

Novel Strategies for Single and Multi-Objective

Imperialistic Competitive Algorithm

Zhavat Sherinov

Submitted to the

Institute of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Eastern Mediterranean University

January 2018

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor

of Philosophy in Computer Engineering.

Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

 Examining Committee

1. Prof. Dr. Tolga Çiloğlu

2. Prof. Dr. Kemal Leblebicioğlu

3. Assoc. Prof. Dr. Mehmet Bodur

4. Asst. Prof. Dr. Adnan Acan

5. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

In this thesis, two different algorithms for solving global optimization problems were

developed. The first is imperialistic competitive algorithm with updated assimilation

(ICAMA), which is used for solving single-objective optimization problems.

ICAMA is a new strategic improvement on the imperialist competitive algorithm

(ICA) that is originally proposed based on inspirations from imperialistic

competition. Another algorithm is a multi-objective imperialistic competitive

algorithm (MOICA), which is for global multi-objective optimization problems.

ICA is based on the idea of imperialism. Two fundamental components of ICA are

empires and colonies. Initially, the algorithm builds several randomly initialized

empires where each empire includes one emperor and several colonies. Competitions

take place between the empires and these competitions result in the development of

more powerful empires and the collapse of the weaker ones. In ICAMA a new

method is introduced for the movement of colonies towards their imperialist, which

is called assimilation. The proposed method uses Euclidean distance along with

Pearson correlation coefficient as an operator for assimilating colonies with respect

to their imperialists. In order to test the effectiveness and competitiveness of ICAMA

against other state of the art algorithms it was applied to three sets of benchmark

problems – the set of 23 classical benchmark problems, CEC2005 and CEC2015

benchmarks.

MOICA is a modified multi-objective version of ICA. MOICA incorporates the

competition between empires and their colonies for the solution of multi-objective

iv

problems. Therefore, it employs a proposed approach of several non-dominated

solution sets, whereby each set is called a local non-dominated solution set (LNDS).

All imperialists in an empire are considered non-dominated solutions, whereas all

colonies are considered dominated solutions. Aside from local non-dominated

solution sets, there is one global non-dominated solution set (GNDS), which is

created from LNDS sets of all empires. MOICA is applied to a number of benchmark

problems such as the set of ZDT problems and CEC2009 multi-objective

optimization benchmark problems set.

Simulations and experimental results on the benchmark problems showed that

ICAMA produces competitive results for many test problems compared to other

state-of-the-art algorithms used in this study. Moreover, MOICA is more efficient

with comparison to many of the competitor algorithms used in this study, since it

produces better results for most of the test problems.

Keywords: Multi-objective metaheuristics, imperialistic competitive algorithm,

multiple non-dominated sets, global optimization.

v

ÖZ

Bu tezde, tümel optimizasyon problemlerini çözmek için iki farklı algoritma

geliştirilmiştir. Birincisi, gerçek değerli tek amaçlı en iyileme problemlerinin çözümü

için geliştirilmiş asimilasyon operatörü ile emperyalist rekabet algoritmasıdır

(ICAMA). ICAMA emperyalist rekabetten gelen ilhamlara dayanarak emperyalist

rekabetçi algoritmada (ICA) yeni bir stratejik gelişmedir. Diğeri ise, çok amaçlı

global optimizasyon problemler için geliştirilmiş olan çok amaçlı bir emperyalist

rekabet algoritmasıdır (MOICA).

ICA, emperyalizm fikrine dayanıyor. ICA'nın iki temel bileşeni imparatorluklar ve

kolonilerdir. Başlangıçta, algoritma her imparatorluğun bir imparator ve birkaç

koloni içerdiği birkaç rasgele başlatılmış imparatorluklar oluşturur. İmparatorluklar

arasında yarışmalar yapılır ve bu yarışmalar daha güçlü imparatorlukların

gelişmesine ve daha zayıf olanların çökmesine neden olur. ICAMA'da kolonilerin

emperyalistlerine doğru asimilasyon hareketi için yeni bir yöntem geliştirildi.

Önerilen yöntem, Kolonileri emperyalistlerine göre asimile etmek için bir operatör

olarak Pearson korelasyon katsayısı ile birlikte Öklid uzaklıklarını kullanmaktadır.

ICAMA'nın etkililiğini ve rekabet gücünü farklı ve yeni algoritmalara karşı test

etmek için üç kriter sorunu setine uygulandı – 23 standart ölçüt problemi olan seti,

CEC2005 ve CEC2015.

MOICA ICA’nın değiştirilmiş çok amaçlı versiyonudur. MOICA, çok amaçlı

problemlerin çözümü için imparatorluklar ve sömürgeler arasındaki rekabeti içeriyor.

Bu amaçla, hakim olan birçok çözüm setinin önerilen bir yaklaşımı uygulanmaktadır

vi

ve her bir sete yerel hakim olan çözüm seti (LNDS) adı verilmiştir. Bir

imparatorluktaki tüm emperyalistler hakim olan çözümler olarak görülürken, tüm

koloniler baskın çözümler olarak kabul edilir. Yerel hakim olan çözüm setlerinin

yanı sıra, tüm imparatorlukların LNDS setlerinden oluşan bir tane global hakim olan

çözüm seti (GNDS) vardır. MOICA, ZDT problemleri seti ve CEC2009 çok amaçlı

optimizasyon kriter problem seti gibi bir dizi kriter problemine uygulanmaktadır.

Çok amaçlı problemler üzerindeki simülasyonlar ve deney sonuçları mevcut büyük,

tek ve çok amaçlı optimizasyon algoritmalarına göre ICAMA ve MOICA'nın birçok

test problemi için rekabetçi sonuçlar ürettikleri ve daha verimli oldukları

görülmüştür.

Kıyaslama problemlerinde simülasyonlar ve deney sonuçları, ICAMA'nın bu tezde

kullanılan diğer yeni algoritmalara kıyasla birçok test problemi için rekabetçi

sonuçlar verdiğini gösterdi. Dahası, MOICA, bu tezde kullanılan en yeni

yarışmacıların çoğunluğuna kıyasla daha verimli, çünkü test problemlerinin çoğunda

daha iyi sonuçlar üretiyor.

Anahtar Kelimeler: Çok amaçlı metaheuristik, emperyalist rekabetçi algoritma,

çoklu hâkim olan setler, global optimizasyon.

vii

To My Family

viii

ACKNOWLEDGMENT

First of all, I would like to say Alhamdulillah for giving me the strength and

determination in completing this thesis throughout many years. I Praise Allah alone

for His mercy and help. I am very grateful to my parents, my mother Duriya

Sherinova and my father Alipasha Sherinov, for their invaluable support, patience

and believe in me and who sacrificed everything for me and my studies.

My sincere thanks go to my supervisor Asst. Prof. Dr. Ahmet Ünveren for his

assistance, direction and guidance. In particular, his recommendations and

suggestions have been invaluable for the thesis and our publications. I also wish to

thank Asst. Prof. Dr. Adnan Acan and Assoc. Prof. Dr. Mehmet Bodur for their

beneficial advices and corrections they used to make during semester progress report

presentations.

I am particularly indebted to my wife Amina for her invaluable patience, support and

advices. I am thankful to her for restricting herself in many things during the time I

was busy with my studies. I am also very grateful to my daughter Malika and my son

Mahdi, for they were reasons for me to be in mood and happy.

Lastly, but by no means least, my thanks go to my sisters Sevgi and Seylan and other

family members and my friends.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION………………………………………………………………………vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES ... xii

LIST OF FIGURES ... xv

LIST OF SYMBOLS AND ABBREVIATIONS ... xvi

1 INTRODUCTION .. 1

2 SINGLE AND MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 5

2.1 Single-objective Optimization Problem ... 5

2.1.1 Formulation of Single-objective Optimization Problem 5

2.2 Multi-objective Optimization Problem ... 6

2.2.1 Formulation of Multi-objective Optimization ... 7

2.2.2 Pareto Dominance in Multi-objective Optimization 7

3 IMPERIALISTIC COMPETITIVE ALGORITHM AND ITS APPLICATIONS . 10

3.1 Literature Review ... 10

3.2 Review of ICA .. 15

3.2.1 Assimilation ... 16

3.2.2 Revolution ... 17

3.2.3 Imperialistic Competition .. 18

3.3 Application of Modified ICA for the Solution of Travelling Salesman Problem

(TSP) .. 20

3.3.1 Formulation of TSP ... 20

x

3.3.2 Modified ICA .. 21

3.4 Experimental Results .. 23

4 IMPERIALISTIC COMPETITIVE ALGORITHM WITH UPDATED ASSIMILATION

FOR SOLVING SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS 26

4.1 The Proposed Assimilation Strategy .. 26

4.2 Experimental Results .. 30

4.2.1 Experimental Evaluations with Classical Benchmark Problems 30

4.2.2 Experimental Evaluations with CEC2015 Benchmark Problems 36

4.2.3 Experimental Analysis on the Strategy of Parameter v 42

5 MULTI-OBJECTIVE IMPERIALISTIC COMPETITIVE ALGORITHM WITH

MULTIPLE NON-DOMINATED SETS FOR THE SOLUTION OF GLOBAL

OPTIMIZATION PROBLEMS ... 44

5.1 Literature Review ... 45

5.2 Overview of MOICA .. 51

5.2.1 Non-Domination Sorting ... 55

5.2.2 Assimilation ... 56

5.2.3 Revolution ... 58

5.2.4 Possessing an Empire .. 60

5.2.5 Uniting Similar Empires .. 60

5.2.6 Imperialistic Competition .. 62

5.2.7 Computational Complexity of MOICA ... 64

5.3 Experimental Results .. 64

5.3.1 Discussion of the Results ... 65

5.3.2 Friedman Aligned Ranks Test ... 79

6 CONCLUSION ... 80

xi

REFERENCES...81

xii

LIST OF TABLES

Table 3.1. Obtained best and average results of ICA for different instances............. 25

Table 4.1. Experimental results for 23 classical benchmark problems 32

Table 4.2. Best found results for unimodal functions .. 33

Table 4.3. Best found results for multimodal functions ... 33

Table 4.4. Best found results for multimodal functions with a few local minima 34

Table 4.5. Friedman aligned ranks ... 34

Table 4.6. Friedman aligned ranks statistics. ... 35

Table 4.7. Best, worst, mean and standard deviation scores achieved by ICAMA for

the 15 CEC2015 competition benchmark problems with dimension of 30 36

Table 4.8. Best, worst, mean and standard deviation scores achieved by ICAMA for

the 15 CEC2015 competition benchmark problems with dimension of 10 37

Table 4.9. Mean results for function 1 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 37

Table 4.10. Mean results for function 2 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 37

Table 4.11. Mean results for function 3 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 38

Table 4.12. Mean results for function 4 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 38

Table 4.13. Mean results for function 5 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 38

Table 4.14. Mean results for function 6 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 39

xiii

Table 4.15. Mean results for function 7 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 39

Table 4.16. Mean results for function 8 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 39

Table 4.17. Mean results for function 9 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 40

Table 4.18. Mean results for function 10 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 40

Table 4.19. Mean results for function 11 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 41

Table 4.20. Mean results for function 12 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 41

Table 4.21. Mean results for function 13 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 41

Table 4.22. Mean results for function 14 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 42

Table 4.23. Mean results for function 15 of CEC2015 competition from best to worst

with dimension sizes of 10 and 30 ... 42

Table 4.24. The results of ICAMA on CEC2015 problems for different values of v 43

Table 5.1. Unconstrained test problems used in this study .. 67

Table 5.2. Hypervolume results for unconstrained test problems with 25,000 function

evaluations.. 68

Table 5.3. Epsilon Indicator results for unconstrained test problems with 25,000

function evaluations ... 68

xiv

Table 5.4. IGD results for unconstrained test problems with 25,000 function

evaluations.. 68

Table 5.5. IGD results for ZDT test problems with 25,000 function evaluations 69

Table 5.6. Hypervolume results for CEC 2009 unconstrained test problems with

25,000 function evaluations ... 72

Table 5.7. Epsilon Indicator results for CEC 2009 unconstrained test problems with

25,000 function evaluations ... 73

Table 5.8. IGD results for CEC 2009 unconstrained test problems with 25,000

function evaluations ... 73

Table 5.9. IGD results for CEC 2009 unconstrained test problems with 25,000

function evaluations ... 73

Table 5.10. Hypervolume results for CEC 2009 unconstrained test problems with

5,000 function evaluations ... 75

Table 5.11. Epsilon Indicator results for CEC 2009 unconstrained test problems with

5,000 function evaluations ... 75

Table 5.12. IGD results for CEC 2009 unconstrained test problems with 5,000

function evaluations ... 76

Table 5.13. IGD results for CEC 2009 unconstrained test problems with 25,000

function evaluations ... 76

Table 5.14. Ranking of MOICA compared to algorithms in CEC 2009 77

Table 5.15. Friedman aligned ranks over CEC2009 UF problem instances 79

xv

LIST OF FIGURES

Figure 2.1. Dominated area for Pareto dominance .. 8

Figure 2.2. Decision space vs. objective space .. 9

Figure 2.3. Pareto optimal solutions .. 9

Figure 3.1. Moving a colony towards its relevant imperialist in a randomly deviated

direction [2] .. 16

Figure 3.2. Demonstration of the fragmentation method for revolution process 22

Figure 3.3. Obtained optimal result for berlin52.tsp instance with cost = 7542 24

Figure 3.4. Obtained result for eil101.tsp with cost = 650 ... 24

Figure 4.1. ICAMA algorithm flowchart ... 29

Figure 5.1. GNDS and LNDS sets of three empires .. 53

Figure 5.2. Non-dominancy using fronts ... 56

Figure 5.3. Assimilation of a colony towards randomly selected imperialist from the

GNDS set ... 57

Figure 5.4. Generational distance for uniting empires ... 61

Figure 5.5. MOICA flowchart .. 63

Figure 5.6. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on Schaffer ... 70

Figure 5.7. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on ZDT4 ... 71

Figure 5.8. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on ZDT6 ... 72

Figure 5.9. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on UF10 .. 75

file:///D:/PhD/My%20Thesis/PhD%20Thesis/Defense/PhD-Thesis.docx%23_Toc503900966

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

Ω Some universe

ar Assimilation Rate

 Revolution Rate

 Replacement Rate

ɣ A parameter that Adjusts the Deviation from the Original

Direction

Ɵ A Random Variable with Uniform Distribution Between (-ɣ, ɣ)

β A Fixed Algorithmic Parameter with Value of About Two

ε A Constant Parameter

v A Constant Parameter

pe Probability for Economic Changes

 Maximum Percentage of Imperialists in an Empire

ABC Artificial Bee Colony algorithm

ACO Ant Colony Optimization

AMGA Archive-based Micro Genetic Algorithm

CCP Control Chart Pattern

CICA Chaotic Improved ICA

CEC Congress on Evolutionary Computation

kCE Cost of the Colonies of the Empire k

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CMA-ES_QR A variant of CMA-ES for Expensive Scenarios

DE Differential Evolution

xvii

DECMOSA-SQP Differential Evolution with Self-Adaptation and Local Search

for Constrained Multi-Objective Optimization Algorithm

DMCMOABC Dynamic Multi-Colony Multi-Objective Artificial Bee Colony

Algorithm

DMOEA Dynamic Multi-Objective Optimization Algorithm

DMOEA-DD DMOEA with Domain Decomposition

EA Evolutionary Algorithms

ED Euclidean Distance

EI Epsilon Indicator

EP Evolutionary Programming

ES Evolutionary Strategies

FACTS Flexible Alternating Current Transmission System

FAR Friedman Aligned Ranks

GA Genetic Algorithms

GD Generational Distance

GDE3 Generalized Differential Evolution 3

GNDS Global Non-Dominated Solutions

HBMO Honey Bee Mating Optimization

HGA Hybrid of Genetic Algorithms

HIM Hybrid Intelligent Method

HumanCog Algorithm based on Human Cognitive Behavior

HV Hypervolume

ICA Imperialistic Competitive Algorithm

ICA-ANN ICA and Neural Network

kIC Imperialist Cost of the Empire k

xviii

ICAMA Imperialistic Competitive Algorithm with Modified

Assimilation

IGD Inverted Generational Distance

iSRPSO improved Self Regulating Particle Swarm Optimization

K-MICA K-means ICA

LNDS Local Non-Dominated Solutions

MICA Modified Imperialist Competitive Algorithm

MLP Multi-layer Perceptron

MOICA Multi-objective Imperialistic Competitive Algorithm

MOEA Multi-Objective Evolutionary Algorithm

MOEAD Multi-Objective Evolutionary Algorithm based on

Decomposition

MOEA/D-AWA MOEAD with Adaptive Weight Vector Adjustment

MOEADGM MOEAD with Guided Mutation

MOEP Multi-Objective Evolutionary Programming

MOO Multi-Objective Optimization

MOP Multi-objective Optimization Problem

MTS Multiple Trajectory Search

MVMO Mean-Variance Mapping Optimization

NP-hard Non-deterministic Polynomial-time hard

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGAIILS NSGA-II with an Augmented Local Search

kNTC Normalized Total Cost of the Empire k

OMOEAII Orthogonal Multi-Objective Evolutionary Algorithm II

OMOPSO Optimized Multi-Objective PSO

xix

OWMOSaDE Objective-Wise Multi-Objective SaDE Algorithm

Pcc Pearson Correlation Coefficient

PSO Particle Swarm Optimization

SA Simulated Annealing

SaDE Self-adaptive Differential Evolution Algorithm

SPEA Strength Pareto Evolutionary Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm 2

kTC Total Cost of the Empire k

TS Tabu Search

TSP Travelling Salesman Problem

TSPLIB Travelling Salesman Problem Library

TunedCMAES Parameter tuned CMA-ES for Expensive Problems

1

Chapter 1

INTRODUCTION

Evolutionary Algorithms (EA) have been rapidly developed in the recent decades

and there are many various algorithms among EAs that address real world problems.

EAs are the heuristics that are inspired by the natural processes and are applied in

various fields for such tasks as optimization and searching. Genetic Algorithms

(GA), Evolutionary Programming (EP) and Evolutionary Strategies (ES) are the

well-known types of Evolutionary Algorithms, which have a population over which

certain operators are applied in order to find the best solution. However, real life

problems are often concerned about more than one objective to be optimized and

often with conflicting objective functions where one should be minimized, while the

other one to be maximized [1].

Multi-objective optimization problems (MOP) involve finding several optimal

solutions, which are called non-dominated solutions, where each solution is known

as Pareto optimum, while in the objective space altogether they represent a Pareto

front. The main goal of MOPs is to find Pareto front, which requires an algorithm a

significant amount of time for exploration of a search space as it is usually large and

evaluating objective functions. Multi-objective Evolutionary Algorithms (MOEA)

became very popular in the mid of 1990s, when more researchers were attracted by

them. These days there are various applications of MOEAs almost in all fields. Some

2

well-known evolutionary algorithms for solving MOPs are NSGA-II [51], SPEA2

[66], MOEAD [67], etc.

In this thesis, Imperialistic Competitive Algorithm (ICA) [2] was analyzed and

studied in details. ICA is an algorithm inspired by imperialistic competition between

empires in which socio-political characteristics and assimilations occur during

evolution process. ICA was applied on Travelling Salesman Problem [63]. However,

since ICA is originally designed for real valued problems, in order to apply it on TSP

it had to be modified for the solution of TSP, which is an integer valued problem.

