding by Optimal

LSB Substitution and Genetic Algorithm. Pattern Recognition, pp.671-683 .Vol

34.No 3.

73

[13] Wu, D. C., & Tsai, W. H. (2003, April). A Steganographic Method for Images

by Pixel-Value Differencing. Pattern Recognition Letters, pp.1613-1626. Vol

24. No.9.

[14] Wu, H. C., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2005, March). Image

Steganographic Scheme Based on Pixel-Value Differencing and LSB

Replacement Methods. IEEE, image signal process, pp. 611–615.Vol 152. No.

12.

 [15] Zhang, X., & Wang, S. (2006, November). Efficient Steganographic

Embedding by Exploiting Modification Direction. IEEE Communication Letters,

pp. 781-783. Vol 12. No.7.

[16] Zhi, H. W., Kieu,T.D.,& Chin, C.C. (2010, January), A Novel Information

Concealing Method Based on Exploiting Modification Direction, Journal of

Information Hiding and Multimedia Signal Processing, pp.130-138, Vol 1. No.1.

[17] Vijay, K. & Dinesh, K. (2010, June), Performance Evaluation of DWT Based

Steganography, IEEE 2nd International Advance Computing Conference, pp.

223-228. Vol 6. No.10.

74

APPENDICES

75

Appendix A: EMD Algorithm

A.1 The main program

% this program was written by Om Essad M.Lamiles in 2015-2016

for EMD algorithm [8] and its functions

clc;

clear all ;

images={'Lena','Baboon','F16','Barbara','Monaliza',

'Tiffany','Girl','Cameraman','Liza','Jug','House','Roza'}%cove

r images used in the program

sum_time=0;sum_psnr=0;sum_mse=0;

BDig=[];d_msg=[];

addpath('cover_set/');addpath('secret_set/');

img_name = 'P';sec_name='S';

M=512; N=M;

E_dig=[];

L=input('Input L: the number of bits in a block ');

n=input(' Input n: the number of pixels in a group ');

k=ceil(L/(log2(2*n+1)))%calculate k as in (2.3)

C=floor((M*N)/n); %calculate C as in (3.3)

Bpp=(log2(2*n+1))/n%calculate bppEMD as in (2.12)

sec = imread([sec_name, '',num2str(1) '.jpg']);%read the first

secret image , '' used to read image sec_name =S1

corresponding to the number in (),as we have 4 secret images

S =reshap_im(sec,M,N); %reshape secret image as one

dimensional array

[Bin]= conv2binary(S); %convert each pixel of secret image to

binary

s_size=numel(Bin)

H=ceil(s_size /L) %calculate H as in (3.1)

SS=[Bin zeros(1,(L-(mod(s_size,L))))]; %last block padded by

zeros

Cover_im = ceil((H*k)/C)%calculate Ñ as in (3.2)

Covers = uint8(zeros(M,N,Cover_im));

Stegos = uint8(zeros(M,N,Cover_im));

[Dig] = BTO2NP1(SS,L,k,n,H); %get stream of k digits in

(2n+1)-ary numbers

h=1;

 for i=1:Cover_im

tic% starting of timer to calculate embedding time

CI = imread([img_name, '',num2str(i) '.tif']);

Covers(:,:,i)=CI;

ci1 =reshap_im(CI,M,N);

x=1;

if (i==Cover_im)

C=mod(numel(Dig),h)%if the last image will be not fully
embedded
end

76

 for r=1:C

group= ci1((x-1)*n+1:x*n); %get n pixel group from cover image

[em_group]=embed(group,Dig(h),n); %send to embedding function

ci1((x-1)*n+1:x*n)=[em_group]; %resave embedded group to cover

image to get stego image

 h=h+1;

 x=x+1;

 end

ci2 =reshap_im2(ci1,M,N);

