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ABSTRACT 

In this thesis, two different algorithms for solving global optimization problems were 

developed. The first is imperialistic competitive algorithm with updated assimilation 

(ICAMA), which is used for solving single-objective optimization problems. 

ICAMA is a new strategic improvement on the imperialist competitive algorithm 

(ICA) that is originally proposed based on inspirations from imperialistic 

competition. Another algorithm is a multi-objective imperialistic competitive 

algorithm (MOICA), which is for global multi-objective optimization problems.  

ICA is based on the idea of imperialism. Two fundamental components of ICA are 

empires and colonies. Initially, the algorithm builds several randomly initialized 

empires where each empire includes one emperor and several colonies. Competitions 

take place between the empires and these competitions result in the development of 

more powerful empires and the collapse of the weaker ones. In ICAMA a new 

method is introduced for the movement of colonies towards their imperialist, which 

is called assimilation. The proposed method uses Euclidean distance along with 

Pearson correlation coefficient as an operator for assimilating colonies with respect 

to their imperialists. In order to test the effectiveness and competitiveness of ICAMA 

against other state of the art algorithms it was applied to three sets of benchmark 

problems – the set of 23 classical benchmark problems, CEC2005 and CEC2015 

benchmarks. 

MOICA is a modified multi-objective version of ICA. MOICA incorporates the 

competition between empires and their colonies for the solution of multi-objective 
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problems. Therefore, it employs a proposed approach of several non-dominated 

solution sets, whereby each set is called a local non-dominated solution set (LNDS). 

All imperialists in an empire are considered non-dominated solutions, whereas all 

colonies are considered dominated solutions. Aside from local non-dominated 

solution sets, there is one global non-dominated solution set (GNDS), which is 

created from LNDS sets of all empires. MOICA is applied to a number of benchmark 

problems such as the set of ZDT problems and CEC2009 multi-objective 

optimization benchmark problems set. 

Simulations and experimental results on the benchmark problems showed that 

ICAMA produces competitive results for many test problems compared to other 

state-of-the-art algorithms used in this study. Moreover, MOICA is more efficient 

with comparison to many of the competitor algorithms used in this study, since it 

produces better results for most of the test problems. 

Keywords: Multi-objective metaheuristics, imperialistic competitive algorithm, 

multiple non-dominated sets, global optimization.  
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ÖZ 

Bu tezde, tümel optimizasyon problemlerini çözmek için iki farklı algoritma 

geliştirilmiştir. Birincisi, gerçek değerli tek amaçlı en iyileme problemlerinin çözümü 

için geliştirilmiş asimilasyon operatörü ile emperyalist rekabet algoritmasıdır 

(ICAMA). ICAMA emperyalist rekabetten gelen ilhamlara dayanarak emperyalist 

rekabetçi algoritmada (ICA) yeni bir stratejik gelişmedir. Diğeri ise, çok amaçlı 

global optimizasyon problemler için geliştirilmiş olan çok amaçlı bir emperyalist 

rekabet algoritmasıdır (MOICA).  

ICA, emperyalizm fikrine dayanıyor. ICA'nın iki temel bileşeni imparatorluklar ve 

kolonilerdir. Başlangıçta, algoritma her imparatorluğun bir imparator ve birkaç 

koloni içerdiği birkaç rasgele başlatılmış imparatorluklar oluşturur. İmparatorluklar 

arasında yarışmalar yapılır ve bu yarışmalar daha güçlü imparatorlukların 

gelişmesine ve daha zayıf olanların çökmesine neden olur. ICAMA'da kolonilerin 

emperyalistlerine doğru asimilasyon hareketi için yeni bir yöntem geliştirildi. 

Önerilen yöntem, Kolonileri emperyalistlerine göre asimile etmek için bir operatör 

olarak Pearson korelasyon katsayısı ile birlikte Öklid uzaklıklarını kullanmaktadır. 

ICAMA'nın etkililiğini ve rekabet gücünü farklı ve yeni algoritmalara karşı test 

etmek için üç kriter sorunu setine uygulandı – 23 standart ölçüt problemi olan seti, 

CEC2005 ve CEC2015. 

MOICA ICA’nın değiştirilmiş çok amaçlı versiyonudur. MOICA, çok amaçlı 

problemlerin çözümü için imparatorluklar ve sömürgeler arasındaki rekabeti içeriyor. 

Bu amaçla, hakim olan birçok çözüm setinin önerilen bir yaklaşımı uygulanmaktadır 
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ve her bir sete yerel hakim olan çözüm seti (LNDS) adı verilmiştir. Bir 

imparatorluktaki tüm emperyalistler hakim olan çözümler olarak görülürken, tüm 

koloniler baskın çözümler olarak kabul edilir. Yerel hakim olan çözüm setlerinin 

yanı sıra, tüm imparatorlukların LNDS setlerinden oluşan bir tane global hakim olan 

çözüm seti (GNDS) vardır. MOICA, ZDT problemleri seti ve CEC2009 çok amaçlı 

optimizasyon kriter problem seti gibi bir dizi kriter problemine uygulanmaktadır. 

Çok amaçlı problemler üzerindeki simülasyonlar ve deney sonuçları mevcut büyük, 

tek ve çok amaçlı optimizasyon algoritmalarına göre ICAMA ve MOICA'nın birçok 

test problemi için rekabetçi sonuçlar ürettikleri ve daha verimli oldukları 

görülmüştür. 

Kıyaslama problemlerinde simülasyonlar ve deney sonuçları, ICAMA'nın bu tezde 

kullanılan diğer yeni algoritmalara kıyasla birçok test problemi için rekabetçi 

sonuçlar verdiğini gösterdi. Dahası, MOICA, bu tezde kullanılan en yeni 

yarışmacıların çoğunluğuna kıyasla daha verimli, çünkü test problemlerinin çoğunda 

daha iyi sonuçlar üretiyor. 

Anahtar Kelimeler: Çok amaçlı metaheuristik, emperyalist rekabetçi algoritma, 

çoklu hâkim olan setler, global optimizasyon. 
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Chapter 1 

INTRODUCTION 

Evolutionary Algorithms (EA) have been rapidly developed in the recent decades 

and there are many various algorithms among EAs that address real world problems. 

EAs are the heuristics that are inspired by the natural processes and are applied in 

various fields for such tasks as optimization and searching. Genetic Algorithms 

(GA), Evolutionary Programming (EP) and Evolutionary Strategies (ES) are the 

well-known types of Evolutionary Algorithms, which have a population over which 

certain operators are applied in order to find the best solution. However, real life 

problems are often concerned about more than one objective to be optimized and 

often with conflicting objective functions where one should be minimized, while the 

other one to be maximized [1]. 

Multi-objective optimization problems (MOP) involve finding several optimal 

solutions, which are called non-dominated solutions, where each solution is known 

as Pareto optimum, while in the objective space altogether they represent a Pareto 

front. The main goal of MOPs is to find Pareto front, which requires an algorithm a 

significant amount of time for exploration of a search space as it is usually large and 

evaluating objective functions. Multi-objective Evolutionary Algorithms (MOEA) 

became very popular in the mid of 1990s, when more researchers were attracted by 

them. These days there are various applications of MOEAs almost in all fields. Some 
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well-known evolutionary algorithms for solving MOPs are NSGA-II [51], SPEA2 

[66], MOEAD [67], etc. 

In this thesis, Imperialistic Competitive Algorithm (ICA) [2] was analyzed and 

studied in details. ICA is an algorithm inspired by imperialistic competition between 

empires in which socio-political characteristics and assimilations occur during 

evolution process. ICA was applied on Travelling Salesman Problem [63]. However, 

since ICA is originally designed for real valued problems, in order to apply it on TSP 

it had to be modified for the solution of TSP, which is an integer valued problem. 

Application of ICA on TSP showed that it performs well not only for real valued 

benchmarks, but also for such NP-hard problems as TSP. Many benchmark instances 

from TSPLIB were used for testing ICA, where it could reach an optimal solution for 

some benchmark instances. 

Further studies were carried out for the improvement of ICA. By modifying 

assimilation operator, which is one of the two operators of ICA, a new and improved 

version with modified assimilation (ICAMA) was developed [95]. While 

assimilating colonies towards their respective imperialist, ICAMA uses either the 

Euclidean distance or element-wise difference like in the original ICA, and this 

decision is made randomly. Moreover, modified assimilation also uses a Pearson 

correlation coefficient, which is computed from the newly generated colony and the 

imperialist, as an acceptance criterion of the newly generated colony.  ICAMA 

performed better than original ICA and other state-of-the-art algorithms for various 

benchmark instances as illustrated in experimental sections. 
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Finally, a multi-objective version of ICA (MOICA) [96] was developed, which is 

another and the most important work in this thesis. MOICA, unlike many other 

multi-objective evolutionary algorithms, has its population divided into imperialists 

and colonies. MOICA implements the idea of imperialism by incorporating the 

competition between the empires. Every empire has a set of imperialists and a set of 

colonies. The main novelty of this algorithm lies in using a non-dominated solution 

set for every empire, where each such set is called a local non-dominated solution 

set. Therefore, all imperialists in an empire are considered to be non-dominated 

solutions, whereas all colonies are considered to be dominated solutions. Moreover, 

aside from local non-dominated solution sets, there is one global non-dominated 

solution set, which is created from all local non-dominated solution sets of all 

empires. Two main operators of the proposed algorithm – Assimilation and 

Revolution use global and local non-dominated solution sets respectively during 

assimilation and revolution of colonies. The significance of this study is seen from 

the competitive results produced by the proposed algorithm. Another significant 

feature in the proposed algorithm is that no special parameter is used for diversity 

preservation, which enables algorithm to avoid extra computations in order to 

maintain spread of solutions. Therefore, the proposed algorithm with original 

operators Assimilation and Revolution produces competitive results with comparison 

to the state-of-the-art-algorithms used in this study. 

The organization of other chapters in this thesis is as follows. Chapter 2 briefly 

discusses the multi-objective optimization and its problems. Chapter 3 focuses on the 

overview of ICA and its applications with obtained experimental results. In Chapter 

4, ICA with updated assimilation for solving single-objective optimization problems 

along with experimental results is discussed. Chapter 5 presents a detailed 
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description of a novel multi-objective version of ICA and provides experimental 

results conducted in this study with various benchmark problems. Finally, the 

conclusion and discussion of possible future work is presented in Chapter 6.  
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Chapter 2 

SINGLE AND MULTI-OBJECTIVE OPTIMIZATION 

PROBLEMS 

2.1 Single-objective Optimization Problem 

There are various types of problems in the world that need to be optimized with 

respect to a single as well as multiple objectives. Single-objective optimization 

occurs in situations when there is only one objective to be optimized, i.e. minimized 

or maximized, while this objective is subject to some constraints. Examples of 

single-objective optimization problem may include the following: minimizing the 

distance travelled, maximizing the profit, maximizing the customer satisfaction, 

maximizing load capacity of vehicles, etc. 

2.1.1 Formulation of Single-objective Optimization Problem 

As was mentioned above, single-objective optimization problem has one objective to 

be optimized. The mathematical formulation of a single-objective optimization 

problem can be formulated as follows: 

 minimizing (or maximizing) f(x) 

Subject to k inequality constraints: 

𝑔𝑖(𝑥) ≤ 0        i = 1, 2,…, k                        

And m equality constraints: 

 ℎ𝑖(𝑥) = 0  i = 1, 2,…, m                    
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 where 𝒙 in Ω 

A solution minimizes (or maximizes) the scalar f(x) where x is an n-dimensional 

decision variable vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) from some universe Ω. 

Even though some real world problems can be expressed in a form of a single 

objective problem very often it is hard to define all the aspects in terms of a single 

objective. Therefore, defining several objectives often produces a better solution to 

the problem. 

2.2 Multi-objective Optimization Problem 

Multi-objective optimization, which is also called multi-criteria or multi-attribute 

optimization, is applied on the problems that involve several objective functions to 

be optimized simultaneously, where these objective functions are subject to some 

constraints. Multi-objective optimization problems (MOP) exist in many fields, such 

as industry, mathematics and engineering. Often in these problems there are 

conflicting objective functions, since some objectives need to be minimized, while 

others to be maximized. MOP in its nature does not have a single solution unlike 

single-objective optimization problems, but rather it has a set of solutions, which are 

called Pareto optimal solutions. Some of the examples with conflicting objectives for 

which MOP is solved can be as follows: minimizing the distance travelled by a 

vehicle and maximizing the number of customers served, minimizing the number of 

employees and maximizing the productivity performance, minimizing vehicles 

waiting times and maximizing customer satisfaction grade, etc.  
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2.2.1 Formulation of Multi-objective Optimization 

As was mentioned above, MOP has many objective functions to be optimized which 

are subject to some constraints. The mathematical formulation of MOP can be 

formulated as follows: 

)](),...,(),(min[)(max 21 xfxfxfor n
                             (2.1) 

Subject to k inequality constraints: 

0)( xgi
          i = 1, 2,…, k                       (2.2) 

And m equality constraints: 

 0)( xhi
  i = 1, 2,…, m                   (2.3) 

Where n ≥ 2 is the number of objective functions to be optimized and x is the feasible 

set of decision variables, which is defined as follows: T

nxxxx ],,...,,[ 21 . The 

feasible set is typically defined by some constraint functions. Thus, with feasible set 

of values – nxxx *

21 ,...,*,* , we aim to find the optimal solutions by minimizing (or 

maximizing) objective functions in (2.1) and at the same time satisfying constraints 

in (2.2) and (2.3). 

2.2.2 Pareto Dominance in Multi-objective Optimization 

Since the MOP has several objective functions to be optimized it is not possible to 

simple pick up the best solution among the available ones, since there is a set of so 

called best solutions – Pareto optimal solutions. Therefore, the solution for finding 

Pareto optimal solutions the dominancy is used, which divides all solutions in a 

population into two groups – dominated and non-dominated solutions. Non-

dominated set of solutions is actually the Pareto optimal set. Therefore, they are 
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chosen as the best found solutions for the given problem. The dominancy rule is 

stated as follows: A state A dominates a state B, if A is better than B in at least one 

objective function and not worse with respect to all other objective functions. 

Mathematically, Pareto dominance is described as follows: A vector ),...,( 1 kuuu 


is 

said to dominate ),...,( 1 kvvv 


(denoted by vu





) if and only if u is partially less than 

v, such that
iiii vukivuki  :},...1{},,...,1{ . 

Figure 2.1 illustrates the Pareto dominance for two of possible cases – minimization 

and maximization of two objective functions. In case of minimization of objective 

functions, solutions that are on the upper right side area are the dominated solutions. 

On the other hand, in case of maximization of objective functions, solutions that are 

on the left bottom side area become the dominated solutions of a solution A as 

depicted in Figure 2.1. 

    

 

            

Figure 2.1. Dominated area for Pareto dominance 
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In multi-objective optimization the objective functions constitute a multi-

dimensional space. Therefore, for each solution x in the decision variable space X 

there is a point in the decision space Z denoted by 𝑓(𝑥) = 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑚, )𝑇.  

 

        

  

Figure 2.2. Decision space vs. objective space 

Figure 2.2 depicts the decision variable space versus objective space. The Pareto 

optimal solutions for minimization problem are illustrated in Figure 2.3 for two 

objective functions. Since the problem illustrated in this figure is the minimization 

problem, the points in bold are the solutions belonging to the Pareto optimal set, such 

that they are the best solutions, since they dominate all other solutions, which are 

shown in circle. 