Application of ICA on TSP showed that it performs well not only for real valued

benchmarks, but also for such NP-hard problems as TSP. Many benchmark instances

from TSPLIB were used for testing ICA, where it could reach an optimal solution for

some benchmark instances.

Further studies were carried out for the improvement of ICA. By modifying

assimilation operator, which is one of the two operators of ICA, a new and improved

version with modified assimilation (ICAMA) was developed [95]. While

assimilating colonies towards their respective imperialist, ICAMA uses either the

Euclidean distance or element-wise difference like in the original ICA, and this

decision is made randomly. Moreover, modified assimilation also uses a Pearson

correlation coefficient, which is computed from the newly generated colony and the

imperialist, as an acceptance criterion of the newly generated colony. ICAMA

performed better than original ICA and other state-of-the-art algorithms for various

benchmark instances as illustrated in experimental sections.

3

Finally, a multi-objective version of ICA (MOICA) [96] was developed, which is

another and the most important work in this thesis. MOICA, unlike many other

multi-objective evolutionary algorithms, has its population divided into imperialists

and colonies. MOICA implements the idea of imperialism by incorporating the

competition between the empires. Every empire has a set of imperialists and a set of

colonies. The main novelty of this algorithm lies in using a non-dominated solution

set for every empire, where each such set is called a local non-dominated solution

set. Therefore, all imperialists in an empire are considered to be non-dominated

solutions, whereas all colonies are considered to be dominated solutions. Moreover,

aside from local non-dominated solution sets, there is one global non-dominated

solution set, which is created from all local non-dominated solution sets of all

empires. Two main operators of the proposed algorithm – Assimilation and

Revolution use global and local non-dominated solution sets respectively during

assimilation and revolution of colonies. The significance of this study is seen from

the competitive results produced by the proposed algorithm. Another significant

feature in the proposed algorithm is that no special parameter is used for diversity

preservation, which enables algorithm to avoid extra computations in order to

maintain spread of solutions. Therefore, the proposed algorithm with original

operators Assimilation and Revolution produces competitive results with comparison

to the state-of-the-art-algorithms used in this study.

The organization of other chapters in this thesis is as follows. Chapter 2 briefly

discusses the multi-objective optimization and its problems. Chapter 3 focuses on the

overview of ICA and its applications with obtained experimental results. In Chapter

4, ICA with updated assimilation for solving single-objective optimization problems

along with experimental results is discussed. Chapter 5 presents a detailed

4

description of a novel multi-objective version of ICA and provides experimental

results conducted in this study with various benchmark problems. Finally, the

conclusion and discussion of possible future work is presented in Chapter 6.

5

Chapter 2

SINGLE AND MULTI-OBJECTIVE OPTIMIZATION

PROBLEMS

2.1 Single-objective Optimization Problem

There are various types of problems in the world that need to be optimized with

respect to a single as well as multiple objectives. Single-objective optimization

occurs in situations when there is only one objective to be optimized, i.e. minimized

or maximized, while this objective is subject to some constraints. Examples of

single-objective optimization problem may include the following: minimizing the

distance travelled, maximizing the profit, maximizing the customer satisfaction,

maximizing load capacity of vehicles, etc.

2.1.1 Formulation of Single-objective Optimization Problem

As was mentioned above, single-objective optimization problem has one objective to

be optimized. The mathematical formulation of a single-objective optimization

problem can be formulated as follows:

 minimizing (or maximizing) f(x)

Subject to k inequality constraints:

𝑔𝑖(𝑥) ≤ 0 i = 1, 2,…, k

And m equality constraints:

 ℎ𝑖(𝑥) = 0 i = 1, 2,…, m

6

 where 𝒙 in Ω

A solution minimizes (or maximizes) the scalar f(x) where x is an n-dimensional

decision variable vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) from some universe Ω.

Even though some real world problems can be expressed in a form of a single

objective problem very often it is hard to define all the aspects in terms of a single

objective. Therefore, defining several objectives often produces a better solution to

the problem.

2.2 Multi-objective Optimization Problem

Multi-objective optimization, which is also called multi-criteria or multi-attribute

optimization, is applied on the problems that involve several objective functions to

be optimized simultaneously, where these objective functions are subject to some

constraints. Multi-objective optimization problems (MOP) exist in many fields, such

as industry, mathematics and engineering. Often in these problems there are

conflicting objective functions, since some objectives need to be minimized, while

others to be maximized. MOP in its nature does not have a single solution unlike

single-objective optimization problems, but rather it has a set of solutions, which are

called Pareto optimal solutions. Some of the examples with conflicting objectives for

which MOP is solved can be as follows: minimizing the distance travelled by a

vehicle and maximizing the number of customers served, minimizing the number of

employees and maximizing the productivity performance, minimizing vehicles

waiting times and maximizing customer satisfaction grade, etc.

7

2.2.1 Formulation of Multi-objective Optimization

As was mentioned above, MOP has many objective functions to be optimized which

are subject to some constraints. The mathematical formulation of MOP can be

formulated as follows:

)](),...,(),(min[)(max 21 xfxfxfor n
 (2.1)

Subject to k inequality constraints:

0)(xgi
 i = 1, 2,…, k (2.2)

And m equality constraints:

 0)(xhi
 i = 1, 2,…, m (2.3)

Where n ≥ 2 is the number of objective functions to be optimized and x is the feasible

set of decision variables, which is defined as follows: T

nxxxx],,...,,[21 . The

feasible set is typically defined by some constraint functions. Thus, with feasible set

of values – nxxx *

21 ,...,*,* , we aim to find the optimal solutions by minimizing (or

maximizing) objective functions in (2.1) and at the same time satisfying constraints

in (2.2) and (2.3).

2.2.2 Pareto Dominance in Multi-objective Optimization

Since the MOP has several objective functions to be optimized it is not possible to

simple pick up the best solution among the available ones, since there is a set of so

called best solutions – Pareto optimal solutions. Therefore, the solution for finding

Pareto optimal solutions the dominancy is used, which divides all solutions in a

population into two groups – dominated and non-dominated solutions. Non-

dominated set of solutions is actually the Pareto optimal set. Therefore, they are

8

chosen as the best found solutions for the given problem. The dominancy rule is

stated as follows: A state A dominates a state B, if A is better than B in at least one

objective function and not worse with respect to all other objective functions.

Mathematically, Pareto dominance is described as follows: A vector),...,(1 kuuu

is

said to dominate),...,(1 kvvv

(denoted by vu

) if and only if u is partially less than

v, such that
iiii vukivuki :},...1{},,...,1{ .

Figure 2.1 illustrates the Pareto dominance for two of possible cases – minimization

and maximization of two objective functions. In case of minimization of objective

functions, solutions that are on the upper right side area are the dominated solutions.

On the other hand, in case of maximization of objective functions, solutions that are

on the left bottom side area become the dominated solutions of a solution A as

depicted in Figure 2.1.

Figure 2.1. Dominated area for Pareto dominance

A

Solutions

dominated

by A

Solutions

dominated

by A

If minimizing

If maximizing

9

In multi-objective optimization the objective functions constitute a multi-

dimensional space. Therefore, for each solution x in the decision variable space X

there is a point in the decision space Z denoted by 𝑓(𝑥) = 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑚,)𝑇.

Figure 2.2. Decision space vs. objective space

Figure 2.2 depicts the decision variable space versus objective space. The Pareto

optimal solutions for minimization problem are illustrated in Figure 2.3 for two

objective functions. Since the problem illustrated in this figure is the minimization

problem, the points in bold are the solutions belonging to the Pareto optimal set, such

that they are the best solutions, since they dominate all other solutions, which are

shown in circle.

Figure 2.3. Pareto optimal solutions

M
in

im
iz

e

Minimize

z1 x1

z2

… … …

xn zm

… … …
x2

10

Chapter 3

IMPERIALISTIC COMPETITIVE ALGORITHM AND

ITS APPLICATIONS

3.1 Literature Review

Imperialist competitive algorithm (ICA) is based on inspirations from imperialistic

competition. Accordingly, based on the idea of imperialism, the two fundamental

components of ICA are empires and the colonies. Initially, the algorithm builds

several randomly initialized empires where each empire includes one emperor and

several colonies. Competitions take place between the empires and these

competitions result in development of more powerful empires and the collapse of the

weaker ones [2]. ICA is a population based metaheuristic that is inspired from

observations on imperialists and their colonies. In this respect, there are other well-

known metaheuristics inspired from biological and natural phenomena. Among these

algorithms Genetic Algorithms (GAs) that conducts search and optimization

procedures by imitating the process of natural evolution [3]. Other examples of such

algorithms are Ant Colony Optimization (ACO), which is inspired by the behavior of

ants in nature while looking for forage [4], and Particle Swarm Optimization (PSO),

which is based on the social behavior of bird flocks in traveling long distance with

guidance of local and global group leaders [5].

PSO mimics the behavior of a set of social insects that work together while exploring

the search space. On the other hand, though ICAMA is similar to PSO in a way that

11

it also has a leader – imperialist, the behavior of colonies are quite different, since all

of them try to move towards the best position of an imperialist without taking into

consideration local best positions unlike in PSO. Differential Evolution (DE) [35] is

another population-based method for optimizing a problem, which is very simple, but

very powerful. DE is a deviant variety of GA, which iteratively tries to improve

solutions with regard to a special type of differential operator. Evolutionary Strategy

(ES) [36] also belongs to a class of evolutionary algorithms and it is inspired by the

principles of biological evolution. ES algorithm solves optimization problems in an

iterative manner by generating new offspring in every generation from the current

population (parents) and selects the best ones for the next generation as the current

population. Artificial Bee Colony (ABC) [34] is an algorithm inspired by the

behavior of honey bees, in which individuals (solutions) are modified by the artificial

bees, where the aim of bees is to discover the individual with the highest nectar. The

idea of having two types of artificial bees – employed and onlooker bees allows

algorithm to combine local search with global search methods, which is implemented

by employed and onlooker bees respectively. Mean-Variance Mapping Optimization

(MVMO) [68] is from among the recent algorithms that were developed in the field

of heuristic optimization. The main idea behind MVMO is the approach of using a

single parent-offspring pair and a normalized range of the search space, which is

used for optimization variables. Moreover, the use of a special mapping function that

is responsible for the actual mean and variance of the normalized optimization

variables for mutation operation is another feature of MVMO. An improved version

of Self Regulating Particle Swarm Optimization (iSRPSO) [69] is an algorithm that

uses the method in which least performing particles that have different perceptions

adopt different strategies for updating mechanism. The usage of these particles, the

12

best and the top three best particles, allows algorithm to find a good directional

update for better solutions. HumanCog [70] is a 3-layer architecture algorithm for

solving optimization problems that imitates a human behavior in terms of thinking

and decision making, such that human cognitive and metacognitive behavior.

Therefore, three layers are formed by cognitive, metacognitive and social cognitive

layers. Thus, an optimal and accurate decision is made with the help of interaction of

these three layers. CMA-ES_QR is another algorithm for solving single objective

optimization problems, which is a variant of CMA-ES [71] for expensive scenarios.

In addition to CMA-ES_QR algorithm, tuned CMA-ES (TunedCMAES) [72] is also

a variant of CMA-ES for solving expensive problems, which uses bi-level

optimization approach for tuning parameters of CMA-ES algorithm.

A particular example of trajectory based metaheuristics is the Simulated Annealing

(SA) algorithm that is inspired from physical annealing process of metals. SA is

currently the only metaheuristic for which a mathematical proof of finding a globally

optimal solution exists under asymptotic computational conditions [6]. In fact,

Reeves et al. introduced a convergence proof for GAs where the evolutionary

procedure is modeled using Markov chains [38]. The authors considered the case of

(1+1)-GAs where a 1-individual population generates one offspring per generation.

Even though the proof is a pioneering step towards the convergence proof of GAs, it

has limited contribution to practical use of evolutionary algorithms.

As a population based metaheuristic, ICA is applied for the solution of a wide variety

of optimization problems mostly from engineering domains. In this respect, many

problems that are already solved by evolutionary and nature-inspired metaheuristics

are re-solved using ICA and comparative performance evaluations are carried out

13

and published in literature. ICA is successfully applied for the solution of assembly

line balancing [7, 8], facility layout problems [9, 10], network flow problems [11,

12], supply chain management [13, 14], image processing [15, 16], artificial neural

network training [17, 18], data mining [19, 20], power system optimization [21, 22],

and scheduling [23, 24].

Since its initial introduction, several proposals on the improvements of ICA have

been published in literature. These improvement proposals are either on strategical

changes in algorithm’s parameters and/or procedures, or on hybridization of ICA

with other well-known soft computing methods. There are four fundamental

parameters in ICA, these are namely assimilation rate (AR) representing the

percentage of similarity between an imperialist and its colonies, revolution rate (RR)

representing the replacement rate of weakest colonies by newly generated countries,

 that weights the mean power of colonies on the total power of their empire and the

pair (Ncountry,Nempire) describing the total number of colonies (countries) and number

of empires. So far, studies on application of ICA for different problems proposed

experimental tuning of these parameters and a detailed study describing the effect of

parameter settings on the success of ICA algorithm is not found in literature. Bagher

M, Zandieh M, Farsijani H have studied the effects of three classes of parameter

settings for an assembly line problem and, over 9 degrees of freedom of the four

algorithm parameters, their optimal values are obtained using Taguchi experiment

design framework [25].

Considering the hybridization efforts of ICA with other soft computing methods,

Talatahari S, Azar B F, Sheikholeslami R, Gandomi A H introduced chaotic

improved ICA (CICA) where the authors studied seven different chaotic maps to

14

improve the assimilation procedure of conventional ICA and they reported that the

best performance of CICA is obtained with the use of logistic and sinusoidal maps

[25]. T. Niknam, E. Taherian Fard, N. Pourjafarian, A. Rousta proposed an efficient

hybrid algorithm based on a modified ICA and K-means method and called the new

algorithm as K-MICA. This hybrid method is used for finding the optimum

clustering of N objects into K clusters. K-MICA was tested for robustness and ability

of overcoming locally optimal solutions. Based on the comparative evaluations

against several metaheuristics such as ant colony optimization (ACO), particle

swarm optimization (PSO), genetic algorithms (GA), tabu search (TS), honey bee

mating optimization (HBMO) and K-means, the obtained results exhibited that K-

MICA performed better than its well-known competitors [27]. N. Razmjooy, B.S.

Mousavi, F. Soleymani proposed a new hybrid algorithm that combines ICA and

Neural Network (ICA-ANN) to solve skin classification problems. The authors used

a multi-layer perceptron network (MLP) as a pixel classifier whereas an ICA was

used for optimizing the weights of MLP [28]. Nia A R, Far M H, Niaki S T A built a

hybrid of genetic algorithms and ICA for the solution of nonlinear integer

programming problems [29]. In their proposed algorithm (HGA), ICA is first used to

produce the best initial solutions for GAs and then GAS runs until a termination

condition to improve the individuals in the initial population. Over six numerical

examples in three categories (small, medium and large size), the experimental results

showed that the proposed hybrid procedure could find better and nearer optimal

solutions compared to those found by ICA and GAs.

As briefly mentioned above, the two fundamental components of ICA are the

empires and the colonies, and the imperialistic competition is the most important

phase of the algorithm. This competition causes the colonies to converge towards

15

locally optimal solutions within the search space with guidance of their

corresponding imperialists. Hence, it is seen that strategies for moving the colonies

towards their relevant imperialist – assimilation and generation of new countries in

each empire, are the key procedures for the success of the algorithm.

3.2 Review of ICA

In imperialist competitive algorithm, the empires from among all countries

(imperialists) compete for gaining the colonies, as the aim of each empire is to

possess more colonies. This competition along with assimilation – moving colonies

towards their relevant imperialists and revolution – changing the socio-political

characteristics of colonies, enables the algorithm to search for a locally optimal

solution that may also probably be the global optimum of the underlying objective

function. During the competition among the empires, there is possibility that some

colony will become better than the imperialist that it belongs to. In such a case, ICA

swaps the positions of imperialist and this colony, so that the colony becomes the

imperialist and the former imperialist becomes a colony. For a minimization

problem, the power of an empire is inversely proportional to its fitness value. That is,

the less is the fitness of the empire, the more powerful it is [2]. When there are no

countries in an empire, it is termed to be powerless and the powerless empires

collapse and terminate. In other words, when an empire runs out of the colonies and

it has no more colonies in its state, then this empire becomes powerless and is

eliminated by ICA. Thus, the number of empires decreases by one and this process

continues until there remains only one the most powerful imperialist state. At this

point, the algorithm may stop, since only one empire remained or it can continue till

the maximum number of iterations specified by the user is reached. In practical

implementations, it is recommended to continue till the satisfaction of termination

16

condition(s), since there is no guarantee that when only one empire remains the

optimum solution is found.

3.2.1 Assimilation

Assimilation is the movement of colonies towards imperialist in their empire. This

process is significantly effective on the success of ICA, as it is concerned with the

improvement of colonies within the empires. Figure 3.1 describes the movement of a

colony towards its associated imperialist in a randomly deviated direction to search

the space around the imperialist. As shown in Figure 3.1, assuming that the

dimension of the optimization problem is two, the current and the updated positions

of a colony are denoted with a white and a black circle, respectively. Considering

that the position of imperialist is (xi,yi) and the position of the colony is (xc,yc), the

distance vector is D=(xi-xc,yi-yc). A uniformly distributed and scaled random vector d

is generated and added to current position of the colony to compute its new position.

In Figure 3.1, the parameter Ɵ is also a random variable with uniform distribution

between (-ɣ, ɣ), where ɣ is a parameter that is used for adjusting the change in

movement of a colony from the original direction [2].

Figure 3.1. Moving a colony towards its relevant imperialist in a randomly deviated

direction [2]

Ɵ

x

Current Colony

Position

Imperialist

Updated Colony

Position

D

y

17

The assimilation procedure generalized to n dimensional problems is as follows:

Let

 Col_Pos = [p1, p2, …, pn] (3.1)

be the vector representing the colony’s position and

 Imp_Pos = [p’1, p’2, …, p’n] (3.2)

be the vector representing its imperialist’s position, where n is the dimension of the

optimization problem. Now, let D be the vector containing the element-wise

difference of (3.1) and (3.2),

 D = [p1- p’1, p2- p’2,…,pn- p’n]. (3.3)

Obviously, D is the vector representing the positional difference (Col_Pos –

Imp_Pos). Consequently, we proceed with the calculation of the new colony’s

position as,

 Col_Pos_New = Col_Pos + β × �⃗� ⨂ �⃗⃗� , (3.4)

where 𝑟 ⃗⃗ is a uniformly distributed random variable vector of length n. β is a fixed

algorithmic parameter that is commonly chosen to be about two [2].

3.2.2 Revolution

Revolution is the process of generating new countries within an empire. This

happens by random changes in positions of some colonies [2]. Revolution is similar

to the mutation operation in GAs where values of some variables are changed by

randomly selected values with a very small probability. As a result, while new

countries (colonies) are generated through revolution, some of the old colonies are

replaced by the newly created countries. Pseudo code of the revolution procedure is

presented in Algorithm 3.1.

