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ABSTRACT 

In this thesis first of all some elementary results related with positive linear 

operators, properties of  Bernstein operators, q-integers and some identities related 

with q-integers and also q-Bernstein operators and their properties are studied. Later 

a q-analogue of the Bernstein-Kantorovich operators, their approximation properties, 

local and global approximation properties and Voronovskaja type theorem for the q-

Bernstein-Kantorovich operators for the case 0<q<1 are examined. 

Keywords: Kantorovich operators, q-type Kantorovich operators, q-Bernstein 

polynomials, local and global approximation. 
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ÖZ 

Bu tezde ilk önce pozitif  lineer operatörler ve bu operatörlerin özellikleri, bu 

operatörlerle ilgili sonuçlar, Bernstein operatörleri incelenmiştir. Ayrıca tamsayıların 

q-analoğu ve bunlarla ilgili bazı özdeşlikler verildikten sonra Bernstein 

operatörlerinin  q-analoğu ve özellikleri çalışılmıştır. Daha sonra Bernstein-

Kantorovich operatörleri ve Bernstein-Kantorovich operatörlerinin q-analoğu verilip 

q-Bernstein-Kantorovich operatörlerinin yakınsaklık özellikleri, lokal ve global 

yakınsaklık özellikleri ve 0<q<1 için Voronovskaya tipi teorem incelenmiştir 

Anahtar kelimeler: Kantorovich operatörleriö, q-tipli Kantorovich operatörleriö, q-

Bernstein polinomları, lokal ve golbal yaklaşim 
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NOTATIONS AND SYMBOLS 

In this thesis we shall often make use of the following symbols. 

    is the sign indicating equal definition.        indicates that       

equantity   to be defined or explained, and   provides the definition or 

explanation.        has the same meaning, 

   the set of natural numbers, 

    the set of natural numbers including zero, 

   the set of real numbers, 

    the set of real positive numbers,  

       an open interval, 

       a closed interval,  

       the class of the                       functions on  ,    , 

      is the norm on       defined by         
 
         

 
           

      the set of all real-valued and continuous functions defined on  ,  

        the set of all  real-valued and continuous functions defined on the       

compact interval      , 
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        is the forward difference defined as 

                                                         ,  with stepsize  , 

 
                      

                                                 

  
       is the finite difference of order      with step size         and 

starting point      Its formula is given by 
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Chapter 1 

INTRODUCTION 

Positive linear operators are very important in the field of  approximation theory and 

the theory of these operators has been an important area of research in the last few 

decades, especially as it affects computer-based geometric design. In the year 1885  

Weierstrass proved  his (fundamental) theorem on approximation by algebraic and 

trigonometric polynomials and this was the key moment in the development of 

Approximation Theory. It was a complicated and a very long proof and provoked 

many famous mathematicians to find simpler and more instructive proofs. Sergej N. 

Bernstein was one of these famous mathematicians that constructed well-known 

Bernstein polynomials: 

           
 

 
  

 
 
           

 

   

                                                                             

for any                  and    . As it can seen later in this thesis, if   is 

continuous on the interval      , its sequence of Bernstein polynomials converges 

uniformly to   on      , thus giving a constructive proof of Weierstrass’s Theorem. 

In the last few decades interesting generalizations of Bernstein polynomials based on 

the             were constructed by A. Lupas      and by George M. Phillips 

    . In the year 1987 Lupaş proposed the following  q-analogue of Bernstein 

polynomials: 
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and in the year 1997, Phillips proposed the q- Bernstein polynomials          . For 

each positive integer    and           

             
   

   
  

 
 
                                                                         

     

   

 

   

 

On the other hand the classical Kantorovich operator   
            is defined by  

[18] as  

            
              

 

 
 

 

   

               
       

     

                                   

   
 

 
 

 

   

             
   

   
 

 

 

   

                                                                                                              

These operators  have been widely considered in the mathematical literature. Also, 

some other generalizations have been introduced by different mathematicians (see, 

for instance             ). 

Here in this thesis we studied a q-type generalization of  Bernstein-Kantorovich 

polynomial operators as follows. 