 

 

 

Figure 2.3. Pareto optimal solutions 

M
in

im
iz

e 

Minimize 

 

 

z1 x1 

z2 

… … … 

xn zm 

… … … 
x2 



10 

Chapter 3 

IMPERIALISTIC COMPETITIVE ALGORITHM AND 

ITS APPLICATIONS 

3.1 Literature Review 

Imperialist competitive algorithm (ICA) is based on inspirations from imperialistic 

competition. Accordingly, based on the idea of imperialism, the two fundamental 

components of ICA are empires and the colonies. Initially, the algorithm builds 

several randomly initialized empires where each empire includes one emperor and 

several colonies. Competitions take place between the empires and these 

competitions result in development of more powerful empires and the collapse of the 

weaker ones [2]. ICA is a population based metaheuristic that is inspired from 

observations on imperialists and their colonies. In this respect, there are other well-

known metaheuristics inspired from biological and natural phenomena. Among these 

algorithms Genetic Algorithms (GAs) that conducts search and optimization 

procedures by imitating the process of natural evolution [3]. Other examples of such 

algorithms are Ant Colony Optimization (ACO), which is inspired by the behavior of 

ants in nature while looking for forage [4], and Particle Swarm Optimization (PSO), 

which is based on the social behavior of bird flocks in traveling long distance with 

guidance of local and global group leaders [5]. 

PSO mimics the behavior of a set of social insects that work together while exploring 

the search space. On the other hand, though ICAMA is similar to PSO in a way that 
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it also has a leader – imperialist, the behavior of colonies are quite different, since all 

of them try to move towards the best position of an imperialist without taking into 

consideration local best positions unlike in PSO. Differential Evolution (DE) [35] is 

another population-based method for optimizing a problem, which is very simple, but 

very powerful. DE is a deviant variety of GA, which iteratively tries to improve 

solutions with regard to a special type of differential operator. Evolutionary Strategy 

(ES) [36] also belongs to a class of evolutionary algorithms and it is inspired by the 

principles of biological evolution. ES algorithm solves optimization problems in an 

iterative manner by generating new offspring in every generation from the current 

population (parents) and selects the best ones for the next generation as the current 

population. Artificial Bee Colony (ABC) [34] is an algorithm inspired by the 

behavior of honey bees, in which individuals (solutions) are modified by the artificial 

bees, where the aim of bees is to discover the individual with the highest nectar. The 

idea of having two types of artificial bees – employed and onlooker bees allows 

algorithm to combine local search with global search methods, which is implemented 

by employed and onlooker bees respectively. Mean-Variance Mapping Optimization 

(MVMO) [68] is from among the recent algorithms that were developed in the field 

of heuristic optimization. The main idea behind MVMO is the approach of using a 

single parent-offspring pair and a normalized range of the search space, which is 

used for optimization variables. Moreover, the use of a special mapping function that 

is responsible for the actual mean and variance of the normalized optimization 

variables for mutation operation is another feature of MVMO. An improved version 

of Self Regulating Particle Swarm Optimization (iSRPSO) [69] is an algorithm that 

uses the method in which least performing particles that have different perceptions 

adopt different strategies for updating mechanism. The usage of these particles, the 
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best and the top three best particles, allows algorithm to find a good directional 

update for better solutions. HumanCog [70] is a 3-layer architecture algorithm for 

solving optimization problems that imitates a human behavior in terms of thinking 

and decision making, such that human cognitive and metacognitive behavior. 

Therefore, three layers are formed by cognitive, metacognitive and social cognitive 

layers. Thus, an optimal and accurate decision is made with the help of interaction of 

these three layers. CMA-ES_QR is another algorithm for solving single objective 

optimization problems, which is a variant of CMA-ES [71] for expensive scenarios. 

In addition to CMA-ES_QR algorithm, tuned CMA-ES (TunedCMAES) [72] is also 

a variant of CMA-ES for solving expensive problems, which uses bi-level 

optimization approach for tuning parameters of CMA-ES algorithm. 

A particular example of trajectory based metaheuristics is the Simulated Annealing 

(SA) algorithm that is inspired from physical annealing process of metals. SA is 

currently the only metaheuristic for which a mathematical proof of finding a globally 

optimal solution exists under asymptotic computational conditions [6]. In fact, 

Reeves et al. introduced a convergence proof for GAs where the evolutionary 

procedure is modeled using Markov chains [38]. The authors considered the case of 

(1+1)-GAs where a 1-individual population generates one offspring per generation. 

Even though the proof is a pioneering step towards the convergence proof of GAs, it 

has limited contribution to practical use of evolutionary algorithms. 

As a population based metaheuristic, ICA is applied for the solution of a wide variety 

of optimization problems mostly from engineering domains. In this respect, many 

problems that are already solved by evolutionary and nature-inspired metaheuristics 

are re-solved using ICA and comparative performance evaluations are carried out 
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and published in literature. ICA is successfully applied for the solution of assembly 

line balancing [7, 8], facility layout problems [9, 10], network flow problems [11, 

12], supply chain management [13, 14], image processing [15, 16], artificial neural 

network training [17, 18], data mining [19, 20], power system optimization [21, 22], 

and scheduling [23, 24]. 

Since its initial introduction, several proposals on the improvements of ICA have 

been published in literature. These improvement proposals are either on strategical 

changes in algorithm’s parameters and/or procedures, or on hybridization of ICA 

with other well-known soft computing methods. There are four fundamental 

parameters in ICA, these are namely assimilation rate (AR) representing the 

percentage of similarity between an imperialist and its colonies, revolution rate (RR) 

representing the replacement rate of weakest colonies by newly generated countries, 

 that weights the mean power of colonies on the total power of their empire and the 

pair (Ncountry,Nempire) describing the total number of colonies (countries) and number 

of empires. So far, studies on application of ICA for different problems proposed 

experimental tuning of these parameters and a detailed study describing the effect of 

parameter settings on the success of ICA algorithm is not found in literature. Bagher 

M, Zandieh M, Farsijani H have studied the effects of three classes of parameter 

settings for an assembly line problem and, over 9 degrees of freedom of the four 

algorithm parameters, their optimal values are obtained using Taguchi experiment 

design framework [25]. 

Considering the hybridization efforts of ICA with other soft computing methods, 

Talatahari S, Azar B F, Sheikholeslami R, Gandomi A H introduced chaotic 

improved ICA (CICA) where the authors studied seven different chaotic maps to 



14 

improve the assimilation procedure of conventional ICA and they reported that the 

best performance of CICA is obtained with the use of logistic and sinusoidal maps 

[25]. T. Niknam, E. Taherian Fard, N. Pourjafarian, A. Rousta proposed an efficient 

hybrid algorithm based on a modified ICA and K-means method and called the new 

algorithm as K-MICA. This hybrid method is used for finding the optimum 

clustering of N objects into K clusters. K-MICA was tested for robustness and ability 

of overcoming locally optimal solutions. Based on the comparative evaluations 

against several metaheuristics such as ant colony optimization (ACO), particle 

swarm optimization (PSO), genetic algorithms (GA), tabu search (TS), honey bee 

mating optimization (HBMO) and K-means, the obtained results exhibited that K-

MICA performed better than its well-known competitors [27]. N. Razmjooy, B.S. 

Mousavi, F. Soleymani proposed a new hybrid algorithm that combines ICA and 

Neural Network (ICA-ANN) to solve skin classification problems. The authors used 

a multi-layer perceptron network (MLP) as a pixel classifier whereas an ICA was 

used for optimizing the weights of MLP [28]. Nia A R, Far M H, Niaki S T A built a 

hybrid of genetic algorithms and ICA for the solution of nonlinear integer 

programming problems [29]. In their proposed algorithm (HGA), ICA is first used to 

produce the best initial solutions for GAs and then GAS runs until a termination 

condition to improve the individuals in the initial population. Over six numerical 

examples in three categories (small, medium and large size), the experimental results 

showed that the proposed hybrid procedure could find better and nearer optimal 

solutions compared to those found by ICA and GAs. 

As briefly mentioned above, the two fundamental components of ICA are the 

empires and the colonies, and the imperialistic competition is the most important 

phase of the algorithm. This competition causes the colonies to converge towards 
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locally optimal solutions within the search space with guidance of their 

corresponding imperialists. Hence, it is seen that strategies for moving the colonies 

towards their relevant imperialist – assimilation and generation of new countries in 

each empire, are the key procedures for the success of the algorithm. 

3.2 Review of ICA 

In imperialist competitive algorithm, the empires from among all countries 

(imperialists) compete for gaining the colonies, as the aim of each empire is to 

possess more colonies. This competition along with assimilation – moving colonies 

towards their relevant imperialists and revolution – changing the socio-political 

characteristics of colonies, enables the algorithm to search for a locally optimal 

solution that may also probably be the global optimum of the underlying objective 

function. During the competition among the empires, there is possibility that some 

colony will become better than the imperialist that it belongs to. In such a case, ICA 

swaps the positions of imperialist and this colony, so that the colony becomes the 

imperialist and the former imperialist becomes a colony. For a minimization 

problem, the power of an empire is inversely proportional to its fitness value. That is, 

the less is the fitness of the empire, the more powerful it is [2]. When there are no 

countries in an empire, it is termed to be powerless and the powerless empires 

collapse and terminate. In other words, when an empire runs out of the colonies and 

it has no more colonies in its state, then this empire becomes powerless and is 

eliminated by ICA. Thus, the number of empires decreases by one and this process 

continues until there remains only one the most powerful imperialist state. At this 

point, the algorithm may stop, since only one empire remained or it can continue till 

the maximum number of iterations specified by the user is reached. In practical 

implementations, it is recommended to continue till the satisfaction of termination 
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condition(s), since there is no guarantee that when only one empire remains the 

optimum solution is found. 

3.2.1 Assimilation 

Assimilation is the movement of colonies towards imperialist in their empire. This 

process is significantly effective on the success of ICA, as it is concerned with the 

improvement of colonies within the empires. Figure 3.1 describes the movement of a 

colony towards its associated imperialist in a randomly deviated direction to search 

the space around the imperialist. As shown in Figure 3.1, assuming that the 

dimension of the optimization problem is two, the current and the updated positions 

of a colony are denoted with a white and a black circle, respectively. Considering 

that the position of imperialist is (xi,yi) and the position of the colony is (xc,yc), the 

distance vector is D=(xi-xc,yi-yc). A uniformly distributed and scaled random vector d 

is generated and added to current position of the colony to compute its new position. 

In Figure 3.1, the parameter Ɵ is also a random variable with uniform distribution 

between (-ɣ, ɣ), where ɣ is a parameter that is used for adjusting the change in 

movement of a colony from the original direction [2]. 

       

 

 

 

                                                                                                                       

Figure 3.1. Moving a colony towards its relevant imperialist in a randomly deviated 

direction [2] 
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The assimilation procedure generalized to n dimensional problems is as follows:   

Let  

 Col_Pos = [p1, p2, …, pn]     (3.1) 

be the vector representing the colony’s position and  

 Imp_Pos = [p’1, p’2, …, p’n] (3.2) 

be the vector representing its imperialist’s position, where n is the dimension of the 

optimization problem. Now, let D be the vector containing the element-wise 

difference of (3.1) and (3.2),  

 D = [p1- p’1, p2- p’2,…,pn- p’n]. (3.3) 

Obviously, D is the vector representing the positional difference (Col_Pos – 

Imp_Pos). Consequently, we proceed with the calculation of the new colony’s 

position as, 

 Col_Pos_New = Col_Pos + β × �⃗�  ⨂ �⃗⃗� , (3.4) 

where 𝑟 ⃗⃗  is a uniformly distributed random variable vector of length n. β is a fixed 

algorithmic parameter that is commonly chosen to be about two [2]. 

3.2.2 Revolution 

Revolution is the process of generating new countries within an empire. This 

happens by random changes in positions of some colonies [2]. Revolution is similar 

to the mutation operation in GAs where values of some variables are changed by 

randomly selected values with a very small probability. As a result, while new 

countries (colonies) are generated through revolution, some of the old colonies are 

replaced by the newly created countries.  Pseudo code of the revolution procedure is 

presented in Algorithm 3.1. 
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Algorithm 3.1. Revolution 

3.2.3 Imperialistic Competition 

Imperialistic competition takes place after assimilation and revolution operations. To 

describe the details of imperialistic competition, we need to discuss the computation 

of the total cost of an empire. The total cost of an empire can be expressed as follows 

[2]: 

 
kTC  = 

kIC + ε × mean(CEk),           (3.5) 

where 
kTC  is the total cost of an empire k, 

kIC  is the imperialist cost of empire k, 

kCE is the cost of the colonies of the empire k and ε is a constant parameter. A small 

value of ε causes the total cost of an empire to depend mostly on the imperialist, 

whereas a greater value for ε will make the total cost depending on both the 

imperialist and the colonies of the empire. 

Competition among the empires is realized by removing the weakest empire from the 

competition and allowing other empires to compete between each other for the 

weakest colony in the weakest empire, which is excluded from the competition. 

Therefore, the following mathematical formulation describes the possession 

probabilities of the competing empires for the weakest colony [2]. 

1. For each empire do 

2. Generate (RevolutionRate × NumberOfColoniesInEmpire) number of 

random countries. 

3. Replace existing countries by newly created ones randomly. 

4. EndFor  
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where 
kp is the possession probability of empire k, N is the number of imperialists 

and
kNTC is a normalized total cost, which is computed as follows: 

kNTC  = 
kTC  + max(

iTC ), i=1…N.              (3.7) 

The final step in the competition between imperialists is to have a vector containing 

differences between possession probabilities and the uniformly distributed random 

values between (0, 1) as follows: 

 D = ],...,,[ 2211 NN rprprp  ,              (3.8) 

where N is the number of imperialists. 

The possessor of the weakest colony in the weakest empire is the one whose 

corresponding index in the vector D contains the maximum value. A detailed 

algorithmic description of ICA is presented in Algorithm 3.2 below. 

Algorithm 3.2. ICA Algorithm 

1. Initialize the population and create empires. 

2. Compute the total cost of all empires. 

3. Do 

4. For each empire do 

5. Apply Assimilation by moving colonies towards imperialist 

6. Apply Revolution by replacing colonies based on revolution rate with 

newly created ones randomly. 

7. Exchange position of an imperialist and the colony with the better cost 

if exists. 
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8. EndFor 

9. Compute the total cost of all empires. 

10. Apply imperialistic competition. 

11. Eliminate empires which have no colonies. 

12. Until termination condition is satisfied. 

3.3 Application of Modified ICA for the Solution of Travelling 

Salesman Problem (TSP)    

ICA is used for a solution to a well-known combinatorial problem named as 

travelling salesman problem. TSP is one of the most studied problems in 

optimization, which was first formulated in 1930. There are many different heuristics 

and methods proposed in the literature for solving TSP, which is NP-hard problem in 

combinatorial optimization. The idea behind TSP is simple, which can be stated as 

follows: there is a traveler, who wishes to visit n cities exactly once each by starting 

from a particular city and returning to it. Then objective is to find the shortest route 

for this traveler. 