Stegos(:,:,i)=ci2;

tim(i)=toc%get the embedding time for each image

mem=memory %calculate memory for each image

end

A.2 Reshaping image as one dimensional array
function [S] = reshap_im(Sec,m,n)

for i=1:m

 for j=1:n

 im((i-1)*n+j)= Sec(i,j);

 end

end

end

A.3 Converting secret image into binary stream
function [Bin] = conv2binary(S)

Bin=[];

for j=1:numel(S)

 b = bitget(uint8(S(j)),8:-1:1); %get pixel as binary

 [Bin]=[Bin b];

end

end

A.4 Converting binary message to (2n+1)_ary
function [Dig] = BTO2NP1(SS,L,k,n,H)

Dig=[];

 for i=1:H

 B= SS((i-1)*L+1:i*L)%get B block from binary message SS

 sum=0;

 sum1=bin2dec(num2str(B))% convert to decimal

D=dec2base(sum1,(2*n+1),k) % convert to k digits (2n+1)-ary

number

 Dig=[Dig D];

 end

end

A.5 Embedding function

function [em_group] = embed(group, Dig ,n)

77

sum=0;

 for i=1:n

 sum =sum +double(group(i))*i;%calculate extraction

function(2.4)

 end

t=mod(sum,(2*n+1));

d=mod((Dig)-t),(2*n+1)); %calculate d as in(2.5)

if (d<=n && d>0)

 group(d)=(group(d))+1; %from(2.5.2)

elseif (d>n)

 group(((2*n+1))-d)=(group(((2*n+1))-d))-1; %from(2.5.3)

end

em_group= group;

end

A.6 Code showing results and stego images

disp('===')

disp('stego image PSNR MSE Time Memory Capacity')

disp(' dB sec MB bpp ')

disp('==')

set(gcf, 'name', ' Secret Image in case n=2');

 for i=1:Cover_im

subplot(2,3,i) ; imshow((Stegos(:,:,i)));

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i));

title(['PSNR = ',num2strPSNR(i)]);

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),mem,Bpp

)

disp('===')

sum_time=sum_time+tim(i);

sum_psnr=sum_psnr+PSNR(i);

sum_mse=sum_mse+MSE(i);

 end%take the average for PSNR,MSE and Time

psnr_used=(sum_psnr- PSNR(Cover_im))/(Cover_im-1);

mse_ used =(sum_mse - MSE(Cover_im))/(Cover_im-1);

tim_ used =(sum_time- tim(Cover_im))/(Cover_im-1);

psnr_set=sum_psnr/Cover_im;

mse_set=sum_mse/Cover_im;

tim_set=sum_time/Cover_im;

sprintf(' Average on fully used ')

disp('===')

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_used,mse_used,tim_used,

mem,Bpp)

sprintf(' Average on fully set ')

disp('===')

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_set,mse_set,tim_set,mem,Bp

p)

78

A.7 Calculation of PSNR and MSE
function [My_psnr MSE] = My_PSNR(I,J)

 X = double(I);

 Y = double(J);

 MSE = sum((X(:)-Y(:)).^2) / prod(size(X)) ;

 My_psnr = 10*log10(255 * 255/MSE);

End

A.8 Screenshots of EMD Result in different values of n, L, k and cover image of

size 512×512 and 1024×1024.

A.8.1.a. Results in n=2, k=7, L=16, cover images =7,512×512 cover image of size

79

A.8.1.b. Results in n=2, k=7, L=16, cover images =2, 1024×1024 cover image size

80

A.8.2.a. Results in n=3, k=6, L=16, cover images =9, 512×512 cover image size

81

A.8.2.b. Results in n=3, k=6, L=16, cover images =3, 1024×1024 cover image size

82

A.8.3.a. Results in n=4, k=11,L=32, cover images =11, 512×512 cover image size

83

A.8.3.b. Results in n=4, k=11, L=32, cover images =3, 1024×1024 cover image

size

84

A.8.4.a. Results in n=5, k=19,L=64, cover images =12, 512×512 cover image size

85

A.8.4.b. Results in n=5, k=19, L=64, cover images =3, 1024×1024 cover image

size

86

A.9 Extraction phase

options.Interpreter = 'tex';