    
                     

       

     
    

 

 

 

   

                                                           

Where                      

1

,

0

( ; ) : (1 ) ,    (1 ) (1 x)
n

k n k n s

n k q q
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n
p q x x x x q
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




 
     
 

 . 
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We evaluate the moments of     
 . We study local and global convergence properties 

of the q- Bernstein-Kantorovich operators and prove Voronovskaja-type asymptotic 

formula for the q- Bernstein-Kantorovich operators.   

In chapter 2 we give some preliminary and auxiliary results related to positive linear 

operators. We mentioned about the norm of an operator, uniform convergence of an 

operator, a Hölder-type inequality for positive linear operators, the modulus of 

smoothness of order  . We give the definition of Bernstein Polynomials, q-integers 

and q-parametric Bernstein Polynomials and the theorems, lemmas, propositions 

related to these operators. 

In chapter 3 we give the definition of classical Kantorovich operator and we give the 

definition of q-Bernstein-Kantorovich operator. We found a recurrence formula for 

q- Bernstein-Kantorovich operator and obtain explicit formulas for     
      , 

    
       . We found estimations for second and fourth order central moments of 

the q-Bernstein polynomials. Then we give local and global approximation theorems 

and Voronovskaja type result for q-Bernstein-Kantorovich operators. 
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Chapter 2 

PRELIMINARY AND AUXILIARY RESULT 

2.1  Positive Linear Operators  

In this section we are going to give some basic definitions and some basic properties 

related to positive linear operators. For further  information on this topic see [9]. 

Definition 2.1.1. Consider the mapping :L X Y  such that  and X Y are linear 

spaces of functions. L is said to be a linear operator if        

                     

for all         and for all                   implies that      then   is a 

positive linear operator. 

Proposition 2.1.1. Assume that          is a positive and linear operator. Then  

1.   is a monotonic operator, that is , if       with      then        

2. for all      we have                

Definition 2.1.2. Assume that      are two linear normed spaces of real functions 

such that     and let        Then to each linear operator L we can assign a 

norm     defined by  
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It can be easily verified that     satisfies all the properties of a norm and so is called 

the operator norm. 

If we select            the following remark can be stated regarding the 

continuity and the operator norm. 

Remark 2.1.1. Let                  be a linear and positive operator. Then L is 

also continuous and            where      . 

Theorem 2.1.1. Assume that                   is a sequence of positive linear 

operators and let      . If                              uniformly on        

then                           

                 uniformly on      for every           

Thus from the result given above we see that the monomials    it               has 

an important role in the approximation theory of linear and positive operators on the 

spaces of continuous functions. In general they are  called test functions. 

 This nice and simple result was inspirational for many researchers to extend   

Theorem 2.1.1 in different ways, generalizing the notion of sequence and considering 

different spaces. A special field  of study of approximation theory arises in this way 

which is called the Korovkin-type approximation theory. A complete and 

comprehensive exposure on this topic can be found in    . 

In many estimates the Cauchy-Schwarz inequality is used : 

       
 

                         



6 
 

Following inequality is a Hölder-type inequality for positive linear operators that 

reduces to the  Cauchy-Schwarz inequality in the case       . 

Theorem 2.1.2.  Let                 be a positive linear operator, 0Le       

For       
 

 
 

 

 
                     one has 

                     
 
             

 
   

The following quantities play an important role for the positive linear operators  

                 the moments of order         namely 

                                    

and for     also the absolute moments of odd order    that is 

                                    

Proposition  2.1.2. Let           and   be given in Theorem 2.1.2 and let 

          be a decomposition of the non-negative number   with           

Then 

                              
 

                   
 

    

Proposition  2.1.3. Let                 be a positive linear operator such that  

0Le     and        Then 

              
   

               
   

          

 Proposition 2.1.4. For a linear operator   and      we have  
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Remark 2.1.2.      Note that the equality of Proposition 2.1.4. holds without the 

assumption iLe  ie           

     The proposition means that              can be computed if we know 

        and the lower order moments                         

Corollary 2.1.1.  Let   be a linear operator with iLe  ie            The 3
rd

  and the 

4
th

  moments can be computed as it is given below: 

                                      , 

                                                           

Definition 2.1.3. The modulus of smoothness of order   is defined by 

               
                         

where         and            

Proposition 2.1.5. see[9] 

1)             

2)         is a positive continuous and non-decreasing function on     

3)         is sub-additive,                                      

       . 