3.3.1 Formulation of TSP 

TSP can be formulated as follows: let n be the total number of cities to be visited and 

][ , jicC  be an nn  matrix containing costs (or distances) between cities, where ci,j 

denotes the cost of travelling from city i to city j. The objective is to find the shortest 

route among all given cities, where cost (or distance) matrix among all cities is given 

as input. The total cost N of a TSP tour for n cities is given by 

1,

1

1

1, n

n

i

ii CCN 
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3.3.2 Modified ICA 

Every colony in an empire changes its position in two parts of the algorithm, which 

are assimilation and revolution as was mentioned above. ICA in its original form is 

very powerful for solving real valued functions, where assimilation and revolution 

are very suitable. However, for solving TSP these two parts – assimilation and 

revolution need to be changed so that the algorithm can be applied to TSP. 

Therefore, in assimilation part 2-opt local search is introduced together with the 

method of swapping the cities of the countries. The pseudo code for assimilation is 

given in Algorithm 3.3. 

Algorithm 3.3. Assimilation(current_colony) 

1. Repeat until there is no improvement 

2.     Best_distance = calculate_total_distance(current_route) 

3.     For all cities i do 

4.         For all cities k do 

5.             New_colony = 2optswap(current_colony, i, k) 

6.             New_distance = calculate_total_distance(New_colony) 

7.             If New_distance < Best_distance Then 

8.                 current_colony = New_colony and go to 2 

9.             Otherwise go to 4 

10.         EndFor 

11.     EndFor 

12. EndRepeat 

Where calculation of total distance is done by using either Euclidean distance, 

geographical distance etc., depending on the type of the edge weights of the dataset 

used. On the other hand, 2opt swap is done by reversing the cities in a solution 

(colony) between points i and k, and leaving the rest unchanged. 
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Revolution part of the algorithm is changed to implement fragmentation method [30] 

on the countries and searching for the shortest route. This method of fragmentation is 

implemented as follows. Firstly, the candidate solution is divided randomly into 

several fragments based on the number of cities. Then construction of a new solution 

starts by choosing randomly first fragment. After that, the distances dn between the 

last city in the first fragment and first cities of all other fragments are calculated. 

Additionally, the distances 𝐝𝑛
′  between the last city in the first fragment and the last 

cities of all other fragments are calculated. The fragment whose city is the closest to 

the last city in the first fragment is concatenated as it is if its first city is the closest 

one, otherwise if it is the last city which is the closest one, then the fragment is 

reversed before concatenation. This process lasts until all fragments are reconnected 

with each other. Moreover, this process in revolution part is applied to all the 

colonies of an empire. Figure 3.2 demonstrates an example of the fragmentation 

method used for revolution process. Algorithm 3.4 demonstrates the complete 

algorithm of ICA for TSP. 

 

Figure 3.2. Demonstration of the fragmentation method for revolution process 

Algorithm 3.4. ICA Algorithm for TSP 

1. Initialize the population and create empires. 

2. Compute the total cost of all empires. 
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3. Do 

4. For each empire e do 

5. For each colony c in empire e do 

6. Assimilation(c) 

7. Revolution(c) 

8. Exchange position of an imperialist and the colony with the better 

cost if exists. 

9. EndFor 

10. EndFor 

11. Compute the total cost of all empires. 

12. Apply imperialistic competition. 

13. Eliminate empires that have no colonies. 

14. Until termination condition is satisfied. 

3.4 Experimental Results 

In order to test the modified ICA for solving TSP many sample instances from 

TSPLIB library were used. The proposed solution in this study for TSP provides 

good results for many sample instances. In all experiments the population is set to 

200, where initial number of imperialists is set to be 8. Maximum number of 

iterations is 1000. The following Figure 3.3 illustrates the result for the berlin52.tsp 

instance sample from TSPLIB. 
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The above figure shows how fast ICA converges to the optimal solution with cost 

equal to 7542, which is obtained in 134 iterations. The next Figure 3.4 demonstrates 

result obtained for eil101.tsp. 
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Figure 3.3. Obtained optimal result for berlin52.tsp instance with cost = 7542 

Figure 3.4. Obtained result for eil101.tsp with cost = 650 
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As shown in above figure, ICA again very quickly converges to the optimal solution. 

So, in the first 400 iterations it finds the path with cost equal to 650, which is very 

close to the optimal cost that is equal to 649.  The following Table 3.1 summarizes 

some of the experimental results obtained in this study. The following sample 

instances from TSPLIB are used for experiments: berlin52.tsp, eil51.tsp, eil76.tsp, 

eil101.tsp, kroA100.tsp, kroC100.tsp, kroA150.tsp, kroB100.tsp, d198.tsp and 

rl493.tsp. 

Table 3.1. Obtained best and average results of ICA for different instances 

Problem Optimal ICA Best Found ICA Average 

berlin52.tsp 7542 7542 7542 

eil51.tsp 426 427 427.5 

eil76.tsp 538 546 547.5 

eil101.tsp 649 650 650 

kroA100.tsp 21282 21375 21378 

kroC100.tsp 20749 20753 21322 

kroA150.tsp - 27567 27739 

kroB100.tsp - 22605 22942 

d198.tsp - 20208 20542 

d493.tsp - 41190 41698 

In above table optimal values indicates with ‘-’ are not found ones. As can be seen 

from the results obtained in this work, imperialist competitive algorithm along with 

2-opt local search and fragmentation method produces good results. This is because 

of the search mechanism imperialistic competition in ICA, which enables it to search 

the whole search space. 
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Chapter 4 

IMPERIALISTIC COMPETITIVE ALGORITHM WITH 

UPDATED ASSIMILATION FOR SOLVING SINGLE-

OBJECTIVE OPTIMIZATION PROBLEMS 

The assimilation procedure used in conventional ICA results in slow convergence 

speed in reaching the global optimum and sometimes it is the main cause of getting 

stuck at locally optimal solutions. In assimilation operation of ICA, even if there is a 

small deviation Ɵ in direction towards the imperialist, the direction still goes towards 

the imperialist since the current imperialist is the optimum solution of that empire. 

However, this might be misleading for the colonies due to the fact that imperialists 

are locally optimal solutions that may be far from the globally optimal position. Of 

course, after a number of iterations ICA may realize that there is a better position and 

replace the imperialist, as it does when a colony becomes better than the imperialist, 

but, as mentioned before, this slows down the performance and convergence to the 

global minimum of the objective function. Based on these observations, the proposed 

assimilation strategy aims to perform a better search around the imperialists and, 

compared to the original ICA proposal, both the convergence speed and the quality 

of the resulting solutions are improved significantly. 

4.1 The Proposed Assimilation Strategy 

The assimilation operation in ICA is modified in such a way that the colony is either 

moved towards the imperialist as in the original ICA or it is moved in a randomly 

selected direction scaled by the Euclidean distance between a colony and the its 
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imperialist. The selection between the two move operations is controlled by a 

parameter ar that controls the percentage of assimilation operations of either type. 

The mathematical formulation of the modified assimilation operation is given below: 

Let Col_Pos be defined as in (3.1). then,  

                                        

where ED is the Euclidean distance between the colony and its imperialist, 𝑟  is an n-

dimensional random vector, �⃗⃗�  is the distance vector between the colony and its 

imperialist and the vector multiplication is performed element wise.   

Another modification on the assimilation operation of original ICA is the 

computation of Pearson correlation coefficient (Pcc) between the colonies and their 

imperialists and using this value as an acceptance criterion for the new colony 

position.  If Pcc is less than a predefined limit, , the new colony position is not 

accepted and the colony keeps staying in its current position. The Pcc is calculated as 

follows: 

 
' '

' 2 ' 2 2 2( ) ( ) ( )

i i i i

i i i i

n x y x y
Pcc

n x x n y y




 

  

   
,             (4.2) 

where xi’ and yi, i=1,..,n, represent the assimilated position of the  colony and 

position of the imperialist, respectively. The pseudo code of the proposed 

assimilation procedure is illustrated in Algorithm 4.1. 

Algorithm 4.1. Modified Assimilation 

1. For each colony in the empire do 

2.     Calculate Euclidean distance ED and element-wise  

3.     distance D between the colony and the imperialist 

,       (4.1) 
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4.     If rand() < ar 

5.           colony_new= {colony + β × 𝑟  × ED} × Ɵ 

6.     Else 

7.           colony_new= colony + β × 𝑟 ⃗⃗ × �⃗⃗�  × Ɵ 

8.     EndIf 

9.     Compute the cost of colony_new 

10.     If colony_new_Cost < colony_Cost   

11.           colony = colony_new 

12.     Else  

13.     Compute Pcc between colony_new and its imperialist 

14.           If |Pcc| >=  then  

15.                 colony = colony_new 

16.           EndIf  

17.     EndIf 

18. EndFor 

The flowchart of ICAMA algorithm is given in Figure 4.1.  
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Figure 4.1. ICAMA algorithm flowchart 

Initialize the population and create empires 

Move the colonies toward their relevant imperialist based on a 

parameter ar 

Apply Revolution by replacing colonies based on revolution rate with newly 

created ones randomly 

Is there a colony in an empire, which has lower cost 

than that of imperialist? 

Exchange the positions of that imperialist and a 

colony 

Compute the total cost of all empires 

Pick the weakest colony from the weakest empire and give it to the empire that 

has the most likelihood to possess it 

Eliminate the empire 

Is termination condition 

satisfied? 

Is there an empire with no 

colonies? 

Exit 
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No 

No 
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Compute the total cost of all empires  

Compute total costs of all newly positioned (created) colonies  

Replace colonies with newly created ones that have better costs  

Calculate Pcc between newly created colonies with worse costs 

and their relevant imperialists 

Replace colonies with newly created ones that have Pcc >= 0.5 
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4.2 Experimental Results 

Experimental evaluations are conducted using three sets of benchmark problems, 

namely the set of 23 classical benchmark problems [31], CEC2005 benchmarks [32] 

and CEC2015 benchmarks [33]. Results and discussions associated with each group 

benchmark problems are presented in subsections given below. 

4.2.1 Experimental Evaluations with Classical Benchmark Problems 

Problems in this set are divided into 3 groups – unimodal functions, multimodal 

functions with many local minima and multimodal functions with a few local 

minima. Unimodal functions are – Sphere Model (F1), Schwefel’s Problem 2.22 (F2), 

Schwefel’s Problem 1.2 (F3), Schwefel’s Problem 2.21 (F4), Generalized 

Rosenbrock’s Function (F5), Step Function (F6) and Quartic Function with Noise 

(F7). Multimodal functions with many local minima are – Generalized Schwefel’s 

Problem 2.26 (F8), Generalized Rastrigin’s Function (F9), Ackley’s Function (F10), 

Generalized Griewank Function (F11) and Generalized Penalized Functions (F12, 

F13). Multimodal functions with only a few local minima are – Shekel’s Foxholes 

Function (F14), Kowalik’s Function (F15), Six-hump Camel-Back Function (F16), 

Branin Function (F17), Goldstein-Price Function (F18), Hartman Functions (F19, F20) 

and Shekel Functions (F21, F22, F23). Comparative evaluations are carried out with 

results of original ICA1, Particle Swarm Optimization (PSO) [5], Artificial Bee 

Colony (ABC) [34], Differential Evolution (DE) [35] and Evolutionary Strategy (ES) 

[36]. All experiments are conducted with a maximum of 500000 objective function 

evaluations for all algorithms in the experimental suit. Each test problem was solved 

30 times and the best found objective function values are compared for each 

algorithm. Problem sizes and variable ranges are the same ones used in the study 

[32]. Initial numbers of empires and of colonies are set to 8 and 200, respectively, for 
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the original ICA and the proposed method. For the original ICA,  =2 and  [-1,1] 

as they are also used.1  For the proposed method, =0.2,  [-1,1], ar=0.9 and =0.5 

for all benchmark problem sets and experimental trials. Tables containing results in 

bold indicate the best performed algorithms. Table 4.1 demonstrates the results of the 

proposed method ICAMA for the 23 classical benchmark problems described above. 

As shown in Table 4.1, the proposed method found the optimal solutions for most of 

the benchmark problems in this set. For those problems for which the optimal 

solution could not be located exactly, the solution extracted by the proposed method 

is quite close to the optimal one. The only exception is problem F14 for which the 

extracted solution is from the optimal. This is the Kowalik’s function that has a flat 

valley with sharply rising corners and most of the locally optimal solutions stay in 

the flat part of the fitness landscape. Experimental results indicate that our proposal 

that uses fixed parameters for all functions should be improved with adaptive 

parameters so that its step lengths can be adjusted dynamically for functions like 

F14.  

Tables 4.2, 4.3 and 4.4 illustrate best results of the proposed method and best results 

of five well-known metaheuristics for comparative evaluations. As shown in Table 

4.1, the proposed method extracted much better solutions than its competitors for all 

the unimodal functions. While the solutions extracted by the proposed method are 

very close to the optimal ones, those extracted by the competitors are far from 

optimal ones. Particularly, comparisons with the original ICA clearly demonstrates 

the improvements brought by the proposed method. Additionally, these results 

exhibit that the proposed method can locate unimodal optimality quite efficiently.  
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Table 4.3 shows the results of the proposed methods and its competitors for 

multimodal functions.  It is seen that, except two benchmark problems, the proposed 

method is still the best performing algorithm. Optimal solutions are found for most 

problems. For functions F12 and F13, ABC algorithm is the best performing method, 

whereas results of proposed method are close to optimal solutions but left behind 

those extracted by ABC algorithm. Again, compared to the original ICA, the 

assimilation operation with the better movement of colonies towards their imperialist 

and the use of Pearson correlation coefficient resulted in significantly better 

solutions. The obtained results also exhibit that ICAMA is also a better alternative 

compared to its other well-known competitors. 

