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ABSTRACT 

The aim of this thesis is to analyze and experimentally study two steganographic 

methods: Exploiting Modification Direction (EMD) and Generalized Exploiting 

Modification Direction (GEMD). In the known experiments conducted on EMD and 

GEMD, some quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Square 

Error (MSE), and the embedding capacity Bit Per Pixel (BPP) are discussed, but 

implementation important details such as the secret image used, data structures, 

justification of methods, and the optimal cover images number calculation are not 

provided. Therefore, in this thesis, the implementation of these methods is explained 

in details such as the input-output data structures, the justification of the methods and 

the minimum number of cover images computation are given.  

 The main idea in EMD is that  a separate n-pixel group of a cover image is used for 

embedding of  each next digit of (2n+1) -ary k-digit number representation of the 

next L-bit block from a binary input stream and only one pixel in the n-pixel group 

could be modified by ±1. In GEMD, L-bit blocks, L=n+1, from the input stream are 

embedded in the next n-pixel group, and at least one pixel value in each group could 

be changed by ±1. 

 In the implementation, four grayscale 512×512 secret images, and two cover image 

sizes, 512×512 and 1024×1024, are used. According to our analysis, for the both 

cover image sizes results, PSNR of EMD is greater than that of GEMD by 0.06%. 

For MSE, EMD has less MSE than that of GEMD by 0.5%. On the other hand, 

GEMD is better than EMD in embedding capacity, BPP is greater  by 0.33%. GEMD 
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is also better than EMD in memory and time consumption by 0.006% and 0.06% 

respectively for the 512x512 cover image size, while for the second size, 1024x1024 

by 0.004% and 0.13% respectively. In addition, where each method is compared with 

different cover image sizes, for both methods, greater cover image size has less time 

consumption by 0.33% for EMD and by 0.38% for GEMD. For memory 

consumption, using grater size required more memory for both methods, by 0.02%. 

For comparison with known experiments with 512×512 cover size, we got the 

practically the same values for PSNR, MSE, and BPP. 

Keywords: Steganography, EMD algorithm, GEMD algorithm, (2n+1)-ary number, 

Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Embedding 

Capacity, Bit Per Pixel (BPP), memory consumption, time consumption. 
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ÖZ 

Bu tezin amacı, Exploiting Modification Direction (EMD) ve Generalized Exploiting 

Modification Direction (GEMD) steganographik yöntemlerini analiz etmek ve 

deneysel olarak incelemektir. Literatürde, EMD ve GEMD yöntemlerinin incelendiği 

referans çalışmada, Peak Signal to Noise Ratio (PSNR), Mean Square Error(MSE) ve 

gömme kapasitesi Pit Per Pixel (BPP) gibi kalite ölçütleri tartışılmıştır, ancak, 

kullanılan gizli görüntüler, veri yapıları, yöntemlerin ıspatı ve kaplama resimlerinin 

optimal sayısının hesaplanması gibi bazı detayları verilmemiştir. Bu nedenle, bu 

tezde, giriş/çıkış veri yapıları, belirtilen yöntemlerin ıspatı ve kaplama resimlerinin 

optimal sayısının hesaplanması gibi uygulama detayları açıklanmıştır.  

EMD yönteminin ana fikri, her biri (2n+1)-ary k-digit sayı ile belirtilen ikili giriş 

akışının her bir L-bit  bloğunun, n-piksel gruptan oluşan  kaplama görüntüsüne, her 

n-piksel grupta sadece bir pikselinin ±1 olacak şekilde gömülmesidir.  GEMD’de ise  

ikili giriş akışının her bir L-bloğu, L=n+1, kaplama görüntüsündeki her bir n-piksel 

gruba, her grupta en az bir piksel degerinin ±1 olacak şekilde gömülmesidir.  

Algoritmaların uygulamasında gizli görüntü olarak 512x512 boyutlu, gri tonlu dört 

farklı görüntü, kaplama görüntüsü boyutu olarak da 512x512 ve 1024x1024 boyutları 

kullanılmıştır. Deney sonuçlarının analizlerine gore, her iki boyutlu kaplama 

görüntüsü için, EMD PSNR değeri GEMD PSNR değerinden %0.06 daha büyüktür. 

Buna ek olarak, EMD  MSE değeri GEMD MSE değerinden %0.5 daha azdır. Öte 

yandan, GEMD BPP değeri, EMD BPP değerine göre %0.33 daha iyidir. Buna ek 

olarak  GEMD’nin bellek ve zaman tüketimi değerleri EMD’ye göre 512x512 
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kaplama görüntü boyutu için sırasıyla %0.006 ve %0.06 daha iyi olup 1024x1024 

için sırasıyla %0.004 ve %0.13 daha iyidir. Bunlara ek olarak, her metod iki farklı 

kaplama görüntü boyutuna göre karşılaştırıldığında, her iki metod için de büyük 

kaplama boyutunda zaman tüketimi EMD’de %0.33 GEMD de ise %0.38 daha azdır. 

Bellek tüketiminde ise büyük boyutlu görüntü kullanımı her iki yöntemde de 

%0.02’lik bir artış göstermiştir. İki yöntemin 512x512 kaplama boyutu için PSNR, 

MSE ve BPP ölçü değerleri referans çalışmadaki deney sonuçları ile 

karşılaştırıldığında tamamen aynı sonuçların elde edildiği görülmüştür. 

Anahtar Kelimeler: Steganografi, EMD algoritması, GEMD algoritması, (2n+1)-

ary sayı, Tepe Sinyal Gürültü Oranı (PSNR),  Kare Ortalama Hatası (MSE), 

Gömülüm kapasitesi, Piksel Başına Bit (BPP), bellek tüketimi, zaman tüketimi 
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Chapter 1 

INTRODUCTION 

Steganography is a technique used to protect messages from unauthorized access, by 

embedding data into other media forms such as text, image, video, sound, etc., where 

the hidden data likely will not be detected [1]. Two main directions in steganography 

are hiding secret data in spatial domain and in frequency domain [1]. The last 

direction uses digital cosine transformations that is more time consuming compared 

with the spatial domain methods but provides more security. In steganography, 

image file is the most common media form used because the human visual system is 

not sensitive to small variation in colors. Furthermore, they could be easily used as 

cover media without any doubt as they are commonly used on the Internet [2].                                                                         

We consider here spatial domain methods. There are many steganographic schemes 

based on direct replacement like Least Significant Bit (LSB) [3] [4] or based on 

indirect replacement such as Exploiting Modification Direction (EMD) [7] [13] [14], 

and Generalized Exploiting Modification Direction (GEMD) [5] [6] [7] schemes; the 

latter ones will be discussed in this thesis in details which similar to frequency 

domain methods provide greater security by the use of data transformations but in the 

spatial domain. The known experiments conducted on EMD and GEMD, and 

resulting quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Square Error 

(MSE), and the embedding capacity Bit Per Pixel (BPP) are discussed in [7], but they 

do not provide sufficient information for their implementation such as the secret 
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image used, data structure, justification of methods, and the number of cover images 

for one secret image embedding. Therefore, in this thesis data structures and the 

implementation of these methods are explained in details such as the input-output 

data structures, the justifications of the methods are provided.  A major characteristic 

of the EMD method is that it uses a separate n-pixel group of a cover image to embed 

the next digit of (2n+1)-ary k-digit number representing the next L-bit block from the 

secret image input and only one pixel in the group can be changed by ±1. In GEMD 

scheme  the next L-bit block, L=n+1, is hidden in the next n-pixel group, and more 

than one pixel value in a group may be changed by ±1, so the image quality for it 

may be lower than that for EMD.  

Experiments are conducted with four secret images for different n values, and for 

two different sizes of cover image 512×512 and 1024×1024. The comparison 

between both methods in case of using two different sizes are taken as the average 

for each metric, because the comparison for each metric over n, as it is done in [7], is 

not valid since n has different meaning for each method, in EMD means the number 

of pixels required to embed one digit while in GEMD means the number of pixels 

required to embed one block. According to our analysis, for size 512×512 

comparison results, EMD stego image quality PSNR is better than that of GEMD by 

0.06%, and also for MSE, EMD is better than that of GEMD by 0.5%. On the other 

hand, GEMD is better than EMD in embedding capacity, BPP is greater by 0.33%, 

and in memory and time consumption by 0.006% and 0.06% respectively.   

For 1024× 1024 cover size, the results for metrics PSNR, MSE, and BPP are the 

same of the size 512×512, but for time and memory consumption both methods take 
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less time and more memory consumption. GEMD is better than EMD in memory and 

time consumption by 0.004% and 0.13% respectively. 

In addition, the comparison results using two sizes are taken for each method 

separately, since as we use grater cover size then we have less time consumption by 

0.33% for EMD and 0.38% for GEMD. For memory consumption, using grater size 

required more memory for the both methods, by 0.02%. For comparison with known 

experiments with 512×512 cover size, we got the practically the same values for 

PSNR, MSE, and BPP. 

The rest of the thesis is organized as follows. Chapter 2 presents the related work, the 

experiments on EMD and GEMD, and problem definition. Data structures for EMD 

and GEMD implementation discussed with details and justification for the both 

methods are given in Chapter 3. Chapter 4 introduces the implementation of EMD 

and GEMD algorithms. Chapter 5 shows the experimental results and their 

comparison versus the known experiments. Finally, Chapter 6 concludes the thesis 

and discusses the future work. 
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Chapter 2 

RELATED WORK AND PROBLEM DEFINITION 

2.1  Overview of Steganography  

Steganography is a word of two syllables, its origin   came from  the  Greek 

language, the first syllable "stegano" means the "covered" or the "secret", while the 

second one, "graphy", means the "drawing" or the "writing" ; this word is used 

nowadays for a technique of information hiding. Such technique was used in Greece 

since the 5th century BC, where the people used it for hiding information on their 

slave's head [1]. First, a slave is chosen, then, his head is shaved, and a message is 

written on his head. They waited till the slave's hair grew to make sure that the 

message is hidden. Then the slave is sent to another place with the message on his 

head, where his head is then shaved again to get the confidential message. At the 

same time in Greece, steganography technique was used by Spartans against their 

enemy Xerxes. The secret message was written on a wood wax tablet and covered to 

form a new plane layer of wax and due to this wax looked like a blank. 

Steganography technique was used in the World War II to hide the secret information 

written on a paper using invisible ink: the paper looks like blank to any person in 

natural light. Where the organic compounds are the simplest examples of invisible 

ink which turn dark when held invisible ink a flame, such as lemon juice, milk, or 

urine. Finally, information was retrieved by using liquids such as water, fruit juices 

or vinegar. When the wet paper in the liquid was heated, the paper became dark and 

the message written on it using invisible ink becomes visible and readable.  
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2.2 Categories of Steganography 

There are many types of techniques used for steganography; they could be divided 

mainly into three groups as follows [3]:  

2.2.1 Text Steganography 

 The hiding information in a text is one of the preferred   methods of steganography.  

In this type of steganography, there are many techniques used, such as extra white 

space method, by appending extra white space between words or at the end of lines 

and paragraphs. 

2.2.2 Protocol Steganography 

The technique used for embedding data within a message which used in the network 

transmission is called "the protocol steganography". Hiding of data in the header of a 

TCP/IP where some fields or places are either optional or never used is an example. 

2.2.3 Audio/Video/Image Steganography 

A secret message is hidden in an audio/video/image file. The binary sequence of 

audio/video/image file is a bit differing from the main file which is hard to be 

detected by the normal human eyes. In Audio/Video/ Image Steganography the most 

generally used is Least Significant Bit (LSB) method, where the Least Significant Bit 

of each pixel of cover file is replaced with the binary data of secret message stream, 

so the changes that are made in least significant bit are too small to be detected by 

human eyes. 

2.3  Related Work 

We briefly survey spatial domain methods [1]. Steganographic algorithms are quite 

so many; each one has its own security and complexity, since the main aim for all of 

them is to embed large amount of secret data with less effects on the cover file, it 

means more embedding capacity Bit Per Pixel (BPP) with good image quality. One 
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of the most common techniques is the LSB replacement method, where it is simple, 

fast, and has good stego image quality [2]. In this method the binary secret image is 

divided into blocks having L bits, and then embedding each L- block  in L LSB's of 

each pixel of the cover image, where 1≤ L ≤8. In general, this method can achieve a 

good image quality when L ≤3, but for 4≤ L ≤8, the image quality severely decreased 

[8].  

To improve LSB replacement, many steganographic methods were proposed. In 

2001 Wang, & Lin proposed a method that uses an optimal LSB replacement and 

genetic algorithm [12], where the genetic algorithm is presented to solve the problem 

of hiding data in the L LSBs of the cover image when L is large in order to improve 

the image quality and embedding capacity.  

In 2002 Yu- Chee  proposed a secure data hiding scheme for binary image [10], that 

uses a binary cover image to embed as many as log2(mn+1)bits of secret message 

into m×n block of binary cover image  by changing at most two bits in the block , so 

this method has good image quality and embedding capacity. 