4)                           

5)               hen                           

6)              then                       
         

7)      and                           

8)                       
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9)                                                       

2.2 Bernstein Polynomials  

Let    be a function on      . For each positive integer  , we define the Bernstein 

polynomial 

                                     
 

 
  

 
 
            

 

   

                                          

 If   is continuous on      , its sequence of Bernstein polynomials converges 

uniformly to   on      , which gives a constructive proof to Weierstrass’s 

Theorem. We may ask a question as ” why Bernstein created these new 

polynomials to prove Weierstrass’s Theorem, instead of using polynomials that 

were already known before”. For example, Taylor polynomials are not 

appropriate; for even setting aside questions of convergence, they are applicable 

only to functions that are infinitely differentiable, and not to all continuous 

functions. It is obvious from (2.2.1) that for all      

                                                                                                     

so that a Bernstein polynomial for   interpolates   at both endpoints of the 

interval        Moreover from the binomial expansion it follows that  

           
 
 
           

 

   

                                                   

so that the Bernstein polynomial for the constant function 1 is also 1. Also the 

Bernstein polynomial for the function  is x x  . Indeed since 

 

 
 
 
 
   

   
   

  

for        the Bernstein polynomial for the function   is  
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We call    the Bernstein operator; it maps a function  , defined on        to      

where the function    evaluated at   is denoted by        . The Bernstein operator 

is obviously linear, since it follows from (2.2.1) that  

                                                                                                          

for all functions   and   defined on      , and all real   and    

It can be  seen from (2.2.1) that    is a monotone operator. It then follows from the 

monotonicity of    and (2.2.3) that 

                                                                            

Particularly, if we choose     in (2.2.6), we get 

                                                                                                 

It follows from (2.2.3),(2.2.4), and the linear property (2.2.5) that 

                                                                                                                        

for all real numbers   and    Thus we can say that the Bernstein operator reproduces 

linear polynomials. 

Theorem 2.2.1.  The Bernstein polynomial can be expressed in the following form 

          
 
 
         

 

   

                                                                                               

Where   is the forward difference operator, defined as                                                       

                                      with step size        
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Theorem 2.2.2. The derivative of  the Bernstein polynomial           can be 

expressed in the following form 

    
                

 

   
  

 
 
           

 

   

                                            

for      where   is applied with step size          . Furthermore , if   is 

monotonically increasing or monotonically decreasing on      , so are all its 

Bernstein polynomials. 

Theorem 2.2.3.   Let    be any nonnegative integer. The kth derivative  of 

          can be expressed in terms of kth difference of   as 

    
   

      
      

  
     

 

   
  

 
 
           

 

   

                                         

For all       where   is applied with step size            

2.3 The q-Integers 

Definition 2.3.1.  Given a value of      we define     , where     as                   

           
                            
                                                   

                                                                

and call     a q-integer. It is clear that the above definition can be extended if we 

allow     to be any real number. 

For any given value     let us define  

                                                                                                                           

and we can see from Definition 2.3.1 that 
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It is clear that the set of q-integers    generalizes the set of non-negative integers    

that we get by putting      

Definition 2.3.2 Let     be given. We define     , where    , as 

       
                          
                                    

                                                                                     

and call      a q-factorial. 

Definition 2.3.3.  We define a q-binomial coefficient as  

 
 
 
   

                

    
                                                                                             

for all real   and integers      and as zero otherwise. 

 In this thesis we are going to deal with q-binomial coefficients for which     

     where    . Thus it is better to define them separately.  

Definition 2.3.4.  Let    and   be any two integers, we define 

 
 
 
   

                

    
 

    

          
                                                              

for        and as zero otherwise. These are called Gaussian polynomials which 

are named after C.F.Gauss. 

The Gaussian polynomials satisfy the Pascal-type relations 

 
 
 
   

   
   

     
   

 
                                                                                                    

and 
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Definition 2.3.5.  The q-analogue of        is defined by the polynomial 

      
   

                                                                    

                                
  

Lemma 2.3.1.  For a nonnegative integer   and   number   we have, 

      
    

 
  

( 1)/2j j j n jq a x 

 

   

                                                                                        

which is called the Gauss’s binomial formula. 