Table 4.1. Experimental results for 23 classical benchmark problems 

Func

tion 
Optimal Best Worst Std Mean 

F1 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 

F2 0 9,3113E-305 2,1011E-295 0,0000E+00 2,1070E-296 

F3 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 

F4 0 6,1008E-308 9,9206E-299 0,0000E+00 1,1921E-299 

F5 0 8,7487E-10 2,8703E+01 9,0767E+00 2,8703E+00 

F6 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 

F7 0 7,5917E+00 8,7325E+00 3,6816E-01 8,1902E+00 

F8 -12569.5 -1,2569E+04 -1,2569E+04 1,5312E-01 -1,2569E+04 

F9 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 

F10 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 

F11 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 

F12 0 5,5994E-10 1,8939E-07 6,8811E-08 5,7097E-08 

F13 0 6,4605E-09 6,3687E-07 2,5787E-07 2,2001E-07 

F14 1 2,9821E+00 4,8957E+00 6,5890E-01 3,4291E+00 

F15 0.00031 5,0837E-04 1,2223E-03 2,2090E-04 9,4701E-04 

F16 -1.03163 -1,0315E+00 -1,0294E+00 6,5656E-04 -1,0310E+00 

F17 0.398 3,9803E-01 4,0526E-01 2,2883E-03 4,0025E-01 

F18 3 3,0004E+00 3,1790E+00 6,1713E-02 3,0710E+00 

F19 -3.86 -3,8613E+00 -3,8341E+00 8,8620E-03 -3,8531E+00 

F20 -3.32 -3,1568E+00 -2,9044E+00 8,0241E-02 -3,0210E+00 

F21 10 -1,0153E+01 -5,0552E+00 1,6121E+00 -9,6434E+00 

F22 10 -1,0403E+01 -5,0877E+00 2,5675E+00 -8,8083E+00 

F23 10 -1,0536E+01 -1,0536E+01 3,6829E-05 -1,0536E+01 
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Table 4.2. Best found results for unimodal functions 

FUN ICAMA ICA PSO DE ES ABC 
F1 0.0000E+00 4.0884E-03 4.3785E-07 3.4719E-29 7.4938E-04 4.3980E-16 

F2 9.3113E-305 3.7061E-01 2.2529E-03 5.4824E-17 8.2310E-03 1.2819E-15 

F3 0.0000E+00 3.9780E+01 2.9244E-03 5.9049E-27 1.7850E-01 3.1536E+03 

F4 6.1008E-308 4.3548E+00 7.7350E-04 1.9265E-03 9.4000E-02 1.8914E+01 

F5 8.7487E-10 2.8371E+01 1.1978E-02 1.8633E+01 1.1842E+01 2.7685E-02 

F6 0.0000E+00 4.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F7 7.5917E+00 7.9391E+00 1.0086E+01 8.5152E+00 8.0483E+00 1.1992E+01 

Table 4.3. Best found results for multimodal functions 

FUN ICAMA ICA PSO DE ES ABC 

F8 
- 

1.2569E+04 

- 

5.6948E+03 

- 

1.1502E+04 

- 

8.5087E+03 

- 

1.1859E+04 
- 

1.2569E+04 

F9 0.0000E+00 4.7043E+01 5.4999E-01 9.4563E+01 4.5704E-04 0.0000E+00 

F10 0.0000E+00 2.4069E-01 2.5947E-04 7.5495E-15 4.2756E-03 3.6415E-14 

F11 0.0000E+00 1.6054E-01 1.5456E-05 0.0000E+00 1.6950E-03 1.1102E-16 

F12 5.5994E-10 4.2445E-01 3.1216E-07 5.5085E-29 1.5746E-06 4.5866E-16 

F13 6.4605E-09 6.6897E-01 1.3308E-05 1.3065E-28 2.3481E-05 4.3431E-16 

Table 4.4 lists the results for multimodal functions with a few local minima. As 

mentioned above, the proposed method performed poorly for F14 with the above 

stated settings of parameter values. However, when the same function is solved by 

ICAMA using Ɵ (- π, π), optimal solution with fitness value 0.994 is found. This 

verifies our above mentioned conclusion that the proposed method needs 

improvement with adaptive parameter values to adjust the step sizes based on its 

journey over the function landscapes.   

Other than F14, the proposed method extracted almost optimal solutions for all 

functions, while all competitors also extracted optimal solutions for all functions 

within this set.  

In order to determine statistical similarity of ICAMA’s results with those of its 

competitors Friedman’s aligned ranks test is conducted [37]. This test also orders all 
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algorithms based on their statistical ranks, which makes it possible to compare all 

algorithms under consideration based on their achieved fitness values. Tables 4.5 and 

4.6 show the Friedman’s test scores for ICAMA and its five competitors for the 23 

benchmark functions. From Table 4.5 it is clear that ICAMA has the smallest p-value 

that indicates the smallest statistical similarity to its competitors. The calculations of 

Friedman aligned ranks test statistic is based on the definition below [37]. 

𝐹𝐴𝑅 =
(k − 1)[∑ �̂�𝑗

2 − (𝑘𝑛2/4)(𝑘𝑛 + 1)2𝑘
𝑗=1 ]

{[𝑘𝑛(𝑘𝑛 + 1)(2𝑘𝑛 + 1)]/6} − (1/𝑘)∑ �̂�𝑖
2𝑛

𝑖=1

 

Where �̂�𝑖 and �̂�𝑗 are the rank totals for problem i and algorithm j respectively. 𝐹𝐴𝑅 is 

compared for significance with a 𝜒2 distribution with 𝑘 − 1 degrees of freedom. 

Table 4.4. Best found results for multimodal functions with a few local minima 

FUN ICAMA ICA PSO DE ES ABC 

F14 2.9821 0.9980 0.9980 0.9980 0.9980 0.9980 

F15 5.0837E-04 4.1605E-4 3.0750E-4 3.0750E-4 4.9245E-4 4.4511E-4 

F16 -1.0315 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

F17 0.39803 0.3978 0.3978 0.3978 0.3978 0.3978 

F18 3.0004 3.0000 2.9999 2.9999 3.0000 3.0000 

F19 -3.8613 -3.8627 -3.8627 -3.8627 -3.0897 -3.8627 

F20 -3.1568 -3.3223 -3.3223 -3.3223 -3.3223 -3.3223 

F21 -10.1532 -10.1532 -10.1531 -10.1531 -10.1531 -10.1531 

F22 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 

F23 -10.5363 -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 

Table 4.5. Friedman aligned ranks 

FUN. ICAMA ICA PSO DE ES ABC 

F1 42 89 71 55 80 61 

F2 54 102 107 59 86 64 

F3 43 136 138 58 93 137 

F4 53 119 90 82 92 129 

F5 128 132 131 127 134 94 

F6 47 122 48 45 46 44 

F7 120 121 125 124 123 126 

F8 2 6 4 5 3 1 
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Table 4.5 (continued) 

F9 49 133 130 135 78 68 

F10 50 111 79 65 85 67 

F11 52 95 87 51 88 66 

F12 69 108 74 56 70 60 

F13 72 109 91 57 73 62 

F14 112 110 106 104 105 103 

F15 83 77 84 75 81 76 

F16 41 39 40 37 38 36 

F17 101 99 100 97 98 96 

F18 118 116 117 114 115 113 

F19 30 29 28 26 27 25 

F20 35 31 34 32 33 63 

F21 24 16 17 15 23 14 

F22 21 13 18 12 20 11 

F23 19 9 10 8 22 7 

SUM 1365 1922 1729 1439 1613 1523 

AVG 59.347 83.565 75.173 62.565 70.130 66.217 

Table 4.6 shows the computed Friedman aligned ranks (FAR) and p-values for all 

algorithms under consideration. Small p-value indicates almost no statistical 

similarity among the algorithms while the rank of ICAMA shows that ICAMA is the 

best performing algorithm against its five competitors.  This fact indicates that the 

proposed method is highly competitive for the solution of the first set of classical 

real-valued benchmark functions. 

Table 4.6. Friedman aligned ranks statistics 

Algorithm Average 𝐹𝐴𝑅 values  

ABC 66.217 

DE 62.565 

ES 70.130 

ICA 83.565 

ICAMA 59.347 

PSO 75.173 

FAR 26.417 

p-value 0.000074 
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4.2.2 Experimental Evaluations with CEC2015 Benchmark Problems 

Experimental results conducted with expensive benchmark functions taken from 

CEC2015 competition are illustrated in Tables 4.7 and 4.8. The maximum number of 

function evaluations was set to 500 and 1500 for 10 and 30 dimensions respectively. 

ICAMA is executed over 20 consecutive runs under the same conditions stated in 

CEC2015 competition publications and the obtained mean fitness values are 

compared to those obtained by algorithms that are attendees of CEC2015 

competition. Tables 4.7 and 4.8 list the best, worst, mean and standard deviation 

scores achieved by ICAMA for the 23 problems in this set. Tables 4.9-4.23 present 

the mean scores of ICAMA, PSO, ABC, DE, ES, ICA and CEC2015 competition 

attendees in order from best to worst. It is seen that, even though ICAMA is not the 

best performing algorithm for any of the 23 benchmark functions, whereas it 

performs better than several of the state-of-the-art modern algorithms. 

Table 4.7. Best, worst, mean and standard deviation scores achieved 

by ICAMA for the 15 CEC2015 competition benchmark problems 

with dimension of 30 

Best Worst Std Mean 

2,0107207E+10 4,2614082E+10 5,7413166E+09 3,3172626E+10 

6,0577784E+04 1,6366152E+05 3,5954231E+04 1,0625753E+05 

3,5275720E+01 4,1632740E+01 1,7975595E+00 3,8540919E+01 

6,5606878E+03 7,8077183E+03 3,9980142E+02 7,1993253E+03 

2,9602700E+00 4,8423400E+00 5,9373617E-01 3,7087860E+00 

3,9524700E+00 5,0849700E+00 3,5367639E-01 4,4016265E+00 

4,7463810E+01 9,3036060E+01 1,0667535E+01 6,5927901E+01 

4,0546322E+05 3,5903182E+06 7,4105429E+05 1,3799516E+06 

1,2863220E+01 1,4012610E+01 3,1568785E-01 1,3602056E+01 

4,8649327E+06 4,4980467E+07 1,2561727E+07 2,3658854E+07 

1,0018000E+02 2,2698420E+02 3,0291072E+01 1,6341136E+02 

7,1572490E+02 1,8871388E+03 2,9030305E+02 1,3180690E+03 

5,7692300E+02 1,0027360E+03 1,2827438E+02 7,5557168E+02 

2,8962000E+02 4,1853080E+02 3,8434184E+01 3,4273762E+02 

1,0339450E+03 1,5162465E+03 9,5851093E+01 1,3987657E+03 



37 

Table 4.8. Best, worst, mean and standard deviation scores achieved 

by ICAMA for the 15 CEC2015 competition benchmark problems 

with dimension of 10 

Best Worst Std Mean 

7,2841919E+08 1,0194125E+10 2,3090413E+09 3,6442322E+09 

1,9470573E+04 1,0777212E+05 1,9754904E+04 4,2469607E+04 

8,2877800E+00 1,2350140E+01 1,1132128E+00 1,0423698E+01 

1,4406986E+03 2,3908080E+03 2,5255540E+02 1,9024281E+03 

1,1156600E+00 3,8752900E+00 6,6936223E-01 2,7620210E+00 

2,0742200E+00 4,5068100E+00 5,8496740E-01 3,4395960E+00 

7,2487500E+00 4,5858810E+01 9,0114946E+00 2,8344773E+01 

2,6016230E+01 3,7742005E+04 8,2869329E+03 4,2449487E+03 

3,2112300E+00 4,3102200E+00 2,4547422E-01 3,9810535E+00 

1,4428110E+05 5,7808783E+06 1,2323825E+06 8,1080559E+05 

7,4199000E+00 4,7970200E+01 9,9987624E+00 1,9494080E+01 

1,3086210E+02 5,7267540E+02 9,9565777E+01 2,9342591E+02 

3,4178120E+02 6,0071040E+02 6,9121768E+01 4,1784038E+02 

1,9892920E+02 2,2619870E+02 6,5128629E+00 2,1326971E+02 

3,0032550E+02 5,3108700E+02 6,3962660E+01 4,3781097E+02 

Table 4.9. Mean results for function 1 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 1.93E+02 MVMO 2.09E+03 

TUNEDCMAES 1.17E+06 CMAS-ES_QR 8.50E+05 

CMAS-ES_QR 4.43E+06 TUNEDCMAES 1.52E+06 

ISRPSO 7.40E+06 ISRPSO 7.19E+08 

PSO 2.88E+09 PSO 2.07E+10 

HUMANCOG 3.27E+09 ICAMA 3.32E+10 

ICAMA 3.64E+09 DE 3.74E+10 

ICA 6.75E+09 ICA 4.47E+10 

DE 7.21E+09 HUMANCOG 4.74E+10 

ES 9.77E+09 ES 8.12E+10 

ABC 1.00E+10 ABC 9.20E+10 

Table 4.10. Mean results for function 2 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 1.68E-02 MVMO 6.93E+03 

CMAS-ES_QR 2.58E+04 ISRPSO 7.67E+04 

ISRPSO 3.19E+04 CMAS-ES_QR 9.17E+04 

ICAMA 4.25E+04 ICA 9.65E+04 

TUNEDCMAES 4.78E+04 ICAMA 1.06E+05 

HUMANCOG 7.80E+04 HUMANCOG 1.13E+05 
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Table 4.10 (continued) 

DE 8.88E+04 ES 1.30E+05 

ES 1.50E+05 TUNEDCMAES 1.44E+05 

PSO 1.62E+05 DE 1.45E+05 

ABC 1.92E+05 PSO 1.84E+05 

ICA 3.37E+05 ABC 2.06E+05 

Table 4.11. Mean results for function 3 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

CMAS-ES_QR 2.79E+00 CMAS-ES_QR 1.15E+01 

ISRPSO 6.60E+00 TUNEDCMAES 2.43E+01 

TUNEDCMAES 7.62E+00 ISRPSO 2.57E+01 

MVMO 9.40E+00 MVMO 3.79E+01 

ICAMA 1.04E+01 PSO 3.74E+01 

PSO 1.07E+01 ICAMA 3.85E+01 

HUMANCOG 1.12E+01 HUMANCOG 4.13E+01 

DE 1.19E+01 ICA 4.18E+01 

ICA 1.20E+01 ES 4.33E+01 

ABC 1.23E+01 DE 4.35E+01 

ES 1.26E+01 ABC 4.62E+01 

Table 4.12. Mean results for function 4 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 4.65E+02 MVMO 1.43E+03 

ISRPSO 9.25E+02 ISRPSO 5.41E+03 

TUNEDCMAES 1.34E+03 TUNEDCMAES 6.11E+03 

CMAS-ES_QR 1.73E+03 CMAS-ES_QR 6.68E+03 

ICAMA 1.90E+03 ICAMA 7.20E+03 

DE 1.96E+03 ES 7.42E+03 

PSO 1.96E+03 DE 7.65E+03 

ICA 2.06E+03 PSO 7.92E+03 

HUMANCOG 2.09E+03 HUMANCOG 7.99E+03 

ES 2.09E+03 ICA 8.09E+03 

ABC 2.20E+03 ABC 8.81E+03 

Table 4.13. Mean results for function 5 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 1.13E+00 MVMO 1.68E+00 

ISRPSO 2.46E+00 TUNEDCMAES 3.13E+00 

ICAMA 2.76E+00 ES 3.21E+00 
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Table 4.13 (continued) 

TUNEDCMAES 2.77E+00 ICAMA 3.71E+00 

HUMANCOG 2.82E+00 ISRPSO 4.24E+00 

ICA 2.82E+00 ICA 4.27E+00 

DE 2.91E+00 HUMANCOG 4.39E+00 

ES 2.97E+00 DE 4.44E+00 

CMAS-ES_QR 3.20E+00 CMAS-ES_QR 4.55E+00 

ABC 3.22E+00 ABC 5.19E+00 

PSO 4.02E+00 PSO 5.79E+00 

Table 4.14. Mean results for function 6 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 3.26E-01 MVMO 5.20E-01 

CMAS-ES_QR 4.17E-01 ISRPSO 6.35E-01 

ISRPSO 5.29E-01 TUNEDCMAES 7.16E-01 

TUNEDCMAES 6.00E-01 CMAS-ES_QR 7.28E-01 

PSO 2.90E+00 PSO 3.58E+00 

ICAMA 3.44E+00 ICAMA 4.40E+00 

HUMANCOG 3.63E+00 DE 4.89E+00 

ICA 4.02E+00 HUMANCOG 5.03E+00 

DE 4.76E+00 ICA 5.07E+00 

ES 5.97E+00 ES 7.03E+00 

ABC 6.06E+00 ABC 7.68E+00 

Table 4.15. Mean results for function 7 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

CMAS-ES_QR 5.52E-01 MVMO 4.39E-01 

ISRPSO 5.71E-01 ISRPSO 5.68E-01 

TUNEDCMAES 6.31E-01 TUNEDCMAES 7.28E-01 

MVMO 6.37E-01 CMAS-ES_QR 7.47E-01 

HUMANCOG 2.74E+01 PSO 4.93E+01 

PSO 2.32E+01 ICAMA 6.59E+01 

ICAMA 2.83E+01 HUMANCOG 8.86E+01 

ICA 4.26E+01 ICA 8.86E+01 

DE 5.19E+01 DE 1.02E+02 

ES 7.09E+01 ES 1.77E+02 

ABC 7.11E+01 ABC 2.07E+02 

Table 4.16. Mean results for function 8 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 
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Table 4.16 (continued) 