18

Algorithm 3.1. Revolution

3.2.3 Imperialistic Competition

Imperialistic competition takes place after assimilation and revolution operations. To

describe the details of imperialistic competition, we need to discuss the computation

of the total cost of an empire. The total cost of an empire can be expressed as follows

[2]:

kTC =

kIC + ε × mean(CEk), (3.5)

where
kTC is the total cost of an empire k,

kIC is the imperialist cost of empire k,

kCE is the cost of the colonies of the empire k and ε is a constant parameter. A small

value of ε causes the total cost of an empire to depend mostly on the imperialist,

whereas a greater value for ε will make the total cost depending on both the

imperialist and the colonies of the empire.

Competition among the empires is realized by removing the weakest empire from the

competition and allowing other empires to compete between each other for the

weakest colony in the weakest empire, which is excluded from the competition.

Therefore, the following mathematical formulation describes the possession

probabilities of the competing empires for the weakest colony [2].

1. For each empire do

2. Generate (RevolutionRate × NumberOfColoniesInEmpire) number of

random countries.

3. Replace existing countries by newly created ones randomly.

4. EndFor

19

N

i

i

k

k

NTC

NTC
p

1

, (3.6)

where
kp is the possession probability of empire k, N is the number of imperialists

and
kNTC is a normalized total cost, which is computed as follows:

kNTC =
kTC + max(

iTC), i=1…N. (3.7)

The final step in the competition between imperialists is to have a vector containing

differences between possession probabilities and the uniformly distributed random

values between (0, 1) as follows:

 D =],...,,[2211 NN rprprp , (3.8)

where N is the number of imperialists.

The possessor of the weakest colony in the weakest empire is the one whose

corresponding index in the vector D contains the maximum value. A detailed

algorithmic description of ICA is presented in Algorithm 3.2 below.

Algorithm 3.2. ICA Algorithm

1. Initialize the population and create empires.

2. Compute the total cost of all empires.

3. Do

4. For each empire do

5. Apply Assimilation by moving colonies towards imperialist

6. Apply Revolution by replacing colonies based on revolution rate with

newly created ones randomly.

7. Exchange position of an imperialist and the colony with the better cost

if exists.

20

8. EndFor

9. Compute the total cost of all empires.

10. Apply imperialistic competition.

11. Eliminate empires which have no colonies.

12. Until termination condition is satisfied.

3.3 Application of Modified ICA for the Solution of Travelling

Salesman Problem (TSP)

ICA is used for a solution to a well-known combinatorial problem named as

travelling salesman problem. TSP is one of the most studied problems in

optimization, which was first formulated in 1930. There are many different heuristics

and methods proposed in the literature for solving TSP, which is NP-hard problem in

combinatorial optimization. The idea behind TSP is simple, which can be stated as

follows: there is a traveler, who wishes to visit n cities exactly once each by starting

from a particular city and returning to it. Then objective is to find the shortest route

for this traveler.

3.3.1 Formulation of TSP

TSP can be formulated as follows: let n be the total number of cities to be visited and

][, jicC be an nn matrix containing costs (or distances) between cities, where ci,j

denotes the cost of travelling from city i to city j. The objective is to find the shortest

route among all given cities, where cost (or distance) matrix among all cities is given

as input. The total cost N of a TSP tour for n cities is given by

1,

1

1

1, n

n

i

ii CCN

21

3.3.2 Modified ICA

Every colony in an empire changes its position in two parts of the algorithm, which

are assimilation and revolution as was mentioned above. ICA in its original form is

very powerful for solving real valued functions, where assimilation and revolution

are very suitable. However, for solving TSP these two parts – assimilation and

revolution need to be changed so that the algorithm can be applied to TSP.

Therefore, in assimilation part 2-opt local search is introduced together with the

method of swapping the cities of the countries. The pseudo code for assimilation is

given in Algorithm 3.3.

Algorithm 3.3. Assimilation(current_colony)

1. Repeat until there is no improvement

2. Best_distance = calculate_total_distance(current_route)

3. For all cities i do

4. For all cities k do

5. New_colony = 2optswap(current_colony, i, k)

6. New_distance = calculate_total_distance(New_colony)

7. If New_distance < Best_distance Then

8. current_colony = New_colony and go to 2

9. Otherwise go to 4

10. EndFor

11. EndFor

12. EndRepeat

Where calculation of total distance is done by using either Euclidean distance,

geographical distance etc., depending on the type of the edge weights of the dataset

used. On the other hand, 2opt swap is done by reversing the cities in a solution

(colony) between points i and k, and leaving the rest unchanged.

22

Revolution part of the algorithm is changed to implement fragmentation method [30]

on the countries and searching for the shortest route. This method of fragmentation is

implemented as follows. Firstly, the candidate solution is divided randomly into

several fragments based on the number of cities. Then construction of a new solution

starts by choosing randomly first fragment. After that, the distances dn between the

last city in the first fragment and first cities of all other fragments are calculated.

Additionally, the distances 𝐝𝑛
′ between the last city in the first fragment and the last

cities of all other fragments are calculated. The fragment whose city is the closest to

the last city in the first fragment is concatenated as it is if its first city is the closest

one, otherwise if it is the last city which is the closest one, then the fragment is

reversed before concatenation. This process lasts until all fragments are reconnected

with each other. Moreover, this process in revolution part is applied to all the

colonies of an empire. Figure 3.2 demonstrates an example of the fragmentation

method used for revolution process. Algorithm 3.4 demonstrates the complete

algorithm of ICA for TSP.

Figure 3.2. Demonstration of the fragmentation method for revolution process

Algorithm 3.4. ICA Algorithm for TSP

1. Initialize the population and create empires.

2. Compute the total cost of all empires.

23

3. Do

4. For each empire e do

5. For each colony c in empire e do

6. Assimilation(c)

7. Revolution(c)

8. Exchange position of an imperialist and the colony with the better

cost if exists.

9. EndFor

10. EndFor

11. Compute the total cost of all empires.

12. Apply imperialistic competition.

13. Eliminate empires that have no colonies.

14. Until termination condition is satisfied.

3.4 Experimental Results

In order to test the modified ICA for solving TSP many sample instances from

TSPLIB library were used. The proposed solution in this study for TSP provides

good results for many sample instances. In all experiments the population is set to

200, where initial number of imperialists is set to be 8. Maximum number of

iterations is 1000. The following Figure 3.3 illustrates the result for the berlin52.tsp

instance sample from TSPLIB.

24

The above figure shows how fast ICA converges to the optimal solution with cost

equal to 7542, which is obtained in 134 iterations. The next Figure 3.4 demonstrates

result obtained for eil101.tsp.

0 50 100 150
7500

8000

8500

9000

0 100 200 300 400 500 600 700 800 900 1000
640

660

680

700

720

740

760

780

800

820

Figure 3.3. Obtained optimal result for berlin52.tsp instance with cost = 7542

Figure 3.4. Obtained result for eil101.tsp with cost = 650

25

As shown in above figure, ICA again very quickly converges to the optimal solution.

So, in the first 400 iterations it finds the path with cost equal to 650, which is very

close to the optimal cost that is equal to 649. The following Table 3.1 summarizes

some of the experimental results obtained in this study. The following sample

instances from TSPLIB are used for experiments: berlin52.tsp, eil51.tsp, eil76.tsp,

eil101.tsp, kroA100.tsp, kroC100.tsp, kroA150.tsp, kroB100.tsp, d198.tsp and

rl493.tsp.

Table 3.1. Obtained best and average results of ICA for different instances

Problem Optimal ICA Best Found ICA Average

berlin52.tsp 7542 7542 7542

eil51.tsp 426 427 427.5

eil76.tsp 538 546 547.5

eil101.tsp 649 650 650

kroA100.tsp 21282 21375 21378

kroC100.tsp 20749 20753 21322

kroA150.tsp - 27567 27739

kroB100.tsp - 22605 22942

d198.tsp - 20208 20542

d493.tsp - 41190 41698

In above table optimal values indicates with ‘-’ are not found ones. As can be seen

from the results obtained in this work, imperialist competitive algorithm along with

2-opt local search and fragmentation method produces good results. This is because

of the search mechanism imperialistic competition in ICA, which enables it to search

the whole search space.

26

Chapter 4

IMPERIALISTIC COMPETITIVE ALGORITHM WITH

UPDATED ASSIMILATION FOR SOLVING SINGLE-

OBJECTIVE OPTIMIZATION PROBLEMS

The assimilation procedure used in conventional ICA results in slow convergence

speed in reaching the global optimum and sometimes it is the main cause of getting

stuck at locally optimal solutions. In assimilation operation of ICA, even if there is a

small deviation Ɵ in direction towards the imperialist, the direction still goes towards

the imperialist since the current imperialist is the optimum solution of that empire.

However, this might be misleading for the colonies due to the fact that imperialists

are locally optimal solutions that may be far from the globally optimal position. Of

course, after a number of iterations ICA may realize that there is a better position and

replace the imperialist, as it does when a colony becomes better than the imperialist,

but, as mentioned before, this slows down the performance and convergence to the

global minimum of the objective function. Based on these observations, the proposed

assimilation strategy aims to perform a better search around the imperialists and,

compared to the original ICA proposal, both the convergence speed and the quality

of the resulting solutions are improved significantly.

4.1 The Proposed Assimilation Strategy

The assimilation operation in ICA is modified in such a way that the colony is either

moved towards the imperialist as in the original ICA or it is moved in a randomly

selected direction scaled by the Euclidean distance between a colony and the its

27

imperialist. The selection between the two move operations is controlled by a

parameter ar that controls the percentage of assimilation operations of either type.

The mathematical formulation of the modified assimilation operation is given below:

Let Col_Pos be defined as in (3.1). then,

where ED is the Euclidean distance between the colony and its imperialist, 𝑟 is an n-

dimensional random vector, �⃗⃗� is the distance vector between the colony and its

imperialist and the vector multiplication is performed element wise.

Another modification on the assimilation operation of original ICA is the

computation of Pearson correlation coefficient (Pcc) between the colonies and their

imperialists and using this value as an acceptance criterion for the new colony

position. If Pcc is less than a predefined limit, , the new colony position is not

accepted and the colony keeps staying in its current position. The Pcc is calculated as

follows:

' '

' 2 ' 2 2 2() () ()

i i i i

i i i i

n x y x y
Pcc

n x x n y y

, (4.2)

where xi’ and yi, i=1,..,n, represent the assimilated position of the colony and

position of the imperialist, respectively. The pseudo code of the proposed

assimilation procedure is illustrated in Algorithm 4.1.

Algorithm 4.1. Modified Assimilation

1. For each colony in the empire do

2. Calculate Euclidean distance ED and element-wise

3. distance D between the colony and the imperialist

, (4.1)

28

4. If rand() < ar

5. colony_new= {colony + β × 𝑟 × ED} × Ɵ

6. Else

7. colony_new= colony + β × 𝑟 ⃗⃗ × �⃗⃗� × Ɵ

8. EndIf

9. Compute the cost of colony_new

10. If colony_new_Cost < colony_Cost

11. colony = colony_new

12. Else

13. Compute Pcc between colony_new and its imperialist

14. If |Pcc| >= then

15. colony = colony_new

16. EndIf

17. EndIf

18. EndFor

The flowchart of ICAMA algorithm is given in Figure 4.1.

29

Figure 4.1. ICAMA algorithm flowchart

Initialize the population and create empires

Move the colonies toward their relevant imperialist based on a

parameter ar

Apply Revolution by replacing colonies based on revolution rate with newly

created ones randomly

Is there a colony in an empire, which has lower cost

than that of imperialist?

Exchange the positions of that imperialist and a

colony

Compute the total cost of all empires

Pick the weakest colony from the weakest empire and give it to the empire that

has the most likelihood to possess it

Eliminate the empire

Is termination condition

satisfied?

Is there an empire with no

colonies?

Exit

Start

No

Yes

Yes

No

No

Yes

Compute the total cost of all empires

Compute total costs of all newly positioned (created) colonies

Replace colonies with newly created ones that have better costs

Calculate Pcc between newly created colonies with worse costs

and their relevant imperialists

Replace colonies with newly created ones that have Pcc >= 0.5

A
ssim

ilatio
n

30

4.2 Experimental Results

Experimental evaluations are conducted using three sets of benchmark problems,

namely the set of 23 classical benchmark problems [31], CEC2005 benchmarks [32]

and CEC2015 benchmarks [33]. Results and discussions associated with each group

benchmark problems are presented in subsections given below.

4.2.1 Experimental Evaluations with Classical Benchmark Problems

Problems in this set are divided into 3 groups – unimodal functions, multimodal

functions with many local minima and multimodal functions with a few local

minima. Unimodal functions are – Sphere Model (F1), Schwefel’s Problem 2.22 (F2),

Schwefel’s Problem 1.2 (F3), Schwefel’s Problem 2.21 (F4), Generalized

Rosenbrock’s Function (F5), Step Function (F6) and Quartic Function with Noise

(F7). Multimodal functions with many local minima are – Generalized Schwefel’s

Problem 2.26 (F8), Generalized Rastrigin’s Function (F9), Ackley’s Function (F10),

Generalized Griewank Function (F11) and Generalized Penalized Functions (F12,

F13). Multimodal functions with only a few local minima are – Shekel’s Foxholes

Function (F14), Kowalik’s Function (F15), Six-hump Camel-Back Function (F16),

Branin Function (F17), Goldstein-Price Function (F18), Hartman Functions (F19, F20)

and Shekel Functions (F21, F22, F23). Comparative evaluations are carried out with

results of original ICA1, Particle Swarm Optimization (PSO) [5], Artificial Bee

Colony (ABC) [34], Differential Evolution (DE) [35] and Evolutionary Strategy (ES)

[36]. All experiments are conducted with a maximum of 500000 objective function

evaluations for all algorithms in the experimental suit. Each test problem was solved

30 times and the best found objective function values are compared for each

algorithm. Problem sizes and variable ranges are the same ones used in the study

[32]. Initial numbers of empires and of colonies are set to 8 and 200, respectively, for

31

the original ICA and the proposed method. For the original ICA, =2 and [-1,1]

as they are also used.1 For the proposed method, =0.2, [-1,1], ar=0.9 and =0.5

for all benchmark problem sets and experimental trials. Tables containing results in

bold indicate the best performed algorithms. Table 4.1 demonstrates the results of the

proposed method ICAMA for the 23 classical benchmark problems described above.

As shown in Table 4.1, the proposed method found the optimal solutions for most of

the benchmark problems in this set. For those problems for which the optimal

solution could not be located exactly, the solution extracted by the proposed method

is quite close to the optimal one. The only exception is problem F14 for which the

extracted solution is from the optimal. This is the Kowalik’s function that has a flat

valley with sharply rising corners and most of the locally optimal solutions stay in

the flat part of the fitness landscape. Experimental results indicate that our proposal

that uses fixed parameters for all functions should be improved with adaptive

parameters so that its step lengths can be adjusted dynamically for functions like

F14.

Tables 4.2, 4.3 and 4.4 illustrate best results of the proposed method and best results

of five well-known metaheuristics for comparative evaluations. As shown in Table

4.1, the proposed method extracted much better solutions than its competitors for all

the unimodal functions. While the solutions extracted by the proposed method are

very close to the optimal ones, those extracted by the competitors are far from

optimal ones. Particularly, comparisons with the original ICA clearly demonstrates

the improvements brought by the proposed method. Additionally, these results

exhibit that the proposed method can locate unimodal optimality quite efficiently.

32

Table 4.3 shows the results of the proposed methods and its competitors for

multimodal functions. It is seen that, except two benchmark problems, the proposed

method is still the best performing algorithm. Optimal solutions are found for most

problems. For functions F12 and F13, ABC algorithm is the best performing method,

whereas results of proposed method are close to optimal solutions but left behind

those extracted by ABC algorithm. Again, compared to the original ICA, the

assimilation operation with the better movement of colonies towards their imperialist

and the use of Pearson correlation coefficient resulted in significantly better

solutions. The obtained results also exhibit that ICAMA is also a better alternative

compared to its other well-known competitors.

Table 4.1. Experimental results for 23 classical benchmark problems

Func

tion
Optimal Best Worst Std Mean

F1 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00

F2 0 9,3113E-305 2,1011E-295 0,0000E+00 2,1070E-296

F3 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00

F4 0 6,1008E-308 9,9206E-299 0,0000E+00 1,1921E-299

F5 0 8,7487E-10 2,8703E+01 9,0767E+00 2,8703E+00

F6 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00

F7 0 7,5917E+00 8,7325E+00 3,6816E-01 8,1902E+00

F8 -12569.5 -1,2569E+04 -1,2569E+04 1,5312E-01 -1,2569E+04

F9 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00

F10 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00

F11 0 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00

F12 0 5,5994E-10 1,8939E-07 6,8811E-08 5,7097E-08

F13 0 6,4605E-09 6,3687E-07 2,5787E-07 2,2001E-07

F14 1 2,9821E+00 4,8957E+00 6,5890E-01 3,4291E+00

F15 0.00031 5,0837E-04 1,2223E-03 2,2090E-04 9,4701E-04

F16 -1.03163 -1,0315E+00 -1,0294E+00 6,5656E-04 -1,0310E+00

F17 0.398 3,9803E-01 4,0526E-01 2,2883E-03 4,0025E-01

F18 3 3,0004E+00 3,1790E+00 6,1713E-02 3,0710E+00

F19 -3.86 -3,8613E+00 -3,8341E+00 8,8620E-03 -3,8531E+00

F20 -3.32 -3,1568E+00 -2,9044E+00 8,0241E-02 -3,0210E+00

F21 10 -1,0153E+01 -5,0552E+00 1,6121E+00 -9,6434E+00

F22 10 -1,0403E+01 -5,0877E+00 2,5675E+00 -8,8083E+00

F23 10 -1,0536E+01 -1,0536E+01 3,6829E-05 -1,0536E+01

33

Table 4.2. Best found results for unimodal functions

FUN ICAMA ICA PSO DE ES ABC
F1 0.0000E+00 4.0884E-03 4.3785E-07 3.4719E-29 7.4938E-04 4.3980E-16

F2 9.3113E-305 3.7061E-01 2.2529E-03 5.4824E-17 8.2310E-03 1.2819E-15

F3 0.0000E+00 3.9780E+01 2.9244E-03 5.9049E-27 1.7850E-01 3.1536E+03

F4 6.1008E-308 4.3548E+00 7.7350E-04 1.9265E-03 9.4000E-02 1.8914E+01

F5 8.7487E-10 2.8371E+01 1.1978E-02 1.8633E+01 1.1842E+01 2.7685E-02

F6 0.0000E+00 4.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

F7 7.5917E+00 7.9391E+00 1.0086E+01 8.5152E+00 8.0483E+00 1.1992E+01

Table 4.3. Best found results for multimodal functions

FUN ICAMA ICA PSO DE ES ABC

F8
-

1.2569E+04

-

5.6948E+03

-

1.1502E+04

-

8.5087E+03

-

1.1859E+04
-

1.2569E+04

F9 0.0000E+00 4.7043E+01 5.4999E-01 9.4563E+01 4.5704E-04 0.0000E+00

F10 0.0000E+00 2.4069E-01 2.5947E-04 7.5495E-15 4.2756E-03 3.6415E-14

F11 0.0000E+00 1.6054E-01 1.5456E-05 0.0000E+00 1.6950E-03 1.1102E-16

F12 5.5994E-10 4.2445E-01 3.1216E-07 5.5085E-29 1.5746E-06 4.5866E-16

F13 6.4605E-09 6.6897E-01 1.3308E-05 1.3065E-28 2.3481E-05 4.3431E-16

Table 4.4 lists the results for multimodal functions with a few local minima. As

mentioned above, the proposed method performed poorly for F14 with the above

stated settings of parameter values. However, when the same function is solved by

ICAMA using Ɵ (- π, π), optimal solution with fitness value 0.994 is found. This

verifies our above mentioned conclusion that the proposed method needs

improvement with adaptive parameter values to adjust the step sizes based on its

journey over the function landscapes.