In 2003 Wu & Tsai proposed a new method called Pixel Value Differencing (PVD)  

[13]. In this method, the cover image is divided into non-overlapping blocks of two 

adjacent pixels. A difference value is calculated from the values of the two pixels in 

each block. All possible difference values are classified into a number of ranges. The 

difference value then is replaced by a new value to embed the value of a sub-stream 

of the secret message. The number of bits which can be embedded in a pixel pair is 

decided by the width of the range that the difference value belongs to [13]. This 

method provided a better way to embed larger amount of secret data. 
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In 2005 Wu et al proposed a method based on LSB replacement and PVD methods 

[14]. First, a difference value from two adjacent pixels by PVD method is obtained, 

where small difference value can be located on a smooth area and the large one is 

located on an edged area. In the smooth areas, the secret data is hidden into the cover 

image by LSB method while using the PVD method in the edged areas. This method 

provided double embedding capacity of PVD method with a good stego image 

quality PSNR.  

In 2006 Mielikainen proposed a modification to LSB method that uses a pair of 

pixels from the cover image as a group [4], where the secret bits are carried in LSB's 

of two pixels. Therefore this method has the same payload as LSB replacement 

method, but with fewer changes to the cover image pixels. So the performance of this 

method is better than LSB replacement, and the direction of modification to the 

cover pixels is exploited for data hiding, but there exist two different modification-

directions corresponding to a same pair of secret bits to be embedded, meaning that 

the exploitation is incomplete [10].  

Also in 2006 Zhang and Wang proposed a new method called Exploiting 

Modification Direction (EMD) [15]. The main idea of the EMD method is to use a 

separate n-pixel group of a cover image to embed the next digit of (2n+1)-ary k-digit 

number representing the next L-bit block from the secret image input and only one 

pixel in the group can be changed by ±1. Therefore, this method has very good image 

quality and better embedding capacity, but embedding capacity decreases as 

increasing n.  
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To improve EMD method Lee et al. proposed Improved EMD (IEMD) method in 

2007 [9]. This method uses two pixels from the cover image as group and 8-ary 

extraction function. It has greater embedding capacity than EMD, but it uses only 

two pixels in a group and cannot use more.  

To enhance the hiding capacity of EMD and IEMD  methods, a novel information 

concealing method based on Exploiting Modification Direction was proposed  in 

2011 [16]. This method embeds 2x secret digits in the 5-ary notational systems into 

each group of (2x + 1) cover pixels, where x is a positive integer. Thus, the proposed 

method can provide better hiding capacity. 

In 2013  Kuo and Wang provided  GEMD method [5], where it uses n-pixels from 

the cover image to embed n+1 bits , and at least one pixel value in each group could 

be changed by ±1. Also in this method there is no need for transformation, GEMD 

maintained good image quality and good embedding capacity, and also it can adjust 

the n-pixel size.  

Frequency domain uses the transform coefficients to embed secret data. Moreover, 

frequency domain techniques are very robust against attacks. In frequency domain 

the cover image is transformed into the frequency domain coefficients before 

embedding secret messages in it, where the main techniques used are: Discrete 

Cosine Transform (DCT) [11], and Discrete Wavelet Transform (DWT), in Discrete 

Cosine Transform [17]. 

 DCT method is used extensively with video and image compression e.g. JPEG 

compression, since for each color component the JPEG image format uses a discrete 
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cosine transform to transform successive 8 × 8 pixel blocks of the image into 64 

DCT coefficients each [11]. 

In DWT method [17], the cover image is divided into four sub-images such as 

approximation coefficients (CA), horizontal detail coefficients (CH), vertical detail 

coefficients (CV) and diagonal detail coefficients (CD). Similarly, the secret image is 

decomposed into four sub-images. These sub-images are divided into non-

overlapping blocks. The blocks of approximation coefficients of cover image are 

subtracted from approximation coefficient of secret image. The differences of these 

coefficients are called error blocks. The replacement of an error block is being done 

with the best matched CH block [17]. 

Though frequency domain methods are more difficult and slower than spatial domain 

methods, yet they provide more security [1]. In this work two spatial domain 

methods EMD and GEMD will be discussed in details which similar to frequency 

domain methods provide greater security by the use of data transformations but in the 

spatial domain. In addition, in [7] Kuo and Wang provided a comparison between 

EMD and GEMD methods over different values of n-pixel group using the metrics 

Peak Signal to Noise Raito (PSNR), Mean Square Error (MSE), and embedding 

capacity Bit Per Pixel (BPP). Since they considered the embedding capacity for 

GEMD is better than EMD, but the comparison in this case is not valid because the 

parameter n has different meaning for EMD and GEMD. For EMD n is the number 

of pixel required for one digit among k digits in one block, but for GEMD it is the 

total number of pixels required for one block, where in EMD total number of pixels 

required for one block is n.k not just n as in GEMD. So we need to analyze and 

experimentally study these methods as they exploited the modification of direction 
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with bit differences in embedding and extracting processing, also we compare the 

performance of them using the averages of the metrics PSNR, MSE, and BPP in 

addition to the memory and time consumption.  

2.3.1 EMD Method 

Proposed in [14], it uses the next n-pixel group of a cover image to embed one digit 

of (2n+1)-ary k-digit number representing the next L-bit block of the secret message 

binary stream, and only one pixel value may be  changed by ±1.  

EMD Embedding Algorithm  

Begin 

Inputs: cover image, CI (M,N); M is the number of rows; N is the number of 

columns; integer, n >0, pixel group size; integer, L >1, input binary stream block 

size; binary secret message, S. 

Output: stego image, SI(M,N). 

Step 1. Get next binary secret message block having L bits, and convert it to  

(2n+ 1)-ary k-digit number, where k is defined from the next relations 

2L ≤ (2n+1)k 

L≤ log2 (2n+1)k 

                                                    � ≤ ⌊�. ����(2� + 1)⌋                                         

                               �                         � = �
�

����(����)
��    ,                                            (2.1) 

where ⌊x⌋ and ⌈x⌉  are floor and ceil functions. 

Step 2. For each digit si, i=1, …., k, 

 Begin 

 Get next pixel group from cover image, CI, X=(x1,x2,...,xn), and calculate   

                                t=��(�) = � �� . � ���  (2� + 1)
�

�� �
                                     (2.2) 

Calculate  
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                                           d=(si− t) mod (2n+1)                                                   (2.3) 

Set  

                                                         X'=X                                                            (2.3.1)                                                  

If d= 0, nothing is made. 

If d ≤ n, increase the dth pixel in the pixel group by 1:  

                                                        x'd= x'd+1                                                      (2.3.2) 

Otherwise, decrease ((2n+1)−d)th  pixel in the  pixel group by 1: 

                                                    x'(2n+1-d)= x'(2n+1-d) - 1                                         (2.3.3) 

End of step2. 

Step 3. Go to Step 1 until the secret message is embedded. 

Step 4. End. 

Figure 2.1 shows the flow chart diagram of EMD embedding, while Figure 2.2 

shows the flow chart diagram for Step 2 in EMD embedding. 
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Figure 2.1: Flow chart diagram of EMD embedding  
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EMD Embedding Procedure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.2: Flow chart diagram for EMD Embedding Procedure  
(Block 6 in Figure 2.1) 
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EMD Extraction Algorithm  

Begin 

Inputs: stego image, SI(M,N); M is the number of rows; N is the number of columns; 

integer, n>0 pixel group size. 

Outputs: binary secret message, S. 

Step 0: Set S={ };//empty set. 

Step 1. Obtain the next n-pixel block X’=(x'1,x'2,...,x'n ) from stego image, SI. 

Step 2.  Calculate 

                                s=ef(x'1, x'2,  .  .  ., x'n) = � �′� . �  ���  (2� + 1)
�

�� �
              (2.4) 

Step 3.  Transform s into L-bit binary block and append it to the secret data stream, 

S. Go to Step 1. 

Step 4. End. 

Figure 2.3 shows the flow chart diagram of EMD extraction. 
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Figure 2.3: Flow chart diagram of EMD Extraction 

Start 

 
Input: n >0, stego image, SI. 

 

S={ } 

s=ef(x'1,x'2,. . ., x'n) � �′� . � ���  (2� + 1)
�

�� �
 

More 

blocks? 

Transform s into L-bit binary block and append it 
to the binary secret message S 

 

Read next n-pixel block 
X’=(x'1,x'2,...,x'n ) from SI. 

 

 
Output: binary secret message S. 
 

1 

2 

3 

4 

5 

6 

7 

Yes 

No  

End 



16 

 

EMD Embedding Example 

Let we have the following binary secret message  

S= 11100 01101 10101 10101 00011 11100 and CI pixel values are: 

CI= 162   163   163   161   162   158   163   161    

       162   159 155   164   160   155    156   156    

If n=2, then we have 2 pixel groups, eg., (x1, x2) = (162  163),  and L=5 bits in each 

block of secret message, then we get k =3 from Eq. (2.1). For the first 5-bit block, 

convert it into (2n+1)-ary k-digit number, so we have in base 5 

(11100)2 = (28)10 = (103)5. 

Next we take 2 pixels to embed the first digit s=1 and we apply the extraction 

function as in Eq. (2.2) 

t = (162×1 +163×2) mod 5 = 3 

Then calculate the difference d as in Eq. (2.3) 

d= (1-3) mod 5, 

d= -2 mod 5 = 3. 

Since d>n, then modify the pixel at position (2n+1)-d, it means at position 2, so 

second pixel will decrease by one, and we get 

group1 (x'1,x'2)=( 162  162). 

We do the same steps for second digit s=0 and second group (x1, x2) = (163 161) as 

follows 

t = (163×1 +161×2) mod 5 = 0 

d= (0-0) mod 5 = 0 

Since d=0, then no pixel in a group is modified, then group2 (x'1,x'2) = ( 163  161). 

For third digit s=3 and group3 (x1, x2) = (162  158) we calculate 

t = (162×1 +158×2) mod 5 = 3 
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d= (3-3) mod 5 = 0 then 

group3 (x'1,x'2)=( 162  158). 

In the extracting stage if we apply the Eq (2.4) for each group, then we can get our 

secret digits as follows 

s1= (162×1 +162×2) mod 5 = 1 

s2= (163×1 +161×2) mod 5 = 0 

s3= (162×1 +158×2) mod 5 = 3 

So we get 3 digits in base 5 (103)5, which are converted to binary to get our original 

bits (11100)2. 

2.3.2 GEMD Method 

This method proposed in [5], uses n-pixel group from the cover image to embed a 

block of (n+1) bits.  

GEMD Embedding Algorithm  

Begin 

Inputs: Cover image, CI(M,N); M is the number of rows; N is the number of 

columns; integer, n>0, defining bit block and pixel group size; binary secret message, 

S. 

Output:  stego image, SI (M,N). 

Step 1.   Get next n-pixel group X=(x1,x2,...,xn) from cover image CI 

Step 2. Get next binary secret message, S, block having (n+1) bits with decimal 

value s. 

Step 3. Compute ef(x1,x2,...,xn) with the pixel groups: 

                                  t=ef(x1,  x2,  .  .  ., xn) = � �� . �2� − 1����  2����

�� �
          (2.5) 

Step 4. Compute the difference d 

                                                     d= (s − t) mod 2n+1                                             (2.6) 
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Step 5.  If d=2�  then   R = 1;  

      else if (d<  2�)  then   R  =  2;  else R = 3; 

Step 6. Switch (R) 

Case 1: Let x'n = xn + 1,  x'
1 =  x1 + 1  . x'

i =  xi  ,  i=2,..,n-1 

Case 2: let d = (dn dn-1 dn-2… d1 d0 )2  

  for i =n down to 1 do 

  Begin 

       if (di = 0 and di-1 = 1) then x'
i = xi + 1; 

       else if (di = 1  and  di-1 =  0)  then  x'
i =  xi -  1; 

       else  x'i =  xi 

   End.  

Case 3:  Let    �′= 2��� − �  . Let   �′=     (dn dn-1 dn-2… d1 d0 )2 

   for i =n down to 1 do 

   Begin 

      if (di = 0 and di-1 = 1) then   x'
i = xi – 1  

      else if (di =  1  and  di-1 =  0)  then x'
i =  xi +  1; 

      else  x'i =  xi 

    End. 

Step 7.  Go to Step1 until secret the message is embedded.  

Step 8. End.   

Figure 2.4 shows the flow chart diagram of GEMD embedding, while Figure 2.5 and 

Figure 2.6 show the flow chart diagram for Step6-Case 2 and Step6-Case 3 in GEMD 

embedding respectively. 

