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ABSTRACT 

The Differential Evolution Algorithm is widely used for the purpose of optimization 

in many fields. This dissertation proposes a Hybrid Differential Evolution Algorithm 

and examines its feasibility based on the results of CEC'15 expensive benchmark 

problem optimization. A local search mechanism was used to develop three versions 

of Hybrid DE. All versions of the proposed method were used and compared 

according to the final feedback of their optimization results. Another comparison 

with five different methods proposed in the related literature was conducted. The 

final ranking of all the methods implied that Hybrid DE was always among the top 

best algorithms that were used for the same purpose. 

Keywords: Differential Evolution, Evolutionary Algorithms, Local Search, Hybrid 

Algorithms. 
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ÖZ 

Diferansiyel Evrim Algoritması (DE) bir çok alanda optimizasyon amacıyla yaygın 

olarak kullanılmaktadır. Bu tezde Hibrid Diferansiyel Evrim Algoritması 

önerilmektedir. Öneril enalgoritmanın başarımı CEC'15 pahalı en iyileme 

problemlerinin çözümleri üzerinden incelenmiştir. Bir yerel arama mekanizması 

kullanılarak üç farklı DE algorithması geliştirilmiştir. Önerilen yöntemin tüm 

versiyonları kullanılmış ve optimizasyon sonuçlarının son geri bildirimine göre 

karşılaştırılmıştır. İlgili literatürde önerilen beş farklı yöntemle  karşılaştırma 

yapılmıştır. Tüm yöntemlerin son sıralaması yapıldığında önerilen metodun diğer en 

iyi algoritmalar ile karşılaştırılabileceği gözlenmiştir. 

Anahtar Kelimeler: Diferansiyel Evrim, Evrim Algoritmaları, Yerel Arama, Hibrit 

Algoritmalar. 
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Chapter 1 

INTRODUCTION 

1.1 Background to the Study 

Since the term "Metaheuristics" was first incepted in the late half of the 80s, the 

researchers' understanding and working with metaheuristics is continuously 

progressing and shifting in different research areas. In a recently published research 

"A History of Metaheuristics" (K. Sorensen et al., 2017) the author suggests that 

people have been using heuristics and metaheuristics long before the term even 

existed. Also, he stated that the mentioned term has lacked a satisfying definition 

until recently, despite the fact that people have been using heuristics over the years 

[1]. The following statement was approved by the author to be the best definition: 

A Metaheuristics is a high-level problem-independent algorithmic framework 

that provides a set of guidelines or strategies to develop heuristic optimization 

algorithms." (Sorensen and Glover, 2013). 

 The research about history of metaheuristics brings to light the five different periods 

that shaped the evolution of the concept of "metaheuristics". The first phase was 

named the Pre-Theoretical period (until C.1940), which the author insisted that, 

during that phase, heuristics and even metaheuristics were used but were not 

formally studied. The second stage, the Early period (C.1940-1980), emphasized the 

beginning of formal studies on heuristics. "Artificial Intelligence" is the term that 

was used to recognize the work that was done during this period, because it tends to 

mimic human problem-solving behavior. Then another line of research of problem-

solving behavior started in the 1960s that highlighted the use of evolution as a 



2 

 

problem-solving method. It started with the insight that the principle of natural 

evolution could be used to solve optimization problems in general. Box (1957) and 

several others had independently developed algorithms inspired by evolution, mainly 

aiming for function optimization and machine learning [43]. The first method that 

was recognized was called Evolution Strategy [44]. Due to the lack of using the 

concepts of population or crossover, it was not considered as an algorithm. One 

solution, called the parent, was mutated and the best of the two solutions became the 

next parent for the next round of mutation. Evolutionary programming was 

introduced few years later in 1960. However, it did not use both population and 

crossover method. In 1989, Goldberg published his book that was the spark of the 

evolutionary revolution. Evolutionary methods became extremely popular and a 

large number of variants were proposed [1]. Evolutionary strategies or Evolutionary 

Algorithms (EA) have become an important tool for performing a variety of search 

and optimization procedures. The recent method of any EA considers creating a 

finite group of correspondence structures to stand for the idea of a population. Each 

structure is exactly like the other and together they form a generation of individuals. 

An individual is presented typically by a string, imitating the biological genotype. 

Decoding the genotype will produce the phenotype data which is mathematically-

based structure to present a solution. The referred solutions contain parameters which 

solve a correspondent fitness function to the problem we are trying to optimize. Each 

individual in the population is evaluated and then assigned a fitness value according 

to the fitness function of this particular problem. The corresponding fitness values 

will be the preference factor to decide which individual is more suitable of reaching 

optimality, or near-optimality status  [2]. 
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In the method-centric period (C.1980-C.2000) the field of metaheuristics truly took 

off and many different methods were proposed. The concept of annealing: 

controlling heating and cooling process used in metal and glass production (K. 

Patrick et al., 1983) was the first published paper of general problem-solving 

framework that was not based on natural evolution. The process of Simulated 

Annealing depends on an external parameter called the temperature. Random 

solution changes were used and accepted if they improved the solution. One of the 

most powerful ideas was that solutions could be gradually improved by iteratively 

making small changes, called moves [1]. This ignited the development of well-

known heuristic algorithms that are now called Local Search mechanisms. By 

adapting the concept of small moves, the solution could be mutated by a single 

change for reaching another, yet very close, solution. By repeating these kinds of 

changes, the algorithms will be investigating all or some of the nearby solutions 

around the specific small space surrounding the first one. Such space is called the 

current solution's neighborhood. 

Research of Metaheuristics had grown and several frameworks had been proposed 

around the early 90s. The innovation proposed GRASP (Greedy Randomized 

Adaptive Search Procedure). It followed a randomized greedy behavior by selecting 

through each iteration, not necessarily the best element, but one of the best elements 

randomly [45]. Similarly, Ant Colony Optimization [46] was proposed not only how 

to mix deterministic and stochastic information, but also proposed a way for 

solutions to exchange information [1]. The Differential Evolution Algorithm (DE) 

was officially introduced in a publication by R. Storn and K. Price, (1995). The 

article explained the steps of the algorithm thoroughly. Soon after that, R. Storn 

(1996) proposed an application of using DE for designing an IIR-filter[3]. Another 
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research used the DE algorithm ( P. Thomas and D. Vernon, 1997) for image 

registration. The majority of research tended to apply DE in Image Processing 

Applications until 1998, a hybrid method of DE was introduced to start the 

recognition of the DE remarkable performance for solving some engineering 

optimization problems [4]. 

The Framework-centric period (C.2000-now) featured the worldwide knowledge 

growing that led to describing metaheuristics as frameworks, not only methods. A 

wide variety of EAs have been introduced and studied by assessing their 

performance and studies tended to develop them by introducing new, hybrid 

metaheuristic algorithms based on the merging of two or more procedures for the aim 

of optimizing results of problem-solving. Many systematic studies of the 

performance and behavior of heuristics such as evolutionary algorithms ( Oliveto et 

al., 2007; Auger and Deorr, 2011; Neumann and Witt, 2010) discovered both easy 

problems where heuristics perform well and also easy problems where they fail and 

require more time [47,48,49]. Heuristics proved to be able to optimize several 

classical combinatorial problems efficiently and they could deliver good near optimal 

solutions for NP hard problems [1]. 

1.1.1 Evolutionary Algorithms 

Evolutionary algorithm steps in general will start with initializing a population. After 

initializing two or more individuals, their fitness will be evaluated according to the 

objective function corresponding to the problem we are trying to optimize. After 

initialization, the evolution-loop starts processing its operators; recombination, 

mutation, evaluation and selection. The selected parents are used to perform a 

hybridizing process in order to construct an offspring  individual either using the 

recombination or mutation procedure. Recombination creates new individuals from 
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the parent population. Recombination is sometimes used, but mutation is generally 

the more preferred operator due to its factor of enhancing the variation in new 

generations in the evolutionary strategy. The newly created individuals are then 

evaluated, i.e., their fitness values are calculated. Based on the new fitness values, 

the selection stage identifies a subset of individuals which form the new population 

existing in the next iteration of the evolution loop. The loop is terminated based on a 

termination criterion set by the user; reaching a maximum number of evaluations or 

reaching a target fitness value for example [5,6]. 

Figure 1 shows the general outline of  an evolutionary algorithm [5]. 
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Figure 1: General outline of an evolutionary algorithm 
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Figure 2 demonstrates how one generation is broken down into a selection phase and 

a recombination phase. The strings are shown as being assigned into adjacent slots 

during selection. They can be assigned slots randomly in order to shuffle the 

intermediate generation [7]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

1.1.2 Memetic Algorithms 

Memetic Algorithms (MA) is a name of the set of metaheuristics specifically 

containing population-based evolutionary approaches that work cooperatively with 

agents concerned in periodic individual improvement of the solutions. The name of 

Memetic Algorithms (MA) was initially derived from the term "meme" that was 

defined by R. Daukins to emphasize the importance of small component 

improvement in the context of the big evolutionary process. An MA is a search 

Figure 2: Selection and Recombination phases of standard evolutionary algorithm 
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strategy in which a population of optimizing agents intrinsically cooperate and 

compete. They are well known for their success in solving many hard optimization 

problems. MAs exploit the search space by incorporating preexisting heuristics, 

processing data reduction rules, approximation or using local search techniques [50].  

1.1.3 Previous Work 

Paperwork of the previously conducted experiments on the same group of problems 

had little interest in the scope of hybridizing DE with LS mechanisms for superior 

optimization results. Noor Awad [9] et al. introduced a new technique to adapt the 

control parameters using a memory-based structure of the past successful settings 

and employing the population resizing factor for differential evolution algorithm. 