options.Default = 'Yes';

qstring = 'Do you want to extract data?';

choice=questdlg(qstring,'EXTRACTION','Yes','No',options);

 switch choice

 case 'Yes'

for j=1:Cover_im

 Stegos1(1,:,j)=reshap_im(Stegos(:,:,j),M,N);

end

[secret_message]= EXTRACTION(Stegos1,k,n,H,L); %get binary

stream from the EXTRACTION function

 v=1;

for i=1:M*N

 bmess=secret_message((v-1)*8+1:v*8); %get 8 bits block from

extracted binary stream

 a=bin2dec(num2str(bmess)); %convert to decimal

 d_msg=[d_msg a];

 v=v+1;

end

 secret_im=reshap_im2(d_msg,M,N); %reshape d_msg as 2

dimensional array

 set(gcf, 'name', ' Extracted Secret image');

 imshow(uint8(secret_im)); %show the Extracted Secret image

case 'No'

 break;

 end

 A.10 Extraction function

function [B_msg]= EXTRACTION(Stegos,k,n,H,L)

secret_msg=[];

B_msg=[];

87

R=(2*n+1);

for i=1:H

 for j=1:k

 x=(i-1)*k+j;

 group=Stegos((x-1)*n+1:x*n); %get n pixel group from stego

image

 [secret]=Extract(group,n); %get k digits

secret_msg=[secret_msg secret];

 end

 secret_msg;

 sum=0;

 E=numel(secret_msg);
for t=0:E-1

 secret_msg(E-t);

 sum= sum+(secret_msg(E-t))*R^t;%convert to decimal

end

A=dec2bin(sum,L); %convert to binary

 B_msg=[B_msg A];

secret_msg=[];

end

end

A.10.1 Extract function

function [secret_msg1]=Extract(group,n)

sum=0;

 for i=1:n

 sum = sum + double(group(i))*i; %calculate extaction

function as in (2.6)

 end

secret_msg1=mod(sum,(2*n+1));

end

A.11 Reshaping secret image as two dimensions

function [stego] = reshap_im2(Covers,M,N)

for i=1:M

 for j=1:N

 stego(i,j)=Covers((i-1)*N+j);

 end

end

end

88

Appendix B: GEMD Algorithm

B.1 The Main program

% This program was written by Om Essad M.Lamiles in 2015-2016

for GEMD algorithm [5] and its functions

clc;

clear all ;

sum_psnr=0;sum_mse=0; sum_time=0;

images={'Lena','Baboon','F16','Barbara','Monaliza'

,'Tiffany','Girl'};%cover images used in the program

addpath('cover_set/');addpath('secret_set/');

img_name = 'P';sec_name='S';

M=512; N=M;

d_msg=[];

n=input(' Input n: the number of pixels in a group ');

L=n+1;

C=floor((M*N)/n); %calculate C as in (3.3)

Bpp=(n+1)/n%calculate bppGEMD as in (2.13)

sec = imread([sec_name, '',num2str(1) '.jpg']);

S =reshap_im(sec,M,N); %reshape secret image as one

dimensional array

[Bin]= conv2binary(S); %convert each pixel of secret image to

binary

s_size=numel(Bin)

H=ceil(s_size/L) %calculate H as in (3.1)

Cover_im =ceil(H/C) %calculate Ñ as in (3.2)

s_size=numel(Bin)

SS=[Bin zeros(1,(L-(mod(s_size,L))))]%last block padded by r

zeros

Covers = uint8(zeros(M,N,Cover_im));

Stegos = uint8(zeros(M,N,Cover_im));