 



19 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.4: Flow chart diagram of GEMD embedding 
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Case 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Flow chart diagram for Step6-Case 2 in GEMD embedding  
(Block 8 in Figure 2.4) 
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Case 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Flow chart diagram for Step6-Case 3 in GEMD embedding 

 (Block 9 in Figure 2.4) 
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GEMD Extraction Algorithm  

Begin 

Inputs: stego image, SI(M,N); M is the number of rows; N is the number of columns; 

integer, n>0, defining binary block and pixel group size. 

Outputs: binary secret message, S. 

Step 0. Set S={};//empty set 

Step 1. Get next n-pixel group, x=(x1,x2,...,xn), from stego image, SI. 

Step 2. Calculate 

                               s=ef(x'1,x'2,. . ., x'n) = � �′� . �2� − 1����  2����

�� �
               (2.7) 

Step 3.  Append s as (n+1)-bit binary block to binary output secret data stream, S. 

Step 4. If SI has not processed blocks, go to step1. 

Step 5. End 

Figure 2.7 shows the flow chart diagram of GEMD extraction. 
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Figure 2.7: Flow chart diagram of GEMD Extraction 
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GEMD Embedding Example 

In GEMD method we embed (n+1)-bit blocks in the n-pixel groups, so in the 

condition of Example 2, for n=2, we embed 3 bits in 2 pixels, then  

Block1= (111)2 = (7)10 =s1 

group1 (x1,x2)=( 162  163). 

From Step 3 in GEMD embedding algorithm 

t = (162×1 +163×3) mod 8 =3 

From Step 4,  

d = (7-3) mod8=4 

As d=4=2n, and from Step 6, Case1, the first and last pixels are increased by 1, then 

group1 (x'1,x'2)=( 163  164). 

If we apply the extraction function as in Eq. (2.7) 

s1= (163×1 +164×3) mod 8=7 

So we get the number (7)10, which if converted to binary gives our original bits 

(111)2. 

2.4 Known Experiments on EMD and GEMD  

In [7] the performance of EMD and GEMD was evaluated using the following 

quality metrics.  

1. Mean Square Error (MSE) is defined as mean squares differences between 

the original cover image and image after embedding [7]: 

                          2

1 1

1
( ( , ) ( , ))

M N

c r

MSE CI r c SI r c
M N  

 


                    (2.8) 

where M is the number of rows and N is the number of columns of the cover and 

stego images.CI (r,c) is the original image pixel value and SI(r,c) is stego image 

pixel value . 

2. Signal Peak to Noise Ratio (PSNR) is calculated as follows 
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                                   ���� = 10����� 
���× ���

���
      dB                                       (2.9) 

where 255 is the maximum value of pixels for grey scale images. 

3. Embedding capacity Bit Per Pixel (BPP) is defined as the number of secret bits 

embedded in each pixel of cover file. For EMD, log2(2n+1) bits that represent a 

(2n+1)-ary digit embedded in n pixels, while in GEMD (n+1)- bit values are 

embedded in n-pixel group [14]. BPP is calculated for EMD and GEMD as follows 

[7]: 

                                                BppEMD =   
����  (����)

�
                                            (2.10) 

Where number of bits embedded = log2 (2n+1)  

                                                 BppGEMD=   
���

�
                                                   (2.11) 

The results taken for PSNR and MSE from [7] are shown in Table 2.1, and the 

Figure 2.8 shows the four cover images that are used in [7]. 

 
Figure 2.8: Cover images used in [7] 
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Table 2.1: EMD-versus-GEMD known comparison results for PSNR and MSE [7] 

 

n=2 n=3 n=4 n=5 

EMD GEMD EMD GEMD EMD GEMD EMD 
GEM

D 

PSNR 

(dB) 
52.11 50.17 53.57 50.79 54.66 51.00 55.53 51.09 

MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18 
0.50 

 

(BPP) 1.16 1.50 0.93 1.33 0.79 1.25 0.69 
1.20 

 

 

From Table 2.1, the EMD scheme has very good image quality. Also for EMD 

method, the largest embedding capacity is 1.16 BPP when n= 2 and its capacity is 

less than 1 BPP when n≥3. For GEMD it maintains good stego image quality, and the 

embedding capacity is greater than 1 BPP when number of pixels in each group of 

cover image increases [7]. But the comparison in Table 2.1 is not valid because the 

parameter n has not the same meaning for both methods. In EMD n is the number of 

pixel required for one digit, not for one block as in GEMD. 

In the experiments conducted in this thesis, we tried to find the best values of EMD 

and GEMD parameters that achieved the results mentioned in Table 2.1 with 

minimum number of cover images, and the comparison between both methods will 

be taken as the average over the metrics PSNR, MSE, BPP, time and memory 

consumption.  

2.5  Problem Definition 

In this research, two steganographic algorithms, EMD and GEMD, are studied.  They 

are selected as representing a perspective direction in steganographic methods 

combining features from the main two directions: embedding in the space domain (as 

LSB-like methods embedding secret data directly in the cover image) and embedding 

in the frequency domain [1]. EMD and GEMD embed in the space domain but 
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similar to frequency domain methods use data transformations. In the papers on 

EMD and GEMD, justification for the methods is not provided; hence, we prove 

their correctness. Also, information is not provided such as data structures and the 

implementation details like the input-output data structures. They are experimentally 

investigated for image size 512x512, and we extend experiments to 1024x1024 size 

images. 

Data structures for the both methods and the justification of their correctness will be 

explained in Chapter 3.  Implementation details will be explained in Chapter 4. The 

simulation with the best values for EMD and GEMD parameters that required 

minimal number of cover images will be discussed and our results will be compared 

first between the both methods  and then with the known experiments in Chapter 5. 

In Chapter 6, we give conclusions and discuss the future work. 

2.6 Summary of Chapter 2  

Thus, in this chapter we have presented an overview of steganography and the 

related work: we explained two algorithms, EMD, and GEMD with an example for 

each of them. We considered the experiments conducted in [7], and finally we 

defined the problem. 
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Chapter 3 

EMD AND GEMD DATA STRUCTURES AND 
JUSTIFICATION OF THE METHODS CORRECTNESS  

In this chapter the details of data structures used in the implementation of EMD and 

GEMD algorithms will be discussed, such as the input-output data structures. 

Justification of EMD and GEMD correctness are given. 

3.1 Data Structure and Justification of EMD Correctness 

EMD method is described in Section 2.3.1. Now we consider necessary for its 

implementation data structures and of EMD correctness.  

3.1.1 Data Structure for EMD Embedding  

Inputs structure: 

1. Integers, n>0, pixel group size; L>1, bit block size. 

2. Binary message, S, sized |S| bits, we consider as a sequence of blocks Bi sized 

|Bi|=L bits, i=[0,1,…H-1] where the number of blocks H is defined as follows: 

                                                       ��  = �
|�|

�
��                                                          (3.1) 

The last block is padded by zeros when | BH-1 |≠L, Ŝ =S+ zeros (L-|S| mod L), where 

+ stands for concatenation, each Bi  is converted into k-digit number in the (2n+1)-ary 

notational system. Input, S, may be represented as a sequence of digits: 

Sdig= [s0,s1,…..si.k+j,…..., s(H-1).k+(k-1)], i=[0,1,…H-1], j=[0,1,…k-1], where si.k+j  is  j
th 

(2n+1)-ary digit of ith k digits (2n+1)-ary number, k is specified as in Eq.(2.1). 

3. Grayscale cover image number j from the set of cover images CI is represented as 

a matrix CIj [M,N] ,where M is the number of rows and N is the number of columns, 
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( , )jCI r c [0,1,........ 255] . 0≤ r≤ M-1, 0≤ c≤ N-1 ,0≤ j≤ Ñ-1,where Ñ is the number 

of cover images that is necessary to embed secret message S defined by following 

relation 

                                                              Ñ  = |��|= �
� × �

�
�                                 (3.2)                            

                                                                      � = �
� × �

�
�                                      (3.3) 

where � is the number of n-pixel groups fitting one cover image 

Output: Stego images jSI  [M, N], with embedded message, 0≤ j≤ Ñ-1.  

A cover image is represented by one-dimensional array  Xj ={ xj0, xj1,….., xj.(M.N-1)} 

by scanning each row of image from left to right and from top to bottom (Row major 

order C-style) as in Fig. 3.1: 

 
Figure 3.1: Reshaping cover image as one dimensional array  

The one dimensional cover image Xj is divided into non-overlapping groups of n 

pixels. Each j-th digit si.k+j of ith k-digit (2n+1)-ary number from  Sdig, where Sdig is a 

secret message represented as sequence of (2n+1)-ary digits of k-digit numbers, 

i=[0,1,…H-1], j=[0,1,…k-1], is embedded in a  group of n-pixels 
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 x=[ x(i.k+j)n,…… x(i.k+j).n+n-1], i=[0,1,…H-1], j=[0,1,…k-1] that is illustrated by 

Figure 3.2. 

 
Figure 3.2: EMD data structure for embedding procedure 

For instance, let L=5 bits, n=2 pixels in each group, then 5- bit binary blocks are 

converted to 5-ary numbers with k=3 digits, where k is defined by (2.1), so we need 3 

groups to embed these 3 digits and each group has 2 pixels, it means that three out of 

six pixels will be changed at most. 

Example 1. If we have a binary secret message with size |S|=100 bits, and L=5 bits 

in each block, then number of these blocks is  

� =
|�|

�
      =

���

�
 = 20 blocks 

And S may be represented as sequence of blocks [B0, B1……… B19]. 

If the number of pixels n is two for each group, then (2n+1)-ary is 5-ary. To embed S 

we need H .k groups of n pixels, i.e. number of pixels is H.k.n=20.3.2=120 pixels.  
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3.1.2 Data Structures for EMD Extraction  

Input structures: 

Integer, n>0; defining pixel group size. 

Grayscale stego images  SIj [M,N] ,where M is the number of rows and N is the  

number of columns, ( , )jSI r c    [0,1,… 255] , 0≤ r≤ M-1 ,0≤ c≤ N-1 ,0≤ j≤ Ñ-1,  

where Ñ is the number of stego images that is defined by Eq. (3.2). 

Output: Binary secret message, S. 

The stego images are represented as one dimensional arrays as in Figure.3.1. One-

dimensional stego image Xj is divided into non-overlapping groups of n pixels. For 

each n-pixel group of Xj calculate (2.4). Data structure for extraction procedure is 

illustrated in Figure 3.3. 

 
Figure 3.3: EMD data structure for extraction procedure 
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3.1.3 Justification   of EMD Correctness 

Statement 1. 

Let's assume that EMD algorithm from Section 2.3.1 is applied, and digit si is 

embedded in a group of n pixels x=(x1,……,xn) resulting in stego image group 

x'=(x'1,…x'n). Then by applying Step2 of EMD extraction algorithm,  Eq. (2.4), value 

of si is returned. 

Statement 1 Justification. 

From (2,4)  

��(��) = � (��
� . �) ��� (2� + 1 )

�

�� �

 

Consider three cases for d calculated by (2.3). 

Case 1.  d=0. In this case, from (2.3.1), no pixel was modified, and x'= x 

��(��) = � (�� . �) ��� (2� + 1 )
�

�� �
                                                                    (3.4) 

From (2.2) ,     ��(��) = �                                                                                       (3.5)                                    

From (2.3),    si= (t+d) mod (2n+1)                                                                         (3.6) 

For d=0, from (3.6),  si= t   , then from (3.5) 

ef(x') =si     q.e.d. 

 Case 2.  d≤n . Then according to (2.3.1), (2.3.2) 

�′� = �
�� + 1, � = �

��, � ≠ �
                � = 1,2,. . ��                                                              (3.7) 

From  (2.4), (3.7), 

��(��) = � (��
� . �) ��� (2� + 1 )

�

�� �

 

= (�  
�� �

�� �
�� . � + �(�� + 1)+ � �� . �

�

�� ���  

) ��� (2� + 1) 
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= (�  
�

�� �
�� . � + 1. �) ��� (2� + 1) 

= (�+ �)��� (2� + 1) , then from (2.5) 

��(��) = ��  q.e.d. 

Case 3. n< d<2n. Let   

�� = (2� + 1 − d), �′ ∈ {1,… ,�}                                                                        (3.8) 

� = (2� + 1 − ��)��� (2� + 1)                                                                          

 = − �′ ��� (2� + 1)                                                                                              (3.9)                                                                      

   From (2.3.3),                                                                             

�′� = �
�� − 1, � = �′

��, � ≠ �′
                � = 1,2,. . ��                                                           (3.10) 

Then, from (2.4), (3.9), (3.10) 

��(��) = �  (
�

�� �
�′� . � ) ��� (2� + 1) 

= ( �  
��� �

�� �
�� . � + ��(��� − 1)+ � �� . �

�

�� ����

)  ��� (2� + 1) 

= (∑  �
�� � �� . � − 1. ��)��� (2� + 1)                                                                   (3.11)                                           

= (∑  �
�� � �� . � + 1. � )��� (2� + 1)              

= (�+ �)��� (2� + 1)                                                                                        (3.12) 

Then, from (2.3), (3.12), 

��(��) = ��  q.e.d. 

