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ABSTRACT 

In this master thesis the search techniques in Artificial Intelligence are analyzed. The 

search techniques are grouped into two main categories which are uninformed search 

techniques and informed search techniques.  

Such uninformed search techniques as breadth-first search, depth-first search, depth-

limited search, iterative deepening search, uniform cost search, and bidirectional 

search are considered. 

The best-first search, greedy best-first search, A* search and hill climbing techniques 

as paradigms of informed search techniques are studied.  

The completeness, optimality, time complexity, and space complexity properties of 

all above mentioned search techniques are discussed. 

The Dijkstra’s algorithm is used to find the shortest paths from the initial node to all 

other nodes in a weighted digraph.  

Keywords: Breadth-first search, Depth-first search, Depth-limited search, Iterative 

deepening search, Uniform cost search, Bidirectional search, Best-first search, 

Greedy best-first search, A* search, Hill climbing search, Dijkstra’s algorithm 
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ÖZ 

Bu master tezinde yapay zekanın arama yöntemleri incelenir. Yapay zekada arama 

yöntemleri sezgisel olmayan ve sezgisel arama yöntemleri olarak iki esas kategoriye 

ayrılır.   

Önce genişliğine arama, önce derinliğine arama, derinlik sınırlandırmalı arama, 

yineli derinleştirmeli arama, düzenli maliyet arama ve çift yönlü arama yöntemleri 

sezgisel olmayan yöntemler olarak dikkate alınır.  

En iyi öncelikli arama, açgözlü en iyi öncelikli arama, A* arama ve tepe tırmanma 

yöntemleri sezgisel arama yöntemlerinin paradigmaları olarak incelenir.  

Yukarıda adı geçen tüm arama yöntemlerinin tamlık, optimallik, zaman karmaşıklığı 

ve bellek karmaşıklığı özellikleri tartışılır.  

Dijkstra algoritması kullanarak ağırlıklı yönlü grafikte başlangıç düğümünden diğer 

dügümlere gidilebilecek en kısa yol bulunur.   

Anahtar Kelimeler: Önce genişliğine arama, Önce derinliğine arama, Derinlik 

sınırlandırmalı arama, Yineli derinleştirmeli arama,  Düzenli maliyet arama, Çift 

yönlü arama, En iyi öncelikli arama, Açgözlü en iyi öncelikli arama, A* arama, Tepe 

tirmanma arama, Dijkstra algoritması 
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Chapter 1 

1 INTRODUCTION 

We are living in an era within which most things we are doing and our daily tasks are 

being computerized with the goal to enhance their sustainability and reduce the 

human effort. When considering daily tasks of individual, it appears that these tasks 

can be classified in subcategories. The first subcategory is made of jobs that require 

physical power, whereas the second subcategory contains jobs that require 

brainstorming. In the latest mentioned, one can face complex calculation. Human 

brain might require several hours or even days to perform such calculation, whereas 

a computer with “good instructions” might be able to perform the computation 

within a very short time.  

It is known that a computer is a machine which is able to perform tasks given to it 

only; it is therefore “very important” to deal with a well-defined problem, and to 

know constraints and solving strategy of this problem in order to use the computer’s 

abilities.  

Artificial Intelligence appears to be a science that studies the simulation of the 

human brain’s way of thinking and tries to implement it on computers. In other 

words, in Artificial Intelligence the goal is to emulate “smart computer” which 

means a computer can act in a similar way like a human brain.  
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The main difference between human and computer is that a human has a brain, 

therefore can think and adapt his/her behavior according to circumstances. A 

computer does not have brain like human but can speedily perform some well-

defined instructions. 

From a general point of view, various problems in science require to be solved by 

optimization techniques. The variables or constraints involved in problems are 

usually non commensurate that make the task much more difficult. The selection of a 

suitable optimization function becomes more difficult as the number of variables 

increases.   

There is usually a trade-off to be considered while implementing the solution to a 

complex optimization problem. The robustness of the solution versus the time or 

space complexity is required to reach the goal. The complexity is considered as the 

essence of optimization. An approach used for solving the Artificial Intelligence 

problem might be called optimal approach if and only if it requires less time and 

optimal space consumption than other approaches.  

Solving any optimization problem usually depends on how it is stated or defined. A 

well-defined problem might be solved much easier than a problem in which it is not 

so easy to identify the unknown and belonging space.  