CMAS-ES_QR 4.68E+00 CMAS-ES_QR 1.74E+01 

ISRPSO 5.03E+00 TUNEDCMAES 2.84E+01 

TUNEDCMAES 3.68E+01 MVMO 4.03E+02 

MVMO 4.14E+01 ISRPSO 6.26E+02 

PSO 1.34E+03 PSO 9.56E+05 

ICAMA 4.24E+03 ICAMA 1.38E+06 

ICA 6.53E+03 ICA 4.09E+06 

HUMANCOG 7.77E+03 HUMANCOG 5.24E+06 

DE 2.21E+04 ABC 1.04E+08 

ABC 4.50E+04 DE 1.71E+07 

ES 6.56E+04 ES 5.75E+07 

Table 4.17. Mean results for function 9 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

ISRPSO 3.95E+00 MVMO 1.34E+01 

CMAS-ES_QR 3.96E+00 CMAS-ES_QR 1.34E+01 

ICAMA 3.98E+00 ISRPSO 1.36E+01 

MVMO 4.01E+00 ICAMA 1.36E+01 

ICA 4.08E+00 ICA 1.37E+01 

HUMANCOG 4.16E+00 ES 1.38E+01 

TUNEDCMAES 4.17E+00 HUMANCOG 1.39E+01 

PSO 4.19E+00 TUNEDCMAES 1.39E+01 

DE 4.20E+00 DE 1.40E+01 

ES 4.25E+00 ABC 1.41E+01 

ABC 4.25E+00 PSO 1.41E+01 

Table 4.18. Mean results for function 10 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 4.97E+02 MVMO 9.29E+04 

CMAS-ES_QR 2.25E+05 CMAS-ES_QR 3.25E+06 

ISRPSO 3.53E+05 TUNEDCMAES 4.89E+06 

TUNEDCMAES 5.38E+05 ISRPSO 6.83E+06 

ICAMA 8.11E+05 PSO 2.05E+07 

HUMANCOG 1.19E+06 ICAMA 2.37E+07 

PSO 1.46E+06 HUMANCOG 5.60E+07 

ICA 2.05E+06 ICA 6.66E+07 

DE 2.34E+06 DE 7.62E+07 

ES 2.56E+06 ES 1.13E+08 

ABC 2.92E+06 ABC 1.85E+08 
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Table 4.19. Mean results for function 11 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

ISRPSO 7.26E+00 TUNEDCMAES 2.11E+01 

TUNEDCMAES 7.45E+00 CMAS-ES_QR 2.46E+01 

CMAS-ES_QR 7.63E+00 ISRPSO 5.09E+01 

MVMO 1.17E+01 MVMO 1.43E+02 

PSO 1.68E+01 PSO 1.50E+02 

ICAMA 1.95E+01 ICAMA 1.63E+02 

HUMANCOG 2.16E+01 ICA 2.41E+02 

DE 2.60E+01 HUMANCOG 2.76E+02 

ICA 3.07E+01 DE 3.23E+02 

ES 3.83E+01 ES 5.37E+02 

ABC 4.44E+01 ABC 7.20E+02 

Table 4.20. Mean results for function 12 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

ISRPSO 1.82E+02 CMAS-ES_QR 6.27E+02 

MVMO 2.00E+02 ISRPSO 7.36E+02 

CMAS-ES_QR 2.35E+02 TUNEDCMAES 7.66E+02 

TUNEDCMAES 2.39E+02 MVMO 8.60E+02 

ICAMA 2.93E+02 ICAMA 1.32E+03 

HUMANCOG 3.08E+02 PSO 1.52E+03 

ICA 3.57E+02 HUMANCOG 1.60E+03 

ES 3.97E+02 ICA 2.05E+03 

PSO 4.17E+02 DE 2.58E+03 

DE 4.25E+02 ES 5.57E+03 

ABC 4.51E+02 ABC 4.73E+04 

Table 4.21. Mean results for function 13 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

MVMO 3.16E+02 MVMO 3.44E+02 

CMAS-ES_QR 3.26E+02 CMAS-ES_QR 3.80E+02 

ISRPSO 3.31E+02 ISRPSO 4.00E+02 

TUNEDCMAES 3.47E+02 TUNEDCMAES 4.15E+02 

PSO 4.04E+02 PSO 6.52E+02 

ICAMA 4.18E+02 ICAMA 7.56E+02 

HUMANCOG 4.33E+02 HUMANCOG 8.35E+02 

DE 4.67E+02 DE 8.87E+02 

ICA 5.62E+02 ICA 9.60E+02 

ABC 5.81E+02 ES 1.55E+03 

ES 5.91E+02 ABC 1.95E+03 
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Table 4.22. Mean results for function 14 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

CMAS-ES_QR 1.97E+02 CMAS-ES_QR 2.35E+02 

ISRPSO 2.01E+02 TUNEDCMAES 2.47E+02 

TUNEDCMAES 2.05E+02 ISRPSO 2.65E+02 

MVMO 2.06E+02 MVMO 2.76E+02 

ICAMA 2.13E+02 PSO 3.19E+02 

HUMANCOG 2.15E+02 ICAMA 3.43E+02 

PSO 2.16E+02 HUMANCOG 3.94E+02 

ICA 2.20E+02 ICA 4.00E+02 

DE 2.23E+02 DE 4.43E+02 

ES 2.28E+02 ES 4.93E+02 

ABC 2.33E+02 ABC 6.45E+02 

Table 4.23. Mean results for function 15 of CEC2015 competition from 

best to worst with dimension sizes of 10 and 30 

Algorithm Result for D=10 Algorithm Result for D=30 

ISRPSO 3.00E+02 CMAS-ES_QR 4.90E+02 

CMAS-ES_QR 3.79E+02 TUNEDCMAES 8.01E+02 

PSO 4.18E+02 ISRPSO 9.51E+02 

ICAMA 4.37E+02 MVMO 1.19E+03 

TUNEDCMAES 4.42E+02 PSO 1.34E+03 

HUMANCOG 4.74E+02 ICAMA 1.40E+03 

MVMO 4.76E+02 DE 1.42E+03 

ICA 4.82E+02 HUMANCOG 1.49E+03 

DE 4.91E+02 ICA 1.59E+03 

ABC 5.45E+02 ES 1.70E+03 

ES 5.50E+02 ABC 1.83E+03 

4.2.3 Experimental Analysis on the Strategy of Parameter v 

An important parameter on the success of the proposed algorithm is the “v” 

parameter that determines the threshold of accepting an individual with fitness worse 

than its parent but it is highly correlated to its imperialist. Table 4.24 illustrates the 

results of ICAMA on CEC2015 benchmarks for five different values of v. These 

values are selected to exhibit the effect of v with values within the range (0, 1]. It can 

be seen from Table 4.24 that our setting v=0.5 results in the best performance. 
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Table 4.24. The results of ICAMA on CEC2015 problems for different 

values of v 

Problem v=0.1 v=0.4 v=0.5 v=0.6 v=0.9 

1 4.70E+10 4.87E+10 3.32E+10 4.85E+10 4.84E+10 

2 9.30E+04 8.54E+04 1.06E+05 1.02E+05 1.14E+05 

3 4.07E+01 4.04E+01 3.85E+01 4.04E+01 3.98E+01 

4 7.85E+03 7.64E+03 7.20E+03 7.87E+03 7.71E+03 

5 4.26E+00 4.30E+00 3.71E+00 4.33E+00 4.44E+00 

6 5.22E+00 5.14E+00 4.40E+00 5.26E+00 5.13E+00 

7 9.14E+01 9.52E+01 6.59E+01 8.81E+01 9.11E+01 

8 5.03E+06 3.75E+06 1.38E+06 4.95E+06 4.26E+06 

9 1.38E+01 1.38E+01 1.36E+01 1.37E+01 1.38E+01 

10 5.51E+07 5.27E+07 2.37E+07 3.79E+07 4.12E+07 

11 2.19E+02 2.19E+02 1.63E+02 2.35E+02 2.19E+02 

12 1.69E+03 1.88E+03 1.32E+03 1.77E+03 1.62E+03 

13 9.97E+02 8.46E+02 7.56E+02 9.32E+02 9.50E+02 

14 3.99E+02 4.02E+02 3.43E+02 4.26E+02 3.76E+02 

15 1.53E+03 1.52E+03 1.40E+03 1.50E+03 1.50E+03 
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Chapter 5 

MULTI-OBJECTIVE IMPERIALISTIC COMPETITIVE 

ALGORITHM WITH MULTIPLE NON-DOMINATED 

SETS FOR THE SOLUTION OF GLOBAL 

OPTIMIZATION PROBLEMS 

In this chapter, a multi-objective imperialistic competitive algorithm (MOICA) is 

discussed. MOICA is proposed for solving global multi-objective optimization 

problems. It is a modified and improved multi-objective version of a single objective 

ICA, which was previously proposed by Atashpaz-Gargari and Lucas [2]. The 

presented algorithm implements the idea of imperialism. Accordingly, individuals in 

a population are called countries, of which there are two types—colonies and 

imperialists. MOICA incorporates the competition between empires and their 

colonies for the solution of multi-objective problems. To this end, it employs a 

proposed approach of several non-dominated solution sets, whereby each set is called 

a local non-dominated solution set (LNDS). All imperialists in an empire are 

considered non-dominated solutions, whereas all colonies are considered dominated 

solutions. Aside from local non-dominated solution sets, there is one global non-

dominated solution set (GNDS), which is created from LNDS sets of all empires. 

There are two main operators of the proposed algorithm: Assimilation and 

Revolution. They respectively use GNDS and LNDS sets during assimilation and 

revolution of colonies. The significance of this study is the notable feature of the 
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proposed algorithm; specifically, no special parameter is used for diversity 

preservation. This enables the algorithm to avoid extra computations in order to 

maintain the spread of solutions. Simulations and experimental results on the multi-

objective benchmark problems showed that MOICA is more efficient compared to 

many existing multi-objective optimization algorithms because it produces better 

results for most of the test problems. 

5.1 Literature Review 

Many real-world problems must be solved by optimizing more than one objective. In 

some cases, one objective must be minimized while the other must be maximized [1]. 

Many multi-objective optimization algorithms have been proposed for optimizing 

several objectives. Among them are multi-objective evolutionary algorithms 

(MOEAs) [39, 40, 41, 42 and 43]. A priority of multi-objective optimization 

algorithms is to simultaneously find several Pareto-optimal solutions. Another 

priority is to additionally optimize conflicting objectives when one must be 

minimized and the other must be maximized. Consequently, multi-objective 

optimization algorithms have gained popularity in the last two decades. The aim of 

this study was therefore to develop a multi-objective optimization algorithm inspired 

by imperialistic competition—specifically, multi-objective imperialistic competitive 

algorithm (MOICA)—which uses a population of countries of two types: imperialists 

and colonies. In every empire, there is an imperialist, which is considered the local 

best for that empire. Accordingly, MOICA generates a local non-dominated set of 

solutions for each empire. It then finally calculates the global non-dominated set of 

local non-dominated solutions of each empire, which is the final set of non-

dominated solutions. 
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Many applications of ICA exist, especially in the field of engineering. Only in the 

field of computer engineering ICA is applied to data clustering and image processing 

for solving such problems as skin color detection and template matching [44]. For 

example, Duan et al. [45] presented a template matching method based on chaotic 

ICA in which a correlation function is used. Those authors prevented the problem of 

falling into the local best solution by introducing a chaotic behavior of ICA, which 

improves the global convergence. Another example of the application of ICA is the 

integrated product mix-outsourcing optimization problem [46]. Vedadi et al. [47] 

applied ICA in the field of electrical engineering by presenting ICA-based Maximum 

Power Point Tracking algorithm to find Global Maximum Power Point of power-

voltage string under Partial Shading Condition rapidly and precisely. Goudarzi et al. 

[48] used ICA as a heuristic technique for optimization procedure in finding the 

optimal location of capacitors in radial distribution systems. Another example of 

application of ICA is in the field of geoscience, where ICA is used for locating the 

critical failure surface and computing the factor of safety in a slope stability analysis 

based on the limit equilibrium approach [49]. Jordehi A R [50] proposed a solution to 

flexible AC transmission systems (FACTS) allocation problem in a way that low 

values of overloads and voltage deviations results both during line outage 

contingencies and demand growth. In this study, thyristor-controlled phase shifting 

transformers and thyristor-controlled series compensators have been used as FACTS 

devices. Besides applications of ICA, variants of ICA have been presented in the 

literature. For example, Ebrahimzadeh et al. [62] proposed a novel hybrid intelligent 

method (HIM) for recognition of the common types of control chart pattern (CCP). 

The proposed method includes two main modules: a clustering module and a 

classifier module. Authors used a combination of the modified imperialist 
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competitive algorithm (MICA) and the K-means algorithm in the clustering module 

for clustering input data. A mutation operator was also introduced into the proposed 

algorithm by changing assimilation process. 

Aside from the variants of ICA and its applications there are many different 

algorithms in the literature for solving multi-objective optimization problems. 

Among them are the algorithms, which are used in experimental section of this 

chapter. For example, MOEAD (or MOEA/D) is a multi-objective evolutionary 

optimization algorithm, which is based on decomposition [74]. MOEAD decomposes 

a problem into several optimization sub problems using uniformly distributed 

aggregation weight vectors and performs optimization of these problems 

simultaneously, while every sub problem is optimized by use of the information of 

several surrounding sub problems. This makes MOEAD have a better computational 

complexity in every generation with comparison to many other state-of-the-art 

algorithms. Qi Y et al. proposed a variant of MOEA/D called MOEA/D-AWA, 

which is an improved MOEA/D with adaptive weight vector adjustment [60]. 

MOEA/D-AWA addresses situations when multi-objective optimization problem has 

a complex Pareto front, i.e. a discontinuous Pareto front or a Pareto front with sharp 

peak or low tail. Therefore, in this algorithm a new method for weight vector 

initialization along with an adaptive weight vector adjustment strategy are 

introduced. Additionally, MOEA/D-AWA has a feature of an external elite 

population, which enables new sub problems being added into scattered, i.e. 

discontinuous regions of the Pareto front. Harmony Search algorithm [89] is a single-

objective optimization algorithm that was used by Doush I A and Bataineh M Q for 

hybridizing MOEA/D and NSGA-II [86] algorithms, thus obtaining Harmony 

MOEA/D and Harmony NSGA-II algorithms [61], which performed better than 
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original MOEA/D and NSGA-II algorithms. NSGA-II is a non-dominated sorting 

based MOEA, which is one of the most famous multi-objective optimization 

algorithms that addresses three problems for which MOEAs have been mainly 

criticized: 1) computational complexity; 2) non-elitism approach; and 3) use of 

sharing parameter. M. Reyes Sierra and C. A. Coello Coello proposed Optimized 

MOPSO (OMOPSO), which is a variant of multi-objective PSO algorithm [85]. 

OMOPSO uses the crowding distance of NSGA-II in order to eliminate some of the 

best solutions or so-called leader solutions. In addition to crowding distance, in order 

to accelerate the convergence of the swarm OMOPSO uses the combination of two 

mutation operators. Another feature of OMOPSO is that it uses a concept of ǫ-

dominance in order to make the algorithm produce a limited number of solutions. 