Another paper, Shu-Mei Gou [10] et al. (2015), proposed L-SHADE. A variant of 

DE algorithm based on a linear population size reduction concept. The method was 

tested for real parameter single objective optimization of CEC2015 problems. The 

mechanism was incorporated with a binomial crossover operator and successful 

parent selecting framework to avoid stagnation. Moreover, Neurodynamic 

Differential Evolution is a recent approach that showed remarkable results for a 

variant of dimensions regarding a group of problems. The proposed algorithm is a 

linear population size reduction DE dependent on modification of success history 

based parameter embedded with the concept of neurodynamic[11]. Another study on 

CEC2015 problems tested problem optimization using Self-adaptive Dynamic Multi-

Swarm Particle Optimizer (sDMS-PSO). The factor of difference between sDMS-

PSO and the original PSO algorithm is demonstrated in the employment of self-

adaptive strategy of parameters, while in original PSO, a specific number of three 

parameters will be given either according to experimental or empirical behavior. At 

the end, a local search method of the quasi-Newton is included to enhance the ability 
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of exploitation [12]. The final study that was introduced was the Hybrid Cooperative 

Co-evolution for CEC2015 Benchmarks (hCC). The experiment tested the 

performance of hCC. The method’s concept is to separate the variables into groups 

of separable and non-separable in its early stage. During the second stage, it 

continues in adopting different algorithms within the cooperative co-evolution (CC) 

framework [13]. 

Where previous research has often focused on variant ways to conduct single 

objective problem optimization, they showed little interest in the idea of hybridizing 

evolutionary algorithms. 

1.2 Aim of the Study 

In this study, hybridizing the Differential Evolution Algorithm with local search (LS) 

mechanism, which will be explained in detail later, is the main experimental concept. 

The results of hybrid DE assessed on solving CEC2015 Benchmark Problems will be 

discussed [14] . This research targeted emphasizing the empowerment of using LS 

with DE; the well-known global optimization metaheuristic. The aim of the 

experiment is to reach optimality, or near-optimality solutions for single objective 

problems. 

A general single objective optimization problem is defined as minimizing, or 

maximizing,  f(x) subject to g(x) and hj(x) in (eq. no 1),  

g(x) ≤ 0, i = { 1,…,m } 

hj(x) = 0, j = { 1,…,p } x ϵ Ω. 

x is a n-dimensional decision variable vector. x =( x1,….,xn ) which belongs to the  

search space ranged by the constrains of the problem. g(x) and h(j) represent the 

(1) 
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constraints that must be fulfilled while optimizing f(x). Ω is the set of all possible 

real values that satisfy the evaluation of f(x) [8]. 

The significance of using objective function is presented in providing the capability 

of approaching the global minimum between all the possible values of x by 

evaluating an objective function f(x) to find the fitness values of x. x* is called a 

global minimum if and only if the condition in (eq. no(3)) is fulfilled. 

∀𝑥 ∈ Ω: 𝑓(𝑥∗) ≤ 𝑓(𝑥) 

Where Ω is the set of all possible real values that satisfy the evaluation of f(x). 

1.3 Significance of the Study 

The aim of optimization is to determine the best-suited solution to a problem under a 

given set of constraints [38]. In the process of single objective problem optimization, 

local search is considered to be an excellent tool for exploitation of a limited area of 

the search space, but using only LS for optimization risks reaching stagnation when 

stuck in the local optimum. On the other hand, the DE algorithm will provide the 

feature of global exploration during its mutation stage. The combination of this local 

and global heuristic methods will very probably result in excellent solutions to reach 

our aim of optimizing single objective problems. 

1.4 Structure of the Thesis 

This thesis is organized so that first chapter is the introduction and background to the 

study. The second chapter will discuss the Differential Evolution Algorithm method 

in detail listing its development stages since the inception. Third chapter will present 

our proposed method of Hybrid DE with Fmincon LS for optimizing Single 

Objective Benchmark Problems of CEC2015. Next is the fourth chapter that will 

(2) 
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investigate experimental part and discuss results of the experiment. The final chapter 

is the conclusion of this study. 
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Chapter 2 

THE DIFFERENTIAL EVOLUTION ALGORITHM 

2.1 Taxonomy 

Differential Evolution (DE) is arguably one of the most powerful stochastic real-

parameter optimization algorithms in current use [15]. DE uses a few control 

parameters for reaching the true global minimum, regardless of the initial parameters 

values. Being a stochastic method, it mainly uses random mechanisms to initiate 

population and then proceed in the same operators originally from Genetic Algorithm 

(GA); crossover, mutation and selection [2]. The algorithm operates through similar 

computational steps as employed by a standard EA. However, unlike traditional EAs, 

the DE-variants perturb the current-generation population members with the scaled 

difference of randomly selected and distinct population members [15]. 

2.2 Procedure 

In DE, a population of NP number of individuals is randomly initialized using (eq. 

no 3) with the bounds on decision variables [17] 

𝑥𝑖,𝑗(0) = 𝑥𝑗
𝐿 + 𝑟𝑎𝑛𝑑(0,1) . (𝑥𝑗

𝑈 − 𝑥𝑗
𝐿) 

Where, i = 1,…..,N (N: population size), j = 1,…..,D (length of an individual)[] and 

rand(0,1) is a random number from uniform distribution  between 0 and 1. (xj
U – xj

L) 

are the limitations of upper bound and lower bound on the jth decision variable [17]. 

The basic mechanism the used variant of DE works upon is subtraction, 

demonstrated in equation (4),  by randomly selecting mutually different vectors r1, r2 

and r3, subtracting two of them and the differences are applied weight given to them 

(3) 
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by a factor F called the differential weight. Finally, by adding the difference to the 

third vector, the result will be obtaining the perturbation vector ui, (eq. no 4), as 

follows [16]: 

𝑢𝑖 = 𝑟3𝑖 + 𝐹(𝑟1𝑖 − 𝑟2𝑖), 𝑖 = 1,2, … , 𝐷 

where D is the dimensionality of the individuals. Perturbation vector u is also called 

a donor because it is produced only for donating its parts to the new offspring. This 

perturbation technique follows the basic rule of DE/rand/1 variant of DE.  The 

second step is to find the trial vector y by applying binary crossover shown in fig. 3 

on the target vector x and the donor vector u. This step relies mainly upon the 

crossover rate factor (CR) which is the key to decision whether the new individual 

takes its component from vector x or vector u [8]. 

 

 

 

 

 

 

 

 

 

 

Binary crossover mainly depends on the strategy of single-point crossover that is 

used in many applications of binary coded EAs. In single-point crossover, a random 

cross site is identified along the length of the solution string and the bits of one side 

are swapped between the two parent strings. In single-variable optimization problem, 

the action of the crossover is to used to create two new offspring strings from two 

parent strings, while in multi-parent optimization problem, each variable is usually 

coded in a certain number of bits and these bits are then combined to form the string 

of the solution [51]. 

j = rand[1,D] 

for i = 1 to D 

   if(rand[0,1] < CR or i == j) yi = ui; 

   else yi = xi; 

end 

Figure 3: Selection Procedure in DE using a 

stochastic binary Crossover rate 

(4) 
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The basic steps of DE are demonstrated in Figure 4 [18]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the most important features of DE is contour matching, which means that the 

generation population works in such way that promising regions of the objective 

function surface are investigated automatically once they are detected. An important 

ingredient besides selection is the promotion of basin to basin transfer; search points 

may move from one basin of attraction ( local minimum ) to another. This suggests 

that DE only accepts better solutions as the searching process advances [16]. 
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Figure 4: Flowchart of the basic Steps of DE[18] 
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Where: 

- Populationsize: No. of individuals in one population. 

- Problemsize: No. of decision variables in one vector. 

- Weightingfactor: Differential weight F. 

- Crossoverrate: CR factor. 

- Population: Current generation of individuals. 

- NewPopulation: The next generation of individuals. 

- Sbest: The best solution found so far. 

- Pi: An individual in the current population. 

- Si: New individual vector found after applying DE process. 

- InitializePopulation(): Returns randomly-generated population. 

- EvaluatePopulation(): Returns fitness values of all the population individuals. 

Input: Populationsize, Problemsize, Weightingfactor, 

Crossoverrate 

Output: Sbest 

1 Population ← InitializePopulation(Populationsize, 

  Problemsize ); 

2 EvaluatePopulation ( Population ); 

3 Sbest ← GetBestSolution(Population); 

4 while ¬ StopCondition() do 

5 NewPopulation ← Ø; 

6 foreach Pi ϵ Population do 

7  Si ← NewSample (Pi, Population, Problemsize, 

   Weightingfactor, Crossoverrate ); 

8  if Cost(Si) ≤ Cost (Pi) then 

9   NewPopulation ← Si; 

10  else 

11   NewPopulation ← Pi; 

12  end 

13 end 

14 Population ← NewPopulation; 

15 EvaluatePopulation(Population); 

16 Sbest ← GetBestSolution(Population); 

17 end 

18 return Sbest; 
 

Figure 5: Pseudo Code of DE[18] 
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- GetBestSolution(): Returns the individual with minimum fitness value. 

- StopCondition(): Stopping Criteria. 

- NewSample(): Returns the trial vector yi. 

- Cost(): Returns the fitness value of one vector.  

2.3 Chronological Evolution of Hybrid DE 

Since its inception in 1995, DE has drawn the attention of many researchers all over 

the world resulting in a lot of variants of the basic algorithm with improved 

performance [15]. The article that was published by R. Storn and K. Price officially 

introduced DE algorithm with thorough explanations of the steps which DE is based 

upon. That first publication of DE was proposed two years before R. Storn wrote two 

different articles about using "Differential Evolution design of an IIR-filter" and the 

"Usage of differential evolution for function optimization". P. Thomas and D. 

Vernon (1997) together proposed a method for "Image registration by Differential 

Evolution". Most of the studies that were interested in the usage of DE focused on 

image processing until J. P. Chiou and F. Sh. Wang (1998) realized the fact that 

some engineering optimization problems are being solved with the aid of all different 

EAs including DE. They proposed a hybrid method of DE for the purpose of 

engineering optimization problems. In 1999, the DE was described as a simple 

problem optimization procedure for constraint based problems with the aim of 

simplifying system design [19]. 