[Num]=GET_B(SS,L,H);

h=1;

for i=1:Cover_im

CI = imread([img_name, '',num2str(i) '.tif']);

tic% starting of timer to calculate embedding time

 Covers(:,:,i)=CI;

 ci1 =reshap_im(CI,M,N);

 x=1;

if (i==Cover_im) %if the last image will be not fully embedded

 C=mod(numel(Num),h)%if the last image will be not fully
embedded
 End

for r=1:C

group= ci1((x-1)*n+1:x*n); %get n pixel group from cover image

89

[em_group]=GEMDembed(group,Num(h),n); %send to embedding

function

ci1((x-1)*n+1:x*n)=[em_group]; %resave embedded group to cover

image to get stego image

h=h+1; x=x+1;

end

ci2 =reshap_im2(ci1,M,N);

Stegos(:,:,i)=ci2;

tim(i)=toc%get the embedding time for each image

mem=memory%calculate memory for each image

end

B.2 Reshaping image as one dimensional array

function [S] = reshap_im(Sec,m,n)

for i=1:m

 for j=1:n

 im((i-1)*n+j)= Sec(i,j);

 end

end

end

B.3 Converting secret image into binary stream

function [Bin] = conv2binary(S)

Bin=[];

for j=1:numel(S)

 b = bitget(uint8(S(j)),8:-1:1); %get pixel as binary

 [Bin]=[Bin b];

end

end

B.4 Dividing binary message to (n+1) bit blocks

function [Num] = GET_B(S,L,H)

Num=[];

 for i=1:H

 B= S((i-1)*L+1:i*L);

 d=bin2dec(num2str(B));

 Num=[Num d];

 end

end

B.5 Embedding function

90

function [em_group] = GEMDembed(group,Num,n)

sum=0;
 for i=1:n
 sum = sum + double(group(i)) *((2^i)-1); %calculate

extraction function(2.7)

 end

t=mod(sum,(2^(n+1)));

d=mod(Num-t,(2^(n+1))); %calculate d as in(2.8)

if (d==2^n) R=1; %step5 in GEMD embedding algorithm

 elseif(d<(2^n)) R=2; else R=3;

 end

 switch R%step6 in GEMD embedding algorithm

case 1

 group(n)= group(n)+1;group(1)= group(1)+1;

case 2 d=dec2bin(d,(n+1)); %convert d to binary(dn dn-1 ….d0)2
sized n+1 bits

for i=0:n-1

 if ((d(i+1)=='1')&&(d(i+2)=='0'))

 group(n-i)=group(n-i)-1;

elseif ((d(i+1)=='0')&&(d(i+2)=='1'))

 group(n-i)=group(n-i)+1;

 end

end

case 3 d=(2^(n+1))-d; b=dec2bin(d,(n+1)); %convert d to

binary(dn dn-1 ….d0)2 sized n+1 bits

for j=0:n-1

 if((b(j+1)=='1')&&(b(j+2)=='0'))

 group(n-j)= group(n-j)+1;

 elseif((b(j+1)=='0')&&(b(j+2)=='1'))

 group(n-j)= group(n-j)-1;

 end

end

 end

 em_group= group;

end
B.6 Code showing results and stego images

disp('===')

disp('stego image PSNR MSE Time Memory Capacity')

disp(' dB sec MB bpp ')

disp('==')

set(gcf, 'name', ' Secret Image in case n=2');

 for i=1:Cover_im

subplot(2,3,i) ; imshow((Stegos(:,:,i)));

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i));

91

title(['PSNR = ',num2str(PSNR(i))]);

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),mem,Bpp

)

disp('===')

sum_time=sum_time+tim(i); %take the average for PSNR,MSE

sum_psnr=sum_psnr+PSNR(i);

sum_mse=sum_mse+MSE(i);

 end

psnr_used=(sum_psnr- PSNR(Cover_im))/(Cover_im-1);

mse_ used =(sum_mse - MSE(Cover_im))/(Cover_im-1);

tim_ used =(sum_time- tim(Cover_im))/(Cover_im-1);

psnr_set=sum_psnr/Cover_im;

mse_set=sum_mse/Cover_im;

tim_set=sum_time/Cover_im;

sprintf(' Average on fully used ')

disp('===')