Other than F14, the proposed method extracted almost optimal solutions for all

functions, while all competitors also extracted optimal solutions for all functions

within this set.

In order to determine statistical similarity of ICAMA’s results with those of its

competitors Friedman’s aligned ranks test is conducted [37]. This test also orders all

34

algorithms based on their statistical ranks, which makes it possible to compare all

algorithms under consideration based on their achieved fitness values. Tables 4.5 and

4.6 show the Friedman’s test scores for ICAMA and its five competitors for the 23

benchmark functions. From Table 4.5 it is clear that ICAMA has the smallest p-value

that indicates the smallest statistical similarity to its competitors. The calculations of

Friedman aligned ranks test statistic is based on the definition below [37].

𝐹𝐴𝑅 =
(k − 1)[∑ �̂�𝑗

2 − (𝑘𝑛2/4)(𝑘𝑛 + 1)2𝑘
𝑗=1]

{[𝑘𝑛(𝑘𝑛 + 1)(2𝑘𝑛 + 1)]/6} − (1/𝑘)∑ �̂�𝑖
2𝑛

𝑖=1

Where �̂�𝑖 and �̂�𝑗 are the rank totals for problem i and algorithm j respectively. 𝐹𝐴𝑅 is

compared for significance with a 𝜒2 distribution with 𝑘 − 1 degrees of freedom.

Table 4.4. Best found results for multimodal functions with a few local minima

FUN ICAMA ICA PSO DE ES ABC

F14 2.9821 0.9980 0.9980 0.9980 0.9980 0.9980

F15 5.0837E-04 4.1605E-4 3.0750E-4 3.0750E-4 4.9245E-4 4.4511E-4

F16 -1.0315 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316

F17 0.39803 0.3978 0.3978 0.3978 0.3978 0.3978

F18 3.0004 3.0000 2.9999 2.9999 3.0000 3.0000

F19 -3.8613 -3.8627 -3.8627 -3.8627 -3.0897 -3.8627

F20 -3.1568 -3.3223 -3.3223 -3.3223 -3.3223 -3.3223

F21 -10.1532 -10.1532 -10.1531 -10.1531 -10.1531 -10.1531

F22 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029

F23 -10.5363 -10.5364 -10.5364 -10.5364 -10.5364 -10.5364

Table 4.5. Friedman aligned ranks

FUN. ICAMA ICA PSO DE ES ABC

F1 42 89 71 55 80 61

F2 54 102 107 59 86 64

F3 43 136 138 58 93 137

F4 53 119 90 82 92 129

F5 128 132 131 127 134 94

F6 47 122 48 45 46 44

F7 120 121 125 124 123 126

F8 2 6 4 5 3 1

35

Table 4.5 (continued)

F9 49 133 130 135 78 68

F10 50 111 79 65 85 67

F11 52 95 87 51 88 66

F12 69 108 74 56 70 60

F13 72 109 91 57 73 62

F14 112 110 106 104 105 103

F15 83 77 84 75 81 76

F16 41 39 40 37 38 36

F17 101 99 100 97 98 96

F18 118 116 117 114 115 113

F19 30 29 28 26 27 25

F20 35 31 34 32 33 63

F21 24 16 17 15 23 14

F22 21 13 18 12 20 11

F23 19 9 10 8 22 7

SUM 1365 1922 1729 1439 1613 1523

AVG 59.347 83.565 75.173 62.565 70.130 66.217

Table 4.6 shows the computed Friedman aligned ranks (FAR) and p-values for all

algorithms under consideration. Small p-value indicates almost no statistical

similarity among the algorithms while the rank of ICAMA shows that ICAMA is the

best performing algorithm against its five competitors. This fact indicates that the

proposed method is highly competitive for the solution of the first set of classical

real-valued benchmark functions.

Table 4.6. Friedman aligned ranks statistics

Algorithm Average 𝐹𝐴𝑅 values

ABC 66.217

DE 62.565

ES 70.130

ICA 83.565

ICAMA 59.347

PSO 75.173

FAR 26.417

p-value 0.000074

36

4.2.2 Experimental Evaluations with CEC2015 Benchmark Problems

Experimental results conducted with expensive benchmark functions taken from

CEC2015 competition are illustrated in Tables 4.7 and 4.8. The maximum number of

function evaluations was set to 500 and 1500 for 10 and 30 dimensions respectively.

ICAMA is executed over 20 consecutive runs under the same conditions stated in

CEC2015 competition publications and the obtained mean fitness values are

compared to those obtained by algorithms that are attendees of CEC2015

competition. Tables 4.7 and 4.8 list the best, worst, mean and standard deviation

scores achieved by ICAMA for the 23 problems in this set. Tables 4.9-4.23 present

the mean scores of ICAMA, PSO, ABC, DE, ES, ICA and CEC2015 competition

attendees in order from best to worst. It is seen that, even though ICAMA is not the

best performing algorithm for any of the 23 benchmark functions, whereas it

performs better than several of the state-of-the-art modern algorithms.

Table 4.7. Best, worst, mean and standard deviation scores achieved

by ICAMA for the 15 CEC2015 competition benchmark problems

with dimension of 30

Best Worst Std Mean

2,0107207E+10 4,2614082E+10 5,7413166E+09 3,3172626E+10

6,0577784E+04 1,6366152E+05 3,5954231E+04 1,0625753E+05

3,5275720E+01 4,1632740E+01 1,7975595E+00 3,8540919E+01

6,5606878E+03 7,8077183E+03 3,9980142E+02 7,1993253E+03

2,9602700E+00 4,8423400E+00 5,9373617E-01 3,7087860E+00

3,9524700E+00 5,0849700E+00 3,5367639E-01 4,4016265E+00

4,7463810E+01 9,3036060E+01 1,0667535E+01 6,5927901E+01

4,0546322E+05 3,5903182E+06 7,4105429E+05 1,3799516E+06

1,2863220E+01 1,4012610E+01 3,1568785E-01 1,3602056E+01

4,8649327E+06 4,4980467E+07 1,2561727E+07 2,3658854E+07

1,0018000E+02 2,2698420E+02 3,0291072E+01 1,6341136E+02

7,1572490E+02 1,8871388E+03 2,9030305E+02 1,3180690E+03

5,7692300E+02 1,0027360E+03 1,2827438E+02 7,5557168E+02

2,8962000E+02 4,1853080E+02 3,8434184E+01 3,4273762E+02

1,0339450E+03 1,5162465E+03 9,5851093E+01 1,3987657E+03

37

Table 4.8. Best, worst, mean and standard deviation scores achieved

by ICAMA for the 15 CEC2015 competition benchmark problems

with dimension of 10

Best Worst Std Mean

7,2841919E+08 1,0194125E+10 2,3090413E+09 3,6442322E+09

1,9470573E+04 1,0777212E+05 1,9754904E+04 4,2469607E+04

8,2877800E+00 1,2350140E+01 1,1132128E+00 1,0423698E+01

1,4406986E+03 2,3908080E+03 2,5255540E+02 1,9024281E+03

1,1156600E+00 3,8752900E+00 6,6936223E-01 2,7620210E+00

2,0742200E+00 4,5068100E+00 5,8496740E-01 3,4395960E+00

7,2487500E+00 4,5858810E+01 9,0114946E+00 2,8344773E+01

2,6016230E+01 3,7742005E+04 8,2869329E+03 4,2449487E+03

3,2112300E+00 4,3102200E+00 2,4547422E-01 3,9810535E+00

1,4428110E+05 5,7808783E+06 1,2323825E+06 8,1080559E+05

7,4199000E+00 4,7970200E+01 9,9987624E+00 1,9494080E+01

1,3086210E+02 5,7267540E+02 9,9565777E+01 2,9342591E+02

3,4178120E+02 6,0071040E+02 6,9121768E+01 4,1784038E+02

1,9892920E+02 2,2619870E+02 6,5128629E+00 2,1326971E+02

3,0032550E+02 5,3108700E+02 6,3962660E+01 4,3781097E+02

Table 4.9. Mean results for function 1 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 1.93E+02 MVMO 2.09E+03

TUNEDCMAES 1.17E+06 CMAS-ES_QR 8.50E+05

CMAS-ES_QR 4.43E+06 TUNEDCMAES 1.52E+06

ISRPSO 7.40E+06 ISRPSO 7.19E+08

PSO 2.88E+09 PSO 2.07E+10

HUMANCOG 3.27E+09 ICAMA 3.32E+10

ICAMA 3.64E+09 DE 3.74E+10

ICA 6.75E+09 ICA 4.47E+10

DE 7.21E+09 HUMANCOG 4.74E+10

ES 9.77E+09 ES 8.12E+10

ABC 1.00E+10 ABC 9.20E+10

Table 4.10. Mean results for function 2 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 1.68E-02 MVMO 6.93E+03

CMAS-ES_QR 2.58E+04 ISRPSO 7.67E+04

ISRPSO 3.19E+04 CMAS-ES_QR 9.17E+04

ICAMA 4.25E+04 ICA 9.65E+04

TUNEDCMAES 4.78E+04 ICAMA 1.06E+05

HUMANCOG 7.80E+04 HUMANCOG 1.13E+05

38

Table 4.10 (continued)

DE 8.88E+04 ES 1.30E+05

ES 1.50E+05 TUNEDCMAES 1.44E+05

PSO 1.62E+05 DE 1.45E+05

ABC 1.92E+05 PSO 1.84E+05

ICA 3.37E+05 ABC 2.06E+05

Table 4.11. Mean results for function 3 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

CMAS-ES_QR 2.79E+00 CMAS-ES_QR 1.15E+01

ISRPSO 6.60E+00 TUNEDCMAES 2.43E+01

TUNEDCMAES 7.62E+00 ISRPSO 2.57E+01

MVMO 9.40E+00 MVMO 3.79E+01

ICAMA 1.04E+01 PSO 3.74E+01

PSO 1.07E+01 ICAMA 3.85E+01

HUMANCOG 1.12E+01 HUMANCOG 4.13E+01

DE 1.19E+01 ICA 4.18E+01

ICA 1.20E+01 ES 4.33E+01

ABC 1.23E+01 DE 4.35E+01

ES 1.26E+01 ABC 4.62E+01

Table 4.12. Mean results for function 4 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 4.65E+02 MVMO 1.43E+03

ISRPSO 9.25E+02 ISRPSO 5.41E+03

TUNEDCMAES 1.34E+03 TUNEDCMAES 6.11E+03

CMAS-ES_QR 1.73E+03 CMAS-ES_QR 6.68E+03

ICAMA 1.90E+03 ICAMA 7.20E+03

DE 1.96E+03 ES 7.42E+03

PSO 1.96E+03 DE 7.65E+03

ICA 2.06E+03 PSO 7.92E+03

HUMANCOG 2.09E+03 HUMANCOG 7.99E+03

ES 2.09E+03 ICA 8.09E+03

ABC 2.20E+03 ABC 8.81E+03

Table 4.13. Mean results for function 5 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 1.13E+00 MVMO 1.68E+00

ISRPSO 2.46E+00 TUNEDCMAES 3.13E+00

ICAMA 2.76E+00 ES 3.21E+00

39

Table 4.13 (continued)

TUNEDCMAES 2.77E+00 ICAMA 3.71E+00

HUMANCOG 2.82E+00 ISRPSO 4.24E+00

ICA 2.82E+00 ICA 4.27E+00

DE 2.91E+00 HUMANCOG 4.39E+00

ES 2.97E+00 DE 4.44E+00

CMAS-ES_QR 3.20E+00 CMAS-ES_QR 4.55E+00

ABC 3.22E+00 ABC 5.19E+00

PSO 4.02E+00 PSO 5.79E+00

Table 4.14. Mean results for function 6 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 3.26E-01 MVMO 5.20E-01

CMAS-ES_QR 4.17E-01 ISRPSO 6.35E-01

ISRPSO 5.29E-01 TUNEDCMAES 7.16E-01

TUNEDCMAES 6.00E-01 CMAS-ES_QR 7.28E-01

PSO 2.90E+00 PSO 3.58E+00

ICAMA 3.44E+00 ICAMA 4.40E+00

HUMANCOG 3.63E+00 DE 4.89E+00

ICA 4.02E+00 HUMANCOG 5.03E+00

DE 4.76E+00 ICA 5.07E+00

ES 5.97E+00 ES 7.03E+00

ABC 6.06E+00 ABC 7.68E+00

Table 4.15. Mean results for function 7 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

CMAS-ES_QR 5.52E-01 MVMO 4.39E-01

ISRPSO 5.71E-01 ISRPSO 5.68E-01

TUNEDCMAES 6.31E-01 TUNEDCMAES 7.28E-01

MVMO 6.37E-01 CMAS-ES_QR 7.47E-01

HUMANCOG 2.74E+01 PSO 4.93E+01

PSO 2.32E+01 ICAMA 6.59E+01

ICAMA 2.83E+01 HUMANCOG 8.86E+01

ICA 4.26E+01 ICA 8.86E+01

DE 5.19E+01 DE 1.02E+02

ES 7.09E+01 ES 1.77E+02

ABC 7.11E+01 ABC 2.07E+02

Table 4.16. Mean results for function 8 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

40

Table 4.16 (continued)

CMAS-ES_QR 4.68E+00 CMAS-ES_QR 1.74E+01

ISRPSO 5.03E+00 TUNEDCMAES 2.84E+01

TUNEDCMAES 3.68E+01 MVMO 4.03E+02

MVMO 4.14E+01 ISRPSO 6.26E+02

PSO 1.34E+03 PSO 9.56E+05

ICAMA 4.24E+03 ICAMA 1.38E+06

ICA 6.53E+03 ICA 4.09E+06

HUMANCOG 7.77E+03 HUMANCOG 5.24E+06

DE 2.21E+04 ABC 1.04E+08

ABC 4.50E+04 DE 1.71E+07

ES 6.56E+04 ES 5.75E+07

Table 4.17. Mean results for function 9 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

ISRPSO 3.95E+00 MVMO 1.34E+01

CMAS-ES_QR 3.96E+00 CMAS-ES_QR 1.34E+01

ICAMA 3.98E+00 ISRPSO 1.36E+01

MVMO 4.01E+00 ICAMA 1.36E+01

ICA 4.08E+00 ICA 1.37E+01

HUMANCOG 4.16E+00 ES 1.38E+01

TUNEDCMAES 4.17E+00 HUMANCOG 1.39E+01

PSO 4.19E+00 TUNEDCMAES 1.39E+01

DE 4.20E+00 DE 1.40E+01

ES 4.25E+00 ABC 1.41E+01

ABC 4.25E+00 PSO 1.41E+01

Table 4.18. Mean results for function 10 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 4.97E+02 MVMO 9.29E+04

CMAS-ES_QR 2.25E+05 CMAS-ES_QR 3.25E+06

ISRPSO 3.53E+05 TUNEDCMAES 4.89E+06

TUNEDCMAES 5.38E+05 ISRPSO 6.83E+06

ICAMA 8.11E+05 PSO 2.05E+07

HUMANCOG 1.19E+06 ICAMA 2.37E+07

PSO 1.46E+06 HUMANCOG 5.60E+07

ICA 2.05E+06 ICA 6.66E+07

DE 2.34E+06 DE 7.62E+07

ES 2.56E+06 ES 1.13E+08

ABC 2.92E+06 ABC 1.85E+08

41

Table 4.19. Mean results for function 11 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

ISRPSO 7.26E+00 TUNEDCMAES 2.11E+01

TUNEDCMAES 7.45E+00 CMAS-ES_QR 2.46E+01

CMAS-ES_QR 7.63E+00 ISRPSO 5.09E+01

MVMO 1.17E+01 MVMO 1.43E+02

PSO 1.68E+01 PSO 1.50E+02

ICAMA 1.95E+01 ICAMA 1.63E+02

HUMANCOG 2.16E+01 ICA 2.41E+02

DE 2.60E+01 HUMANCOG 2.76E+02

ICA 3.07E+01 DE 3.23E+02

ES 3.83E+01 ES 5.37E+02

ABC 4.44E+01 ABC 7.20E+02

Table 4.20. Mean results for function 12 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

ISRPSO 1.82E+02 CMAS-ES_QR 6.27E+02

MVMO 2.00E+02 ISRPSO 7.36E+02

CMAS-ES_QR 2.35E+02 TUNEDCMAES 7.66E+02

TUNEDCMAES 2.39E+02 MVMO 8.60E+02

ICAMA 2.93E+02 ICAMA 1.32E+03

HUMANCOG 3.08E+02 PSO 1.52E+03

ICA 3.57E+02 HUMANCOG 1.60E+03

ES 3.97E+02 ICA 2.05E+03

PSO 4.17E+02 DE 2.58E+03

DE 4.25E+02 ES 5.57E+03

ABC 4.51E+02 ABC 4.73E+04

Table 4.21. Mean results for function 13 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

MVMO 3.16E+02 MVMO 3.44E+02

CMAS-ES_QR 3.26E+02 CMAS-ES_QR 3.80E+02

ISRPSO 3.31E+02 ISRPSO 4.00E+02

TUNEDCMAES 3.47E+02 TUNEDCMAES 4.15E+02

PSO 4.04E+02 PSO 6.52E+02

ICAMA 4.18E+02 ICAMA 7.56E+02

HUMANCOG 4.33E+02 HUMANCOG 8.35E+02

DE 4.67E+02 DE 8.87E+02

ICA 5.62E+02 ICA 9.60E+02

ABC 5.81E+02 ES 1.55E+03

ES 5.91E+02 ABC 1.95E+03

42

Table 4.22. Mean results for function 14 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

CMAS-ES_QR 1.97E+02 CMAS-ES_QR 2.35E+02

ISRPSO 2.01E+02 TUNEDCMAES 2.47E+02

TUNEDCMAES 2.05E+02 ISRPSO 2.65E+02

MVMO 2.06E+02 MVMO 2.76E+02

ICAMA 2.13E+02 PSO 3.19E+02

HUMANCOG 2.15E+02 ICAMA 3.43E+02

PSO 2.16E+02 HUMANCOG 3.94E+02

ICA 2.20E+02 ICA 4.00E+02

DE 2.23E+02 DE 4.43E+02

ES 2.28E+02 ES 4.93E+02

ABC 2.33E+02 ABC 6.45E+02

Table 4.23. Mean results for function 15 of CEC2015 competition from

best to worst with dimension sizes of 10 and 30

Algorithm Result for D=10 Algorithm Result for D=30

ISRPSO 3.00E+02 CMAS-ES_QR 4.90E+02

CMAS-ES_QR 3.79E+02 TUNEDCMAES 8.01E+02

PSO 4.18E+02 ISRPSO 9.51E+02

ICAMA 4.37E+02 MVMO 1.19E+03

TUNEDCMAES 4.42E+02 PSO 1.34E+03

HUMANCOG 4.74E+02 ICAMA 1.40E+03

MVMO 4.76E+02 DE 1.42E+03

ICA 4.82E+02 HUMANCOG 1.49E+03

DE 4.91E+02 ICA 1.59E+03

ABC 5.45E+02 ES 1.70E+03

ES 5.50E+02 ABC 1.83E+03

4.2.3 Experimental Analysis on the Strategy of Parameter v

An important parameter on the success of the proposed algorithm is the “v”

parameter that determines the threshold of accepting an individual with fitness worse

than its parent but it is highly correlated to its imperialist. Table 4.24 illustrates the

results of ICAMA on CEC2015 benchmarks for five different values of v. These

values are selected to exhibit the effect of v with values within the range (0, 1]. It can

be seen from Table 4.24 that our setting v=0.5 results in the best performance.