Artificial Intelligence is the field of computer science intending to solve problems 

through mathematical modeling. This field also studies the different search 

techniques. Indeed, the goal is to find a good algorithm to reach the target or solution 

satisfying the initial conditions of a given problem. Human being is often able to 
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solve a given problem by using his/her intuition although a formal approach to solve 

that problem might exist. Human may require a lot of time to solve a given problem. 

However, a computer can help solving a problem if it is written in a language which 

is understandable by the machine.  

In Artificial Intelligence, search algorithms are implemented to solve various 

problems. There exist two categories of search algorithms: uninformed search also 

called blind search and informed search also called heuristic search. 

An uninformed search method is characterized by the fact that no prior knowledge, 

specification or hint to the solution of the problem is given in advance.  

The informed search strategy is characterized by the fact that some prior knowledge 

or hint as heuristic function is given. The heuristic helps improve the power and 

performance of the algorithm.  

In the past years the developed search techniques were mostly based on the 

assumption that the problem has a single, common variable which is considered as a 

real valued variable. The solution set in this case possesses the capability to be 

completely lexicographically ordered. Such assumption made things easier for some 

extensions.   

The uninformed and informed search strategies which are considered in this master 

thesis can be evaluated based on the following four criteria: completeness, 

optimality, time complexity, and space complexity.  
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Completeness: This property intends to check whether the algorithm guarantees to 

find the solution of the problem, if any exists.  

Optimality: This property investigates whether or not the strategy provides the 

optimal solution.        

Time complexity: This property evaluates the time required to find the solution of 

the problem.   

Space complexity: This property evaluates the memory, and space required to run 

the search algorithm.  
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Chapter 2 

2 REVIEW OF EXISTING LITERATURE ON 

UNINFORMED AND INFORMED SEARCH 

TECHNIQUES 

This chapter is a general review of some works done in search techniques. We extend 

our focus on both uninformed and informed search techniques as well as on their 

applications. Some existing bibliographies are studied and the following appears as 

important and required to well-done the task we have in this thesis. 

The feasible performance evaluation of the proposed method is what one usually 

attempts to find an optimal solution of the problem. In Artificial Intelligence, it is 

common to evaluate search methods based on their performances.  In [1], for 

instance, some common and well-known search algorithms as breadth first, depth 

first, A * search, greedy best first, and Hill climbing are explored and their 

performances are compared. The appropriateness of the specific search technique 

over other techniques is identified for different situations. The evaluations are done 

by obtaining the correct solutions to the N-puzzle and 8 Queen Puzzle problems. The 

experimental results show that A * search is the best algorithm for solving both N 

puzzle and 8 Queen puzzle. 

The approach based on the integration of the breadth-first and depth-first search 

techniques in a single algorithm to possess the strengths of both approaches is 
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realized for the treewidth problem [2]. The benefits of the proposed novel 

combination of above search strategies in comparison with using either method alone 

are justified.  

In [3], the Halstead’s volume and Cyclomatic number complexity measures are used 

for the application to the breadth-first and depth-first search techniques. It is defined 

that in taking into consideration the program volume, the Pascal and C languages are 

best programming languages for using on breadth-first and depth-first search 

techniques, respectively. In taking into account the program difficulty and program 

effect, both search techniques are suitable to be implemented using programming 

language Pascal.  The implementation of Visual Basic programming language is a 

better choice in computing the values of cyclomatic number metric of the complexity 

measure. 

In [4], the different search algorithms are compared to find the best approach for 

solving a particular problem, because various algorithms behave differently to solve 

problems. So the goal is to categorize the search techniques with respect to their 

performances and specifications about the type of problem either is more powerful to 

be used.  

Several search algorithms to find the low cost solution of the chosen method (MIN 

problems) are discussed in [5]. Meanwhile the search algorithms are compared in 

terms of observing the most convenient approach for solving the high reward (MAX 

problems). It is stated that the uninformed search techniques being effective for MIN 

problems can be ineffective for MAX problems. At the same time, the heuristic 

search techniques can be successfully applied to MAX problems. 
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The uninformed best-first search algorithm developed in [6] can find all the possible 

group paths which consist of collection of lightpaths. The proposed algorithm can 

find the optimal (minimum) number of Add/Drop Multiplexers in Wavelength 

division multiplexing. The results of computational experiments show the efficiency 

of the developed search technique. 

The paper [7] discusses the replanning algorithm to be used for nondeterministic 

domains. This algorithm is used as incremental heuristic minimax search algorithm. 