Studies during the first decade of 2000s about DE were more detailed with 

experiments and even showed the problems that DE could face. J. Lampinen and I. 

Zelinka wrote about stagnation of the DE algorithm in 2000. They stated that 

stagnation is different from premature convergence because of the consistent 
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diversity remaining in the population even after reaching stagnation, but the 

optimization process does not progress anymore. They concluded that the reason for 

stagnation remained unknown so far. The first introduced DE variant was Pareto-

Frontier Differential Evolution (PDE) [20] in 2001. PDE was targeted for solving 

multi-objective optimization problems. The same author published a paper the 

following year, describing a self-adaptive Pareto Differential Evolution (SPDE) [21]. 

Self adaptive Differential Evolution (SADE) was proposed by A. K. Qin and P. N. 

Suganthan in 2005. The algorithm used learning strategy. The F parameters and CR 

parameters were not required to be pre-specified; rather they will be self adapted 

during evolution using a suitable learning strategy. In 2008, For the enhancement of 

effective EAs, a crossover-based adaptive LS was used with the standard DE 

featuring the adjusting of the length of the search accordingly using a hill-climbing 

heuristic [22]. Another hybrid DE method (HDE) was proposed for solving the 

permutation flow-shop scheduling which is a combinatorial NP hard-single-objective 

optimization problem [23]. First, they changed the continuous nature of DE 

individuals to job permutation using largest-order-value, then applied a simple LS 

designed corresponding to be suitable with the problem's scope, nature, range and 

features. Finally, HDE was extended to Multi-objective HDE (MHDE) to solve 

muti-objective version of the same problem. In 2009, J. Zhang and A. Sanderson 

introduced the JADE; Adaptive DE with optional External Archive. The variant used 

a new mutation strategy with optional memory-usage and adaptive updating for 

control parameters. Moreover, a novel hybridization of two well-known EAs; DE 

and PSO, was proposed also in the same year for the purpose of unconstrained 

optimization. The algorithm was called DE-PSO which included basic mechanisms 

from both EAs [24]. 
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The concept of  hybridization of DE became more popular in 2010 when two 

noticeable studies were published. The first was hybrid DE with biogeography-based 

optimization [25]. It was designed for global numerical optimization. It depended on 

the biogeography-based migration operator for exchanging information between DE 

individuals, which combined the exploration feature of DE with the exploitation of 

BBO effectively. The second publication on hybridizing DE during the same year 

proposed two hybrid DE algorithms for engineering design optimization [26]. After 

that, in 2011, Young Wang et al. published an article about DE with composite trial 

vector generation strategies and control parameters. Results of the study have 

shown that employing generation strategies and control parameters have significant 

influence on the performance. The proposed method was tested on all the CEC2005 

contest test instances [27]. 

The previously mentioned study in 2010 that proposed two hybrid algorithms [26] 

led to another experiment in 2012 for hybridizing DE with another EA. An article 

about Co-evolutionary DE with Harmony search (DEHS) for reliability-redundancy 

optimization was published [28]. The method of the algorithm was to divide the 

problem into a continuous part and an integer part. Eventually, two populations 

evolve simultaneously and co-operatively. Hybrid Robust Differential Evolution 

(HEDE) was proposed in the same year [29], adding positive properties of the 

Taguchi's method to the DE for minimizing the production cost associated with 

multi-pass tuning problems. 

Success History based DE (SHADE) variant of DE, was proposed in 2013 by Ryoji 

Tanabe; an enhancement of JADE [30] which uses a history-based parameter 

adaptation scheme, instead of generating new control parameters. SHADE method 
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uses a historical memory (MCR, MF) which stores a set of combination of these 

parameters that have performed well before. Then, it generates new (CR) and (F) 

parameters close to ones of the pairs stored in the memory. Another variant of DE 

was proposed in the same year, SapsDE [31]. Population resizing mechanism was 

used in this method to enhance performance of DE by dynamically choosing one of 

two mutation strategies and tuning control parameters in a self-adaptive manner. The 

method was tested on 17 benchmark functions. 

Fireworks algorithm (FA) is relatively a new swarm-based metaheuristic for global 

optimization. An improved version of FA was developed in 2015 [32] using the 

combination with DE operators; mutation, crossover and selection. At each iteration, 

the newly generated solutions are updated under the control of randomly selected 

vectors out of the best-so-far solutions. Another hybrid method in 2015 was proposed 

to merge the Genetic algorithm (GA) with DE, termed (hGADE) [33], to solve one 

of the most important power system optimization problems known as the unit 

commitment (UC) scheduling. The binary UC variables were evolved using GA 

while the continuous dispatch variables were evolved using DE. That is due to the 

GA capability of handling binary variables efficiently and the DE remarkable 

performance in real parameter optimization. 

An article published in 2016 proposed Memory-based DE (MBDE)[34]. The method 

had two swarm operators introduced which were based on the personal best (pBest) 

and global best (Gbest) mechanisms of PSO. The method was tested on 12 basic, 25 

CEC2005 and 30 CEC2014 unconstrained benchmark functions. Another variant was 

proposed in the same year, based on modified JADE (MJADE) and modified CoDE 

(MCode), named (HMJCDE) [35]. Both of the hybrid algorithms were operated 
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alternatively according to the improvement rate of the fitness value. The proposed 

method performance was assessed on 30 benchmark problems taken from CEC2014. 

Generalized Differential Evolution  (GDE) is the most recent hybrid DE, proposed in 

2017, for solving numerical and evolutionary optimization [36]. GDE is a general 

purpose optimizer for global non-linear optimization. The basic DE was extended to 

handle multiple constraints and objectives just by modifying the selection rule. 

Another newly published article introduced the idea of continuous adaptive 

population reduction (CAPR)for DE. The improvements upon this method are in 

terms of efficiency and convergence over the original DE and constant population 

reduction DE. It continuously adjusts the reduction of population size accordingly 

during exploitation stage [37]. 

The concept of hybridization has been the centre of attention of research in the 

optimization area during the last twenty years. Various hybrid DE algorithms have 

been introduced and conducted mainly for problem optimization. Overall, further 

optimization research on improving performance of DE and all other EAs that are 

known has a promising future. 
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Chapter 3 

METHODOLOGY 

This study employs a hybridization technique of metaheuristic evolutionary 

algorithm with a local search mechanism to examine the results of single-objective 

problem optimization. Hybridizing EAs have been used by different researchers 

during the past twenty years. EAs have proven their ability to explore large search 

spaces, but they are comparatively inefficient in fine tuning the solution. This 

drawback is usually avoided by means of local optimization algorithms that are 

applied to the individuals of the population. The algorithms that use local 

optimization procedures are usually called hybrid algorithms [39]. 

In the process of merging the Differential Evolution algorithm together with a Local 

Search technique, Fmincon LS which is a non-linear programming method was used 

as an optimization tool applied to the individuals of the DE population. Using a non-

linear programming function gives a significant aid to our aim to minimize single-

objective problem. The experiment was conducted by the implementation of three 

different variants of hybrid DE with Fmincon LS. The first variant applied the local 

optimization on the area around the new individual that was found after going 

through DE mutation then selection steps. In the experiment of the second variant of 

hybrid DE, we applied LS to the best solution found in the current population before 

starting the DE main loop. The final experiment was intended to fuse the past two 
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variants of hybridization by executing LS to the best individual in the current DE 

population first, and then applying the LS again after finding the new solution of DE. 

3.1 Fmincon LS 

The Fmincon method finds a constrained  minimum of a scalar function of several 

variables starting at an initial estimate. This is generally referred to as constrained 

nonlinear optimization or nonlinear programming. The minimum of constrained 

nonlinear multivariable function (eq. no 5) 

       min
𝑥
𝑓(𝑥)                 

  

subject to 

 

  𝑐(𝑥)  ≤  0                   

  𝑐𝑒𝑞(𝑥)  =  0               

     𝐴 ∙ 𝑥 ≤ 𝑏                 

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞              

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏                

Where 

-  x, b, beq, lb and ub are vectors. 

- A and Aeq are metrics. 

- c(x) and ceq(x) are functions that return vectors. 

-  f(x) is a function that returns a scalar. 

f(x), c(x), and ceq(x) can be nonlinear functions [40]. 

3.1.1 Fmincon Function Description 

𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 (𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏 )  

(5) 

(6) 
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Starts at x0 and finds a minimum x to the function described in fun() subject to the 

linear inequalities 

     𝐴 ∙ 𝑥 ≤ 𝑏      

x0 can be a scalar, vector or matrix. It also minimizes fun() subject to the linear 

equalities 

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞 

as well as                                           𝐴 ∙ 𝑥 ≤ 𝑏 

Also defines a set of lower and upper bounds on the design variables, x , so that the 

solution is always in the range 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 

Sets Aeq = [ ] and beq = [ ] if no equalities exist. 

[𝑥, 𝑓𝑣𝑎𝑙] = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(… ) 

Returns the value fval of the objective function fun() at the solution x [40]. 

3.2 Hybrid DE Version 1: LS around New Solution 

Starting with the randomly created Differential Evolution population and reaching 

the selection stage of the DE method means that the algorithm has created the donor 

vector ui and the decision of selecting each decision variable for the new individual 

depends mainly on the random shuffle of Crossover-rate (CR) value. Si will be the 

newly created vector by the selection step in DE. While Pi is the original individual 

from current DE iteration population, the algorithm will decide whether Si or Pi is 

going to be accepted in the new population after finishing selection step by 

comparing both of their cost values, and choosing the better (lower) one. We can say 

that applying the Fmincon LS method around the area of the New Solution selected 

by the DE makes a good move due to the fact that if either Pi or Si was selected to be 

the new individual in the next population, each of these two is supposed to have a 

(7) 
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low cost value overall. This experimental point was taken to confirm that starting the 

local search method with a good solution could lead to better solutions around the 

area of it to fulfill the aim of reaching optimal, or near-optimal solutions. 