43

Table 4.24. The results of ICAMA on CEC2015 problems for different

values of v

Problem v=0.1 v=0.4 v=0.5 v=0.6 v=0.9

1 4.70E+10 4.87E+10 3.32E+10 4.85E+10 4.84E+10

2 9.30E+04 8.54E+04 1.06E+05 1.02E+05 1.14E+05

3 4.07E+01 4.04E+01 3.85E+01 4.04E+01 3.98E+01

4 7.85E+03 7.64E+03 7.20E+03 7.87E+03 7.71E+03

5 4.26E+00 4.30E+00 3.71E+00 4.33E+00 4.44E+00

6 5.22E+00 5.14E+00 4.40E+00 5.26E+00 5.13E+00

7 9.14E+01 9.52E+01 6.59E+01 8.81E+01 9.11E+01

8 5.03E+06 3.75E+06 1.38E+06 4.95E+06 4.26E+06

9 1.38E+01 1.38E+01 1.36E+01 1.37E+01 1.38E+01

10 5.51E+07 5.27E+07 2.37E+07 3.79E+07 4.12E+07

11 2.19E+02 2.19E+02 1.63E+02 2.35E+02 2.19E+02

12 1.69E+03 1.88E+03 1.32E+03 1.77E+03 1.62E+03

13 9.97E+02 8.46E+02 7.56E+02 9.32E+02 9.50E+02

14 3.99E+02 4.02E+02 3.43E+02 4.26E+02 3.76E+02

15 1.53E+03 1.52E+03 1.40E+03 1.50E+03 1.50E+03

44

Chapter 5

MULTI-OBJECTIVE IMPERIALISTIC COMPETITIVE

ALGORITHM WITH MULTIPLE NON-DOMINATED

SETS FOR THE SOLUTION OF GLOBAL

OPTIMIZATION PROBLEMS

In this chapter, a multi-objective imperialistic competitive algorithm (MOICA) is

discussed. MOICA is proposed for solving global multi-objective optimization

problems. It is a modified and improved multi-objective version of a single objective

ICA, which was previously proposed by Atashpaz-Gargari and Lucas [2]. The

presented algorithm implements the idea of imperialism. Accordingly, individuals in

a population are called countries, of which there are two types—colonies and

imperialists. MOICA incorporates the competition between empires and their

colonies for the solution of multi-objective problems. To this end, it employs a

proposed approach of several non-dominated solution sets, whereby each set is called

a local non-dominated solution set (LNDS). All imperialists in an empire are

considered non-dominated solutions, whereas all colonies are considered dominated

solutions. Aside from local non-dominated solution sets, there is one global non-

dominated solution set (GNDS), which is created from LNDS sets of all empires.

There are two main operators of the proposed algorithm: Assimilation and

Revolution. They respectively use GNDS and LNDS sets during assimilation and

revolution of colonies. The significance of this study is the notable feature of the

45

proposed algorithm; specifically, no special parameter is used for diversity

preservation. This enables the algorithm to avoid extra computations in order to

maintain the spread of solutions. Simulations and experimental results on the multi-

objective benchmark problems showed that MOICA is more efficient compared to

many existing multi-objective optimization algorithms because it produces better

results for most of the test problems.

5.1 Literature Review

Many real-world problems must be solved by optimizing more than one objective. In

some cases, one objective must be minimized while the other must be maximized [1].

Many multi-objective optimization algorithms have been proposed for optimizing

several objectives. Among them are multi-objective evolutionary algorithms

(MOEAs) [39, 40, 41, 42 and 43]. A priority of multi-objective optimization

algorithms is to simultaneously find several Pareto-optimal solutions. Another

priority is to additionally optimize conflicting objectives when one must be

minimized and the other must be maximized. Consequently, multi-objective

optimization algorithms have gained popularity in the last two decades. The aim of

this study was therefore to develop a multi-objective optimization algorithm inspired

by imperialistic competition—specifically, multi-objective imperialistic competitive

algorithm (MOICA)—which uses a population of countries of two types: imperialists

and colonies. In every empire, there is an imperialist, which is considered the local

best for that empire. Accordingly, MOICA generates a local non-dominated set of

solutions for each empire. It then finally calculates the global non-dominated set of

local non-dominated solutions of each empire, which is the final set of non-

dominated solutions.

46

Many applications of ICA exist, especially in the field of engineering. Only in the

field of computer engineering ICA is applied to data clustering and image processing

for solving such problems as skin color detection and template matching [44]. For

example, Duan et al. [45] presented a template matching method based on chaotic

ICA in which a correlation function is used. Those authors prevented the problem of

falling into the local best solution by introducing a chaotic behavior of ICA, which

improves the global convergence. Another example of the application of ICA is the

integrated product mix-outsourcing optimization problem [46]. Vedadi et al. [47]

applied ICA in the field of electrical engineering by presenting ICA-based Maximum

Power Point Tracking algorithm to find Global Maximum Power Point of power-

voltage string under Partial Shading Condition rapidly and precisely. Goudarzi et al.

[48] used ICA as a heuristic technique for optimization procedure in finding the

optimal location of capacitors in radial distribution systems. Another example of

application of ICA is in the field of geoscience, where ICA is used for locating the

critical failure surface and computing the factor of safety in a slope stability analysis

based on the limit equilibrium approach [49]. Jordehi A R [50] proposed a solution to

flexible AC transmission systems (FACTS) allocation problem in a way that low

values of overloads and voltage deviations results both during line outage

contingencies and demand growth. In this study, thyristor-controlled phase shifting

transformers and thyristor-controlled series compensators have been used as FACTS

devices. Besides applications of ICA, variants of ICA have been presented in the

literature. For example, Ebrahimzadeh et al. [62] proposed a novel hybrid intelligent

method (HIM) for recognition of the common types of control chart pattern (CCP).

The proposed method includes two main modules: a clustering module and a

classifier module. Authors used a combination of the modified imperialist

47

competitive algorithm (MICA) and the K-means algorithm in the clustering module

for clustering input data. A mutation operator was also introduced into the proposed

algorithm by changing assimilation process.

Aside from the variants of ICA and its applications there are many different

algorithms in the literature for solving multi-objective optimization problems.

Among them are the algorithms, which are used in experimental section of this

chapter. For example, MOEAD (or MOEA/D) is a multi-objective evolutionary

optimization algorithm, which is based on decomposition [74]. MOEAD decomposes

a problem into several optimization sub problems using uniformly distributed

aggregation weight vectors and performs optimization of these problems

simultaneously, while every sub problem is optimized by use of the information of

several surrounding sub problems. This makes MOEAD have a better computational

complexity in every generation with comparison to many other state-of-the-art

algorithms. Qi Y et al. proposed a variant of MOEA/D called MOEA/D-AWA,

which is an improved MOEA/D with adaptive weight vector adjustment [60].

MOEA/D-AWA addresses situations when multi-objective optimization problem has

a complex Pareto front, i.e. a discontinuous Pareto front or a Pareto front with sharp

peak or low tail. Therefore, in this algorithm a new method for weight vector

initialization along with an adaptive weight vector adjustment strategy are

introduced. Additionally, MOEA/D-AWA has a feature of an external elite

population, which enables new sub problems being added into scattered, i.e.

discontinuous regions of the Pareto front. Harmony Search algorithm [89] is a single-

objective optimization algorithm that was used by Doush I A and Bataineh M Q for

hybridizing MOEA/D and NSGA-II [86] algorithms, thus obtaining Harmony

MOEA/D and Harmony NSGA-II algorithms [61], which performed better than

48

original MOEA/D and NSGA-II algorithms. NSGA-II is a non-dominated sorting

based MOEA, which is one of the most famous multi-objective optimization

algorithms that addresses three problems for which MOEAs have been mainly

criticized: 1) computational complexity; 2) non-elitism approach; and 3) use of

sharing parameter. M. Reyes Sierra and C. A. Coello Coello proposed Optimized

MOPSO (OMOPSO), which is a variant of multi-objective PSO algorithm [85].

OMOPSO uses the crowding distance of NSGA-II in order to eliminate some of the

best solutions or so-called leader solutions. In addition to crowding distance, in order

to accelerate the convergence of the swarm OMOPSO uses the combination of two

mutation operators. Another feature of OMOPSO is that it uses a concept of ǫ-

dominance in order to make the algorithm produce a limited number of solutions.

Zitzler E, Laumanns M and Thiele L proposed SPEA2 [87], which is an improved

version of its predecessor – Strength Pareto Evolutionary Algorithm (SPEA) [90].

Unlike SPEA, SPEA2 incorporates a fine-grained fitness assignment strategy along

with a technique for density estimation and an improved method of archive

truncation. DMCMOABC is a dynamic multi-colony multi-objective artificial bee

colony algorithm proposed by Xiang Y and Zhou Y, which uses a strategy of

dynamic information exchange and the multi-deme model [73]. In this algorithm

several colonies mainly search individually and sometimes share information

between each other. This algorithm involves employed and onlooker bees, which

explore better positions in every generation. DMCMOABC makes use of an external

archive for keeping best solutions, i.e. the non-dominated solutions, while diversity

among archived solutions is preserved by using crowding distance. Authors of this

algorithm used the migration rate parameter in order to replace the worst food source

in a randomly selected colony by the elite intermediate individual with the maximum

49

crowding distance. S. Kukkonen and J. Lampinen proposed Generalized Differential

Evolution 3 (GDE3), which is another algorithm with a diversity maintenance

technique used in CEC2007 as well as in CEC2009 Special Sessions on Performance

Assessment on Multi-Objective Optimization Algorithms [75]. GDE3 performed

well against other state-of-the-art algorithms and it is one of the best selected

algorithms in CEC2009. MOEADGM is an improved version of MOEAD with two

mechanisms for better optimization, which is proposed by C.-M. Chen, Y.-P. Chen,

and Q. F. Zhang [76]. First mechanism is the replacement of evolution operator with

guided mutation operator for better utilization of information obtained from

neighbors. Second mechanism is for the performance improvement, which is

utilizing a priority queue for updating. L.-Y. Tseng and C. Chen proposed another

multi-objective optimization algorithm called Multiple trajectory search (MTS),

which was successfully applied to unconstrained and constrained set of problems in

CEC2009 [77]. MTS algorithm first generates a set of uniformly distributed

solutions, which are divided into two – foreground and background solutions. The

search mechanism focuses mainly on the first type of solutions, that is foreground

ones, while it focuses partly on others. The MTS selects one of the three local search

methods, which it applies on solutions iteratively. In the beginning these methods

search in a very large neighborhood, which decreases gradually until it becomes of

pre-defined tiny size and resets to its initial size again. Utilization of such a size

varying neighborhood searches enables MTS effectively solve optimization

problems. H.-L. Liu and X. Q. Li proposed a multi-objective optimization algorithm

called LiuLiAlgorithm [78]. This algorithm is based on sub-regional search by

dividing the decision space into several lesser regions. The use of sub-regional search

makes LiuLiAlgorithm perform better in terms of computational complexity. M. H.

50

Liu et al. proposed an improved version of DMOEA [91, 92] with domain

decomposition technique DMOEA-DD [79]. This algorithm was one of the most

successful competitors in CEC2009. K. Sindhya et al. proposed an augmented local

search based evolutionary multi-objective optimization algorithm NSGAIILS, which

is a hybrid evolutionary algorithm derived by a combination of NSGA-II and an

augmented local search [80]. NSGAIILS was also tested on the set of unconstrained

and constrained problems from CEC2009, where it could produce good, but not best

results with comparison to other algorithms. V. L. Huang et al. proposed the multi-

objective version of Self-adaptive Differential Evolution algorithm (SaDE) [93] with

objective-wise learning strategies OWMOSaDE [65], which is an improved version

of MOSaDE [88]. The original SaDE algorithm does not require pre-specifying of

control parameters and the choice of learning strategy, since parameter settings and

the learning strategy are self-adapted with the help of learning experience during

evolution. MOSaDE was developed for the solution of numerical optimization

problems with several conflicting objectives. OWMOSaDE learns mutation

strategies and best values for crossover parameter specifically for every objective

function. A clustering MOEA (ClusteringMOEA), which is based on orthogonal and

uniform design, was proposed by Y. P. Wang et al. [81] in 2009. In order for

ClusteringMOEA to estimate good points for more exploration during iterations it

uses orthogonal design to create initial points in a population that are uniformly

distributed over the solution space. A new crossover was designed for an efficient

exploration of the search space and finding best solutions. The exploration in this

algorithm mainly focuses on the boundary and sparse parts of non-dominated

solutions, which are obtained in objective space. Finally, in order to improve the

cardinality, i.e. the number of solutions finely distributed over the Pareto front, a

51

novel clustering approach was developed for selecting the non-dominated solutions.

S. Tiwari et al. proposed a hybrid AMGA algorithm [82], which is a combination of

a single-objective optimization with evolutionary multi-objective optimization

algorithms. AMGA uses a classical gradient based algorithm as a single-objective

optimizer for a fast local search. It behaves as a mutation operator, which is used as a

genetic mutation as well as a gradient based mutation. On the other hand, AMGA

uses multi-objective optimization algorithm as a global search. AMGA also uses a

scalarization scheme for the improvement of objective functions, which uses

reference points as constraints. This allows algorithm to solve non-convex

optimization problems. B. Y. Qu and P. N. Suganthan proposed multi-objective

evolutionary programming (MOEP) that uses fuzzy rank-sum with varied selection

[65]. MOEP algorithm’s performance is significantly faster than the performance of

the same algorithm that uses non-domination sorting. A. Zamuda et al. proposed

Differential Evolution with Self-adaptation and Local Search for Constrained Multi-

objective Optimization algorithm (DECMOSA-SQP) [83]. This algorithm

incorporates constrained handling mechanism along with a SQP local search and the

self-adaptation mechanism taken from DEMOwSA algorithm [94]. S. Gao et al.

proposed an orthogonal multi-objective evolutionary algorithm OMOEAII with

lower dimensional crossover [84]. The lower-dimensional crossover enables

algorithm to converge faster, since the search complexity is decreased. Moreover, by

using orthogonal crossover the probability of finding better solutions increases.

5.2 Overview of MOICA

The proposed MOICA algorithm implements the idea of imperialism by

incorporating the competition among empires. The main idea behind MOICA is that

there are several non-dominated solution sets, i.e. imperialists, per each empire and

52

one global non-dominated solution set, which contains the best imperialists among

all empires. All empires compete during the process and strive to take possession of

the colonies of other empires based on their power. Therefore, all empires have the

opportunity to assume control of one or more colonies of the weakest empire. During

iterations of the algorithm, colonies of each empire make changes with respect to

their positions as a result of changing their cost values. As previously mentioned,

some colony C in an empire may become better than some of the current set of

imperialists, say I. In such a case, the new colony C with a better cost becomes a

member of the empire’s imperialists, that is, a member of the set of non-dominated

solutions. Thus, previous imperialist I, which is dominated by C, becomes a colony.

MOICA has an important yet simple feature in its implementation. Specifically, it

has several non-dominated solution sets, which makes it different from many other

multi-objective optimization algorithms. Initially, there is N number of empires.

Therefore, every empire possesses Pareto optimal solutions, or local non-dominated

solutions (LNDS). Therefore, the total number of LNDSs will initially be N.

Moreover, there is a set of global non-dominated solutions (GNDS), which is

obtained from N number of LNDSs. Because the set of local non-dominated

solutions for each empire is updated during iterations, the GNDS is also accordingly

updated. This means that the algorithm has one GNDS throughout the

implementation process, whereas the number of LNDSs will gradually decrease on

account of the collapse of some empires during the competition. Figure 4.1 illustrates

an example of three empires (E1, E2, and E3) with their colonies and local non-

dominated solution sets, i.e., imperialists, which are set in bold.

53

Figure 5.1. GNDS and LNDS sets of three empires

Imperialists that are taken into an area in Figure 5.1 are the best imperialists among

all empires that form GNDS. There is a possibility that none of the imperialists will

be included in GNDS of some empire. An example of such scenario is Empire 1 in

Figure 5.1. Therefore, the use of GNDS in this algorithm is very important because

colonies of all empires are assimilated toward the randomly selected imperialists

from the GNDS, which enables an algorithm to avoid local optima. If we consider

only one empire in Figure 5.1, for example, E2, it is readily apparent that the circles

in bold form non-dominated solution set empire E2. The assimilation and revolution

operations will be detailed in the following subsections.

Non-dominancy in the proposed algorithm is calculated based on fronts. Therefore,

solutions that are assigned a value of 1 belong to the first front, while solutions with

front value 2 are assigned to the second front, and so on. As a result, LNDS and

GNDS sets contain solutions that belong to the first front only. Another significant

feature in the proposed algorithm is that no special parameter is used for diversity

 Colony of E1

 Imperialist of E1

 Colony of E2

 Imperialist of E2

 Colony of E3

 Imperialist of E3

Global Non-Dominated

Solutions (GNDS)

54

preservation, which enables the algorithm to avoid extra computations in order to

maintain the spread of solutions. Although a share parameter is not used in MOICA,

the spread of solutions in the results obtained from our simulations and experiments

was very good. This was achieved on account of the assimilation technique used in

this algorithm. That is, as described in Chapter 3, all colonies of an empire move

toward one imperialist that is available in the empire. However, in the proposed

algorithm, colonies of an empire move toward one of the imperialists, I, in the

GNDS set. The imperialist I, toward which the colonies move, is randomly selected

in each iteration from the set of global non-dominated solutions. Therefore, the idea

of avoiding usage of a share parameter is derived from the nature of multi-

objectiveness, in which every solution in a non-dominated solution set is considered

a valid solution so that there is no single solution. For the sake of clarity, the

description of the proposed algorithm is first provided in Algorithm 5.1. Then, each

part of the algorithm is detailed.

Algorithm 5.1. MOICA Algorithm

1. Begin

2. Initialization:

- Initialize problem parameters, such as objective function name,

number of variables, and lower and upper bounds of decision variables.

- Initialize algorithm parameters, such as population size, number of

initial empires, number of iterations, and other coefficients used in

assimilation and revolution operations.