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_used,mse_used,tim_used,

mem,Bpp)

sprintf(' Average on fully set ')

disp('===')

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_set,mse_set,tim_set,mem,

Bpp)

B.7 Calculation of PSNR and MSE

function [My_psnr MSE] = My_PSNR(I,J)

 X = double(I);

 Y = double(J);

 MSE = sum((X(:)-Y(:)).^2) / prod(size(X)) ;

 My_psnr = 10*log10(255 * 255/MSE);

End

92

B.8 Screenshots of GEMD Results in different values of n, L and cover images

size 512×512 and 1024×1024.

B.8.1.a. Results in n=2, L=3, cover images =6, 512×512cover image size

93

B.8.1.b. Results in n=2, L=3, cover images =2, 1024×1024 cover image

size

94

B.8.2.a Results in n=3, L=4, cover images =6, 512×512cover image size

95

B.8.2.b Results in n=3, L=4, cover images =2, 1024×1024cover image

size

96

B.8.3.a Results in n=4, L=5, cover images =7, 512×512cover image size

97

B.8.3.b Results in n=4, L=5, cover images =2, 1024×1024 cover image

size

98

B.8.4.a Results in n=5, L=6, cover images =7, 512×512cover image size

99

B.8.4.b Results in n=5, L=6, cover images =2, 1024×1024cover image

size

100

B.9 GEMD Extraction phase

options.Interpreter = 'tex';

options.Default = 'Yes';

qstring = 'Do you want to extract data?';

choice=questdlg(qstring,'EXTRACTION','Yes','No',options);

switch choice

 case 'Yes'

 for I=1:Cover_im

 Stegos1(1,:,I)=reshap_im(Stegos(:,:,I),M,N);

 End

[secret_message]= EXTRACTION(Stegos1,H,n); %get binary stream

from the EXTRACTION function

 i=1;

 for r=1:M*N

bmess=secret_message((i-1)*8+1:i*8); %get 8 bits block from

extracted binary stream

 a=bin2dec(num2str(bmess)); %convert to decimal

 d_msg=[d_msg a];

 i=i+1;

 end

secret_im=reshap_im2(d_msg,M,N); %reshape d_msg as 2

dimensional array

set(gcf, 'name',' Extracted Secret image in case n=2');

imshow(uint8(secret_im)); %show the Extracted Secret image

 case 'No' break;

 end

B.10 Extraction function

function [B_msg]= EXTRACTION(Stegos1,H,n)

B_msg=[];

 for i=1:H

group= Stegos1((i-1)*n+1:i*n); %get n pixel group from stego

image

 sum=0;

 for j=1:n

sum = sum + double(group(j)) *((2^j)-1);

 end

t=mod(sum,(2^(n+1))); %calculate extraction function as in

(2.9)

bin=dec2bin(t,n+1); %convert to decimal

B_msg=[B_msg bin];

 end

 B_msg;

 End

101

B.11 Reshaping secret image as two dimensions

function [secret_im] = reshap_im2(d_msg,M,N)

for i=1:M

 for j=1:N

 secret_im (i,j)= d_msg((i-1)*N+j);

 end

end

end

Appendix C: Screenshots of EMD results using 512×512
and 1024×1024 cover image size

C.1 EMD results

%PSNR results
n=[2 3 4 5];
PSNR_EMD=[52.11 53.57 54.66 55.53];
pl1=plot(n,PSNR_EMD, '-bx','LineWidth',1.5);
title(' PSNR of EMD method for 512×512 and 1024×1024cover
images')
xlabel('n');
ylabel('PSNR(dB)');
grid on;

102

%MSE results
n=[2 3 4 5];
MSE_EMD=[0.40 0.28 0.22 0.18]
pl1=plot(n,MSE_EMD, '-bx','LineWidth',1.5);
title(' MSE of EMD method for 512×512 and 1024×1024
 cover images ')
xlabel('n');
ylabel('MSE');
grid on;