3.1 Data Structure and Justification  of GEMD Correctness  

In GEMD, (n+1) bits are embedded in n adjacent pixels and at least one-pixel value 

in each group could be changed. 

3.2.1 Data Structure for GEMD Embedding  

Input structures: 
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1. Integer, n, n>0, defining pixel group and bit block size. 

2. Binary message S sized |S| bits. It is divided into blocks Bi sized |Bi |=L, where 

L=n+1 bits, i=0,1,..…H-1, and H is the number of blocks defined as in Eq.(3.1). The 

last block is padded by zeros when | BH-1 |≠L, S =S+ zeros (L-|S| mod L). 

3. Grayscale cover images CIj [M,N], where M is the number of rows and N is  the 

number of columns, ( , )jCI r c    [0,1,… 255] , 0≤ r≤ M-1, 0≤ c≤ N-1, 0≤ j≤ Ñ-1. Ñ 

is the number of cover images that is defined by Eq. (3.2) , and is represented by 

one-dimensional array as in Figure 3.1. 

Output: Stego images jSI [M,N], with embedded message S , 0≤ j≤ Ñ-1 . Data 

structure for GEMD embedding is illustrated by Figure 3.4. 

Figure 3.4: GEMD data structure for embedding procedure 

3.2.2 Data Structure for GEMD Extraction  

Input structures: 

1. Integer, n, n>0, defining pixel group and bit block size. 
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2. Grayscale stego image SIj [M,N], where M is the number of rows and N is the 

number of columns, ( , )jSI r c    [0,1… 255], 0≤ r≤ M-1, 0≤ c≤ N-1, 0≤ j≤ Ñ-1. 

Output: Binary secret message, S. Figure 3.5 shows data structure for GEMD 

extraction.  

 
Figure 3.5: GEMD data structure for extraction procedure 

3.2.3 Justification of GEMD Correctness 

Statement 2. 

Let's apply GEMD embedding algorithm with parameter n from Section 2.3.2, 

resulting in Ñ modified stego images with embedded secret message S. Then, 

application of GEMD extraction algorithm to these stego images results in original 

secret message S.  
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Statement 2 Justification. 

Let's consider next n pixel block from the stego image X'=(x'1,…x'n) which was 

obtained by embedding of (n+1)-bit block number s from the input secret binary 

stream S, by Step3-Step6 transformation of the original stego image block 

X=(x1,…xn). 

From (2.7)  

��(�′)= � �′� . �2� − 1����  2����

�� �
                                                               (3.13) 

Consider in (2.6) d=2�, then from Step 6, Case1, we have  

x'
n =  xn + 1,  x'

1 =  x1 +  1, i=1,…,n                                                                      (3.14) 

Then, from (3.13), (3.14) 

��(��) = ((�� + 1)(2� − 1)+ � �� . �2� − 1�+ (�� + 1)(2� − 1))���  2���

�� �

�� �

 

= (� �� . �2� − 1�+ 1. (2� − 1)+ 1. (2� − 1))���  2���

�

�� �

 

= (� �� . �2� − 1�+ 2� ) ���  2����

�� �
                                                              (3.15)                                            

From (2.5), (2.6), (3.15), we get  

s= (t+d) mod 2n+1 = ��(��) , q.e.d. 

Consider in (2.6), d<2�. 

Let binary representation of d is as follows: 

d=� �� . 2��

�� �
, and dn=0                                                                                     (3.16)   

If, for simplicity, 

d=2k, k<n                                                                                                              (3.17) 

Then, according to Step6, Case2, 

x'k+1=xk+1+1 (increase left neighbor)                                                                    (3.18) 

x'k=xk -1 (decrease current position)                                                                     (3.19) 
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Then from (2.7), (3.18), (3.19) 

��(�′)= � �′� . �2� − 1����  2���

�

�� �

 

= (�  
�� �

�� �
�� �2� − 1�+ (�� − 1)(2� − 1)+ (���� + 1)(2��� − 1)

+  � �� �2� − 1�

�

�� ���  

) ��� (2���) 

=(� �� . �2� − 1�− 2� + 1 + 2��� − 1 )���  2����

�� �
 

=( ��(�)+ 2�)��� 2���                                                                                     (3.20)                                               

From (2.5), (2.6), (3.17), (3.20),  

��(��) = (��(�)+ �)��� 2��� = (�+ �)��� 2��� = � . 

Thus, GEMD works correctly in the case when binary representation of d has just 

one 1. In the case of several consecutive ones in the binary representation of d, let, 

dk+1=0, dk=dk-1=…..=dj=1, dj-1=0, j<k.                                                                (3.21) 

Applying for each di =1,i=j,…,k, considered above embedding, i.e. x'i+1=xi+1+1, 

x'i=xi -1, i=j,..,k, we see that as far as each x'i; i=j+1,…, k, is modified twice, once 

increased as a left neighbor, and once decreased as being in the current position, 

hence ultimately, only x'k+1 ,and x'j are modified: 

x'k+1=xi+1+1, x'j=xj -1, that just corresponds to Case 2 modifications of Step6 in the 

GEMD Embedding algorithm. q.e.d. 
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For example, we have n=5 pixels in a group, and d is as follows in binary: 

 x5 x4 x3 x2 x1 pixels 

d5 d4 d3 d2 d1 d0  

0 1 1 1 0 0 Binary 

values 

 k=4  J=2    

Then we have 3 consecutive ones in positions 4,..,2,k=4, j=2 in (3.21). According to 

(3.18), (3.19), the first change from 0 to 1 is at position k=4, so   

x'5=x5+1, x'4=x4-1                                                                                                 (3.22) 

Then d3=1, and by (3.18), (3.19), 

x'4=x4+1, x'3=x3-1                                                                                                 (3.23) 

Then d2=1, and by (3.18), (3.19), 

x'3=x3+1, x'2=x2-1                                                                                                 (3.24) 

Then we get from (3.22), (3.23), (3.24) 

x'5=x5+1 

x'4=x4-1 and x'4=x4+1 , so  x'4=x4                                                                         (3.25) 

x'3=x3-1 and x'3=x3+1 , so  x'3=x3 

x'2=x2 - 1 

Hence for this case of k=4, j=2, we have ultimately for (3.25) x'5=x5+1, x'2=x2 – 1, 

x'i=xi , i=j+1,….,k, that complies with Step6, Case2 of the GEMD Embedding 

algorithm. q.e.d. 

Consider in (2.6), d>2�,  

�� = 2��� − � < 2�   , so, � = − �� ���  2���  ,   and in binary  

d'= (dn  dn-1  dn-2… d1 d0   )2 , i.e.     

 d'= � �′� . 2��

�� �
 <2�                                                                                           (3.26) 
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Let 

 d'=2k , k<n                                                                                                       (3.27) 

Then similar to the Case2, but now considering according to Step6, Case3 of the 

GEMD Embedding algorithm, we used decreasing, and x'k+1=xk+1 -1, x'k=xk+1. Then 

we have from (2.7), (3.27) 

��(�′)= � �′� . �2� − 1����  2���

�

�� �

 

= � �  
�� �

�� �
�� �2� − 1�+ (�� + 1)(2� − 1)+ (���� − 1)(2��� − 1)

+  � �� �2� − 1�

�

�� ���  

� ��� 2���   

 =(� �� . �2� − 1�+ 2� − 1 − 2��� + 1 )���  2����

�� �
 

 = (��(�)− 2�)��� 2��� 

 = (��(�)− �′)��� 2���                                                                                      (3.28)                                                                    

As we have � = − �� ���  2���, then from (2.7), (2.8), (3.28),  

��(��) = (��(�)+ �)��� 2��� = �  

In the case of several consecutive ones appearance in d' is considered just as in the 

Case2. q.e.d. 

3.2 Summary of  Chapter 3  

Thus, in this chapter we have considered details of data structures for input, output of 

EMD and GEMD that is necessary for their implementation and proved correctness 

of them. In the next Chapter 4 the implementation of the methods will be discussed. 
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Chapter 4 

IMPLEMENTATION OF THE EMD AND GEMD  

In this chapter, we will show the implementation of EMD and GEMD schemes. In 

testing the algorithms, a personal computer with the following characteristics was 

used; CPU: Intel ®Core (MT) i3 3210M 2.10 GHz, with a memory of 2GB, 

Windows 7 operation system, and MATLAB 2013 was used for simulation.  

4.1 EMD Implementation 

 In EMD implementation, four gray scale secret images with same size 512×512 

pixels are used; also the cover images are in the size 512×512. First, we need to 

specify the number of pixels n in each group of cover image, and then the number of 

bits L in each block of secret message which will be represented by k-digit (2n+1)-

ary number, where k is  calculated in the  main program as follows (full code is in 

Appendix A.1): 

1.addpath('cover_set/');addpath('secret_set/');      

2.img_name = 'P';sec_name='S'; 
3. M=512; N=M;  

4. L=input('Input L: the number of bits in a block '); 

5. n=input(' Input n: the number of pixels in a group '); 

6. k=ceil(L/(log2(2*n+1))) 

7. Bpp=(log2(2*n+1))/n 

8. Sec = imread([sec_name, '',num2str(1) '.jpg']);    

9. S =reshap_im(sec,M,N);                            

10.[Bin]= conv2binary(S);                           

11.s_size=numel(Bin) 

12.SS=[Bin zeros(1,(L-(mod(s_size,L))))] 

13. H=ceil(s_size /L); 

14.Cover_im = ceil((H*k)/C); 
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In line 3 we specify the size of cover image and secret image, rows M, and columns 

N as 512×512. In line 6 we calculate the number of digits k as (2.1), and in line 7 we 

calculate the embedding capacity BPP as in (2.10). In line 8 we read the first secret 

image as we have four gray scale secret images and in line 9 we reshape it into one 

dimensional array by reshap_im function (A.2). In line 10, we convert each pixel of 

the secret image into binary by calling conv2binary function (A.3). In line 12 last 

block of binary secret message may padded by zeros, and in lines 13, 14, the 

number of blocks H and the number of cover image are calculated as (3.1), (3.2) 

respectively, then the result is as follows. 

Input L: the number of bits in a block    16 

Input n: the number of pixels in a group    2 

k = 7 

H= 131072 

Cover_im = 7 

Necessary for CI number formulas were derived in ch3. In the main program (A.1) 

the functions are called as follows 

1. Covers = uint8( zeros(M,N,Cover_im) ); 

2. Stegos = uint8( zeros(M,N,Cover_im) ); 

3.  [Dig] = BTO2NP1(SS,L,k,n,H ); 

4. h=1; 

5. for i=1:Cover_im  

6. tic 

7. CI = imread([img_name, '',num2str(i) '.tif']); 

8. Covers(:,:,i)=CI; 

9. ci1 =reshap_im(CI,M,N); 

10. x=1; 

11. for r=1:C    

12. group= ci1((x-1)*n+1:x*n); 

13. [em_group]=embed(group,Dig(h),n); 

14. ci1((x-1)*n+1:x*n)=[em_group]; 

15. h=h+1; 

16. x=x+1;   

17. end 

18. ci2 =reshap_im2(ci1,M,N); 
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19. Stegos(:,:,i)=ci2; 

20. tim(i)=toc 

21. mem= memory 

22. end  

In line 3 we convert each L-bit block of secret message SS into k-digit (2n+1)-ary 

number by BTO2NP1 function (A.4). In lines 6 and 20 we calculate the time 

consumption in seconds with a function that starts timer,  tic, in line 6, and stop it by 

toc in line 20 as one cover image is embedded completely, while in line 21 memory 

consumption is calculated in MB. As we get n-pixel group from cover image in line 

12, one digit is embedded each time in n-pixel group by embed function given in 

Appendix A.5, according to description in Section 2.3.1 as follows  

function [em_group] = embed(group, Dig,n)             

sum=0; 

  for i=1:n 

  sum =sum +double(group(i))*i  ;   

  end 

t=mod(sum,(2*n+1)); 

d=mod((Dig -t),(2*n+1)); 

if (d<=n && d>0) 

   group(d)=(group(d))+1;  

elseif (d>n) 

 group(((2*n+1))-d)=(group(((2*n+1))-d))-1;    

end 

em_group= group; 

end 

From main program code, in line 18, we reshape stego image into two dimensional 

array as in Appendix A.11, and then in line 19 it is saved in array of set stego images 

that presented by the code in Appendix A.6. The results are available in Appendix 

A.8.1. 
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disp('=================================================') 

disp('stego image  PSNR  MSE   Time  Memory  Capacity') 

disp('              dB          sec    MB       bpp   ') 

disp('================================================') 

set(gcf, 'name', ' Secret Image in case n=2'); 

 for i=1:Cover_im  

subplot(3,3,i) ;  imshow((Stegos(:,:,i))); 

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i)); 

title(['PSNR = ',num2str(PSNR) ]); 

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),me

m,Bpp) 

disp('=================================================') 

sum_time=sum_time+tim(i); 

sum_psnr=sum_psnr+PSNR(i); 

sum_mse=sum_mse+MSE(i);   

 end 

psnr_avg=sum_psnr/Cover_im 

mse_avg=sum_mse/Cover_im 

tim_avg=sum_time/Cover_im 

sprintf('Average ') 

disp('=================================================') 

sprintf('%f%f %f%f %f',psnr_avg,mse_avg,tim_avg,mem,Bpp) 

Image quality PSNR (2.9) and MSE (2.8) are calculated in the following function 

given in Appendix A.7: 

function [ My_psnr MSE ] = My_PSNR(I,J)         

    X = double(I);  

    Y = double(J);  

    MSE = sum((X(:)-Y(:)).^2) / prod(size(X)) ; 

    My_psnr = 10*log10(255 * 255/MSE); 

End 

As a sample output of our implementation, the results for first gray scale secret 

image (Balloon) that embedded in 7 cover images when n=2, L= 16 bits are shown 

Figures 4.1 and 4.2. 
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Figure 4.1: Seven stego images in EMD implementation Appendix A.8.1 (1) Lena; 

(2) Baboon.; (3) F16; (4) Barbara. (5) Monaliza; (6) Tiffany; (7) Girl.  