- Initialize population

3. Evaluate objective functions and assign objective values to each country.

4. Apply non-domination sorting [51].

5. Create initial empires by distributing colonies randomly, create LNDS for

every empire and obtain GNDS.

6. For each iteration i do:

55

7. For each empire j do:

8. Apply assimilation: move colonies toward one of the randomly selected

imperialists in the GNDS set and apply economic changes with

probability pe.

9. Apply revolution: Generate new countries from the LNDS set according

to probability pr and revolution rate .

10. Evaluate objective functions and assign cost values to all colonies.

11. Update LNDS for empire j and update GNDS.

12. Calculate the total power of empire j.

13. End for

14. Unite similar empires.

15. Apply imperialistic competition and terminate powerless empires.

16. End for

17. Display results.

5.2.1 Non-Domination Sorting

Various methods have been proposed in the literature for non-dominancy. In these

methods, each solution in the search space is assigned a rank value, which indicates

whether a certain solution in the population is dominated by other solutions. In most

cases, the lower the rank value is, the less this solution is dominated by others. For

example, a rank value of one indicates that this solution is non-dominated. Another

approach for non-dominancy is to not assign solutions a rank value; rather, divided

them into fronts [51]. This is the approach used in this study for non-dominancy.

Figure 5.2 illustrates non-dominated solutions with fronts for the minimization

problem.

A front with a value of one contains non-dominated solutions, where the front value

of two is the set of solutions dominated by the solutions from the first front only.

Solutions with a front value of three are dominated by the solutions from the

previous fronts. Therefore, in the proposed algorithm, every empire has its own local

56

non-dominated solutions, LNDS. This LNDS is therein intended to include

imperialists of the empire; thus, there is no single imperialist in the empire. This

means that all other solutions have front values greater than one, such that dominated

solutions are considered colonies of the empire.

Figure 5.2. Non-dominancy using fronts

5.2.2 Assimilation

Assimilation, the movement of colonies toward imperialists, is implemented in a

similar way as explained in Chapter 3. However, the difference is that there are

several imperialists in the GNDS set. Thus, one of the imperialists should be selected

and should serve as a target for the movement of colonies. The use of GNDS in

assimilation instead of LNDS sets enables the algorithm to escape the local minima

faster. The selection of the target imperialist is randomly performed for each empire

in each iteration of the algorithm.

Figure 5.3 illustrates the assimilation implemented in this algorithm. In the figure,

the black circles and red triangle indicate non-dominated solutions, the GNDS set,

such that they are imperialists of the whole population. The red triangle is the

randomly selected target imperialist toward which the colonies are moving. For

3

1

2

1

2

1

2

1

2

1

1

2

3

3

3

3

57

simplicity, only one moving colony is shown in the figure and is indicated by a blue

circle. Parameters, such as , d and x are explained in Chapter 3. Therefore, their

descriptions are omitted here because they have the same meanings. Nonetheless, the

values used for some parameters are different, which will be discussed later. Another

important point is that, owing to randomized selection of target imperialists and

deviation , the diversity in the algorithm is preserved. In Figure 5.3 the angle is

denoted with because deviation is used in the decision space, which may not be

the same as in the objective space. Therefore, even if deviations in decision and

objective spaces differ, some deviation still exists in the objective space, which is

denoted by .

Figure 5.3. Assimilation of a colony towards randomly selected imperialist from the

GNDS set

To improve the local search of the proposed algorithm, another new operation is

added immediately after the assimilation process. This operation is the influence of

economic changes on the empire, which has some probability of being engaged, as

described in the pseudo-code below. The higher the value of pe is, the lower the

probability is for performing the operation. In most cases, the value of 0.9 is used for

pe to incite few economic changes. UpperBound and LowerBound are the vectors,

d x

New position

of a colony

Current position

of a colony

58

which indicate the decision space of the decision variables for the given objective

function. rand() is a uniformly generated random value between (0, 1). The

procedure of the assimilation process is given below. The variables and parameters,

Col_Pos_New, Col_Pos, , and r are the same as in Chapter 3. However, the

variable, d, is different in this operation because it contains an element-wise

difference of a colony and a randomly selected imperialist from GNDS. Assimilation

procedure is provided in Algorithm 5.2.

Algorithm 5.2. Assimilation

1. Randomly select an imperialist IG from GNDS.

2. for each colony in empire i do

3. set d to the element-wise difference of a colony and IG

4. Col_Pos_New = Col_Pos + * *𝑟 ⊗ 𝑑

5. end for

6. if rand() > pe do

7. R = UpperBound – LowerBound;

8. for each decision variable i in R do

9. w(i) = (abs(UpperBound(i))*rand())rand()/R(i) –

(abs(LowerBound(i))*rand())(rand()/R(i);

10. end for

11. ColoniesOfEmpire = ColoniesOfEmpire .* w;

12. end if

5.2.3 Revolution

The revolution operation in the proposed algorithm is completely different from the

one in ICA because there is no random generation of new colonies. The new

revolution operation has two parts, which are performed based on probability pr. The

first part is the generation of a new colony by the random selection of elements from

two randomly selected imperialists in the LNDS set of the same empire. In the case

59

of having only one imperialist in the LNDS set, then one more individual is

randomly generated. For the second part of the revolution process, some imperialists

are modified and randomly chosen colonies are replaced with them. Revolution

procedure is provided in Algorithm 5.3.

Algorithm 5.3. Revolution

1. if rand() > pr

2. for each colony in empire i do

3. Select two imperialists I1 and I2 from LNDS (if set contains one

imperialist only, then generate one more randomly)

4. Generate new colony C by applying two-point crossover on I1 and I2

5. Replace colony in an empire i with C

6. end for

7. else

8. for i=1 to RevolutionRate * NumberOfColoniesInEmpire

9. Select one imperialist Ii from LNDS randomly

10. Update Ii by adding to its every element a random value between

(0.001, 0.09) or (-0.09, -0.001)

11. end for

12. Update randomly selected colonies by newly generated ones

13. end if

Based on the preceding and present sections/subsections, it is evident that GNDS is

used for selecting imperialists for updating colonies during the assimilation process.

On the other hand, imperialists from LNDS of the same empire are used in the

revolution process. Therefore, both assimilation and revolution of colonies enable the

algorithm to escape local minima and reach global optimal solutions.

60

5.2.4 Possessing an Empire

Every empire is possessed by the set of imperialists, which is the non-dominated set

of solutions within the empire itself. It is defined as LNDS in this algorithm.

However, in terms of possession of the empire, it is possible that all individuals of an

empire will be in the LNDS and thus there are no dominated solutions within an

empire. As a result, assimilation and revolution will not be applicable in such a case.

Therefore, one more parameter, , was added in this algorithm. It indicates the

maximum percentage of imperialists that an empire can have. Consequently, when

obtaining LNDS of an empire, the control of whether the percentage of imperialists

exceeds in an empire is made. If it exceeds it, then the best maximum imperialists

allowed are retained; the others are moved to the set of colonies. The total power of

an empire is equal to the number of non-dominated solutions in the empire’s

population. Although an empire with a lower number of non-dominated solutions

may contain better solutions than one with more non-dominated solutions, the total

power is still equal to the cardinality measure regardless of the dominancy.

5.2.5 Uniting Similar Empires

MOICA uses different approaches in uniting similar empires with a comparison to

the single objective version of it. This is because in a single objective algorithm,

ICA, empires are united when each empire’s imperialist is very close to the other’s

imperialist. This is achieved by calculating the distance between two positions of

imperialists and comparing this calculated distance with the distance threshold

parameter, which is originally set to 0.02. The distance threshold used here is not for

diversity preservation; it is only used for measuring how close two empires are to

each other. If the distance is less than or equal to the specified threshold, then the

empires are united.

61

In the proposed algorithm, the mentioned approach for uniting similar empires

cannot be applied because there are several imperialists in the empire. Thus, all

imperialists must be considered to compare the empires for similarity. Consequently,

a comparison of empires for similarity is implemented by using the generational

distance metric [52], which enables the calculation of the generational distance

between two or more sets of non-dominated solutions. The generational distance GD

is defined as:

 , (5.1)

where S* is a reference solution set for evaluation of the solution set Sj and dxr is the

distance between a current solution x and a reference solution r as:

 (5.2)

where k is the number of objective functions to be optimized. Reference and current

solutions are the solutions from two empires to be united. Figure 5.4 illustrates an

example for the computation of generational distance for two objective functions.

Figure 5.4. Generational distance for uniting empires

 : reference solution r

 : current solution x

 22

33

2

22

2

11)()(...)()()()()()(xfrfxfrfxfrfxfrfd kkrx

*

}min{
*

1
GD

Sr

jrx Sxd
S

62

5.2.6 Imperialistic Competition

Imperialistic competition plays an important role in this algorithm because the whole

algorithm is constructed to execute the competition between the empires. The

imperialistic competition gradually decreases the number of weak empires, whereas

it increases the number of strong empires. The weakest empire in the proposed

algorithm is the one with the smallest number of non-dominated individuals, whereas

the strongest empire is the one with the largest number of non-dominated individuals.

Imperialistic competition is constructed so that the stronger an empire is, the more

chances it has to obtain control of a weak colony in a weak empire. Consequently, it

obtains possession of it. Weak empires will slowly lose their colonies during this

competition and are soon terminated on account of being powerless, which means

that these empires will be left with no countries. Imperialistic competition is

described in Algorithm 5.4.

Algorithm 5.4. Imperialistic Competition

1. Construct a vector of total powers P for all empires.

2. Select the weakest empire E with the lowest total power.

3. Construct a vector of random values R ~U(0,1) of size P.

4. Calculate D = R - P for each empire.

5. The empire with the maximum value in D will possess the randomly selected

colony in empire E.

6. Terminate E if it has no colonies.

The complete flowchart of MOICA is presented in Figure 5.5.

63

Start

Initialization:

1. Initialize problem parameters such as objective function name, number of variables and

lower and upper bounds of decision variables

2. Initialize algorithm parameters such as population size, number of initial empires, number

of iterations and other coefficients used in assimilation and revolution operations

Evaluate objective functions and assign cost values to each country

Apply non-domination sorting

Create initial empires

For each empire j

Obtain GNDS

Apply assimilation: move colonies toward one of the randomly selected

imperialists in the GNDS set and apply economic changes with probability pe

Apply revolution: generate new countries from the LNDS set according to

probability pr and revolution rate

Evaluate objective functions and assign cost values to all colonies

Update LNDS for empire j

Calculate the total power of empire j

Unite similar empires

Apply imperialistic competition and terminate powerless empires

Is termination condition

satisfied?

Exit

Yes

No

Figure 5.5. MOICA flowchart

64

5.2.7 Computational Complexity of MOICA

The time complexity for implementing non-domination sorting is the same as the

time complexity for non-domination sorting in NSGA-II, that is O(M(2N)2), where M

is the number of objectives and N is the number of solutions, i.e. the population size.

Considering time complexities of assimilation and revolution operations, then in the

worst case there is possibility for N-1 colonies to be assimilated / revolved, if there is

only one dominating imperialist. Therefore, in every iteration, for both assimilation

and revolution the time complexity is O(N). Another part that is considered for time

complexity is the uniting similar empires, where the time complexity in every

iteration is O(K2), where K is the number of empires in the population. The time

complexity of objective functions is T(k), where k is the number of decision

variables. As a result, the overall time complexity of MOICA is O((M(2N)2 + K2)

*T(k)). Comparing the time complexities of MOICA and NSGA-II it can be

concluded that they are almost the same, since K2 is related to the number of empires,

which is usually very low with comparison to the population size N, which could

even be omitted.

5.3 Experimental Results

This section details the experiments and simulations conducted in this study. To

obtain the experimental results and verify the effectiveness of the proposed

algorithm, several bi- and tri-objective optimization problems were selected from the

literature as the test problems. These were obtained from the study of Zitzler et al.

[53]: ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Furthermore, test problems, including

Kursawe [54], Fonseca [55], and Schaffer [56], were additionally used. Moreover,

ten unconstrained test functions were employed from the Congress on Evolutionary

65

Competition (CEC) 2009 Special Session and Competition [57]: UF1, UF2, UF3,

UF4, UF5, UF6, UF7, UF8, UF9, and UF10.

Table 5.1 details all unconstrained test problems used in this study except the CEC

2009 test functions, which can be found in [57]. Additionally, some performance

metrics were used to evaluate the obtained results with the Pareto optimal solutions,

specifically, Hypervolume (HV) [43], Epsilon Indicator (EI) [58] and Inverted

Generational Distance (IGD). The IGD metric used in this study was the jMetal

version.

In addition, this section presents a comparison of the results of the proposed

algorithm and other state-of-the-art multi-objective optimization algorithms.

5.3.1 Discussion of the Results

All experimental results were obtained by executing each algorithm ten times. The

maximum number of function evaluations was set to 25,000. For some test functions,

it was set to 5,000 to verify the performance of the algorithms with a higher and

lower number of function evaluations. The population size was set to 100 for all

algorithms. The dimension of the individuals in the population was set to 30 for all

test functions. The tables given below describe the average hyper-volume indicator

as well as the epsilon indicator, which were obtained from several executions of the

given algorithm. The IGD metric was obtained as the average value from several

executions of the algorithms.

The proposed algorithm used the following parameters. The initial number of

empires was set to eight. From several tests, it was evident that, if algorithm had far

fewer or far more than eight initial empires, then the performance was poor. The

66

parameter had a random value between (0, 1) and had a random value between

(0, 5). The parameter for the percentage of imperialists was set to 0.3, such that at

most 30% of the empire’s population was considered imperialists. In addition, 70%

of the space was left for colonies in an empire; thus, there were more assimilations

and revolutions performed. The revolution rate was set to 0.3, and the parameter

used in the revolution process pr was set to 0.5. On the other hand, the parameter for

applying economic changes pe may have been different for achieving better results in

various test functions. For example, for UF9, the result was best when pe was set to

around 0.2; nonetheless, in most cases, it was between 0.8 and 1 based on a trial and

error approach. The values for the above parameters were chosen as the best suitable

values for the proposed algorithm after a number of conducted experiments.

Therefore, the parameters for MOICA were tuned using a non-iterative algorithmic

approach [59], such that the parameters were generated during initialization and were

then tested.

The first three test problems addressed in this section are Fonseca, Kursawe, and

Schaffer. Then, the ZDT set of problems is discussed and the results of the set of

unconstrained problems in CEC 2009 are described. Values in bold are the best

results obtained. All algorithms performed well in terms of convergence and

divergence for each of the problems below. The cardinality measure, i.e. the number

of non-dominated solutions, is important for having more candidate solutions and

thus more chances for a good convergence. One of the main features that distinguish

MOICA is the cardinality measure, which is very good for most of the problems.

67

The five real-valued ZDT problems are presented in Table 5.1, noting that ZDT5, the

omitted problem, is binary encoded. Incidentally, due to being binary encoded, ZDT5

has often been omitted from analysis elsewhere in the EA literature.

Table 5.1. Unconstrained test problems used in this study

Problem Objective Functions Variable bounds n

Fonseca

-4 ≤ xi ≤ 4 3

Kursawe

-5 ≤ xi ≤ 5 3

Schaffer

-10 ≤ x ≤ 105 1

ZDT1

0 ≤ xi ≤ 1 30

ZDT2

0 ≤ xi ≤ 1 30

ZDT3

0 ≤ xi ≤ 1

30

ZDT4

0 ≤ x1 ≤ 1

-5≤ xi ≤ 5

i = 2,…,n

30

ZDT6

0 ≤ xi ≤ 1 30

Tables 5.2 to 5.4 contain Hypervolume, Epsilon Indicator, and IGD results of

MOICA, NSGA-II, SPEA2 and OMOPSO for the unconstrained test problems given

n

i i
n

x

exf
1

2)
1

(

1 1)(

n

i i
n

x

exf
1

2)
1

(

2 1)(

1

1

)*2.0(

1)10()(
2

1
2n

i

xx iiexf

n

i

b

i

a

i baxxxf
12 3;8.0);sin5|(|)(

2

1)(xxf
2

2)2()(xxf

11)(xxf

])(/1)[()(12 xgxxgxf

)1/()(91)(
2

nxxg

n

i i

11)(xxf

]))(/(1)[()(2

12 xgxxgxf

)1/()(91)(
2

nxxg

n

i i

11)(xxf

)]10sin(
)()(

1)[()(1
1

2 x
xg

x

xg

x
xgxf i

)1/()(91)(
2

nxxg

n

i i

11)(xxf

]))(/(1)[()(2

12 xgxxgxf

)]4cos(10[)1(101)(
2

2

i

n

i i xxnxg

)6(sin1)(1

64

1
1 xexf

x

]))(/)((1)[()(2

12 xgxfxgxf
25.0

2
)]1/()[(91)(

nxxg
n

i i

68

in Table 5.1. On average, results for Hypervolume and Epsilon Indicator are similar

for all algorithms. However, MOICA performs much better in terms of IGD metric.

Table 5.2. Hypervolume results for unconstrained test problems with 25,000

function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

Fonseca 0.99441 0.99441 0.99447 0.99453

Kursawe 1.00000 1.00000 1.00000 1.00000

Schaffer 0.97764 0.81099 0.90619 0.97748

ZDT1 0.99242 0.99713 0.99699 0.99725

ZDT2 0.98534 0.99431 0.99392 0.99444

ZDT3 0.99824 0.99833 0.99835 0.99831

ZDT4 0.98440 0.72624 0.57710 0.02393

ZDT6 0.97120 0.93140 0.90948 0.97105

Table 5.3. Epsilon Indicator results for unconstrained test problems with 25,000

function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

Fonseca 1.00470 1.00560 1.00520 1.00310

Kursawe 1.04330 1.04890 1.04890 1.04620

Schaffer 1.01020 1.01030 1.07750 1.01010

ZDT1 1.03240 1.03330 1.03580 1.01360

ZDT2 1.00350 1.00348 1.00329 1.00250

ZDT3 1.00000 0.99970 0.99950 0.99910

ZDT4 1.03260 3.43550 5.38910 22.01040

ZDT6 1.01610 1.31910 1.47070 1.01590

Table 5.4. IGD results for unconstrained test problems with 25,000 function

evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

Fonseca 1.1805E-4 3.2267E-4 2.3427E-4 2.1033E-4

Kursawe 4.4896E-4 1.7598E-4 1.3464E-4 1.6165E-4

Schaffer 2.3575E-5 0.0373 0.0215 3.3629E-4

ZDT1 2.5732E-5 1.8641E-4 1.5222E-4 1.3782E-4

ZDT2 3.5707E-5 1.9656E-4 1.7261E-4 1.4183E-4

ZDT3 7.4842E-5 2.6488E-4 2.3718E-4 2.1859E-4

ZDT4 3.8724E-5 0.0849 0.1365 1.1501

ZDT6 1.6200E-5 0.0137 0.0219 1.2514E-4

69

Table 5.5 contains MOICA, MOEA/D-AWA [60], Harmony NSGA-II and Harmony

MOEAD [61] IGD results for the set of ZDT problems. From these results it is seen

that MOICA outperforms all three algorithms.

Table 5.5. IGD results for ZDT test problems with 25,000 function evaluations

 Algorithm

Fun.