 
 

 
 

 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where: 

- Populationsize: No. of individuals in one population. 

- Problemsize: No. of decision variables in one vector. 

- Weightingfactor: Differential weight F. 

- Crossoverrate: CR factor. 

- Population: Current generation of individuals. 

Figure 6: Pseudo Code of first variant of Hybrid DE  

( Fmincon LS applied to New individual )  

Input: Populationsize, Problemsize, Weightingfactor, 

Crossoverrate 

Output: Sbest 

1 Population ← InitializePopulation(Populationsize, 

  Problemsize ); 

2 EvaluatePopulation ( Population ); 

3 Sbest ← GetBestSolution(Population); 

4 while ¬ StopCondition() do 

5 NewPopulation ← Ø; 

6 foreach Pi ϵ Population do 

7  Si ← NewSample (Pi, Population, Problemsize, 

   Weightingfactor, Crossoverrate ); 

8  if Cost(Si) ≤ Cost (Pi) then 

9                                  Fmincon (Si); 

10   NewPopulation ← Si; 

11  else 

12   NewPopulation ← Pi; 

13  end 

14 Fmincon(NewPopulationi); 

15 end 

16 Population ← NewPopulationi; 

17 EvaluatePopulation(Population); 

18 Sbest ← GetBestSolution(Population); 

19 end 

20 return Sbest; 
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- NewPopulationi: The next generation of individuals. 

- Sbest: The best solution found so far. 

- Pi: An individual in the current population. 

- Si: New individual vector found after applying DE process. 

- InitializePopulation(): Returns randomly-generated population. 

- EvaluatePopulation(): Returns fitness values of all the population individuals. 

- GetBestSolution(): Returns the individual with minimum fitness value. 

- StopCondition(): Stopping Criteria. 

- NewSample(): Returns the trial vector yi. 

- Cost(): Returns the fitness value of one vector. 

- Fmincon (): Returns the local optimum found after applying local search.  

3.3 Hybrid DE Version 2: LS around Best individual in Current 

population 

Initializing a population in the first iteration of the DE algorithm is carried out 

through a stochastic behavior, which may lead to very large differences in the cost 

values among individuals. The algorithm will start by evaluating the initialized 

individuals in order to find the one with the best cost value; Sbest, which may not 

necessarily have a very good fitness value, but overall it is the best-so-far in the 

current population. Performing the Fmincon LS mechanism around the area of Sbest 

can be considered in our experiment as a Hill-climbing [18] strategy. The LS is 

granted a starting point with an individual that may not be a good solution overall, 

but may lead to better solutions after reaching the local optimum. After LS is 

finished, the local optimum vector found in the area around Sbest will be assigned to 

it, then it will proceed to perform the DE method. 
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Where: 

- Populationsize: No. of individuals in one population. 

- Problemsize: No. of decision variables in one vector. 

- Weightingfactor: Differential weight F. 

- Crossoverrate: CR factor. 

- Population: Current generation of individuals. 

- NewPopulationi: The next generation of individuals. 

- Sbest: The best solution found so far. 

- Pi: An individual in the current population. 

- Si: New individual vector found after applying DE process. 

- InitializePopulation(): Returns randomly-generated population. 

Input: Populationsize, Problemsize, Weightingfactor, 

Crossoverrate 

Output: Sbest 

1 Population ← InitializePopulation(Populationsize, 

  Problemsize ); 

2 EvaluatePopulation ( Population ); 

3 Sbest ← GetBestSolution(Population); 

5 while ¬ StopCondition() do 

6 Fmincon (Sbest); 

7 NewPopulation ← Ø; 

8 foreach Pi ϵ Population do 

9  Si ← NewSample (Pi, Population, Problemsize, 

   Weightingfactor, Crossoverrate ); 

10  if Cost(Si) ≤ Cost (Pi) then 

11   NewPopulation ← Si; 

12  else 

13   NewPopulation ← Pi; 

14  end 

15 end 

16 Population ← NewPopulation; 

17 EvaluatePopulation(Population); 

18 Sbest ← GetBestSolution(Population); 

19 end 

20 return Sbest; 
 

Figure 7: Pseudo Code of second variant of Hybrid DE  

( Fmincon LS applied to Best individual in Current Population )  
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- EvaluatePopulation(): Returns fitness values of all the population individuals. 

- GetBestSolution(): Returns the individual with minimum fitness value. 

- StopCondition(): Stopping Criteria. 

- NewSample(): Returns the trial vector yi. 

- Cost(): Returns the fitness value of one vector. 

- Fmincon (): Returns the local optimum found after applying local search.  

3.4 Hybrid DE Version 3: LS around Best individual in Current 

population & around the New solution 

The previous two hybrid DE methods proposed active usage of Hill-climbing 

strategy and employed the point of starting the LS with a good solution in order to 

reach better near-optimal fitness valued individuals. The third proposed method 

creation depended on fusing the two past strategies together. The algorithm will start 

by initializing the population and selecting the best individual Sbest, then Fmincon LS 

is performed around Sbest aiming to reach the local optimum. After first LS procedure 

is finished, the DE method proceeds until reaching the selection stage. LS will be 

performed with the starting solution Pi or Si upon the decision of which one will be 

in the new population after comparing their fitness values. The concept of merging 

the two previous strategies and performing LS before and after the DE method is 

executed ensures performing the search in both exploration and exploiting behavior 

and may have better performance and result in serving the aim of enhancing DE 

performance overall. 
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Where 

- Populationsize: No. of individuals in one population. 

- Problemsize: No. of decision variables in one vector. 

- Weightingfactor: Differential weight F. 

- Crossoverrate: CR factor. 

- Population: Current generation of individuals. 

- NewPopulationi: The next generation of individuals. 

- Sbest: The best solution found so far. 

- Pi: An individual in the current population. 

Input: Populationsize, Problemsize, Weightingfactor, 

Crossoverrate 

Output: Sbest 

1 Population ← InitializePopulation(Populationsize, 

  Problemsize ); 

2 EvaluatePopulation ( Population ); 

3 Sbest ← GetBestSolution(Population); 

4 while ¬ StopCondition() do 

5 Fmincon (Sbest); 

6 NewPopulation ← Ø; 

7 foreach Pi ϵ Population do 

8  Si ← NewSample (Pi, Population, Problemsize, 

9   Weightingfactor, Crossoverrate ); 

10  if Cost(Si) ≤ Cost (Pi) then 

11   NewPopulation ← Si; 

12  else 

13   NewPopulation ← Pi; 

14  end 

15 Fmincon (NewPopulationi); 

16 end 

17 Population ← NewPopulation; 

18 EvaluatePopulation(Population); 

19 Sbest ← GetBestSolution(Population); 

20 end 

21 return Sbest; 
 

Figure 8: Pseudo Code of third variant of Hybrid DE  

( Fmincon LS applied to Best Individual in Current Population and around 

the New individual )  
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- Si: New individual vector found after applying DE process. 

- InitializePopulation(): Returns randomly-generated population. 

- EvaluatePopulation(): Returns fitness values of all the population individuals. 

- GetBestSolution(): Returns the individual with minimum fitness value. 

- StopCondition(): Stopping Criteria. 

- NewSample(): Returns the trial vector yi. 

- Cost(): Returns the fitness value of one vector. 

- Fmincon (): Returns the local optimum found after applying local search. 

3.5 Summary 

Three different variants of Hybrid DE were proposed. Each variant featured 

combining the DE algorithm with the Fmincon LS tool. the first version of Hybrid 

DE was conducted based on the concept of starting the LS with a good fitness valued 

solution with the aim of reaching better solutions around its neighborhood. The 

second version of the proposed Hybrid DE was based on a Hill-climbing idea by 

applying the LS in the area of the best fitness valued solution in the randomly 

initialized current population. Finally, the last proposed version of Hybrid DE 

featured the fusion of both first and second versions by applying LS around the best 

solution in current population area, then also applying the LS after DE execution was 

finished and the new individual of the population was found.   
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Chapter 4 

EXPERIMENTAL RESULTS 

For the purpose of demonstrating the differences between results, the first step of the 

experiment was to execute optimization of 15 black-box benchmark functions [14] 

using the original Differential Evolution Algorithm. Then, we experimented with all 

of the three proposed variants of Hybrid DE on the benchmark functions with 10 and 

30 dimensions. The empirical results, supported with comprehensive secondary data 

obtained from the single-objective problem optimization experiment revealed that 

optimization process using an EA was influenced by the support of local 

optimization method. The difference between results obtained from implementing 

the original DE algorithm and results of the three variants of Hybrid DE in both 10 

and 30 dimensions was huge. 

4.1 CEC'15 Expensive Optimization Test Problems 

By downloading the Matlab Codes for CEC'15 test suite [41], all the problems were 

installed and treated as black-box optimization problems and without any prior 

knowledge. Neither the analytical equations nor the problem characteristics extracted 

from analytical equations were allowed to be seen or studied [14].  

4.1.1 Common Definitions 

All test functions are minimization problems defined as follows in (eq. no 8): 

min 𝑓(𝑥) , 𝑥 = [𝑥1, 𝑥2, … . , 𝑥𝐷]
𝑇 (8) 
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Where D is the dimension of the problem. all search ranges are pre-defined for all 

test functions as [-100, 100]D. The termination criterion is based on reaching the 

maximum number of function evaluations according to each dimension [14].  

4.1.2 Experimental Settings 

• Number of independent runs: 20 

• Maximum number of exact function evaluations: 

o 10-dimension: 500 

o 30- dimension: 1500 

• Initialization: using a problem-independent initialization method. 