Zitzler E, Laumanns M and Thiele L proposed SPEA2 [87], which is an improved 

version of its predecessor – Strength Pareto Evolutionary Algorithm (SPEA) [90]. 

Unlike SPEA, SPEA2 incorporates a fine-grained fitness assignment strategy along 

with a technique for density estimation and an improved method of archive 

truncation. DMCMOABC is a dynamic multi-colony multi-objective artificial bee 

colony algorithm proposed by Xiang Y and Zhou Y, which uses a strategy of 

dynamic information exchange and the multi-deme model [73]. In this algorithm 

several colonies mainly search individually and sometimes share information 

between each other. This algorithm involves employed and onlooker bees, which 

explore better positions in every generation. DMCMOABC makes use of an external 

archive for keeping best solutions, i.e. the non-dominated solutions, while diversity 

among archived solutions is preserved by using crowding distance. Authors of this 

algorithm used the migration rate parameter in order to replace the worst food source 

in a randomly selected colony by the elite intermediate individual with the maximum 
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crowding distance. S. Kukkonen and J. Lampinen  proposed Generalized Differential 

Evolution 3 (GDE3), which is another algorithm with a diversity maintenance 

technique used in CEC2007 as well as in CEC2009 Special Sessions on Performance 

Assessment on Multi-Objective Optimization Algorithms [75]. GDE3 performed 

well against other state-of-the-art algorithms and it is one of the best selected 

algorithms in CEC2009. MOEADGM is an improved version of MOEAD with two 

mechanisms for better optimization, which is proposed by C.-M. Chen, Y.-P. Chen, 

and Q. F. Zhang [76]. First mechanism is the replacement of evolution operator with 

guided mutation operator for better utilization of information obtained from 

neighbors. Second mechanism is for the performance improvement, which is 

utilizing a priority queue for updating. L.-Y. Tseng and C. Chen  proposed another 

multi-objective optimization algorithm  called Multiple trajectory search (MTS), 

which was successfully applied to unconstrained and constrained set of problems in 

CEC2009 [77]. MTS algorithm first generates a set of uniformly distributed 

solutions, which are divided into two – foreground and background solutions. The 

search mechanism focuses mainly on the first type of solutions, that is foreground 

ones, while it focuses partly on others. The MTS selects one of the three local search 

methods, which it applies on solutions iteratively. In the beginning these methods 

search in a very large neighborhood, which decreases gradually until it becomes of 

pre-defined tiny size and resets to its initial size again. Utilization of such a size 

varying neighborhood searches enables MTS effectively solve optimization 

problems. H.-L. Liu and X. Q. Li proposed a multi-objective optimization algorithm 

called LiuLiAlgorithm [78]. This algorithm is based on sub-regional search by 

dividing the decision space into several lesser regions. The use of sub-regional search 

makes LiuLiAlgorithm perform better in terms of computational complexity. M. H. 



50 

Liu et al. proposed an improved version of DMOEA [91, 92] with domain 

decomposition technique DMOEA-DD [79]. This algorithm was one of the most 

successful competitors in CEC2009. K. Sindhya et al. proposed an augmented local 

search based evolutionary multi-objective optimization algorithm NSGAIILS, which 

is a hybrid evolutionary algorithm derived by a combination of NSGA-II and an 

augmented local search [80]. NSGAIILS was also tested on the set of unconstrained 

and constrained problems from CEC2009, where it could produce good, but not best 

results with comparison to other algorithms. V. L. Huang et al. proposed the multi-

objective version of Self-adaptive Differential Evolution algorithm (SaDE) [93] with 

objective-wise learning strategies OWMOSaDE [65], which is an improved version 

of MOSaDE [88]. The original SaDE algorithm does not require pre-specifying of 

control parameters and the choice of learning strategy, since parameter settings and 

the learning strategy are self-adapted with the help of learning experience during 

evolution.  MOSaDE was developed for the solution of numerical optimization 

problems with several conflicting objectives. OWMOSaDE learns mutation 

strategies and best values for crossover parameter specifically for every objective 

function. A clustering MOEA (ClusteringMOEA), which is based on orthogonal and 

uniform design, was proposed by Y. P. Wang et al. [81] in 2009. In order for 

ClusteringMOEA to estimate good points for more exploration during iterations it 

uses orthogonal design to create initial points in a population that are uniformly 

distributed over the solution space. A new crossover was designed for an efficient 

exploration of the search space and finding best solutions. The exploration in this 

algorithm mainly focuses on the boundary and sparse parts of non-dominated 

solutions, which are obtained in objective space. Finally, in order to improve the 

cardinality, i.e. the number of solutions finely distributed over the Pareto front, a 
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novel clustering approach was developed for selecting the non-dominated solutions. 

S. Tiwari et al. proposed a hybrid AMGA algorithm [82], which is a combination of 

a single-objective optimization with evolutionary multi-objective optimization 

algorithms. AMGA uses a classical gradient based algorithm as a single-objective 

optimizer for a fast local search. It behaves as a mutation operator, which is used as a 

genetic mutation as well as a gradient based mutation. On the other hand, AMGA 

uses multi-objective optimization algorithm as a global search. AMGA also uses a 

scalarization scheme for the improvement of objective functions, which uses 

reference points as constraints. This allows algorithm to solve non-convex 

optimization problems. B. Y. Qu and P. N. Suganthan proposed multi-objective 

evolutionary programming (MOEP) that uses fuzzy rank-sum with varied selection 

[65]. MOEP algorithm’s performance is significantly faster than the performance of 

the same algorithm that uses non-domination sorting. A. Zamuda et al. proposed 

Differential Evolution with Self-adaptation and Local Search for Constrained Multi-

objective Optimization algorithm (DECMOSA-SQP) [83]. This algorithm 

incorporates constrained handling mechanism along with a SQP local search and the 

self-adaptation mechanism taken from DEMOwSA algorithm [94]. S. Gao et al. 

proposed an orthogonal multi-objective evolutionary algorithm OMOEAII with 

lower dimensional crossover [84]. The lower-dimensional crossover enables 

algorithm to converge faster, since the search complexity is decreased. Moreover, by 

using orthogonal crossover the probability of finding better solutions increases.  

5.2 Overview of MOICA 

The proposed MOICA algorithm implements the idea of imperialism by 

incorporating the competition among empires. The main idea behind MOICA is that 

there are several non-dominated solution sets, i.e. imperialists, per each empire and 
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one global non-dominated solution set, which contains the best imperialists among 

all empires. All empires compete during the process and strive to take possession of 

the colonies of other empires based on their power. Therefore, all empires have the 

opportunity to assume control of one or more colonies of the weakest empire. During 

iterations of the algorithm, colonies of each empire make changes with respect to 

their positions as a result of changing their cost values. As previously mentioned, 

some colony C in an empire may become better than some of the current set of 

imperialists, say I. In such a case, the new colony C with a better cost becomes a 

member of the empire’s imperialists, that is, a member of the set of non-dominated 

solutions. Thus, previous imperialist I, which is dominated by C, becomes a colony. 

MOICA has an important yet simple feature in its implementation. Specifically, it 

has several non-dominated solution sets, which makes it different from many other 

multi-objective optimization algorithms. Initially, there is N number of empires. 

Therefore, every empire possesses Pareto optimal solutions, or local non-dominated 

solutions (LNDS). Therefore, the total number of LNDSs will initially be N. 

Moreover, there is a set of global non-dominated solutions (GNDS), which is 

obtained from N number of LNDSs. Because the set of local non-dominated 

solutions for each empire is updated during iterations, the GNDS is also accordingly 

updated. This means that the algorithm has one GNDS throughout the 

implementation process, whereas the number of LNDSs will gradually decrease on 

account of the collapse of some empires during the competition. Figure 4.1 illustrates 

an example of three empires (E1, E2, and E3) with their colonies and local non-

dominated solution sets, i.e., imperialists, which are set in bold. 
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Figure 5.1. GNDS and LNDS sets of three empires 

Imperialists that are taken into an area in Figure 5.1 are the best imperialists among 

all empires that form GNDS. There is a possibility that none of the imperialists will 

be included in GNDS of some empire. An example of such scenario is Empire 1 in 

Figure 5.1. Therefore, the use of GNDS in this algorithm is very important because 

colonies of all empires are assimilated toward the randomly selected imperialists 

from the GNDS, which enables an algorithm to avoid local optima. If we consider 

only one empire in Figure 5.1, for example, E2, it is readily apparent that the circles 

in bold form non-dominated solution set empire E2. The assimilation and revolution 

operations will be detailed in the following subsections. 

Non-dominancy in the proposed algorithm is calculated based on fronts. Therefore, 

solutions that are assigned a value of 1 belong to the first front, while solutions with 

front value 2 are assigned to the second front, and so on. As a result, LNDS and 

GNDS sets contain solutions that belong to the first front only. Another significant 

feature in the proposed algorithm is that no special parameter is used for diversity 

   Colony of E1 

   Imperialist of E1 

   Colony of E2 

   Imperialist of E2 
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   Imperialist of E3 

 

Global Non-Dominated 
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preservation, which enables the algorithm to avoid extra computations in order to 

maintain the spread of solutions. Although a share parameter is not used in MOICA, 

the spread of solutions in the results obtained from our simulations and experiments 

was very good. This was achieved on account of the assimilation technique used in 

this algorithm. That is, as described in Chapter 3, all colonies of an empire move 

toward one imperialist that is available in the empire. However, in the proposed 

algorithm, colonies of an empire move toward one of the imperialists, I, in the 

GNDS set. The imperialist I, toward which the colonies move, is randomly selected 

in each iteration from the set of global non-dominated solutions. Therefore, the idea 

of avoiding usage of a share parameter is derived from the nature of multi-

objectiveness, in which every solution in a non-dominated solution set is considered 

a valid solution so that there is no single solution. For the sake of clarity, the 

description of the proposed algorithm is first provided in Algorithm 5.1. Then, each 

part of the algorithm is detailed. 

Algorithm 5.1. MOICA Algorithm  

1. Begin 

2. Initialization: 

- Initialize problem parameters, such as objective function name, 

number of variables, and lower and upper bounds of decision variables. 

- Initialize algorithm parameters, such as population size, number of 

initial empires, number of iterations, and other coefficients used in 

assimilation and revolution operations. 

- Initialize population 

3. Evaluate objective functions and assign objective values to each country. 

4. Apply non-domination sorting [51]. 

5. Create initial empires by distributing colonies randomly, create LNDS for 

every empire and obtain GNDS. 

6. For each iteration i do: 
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7. For each empire j do: 

8. Apply assimilation: move colonies toward one of the randomly selected 

imperialists in the GNDS set and apply economic changes with 

probability pe. 

9. Apply revolution: Generate new countries from the LNDS set according 

to probability pr and revolution rate .   

10. Evaluate objective functions and assign cost values to all colonies. 

11. Update LNDS for empire j and update GNDS. 

12. Calculate the total power of empire j. 

13. End for 

14. Unite similar empires. 

15. Apply imperialistic competition and terminate powerless empires. 

16. End for 

17. Display results. 

5.2.1 Non-Domination Sorting 

Various methods have been proposed in the literature for non-dominancy. In these 

methods, each solution in the search space is assigned a rank value, which indicates 

whether a certain solution in the population is dominated by other solutions. In most 

cases, the lower the rank value is, the less this solution is dominated by others. For 

example, a rank value of one indicates that this solution is non-dominated. Another 

approach for non-dominancy is to not assign solutions a rank value; rather, divided 

them into fronts [51]. This is the approach used in this study for non-dominancy. 

Figure 5.2 illustrates non-dominated solutions with fronts for the minimization 

problem. 

A front with a value of one contains non-dominated solutions, where the front value 

of two is the set of solutions dominated by the solutions from the first front only. 

Solutions with a front value of three are dominated by the solutions from the 

previous fronts. Therefore, in the proposed algorithm, every empire has its own local 
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non-dominated solutions, LNDS. This LNDS is therein intended to include 

imperialists of the empire; thus, there is no single imperialist in the empire. This 

means that all other solutions have front values greater than one, such that dominated 

solutions are considered colonies of the empire. 

                  

 

 

 

Figure 5.2. Non-dominancy using fronts 

5.2.2 Assimilation 

Assimilation, the movement of colonies toward imperialists, is implemented in a 

similar way as explained in Chapter 3. However, the difference is that there are 

several imperialists in the GNDS set. Thus, one of the imperialists should be selected 

and should serve as a target for the movement of colonies. The use of GNDS in 

assimilation instead of LNDS sets enables the algorithm to escape the local minima 

faster. The selection of the target imperialist is randomly performed for each empire 

in each iteration of the algorithm.  

Figure 5.3 illustrates the assimilation implemented in this algorithm. In the figure, 

the black circles and red triangle indicate non-dominated solutions, the GNDS set, 

such that they are imperialists of the whole population. The red triangle is the 

randomly selected target imperialist toward which the colonies are moving. For 
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simplicity, only one moving colony is shown in the figure and is indicated by a blue 

circle. Parameters, such as , d and x are explained in Chapter 3. Therefore, their 

descriptions are omitted here because they have the same meanings. Nonetheless, the 

values used for some parameters are different, which will be discussed later. Another 

important point is that, owing to randomized selection of target imperialists and 

deviation , the diversity in the algorithm is preserved. In Figure 5.3 the angle is 

denoted with  because deviation is used in the decision space, which may not be 

the same as in the objective space. Therefore, even if deviations in decision and 

objective spaces differ, some deviation still exists in the objective space, which is 

denoted by . 

 

 

                                                                       

 

     

Figure 5.3. Assimilation of a colony towards randomly selected imperialist from the 

GNDS set 

To improve the local search of the proposed algorithm, another new operation is 

added immediately after the assimilation process. This operation is the influence of 

economic changes on the empire, which has some probability of being engaged, as 

described in the pseudo-code below. The higher the value of pe is, the lower the 

probability is for performing the operation. In most cases, the value of 0.9 is used for 

pe to incite few economic changes. UpperBound and LowerBound are the vectors, 
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which indicate the decision space of the decision variables for the given objective 

function. rand() is a uniformly generated random value between (0, 1). The 

procedure of the assimilation process is given below. The variables and parameters, 

Col_Pos_New, Col_Pos, ,  and r are the same as in Chapter 3. However, the 

variable, d, is different in this operation because it contains an element-wise 

difference of a colony and a randomly selected imperialist from GNDS. Assimilation 

procedure is provided in Algorithm 5.2. 

Algorithm 5.2. Assimilation 

1. Randomly select an imperialist IG from GNDS.  

2. for each colony in empire i do 

3. set d to the element-wise difference of a colony and IG 

4. Col_Pos_New = Col_Pos + * *𝑟 ⊗ 𝑑  

5. end for 

6. if rand() > pe do 

7. R = UpperBound – LowerBound; 

8. for each decision variable i in R do 

9. w(i) =  (abs(UpperBound(i))*rand())rand()/R(i) – 

(abs(LowerBound(i))*rand())(rand()/R(i); 

10. end for 

11. ColoniesOfEmpire = ColoniesOfEmpire .* w; 

12. end if 

5.2.3 Revolution 

The revolution operation in the proposed algorithm is completely different from the 

one in ICA because there is no random generation of new colonies. The new 

revolution operation has two parts, which are performed based on probability pr. The 

first part is the generation of a new colony by the random selection of elements from 

two randomly selected imperialists in the LNDS set of the same empire. In the case 
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of having only one imperialist in the LNDS set, then one more individual is 

randomly generated. For the second part of the revolution process, some imperialists 

are modified and randomly chosen colonies are replaced with them. Revolution 

procedure is provided in Algorithm 5.3. 