The efficiency of the algorithm in continuous domain is justified by the 

implementation of the parti-game reinforcement-learning algorithm which can use 

the incremental search, uninformed search or informed search techniques. The 

experiments show that the implementation of the parti-game reinforcement-learning 

algorithm with Minimax LPA *  provides better results than other algorithms.  

Three different approaches - uninformed search algorithm, informed search 

algorithm and evolutionary algorithm for semantic web service compositions are 

analyzed and compared in [8]. The efficiency of all three approaches to provide the 

correct results to the requests is investigated.  

In [9], three informed and three uninformed search techniques of Artificial 

Intelligence are considered to solve the optimization problem of the shortest path. 

The problem is related with investigation of the intelligent travel planning based on 

some cities in Borneo Island. It is defined that compare to most uninformed search 

techniques, the best-first and A *  search algorithms provide better results to optimize 

the short useful paths. The improved Dijkstra‘s algorithm is implemented to find the 

shortest paths.   
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Three optimization algorithms - Dijkstra, A * , and Genetic algorithms are considered 

in [10] for determining the multi-criteria paths in construction sites. The feasibility 

and performance limitations of all three optimization methods are investigated. The 

importance of such characteristics as shortest path, low risk path, high visibility path, 

and moreover, the path reflecting the combination of above mentioned paths is 

stated. The accuracy of the determined path and time complexity are given. 

A deterministic method proposed in [11] is used to find the solution of global 

optimization problems. The typical local search, the discrete local search and the 

attractor based search are three phases of the proposed new deterministic method 

which are used to obtain a local minimum, sup-local minimum, and attractor-based 

global search. The computer simulation results show the efficiency of this method. 

The locally informed search algorithms which are the combination of two 

complementary methods - local analysis and global search are considered in [12] for 

playing search-based sum of games in which each subgame is simple. The mentioned 

algorithms provide better solution quality in terms of increasing the time limits. 

In [13], the locally informed gravitational search algorithm (LIGSA) intends to 

improve the search ability and performance of the original GSA. The important 

property of LIGSA is that each agent in the population can directly learn from the 

best agent among local neighbors. Testing of validity of LIGSA demonstrates in 

most cases its superiority over the original GSA in terms of convergence ability, 

computational complexity, and convergence accuracy.  
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In [14], the authors use informed search technique to solve the triangular board Peg 

Game. The solution of this problem is reached by the combination of pattern-based 

and heuristic searches.  This combination is very effective to improve the speed of 

the search and to reduce the complexity of the domains to a reasonable and 

manageable size. 

The authors of the paper [15] analyze the automatic knowledge revision technique 

which is based on informed tree search method. The revision problem is modeled to 

analyze the execution of the system logs and to revise knowledge based on these 

logs. The effectiveness and efficiency of the suggested approach are reached, and the 

experimental results show that the cartographic generalization is the main application 

domain of the informed search strategies.    

The similarity of such classical search algorithms as single-agent and two-agent 

heuristic searches is described in [16]. It is stated that there is no essential difference 

between single-agent and two-agent search techniques in terms of search-space 

properties and enhancements. The comparative analysis of single-agent and two-

agent searches shows that the application of the naïve, simple, breadth, informed, 

space efficient informed, and the real-time informed search algorithms demonstrate 

more similarities than differences in single/two-agent search algorithms. All these 

algorithms enhance the achievement of the high performance of the heuristic search. 

The application of the general multi-heuristic search which is similar to multi-

heuristic A *  makes it available to reach the significant improvements in fixing and 

solving the calibration problem [17].   
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The algorithm for severe weather avoidance using A *  informed search technique is 

developed to determine the total flight path cost for the aviation aircraft [18]. A *  

informed search uses the heuristic function. The modified version of A *  informed 

search can quickly reach the optimal solution of the problem.  

In [19], the dynamic programming and informed search are combined to control the 

inputs of discrete-time hybrid system, and a new method for the procedure of 

sequence synthesis of safe inputs of above hybrid system is suggested. The dynamic 

programming part deals with global information whereas the informed search is used 

to switch the mode of the system from one state to another one. A Bellman-Ford 

method is used to determine the appropriate switching mode. The suggested 

technique is also applied to a nonlinear system. 
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Chapter 3 

UNINFORMED SEARCH STRATEGIES 

In this chapter we focus on well-known uniformed search strategies. They refer to a 

group of search techniques known as searching without any knowledge or 

information to reach the objective. The uninformed search is also known as a blind 

search.   