• Termination:  Terminate when reaching the maximum number of exact 

function evaluations or the error value (Fi* - Fi(x*)) is smaller than 10-3 [14]. 

Practically, modern stochastic optimization methods such, as EAs, are considered 

computationally expensive because they require many thousands of objective 

function calls to the simulation codes in order to locate a near-optimal solution. EAs 

are also time consuming since their search cycle time is directly proportional to the 

number of calls of the expensive fitness function [52]. 
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Table 1: Summary of CEC'15 expensive optimization test problems [14]   

Categories No Functions Related Basic Functions Fi* 

Unimodal 

Functions 

1 Rotated Bent Cigar Function Bent Cigar Function 100 

2 Rotated Discus Function Discus Function 200 

Simple 

Multimoda

l Functions 

3 
Shifted and Rotated 

Weierstrass Function 

Weierstrass Function 
300 

4 
Shifted and Rotated 

Schwefel's Function 

Schwefel's Function 
400 

5 
Shifted and Rotated Katsuura 

Function 

Katsuura Function 
500 

6 
Shifted and Rotated 

HappyCat Function 

HappyCat Function 
600 

7 
Shifted and Rotated HGBat 

Function 

HGBat Function 
700 

8 

Shifted and Rotated 

Expanded Griewank's puls 

Rosenbrock's Function 

Griewank's Function 

Rosenbrock's Function 800 

9 

Shifted and Rotated 

Expanded Scaffer's F6 

Function 

Expanded Scaffer's F6 

Function 900 

Hybrid 

Functions 

10 

Hybrid Function 1 (N=3) Schwefel's Function 

Rastrigin's Function 

High Conditioned 

Elliptic Function 

 

1000 

11 

Hybrid Function 2 (N=4) Griewank's Function 

Weierstrass Function 

Rosenbrock's Function 

Scaffer's F6 Function 

1100 

12 

Hybrid Function 3 (N=5) Katsuura Function 

HappyCat Function 

Griewank's Function 

Rosenbrock's Function 

Schwefel's Function 

Ackley's Function 

1200 

Compositi

on 

Functions 

13 

Composite Function 1 (N=5) Rosenbrock's Function 

High Conditioned 

Elliptic Function 

Bent Cigar Function 

Discus Function 

1300 

14 

Composite Function 2 (N=3) Schwefel's Function 

Rastrigin's Function 

High Conditioned 

Elliptic Function 

1400 

15 

Composite Function 3 (N=5) HGBat Function 

Rastrigin's Function 

Schwefel's Function 

Weierstrass Function 
High Conditioned Elliptic Function 

1500 
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4.2 Results 

The three proposed variants of Hybrid DE were tested distinctly for optimizing 

CEC2015 single objective problems in Dimension 10 featuring only 500 function 

evaluations and in Dimension 30 featuring a larger number of function evaluations 

up to 1500 times. The results of both dimensions intended to demonstrate a large 

improvement from the primary original DE solutions with high adjacency to the 

optimal Fi* results. 

4.2.1 Hybrid DE variants in Dimension 10 

Table 2 data are obtained from dimension 10 implementation of original DE, 

followed by the results of versions 1, 2 and 3 of Hybrid DE. The best results out of 

# Fi* DE Hybrid DE V.1 Hybrid DE V. 2 Hybrid DE V. 3 

1 100 3E+09 100.051678 100.1647 100.0613 

2 200 31156.62115 200.0142 200.0143 200.0112 

3 300 309.9202 308.5307 308.2675 307.9077 

4 400 1684.209 1022.401 846.0667 833.142 

5 500 501.4494256 500.1929 500.2548 500.1859 

6 600 602.7712 600.0904 600.2087 600.096 

7 700 724.67707 700.3239 700.2243 700.2266 

8 800 1861.4487 801.5499 807.4774 802.66 

9 900 903.98633 903.3542 903.1379 902.3923 

10 1000 143000.37 1323.485 1005.393 1229.117 

11 1100 1111.3384 1105.355 1105.896 1105.974 

12 1200 1260.531 1261.581 1243.613 1266.532 

13 1300 1691.2347 1612.527 1612.527 1612.527 

14 1400 1614.3457 1595.872 1595.915 1602.9 

15 1500 1941.8559 1591.424 1655.731 1526.254 

 

Table 2: Best results of Hybrid DE versions in Dimension 10 (20 runs) 
 

Fi*: Optimal solution of the ith problem 
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20 distinct runs for 15 single objective problems' optimization are demonstrated.  

The results of the analyses of Table 2 revealed significant differences between the 

original DE solutions and the Hybrid DE solutions which clearly tend to get close to 

the optimal values in some of the problems, but do not in the others. Overall, both of 

version 1 and version 2 of Hybrid DE results tend to show an apparent improvement 

in the quality of solutions, while fusing both of their concepts in version 3 of the 

algorithm demonstrates best experiment solutions in most of the 15 problems. 

 

 

# Fi* DE Hybrid DE V.1 Hybrid DE V. 2 Hybrid DE V. 3 

1 100 8.9E+08 100.1575171 100.0616349 100.1114339 

2 200 21757.5 200.015307 200.0131796 200.0099 

3 300 308.1646 308.7714 307.6581 307.4994 

4 400 1459.511 653.1932 932.2627 764.1311 

5 500 501.617 500.0504 500.2256 500.0967 

6 600 601.8938 600.3841 600.2546 600.1087 

7 700 708.4069 700.1476 700.192 700.1407 

8 800 822.8918 804.109 813.425952 807.28347 

9 900 903.8918 902.5808 903.1077 903.0219 

10 1000 68398.03 1021.345084 1166.67 1147.98849 

11 1100 1109.029 1106.377 1108.743 1106.031 

12 1200 1299.266 1238.05 1229.16 1224.18 

13 1300 1630.788 1612.527 1612.527 1612.527 

14 1400 1609.633 1588.785 1599.846 1597.523 

15 1500 1771.877 1573.638 1695.892 1584.807 

 

Table 3: Best results of Hybrid DE versions in Dimension 30 (20 runs) 
 

Fi*: Optimal solution of the ith problem 
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Both of the Unimodal functions results in all three Hybrid DE variants in Dimension 

10 reached near-optimal solutions with relatively small differences from optimality.  

Multimodal functions were mixed between problems which had very small 

differences from optimal solutions; problems no. 5, 6, 7 and 8 while the rest of the 

problems' results in the same category showed big figured numbers. Finally, Hybrid 

functions which included problems 10, 11 and 12, and Composite functions that 

included problems 13, 14 and 15, was able to improve the primary result of original 

DE algorithms, but not reaching any near optimal solutions in any of these problems. 

4.2.2 Hybrid DE variants in Dimension 30 

Table 3 demonstrates the dimension 30 implementation of original DE results, and 

the solutions of version 1, 2 and 3 of Hybrid DE. The best results out of 20 runs 

which were executed separately for 15 single objective problems' optimization are  

demonstrated. Fi* are the optimal solutions for problems. 

The results of the analyses in Table 3 revealed significant differences between the 

original DE solutions and the Hybrid DE solutions. Reaching near-optimal solutions 

overall seem to be dependent on starting with a good solution in a way. Hybrid DE 

version 1 here owns the highest number of best experiment solutions with version 2 

of Hybrid DE only resulting the best in problem No. 1. This may indicate that most 

of the time, when starting the local exploitation with a good solution, the procedure 

could lead to better optimization results. 

Both of the Unimodal functions results in all three Hybrid DE variants in Dimension 

30 reached near-optimal solutions with relatively small differences from optimality. 

Multimodal functions were mixed between problems which had very small 

differences from optimal solutions; problems no. 5, 6, 7 and 9 while the rest of the 



35 

 

problems' results in the same category showed big figured numbers. Finally, Hybrid 

functions which included problems 10, 11 and 12, and Composite functions that 

included problems 13, 14 and 15, was able to improve the primary result of original 

DE algorithms, but not reaching any near optimal solutions in any of these problems. 

 

CPU time, demonstrated in Table 4, was calculated distinctively from Hybrid DE 

versions implementation in Dimension 30 for each problem per single run. Then, the 

total time for 20 runs for each Hybrid DE version optimization of a single problem 

was calculated. Version 2 of the proposed method appeared to be the most time-

consuming compared with the two other versions, yet did not reach good solutions.   

# DE Hybrid DE V.1 Hybrid DE V. 2 Hybrid DE V. 3 

1 16.25 232.5 9122.5 4575 

2 14.688 107.812 7068.75 3160 

3 18.438 283.75 11489.376 6575.626 

4 13.126 137.5 9054.688 4479.376 

5 14.062 313.75 30628 19136.562 

6 13.438 154.688 10578.75 4131.876 

7 26.25 159.688 8951.876 29144 

8 13.438 234.688 15270.312 5054.688 

9 11.876 175.626 5880.626 10126.562 

10 13.988 163.126 6792.812 3552.5 

11 18.75 164.376 22848 6493.75 

12 26.25 329.376 6464.688 6888.75 

13 3.576 173.126 7666.25 6291.562 

14 14.688 110 3362.188 4926.25 

15 17.5 151.25 14462.188 6115.938 

 

Table 4: CPU Time for Best results of Hybrid DE versions in D30 (sec/20 runs) 
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4.3 Comparison with Literature 

The findings of our experiment with Hybrid DE are consistent to some extent with  

the past studies on CEC 2105 problem optimization. A number of the previously 

proposed methods for the solutions of the same group of problems show clear 

relation to the results of Hybrid DE. DEsPA [9] is a technique proposed by Noor 

Awad et al. which featured using a memory-based structure to adapt control 

parameters. L-SHADE [10] is another method proposed by Shu-Mei Gou et al. it 

depended on the population resizing concept. Neurodynamic Differential Evolution 

[11] proposed a linear population size reduction DE dependent on modification of 

success history parameter within the concept of neurodynamic. Moreover, Self-

adaptive Dynamic Multi-Swarm Particle [12] which differs primarily from original 

PSO in the employment of of self-adaptive strategy of parameters. Finally, the 

Hybrid Cooperative Co-evolution (hCC), which consists the concept of separating 

the variables into groups and continue in adopting different algorithms within the 

cooperative co-evolution (CC) framework [13]. 