MOICA MOEA/D-

AWA

Harmony

NSGA-II

Harmony

MOEAD

ZDT1 2.5732E-5 4.470e–3 8.03e-04 1.86e-03

ZDT2 3.5707E-5 4.482e–3 1.12e-03 3.01e-03

ZDT3 7.4842E-5 6.703e–3 5.01e-04 1.19e-03

ZDT4 3.8724E-5 4.238e–3 8.33e-02 1.64e-04

ZDT6 1.6200E-5 4.323e–3 2.11e-04 1.91e-04

As stated above, one of the features of MOICA is the ability to produce many

candidate solutions by having a high cardinality measure. The Schaffer test problem

is an example for illustrating the cardinality measure of MOICA.

Pareto Optimal

70

Figure 5.6. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on Schaffer

Figure 5.6 illustrates the Pareto found by all algorithms for the Schaffer test problem.

Although the Hypervolume and Epsilon Indicator results are good for all algorithms,

as shown in Tables 5.2 and 5.3, respectively, it is easily seen from Figure 5.6 that

MOICA and OMOPSO have much better cardinality measures than NSGA-II and

SPEA2.

For ZDT1, ZDT2, and ZDT3 test problems, all algorithms performed equally well.

However, with respect to the ZDT4 test problem, MOICA performed much better

than all other algorithms in this study. In the ZDT4 test problem, MOICA

demonstrated its power in terms of convergence and divergence when compared to

the other algorithms. It was successful in this test problem and others on account of

MOICA OMOPSO

NSGA-II SPEA2

71

the way in which it searches the available search space. This is handled by setting

many different empires in the beginning of the algorithm for which LNDS sets are

positioned in different parts of the search space. This enables the algorithm to search

the whole search space and to consequently obtain good convergence and

divergence. Figure 5.7 illustrates the Pareto found by four algorithms for the ZDT4

test problem, which demonstrates how the spread of solutions, convergence, and

divergence is effectively preserved in MOICA compared to other algorithms. Figure

5.8 illustrates ZDT6 test problem, which is another good example for illustrating the

performance of MOICA compared to other algorithms used in this study. However,

in ZDT6, both MOICA and OMOPSO performed well compared to NSGA-II and

SPEA2; however, NSGA-II performed better than SPEA2.

Figure 5.7. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on ZDT4

72

Figure 5.8. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on ZDT6

Meanwhile, Tables 5.6 to 5.9 contain Hypervolume, Epsilon Indicator, and IGD

results for Uf1-UF10 unconstrained test problems from CEC 2009 with 25,000

function evaluations for which MOICA on average again produces reasonably good

results.

Table 5.6. Hypervolume results for CEC 2009 unconstrained test problems with

25,000 function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.98701 0.97802 0.98667 0.98955

UF2 0.99671 0.98934 0.98897 0.99279

UF3 0.92884 0.94478 0.98728 0.99454

UF4 0.98849 0.98838 0.98811 0.98728

UF5 0.93230 0.91786 0.90060 0.81056

UF6 0.93785 0.94459 0.94282 0.91297

UF7 0.97662 0.96890 0.95315 0.98730

UF8 0.99348 0.99280 0.99220 0.98945

UF9 0.98309 0.97468 0.95914 0.97845

UF10 0.99334 0.92076 0.92967 0.72864

73

Table 5.7. Epsilon Indicator results for CEC 2009 unconstrained test problems with

25,000 function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

UF1 1.07890 1.11220 1.06800 2.03310

UF2 1.14590 1.12880 1.13060 1.22760

UF3 1.70320 1.83810 1.07410 1.50760

UF4 1.06600 1.08930 1.07390 1.07410

UF5 1.55180 1.81000 1.86610 6.19530

UF6 1.62380 1.56080 1.42700 2.22700

UF7 1.07390 1.03760 1.05000 1.57840

UF8 2.04970 4.01980 2.91510 7.51780

UF9 4.19050 6.75860 3.61460 23.76640

UF10 1.23930 3.25450 2.96740 7.65290

Table 5.8. IGD results for CEC 2009 unconstrained test problems with 25,000

function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.0035 0.0047 0.0042 0.0041

UF2 0.0018 0.0020 0.0024 0.0021

UF3 0.0103 0.0084 0.0072 0.0072

UF4 0.0018 0.0018 0.0019 0.0022

UF5 0.1268 0.1117 0.1155 0.3579

UF6 0.0127 0.0102 0.0119 0.0178

UF7 0.0075 0.0068 0.0098 0.0036

UF8 0.0026 0.0029 0.0027 0.0037

UF9 0.0035 0.0035 0.0030 0.0056

UF10 0.0037 0.0063 0.0046 0.0266

Table 5.9. IGD results for CEC 2009 unconstrained test problems with 25,000

function evaluations

 Algorithm

Fun.

MOICA DMCMOABC Harmony

NSGA-II

Harmony

MOEAD

UF1 0.0035 0.0053 0.0037 0.0026

UF2 0.0018 0.0050 0.0345 0.0018

UF3 0.0103 0.0544 0.0085 0.0067

UF4 0.0018 0.0254 0.0033 0.0021

UF5 0.1268 0.0527 0.0457 0.0488

UF6 0.0127 0.0393 0.0089 0.0092

UF7 0.0075 0.0065 0.0113 0.0118

UF8 0.0026 0.0665 0.0028 0.0054

UF9 0.0035 0.0368 0.0044 0.0060

UF10 0.0037 0.1119 0.0036 0.0059

74

The performance of MOICA with regard to the test functions in CEC 2009 is good

because MOICA produced competitive results compared to the other algorithms. On

the other side DMCMOABC performs worst while Harmony NSGA-II and Harmony

MOEAD perform also well. Figure 5.9 presents the results of MOICA along with

those of other algorithms, as well as the Pareto optimal for the UF10 unconstrained

test function. Tables 5.6 to 5.9 illustrate that MOICA performs better than the other

algorithms with respect to UF10. In addition, it is clear from Figure 5.9 that MOICA

is within the objective space of the Pareto optimal, unlike the other algorithms.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

f(x
1
)f(x

2
)

f(
x 3

)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
0

0.2

0.4

0.6

0.8

1

f(x
1
)

UF10

f(x
2
)

f(
x 3

)

0

2

4

6

8

0

2

4

6
0

1

2

3

4

5

6

f(x
1
)

UF10

f(x
2
)

f(
x 3

)

Pareto Optimal

OMOPSO

MOICA

75

Figure 5.9. Non-dominated solutions of MOICA, OMOPSO, NSGA-II and SPEA2

on UF10

Tables 5.10 to 5.12 show the results for UF1-UF7 test functions with a maximum of

5,000 function evaluations. The average performance of MOICA is either similar or

better than the performances of the other algorithms, even for such a low number of

function evaluations. This result likewise proves that MOICA quickly converges to

global optimal solutions.

Table 5.10. Hypervolume results for CEC 2009 unconstrained test problems with

5,000 function evaluations

 Algorithm

Function

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.97192 0.97651 0.98519 0.97075

UF2 0.98314 0.98818 0.98617 0.98854

UF3 0.91334 0.90554 0.89972 0.97219

UF4 0.98567 0.98377 0.98167 0.98521

UF5 0.86472 0.83347 0.80558 0.74621

UF6 0.88661 0.88456 0.88426 0.86270

UF7 0.97156 0.94940 0.93761 0.97825

Table 5.11. Epsilon Indicator results for CEC 2009 unconstrained test problems

with 5,000 function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

UF1 1.22630 1.57160 1.60980 1.45710

0

1

2

3

0

1

2

3

4
0

0.5

1

1.5

2

2.5

f(x
1
)

UF10

f(x
2
)

f(
x 3

)

0

0.5

1

1.5

2

0

1

2

3
0

0.5

1

1.5

2

f(x
1
)

UF10

f(x
2
)

f(
x 3

)

NSGA-II

SPEA2

76

Table 5.11 (continued)

UF2 1.51470 1.31100 1.27830 1.35280

UF3 2.82790 2.37100 2.50600 1.61580

UF4 1.12490 1.14260 1.13340 1.11650

UF5 2.87590 4.36320 2.98440 5.24710

UF6 2.45680 2.32760 3.01710 5.07890

UF7 1.12350 1.23610 1.44560 1.43810

Table 5.12. IGD results for CEC 2009 unconstrained test problems with 5,000

function evaluations

 Algorithm

Fun.

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.0054 0.0045 0.0051 0.0064

UF2 0.0033 0.0032 0.0033 0.0030

UF3 0.0152 0.0156 0.0153 0.0101

UF4 0.0027 0.0031 0.0033 0.0027

UF5 0.2167 0.3346 0.3409 0.5060

UF6 0.0229 0.0264 0.0243 0.0357

UF7 0.0061 0.0089 0.0117 0.0066

Table 5.13 contains comparison of results between MOICA, MOEP with rank

sorting, MOEP with non-domination sorting [64] and MOSaDE algorithms [88].

This comparison also proves very good performance of MOICA, since it produces

better results than others.

Table 5.13. IGD results for CEC 2009 unconstrained test problems with 25,000

function evaluations

 Algorithm

Fun.

MOICA MOEP
(rank sorting)

MOEP
(non-domination

sorting)

MOSaDE

UF1 0.0035 0.0596 0.0588 0.0983

UF2 0.0018 0.0189 0.0516 0.0607

UF3 0.0103 0.0990 0.1910 0.3248

UF4 0.0018 0.0427 0.0624 0.0977

UF5 0.1268 0.2245 0.7608 0.6963

UF6 0.0127 0.1031 0.3606 0.3640

UF7 0.0075 0.0197 0.0408 0.1916

UF8 0.0026 0.4230 0.6512 0.4019

UF9 0.0035 0.3420 0.2744 0.3984

UF10 0.0037 0.3621 2.4987 2.9313

77

Table 5.14 presents the ranking of MOICA compared to the algorithms used in the

CEC 2009 competition for unconstrained functions. The ranking is based on the

average IGD metric.

Table 5.14. Ranking of MOICA compared to algorithms in CEC 2009

UF1 IGD UF2 IGD UF3 IGD

MOICA 0.0035 MOICA 0.0018 MOEAD 0.00742

MOEAD 0.00435 MTS 0.00615 MOICA 0.0103

GDE3 0.00534 MOEADGM 0.0064 LiuLi Algorithm 0.01497

MOEADGM 0.0062 DMOEADD 0.00679 DMOEADD 0.03337

MTS 0.00646 MOEAD 0.00679 MOEADGM 0.049

LiuLi

Algorithm

0.00785 OWMOSaDE 0.0081 MTS 0.0531

DMOEADD 0.01038 GDE3 0.01195 Clustering

MOEA

0.0549

NSGAIILS 0.01153 LiuLi

Algorithm

0.0123 AMGA 0.06998

OWMOSaDE 0.0122 NSGAIILS 0.01237 DECMOSA-

SQP

0.0935

Clustering

MOEA

0.0299 AMGA 0.01623 MOEP 0.099

AMGA 0.03588 MOEP 0.0189 OWMOSaDE 0.103

MOEP 0.0596 Clustering

MOEA

0.0228 NSGAIILS 0.10603

DECMOSA-

SQP

0.07702 DECMOSA-

SQP

0.02834 GDE3 0.10639

OMOEAII 0.08564 OMOEAII 0.03057 OMOEAII 0.27141

UF4 IGD UF5 IGD UF6 IGD

MOICA 0.0018 MTS 0.01489 MOEAD 0.00587

MTS 0.02356 GDE3 0.03928 MOICA 0.0127

GDE3 0.0265 AMGA 0.09405 MTS 0.05917

DECMOSA-

SQP 0.03392
MOICA

0.1268 DMOEADD 0.06673

AMGA 0.04062

LiuLi

Algorithm 0.16186 OMOEAII 0.07338

DMOEADD 0.04268

DECMOSA-

SQP 0.16713

Clustering

MOEA 0.0871

MOEP 0.0427 OMOEAII 0.1692 MOEP 0.1031

LiuLi

Algorithm 0.0435 MOEAD 0.18071

DECMOSA-

SQP 0.12604

OMOEAII 0.04624 MOEP 0.2245 AMGA 0.12942

MOEADGM 0.0476

Clustering

MOEA 0.2473 LiuLi Algorithm 0.17555

OWMOSaDE 0.0513 DMOEADD 0.31454 OWMOSaDE 0.1918

NSGAIILS 0.0584 OWMOSaDE 0.4303 GDE3 0.25091

78

Table 5.14 (continued)

Clustering

MOEA 0.0585 NSGAIILS 0.5657 NSGAIILS 0.31032

MOEAD 0.06385 MOEADGM 1.7919 MOEADGM 0.5563

UF7 IGD UF8 IGD UF9 IGD

MOEAD 0.00444 MOICA 0.0026 MOICA 0.0035

LiuLi

Algorithm 0.0073 MOEAD 0.0584 DMOEADD 0.04896

MOICA 0.0075 DMOEADD 0.06841 NSGAIILS 0.0719

MOEADGM 0.0076

LiuLi

Algorithm 0.08235 MOEAD 0.07896

DMOEADD 0.01032 NSGAIILS 0.0863 GDE3 0.08248

MOEP 0.0197 OWMOSaDE 0.0945 LiuLi Algorithm 0.09391

NSGAIILS 0.02132 MTS 0.11251 OWMOSaDE 0.0983

Clustering

MOEA 0.0223 AMGA 0.17125 MTS 0.11442

DECMOSA-

SQP 0.02416 OMOEAII 0.192

DECMOSA-

SQP 0.14111

GDE3 0.02522

DECMOSA-

SQP 0.21583 MOEADGM 0.1878

OMOEAII 0.03354

Clustering

MOEA 0.2383 AMGA 0.18861

MTS 0.04079 MOEADGM 0.2446 OMOEAII 0.23179

AMGA 0.05707 GDE3 0.24855

Clustering

MOEA 0.2934

OWMOSaDE 0.0585 MOEP 0.423 MOEP 0.342

UF10 IGD

MOICA 0.0037

MTS 0.15306

DMOEADD 0.32211

AMGA 0.32418

MOEP 0.3621

DECMOSA-

SQP 0.36985

Clustering

MOEA 0.4111

GDE3 0.43326

LiuLi

Algorithm 0.44691

MOEAD 0.47415

MOEADGM 0.5646

OMOEAII 0.62754

OWMOSaDE 0.743

NSGAIILS 0.84468

79

5.3.2 Friedman Aligned Ranks Test

In addition to the ranking based on average IGD results discussed in previous section

a Friedman aligned ranks test is also implemented over all IGD scores in order to

compare statistical similarities between results of MOICA and other 13 algorithms in

CEC2009 MOO contest. Table 5.15 shows the average rank values for all algorithms

along with the p-value. The best scores of algorithms are shown by the subscripted

numbers in Table 5.15. It is clear from Table 5.15 that, the average rank value of

MOICA is the smallest one, which indicates that MOICA is the best performing

algorithm among the 14 competitors. Meanwhile, the p-value being very small

implies that there is significant statistical difference among the results as well as

MOICA being statistically different from other algorithms.

Table 5.15. Friedman aligned ranks over CEC2009 UF problem instances

Algorithm Average 𝑭𝑨𝑹 value p-value

MOEAD 4,45(4)

1.6544e-06

GDE3 7,50(6)

MOEADGM 8,50(8)

MTS 4,4(3)

LiuLi Algorithm 5,90(5)

DMOEADD 4,35(2)

NSGAIILS 9,50(10)

OWMOSaDE 9,90(12)

Clustering MOEA 9,60(11)

AMGA 8,30(7)

MOEP 9,50(10)

DECMOSA-SQP 8,70(9)

OMOEAII 10,60(13)

MOICA 1,70(1)

80

Chapter 6

CONCLUSION

This thesis presents studies and research on the single-objective and multi-objective

optimization algorithms. Imperialistic competitive algorithm, which is a single-

objective global optimization algorithm, was studied in details and also applied on

NP-hard problem – Travelling Salesman Problem. In addition to this, ICA was

improved by modifying it’s the most important operator – assimilation, and as a

result a new algorithm ICAMA was developed. Finally, a multi-objective version of

ICA - MOICA was proposed and applied on various real valued benchmark

problems known in the literature. The novelty of MOICA is highlighted in having

several non-dominated solution sets, where exploration and exploitation of a search

space is done without using special parameter for diversity preservation, which

enables algorithm to avoid extra computations for maintaining spread of solutions.

Both, ICAMA and MOICA performed well with comparison to other state-of-the-art

algorithms. Experiments conducted in this thesis illustrate how especially MOICA

outperforms other algorithms for most of the test problems. Application of Fuzzy

Logic with ICAMA or MOICA is an option for the future work. There are many

problems in real world that need to be solved by multi-objective optimization

algorithms including fuzziness in their approach.

81

REFERENCES

[1] Sherinov, Z., Unveren, A., & Acan, A. (2011). An Evolutionary Multi-

Objective Modeling and Solution Approach for Fuzzy Vehicle Routing

Problem. INISTA 2011, IEEE Conference.

[2] Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm:

An algorithm for optimization inspired by imperialistic competition. IEEE

Congress on Evolutionary Computation.

[3] Melanie M. (1999). An Introduction to Genetic Algorithms. Massachusetts,

MIT Press, pp. 2-12.

[4] Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey.

Theoretical Computer Science, vol. 344, no. 2–3, pp. 243–278.

[5] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings

of ICNN’95 - International Conference on Neural Networks, pp. 1942–1948.

[6] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by

Simulated Annealing. Science, vol. 220, no. 4598, pp. 671–680.

[7] Wang, B., Guan, Z., Li, D., Zhang, C., & Chen, L. (2014). Two-sided assembly

line balancing with operator number and task constraints: a hybrid imperialist

competitive algorithm. Int J Adv Manuf Technol, vol. 74, no. 5–8, pp. 791–805.

82

[8] Ramezanian, R. & Ezzatpanah, A. (2015). Modeling and solving multi-

objective mixed-model assembly line balancing and worker assignment

problem. Computers & Industrial Engineering, vol. 87, pp. 74–80.

[9] Lian, K., Zhang, C. Z., Gao, L., & Xinyu, S. (2011). Single row facility layout

problem using an imperialist competitive algorithm, Proc. of the 41st Int. Conf.

on Computers and Industrial Engineering, pp. 578–586.

[10] Hosseini, S., Khaled, A. A., & Vadlamani, S. (2014). Hybrid imperialist

competitive algorithm, variable neighborhood search, and simulated annealing

for dynamic facility layout problem. Neural Computing and Applications, vol.

25, no. 7–8, pp. 1871–1885.

[11] Xu, S., Wang, Y., & Huang, A. (2014). Application of Imperialist Competitive

Algorithm on Solving the Traveling Salesman Problem. Algorithms, vol. 7, no.

2, pp. 229–242.

[12] Hosseini, S. M., Khaled, A. A., & Jin, M. (2012). Solving Euclidean minimal

spanning tree problem using a new meta-heuristic approach: Imperialist

Competitive algorithm (ICA). 2012 IEEE International Conference on

Industrial Engineering and Engineering Management, pp. 176-181.