 
Figure 4.2: EMD implementation results in case n=2. Appendix A.8.1 

For extraction stage in the following code, as we extract binary message from 

EXTRACTION function, Appendix A.10, we convert each 8 bits to decimal to 

represent a pixel, and then we reshape the steam of numbers into two dimensions, 
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Appendix A.11, to get our secret message as shown in Figure 4.3, and in the next 

code, Appendix A.9. 

for j=1:Cover_im 

    Stegos1(1,:,j)=reshap_im(Stegos(:,:,j),M,N);  

end 

    [secret_message]= EXTRACTION( Stegos1,k,n,H,L );  

     v=1; 

for i=1:M*N 

     bmess=secret_message((v-1)*8+1:v*8); 

     a=bin2dec(num2str(bmess)); 

     d_msg=[d_msg a]; 

     v=v+1; 

 end 

   secret_im=reshap_im2(d_msg,M,N); 

   set(gcf,'name',' Extracted Secret image'); 

   imshow(uint8(secret_im)); 

 
Figure 4.3: Extracted Secret image 

4.2  GEMD Implementation 

In this method no need for transformation, so L= (n+1) bits are embedded in n pixel 

group.  Use already defined formulas. After specifying n and L in the main program, 

Appendix B.1, we read the secret image and reshape it into one dimensional array, 
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Appendix B.2, then convert it to binary by conv2binary function, Appendix B.3. 

Binary secret message stream is divided then into (n+1)-bit blocks and then to 

decimal numbers by next function, Appendix B.4: 

function [Num] = GET_B(S,L,H) 

    Num=[]; 

    for i=1:H 

    B= S((i-1)*L+1:i*L);   

    d=bin2dec(num2str(B)); 

    Num=[Num d]; 

    end 

end 

Embedding function, Appendix B.5, is as follows. 

function [em_group ] = GEMDembed( group,num,n ) 

1 sum=0; 

2 for i=1:n  

3 sum = sum + double( group(i)) *((2^i)-1);  

4 end 

5 t=mod(sum,(2^(n+1))); 

6 d=mod(num -t,(2^(n+1))); 

7 if (d==2^n) R=1;    

8 elseif(d<(2^n)) R=2;    

9 else R=3; 

10 end 

11 switch R 

12 case 1 

13 group(n)= group(n)+1; 

14 group(1)= group(1)+1;      

15 case 2 

16 d=dec2bin(d,(n+1)); 

17 for i=0:n-1 

18 if ((d(i+1)=='1')&&(d(i+2)=='0')) 

19 group(n-i)=group(n-i)-1; 

20 elseif ((d(i+1)=='0')&&(d(i+2)=='1')) 

21 group(n-i)=group(n-i)+1; 

22 end 

23 end 

24 case 3 

25 d=(2^(n+1))-d; 
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26 b=dec2bin(d,(n+1)); 

27 for j=0:n-1 

28 if((b(j+1)=='1')&&(b(j+2)=='0')) 

29 group(n-j)= group(n-j)+1; 

30 elseif((b(j+1)=='0')&&(b(j+2)=='1')) 

31 group(n-j)= group(n-j)-1;   

32 end 

33 end    

34 end 

35 em_group= group; 
end 

In lines 1-5, we calculate the extraction function (2.5) described in Section 2.3.2, and 

(2.6) in line 6. Then lines 7- 10 are the Step 5 in GEMD embedding algorithm. Step 

6, Case 1 is implemented in the lines 12-14, and in lines 15-23, we apply Step 6, 

Case 2; lines 24-35 are the Step 6, Case3 in GEMD embedding algorithm. Here in 

lines 16-17 and lines 26-27 we did not change the positions of d bits, since Matlab 

starts from left to right, it means from most to least significant bit as we have in the 

GEMD embedding algorithm.   GEMD results are presented by the following code, 

Appendix B.6, PSNR (2.9), MSE (2.8), GEMD embedding capacity BPP (2.11), time 

and memory consumption, Appendix B.1, results are available in Appendix B.8.1.  

disp('=================================================') 

disp('stego image  PSNR  MSE   Time  Memory  Capacity') 

disp('              dB          sec    MB       bpp   ') 

disp('================================================') 

set(gcf, 'name', ' Secret Image in case n=2'); 

 for i=1:Cover_im  

subplot(2,3,i) ;  imshow((Stegos(:,:,i))); 

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i)); 

title(['PSNR = ',num2str(PSNR(i))]); 

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),me

m,Bpp) 

disp('=================================================') 

sum_time=sum_time+tim(i); 

sum_psnr=sum_psnr+PSNR(i); 
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sum_mse=sum_mse+MSE(i);   

 end 

psnr_used=(sum_psnr- PSNR(Cover_im))/(Cover_im-1); 

mse_ used =(sum_mse - MSE(Cover_im))/(Cover_im-1); 

tim_ used =(sum_time- tim(Cover_im))/(Cover_im-1); 

psnr_set=sum_psnr/Cover_im; 

mse_set=sum_mse/Cover_im; 

tim_set=sum_time/Cover_im; 

sprintf(' Average on fully used  ') 

disp('=================================================') 

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_used,mse_used,tim_use

d, mem,Bpp) 

sprintf(' Average on fully set  ') 

disp('=================================================') 

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_set,mse_set,tim_set,m

em,Bpp) 

 

 
Figure 4.4: Six stego images in GEMD implementation. Appendix B.8.1 
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Figure 4.5: GEMD implementation results in case n=2. Appendix B.8.1 

As a sample output of our implementation in Figures 4.4 and 4.5, we see that last 

image has greater PSNR and less MSE since fewer pixels are changed because it was 

not embedded completely, where number of cover image is calculated according to 

(3.2). Also from Figure 4.5 the average on fully used is taken for the first 5 images 

that are fully embedded, while the average on fully set is taken for all stego images, 

since the last image not fully embedded. In the extraction code in main program, 

Appendix B.9, we call the extraction function, Appendix B.10, and then convert each 

8 bits to decimal to represent a pixel, then reshape into two dimensions, Appendix 

B.4, to get our secret message. Next is the extraction function code, Appendix B.10: 

function [B_msg]=  EXTRACTION(Stegos1,H,n ) 

B_msg=[]; 

   for i=1:H     

       group= Stegos1((i-1)*n+1:i*n); 

       sum=0; 

     for j=1:n 

       sum = sum + double( group(j)) *((2^j)-1);  

      end 

  t=mod(sum,(2^(n+1))); 
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  bin=dec2bin(t,n+1);            

  B_msg=[B_msg bin]; 

   end 

  B_msg; 

 end 

4.2  Summary of  Chapter 4  

Thus, in this chapter we have implemented and explained EMD and GEMD codes as 

we take n=2 pixels as an example in both methods, and the results in this case were 

shown. Furthermore the results for different values of n and full codes for all 

functions in both methods are available in Appendix. 
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Chapter 5 

SIMULATION AND RESULTS 

In this chapter we discuss the results of EMD and GEMD simulations for different 

number of pixels n in a group used in the cover images. 

5.1  EMD Simulation  

Gray scale secret images of size 512×512 used in the experiments are shown in 

Figure 5.1. Also cover images used in the experiments are shown in the Figure 5.2.  

To investigate the effect of using different sizes, the results are taken for two cover 

image sizes 512×512 and 1024×1024. 

 
Figure 5.1: Gray scale secret images (1) Balloon; (2) Tiffany; (3) Boat; (4) Pepper 
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Figure 5.2: Gray scale cover images used in EMD and GEMD simulation 

EMD optimal parameters used in the simulations are given in Table 5.1. Where k is 

calculated as (2.1), and number of cover images Ñ as (3.2).  

Table 5.1: EMD parameters of the simulation with 512×512 cover images 

parameter 
Number of pixels n for one digit 

2  3  4  5  

L bits 16  16  32  64  

k digits 7  6  11  19  

cover images Ñ 7 10 11 12 

From Table 5.1, and for n= 2, L= 16, and k = 7, where k is calculated as in (2.1) then 

number of cover images Ñ  necessary for one secret image is calculated as follows 

First, we find the number of blocks H, according to (3.1)   ��  = �
|�|

�
�� 

Where |S| is the size of binary secret image S, |S| = 512×512×8=2097152 bits 

��  = �
2097152 bits

16 ����
��= 131072 ������ 

From (3.2)  

 Ñ  = �
� × �

�
�= �

������× �

�
�                            
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From (3.3),     � = �
� × �

�
� =  �

���× ���

�
�=131072 n-pixel groups   

Then, 

Ñ= �
������× �

�
�=  7 cover images. 

For n=3 pixels, L= 16 bits, and k = 6 digits, then 

��  = �
2097152 bits

16 ����
��= 131072 ������ 

 

Ñ = �
������× �

�
���× ���

�
�

�  = 10 cover images   

For n=4 pixels, L= 32 bits, and k = 11 digits, then 

��  = �
2097152 bits

32 ����
��= 65536 ������ 

 

Ñ = �
�����× ��

�
���× ���

�
�

�  = 11 cover images                               

For n=5 pixels, L= 64 bits, and k = 19 digits, then 

��  = �
2097152 bits

64 ����
��= 32768 ������ 

 

Ñ = �
�����× ��

�
���× ���

�
�

�  = 12 cover images   

For 1024×1024 cover image, and with the same EMD parameters (L and k) in Table 

5.1, we got different numbers of cover images required for one secret image using 

(3.1), (3.2), and (3.3) in each case of n as shown in Table 5.2. 
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Table 5.2: EMD parameters of the simulation for 1024×1024 cover images 

parameter 
Number of pixels n for one digit 

2  3  4  5  

L bits 16  16  32  64  

k digits 7  6  11  19  

cover images Ñ 2 3 3 3 

From Table 5.2 we note that as we increase cover image size then we need less 

number of cover images. Table 5.3 shows the EMD average results using 512×512 

cover image size for different values of n that obtained from the Appendix A.8. As in 

some cases we have two averages, fully used and fully set, where the average fully 

used indicates to the averages of PSNR, MSE, memory and time consumption for the 

fully images used (without the last image that not fully embedded), while the average 

fully set refers to the averages for the fully images set (with the last image that not 

fully embedded).  

Table 5.3: EMD average results for 512×512 cover images 

Metric average 
Number of pixels n for one digit  

2 3 4 5 

PSNR 

(dB) 

Fully 

used 
52.11 53.57 54.66 55.53 

Fully 

set 
 58.45  55.70 

MSE 

Fully 

used 
0.40 0.28 0.22 0.18 

Fully 

set 
 0.25  0.17 

Time 

(sec) 

Fully 

used 
7.81 6.38 4.66 3.97 

Fully 

set 
 5.76  3.82 

Memory (MB) 481 486 490 496 

Capacity (BPP) 1.16 0.93 0.79 0.69 
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Table 5.4 shows the EMD average results for 1024×1024 cover images, the results 

are obtained from Appendix A.8.  

Table 5.4: EMD average results for 1024×1024 cover images 

Metric average 
Number of pixels n for one digit  

2 3 4 5 

PSNR 

(dB) 

Fully 

used 
52.11 53.57 54.66 55.53 

Fully 

set 
52.73 55.58 55.08 55.68 

MSE 

Fully 

used 
0.40 0.28 0.22 0.18 

Fully 

set 
0.37 0.21 0.20 0.18 

Time 

(sec) 

Fully 

used 
5.72 4.31 3.02 2.18 

Fully 

set 
5.36 4.14 2.91 2.12 

Memory (MB) 493 495 497 500 

Capacity (BPP) 1.16 1.16 0.93 0.69 

From Table 5.3 and Table 5.4 The comparison for metrics are taken for fully used 

averages since the fully set average is not found in some cases in 512×512 cover 

images Table 5.3. For both sizes we got the same results for PSNR and MSE since in 

EMD embedding algorithm only one pixel in a group could be changed by ±1, it 

means not depends on the size, also for embedding capacity that calculated according 

to (2.10)For both sizes the PSNR for fully used average is better than 52 dB as the 

number of pixels in the cover image increases which is illustrated in   Figure 5.3. 
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Figure 5.3: PSNR of EMD using 512×512 and 1024×1024 cover image size 

Also from Table 5.3 and Table 5.4, MSE decreases from 0.40 to 0.18 as n increases 

from 2 to 5 pixels as shown in Figure 5.4. 