Lemma 2.3.2.  For a nonnegative integer   we have, 

 

      
     

                

    

 

   

                                                              

 which is called Heine’s binomial formula. 

Now we have two binomial formulas, namely Gauss’s binomial formula (2.3.9) 

 (with   and   replaced by 1 and   respectively) 

      
             

 
    

 

   

                                                                                          

and Heine’s binomial formula (2.3.10) 
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Now we may consider the question ”What happens if we let     in both 

formulas?”. In the ordinary calculus, i.e. when q =1, the answer is not very 

interesting. It depends on the value of    it is either infinitely large or infinitely small. 

However, it is different in quantum calculus, because, for example, when        

the infinite product  

      
                      

converges to some finite limit. Moreover, if we assume        we have 

   
   

       
   

    

   
 

 

   
                                                                                            

and 

   
   

 
 
      

   

                         

                  
    

Thus  

   
   

 
 
   

 

                  
                                                                             

So, the q-analogues of integers and binomial coefficients behave differently when   

is large as compared to their ordinary counterparts. 
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If we apply equalities (2.3.12) and (2.3.13) to Gauss’s and Heine’s binomial 

formulas, we get, as      the following two identities of formal power series in   

(assuming that      ): 

      
            

  

                  

 

   

                                                 

 

      
 

  
  

                  
 

 

   

 

The identities given above relate the infinite products to infinite sums. They don’t 

have classical analogues because when     , the terms in the summations has no 

meaning. It is very interesting that both of the two identities were discovered by 

Euler, who lived before Gauss and Heine. 

2.4 q-parametric Bernstein Polynomials 

In this section a generalization of Bernstein polynomials based on the q-integers are 

discussed. These polynomials were proposed by Phillips [25] as given below; 

              
 
 
           

     

   

 

   

                                                                 

where      
   

   
 . Note that an empty product in (2.4.1) denotes 1. When we put 

    in (2.4.1), we obtain the classical Bernstein polynomial, defined by (2.2.1). 

Immediately it can be seen from (2.4.1) that 

                                                                                                          

which gives us the interpolation at the endpoints of the interval [0,1], as we have for 

the classical Bernstein polynomials. It is obvious that       which is defined by 
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(2.4.1), is a linear operator, and with        it is a monotone operator that maps 

functions defined on              the set of all polynomials of degree less than or 

equal to  . For a fixed        , it is proved by II’inskii and Ostrovska that for each 

        , the sequence             converges to           uniformly as n 

approaches to infinity for 0 1x  , where 

             
       

  

          
        

 

   

             

                                                                                     

 

   

  

The following theorem that is given below involves q-differences which yield 

Theorem 2.2.2 when    . 

Theorem 2.4.1.  [27] The generalized Bernstein polynomial can be expressed in the 

following form 

            
 
 
   

    
 

 

   

                                                                                                  

where 

  
      

              
           

 

with   
                   

Proof. Firstly the following identity is needed, 
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which reduces to a binomial expansion when we give    . Starting with (2.4.1) 

and expanding the term which consists of the product of the factors       , we get 

the following  

              
 
 
   

 

   

                
   

 
   

   

   

  

Now, let us substitute      . Then, since 

 
 
 
  

   
 

   
 
 
  

 
 
   

the latter double sum can be written as  

  
 
 
   

 

   

                        
 
 
      

 
 
   

    
 

 

   

 

   

  

on using the expansion for a higher-order q-difference, which is given as 

  
                             

 
   

            

   

   

  

and the proof  is completed. 

From Theorem 2.4.1 we deduce that 

                                                                                                                        

For          we have   
         and   

                , and it follows 

from Theorem 2.4.1 that  

                                                                                                                         

For         we have    
         ,   

                ,  and 
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. 

Then we find from Theorem 2.4.1 that 

              
      

   
                                                                                   

The above expressions for         ),         ) and          ) generalize their 

counterparts for the case q=1 and , with the help of Theorem 2.1.2, lead us to the 

following theorem on the convergence of the generalized Bernstein polynomials. 