%Embedding capacity BPP results
n=[2 3 4 5];
bpp_EMD=[1.16 0.93 0.79 0.69];
pl1=plot(n,bpp_EMD, '-bx','LineWidth',1.5);
title(' Embedding capacity of EMD method for 512×512 and
1024×1024cover images')
xlabel('n');
ylabel('Embedding capacity (BPP) ');
grid on;

103

% Time consumption results
n=[2 3 4 5];
EMD_512=[7.81 6.38 4.66 3.97]
EMD_1024=[5.72 4.31 3.02 2.18]
pl1=plot(n,EMD_512, '--rx','LineWidth',1.5);
hold on;
pl2=plot(n,EMD_1024, '-bx','LineWidth',1.5);
title('Time consumption of EMD method using 512×512 and
1024×1024 cover image size')
xlabel('n');
ylabel('Time(sec)');
legend([pl1, pl2], '512 × 512', '1024 × 1024');
grid on;

104

% Memory consumption results

n=[2 3 4 5];
EMD_512=[481 486 490 496] % values are obtained from memory
average in EMD and GEMD screenshots results in A.8 and B.8
EMD_1024=[493 495 497 500]
pl1=plot(n,EMD_512, '--rx','LineWidth',1.5);
hold on;
pl2=plot(n,EMD_1024, '-bx','LineWidth',1.5);
title('Memory consumption of EMD method using 512×512 and
1024×1024 cover image size')
xlabel('n');
ylabel('Memory(MB)');
legend([pl1, pl2], '512 × 512', '1024 × 1024');
grid on;

C.2 GEMD results

%PSNR results
n=[2 3 4 5];
PSNR_GEMD=[50.17 50.79 51.01 51.08];
pl1=plot(n,PSNR_GEMD, '--rx','LineWidth',1.5);
title(' PSNR of GEMD method for 512×512 and 1024×1024cover
images')
xlabel('n');
ylabel('PSNR(dB)');
grid on;

105

% MSE results
n=[2 3 4 5];
MSE_GEMD=[0.62 0.54 0.51 0.50]
pl1=plot(n,MSE_GEMD, '--rx','LineWidth',1.5);
title(' MSE of GEMD method for 512×512 and 1024×1024cover
images ')
xlabel('n'); ylabel('MSE');
grid on;

106

% Embedding capacity BPP results
n=[2 3 4 5];
bpp_GEMD=[1.50 1.33 1.25 1.20];
pl1=plot(n,bpp_GEMD, '--rx','LineWidth',1.5);
title(' Embedding capacity of GEMD method for 512×512 and
1024×1024 cover images')
xlabel('n'); ylabel('Embedding capacity (bpp) ');grid on;

%Time consumption results
n=[2 3 4 5];
GEMD_512=[7.61 5.84 4.40 3.60]
GEMD_1024=[4.61 3.77 2.92 2.02]
pl1=plot(n,GEMD_512, '--rx','LineWidth',1.5);hold on;
pl2=plot(n,GEMD_1024, '-bx','LineWidth',1.5);
title('Time consumption of GEMD method using 512×512 and
1024×1024 cover image size')
xlabel('n');ylabel('Time(sec)');
legend([pl1, pl2], '512 × 512', '1024 × 1024');grid on;

107

% Memory consumption results
n=[2 3 4 5];
GEMD_512=[480 484 487 491]
GEMD_1024=[491 493 496 498]
pl1=plot(n,GEMD_512, '--rx','LineWidth',1.5);
hold on;
pl2=plot(n,GEMD_1024, '-bx','LineWidth',1.5);
title('Memory consumption of GEMD method using 512×512 and
1024×1024 cover image size')
xlabel('n');ylabel('Memory(MB)');
legend([pl1, pl2], '512 × 512', '1024 × 1024');grid on;