 
Figure 5.4: MSE of EMD using 512×512 and 1024×1024 cover image size 

Figure 5.5 sows the EMD embedding capacity for both sizes in Table 5.3 and Table 

5.4 that decreases from 1.16 BPP to 0.69 BPP when n ranges from 2 to 5 pixels. 
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Figure 5.5: BPP of EMD using 512×512 and 1024×1024 cover image size 

From Table 5.3 and Table 5.4 we note that for memory and time consumption we got 

different values. For time consumption, EMD using 1024×1024 cover images takes 

less time than using 512×512 cover images, since in using 512×512 cover images 

takes more cover image in each case of n it means more time consumption for 

processing data. From Table 5.3 Time consumption decreases with n for fully set 

average; it decreases from 7.81 sec to 3.97 sec, while in Table 5.4 it decreases from 

5.72 sec to 2.18 sec when n ranges from 2 to 5 pixels as shown in Figure 5.6.  
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Figure 5.6: Time consumption of EMD using 512×512 and 1024×1024 

cover image size 

For memory consumption, EMD using 1024×1024 cover images in Table 5.4 takes 

more memory than using 512×512 cover images as in from Table 5.3 where memory 

consumption increases with n for fully set average; it increases 481MB to 496 MB. 

On the other hand using 1024×1024 cover images Table 5.4, memory consumption 

increases from 493 MB to 500 MB when n ranges from 2 to 5 pixels as shown in 

Figure 5.7. 

 
Figure 5.7: Memory consumption of EMD using 512×512 and 1024×1024  

cover image size 
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From Table 5.3 and Table5.4 we can summarize the results in Table 5.5 as 

comparison results using 512×512 and 1024×1024 size of cover image for EMD 

method. 

Table 5.5: Comparison results for EMD in two sizes of cover image 

metric 
EMD method 

512×512 1024×1024 

PSNR(dB) 53.97 53.97 

MSE 0.27 0.27 

Time (sec) 5.71 3.81 

Memory (MB) 488 496 

Capacity (BPP) 0.89 0.89 

 

From Table 5.5 we find that as we use grater size of cover image then we have less 

time consumption by 0.33% for EMD, since in case of using 512 × 512 cover 

images, we need more cover images and then more time for data processing.  For 

memory consumption, using 1024 × 1024 cover images required more memory by 

0.02%. On the other hand, for both sizes we get the same results for EMD metrics 

PSNR, MSE, and embedding capacity BPP. The results for both cover image sizes 

are obtained from appendix A. 

5.2 GEMD Simulation  

In GEMD, we take L=n+1 bits to embed in n pixels. GEMD parameters used in the 

simulations are given in Table 5.6. Number of cover images is calculated as (3.2). 
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Table 5.6: GEMD parameters of the simulation for 512×512 cover images 
parameter Number of pixels n for one block L 

2 3 4 5 

L bits 3  4  5  6  

cover image Ñ 6 7 7 7 

From Table 5.3, and for n =2, L= 3, then 

��  = �
2097152 bits

3 ����
��= 699051 ������ 

 

Ñ = �
������

�
���× ���

�
�
�  = 6 cover images   

For n=3 pixels, L= 4 bits, then 

��  = �
2097152 bits

4 ����
��= 524288 ������ 

Ñ = �
������

�
���× ���

�
�
�  = 7 cover images   

For n=4 pixels, L= 5 bits, then 

��  = �
2097152 bits

5 ����
��= 419431 ������ 

Ñ = �
������

�
���× ���

�
�
�  = 7 cover images   

For n=5 pixels, L= 6 bits, then 

��  = �
2097152 bits

6 ����
��= 349526 ������ 

Ñ = �
������

�
���× ���

�
�
�  = 7 cover images   
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For 1024×1024 cover image, and with the same GEMD parameter  L in Table 5.6, 

we got different numbers of cover images required for one secret image using (3.1), 

(3.2), and (3.3) in each case of n as shown in Table 5.7. 

Table 5.7: GEMD parameters of the simulation for 1024×1024 cover images 
parameter Number of pixels n for one block L 

2 3 4 5 

L bits 3  4  5  6  

cover images Ñ 2 2 2 2 

From Table 5.6 and Table 5.7 we note that as we increase cover image size then we 

need less number of cover images. Table 5.8 shows the GEMD average results for 

both cover image sizes that are obtained from Appendix B. 

Table 5.8: GEMD average results for 512×512 cover images 

Metric average 
Number of pixels n for one block L 

2 3 4 5 

PSNR 

(dB) 

Fully 

used 
50.17 50.79 51.01 51.09 

Fully 

set 
50.96 57.72 51.58 51.33 

MSE 

Fully 

used 
0.62 0.54 0.51 0.50 

Fully 

set 
0.55 0.46 0.47 0.48 

Time 

(Sec) 

Fully 

used 
7.61 5.84 4.40 3.60 

Fully 

set 
6.80 5.03 4.18 3.42 

Memory ( MB) 480 484 487 491 

Capacity (BPP) 1.50 1.33 1.25 1.20 
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Table 5.9: GEMD average results for 1024×1024 cover images 

Metric average 
Number of pixels n for one digit  

2 3 4 5 

PSNR 

(dB) 

Fully 

used 
50.16 50.79 51.01 51.09 

Fully 

set 
52.55 52.30 52.11 51.97 

MSE 

Fully 

used 
0.62 0.54 0.51 0.50 

Fully 

set 
0.42 0.41 0.41 0.42 

Time 

(sec) 

Fully 

used 
4.61 3.77 2.92 2.02 

Fully 

set 
4.26 3.31 2.47 1.97 

Memory (MB) 491 493 496 498 

Capacity (BPP) 1.50 1.33 1.25 1.20 

 

From Table 5.8 and Table 5.9, we have in GEMD results two averages, the first one 

for the averages without the last image, while the second one for the averages with 

the last image that not fully embedded as we calculated above for all cases of n. For 

both sizes we got the same results for PSNR and MSE since in GEMD embedding 

algorithm more than one pixel in a group could be changed by ±1, it means not 

depends on the size, also for embedding capacity that calculated according to (2.11). 

Also for both tables, image quality PSNR for GEMD is nearly 51 dB as illustrated in 

Figure 5.8.  
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Figure 5.8: PSNR of GEMD using 512×512 and 1024×1024 cover image size 

On the other hand MSE decreases with n; for both sizes it decreases from 0.62 to 

0.50 as shown in Figure 5.9. 

 
Figure 5.9: MSE of GEMD using 512×512 and 1024×1024 cover image size 

For both sizes, embedding capacity BPP, it decreases from 1.50 BPP to 1.20 BPP as 

n increases from 2 to 5 pixels as shown in Figure 5.10. 
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Figure 5.10: BPP of GEMD using 512×512 and 1024×1024 cover image size 

From Table 5.8 and Table 5.9 we note that for memory and time consumption we got 

different values. For time consumption, GEMD using 1024×1024 cover images takes 

less time than using 512×512 cover images, where time consumption decreases with 

n for fully set average; from Table 5.8 it decreases from 7.61 sec to 3.60 sec, while in 

Table 5.9 it decreases from 4.61 sec to 2.02 sec when n ranges from 2 to 5 pixels as 

shown in Figure 5.11. 

 
Figure 5.11: Time consumption of GEMD using 512×512 and 1024×1024 cover 

image size 
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For memory consumption, GEMD using 1024×1024 cover images in Table 5.9 takes 

more memory than using 512×512 cover images, since using greater size required to 

reserve greater locations in memory for array image size. In from Table 5.8 memory 

consumption increases with n for fully set average; it increases from 480MB to 491 

MB. On the other hand using 1024×1024 cover images Table 5.9 memory 

consumption increases from 491 MB to 498 MB when n ranges from 2 to 5 pixels as 

shown in Figure 5.12. 

 
 Figure 5.12: Memory consumption of GEMD using 512×512 and 1024×1024 cover 

image size 

From Table 5.8 and Table 5.9 we can summarize the results in Table 5.10 as 

comparison results using 512×512 and 1024×1024 size of cover image for GEMD 

method. 
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Table 5.10: Comparison results for GEMD in two sizes of cover image 

metric 
GEMD method 

512×512 1024×1024 

PSNR(dB) 50.77 50.77 

MSE 0.54 0.54 

Time (sec) 5.36 3.33 

Memory (MB) 485 494 

Capacity 
(BPP) 

1.32 1.32 

From Table 5.10 we find that as we use grater size of cover image then we have less 

time consumption by 0.38% for GEMD. Since in case of using 512 × 512 cover 

images, we need more cover images and then more time for data processing.  For 

memory consumption, using 1024 × 1024 cover images required more memory by 

0.02%. On the other hand, for both sizes we get the same results for metrics PSNR, 

MSE, and embedding capacity BPP. The GEMD results for both cover image sizes 

are obtained from appendix B. 

5.3 EMD and GEMD Comparison Results  

The comparison results for both methods are obtained for MSE (2.8), PSNR (2.9), 

embedding capacity Bit Per Pixel BPP (2.10), (2.11), memory and time consumption, 

where the average  is taken for each metric over n because n for each method has 

different meaning. It means for EMD the number of pixels required to embed one 

digit from the block, while in GEMD it is the number of pixels required to embed 

one block. Table 5.11 shows EMD-versus-GEMD comparison results using 512×512 

cover images, where the results are obtained from Table 5.3, Table 5.8.while Table 

5.12 shows EMD-versus-GEMD comparison results using 1024×1024 cover images, 

where the results are obtained from Table 5.4, Table 5.9 
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Table 5.11: The EMD-versus-GEMD results for 512×512 cover images 

method 
Metric 

PSNR 
(dB) 

MSE 
Time  
(Sec) 

Memory 
(MB) 

Capacity 
 (BPP) 

EMD 53.97 0.27 5.71 488 0.89 

GEMD 50.77 0.54 5.36 485 1.32 

Table 5.12: The EMD-versus-GEMD results for 1024×1024 cover images 

method 
Metric 

PSNR 
(dB) 

MSE 
Time  
(Sec) 

Memory 
(MB) 

Capacity 
 (BPP) 

EMD 53.97 0.27 3.81 496 0.89 

GEMD 50.77 0.54 3.33 494 1.32 

From Table 5.11 and Table 5.12, we find that EMD stego image quality PSNR is 

better than 53 dB, since in embedding procedure only one pixel among n-pixel group 

is modified, while in GEMD it is nearly 51 dB, because more than one pixel in each 

n-pixel group could be modified. So in both sizes PSNR in EMD is better than 

GEMD by 0.06. For MSE comparison result, in both sizes EMD has less error than 

GEMD by 0.5%, since fewer pixels are changed. On the other hand, GEMD is better 

in embedding capacity, BPP, by 0.33%. GEMD has less memory and time 

consumption for both sizes. For 512×512 cover images in Table 5.11, GEMD is 

better in memory and time consumption by 0.006% and 0.06% respectively. While 

for using 1024×1024 cover images in Table 5.12, GEMD is better in memory and 

time consumption by 0.004% and 0.13% respectively.  

5.4  Comparison Results to Known Experiments  

From the known experiments conducted in Section 2.4, Table 2.1 and our results 

using 512×512 cover images in Table 5.3 and Table 5.8, we get the same results for 

the image quality PSNR, MSE and the embedding capacity BPP different cases of n 

as shown in Table 5.13. 
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 Table 5.13: EMD and GEMD comparison results versus known experiments for 
512×512 cover images  

 
 

5.5   Summary of Chapter 5  

Thus, in this chapter we have discussed and compared EMD and GEMD results with 

same size and also with different size of cover images which are obtained from 

Appendixes, as we also compare these results with known experiments [7] presented 

in Section 2.4.  

Result Metric 
n=2 pixels n=3 pixels n=4 pixels n=5 pixels 

EMD GEMD EMD GEMD EMD GEMD EMD GEMD 

[7] 

PSNR 52.11 50.17 53.57 50.79 54.66 51.00 55.53 51.09 

MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18 0.50 

BPP 1.16 1.50 0.93 1.33 0.79 1.25 0.69 1.20 

Our 

 

PSNR 52.11 50.17 53.57 50.79 54.66 51.01 55.53 51.09 

MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18 0.50 

BPP 1.16 1.50 0.93 1.33 0.79 1.25 0.69 1.20 
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Chapter 6 

CONCLUSION AND THE FUTURE WORK  

This thesis analyzes two steganographic methods; EMD and GEMD. The algorithms are 

explained in details such as the input, output, data structure, the justification of their 

correctness and the best values for their parameters which required a minimum number 

of cover images to maintain good image quality PSNR and minimum MSE, time and 

memory consumption, then the experiments results compared between both methods and 

then with known experiments conducted on EMD and GEMD. 