Theorem 2.4.2.  [27] Let      be sequence such that        and       

as       Then, for any          , ( ; )
nn qB f x   converges uniformly to 

               

Proof. We saw above from (2.4.5) and (2.4.6) that 
, ( ; ) ( )

nn qB f x f x  or        

and              and since              we see from (2.4.7) that , ( ; )
nn qB f x  

converges uniformly to      for        . Also, since         it follows that 

     
 is monotone operator, and the proof is completed by applying the Bohman-

Korovkin Theorem (2.1.1). 

We now state the following theorems. 

Theorem 2.4.3.  [27] If                             

                                                                                                                   

for all    and for        
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Theorem 2.4.4.  [27] If      is convex on        

                                                                                       

for all                       and           are evaluated using the same value 

of the parameter  . The q-Bernstein polynomial are equal at     and      since 

they interpolate   at these points. If         , the inequality in (2.4.9) is strict for 

      unless, for a given value of  , the function   is linear in each of the 

intervals  
     

     
 

   

     
 , for        , when we have simply             

         . 
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Chapter 3 

APPROXIMATION THEOREMS FOR q-BERNSTEIN-

KANTOROVICH OPERATORS 

3.1 q-Bernstein-Kantorovich Operators and their moments 

The classical Kantorovich operator nB , 1,2,...n   is defined by [18] 

  
               

 
 
                  

       

     

 

   

   
 
 
              

   

   
    

 

 

 

   

               

Let the q-analogue of integration on the interval        (see [17]) be defined by  

                         

 

   

 

 

                                                              

Let          Based on the q-integration N. Mahmudov and P. Sabancıgil [23] 

proposed the Kantorovich type q-Bernstein polynomial for [0,1]f C  as follows. 

    
                    

       

     
    

 

 

 

   

                          

where  

            
 
 
   (1 )n k

qx        (1 )n

qx           
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Note that for   1  the q-Bernstein-Kantorovich operator becomes the classical  

Bernstein-Kantorovich operator. 

Lemma 3.1.1: For all             and       we have  

    
          

 
  

 

   

    

             
  

   
 

                    

   

   

   

Proof.  From (3.1.2) we have  

    
                    

       

     
    

 

 

 

   

       

Then we get 

    
                    

       

     
 

 

     
 

 

 

   

 

Now from the  binomial expansion   

             
 
              

 

   

    

and 
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Calculating the q-integration, 

        
 

 

 
      

       
  
  

 

       
 

we get 

    
                    

 
  

 

   

           

             

 

   

                   

                               
 
  

 

             
            

 

   

         

 

   

    

multiplying the right hand side  by 
    

    
 ,  we get  

    
          

 
  

    

             
            

    

    

 

   

           

 

   

 

 from binomial expansion   

          
   

   
   

 
        

   

   

   

and 

    
          

 
  

    

             

 

   

   
   

 
         

   

   

    

    

 

   

          

From the Definition (2.3.1) we have that 
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and from the last two equalities we get 

               
    

    
   

    
          

 
  

    

             
   

   
 

        

   

   

      

      

 

   

         

 

   

 

               
 
  

    

             
  

   
 

         
      

      

 

   

   

   

         

 

   

 

   
 
  

    

             
  

   
 

        

   

   

 

   

               

Lemma 3.1.2.  For all             and       we have 

    
         ,         

       
  

   

   

     
  

 

   

 

     
 , 

    
         

        

      
 

          

      
    

          

      
 

   

      
  

 

         
  

Proof: 

            and we have     
          

From Lemma 3.1.1,  equalities (2.4.5), (2.4.6) and (2.4.7) and by direct calculation 

we get 
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                    2 (1 )

[n]

x x
x


   

 
    

         
          2 (1 )

[n]

x x
x


   

 
    

         
 2 (1 )

[n]

x x
x


   
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Remark 3.1.1. It can be observed from the previous lemma that for the case    , 

we obtain the moments of the Bernstein-Kantorovich operators. 

Lemma 3.1.3 For all             and       we have 

    
            

 

   
        

 

   
          

    
            

 

    
        

 

    
   

where C is a positive absolute constant. 