Algorithm 5.3. Revolution 

1. if rand() > pr 

2. for each colony in empire i do 

3. Select two imperialists I1 and I2 from LNDS (if set contains one 

imperialist only, then generate one more randomly) 

4. Generate new colony C by applying two-point crossover on I1 and I2  

5. Replace colony in an empire i with C 

6. end for 

7. else 

8. for i=1 to RevolutionRate * NumberOfColoniesInEmpire 

9. Select one imperialist Ii from LNDS randomly 

10. Update Ii by adding to its every element a random value between 

(0.001, 0.09) or (-0.09, -0.001) 

11. end for 

12. Update randomly selected colonies by newly generated ones 

13. end if 

Based on the preceding and present sections/subsections, it is evident that GNDS is 

used for selecting imperialists for updating colonies during the assimilation process. 

On the other hand, imperialists from LNDS of the same empire are used in the 

revolution process. Therefore, both assimilation and revolution of colonies enable the 

algorithm to escape local minima and reach global optimal solutions. 
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5.2.4 Possessing an Empire 

Every empire is possessed by the set of imperialists, which is the non-dominated set 

of solutions within the empire itself. It is defined as LNDS in this algorithm. 

However, in terms of possession of the empire, it is possible that all individuals of an 

empire will be in the LNDS and thus there are no dominated solutions within an 

empire. As a result, assimilation and revolution will not be applicable in such a case. 

Therefore, one more parameter, , was added in this algorithm. It indicates the 

maximum percentage of imperialists that an empire can have. Consequently, when 

obtaining LNDS of an empire, the control of whether the percentage of imperialists 

exceeds  in an empire is made. If it exceeds it, then the best maximum imperialists 

allowed are retained; the others are moved to the set of colonies. The total power of 

an empire is equal to the number of non-dominated solutions in the empire’s 

population. Although an empire with a lower number of non-dominated solutions 

may contain better solutions than one with more non-dominated solutions, the total 

power is still equal to the cardinality measure regardless of the dominancy. 

5.2.5 Uniting Similar Empires 

MOICA uses different approaches in uniting similar empires with a comparison to 

the single objective version of it. This is because in a single objective algorithm, 

ICA, empires are united when each empire’s imperialist is very close to the other’s 

imperialist. This is achieved by calculating the distance between two positions of 

imperialists and comparing this calculated distance with the distance threshold 

parameter, which is originally set to 0.02. The distance threshold used here is not for 

diversity preservation; it is only used for measuring how close two empires are to 

each other. If the distance is less than or equal to the specified threshold, then the 

empires are united. 
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In the proposed algorithm, the mentioned approach for uniting similar empires 

cannot be applied because there are several imperialists in the empire. Thus, all 

imperialists must be considered to compare the empires for similarity. Consequently, 

a comparison of empires for similarity is implemented by using the generational 

distance metric [52], which enables the calculation of the generational distance 

between two or more sets of non-dominated solutions. The generational distance GD 

is defined as: 

                                     ,                 (5.1) 

where S* is a reference solution set for evaluation of the solution set Sj and dxr is the 

distance between a current solution x and a reference solution r as: 

                   (5.2)                                                      

where k is the number of objective functions to be optimized. Reference and current 

solutions are the solutions from two empires to be united. Figure 5.4 illustrates an 

example for the computation of generational distance for two objective functions. 

  

 

 

 

Figure 5.4. Generational distance for uniting empires 
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5.2.6 Imperialistic Competition 

Imperialistic competition plays an important role in this algorithm because the whole 

algorithm is constructed to execute the competition between the empires. The 

imperialistic competition gradually decreases the number of weak empires, whereas 

it increases the number of strong empires. The weakest empire in the proposed 

algorithm is the one with the smallest number of non-dominated individuals, whereas 

the strongest empire is the one with the largest number of non-dominated individuals. 

Imperialistic competition is constructed so that the stronger an empire is, the more 

chances it has to obtain control of a weak colony in a weak empire. Consequently, it 

obtains possession of it. Weak empires will slowly lose their colonies during this 

competition and are soon terminated on account of being powerless, which means 

that these empires will be left with no countries. Imperialistic competition is 

described in Algorithm 5.4. 

Algorithm 5.4. Imperialistic Competition 

1. Construct a vector of total powers P for all empires. 

2. Select the weakest empire E with the lowest total power. 

3. Construct a vector of random values R ~U(0,1) of size P. 

4. Calculate D = R - P for each empire. 

5. The empire with the maximum value in D will possess the randomly selected 

colony in empire E. 

6. Terminate E if it has no colonies. 

The complete flowchart of MOICA is presented in Figure 5.5. 
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Start 

Initialization: 

1. Initialize problem parameters such as objective function name, number of variables and 

lower and upper bounds of decision variables 

2. Initialize algorithm parameters such as population size, number of initial empires, number 

of iterations and other coefficients used in assimilation and revolution operations 

Evaluate objective functions and assign cost values to each country 

Apply non-domination sorting  

Create initial empires 

For each empire j 

Obtain GNDS 

Apply assimilation: move colonies toward one of the randomly selected 

imperialists in the GNDS set and apply economic changes with probability pe 

Apply revolution: generate new countries from the LNDS set according to 

probability pr and revolution rate  

Evaluate objective functions and assign cost values to all colonies  

Update LNDS for empire j  

Calculate the total power of empire j  

Unite similar empires 

Apply imperialistic competition and terminate powerless empires  

Is termination condition 

satisfied? 

Exit 

Yes 

No 

Figure 5.5. MOICA flowchart 
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5.2.7 Computational Complexity of MOICA 

The time complexity for implementing non-domination sorting is the same as the 

time complexity for non-domination sorting in NSGA-II, that is O(M(2N)2), where M 

is the number of objectives and N is the number of solutions, i.e. the population size. 

Considering time complexities of assimilation and revolution operations, then in the 

worst case there is possibility for N-1 colonies to be assimilated / revolved, if there is 

only one dominating imperialist. Therefore, in every iteration, for both assimilation 

and revolution the time complexity is O(N). Another part that is considered for time 

complexity is the uniting similar empires, where the time complexity in every 

iteration is O(K2), where K is the number of empires in the population. The time 

complexity of objective functions is T(k), where k is the number of decision 

variables.  As a result, the overall time complexity of MOICA is O((M(2N)2 + K2) 

*T(k)). Comparing the time complexities of MOICA and NSGA-II it can be 

concluded that they are almost the same, since K2 is related to the number of empires, 

which is usually very low with comparison to the population size N, which could 

even be omitted. 

5.3 Experimental Results 

This section details the experiments and simulations conducted in this study. To 

obtain the experimental results and verify the effectiveness of the proposed 

algorithm, several bi- and tri-objective optimization problems were selected from the 

literature as the test problems. These were obtained from the study of Zitzler et al. 

[53]: ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Furthermore, test problems, including 

Kursawe [54], Fonseca [55], and Schaffer [56], were additionally used. Moreover, 

ten unconstrained test functions were employed from the Congress on Evolutionary 
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Competition (CEC) 2009 Special Session and Competition [57]: UF1, UF2, UF3, 

UF4, UF5, UF6, UF7, UF8, UF9, and UF10.  

Table 5.1 details all unconstrained test problems used in this study except the CEC 

2009 test functions, which can be found in [57]. Additionally, some performance 

metrics were used to evaluate the obtained results with the Pareto optimal solutions, 

specifically, Hypervolume (HV) [43], Epsilon Indicator (EI) [58] and Inverted 

Generational Distance (IGD). The IGD metric used in this study was the jMetal 

version.  

In addition, this section presents a comparison of the results of the proposed 

algorithm and other state-of-the-art multi-objective optimization algorithms. 

5.3.1 Discussion of the Results 

All experimental results were obtained by executing each algorithm ten times. The 

maximum number of function evaluations was set to 25,000. For some test functions, 

it was set to 5,000 to verify the performance of the algorithms with a higher and 

lower number of function evaluations. The population size was set to 100 for all 

algorithms. The dimension of the individuals in the population was set to 30 for all 

test functions. The tables given below describe the average hyper-volume indicator 

as well as the epsilon indicator, which were obtained from several executions of the 

given algorithm. The IGD metric was obtained as the average value from several 

executions of the algorithms. 

The proposed algorithm used the following parameters. The initial number of 

empires was set to eight. From several tests, it was evident that, if algorithm had far 

fewer or far more than eight initial empires, then the performance was poor. The 
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parameter  had a random value between (0, 1) and  had a random value between 

(0, 5). The parameter for the percentage of imperialists  was set to 0.3, such that at 

most 30% of the empire’s population was considered imperialists. In addition, 70% 

of the space was left for colonies in an empire; thus, there were more assimilations 

and revolutions performed. The revolution rate was set to 0.3, and the parameter 

used in the revolution process pr was set to 0.5. On the other hand, the parameter for 

applying economic changes pe may have been different for achieving better results in 

various test functions. For example, for UF9, the result was best when pe was set to 

around 0.2; nonetheless, in most cases, it was between 0.8 and 1 based on a trial and 

error approach. The values for the above parameters were chosen as the best suitable 

values for the proposed algorithm after a number of conducted experiments. 

Therefore, the parameters for MOICA were tuned using a non-iterative algorithmic 

approach [59], such that the parameters were generated during initialization and were 

then tested. 

The first three test problems addressed in this section are Fonseca, Kursawe, and 

Schaffer. Then, the ZDT set of problems is discussed and the results of the set of 

unconstrained problems in CEC 2009 are described. Values in bold are the best 

results obtained. All algorithms performed well in terms of convergence and 

divergence for each of the problems below. The cardinality measure, i.e. the number 

of non-dominated solutions, is important for having more candidate solutions and 

thus more chances for a good convergence. One of the main features that distinguish 

MOICA is the cardinality measure, which is very good for most of the problems. 
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The five real-valued ZDT problems are presented in Table 5.1, noting that ZDT5, the 

omitted problem, is binary encoded. Incidentally, due to being binary encoded, ZDT5 

has often been omitted from analysis elsewhere in the EA literature. 

Table 5.1. Unconstrained test problems used in this study 

Problem Objective Functions Variable bounds n 

Fonseca 
 

 

-4 ≤ xi ≤ 4 3 

Kursawe 
 

 
-5 ≤ xi ≤ 5 3 

Schaffer 
 

 
-10 ≤ x ≤ 105 1 

ZDT1 

 

 

 

0 ≤ xi ≤ 1 30 

ZDT2 

 

 

 

0 ≤ xi ≤ 1 30 

 

ZDT3 

 

 

 

 

0 ≤ xi ≤ 1 

 

30 

ZDT4 

 

 

 

0 ≤ x1 ≤ 1 

-5≤ xi ≤ 5 

i = 2,…,n 

30 

ZDT6 

 

 

 

0 ≤ xi ≤ 1 30 

 

Tables 5.2 to 5.4 contain Hypervolume, Epsilon Indicator, and IGD results of 

MOICA, NSGA-II, SPEA2 and OMOPSO for the unconstrained test problems given 
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in Table 5.1. On average, results for Hypervolume and Epsilon Indicator are similar 

for all algorithms. However, MOICA performs much better in terms of IGD metric. 

Table 5.2. Hypervolume results for unconstrained test problems with 25,000 

function evaluations 

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

Fonseca 0.99441 0.99441 0.99447 0.99453 

Kursawe 1.00000 1.00000 1.00000 1.00000 

Schaffer 0.97764 0.81099 0.90619 0.97748 

ZDT1 0.99242 0.99713 0.99699 0.99725 

ZDT2 0.98534 0.99431 0.99392 0.99444 

ZDT3 0.99824 0.99833 0.99835 0.99831 

ZDT4 0.98440 0.72624 0.57710 0.02393 

ZDT6 0.97120 0.93140 0.90948 0.97105 

Table 5.3. Epsilon Indicator results for unconstrained test problems with 25,000 

function evaluations  

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

Fonseca 1.00470 1.00560 1.00520 1.00310 

Kursawe 1.04330 1.04890 1.04890 1.04620 

Schaffer 1.01020 1.01030 1.07750 1.01010 

ZDT1 1.03240 1.03330 1.03580 1.01360 

ZDT2 1.00350 1.00348 1.00329 1.00250 

ZDT3 1.00000 0.99970 0.99950 0.99910 

ZDT4 1.03260 3.43550 5.38910 22.01040 

ZDT6 1.01610 1.31910 1.47070 1.01590 

Table 5.4. IGD results for unconstrained test problems with 25,000 function 

evaluations 

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

Fonseca 1.1805E-4 3.2267E-4 2.3427E-4 2.1033E-4 

Kursawe 4.4896E-4 1.7598E-4 1.3464E-4 1.6165E-4 

Schaffer 2.3575E-5 0.0373 0.0215 3.3629E-4 

ZDT1 2.5732E-5 1.8641E-4 1.5222E-4 1.3782E-4 

ZDT2 3.5707E-5 1.9656E-4 1.7261E-4 1.4183E-4 

ZDT3 7.4842E-5 2.6488E-4 2.3718E-4 2.1859E-4 

ZDT4 3.8724E-5 0.0849 0.1365 1.1501 

ZDT6 1.6200E-5 0.0137 0.0219 1.2514E-4 
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Table 5.5 contains MOICA, MOEA/D-AWA [60], Harmony NSGA-II and Harmony 

MOEAD [61] IGD results for the set of ZDT problems. From these results it is seen 

that MOICA outperforms all three algorithms. 

Table 5.5. IGD results for ZDT test problems with 25,000 function evaluations 

      Algorithm 

Fun. 

MOICA MOEA/D-

AWA 

Harmony 

NSGA-II 

Harmony 

MOEAD 

ZDT1 2.5732E-5 4.470e–3 8.03e-04 1.86e-03 

ZDT2 3.5707E-5 4.482e–3 1.12e-03 3.01e-03 

ZDT3 7.4842E-5 6.703e–3 5.01e-04 1.19e-03 

ZDT4 3.8724E-5 4.238e–3 8.33e-02 1.64e-04 

ZDT6 1.6200E-5 4.323e–3 2.11e-04 1.91e-04 

 

As stated above, one of the features of MOICA is the ability to produce many 

candidate solutions by having a high cardinality measure. The Schaffer test problem 

is an example for illustrating the cardinality measure of MOICA.  

 

Pareto Optimal 
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Figure 5.6. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2 

on Schaffer 

Figure 5.6 illustrates the Pareto found by all algorithms for the Schaffer test problem. 

Although the Hypervolume and Epsilon Indicator results are good for all algorithms, 

as shown in Tables 5.2 and 5.3, respectively, it is easily seen from Figure 5.6 that 

MOICA and OMOPSO have much better cardinality measures than NSGA-II and 

SPEA2. 

For ZDT1, ZDT2, and ZDT3 test problems, all algorithms performed equally well. 