The results were obtained for four gray scale secret images, and for two different sizes 

of cover images, where the number of cover image required for a secret image is defined 

according to some parameters such as the number of bits in each block of secret image, 

and the number of pixels n in each group of the cover image. The experiments were 

conducted with four different values of n, as we tried to find the best value for the 

number of bits in each block L of the secret image and the maximum digit k in (2n+1)-

ary in each case of n to achieve the best case of EMD and GEMD which taking less 

number of cover image. According to our analysis, and for both sizes cover image, EMD 

stego image quality PSNR is better than GEMD, since fewer pixels values are modified. 

On the other hand, GEMD has less memory and time consummation, since increasing of 

cover size takes more memory and less time for both methods.  For MSE comparison 

result EMD has less error than GEMD, because in EMD at most only one pixel is 

changed by ±1 in a group, while in GEMD more than one pixel in a group could be 



70 

 

modified. But also GEMD has greater embedding capacity for both sizes. In addition to 

greater cover size required less number of cover images and for both sizes GEMD 

required less number of cover images  

As a comparison between the results using different size of cover image, we find that as 

we use greater size then we need less number of cover images, and less time 

consumption. On the other hand we need more memory consumption. For other metrics, 

PSNR, MSE, and embedding capacity BPP, we get the same results. 

However, the both methods have the same aim for hiding data, but one of them, EMD, is 

better in image quality, PSNR and MSE, while GEMD is better in memory and time 

consumption and also better embedding capacity. 

As a future work, I propose to study and implement these methods by using color 

images in order to improve the performance of them.  
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Appendix A: EMD Algorithm 

A.1 The main program 

% this program was written by Om Essad M.Lamiles in 2015-2016 

for EMD algorithm [8] and its functions 

clc; 

clear all ; 

images={'Lena','Baboon','F16','Barbara','Monaliza', 

'Tiffany','Girl','Cameraman','Liza','Jug','House','Roza'}%cove

r images used in the program 

sum_time=0;sum_psnr=0;sum_mse=0; 

BDig=[];d_msg=[]; 

addpath('cover_set/');addpath('secret_set/'); 

img_name = 'P';sec_name='S'; 

M=512; N=M;  

E_dig=[]; 

L=input('Input L: the number of bits in a block '); 

n=input(' Input n: the number of pixels in a group '); 

k=ceil(L/(log2(2*n+1)))%calculate k as in (2.3) 

C=floor((M*N)/n); %calculate C as in (3.3) 

Bpp=(log2(2*n+1))/n%calculate bppEMD as in (2.12) 

sec = imread([sec_name, '',num2str(1) '.jpg']);%read the first 

secret image , '' used to read image sec_name =S1 

corresponding to the number in (),as we have 4 secret images     

S =reshap_im(sec,M,N); %reshape secret image as one 

dimensional array  

[Bin]= conv2binary(S); %convert each pixel of secret image to 

binary 

s_size=numel(Bin) 

H=ceil(s_size /L) %calculate H as in (3.1) 

SS=[Bin zeros(1,(L-(mod(s_size,L))))]; %last block padded by 

zeros  

Cover_im = ceil((H*k)/C)%calculate Ñ as in (3.2) 

Covers = uint8( zeros(M,N,Cover_im) ); 

Stegos = uint8( zeros(M,N,Cover_im) ); 

[Dig] = BTO2NP1(SS,L,k,n,H ); %get stream of k digits in 

(2n+1)-ary numbers 

h=1; 

  for i=1:Cover_im  

tic% starting of timer to calculate embedding time  

CI = imread([img_name, '',num2str(i) '.tif']); 

Covers(:,:,i)=CI; 

ci1 =reshap_im(CI,M,N); 

x=1; 

if (i==Cover_im) 

C=mod(numel(Dig),h)%if the last image will be not fully 
embedded 
end 
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   for r=1:C 

group= ci1((x-1)*n+1:x*n); %get n pixel group from cover image  

[em_group]=embed(group,Dig(h),n); %send to embedding function  

ci1((x-1)*n+1:x*n)=[em_group]; %resave embedded group to cover 

image to get stego image  

    h=h+1; 

    x=x+1; 

   end 

ci2 =reshap_im2(ci1,M,N); 

Stegos(:,:,i)=ci2; 

tim(i)=toc%get the embedding time for each image  

mem=memory %calculate memory for each image 

end 

 

A.2 Reshaping image as one dimensional array 
function [S] = reshap_im(Sec,m,n)  

for i=1:m 

    for j=1:n 

      im((i-1)*n+j)= Sec(i,j);   

    end 

end 

end 

 

A.3 Converting secret image into binary stream  
function [Bin] = conv2binary(S) 

Bin=[]; 

for j=1:numel(S) 

    b = bitget(uint8( S(j)),8:-1:1); %get pixel as binary 

   [Bin]=[Bin b]; 

end 

end 

 

A.4 Converting binary message to (2n+1)_ary 
function [Dig ] = BTO2NP1(SS,L,k,n,H ) 

Dig=[]; 

  for i=1:H 

  B= SS((i-1)*L+1:i*L)%get B block from binary message SS      

    sum=0; 

    sum1=bin2dec(num2str(B))% convert to decimal 

D=dec2base(sum1,(2*n+1),k) % convert to k digits (2n+1)-ary 

number 

    Dig=[Dig D]; 

    end 

end 

A.5 Embedding function 

function [em_group] = embed(group, Dig ,n)             
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sum=0; 

  for i=1:n 

  sum =sum +double(group(i))*i;%calculate extraction 

function(2.4)   

  end 

t=mod(sum,(2*n+1));   

d=mod((Dig)-t),(2*n+1)); %calculate d as in(2.5) 

if (d<=n && d>0) 

   group(d)=(group(d))+1; %from(2.5.2) 

elseif (d>n) 

 group(((2*n+1))-d)=(group(((2*n+1))-d))-1; %from(2.5.3)    

end 

em_group= group; 

end 

 

A.6 Code showing results and stego images  

 
disp('=================================================') 

disp('stego image  PSNR  MSE   Time  Memory  Capacity') 

disp('              dB          sec    MB       bpp   ') 

disp('================================================') 

set(gcf, 'name', ' Secret Image in case n=2'); 

 for i=1:Cover_im  

subplot(2,3,i) ;  imshow((Stegos(:,:,i))); 

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i)); 

title(['PSNR = ',num2strPSNR(i) ]); 

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),mem,Bpp

) 

disp('=================================================') 

sum_time=sum_time+tim(i); 

sum_psnr=sum_psnr+PSNR(i); 

sum_mse=sum_mse+MSE(i);   

 end%take the average for PSNR,MSE and Time 

psnr_used=(sum_psnr- PSNR(Cover_im))/(Cover_im-1); 

mse_ used =(sum_mse - MSE(Cover_im))/(Cover_im-1); 

tim_ used =(sum_time- tim(Cover_im))/(Cover_im-1); 

psnr_set=sum_psnr/Cover_im; 

mse_set=sum_mse/Cover_im; 

tim_set=sum_time/Cover_im; 

sprintf(' Average on fully used  ') 

disp('=================================================') 

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_used,mse_used,tim_used, 

mem,Bpp) 

sprintf(' Average on fully set  ') 

disp('=================================================') 

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_set,mse_set,tim_set,mem,Bp

p) 
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A.7 Calculation of PSNR and MSE 
function [ My_psnr MSE ] = My_PSNR(I,J) 

    X = double(I);  

    Y = double(J);  

    MSE = sum((X(:)-Y(:)).^2) / prod(size(X)) ; 

    My_psnr = 10*log10(255 * 255/MSE); 

 

End 

 

A.8 Screenshots of EMD Result in different values of n, L, k and cover image of 

size 512×512 and 1024×1024. 

     

A.8.1.a. Results in n=2, k=7, L=16, cover images =7,512×512 cover image of size 
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A.8.1.b. Results in n=2, k=7, L=16, cover images =2, 1024×1024 cover image size 
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A.8.2.a. Results in n=3, k=6, L=16, cover images =9, 512×512 cover image size 
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A.8.2.b. Results in n=3, k=6, L=16, cover images =3, 1024×1024 cover image size 
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A.8.3.a. Results in n=4, k=11,L=32, cover images =11, 512×512 cover image size 
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A.8.3.b. Results in n=4, k=11, L=32, cover images =3, 1024×1024 cover image 

size 
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A.8.4.a. Results in n=5, k=19,L=64, cover images =12, 512×512 cover image size 
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A.8.4.b. Results in n=5, k=19, L=64, cover images =3, 1024×1024 cover image 

size 
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A.9 Extraction phase 

options.Interpreter = 'tex'; 

options.Default = 'Yes'; 

qstring = 'Do you want to extract data?'; 

choice=questdlg(qstring,'EXTRACTION','Yes','No',options); 

 switch choice 

    case 'Yes'  

for j=1:Cover_im 

  Stegos1(1,:,j)=reshap_im(Stegos(:,:,j),M,N);  

end 

[secret_message]= EXTRACTION( Stegos1,k,n,H,L ); %get binary 

stream from the EXTRACTION function  

  v=1; 

for i=1:M*N 

  bmess=secret_message((v-1)*8+1:v*8); %get 8 bits block from 

extracted binary stream 

  a=bin2dec(num2str(bmess)); %convert to decimal 

  d_msg=[d_msg a]; 

  v=v+1; 

end 

  secret_im=reshap_im2(d_msg,M,N); %reshape d_msg as 2 

dimensional array 

 set(gcf, 'name', ' Extracted Secret image'); 

   imshow(uint8(secret_im)); %show the Extracted Secret image 

case 'No' 

 break;   

 end 

 A.10 Extraction function 

function [B_msg]=  EXTRACTION( Stegos,k,n,H,L ) 

secret_msg=[]; 

B_msg=[]; 
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R=(2*n+1); 

for i=1:H 

    for j=1:k 

        x=(i-1)*k+j; 

    group=Stegos((x-1)*n+1:x*n); %get n pixel group from stego 

image  

   [secret]=Extract(group,n); %get k digits         

secret_msg=[secret_msg secret];            

    end 

    secret_msg; 

    sum=0; 

    E=numel(secret_msg); 
for t=0:E-1  

    secret_msg(E-t); 

  sum= sum+(secret_msg(E-t))*R^t;%convert to decimal  

end 

  

A=dec2bin(sum,L); %convert to binary  

  B_msg=[B_msg A]; 

secret_msg=[]; 

end 

end  

A.10.1 Extract function 

function [secret_msg1]=Extract(group,n) 

sum=0; 

   for i=1:n 

      sum = sum + double( group(i))*i; %calculate extaction 

function as in (2.6)   

   end 

secret_msg1=mod(sum,(2*n+1)); 

end 

A.11 Reshaping secret image as two dimensions 

function [ stego ] = reshap_im2(Covers,M,N) 

for i=1:M 

    for j=1:N 

      stego(i,j)=Covers((i-1)*N+j);   

    end 

end 

end 
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Appendix B: GEMD Algorithm 

B.1 The Main program 

% This program was written by Om Essad M.Lamiles in 2015-2016 

for GEMD algorithm [5] and its functions 

clc; 

clear all ; 

sum_psnr=0;sum_mse=0; sum_time=0; 

images={'Lena','Baboon','F16','Barbara','Monaliza' 

,'Tiffany','Girl'};%cover images used in the program 

addpath('cover_set/');addpath('secret_set/'); 

img_name = 'P';sec_name='S'; 

M=512; N=M;  

d_msg=[]; 

n=input(' Input n: the number of pixels in a group '); 

L=n+1; 

C=floor((M*N)/n); %calculate C as in (3.3) 

Bpp=(n+1)/n%calculate bppGEMD as in (2.13) 

sec = imread([sec_name, '',num2str(1) '.jpg']);    

S =reshap_im(sec,M,N); %reshape secret image as one 

dimensional array   

[Bin]= conv2binary(S); %convert each pixel of secret image to 

binary 

s_size=numel(Bin) 

H=ceil(s_size/L) %calculate H as in (3.1) 

Cover_im =ceil(H/C) %calculate Ñ as in (3.2) 

s_size=numel(Bin) 

SS=[Bin zeros(1,(L-(mod(s_size,L))))]%last block padded by r 

zeros  

Covers = uint8( zeros(M,N,Cover_im) ); 

Stegos = uint8( zeros(M,N,Cover_im) ); 