Tables 5, 6 and 7 demonstrated below compare the error rates of the versions 1, 2 

and 3 of Hybrid DE with the error rates from literature in dimension 30.

4.3.1 Hybrid DE with LS around New solution 

The data demonstrated in Table 5 are obtained from literature representing error rates 

of the previously proposed methods results for CEC2015 expensive problems 

optimization. The comparison conducted between Hybrid DE version 1 error rates of 

application to the same group of problems. 

 



 
 

# Fi* Hybrid DE V. 1 DEsPA SPS-L-SHADE-EI LSHADE-ND sDMS-PSO hCC 

1 100 1.58E-01 0.00E+00 0.00E+00 0.00E+00 0.000513 1.56E-13 

2 200 1.53E-02 0.00E+00 0.00E+00 0.00E+00 0.000807 2.84E-14 

3 300 8.77E+00 2.00E+01 2.00E+01 2.000E+01 19.9998 2.01E+01 

4 400 2.53E+02 3.98E+00 1.05E-02 4.9750E+00 24.87397 5.22E+00 

5 500 5.04E-02 9.48E+02 6.58E+02 7.5217E+02 1587.52 2.59E+02 

6 600 3.84E-01 2.72E+01 2.68E+01 4.4798E+01 564.0676 4.50E+01 

7 700 1.48E-01 1.07E+00 6.23E-01 3.6485E+00 5.829585 2.25E+00 

8 800 4.11E+00 3.40E+00 2.07E+00 2.3365E+00 538.468 1.15E+01 

9 900 2.58E+00 1.16E+02 1.02E+02 1.022E+02 102.5592 1.06E+02 

10 1000 2.13E+01 3.50E+01 1.48E+02 3.3222E+02 2613.849 4.15E+02 

11 1100 6.38E+00 2.01E+02 3.00E+02 4.000E+02 306.3833 3.18E+02 

12 1200 3.81E+01 1.08E+02 1.02E+02 1.0295E+02 103.4556 1.04E+02 

13 1300 3.13E+02 6.93E+01 2.56E-02 2.5584E-02 89.6766 2.51E-02 

14 1400 1.89E+02 2.73E+04 3.11E+04 3.1070E+04 17469.59 3.11E+04 

15 1500 7.36E+01 2.73E+02 1.00E+02 1.000E+02 100 1.00E+02 

Table 5: Comparison of dimension 30 error rates of Hybrid DE V. 1 results with literature 
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By examining the comparison between error rates demonstrated in Table 5, it can be 

concluded that the highest number of best problem optimization results belong to the 

first version of Hybrid DE method. The table showed superior performance of 

Hybrid DE from optimizing results of 10 out of 15 problems, which is the highest 

between all the methods from literature. In problems number 1 and 2, the error rates 

of Hybrid DE version 1 appeared to be very close to optimality. The rest of the 

problems' results varied between generally small differences and extreme differences 

from the optimal values. 

4.3.2 Hybrid DE with LS around Best individual in Current Population 

 The data demonstrated in Table 6 are obtained from literature representing error 

rates of the previously proposed methods results for CEC2015 expensive problems 

optimization. The comparison conducted between Hybrid DE version 2 error rates of 

application to the same group of problems. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Fi* Hybrid DE V. 2 DEsPA SPS-L-SHADE-EIG LSHADE-ND sDMS-PSO hCC 

1 100 6.16E-02 0.00E+00 0.00E+00 0.00E+00 0.000513 1.56E-13 

2 200 1.32E-02 0.00E+00 0.00E+00 0.00E+00 0.000807 2.84E-14 

3 300 7.66E+00 2.00E+01 2.00E+01 2.000E+01 19.9998 2.01E+01 

4 400 5.32E+02 3.98E+00 1.05E-02 4.9750E+00 24.87397 5.22E+00 

5 500 2.26E-01 9.48E+02 6.58E+02 7.5217E+02 1587.52 2.59E+02 

6 600 2.55E-01 2.72E+01 2.68E+01 4.4798E+01 564.0676 4.50E+01 

7 700 1.92E-01 1.07E+00 6.23E-01 3.6485E+00 5.829585 2.25E+00 

8 800 1.34E+01 3.40E+00 2.07E+00 2.3365E+00 538.468 1.15E+01 

9 900 3.11E+00 1.16E+02 1.02E+02 1.022E+02 102.5592 1.06E+02 

10 1000 1.67E+02 3.50E+01 1.48E+02 3.3222E+02 2613.849 4.15E+02 

11 1100 8.74E+00 2.01E+02 3.00E+02 4.000E+02 306.3833 3.18E+02 

12 1200 2.92E+01 1.08E+02 1.02E+02 1.0295E+02 103.4556 1.04E+02 

13 1300 3.13E+02 6.93E+01 2.56E-02 2.5584E-02 89.6766 2.51E-02 

14 1400 2.00E+02 2.73E+04 3.11E+04 3.1070E+04 17469.59 3.11E+04 

15 1500 1.96E+02 2.73E+02 1.00E+02 1.000E+02 100 1.00E+02 

Table 6: Comparison of dimension 30 Hybrid DE V. 2 results with literature 
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According to Table 6, the second proposed version of  Hybrid DE had the largest 

number of best optimization results in 8 out of 15 CEC expensive problems. The 

error rates of both problems number 1 and 2 tend to be very close to the optimal 

value. Problems number 4, 8, 10, 13 and 15 results show a considerably big 

difference from the optimal values of problem solutions. 

4.3.3 Hybrid DE with LS around Best individual in Current Population & 

around the New solution 

The data demonstrated in Table 7 are obtained from literature representing error rates 

of the previously proposed methods results for CEC2015 expensive problems 

optimization. The comparison conducted between Hybrid DE version 3 error rates of 

application to the same group of problems. 

 

 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

# Fi* Hybrid DE V. 3 DEsPA SPS-L-SHADE-EIG LSHADE-ND sDMS-PSO hCC 

1 100 1.11E-01 0.00E+00 0.00E+00 0.00E+00 0.000513 1.56E-13 

2 200 9.90E-03 0.00E+00 0.00E+00 0.00E+00 0.000807 2.84E-14 

3 300 7.50E+00 2.00E+01 2.00E+01 2.000E+01 19.9998 2.01E+01 

4 400 3.64E+02 3.98E+00 1.05E-02 4.9750E+00 24.87397 5.22E+00 

5 500 9.67E-02 9.48E+02 6.58E+02 7.5217E+02 1587.52 2.59E+02 

6 600 1.09E-01 2.72E+01 2.68E+01 4.4798E+01 564.0676 4.50E+01 

7 700 1.41E-01 1.07E+00 6.23E-01 3.6485E+00 5.829585 2.25E+00 

8 800 7.28E+00 3.40E+00 2.07E+00 2.3365E+00 538.468 1.15E+01 

9 900 3.02E+00 1.16E+02 1.02E+02 1.022E+02 102.5592 1.06E+02 

10 1000 1.48E+02 3.50E+01 1.48E+02 3.3222E+02 2613.849 4.15E+02 

11 1100 6.03E+00 2.01E+02 3.00E+02 4.000E+02 306.3833 3.18E+02 

12 1200 2.42E+01 1.08E+02 1.02E+02 1.0295E+02 103.4556 1.04E+02 

13 1300 3.13E+02 6.93E+01 2.56E-02 2.5584E-02 89.6766 2.51E-02 

14 1400 1.98E+02 2.73E+04 3.11E+04 3.1070E+04 17469.59 3.11E+04 

15 1500 8.48E+01 2.73E+02 1.00E+02 1.000E+02 100 1.00E+02 

Table 7: Comparison of dimension 30 Hybrid DE V. 3 results with literature 
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Looking at Table 7, the comparison between the third proposed version of Hybrid 

DE show that it could reach the best results in optimizing 9 out of 15 problems of the 

CEC expensive problems, which is the largest between all the other methods in the 

literature. The results of problem 1 and 2 are very close to the optimal values of the 

problems. The rest of the problems error rates are between considerably small and 

large differences from optimal values. 

4.4 Friedman Ranking Test 

The Friedman Test is a non-parametric statistical test developed by Milton 

Friedman. It is used to check the statistical similarities in treatments across multiple 

test attempts. The procedure involves ranking each row together, then considering 

the values of ranks by columns [42]. The P-value indicator represents the difference 

between the ranked functions statistically. The smaller the p-value is, the bigger the 

statistical differences between the ranked methods are [54]. 

The ranking procedure was used in order to assess the quality of the proposed Hybrid 

DE. A comparison among the three proposed variants of Hybrid DE in dimension 10 

and dimension 30 opposed to the original DE results, and between each Hybrid DE 

proposed variant in dimension 30 with literature studies was conducted using 

Friedman test.  

Table 8: Friedman Ranking between Hybrid DE versions in D10 

Rank Function 

1 
Hybrid DE with LS around Best individual in Current Population 

& around the New solution (V.3) 

2 Hybrid DE with LS around New solution (V.1) 

3 
Hybrid DE with LS around Best individual in Current Population 

(V.2) 

4 DE 

p-value = 3.1041e-05 

https://en.m.wikipedia.org/wiki/Non-parametric_statistics
https://en.m.wikipedia.org/wiki/Statistical_test
https://en.m.wikipedia.org/wiki/Milton_Friedman
https://en.m.wikipedia.org/wiki/Milton_Friedman
https://en.m.wikipedia.org/wiki/Ranking
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according to the Ranking between the three proposed Hybrid DE variants including 

the original DE results in dimension 10 demonstrated in Table 8, version 3 of the 

Hybrid DE method; applying LS around the best individual in current population and 

around the new solution, was ahead of the other two proposed hybrid methods. The 

P-value is very close to zero which indicates obvious difference between their 

performance statistically. 