[13] Mortazavi, A., Khamseh, A. A., & Naderi, B. (2015). A novel chaotic

imperialist competitive algorithm for production and air transportation

scheduling problems. Neural Computing and Applications, vol. 26, no. 7, pp.

1709–1723.

83

[14] Agha Mohammad Ali Kermani, M., Aliahmadi, A., Salamat, V. R.,

Barzinpour, F., & Hadiyan, E. (2014). Supplier selection in a single-echelon

supply chain with horizontal competition using Imperialist competitive

algorithm. International Journal of Computer Integrated Manufacturing, vol.

28, no. 6, pp. 628–638.

[15] Talebi, H., Nikoo, H., & Mirzaei, A. (2012). Face verification in complex

background based on imperialist competitive algorithm. The 16th CSI

International Symposium on Artificial Intelligence and Signal Processing

(AISP 2012).

[16] Moghaddam, M. E. & Nemati, N. (2013). A robust color image watermarking

technique using modified Imperialist Competitive Algorithm. Forensic Science

International, vol. 233, no. 1–3, pp. 193–200.

[17] Abdechiri, M., Faez, K., & Bahrami, H. (2010). Neural Network Learning

Based on Chaotic Imperialist Competitive Algorithm. 2010 2nd International

Workshop on Intelligent Systems and Applications.

[18] Duan, H. & Huang, L. (2014). Imperialist competitive algorithm optimized

artificial neural networks for UCAV global path planning. Neurocomputing,

vol. 125, pp. 166–171.

[19] Mousavirad, S. J. & Ebrahimpour-Komleh, H. (2013). Feature selection using

modified imperialist competitive algorithm. ICCKE 2013.

84

[20] Mahmoodabadi, Z. & Shaerbaf Tabrizi, S. (2014). A New ICA-Based

Algorithm for Diagnosis of Coronary Artery Disease. Intelligent Computing,

Communication and Devices, pp. 415–427.

[21] Roche, R., Idoumghar, L., Blunier, B., & Miraoui, A. (2012). Imperialist

Competitive Algorithm for Dynamic Optimization of Economic Dispatch in

Power Systems. Artificial Evolution, pp. 217–228.

[22] Mehdinejad, M., Mohammadi-Ivatloo, B., Dadashzadeh-Bonab, R., & Zare, K.

(2016). Solution of optimal reactive power dispatch of power systems using

hybrid particle swarm optimization and imperialist competitive algorithms.

International Journal of Electrical Power & Energy Systems, vol. 83, pp. 104–

116.

[23] Seidgar, H., Kiani, M., Abedi, M., & Fazlollahtabar, H. (2013). An efficient

imperialist competitive algorithm for scheduling in the two-stage assembly

flow shop problem. International Journal of Production Research, vol. 52, no.

4, pp. 1240–1256.

[24] Ghasemishabankareh, B., Shahsavari-Pour, N., Basiri, M.-A., & Li, X. (2016).

A Hybrid Imperialist Competitive Algorithm for the Flexible Job Shop

Problem. Artificial Life and Computational Intelligence, pp. 221–233.

[25] Bagher, M., Zandieh, M., & Farsijani, H. (2010). Balancing of stochastic U-

type assembly lines: an imperialist competitive algorithm. The International

85

Journal of Advanced Manufacturing Technology, vol. 54, no. 1–4, pp. 271–

285.

[26] Talatahari, S., Farahmand Azar, B., Sheikholeslami, R., & Gandomi, A. H.

(2012). Imperialist competitive algorithm combined with chaos for global

optimization. Communications in Nonlinear Science and Numerical

Simulation, vol. 17, no. 3, pp. 1312–1319.

[27] Niknam, T., Taherian Fard, E., Pourjafarian, N., & Rousta, A. (2011). An

efficient hybrid algorithm based on modified imperialist competitive algorithm

and K-means for data clustering. Engineering Applications of Artificial

Intelligence, vol. 24, no. 2, pp. 306–317.

[28] Razmjooy, N., Mousavi, B. S., & Soleymani, F. (2013). A hybrid neural

network Imperialist Competitive Algorithm for skin color segmentation.

Mathematical and Computer Modelling, vol. 57, no. 3–4, pp. 848–856.

[29] Roozbeh Nia, A., Hemmati, M. Far, & Niaki, S. T. A. (2015). A hybrid genetic

and imperialist competitive algorithm for green vendor managed inventory of

multi-item multi-constraint EOQ model under shortage. Applied Soft

Computing, vol. 30, pp. 353–364.

[30] Ray, S. S., Bandyopadhyay, S., & Pal, S. K. (2005). New Genetic Operators for

Solving TSP: Application to Microarray Gene Ordering. PReMI 2005, LNCS

3776, pp. 617–622.

86

[31] Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster.

IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102.

[32] Suganthan, P.N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. -P., Auger, A., &

Tiwari, S. (2005). Problem Definitions and Evaluation Criteria for the CEC

2005 Special Session on Real-Parameter Optimization, Technical Report.

[33] Chen, Q., Lin, B., Zhang, Q., Liang, J. J., Suganthan, P. N., & Qu, B. Y.

(2015). Problem Definitions and Evaluation Criteria for CEC 2015 Special

Session on Bound Constrained Single-Objective Computationally Expensive

Numerical Optimization, Technical Report.

[34] Karaboga, D. & Basturk, B. (2007). A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC) algorithm.

Journal of Global Optimization, vol. 39, no. 3, pp. 459–471.

[35] Price, K., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution: A

Practical Approach to Global Optimization. Springer-Verlag Berlin

Heidelberg.

[36] Schwefel, H. P. (1995). Evolution and Optimum Seeking. Wiley Interscience,

New York.

[37] Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on

the use of nonparametric statistical tests as a methodology for comparing

87

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation, vol. 1, no. 1, pp. 3–18.

[38] Reeves, C. (2002). Genetic Algorithms. Principles and Perspectives, Vol. 20,

Springer.

[39] Deb, K. (2001). Multiobjective optimization using evolutionary algorithms.

Wiley, Chichester, UK.

[40] Fonseca, C.M., & Fleming, P.J. (1993). Genetic algorithms for multiobjective

optimization: formulation, discussion and generalization. In: Forrest (ed) Proc

5th Int Conf Genetic Algor, Morgan Kauffman, S. San Mateo, CA, pp 416–423.

[41] Horn, J., Nafploitis, N., & Goldberg, D.E. (1994). A niched Pareto genetic

algorithm for multiobjective optimization. In: Michalewicz Z (ed) Proc 1st

IEEE Conf Evolut Comput, IEEE Press, Piscataway, NJ, pp 82–87.

[42] Srinivas, N., & Deb, K. (1995). Multiobjective function optimization using

nondominated sorting genetic algorithms. Evolut Comput (2)3:221–248.

[43] Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary

algorithms: a comparative case study. In: Eiben et al. (eds) Parallel problem

solving from nature, Springer-Verlag, Berlin, pp 292–301.

88

[44] Seyedmohsen, H., & Abdullah, A.K. (2014). A survey on the imperialist

competitive algorithm metaheuristic: implementation in engineering domain

and directions for future research. Appl Soft Comput 24:1078–1094.

[45] Duan, H., Xu, C., Liu, S., & Shao, S. (2010). Template matching using chaotic

imperialist competitive algorithm. Pattern Recogn Lett 31:1868–1875.

[46] Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., & Atashpaz-Gargari,

E. (2010). Solving the integrated product mix-outsourcing problem by a novel

meta-heuristic algorithm: imperialist competitive algorithm. Expert Syst Appl

37:7615–7626.

[47] Vedadi, M., Vahidi, B., & Hosseinian, S. H. (2015). An Imperialist

Competitive Algorithm Maximum Power Point Tracker for photovoltaic string

operating under partially shaded conditions. Sci.Int.(Lahore), 27(5), 4023-

4033.

[48] Goudarzi, M., Vahidi, B., & Naghizadeh, R. A. (2013). Optimum reactive

power compensation in distribution networks using Imperialistic Competitive

Algorithm. Sci. Int. (Lahore), 25(1), 27-31.

[49] Kashani, A. R., Gandomi, A. H., & Mousavi, M. (2014). Imperialistic

Competitive Algorithm: A metaheuristic algorithm for locating the critical slip

surface in 2-Dimensional soil slopes. Geoscience Frontiers, 1-7.

89

[50] Jordehi, A. R. (2016). Optimal allocation of FACTS devices for static security

enhancement in power systems via imperialistic competitive algorithm (ICA).

Applied Soft Computing 48, 317–328.

[51] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput

(6)2:182–197.

[52] Van Veldhuizen, D.A., & Lamont, G.B. (1998). Multiobjective evolutionary

algorithm research: a history and analysis. Dept Elect Comput Eng, Grad

School Eng, Air Force Inst. Technol, Wright-Patterson AFB, OH, Tech. Rep.

TR-98-03.

[53] Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective

evolutionary algorithms: empirical results. Evolut Comput (8)2:173–195.

[54] Kursawe, F. (1990). A variant of evolution strategies for vector optimization.

In: Schwefel H-P and Manner R (eds) Parallel problem solving from nature.

Springer-Verlag, Berlin, pp 193–197.

[55] Fonseca, C.M., & Fleming, P.J. (1998). Multiobjective optimization and

multiple constraint handling with evolutionary algorithms—part II: application

example. IEEE Trans Syst Man Cybern (A) 28:38–47.

90

[56] Schaffer, J.D. (1987). Multiple objective optimization with vector evaluated

genetic algorithms. In: Grefensttete (ed) Proc 1st Int Conf Genetic Algor,

Lawrence Erlbaum, Hillsdale, NJ, pp 93–100.

[57] Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., & Tiwari, S. (2009).

Multiobjective optimization test instances for the CEC 2009 Special Session

and Competition. Tech Report CES-487, University of Essex, Essex, UK.

[58] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.

(2003). Performance assessment of multiobjective optimizers: an analysis and

review. IEEE Trans Evolut Comput 7(2):117–132.

[59] Eiben, A.E., & Smit, S.K. (2011). Evolutionary algorithm parameters and

methods to tune them. In: Hamadi et al. (eds) Autonomous search. Springer,

Berlin, pp 15–36.

[60] Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., & Wu, J. (2014). MOEA/D with

adaptive weight adjustment. Evolutionary computation, 22(2), 231-264.

[61] Doush, I. A., & Bataineh, M. Q. (2015). Hybedrized NSGA-II and MOEA/D

with Harmony Search Algorithm to Solve Multi-objective Optimization

Problems. In: Arik S., Huang T., Lai W., Liu Q. (eds) Neural Information

Processing. Lecture Notes in Computer Science, vol 9489. Springer, Cham.

91

[62] Ebrahimzadeh, A., Addeh, J., & Rahmani, Z. (2012). Control chart pattern

recognition using K-MICA clustering and neural networks. ISA Trans. 51 (1)

111–119.

[63] Sherinov, Z., & Unveren A. (2013). ICA for solving Travelling Salesman

Problem. Seventh International Conference on Soft Computing, Computing

with Words and Perceptions in System Analysis, Decision and Control

(ICSCCW), 2-4.

[64] Qu, B. Y., & Suganthan, P. N. (2009). Multi-objective evolutionary

programming without non-domination sorting is up to twenty times faster”. In:

Proceeding of Congress on Evolutionary Computation, CEC '09, 2934-2939.

[65] Huang, V.L., Zhao, S.Z., Mallipeddi, R., Suganthan, P.N. (2009). Multi-

objective Optimization Using Self-adaptive Differential Evolution Algorithm.

In: Proc. CEC, pp. 190-194. IEEE, Los Alamitos.

[66] Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the strength

pareto evolutionary algorithm for multiobjective optimization. In: Proc. Evol.

Methods Design, Optimization Control Applicat. Ind. Problems (EUROGEN

’01), Barcelona, Spain: Inte. Center Numerical Methods Eng. (CIMNE), pp.

95–100.

[67] Zhang, Q. & Li, H. (2007). MOEA/D: A Multiobjective Evolutionary

Algorithm Based on Decomposition. IEEE Transactions on Evolutionary

Computation, 11(6), pp. 712-731.

92

[68] Rueda, J.L., & Erlich, I. (2015). MVMO for Bound Constrained Single-

Objective Computationally Expensive Numerical Optimization. Proc. IEEE

Congress on Evolutionary Computation (CEC), pp. 1011-1017.

[69] Tanweer, M. R., Suresh, S., & Sundararajan, N. (2015). Improved SRPSO

algorithm for solving CEC 2015 computationally expensive numerical

optimization problems. Proc. IEEE Congress on Evolutionary Computation

(CEC), pp. 1943-1949.

[70] Al-Dujaili, A., Subramanian, K., & Suresh, S. (2015). Humancog: A cognitive

architecture for solving optimization problems. Proc. IEEE Congress on

Evolutionary Computation (CEC), pp. 3220-3227.

[71] Hansen, N., Müller, S.D., Koumoutsakos, P. (2003). Reducing the Time

Complexity of the Derandomized Evolution Strategy with Covariance Matrix

Adaptation (CMA-ES), Evolutionary Computation, 11(1), pp. 1-18.

[72] Andersson, M., Bandaru, S., Ng, A., & Syberfeldt, A. (2015). Parameter tuned

CMA-ES on the CEC'15 expensive problems. Proc. IEEE Congress on

Evolutionary Computation (CEC), pp. 1950-1957.

[73] Xiang, Y., & Zhou, Y. (2015). A dynamic multi-colony artificial bee colony

algorithm for multi-objective optimization. Appl Soft Comput 35:766–785.

[74] Zhang, Q. F., Liu, W. D., & Li, H. (2009). The performance of a new version

of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of

93

the IEEE Congress on Evolutionary Computation (CEC '09), pp. 203–208,

IEEE.

[75] Kukkonen, S. & Lampinen, J. (2007). Performance assessment of Generalized

Differential Evolution 3 (GDE3) with a given set of problems. In: Proceedings

of the IEEE Congress on Evolutionary Computation (CEC '07), pp. 3593–

3600.

[76] Chen, C.-M., Chen, Y.-P., & Zhang, Q. F. (2009). Enhancing MOEA/D with

guided mutation and priority update for multi-objective optimization. In:

Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09),

pp. 209–216.

[77] Tseng, L.-Y. & Chen, C. (2009). Multiple trajectory search for

unconstrained/constrained multi-objective optimization. In: Proceedings of the

IEEE Congress on Evolutionary Computation (CEC '09), pp. 1951–1958.

[78] Liu, H.-L. & Li, X. Q. (2009). The multiobjective evolutionary algorithm based

on determined weight and sub-regional search. In: Proceedings of the IEEE

Congress on Evolutionary Computation (CEC '09), pp. 1928–1934.

[79] Liu, M. H., Zou, X. F., Yu, C., & Wu, Z. J. (2009). Performance assessment of

DMOEA-DD with CEC 2009 MOEA competition test instances. In:

Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09),

pp. 2913–2918, IEEE, Trondheim, Norway.

94

[80] Sindhya, K., Sinha, A., Deb, K., & Miettinen, K. (2009). Local search based

evolutionary multi-objective optimization algorithm for constrained and

unconstrained problems. Proc. IEEE CEC, pp. 2919-2926.

[81] Wang, Y. P., Dang, C. Y., Li, H. C., Han, L. X., & Wei, J. X. (2009). A

clustering multi-objective evolutionary algorithm based on orthogonal and

uniform design. In: Proceedings of the IEEE Congress on Evolutionary

Computation (CEC '09), pp. 2927–2933, IEEE, Trondheim, Norway.

[82] Tiwari, S., Fadel, G., Koch, P., & Deb, K. (2009). Performance assessment of

the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test

problems. In: Proceedings of the IEEE Congress on Evolutionary Computation

(CEC '09), pp. 1935–1942, IEEE, Trondheim, Norway.

[83] Zamuda, A., Brest, J., Bošković, B., & Žumer, V. (2009). Differential

evolution with self-adaptation and local search for Constrained multiobjective

optimization. In: Proceedings of the IEEE Congress on Evolutionary

Computation (CEC '09), pp. 195–202.

[84] Gao, S., Sanyou, Xiao, B., Zhang, L., Shi, Y., Tian, X., Yang, Y., Long, H.,

Yang, X., Yu, D., & Yan, Z. (2009). An orthogonal multi-objective

evolutionary algorithm with lower-dimensional crossover. In: Proceedings of

the IEEE Congress on Evolutionary Computation (CEC '09), pp. 1959–1964.

[85] Reyes Sierra, M. & Coello Coello, C. A. (2005). Improving PSO-Based Multi-

objective Optimization Using Crowding, Mutation and ǫ-Dominance. In

95

Evolutionary Multi-Criterion Optimization (EMO 2005), LNCS 3410, pp. 505–

519.

[86] Deb, K., Agrawal, S., Pratab, A., Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 681-695.

[87] Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the

Performance of the Strength Pareto Evolutionary Algorithm. Technical Report

103, Computer Engineering and Communication Networks Lab (TIK), Swiss

Federal Institute of Technology (ETH), Zurich.

[88] Huang, V. L., Qin, A. K., Suganthan, P. N., & Tasgetiren, M. F. (2007). Multi-

objective optimization based on self-adaptive differential evolution algorithm.

Proc. Int. Conf. IEEE Congr. Evol. Comput., pp. 3601-2608.

[89] Geem, Z.W., Kim, J.H., & Loganathan, G.V. (2001). A new heuristic

optimization algorithm: harmony search. Simulation 76(2), 60–68.

[90] Zitzler, E. & Thiele, L. (1999). Multiobjective evolutionary algorithms: A

comparative case study and and the strength pareto approach. IEEE Trans, on

Evolutionary Computation, 3(4):257-271.

[91] Zou, X., Chen, Y., Liu, M. & Kang, L. (2008). A New Evolutionary Algorithm

for Solving Many-objective Optimization Problems. IEEE Trans. on System,

Man and Cybernetics, Part B, vol.38, pp.1402-1412.

96

[92] Zou, X., Liu, M., Kang, L., & He, J. (2004). A high performance multi-

objective evolutionary algorithm based on the principles of thermodynamics.

In: Proc. Parallel Problem Solving from Nature 8th Int. Conf., vol.3242,

LNCS, X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J. Merelo-Guervós, J.A.

Bullinaria, J. Rowe, P. Tino, A. Kabán, and H.-P.Schwefel, Eds., Berlin,

Germany: Springer-Verlag, pp.922-931.

[93] Qin, A. K. & Suganthan, P. N. (2005). Self-adaptive differential evolution

algorithm for numerical optimization. In: IEEE Congress on Evolutionary

Computation (CEC 2005) Edinburgh, Scotland, IEEE Press, pp. 1785-1791.

[94] Zamuda, A., Brest, J., Boškovíc, B., & Žumer, V. (2008). Študija

samoprilagajanja krmilnih parametrov pri algoritmu DEMOwSA.

Elektrotehniška vestnik, vol.75, no.4, pp. 223-228.

[95] Sherinov, Z., Ünveren, A. & Acan, A. (2017). Imperialist Competitive

Algorithm with Updated Assimilation for the Solution of Real Valued

Optimization Problems. International Journal on Artificial Intelligence Tools.

[96] Sherinov, Z. & Ünveren, A. (2017). Multi-objective imperialistic competitive

algorithm with multiple non-dominated sets for the solution of global

optimization problems. Soft Computing, Springer.