However, with respect to the ZDT4 test problem, MOICA performed much better 

than all other algorithms in this study. In the ZDT4 test problem, MOICA 

demonstrated its power in terms of convergence and divergence when compared to 

the other algorithms. It was successful in this test problem and others on account of 

MOICA OMOPSO 

NSGA-II SPEA2 
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the way in which it searches the available search space. This is handled by setting 

many different empires in the beginning of the algorithm for which LNDS sets are 

positioned in different parts of the search space. This enables the algorithm to search 

the whole search space and to consequently obtain good convergence and 

divergence. Figure 5.7 illustrates the Pareto found by four algorithms for the ZDT4 

test problem, which demonstrates how the spread of solutions, convergence, and 

divergence is effectively preserved in MOICA compared to other algorithms. Figure 

5.8 illustrates ZDT6 test problem, which is another good example for illustrating the 

performance of MOICA compared to other algorithms used in this study. However, 

in ZDT6, both MOICA and OMOPSO performed well compared to NSGA-II and 

SPEA2; however, NSGA-II performed better than SPEA2. 

 
Figure 5.7. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2 

on ZDT4 
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Figure 5.8. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2 

on ZDT6 

Meanwhile, Tables 5.6 to 5.9 contain Hypervolume, Epsilon Indicator, and IGD 

results for Uf1-UF10 unconstrained test problems from CEC 2009 with 25,000 

function evaluations for which MOICA on average again produces reasonably good 

results. 

Table 5.6. Hypervolume results for CEC 2009 unconstrained test problems with 

25,000 function evaluations 

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

UF1 0.98701 0.97802 0.98667 0.98955 

UF2 0.99671 0.98934 0.98897 0.99279 

UF3 0.92884 0.94478 0.98728 0.99454 

UF4 0.98849 0.98838 0.98811 0.98728 

UF5 0.93230 0.91786 0.90060 0.81056 

UF6 0.93785 0.94459 0.94282 0.91297 

UF7 0.97662 0.96890 0.95315 0.98730 

UF8 0.99348 0.99280 0.99220 0.98945 

UF9 0.98309 0.97468 0.95914 0.97845 

UF10 0.99334 0.92076 0.92967 0.72864 
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Table 5.7. Epsilon Indicator results for CEC 2009 unconstrained test problems with 

25,000 function evaluations 

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

UF1 1.07890 1.11220 1.06800 2.03310 

UF2 1.14590 1.12880 1.13060 1.22760 

UF3 1.70320 1.83810 1.07410 1.50760 

UF4 1.06600 1.08930 1.07390 1.07410 

UF5 1.55180 1.81000 1.86610 6.19530 

UF6 1.62380 1.56080 1.42700 2.22700 

UF7 1.07390 1.03760 1.05000 1.57840 

UF8 2.04970 4.01980 2.91510 7.51780 

UF9 4.19050 6.75860 3.61460 23.76640 

UF10 1.23930 3.25450 2.96740 7.65290 

Table 5.8. IGD results for CEC 2009 unconstrained test problems with 25,000 

function evaluations  

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

UF1 0.0035 0.0047 0.0042 0.0041 

UF2 0.0018 0.0020 0.0024 0.0021 

UF3 0.0103 0.0084 0.0072 0.0072 

UF4 0.0018 0.0018 0.0019 0.0022 

UF5 0.1268 0.1117 0.1155 0.3579 

UF6 0.0127 0.0102 0.0119 0.0178 

UF7 0.0075 0.0068 0.0098 0.0036 

UF8 0.0026 0.0029 0.0027 0.0037 

UF9 0.0035 0.0035 0.0030 0.0056 

UF10 0.0037 0.0063 0.0046 0.0266 

Table 5.9. IGD results for CEC 2009 unconstrained test problems with 25,000 

function evaluations  

      Algorithm 

Fun. 

MOICA DMCMOABC Harmony 

NSGA-II 

Harmony 

MOEAD 

UF1 0.0035 0.0053 0.0037 0.0026 

UF2 0.0018 0.0050 0.0345 0.0018 

UF3 0.0103 0.0544 0.0085 0.0067 

UF4 0.0018 0.0254 0.0033 0.0021 

UF5 0.1268 0.0527 0.0457 0.0488 

UF6 0.0127 0.0393 0.0089 0.0092 

UF7 0.0075 0.0065 0.0113 0.0118 

UF8 0.0026 0.0665 0.0028 0.0054 

UF9 0.0035 0.0368 0.0044 0.0060 

UF10 0.0037 0.1119 0.0036 0.0059 
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The performance of MOICA with regard to the test functions in CEC 2009 is good 

because MOICA produced competitive results compared to the other algorithms. On 

the other side DMCMOABC performs worst while Harmony NSGA-II and Harmony 

MOEAD perform also well. Figure 5.9 presents the results of MOICA along with 

those of other algorithms, as well as the Pareto optimal for the UF10 unconstrained 

test function. Tables 5.6 to 5.9 illustrate that MOICA performs better than the other 

algorithms with respect to UF10. In addition, it is clear from Figure 5.9 that MOICA 

is within the objective space of the Pareto optimal, unlike the other algorithms. 
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Figure 5.9. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2 

on UF10 

Tables 5.10 to 5.12 show the results for UF1-UF7 test functions with a maximum of 

5,000 function evaluations. The average performance of MOICA is either similar or 

better than the performances of the other algorithms, even for such a low number of 

function evaluations. This result likewise proves that MOICA quickly converges to 

global optimal solutions. 

Table 5.10. Hypervolume results for CEC 2009 unconstrained test problems with 

5,000 function evaluations 

      Algorithm 

Function 

MOICA NSGA-II SPEA2 OMOPSO 

UF1 0.97192 0.97651 0.98519 0.97075 

UF2 0.98314 0.98818 0.98617 0.98854 

UF3 0.91334 0.90554 0.89972 0.97219 

UF4 0.98567 0.98377 0.98167 0.98521 

UF5 0.86472 0.83347 0.80558 0.74621 

UF6 0.88661 0.88456 0.88426 0.86270 

UF7 0.97156 0.94940 0.93761 0.97825 

Table 5.11. Epsilon Indicator results for CEC 2009 unconstrained test problems 

with 5,000 function evaluations  

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

UF1 1.22630 1.57160 1.60980 1.45710 
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Table 5.11 (continued) 

UF2 1.51470 1.31100 1.27830 1.35280 

UF3 2.82790 2.37100 2.50600 1.61580 

UF4 1.12490 1.14260 1.13340 1.11650 

UF5 2.87590 4.36320 2.98440 5.24710 

UF6 2.45680 2.32760 3.01710 5.07890 

UF7 1.12350 1.23610 1.44560 1.43810 

Table 5.12. IGD results for CEC 2009 unconstrained test problems with 5,000 

function evaluations 

      Algorithm 

Fun. 

MOICA NSGA-II SPEA2 OMOPSO 

UF1 0.0054 0.0045 0.0051 0.0064 

UF2 0.0033 0.0032 0.0033 0.0030 

UF3 0.0152 0.0156 0.0153 0.0101 

UF4 0.0027 0.0031 0.0033 0.0027 

UF5 0.2167 0.3346 0.3409 0.5060 

UF6 0.0229 0.0264 0.0243 0.0357 

UF7 0.0061 0.0089 0.0117 0.0066 

Table 5.13 contains comparison of results between MOICA, MOEP with rank 

sorting, MOEP with non-domination sorting [64] and MOSaDE algorithms [88]. 

This comparison also proves very good performance of MOICA, since it produces 

better results than others. 

Table 5.13. IGD results for CEC 2009 unconstrained test problems with 25,000 

function evaluations 

     Algorithm 

Fun. 

MOICA MOEP 
(rank sorting) 

MOEP 
(non-domination 

sorting) 

MOSaDE 

UF1 0.0035 0.0596 0.0588 0.0983 

UF2 0.0018 0.0189 0.0516 0.0607 

UF3 0.0103 0.0990 0.1910 0.3248 

UF4 0.0018 0.0427 0.0624 0.0977 

UF5 0.1268 0.2245 0.7608 0.6963 

UF6 0.0127 0.1031 0.3606 0.3640 

UF7 0.0075 0.0197 0.0408 0.1916 

UF8 0.0026 0.4230 0.6512 0.4019 

UF9 0.0035 0.3420 0.2744 0.3984 

UF10 0.0037 0.3621 2.4987 2.9313 
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Table 5.14 presents the ranking of MOICA compared to the algorithms used in the 

CEC 2009 competition for unconstrained functions. The ranking is based on the 

average IGD metric. 

Table 5.14. Ranking of MOICA compared to algorithms in CEC 2009 

UF1 IGD UF2 IGD UF3 IGD 

MOICA 0.0035 MOICA 0.0018 MOEAD 0.00742 

MOEAD 0.00435 MTS 0.00615 MOICA 0.0103 

GDE3 0.00534 MOEADGM 0.0064 LiuLi Algorithm 0.01497 

MOEADGM 0.0062 DMOEADD 0.00679 DMOEADD 0.03337 

MTS 0.00646 MOEAD 0.00679 MOEADGM 0.049 

LiuLi 

Algorithm 

0.00785 OWMOSaDE 0.0081 MTS 0.0531 

DMOEADD 0.01038 GDE3 0.01195 Clustering 

MOEA 

0.0549 

NSGAIILS 0.01153 LiuLi 

Algorithm 

0.0123 AMGA 0.06998 

OWMOSaDE 0.0122 NSGAIILS 0.01237 DECMOSA-

SQP 

0.0935 

Clustering 

MOEA 

0.0299 AMGA 0.01623 MOEP 0.099 

AMGA 0.03588 MOEP 0.0189 OWMOSaDE 0.103 

MOEP 0.0596 Clustering 

MOEA 

0.0228 NSGAIILS 0.10603 

DECMOSA-

SQP 

0.07702 DECMOSA-

SQP 

0.02834 GDE3 0.10639 

OMOEAII 0.08564 OMOEAII 0.03057 OMOEAII 0.27141 

UF4 IGD UF5 IGD UF6 IGD 

MOICA 0.0018 MTS 0.01489 MOEAD 0.00587 

MTS 0.02356 GDE3 0.03928 MOICA 0.0127 

GDE3 0.0265 AMGA 0.09405 MTS 0.05917 

DECMOSA-

SQP 0.03392 
MOICA 

0.1268 DMOEADD 0.06673 

AMGA 0.04062 

LiuLi 

Algorithm 0.16186 OMOEAII 0.07338 

DMOEADD 0.04268 

DECMOSA-

SQP 0.16713 

Clustering 

MOEA 0.0871 

MOEP 0.0427 OMOEAII 0.1692 MOEP 0.1031 

LiuLi 

Algorithm 0.0435 MOEAD 0.18071 

DECMOSA-

SQP 0.12604 

OMOEAII 0.04624 MOEP 0.2245 AMGA 0.12942 

MOEADGM 0.0476 

Clustering 

MOEA 0.2473 LiuLi Algorithm 0.17555 

OWMOSaDE 0.0513 DMOEADD 0.31454 OWMOSaDE 0.1918 

NSGAIILS 0.0584 OWMOSaDE 0.4303 GDE3 0.25091 
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Table 5.14 (continued) 

Clustering 

MOEA 0.0585 NSGAIILS 0.5657 NSGAIILS 0.31032 

MOEAD 0.06385 MOEADGM 1.7919 MOEADGM 0.5563 

UF7 IGD UF8 IGD UF9 IGD 

MOEAD 0.00444 MOICA 0.0026 MOICA 0.0035 

LiuLi 

Algorithm 0.0073 MOEAD 0.0584 DMOEADD 0.04896 

MOICA 0.0075 DMOEADD 0.06841 NSGAIILS 0.0719 

MOEADGM 0.0076 

LiuLi 

Algorithm 0.08235 MOEAD 0.07896 

DMOEADD 0.01032 NSGAIILS 0.0863 GDE3 0.08248 

MOEP 0.0197 OWMOSaDE 0.0945 LiuLi Algorithm 0.09391 

NSGAIILS 0.02132 MTS 0.11251 OWMOSaDE 0.0983 

Clustering 

MOEA 0.0223 AMGA 0.17125 MTS 0.11442 

DECMOSA-

SQP 0.02416 OMOEAII 0.192 

DECMOSA-

SQP 0.14111 

GDE3 0.02522 

DECMOSA-

SQP 0.21583 MOEADGM 0.1878 

OMOEAII 0.03354 

Clustering 

MOEA 0.2383 AMGA 0.18861 

MTS 0.04079 MOEADGM 0.2446 OMOEAII 0.23179 

AMGA 0.05707 GDE3 0.24855 

Clustering 

MOEA 0.2934 

OWMOSaDE 0.0585 MOEP 0.423 MOEP 0.342 

UF10 IGD 

MOICA 0.0037 

MTS 0.15306 

DMOEADD 0.32211 

AMGA 0.32418 

MOEP 0.3621 

DECMOSA-

SQP 0.36985 

Clustering 

MOEA 0.4111 

GDE3 0.43326 

LiuLi 

Algorithm 0.44691 

MOEAD 0.47415 

MOEADGM 0.5646 

OMOEAII 0.62754 

OWMOSaDE 0.743 

NSGAIILS 0.84468 
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5.3.2 Friedman Aligned Ranks Test 

In addition to the ranking based on average IGD results discussed in previous section 

a Friedman aligned ranks test is also implemented over all IGD scores in order to 

compare statistical similarities between results of MOICA and other 13 algorithms in 

CEC2009 MOO contest. Table 5.15 shows the average rank values for all algorithms 

along with the p-value. The best scores of algorithms are shown by the subscripted 

numbers in Table 5.15. It is clear from Table 5.15 that, the average rank value of 

MOICA is the smallest one, which indicates that MOICA is the best performing 

algorithm among the 14 competitors. Meanwhile, the p-value being very small 

implies that there is significant statistical difference among the results as well as 

MOICA being statistically different from other algorithms. 

Table 5.15. Friedman aligned ranks over CEC2009 UF problem instances 

Algorithm Average 𝑭𝑨𝑹 value p-value 

MOEAD 4,45(4) 

1.6544e-06 

GDE3 7,50(6) 

MOEADGM 8,50(8) 

MTS 4,4(3) 

LiuLi Algorithm 5,90(5) 

DMOEADD 4,35(2) 

NSGAIILS 9,50(10) 

OWMOSaDE 9,90(12) 

Clustering MOEA 9,60(11) 

AMGA 8,30(7) 

MOEP 9,50(10) 

DECMOSA-SQP 8,70(9) 

OMOEAII 10,60(13) 

MOICA 1,70(1) 
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Chapter 6 

CONCLUSION 

This thesis presents studies and research on the single-objective and multi-objective 

optimization algorithms. Imperialistic competitive algorithm, which is a single-

objective global optimization algorithm, was studied in details and also applied on 

NP-hard problem – Travelling Salesman Problem. In addition to this, ICA was 

improved by modifying it’s the most important operator – assimilation, and as a 

result a new algorithm ICAMA was developed. Finally, a multi-objective version of 

ICA - MOICA was proposed and applied on various real valued benchmark 

problems known in the literature. The novelty of MOICA is highlighted in having 

several non-dominated solution sets, where exploration and exploitation of a search 

space is done without using special parameter for diversity preservation, which 

enables algorithm to avoid extra computations for maintaining spread of solutions. 

Both, ICAMA and MOICA performed well with comparison to other state-of-the-art 

algorithms. Experiments conducted in this thesis illustrate how especially MOICA 

outperforms other algorithms for most of the test problems. Application of Fuzzy 

Logic with ICAMA or MOICA is an option for the future work. There are many 

problems in real world that need to be solved by multi-objective optimization 

algorithms including fuzziness in their approach. 
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