Table 9: Friedman Ranking between Hybrid DE versions in D30 

Rank Function 

1 Hybrid DE with LS around New solution (V.1) 

1 
Hybrid DE with LS around Best individual in Current Population 

& around the New solution (V.3) 

2 
Hybrid DE with LS around Best individual in Current Population 

(V.2) 

3 DE 

p-value = 1.19198e-06 

In dimension 30, version 1 and 3 of Hybrid DE had the same level of performance 

according to Friedman Test ranking in Table 9. Both of version 1 and 3 had the best 

rank before the  second version of proposed Hybrid DE followed by the original DE. 

Table 10: Friedman Ranking between Hybrid DE V.1 and Literature in D30  

Rank Function 

1 Hybrid DE V.1 

2 SPS-L-SHADE-EIG 

3 DEsPA 

4 LSHADE-ND 

5 hCC 

6 sDMS-PSO 

p-value = 0.0057213 
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Table 10 ranking results showed that between all literature results in dimension 30, 

compared with the version 1 of Hybrid DE. The proposed Hybrid DE method 

showed the best performance overall. 

Version 2 and version 3 of Hybrid DE had the second best rank in performance 

compared with literature results in dimension 30 in Table 11 and Table 12. The best 

overall results of optimizing the majority of CEC'15 problems was SPS-L-SHADE-

EIG method compared to both of the last two versions of Hybrid DE. 

Table 11: Friedman Ranking between Hybrid DE V.2 and Literature in D30 

Rank Function 

1 SPS-L-SHADE-EIG 

2 Hybrid DE V. 2 

3 LSHADE-ND 

4 DEsPA 

5 hCC 

6 sDMS-PSO 

p-value = 0.022563 

Table 12: Friedman Ranking between Hybrid DE V.3 and Literature in D30 

Rank Function 

1 SPS-L-SHADE-EIG 

2 Hybrid DE V. 3 

3 DEsPA 

4 LSHADE-ND 

5 hCC 

6 sDMS-PSO 

p-value = 0.0070841  
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Chapter 5 

CONCLUSION 

5.1 Summary of the Study 

The experiment proposed Hybrid Differential Evolution method for the purpose of 

optimizing the CEC2015 of 15 Benchmark of single objective problems [14] . The 

merging consisted of the DE global optimization that served as an exploration factor 

with the employment of a local search technique as an exploitation factor. The base 

of the idea focused on fusing both diversification-based and intensification-based 

algorithms that may lead to better optimized problems' solutions. Three different 

versions of Hybrid DE were proposed and the experiment was conducted for all in 

both dimension 10 and dimension 30. Finally, we compared the findings of our 

proposed Hybrid DE algorithm with the  previous research with the aim of 

optimizing CEC2015 problems.  

5.2 Conclusions 

The patterns of results from the experiment appear to fit criteria supporting the 

hypothesis of using the local search methods for the aim of single objective problem 

optimization. The results of the Hybrid DE tended to show little differences with the 

optimal solutions in some of the findings. Comparison with the previously proposed 

techniques suggests that the proposed method owns the upper hand in the number of 

best solutions. The primary conclusion of this experiment is that using local search 

techniques with the aim of optimization has a powerful impact resulting in better 

solutions. 
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5.3 Implications of the Study 

The main contribution of this study is the support of the concept that using local 

search methods for the aim of optimization could result in better problem solutions. 

Our findings contribute practical implications and insights into hybridizing global 

optimization methods with local search techniques. The study established the 

strategy of fusing DE algorithm with Fmincon local search tool that was found to 

contribute effectively  to our aim of the study. 

5.4 Implications for Further Research 

Further research can be based on the concept of hybridizing DE with another local 

search method that may be more efficient in the competing procedure. Another 

suggestion could be using the different variants of the DE in the experiment which 

may have a stronger impact on the findings in the future.  
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Appendix A: Introduction of the CEC'15 expensive optimization test 

problems [14] 

This section defines the set of basic fi  functions which were used to construct the set 

of CEC 2015 expensive optimization problems. Then, it is followed by the detailed 

definitions of 15 expensive functions F(x) which are categorized into four groups: 

Unimodal Functions, Simple Multimodal Functions, Hybrid Functions and 

Composite Functions. 

fi (x): ith basic function used to construct the expensive function. 

F(x) : expensive function. 

 n : number of basic functions. The bigger n is, the more complex F(x). 

D : dimension. 

1. Definitions of basic functions 

1. Bent Cigar Function 

                                    f1(x) = 𝒙 𝟐
𝟏
+ 𝟏𝟎𝟔∑ 𝒙 𝟐

𝒊
𝑫
𝒊=𝟐       

 

(1) 
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2. Discus Function  

                                     f2(x) = 𝟏𝟎𝟔 𝒙 𝟐
𝟏
+ ∑ 𝒙 𝟐

𝒊
𝑫
𝒊=𝟐     

 

3. Weierstrass Function 

f3(x) = ∑ (∑ [𝒂𝒌 𝐜𝐨𝐬 (𝟐𝝅𝒃𝒌(𝒙𝒊 + 𝟎. 𝟓))]) − 𝑫∑ [𝒂𝒌 𝐜𝐨𝐬(𝟐𝝅𝒃𝒌 ∙ 𝟎. 𝟓)]𝒌 𝒎𝒂𝒙
𝒌=𝑫

𝒌 𝒎𝒂𝒙
𝒌=𝟎

𝑫
𝒊=𝟏   

where a=0.5, b=3, and kmax=20. 

4. Modified Schwefel's Function 

f4 (x) = 𝟒𝟏𝟖. 𝟗𝟖𝟐𝟗 × 𝑫 − ∑ 𝒈(𝒛𝒊)
𝑫
𝒊=𝟏 ,          zi = xi + 4.209687462275036e + 002 

g(zi) = 

{
 
 

 
 𝒛𝒊 𝐬𝐢𝐧(|𝒛𝒊|

𝟏\𝟐)

(𝟓𝟎𝟎 −𝒎𝒐𝒅(𝒛𝒊, 𝟓𝟎𝟎)) 𝐬𝐢𝐧(√|𝟓𝟎𝟎 −𝒎𝒐𝒅(𝒛𝒊, 𝟓𝟎𝟎)|) − 
(𝒛𝒊−𝟓𝟎𝟎)

𝟐

𝟏𝟎𝟎𝟎𝟎𝑫

(𝒎𝒐𝒅(|𝒛𝒊|, 𝟓𝟎𝟎) − 𝟓𝟎𝟎)𝐬𝐢𝐧 (√|𝒎𝒐𝒅(|𝒛𝒊|, 𝟓𝟎𝟎) − 𝟓𝟎𝟎|) −
(𝒛𝒊+𝟓𝟎𝟎)

𝟐

𝟏𝟎𝟎𝟎𝟎𝑫

 

5. Katsuura Function 

f5(x) = 
𝟏𝟎

𝑫𝟐
∏ (𝟏 + 𝒊∑

|𝟐𝒋𝒙𝒊−𝒓𝒐𝒖𝒏𝒅(𝟐
𝒋𝒙𝒊)|

𝟐𝒋
)𝟑𝟐

𝒋=𝟏

𝟏𝟎

𝑫𝟏.𝟐

−
𝟏𝟎

𝑫𝟐
𝑫
𝒊=𝟏  

 

if |𝑧𝑖| ≤ 500 

if 𝑧𝑖 > 500 

if 𝑧𝑖  < −500 

(4) 

(5) 

(2) 

(3) 
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6. HappyCat Function 

f6(x) = |∑ 𝒙𝑫
𝒊=𝟏

𝟐
𝒊
−𝑫|

𝟏/𝟒
+ (𝟎. 𝟓∑ 𝒙 𝟐

𝒊
+ ∑ 𝒙𝒊)

𝑫
𝒊=𝟏

𝑫
𝒊=𝟏  / D + 0.5 

7. HGBat Function 

f7(x) = |(∑ 𝒙 𝟐
𝒊
)𝑫

𝒊=𝟏

𝟐
− (∑ 𝒙𝒊)

𝑫
𝒊=𝟏

𝟐
|
𝟏/𝟐

+ (𝟎. 𝟓∑ 𝒙 𝟐
𝒊
+ ∑ 𝒙𝒊)

𝑫
𝒊=𝟏

𝑫
𝒊=𝟏  / D + 0.5 

8. Expanded Griewank's plus Rosenbrock's Function 

f8(x) = f11(f10(x1,x2)) + f11(f10(x2,x3)) +…+ f11(f10(xD-1,xD)) + f11(f10(xD,x1)) 

9. Expanded Scaffer's F6 Function 

g(x,y) = 0.5 + 
(𝒔𝒊𝒏𝟐(√𝒙𝟐+𝒚𝟐)−𝟎.𝟓)

(𝟏+𝟎.𝟎𝟎𝟏(𝒙𝟐+𝒚𝟐))𝟐
 

f9(x) = g(x1,x2) + g(x2,x3) + … + g(xD-1,xD) + g(xD,xi)) 

10. Rosenbrock's Function 

f10(x) = ∑ (𝟏𝟎𝟎(𝒙 𝟐
𝒊
− 𝒙𝒊+𝟏)

𝟐
+ (𝒙𝒊 − 𝟏)

𝟐)𝑫−𝟏
𝒊=𝟏  

11. Griewank's Function 

f11(x) = ∑
𝒙𝟐𝒊
𝟒𝟎𝟎𝟎

𝑫
𝒊=𝟏 −∏ 𝐜𝐨𝐬 (

𝒙𝒊

√𝒊

𝑫
𝒊=𝟏 + 𝟏 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



61 

 

12. Rastrigin's Function 

f12(x) = ∑ (𝒙 𝟐
𝒊
− 𝟏𝟎𝐜𝐨𝐬 (𝟐𝝅𝒙𝒊

𝑫
𝒊=𝟏 ) + 𝟏𝟎) 

13. High Conditioned Elliptic Function 

f13(x) = ∑ (𝟏𝟎𝟔)
𝒊−𝟏

𝑫−𝟏𝑫
𝒊=𝟏 𝒙 𝟐

𝒊
 

14. Ackley's Function 

f14(x) = −𝟐𝟎𝐞𝐱𝐩(−𝟎. 𝟐√
𝟏

𝑫
∑ 𝒙 𝟐

𝒊
)𝑫

𝒊=𝟏 − 𝐞𝐱𝐩(
𝟏

𝑫
∑ 𝐜𝐨𝐬 (𝟐𝝅𝒙𝒊
𝑫
𝒊=𝟏 )) + 𝟐𝟎 + 𝒆 

2. Definitions of the CEC'15 Expensive Test Suite 

2.1 Unimodal Functions 

all search ranges are pre-defined for all test functions as [-100, 100]D and Fi* is the 

set of optimal values. Where D is the dimension of the problem.  