Proof. To prove this lemma we use the estimations of the 2nd and the 4th order 

central moments of the q-Bernstein polynomials. 
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By using a similar calculation we have : 
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Lemma 3.1.4 Assume that              and   
    as      Then we 

have 
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Proof. To give the proof of this lemma we are going to use formulas for      
       

and      
        which was given before in lemma 3.2. 

     
     

              
      

          

Taking the limit,  
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3.2  Local and Global Approximation 

First we consider the following K-functional: 

                                           

where 

                                                                                  

Then from the known result [10], there exists an absolute constant      such that  

                                                                                                                            

where  

          
       

            

and 

           
     

   
         

                      

is the second modulus of smoothness of           Our first main result is stated 

below. 
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Theorem 3.2.1. There exists an absolute constant     such that  

     
                    

     

   
       

           

        
     

where 

                     
 

   
                                

Proof.  Let 

    
            

                       

                  
  

   

   

     
        

 

   

 

     
   Using the Taylor formula 
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Using (3.2.2) and the uniform boundedness of     
  we get 



33 
 

    
           

                        

    
           

     
                                     

     
            

       

     
               

                         

                  

so 

     
            

      
                

                         

                   

On the other hand 
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Taking the infimum on the right hand side over all            we get  

     
                    

     

   
                   

We know that 
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By using (3.2.2) we obtain 

     
                    

     

   
      

          

        
      

Corollary 3.2.1. Let    be a sequence such that                     . For 

any           we have 

   
   

     
           

Next we present the direct global approximation theorem for the operators     
   In 

order to state the theorem we need the weighted K-functional of second order for 

         defined by 
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where 

                                           

and            means that   is differentiable and    is absolutely continuous in 

     . Moreover, the Ditzian-Totik modulus of second order is given by 

  
          

     
   

             
                              

It is well known that the K-functional            and the Ditzian-Totik modulus 

  
       are equivalent (see [10]) 

Theorem 3.2.2. There exists an absolute constant     such that  

     
           

 
   

 

    
             

 

   
   

where                                      . 

Proof. Let 

    
            

                       

                  
  

   

   

     
        

 

   

 

     
   Using the Taylor formula 
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we have 
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Since the function   
  is concave on        we have for                     the 

following estimate 

     

  
    

 
      

  
    

 
      

  
         

       
     

 
     

  
    

  

Hence, by (3.2.3), we find 
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Using (3.2.4) and the uniform boundedness of     
  we get 

     
            

      
                

                         

                 

        
  

   
         

 

   
                         

Taking the infimum on the right hand side over all          we obtain  

     
                      

 

   
                                                 

On the other hand 
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Hence, by (3.2.5) and (3.2.6), using the equivalence of        
 

   
  and the Ditzian-

Totik modulus   
 

    
 

   
  we get the desired estimate. 

Next we give the proof of Voronovskaja type result for q-Bernstein-Kantorovich 

operators. 

Theorem 3.2.3. Assume that               and   
    as      For any 

          the following equality holds 

   
   

     
      

            

        
   

 
  

 

 
  

 

 
       

 

 
   

 

 
        

uniformly on      . 

Proof. Let           and         be fixed. By the Taylor formula we may write 

                     
 

 
                                                     

where        is the Peano form of the remainder,               and 

              . Applying      
  to (3.2.7) we get 
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multiplying both side by       
 we get 

     
      

            

           
     

         
 

 
          

     
           

      
     

                  

By the Cauchy-Schwartz inequality, we have 

     
                        

                  
                                    

Observe that           and                . Then it follows from Corollary 

3.2.1 that  

   
   

     
                                                                                                  

uniformly with respect to        . Then from (3.2.8) and (3.2.9) we get 

immediately  

   
   

     
     

                                                                                             

Now from (3.2.10) and Lemma 3.1.4 we get  
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Chapter 4 

CONCLUSION 

As a result here in this thesis we studied a q-generalization of  Bernstein-Kantorovich 

polynomial operators  
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We calculated the moments of     
 . We studied local and global convergence 

properties of the q- Bernstein-Kantorovich operators and proved Voronovskaja-type 

asymptotic formula for these operators. We found a recurrence formula for q- 

Bernstein-Kantorovich operator and obtain explicit formulas for     
      , 

    
       . We found estimations for second and fourth order central moments of 

the q-Bernstein Kantorovich polynomials. 
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