[Num]=GET_B(SS,L,H); 

h=1; 

for i=1:Cover_im    

CI = imread([img_name, '',num2str(i) '.tif']); 

tic% starting of timer to calculate embedding time 

  Covers(:,:,i)=CI; 

 ci1 =reshap_im(CI,M,N); 

  x=1; 

if (i==Cover_im) %if the last image will be not fully embedded 

 C=mod(numel(Num),h)%if the last image will be not fully 
embedded 
  End 

for r=1:C   

group= ci1((x-1)*n+1:x*n); %get n pixel group from cover image    
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[em_group]=GEMDembed(group,Num(h),n); %send to embedding 

function  

ci1((x-1)*n+1:x*n)=[em_group]; %resave embedded group to cover 

image to get stego image  

h=h+1; x=x+1;    

end 

ci2 =reshap_im2(ci1,M,N); 

Stegos(:,:,i)=ci2; 

tim(i)=toc%get the embedding time for each image 

mem=memory%calculate memory for each image 

end 

 

B.2 Reshaping image as one dimensional array 

function [S] = reshap_im(Sec,m,n)  

for i=1:m 

    for j=1:n 

      im((i-1)*n+j)= Sec(i,j);   

    end 

end 

end 

B.3 Converting secret image into binary stream  

function [Bin] = conv2binary(S) 

Bin=[]; 

for j=1:numel(S) 

    b = bitget(uint8( S(j)),8:-1:1); %get pixel as binary 

   [Bin]=[Bin b]; 

end 

end 

B.4 Dividing binary message to (n+1) bit blocks 

function [Num] = GET_B(S,L,H) 

Num=[]; 

 for i=1:H 

    B= S((i-1)*L+1:i*L);   

    d=bin2dec(num2str(B)); 

    Num=[Num d]; 

 end 

end 

B.5 Embedding function 
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function [em_group ] = GEMDembed( group,Num,n ) 

sum=0; 
    for i=1:n  
    sum = sum + double( group(i)) *((2^i)-1); %calculate 

extraction function(2.7) 

    end 

t=mod(sum,(2^(n+1))); 

d=mod(Num-t,(2^(n+1))); %calculate d as in(2.8) 

if (d==2^n) R=1; %step5 in GEMD embedding algorithm  

     elseif(d<(2^n)) R=2;  else R=3;     

  end 

    switch R%step6 in GEMD embedding algorithm 

case 1 

       group(n)= group(n)+1;group(1)= group(1)+1;      

case 2 d=dec2bin(d,(n+1)); %convert d to binary(dn dn-1 ….d0)2 
sized n+1 bits   

for i=0:n-1 

    if ((d(i+1)=='1')&&(d(i+2)=='0'))  

        group(n-i)=group(n-i)-1; 

elseif ((d(i+1)=='0')&&(d(i+2)=='1')) 

        group(n-i)=group(n-i)+1; 

        end 

end 

case 3 d=(2^(n+1))-d; b=dec2bin(d,(n+1)); %convert d to 

binary(dn dn-1 ….d0)2 sized n+1 bits   

for j=0:n-1 

     if((b(j+1)=='1')&&(b(j+2)=='0')) 

           group(n-j)= group(n-j)+1; 

     elseif((b(j+1)=='0')&&(b(j+2)=='1')) 

           group(n-j)= group(n-j)-1;   

     end 

end             

    end 

    em_group= group; 

end       
B.6 Code showing results and stego images  

disp('=================================================') 

disp('stego image  PSNR  MSE   Time  Memory  Capacity') 

disp('              dB          sec    MB       bpp   ') 

disp('================================================') 

set(gcf, 'name', ' Secret Image in case n=2'); 

 for i=1:Cover_im  

subplot(2,3,i) ;  imshow((Stegos(:,:,i))); 

[PSNR(i), MSE(i)]=My_PSNR(Covers(:,:,i),Stegos(:,:,i)); 
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title(['PSNR = ',num2str(PSNR(i))]); 

sprintf('%s%f%f%f%f%f',images{i},PSNR(i),MSE(i),tim(i),mem,Bpp

) 

disp('=================================================') 

sum_time=sum_time+tim(i); %take the average for PSNR,MSE 

sum_psnr=sum_psnr+PSNR(i); 

sum_mse=sum_mse+MSE(i);   

 end 

psnr_used=(sum_psnr- PSNR(Cover_im))/(Cover_im-1); 

mse_ used =(sum_mse - MSE(Cover_im))/(Cover_im-1); 

tim_ used =(sum_time- tim(Cover_im))/(Cover_im-1); 

psnr_set=sum_psnr/Cover_im; 

mse_set=sum_mse/Cover_im; 

tim_set=sum_time/Cover_im; 

sprintf(' Average on fully used  ') 

disp('=================================================') 

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_used,mse_used,tim_used, 

mem,Bpp) 

sprintf(' Average on fully set  ') 

disp('=================================================') 

sprintf('%.2f%.2f%.2f%.2f%.2f',psnr_set,mse_set,tim_set,mem, 

Bpp) 

B.7 Calculation of PSNR and MSE 

function [ My_psnr MSE ] = My_PSNR(I,J) 

    X = double(I);  

    Y = double(J);  

    MSE = sum((X(:)-Y(:)).^2) / prod(size(X)) ; 

    My_psnr = 10*log10(255 * 255/MSE); 

End 
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B.8 Screenshots of GEMD Results in different values of n, L and cover images 

size 512×512 and 1024×1024. 

 

    

B.8.1.a. Results in n=2, L=3, cover images =6, 512×512cover image size 
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B.8.1.b. Results in n=2, L=3, cover images =2, 1024×1024 cover image 

size 
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B.8.2.a Results in n=3, L=4, cover images =6, 512×512cover image size 
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B.8.2.b Results in n=3, L=4, cover images =2, 1024×1024cover image 

size  
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B.8.3.a Results in n=4, L=5, cover images =7, 512×512cover image size 
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B.8.3.b Results in n=4, L=5, cover images =2, 1024×1024 cover image 

size  
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B.8.4.a Results in n=5, L=6, cover images =7, 512×512cover image size 
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B.8.4.b Results in n=5, L=6, cover images =2, 1024×1024cover image 

size  
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B.9 GEMD Extraction phase 

options.Interpreter = 'tex'; 

options.Default = 'Yes'; 

qstring = 'Do you want to extract data?'; 

choice=questdlg(qstring,'EXTRACTION','Yes','No',options);         

switch choice 

    case 'Yes'  

 for I=1:Cover_im  

   Stegos1(1,:,I)=reshap_im(Stegos(:,:,I),M,N);  

 End 

[secret_message]= EXTRACTION( Stegos1,H,n); %get binary stream 

from the EXTRACTION function   

     i=1;  

    for r=1:M*N 

bmess=secret_message((i-1)*8+1:i*8); %get 8 bits block from 

extracted binary stream 

 a=bin2dec(num2str(bmess)); %convert to decimal 

 d_msg=[d_msg a]; 

 i=i+1; 

     end 

secret_im=reshap_im2(d_msg,M,N); %reshape d_msg as 2 

dimensional array 

set(gcf, 'name',' Extracted Secret image in case n=2'); 

imshow(uint8(secret_im)); %show the Extracted Secret image 

    case 'No' break;  

         end 

B.10 Extraction function 

function [B_msg]=  EXTRACTION(Stegos1,H,n ) 

B_msg=[]; 

   for i=1:H     

group= Stegos1((i-1)*n+1:i*n); %get n pixel group from stego 

image  

    sum=0; 

     for j=1:n 

sum = sum + double( group(j)) *((2^j)-1);  

      end 

t=mod(sum,(2^(n+1))); %calculate extraction function as in 

(2.9)   

bin=dec2bin(t,n+1); %convert to decimal           

B_msg=[B_msg bin]; 

   end 

  B_msg; 

 End 
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B.11 Reshaping secret image as two dimensions 

function [secret_im] = reshap_im2(d_msg,M,N) 

for i=1:M 

    for j=1:N 

      secret_im (i,j)= d_msg((i-1)*N+j);   

    end 

end 

end 

 

Appendix C: Screenshots of EMD results using 512×512 
and 1024×1024 cover image size 
 

C.1 EMD results 

%PSNR results 
n=[2 3 4 5]; 
PSNR_EMD=[52.11  53.57  54.66  55.53 ]; 
pl1=plot(n,PSNR_EMD, '-bx','LineWidth',1.5 ); 
title(' PSNR of EMD method for 512×512 and 1024×1024cover 
images') 
xlabel('n'); 
ylabel('PSNR(dB)'); 
grid on; 
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%MSE results 
n=[2 3 4 5]; 
MSE_EMD=[0.40  0.28  0.22  0.18 ] 
pl1=plot(n,MSE_EMD, '-bx','LineWidth',1.5 ); 
title(' MSE of EMD method for 512×512 and 1024×1024 
 cover images ') 
xlabel('n'); 
ylabel('MSE'); 
grid on; 

 
 

 
%Embedding capacity BPP results 
n=[2 3 4 5]; 
bpp_EMD=[1.16  0.93  0.79  0.69]; 
pl1=plot(n,bpp_EMD, '-bx','LineWidth',1.5 ); 
title(' Embedding capacity of EMD method for 512×512 and 
1024×1024cover images') 
xlabel('n'); 
ylabel('Embedding capacity (BPP) '); 
grid on; 
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% Time consumption results 
n=[2 3 4 5]; 
EMD_512=[7.81   6.38    4.66    3.97]  
EMD_1024=[5.72 4.31 3.02 2.18] 
pl1=plot(n,EMD_512, '--rx','LineWidth',1.5 ); 
hold on; 
pl2=plot(n,EMD_1024, '-bx','LineWidth',1.5); 
title('Time consumption of EMD method using 512×512 and 
1024×1024 cover image size') 
xlabel('n'); 
ylabel('Time(sec)'); 
legend([pl1, pl2], '512 × 512', '1024 × 1024'); 
grid on; 
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% Memory consumption results 
 
n=[2 3 4 5]; 
EMD_512=[481    486 490 496] % values are obtained from memory 
average in EMD and GEMD screenshots results in  A.8 and B.8  
EMD_1024=[493   495 497 500] 
pl1=plot(n,EMD_512, '--rx','LineWidth',1.5 ); 
hold on; 
pl2=plot(n,EMD_1024, '-bx','LineWidth',1.5); 
title('Memory consumption of EMD method using 512×512 and 
1024×1024 cover image size') 
xlabel('n'); 
ylabel('Memory(MB)'); 
legend([pl1, pl2], '512 × 512', '1024 × 1024'); 
grid on; 

 
 

 

C.2 GEMD results 

%PSNR results 
n=[2 3 4 5]; 
PSNR_GEMD=[50.17  50.79  51.01  51.08]; 
pl1=plot(n,PSNR_GEMD, '--rx','LineWidth',1.5 ); 
title(' PSNR of GEMD method for 512×512 and 1024×1024cover 
images') 
xlabel('n'); 
ylabel('PSNR(dB)'); 
grid on; 
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% MSE results 
n=[2 3 4 5]; 
MSE_GEMD=[0.62  0.54  0.51 0.50]  
pl1=plot(n,MSE_GEMD, '--rx','LineWidth',1.5 ); 
title(' MSE of GEMD method for 512×512 and 1024×1024cover 
images ') 
xlabel('n'); ylabel('MSE'); 
grid on; 
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% Embedding capacity BPP results 
n=[2 3 4 5]; 
bpp_GEMD=[1.50  1.33 1.25 1.20]; 
pl1=plot(n,bpp_GEMD, '--rx','LineWidth',1.5 ); 
title(' Embedding capacity of GEMD method for 512×512 and 
1024×1024 cover images') 
xlabel('n'); ylabel('Embedding capacity (bpp) ');grid on; 

 
 
%Time consumption results 
n=[2 3 4 5]; 
GEMD_512=[7.61  5.84    4.40    3.60]  
GEMD_1024=[4.61 3.77    2.92    2.02] 
pl1=plot(n,GEMD_512, '--rx','LineWidth',1.5 );hold on; 
pl2=plot(n,GEMD_1024, '-bx','LineWidth',1.5); 
title('Time consumption of GEMD method using 512×512 and 
1024×1024 cover image size') 
xlabel('n');ylabel('Time(sec)'); 
legend([pl1, pl2], '512 × 512', '1024 × 1024');grid on; 
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% Memory consumption results 
n=[2 3 4 5]; 
GEMD_512=[480   484 487 491]  
GEMD_1024=[491  493 496 498] 
pl1=plot(n,GEMD_512, '--rx','LineWidth',1.5 ); 
hold on; 
pl2=plot(n,GEMD_1024, '-bx','LineWidth',1.5); 
title('Memory consumption of GEMD method using 512×512 and 
1024×1024 cover image size') 
xlabel('n');ylabel('Memory(MB)'); 
legend([pl1, pl2], '512 × 512', '1024 × 1024');grid on; 
 

 