1) Rotated Bent Cigar Function 

D = 10, D = 30, F1* = 100 

F1(x) = f1(M(x-◦1)) + F1* 

(12) 

(13) 

(14) 

(15) 
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Properties: 

• Unimodal 

• Non-separable 

• Smooth but narrow ridge 

2) Rotated Discus Function 

D = 10, D = 30, F2* = 200 

F2(x) = f2(M(x-◦2)) + F2* (16) 
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Properties: 

• Unimodal 

• Non-seperable 

• With one sensitive direction 

2.2 Simple Multimodal Functions 

3) Shifted and Rotated Weirestrass Function 

D = 10, D = 30, F3* = 300 

F3(x) = f3(M(
𝟎.𝟓(𝒙−°𝟑)

𝟏𝟎𝟎
)) + F3* (17) 
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Properties: 

• Multi-modal 

• Non-separable 

• Continuous but differentiable only on a set of points 

4) Shifted and Rotated Schwefel's Function 

D = 10, D = 30, F4* = 400 

F4(x) = f4(M(
𝟏𝟎𝟎𝟎(𝒙−°𝟒)

𝟏𝟎𝟎
)) + F4* (18) 
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Properties: 

• Multi-modal 

• Non-separable 
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• Local optima's number is huge and second better local optimum is far from 

the global optimum 

5) Shifted and Rotated Katsuura Function 

D = 10, D = 30, F5* = 500 

F5(x) = f5(M(
𝟓(𝒙−°𝟓)

𝟏𝟎𝟎
)) + F5* 

 

(19) 
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Properties: 

• Multi-modal 

• Non-separable 

• Continuous everywhere yet differentiable nowhere 

6) Shifted and Rotated HappyCat Function 

D = 10, D = 30, F6* = 600 

F6(x) = f6(M(
𝟓(𝒙−°𝟔)

𝟏𝟎𝟎
)) + F6* (20) 
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Properties: 

• Multi-modal 
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• Non-separable 

7) Shifted and Rotated HGBat Function 

D = 10, D = 30, F7* = 700 

F7(x) = f7(M(
𝟓(𝒙−°𝟕)

𝟏𝟎𝟎
)) + F7* 

 

(21) 
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Properties: 

• Multi-modal 

• Non-separable 

8) Shifted and Rotated Expanded Griewank's plus Rosenbrock's Function 

D = 10, D = 30, F8* = 800 

F8(x) = f8(M(
𝟓(𝒙−°𝟖)

𝟏𝟎𝟎
) + 1) + F8* (22) 
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Properties: 

• Multi-modal 
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• Non-separable 

9) Shifted and Rotated Expanded Scaffer's F6 Function 

D = 10, D = 30, F9* = 900 

F9(x) = f9(M(x - ◦9) + 1) + F9* 

 

Properties: 

• Multi-modal 

• Non-separable 

 

(23) 
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2.3 Hybrid Functions 

In real-world optimization problems, different subsets of the variables may have 

different properties. In this set of hybrid functions, the variables are randomly 

divided into some subsets and then different basic functions are used for different 

subsets. 

F(x) = g1(M1z1) + g2(M1z1) + … + gN(MNzN) + F*(x) 

F(x): hybrid function 

gi(x): ith basic function used to construct the hybrid function 

N: number of basic functions 

 z = [ z1, z2 , … , zN ] 

 z1 = [ yS1 , yS2 , … , ySm ], z2 = [ ySm+1 , ySm+2 , … , ySm+n2 ],…,  

zN = [ yS∑ 𝒏𝒊 + 𝟏
𝑵−𝟏
𝒊=𝟏  , yS∑ 𝒏𝒊 + 𝟐

𝑵−𝟏
𝒊=𝟏  ,…, y𝒔𝑫 ] 

 where, y = x - ◦i and S = randperm(1: D) 

pi: used to control the percentage of gi(x) 

ni: dimension for each basic function ∑ 𝒏𝒊 = 𝑫𝓝
𝒊=𝟏  

n1 = ⌈𝒑𝟏𝑫⌉, n2 = ⌈𝒑𝟐𝑫⌉,…, nN-1 = ⌈𝒑𝑵−𝟏𝑫⌉, nN = D – ∑ 𝒏𝒊
𝑵−𝟏
𝒊=𝟏  

 

(24) 

(25) 

(26) 
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10) Hybrid Function 1 (N=3) 

D = 10, D = 30, F10* = 1000 

p = [0.3,03.0.4] 

g1: Modified Schwefel's Function f4 

g2: Rastrigin's Function f12 

g3: High Conditioned Elliptic Function f13 

11) Hybrid Function 2 (N=4) 

D = 10, D = 30, F11* = 1100 

p = [0.2, 0.2, 0.3, 0.3] 

g1: Griewank's Function f11 

g2: Weierstrass Function f3 

g3: Rosenbrock's Function f10 

g4: Scaffer's F6 Function f9 

12) Hybrid Function 3 (N=5) 

D = 10, D = 30, F12* = 1200 

p = [0.1, 0.2, 0.2, 0.2, 0.3] 

g1: Katsuura Function f5 

g2: HappyCat Function f6 

g3: Expanded Griewank's plus Rosenbrock's Function f8 

g4: Modified Schwefel's Function f4 

g5: Ackley's Function f14 

2.4 Composite Functions 

F(x) = ∑ {𝝎𝒊 ∗ [𝝀𝒊𝒈𝒊(𝒙) + 𝒃𝒊𝒂𝒔𝒊]} +  𝒇 ∗
𝑵
𝒊=𝟏  (27) 
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F(x): composition function 

gi(x): ith basic function used to construct the composition function 

N: number of basic functions 

◦i: new shifted optimum position for each gi(x), define the global and local            

optima's position. 

biasi: defines which optimum is global optimum 

𝝈i: used to control each gi(x)'s coverage range, a small 𝝈i give a narrow range for 

that gi(x) 

𝝀i:    used to control each gi(x)'s height 

𝒘i:   weight value for each gi(x), calculated as below 

𝒘𝒊 = 
𝟏

√∑ (𝒙−𝝄𝒊𝒋)𝟐
𝑫
𝒋=𝟏

𝐞𝐱𝐩 (−
∑ (𝒙𝒋−𝝄𝒊𝒋)

𝟐𝑫
𝒋=𝟏

𝟐𝑫𝝈𝟐𝒊
) 

Then normalize the weight 𝝕𝒊 = {
𝟏   𝒋 = 𝒊
𝟎  𝒋 ≠ 𝒊

  𝒇𝒐𝒓 𝒋 = 𝟏, 𝟐,… . . , 𝑵 , 𝒇(𝒙) = 𝒃𝒊𝒂𝒔𝒊 +

𝒇 ∗ 

The optimum which has the smallest bias value is the global optimum. The 

composition function merges the properties of the sub-functions better and maintains 

continuity around the global/local optima. 

13) Composition Function 1 (N=5) 

D = 10, D = 30, F13* = 1300 

N=5, 𝝈 = [10, 20, 30, 40, 50] 

𝝀 = [1, le-6, le-26, le-6, le-6] 

bias = [0,100,200, 300, 400] 

g1: Rotated Rosenbrock's Function f10 

g2: High Conditioned Elliptic Function f13 

g3: Rotated Bent Cigar Function f1 

g4: Rotated Discus Function f2 

g5: High Conditioned Elliptic Function f13 

(28) 
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Properties: 

• Multi-modal 
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• Non-separable 

• Asymmetrical 

• Different properties around different local optima 

14) Composition Function 2 (N=3) 

D = 10, D = 30, F14* = 1400 

N = 3 

𝝈 = [10, 30, 50] 

𝝀 = [0.25, 1, le-7] 

bias = [0, 100, 200] 

g1: Rotated Schwefel's Function f4 

g2: Rotated Rastrigin's Function f12 

g3: Rotated High Conditioned Elliptic Function f13 
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Properties: 

• Multi-modal 

• Non-separable 

• Asymmetrical 

• Different properties around different local optima 

15) Composition Function 3 (N=5) 

D = 10, D = 30, F15* = 1500 

N = 5 

𝝈 = [10, 10, 10, 20, 20] 

𝝀 = [10, 10, 2.5, 25, le-6] 

bias = [0, 100, 200, 300, 400] 

g1: Rotated HGBat Function f7 
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g2: Rotated Rastring's Function f12 

g3: Rotated Schwefel's Function f4 

g4: Rotated Weierstrass Function f3 

g5: Rotated High Conditoined Elliptic Function f13 
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Properties: 

• Multi-modal 

• Non-separable 

• Asymmetrical 

• Different properties around different local optima 