3.1 Breadth-first search 

This is a search strategy in which the expansion starts from the root node. Afterwards 

the root node successors are expanded. The process is repeated until the last 

successor is involved. The First in First out (FIFO) data structure is preferable to 

implement the breadth-first search strategy.  

The completeness criterion of the breadth-first search strategy is used to evaluate the 

algorithm performance. Assume the number of branching factor is b , and the 

shallowest goal node is located at the depth d . Then the number of nodes 

generated by the breadth-first search algorithm is
 

).(...32 dd bObbbb 
 

The completeness of the breadth-first search is clear. If the location of the shallowest 

goal node is at the depth of d , then the algorithm will find it (shallowest goal 
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node) after it has generated all the shallower nodes which have all failed to the goal 

test. 

The breadth-first search is tree-traversal if the expansion is done from one level to 

another one.  

Figure 1 represents the breadth-first traversal of tree with the levels and 

corresponding nodes given below: Level 0{𝑁1}; Level 1{𝑁2, 𝑁3}; Level 2{𝑁4,𝑁5 

and 𝑁6}, and level 3{𝑁7,𝑁8}.  

 
Figure 1: Breadth-first traversal of tree 

The order of nodes obtained after the application of the breadth-first search algorithm 

to explore the tree represented in Figure 1, is {𝑁1,𝑁2, 𝑁3,𝑁4,𝑁5,𝑁6,𝑁7,𝑁8}. 

Figure 2 shows the 16-node graph used for uninformed search techniques.  
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Figure 2: The 16-node graph used for uninformed search techniques 

Suppose the purpose is to move from the initial node 𝑁1 to the goal node 𝑁9. Figure 

3 illustrates the graphical representation of order of node expansion in breadth-first 

search from the initial node 𝑁1 to the goal node 𝑁9 for the graph represented in 

Figure 2. 

The breadth-first search has the following properties: 

Complete: Yes; 

Optimal: Yes; 

Time Complexity: )( dbO , where b  is branching factor and d  is depth of the 

solution; 

Space Complexity: )( dbO . 
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Figure 3: Graphical representation of order of node expansion in breadth-first search 

from the initial node 𝑁1  to the goal node 𝑁9 

The breadth-first search always finds a solution of the problem if any exists. If the 

problem has more than one solution, then the algorithm finds the solutions in 

ascending order of their costs which means that the cheapest solution will be found at 

first. Since this search strategy is traversal, a situation where the algorithm will 

explore a branch which is indefinitely deep can never occur. 

The time consumption is very high for breadth-first strategy. This factor can affect 

the algorithm performance if the number of branching factor increases. In fact, if the 

number of branching factors increases, the time complexity increases exponentially. 

This strategy is highly space consuming. Actually, it requires a lot of space in terms 

of memory to save the nodes generated at a particular depth before the next depth can 

proceed. 
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3.2 Depth-first search 

The idea of this search algorithm is to go as deeper as possible in the search tree but 

from one neighbor node to another neighbor node before a backtracking process 

starts. The depth-first search algorithm is also called a Last In First Out (LIFO) 

algorithm.  

Figure 4 represents the depth-first traversal of tree: 

Figure 4: Depth-first traversal of tree 

The depth-first search tries to go deeper from a node before it would come back to 

explore the sibling node.  

The order of nodes obtained after the application of the depth-search algorithm to 

explore the tree represented in Figure 4, is {𝑁1,𝑁2,𝑁4,𝑁3,𝑁5,𝑁7,𝑁8,𝑁6}. 
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The depth-first search algorithm is defined and implemented depending on whether 

we are using a tree-search version or a graph-search version. The former version is 

incomplete whereas the latest is complete.  

Both tree-search and graph-search versions of the depth-first search are non-optimal. 

Moreover, the graph-search version of the depth-first search has a time complexity 

which is bounded by state space size. This size can be infinity in some cases whereas 

a tree-search version of depth-first search has complexity of order )( dbO . This 

complexity may be unbounded as well.   

It would seem that the depth-first search has only disadvantages toward the breadth-

first search. This is not the case. Actually, with branching factor b  and maximum 

depth m , the algorithm requires a storage space of complexity )(bmO .   

Figure 5 illustrates the graphical representation of order of node expansion in depth-

first search from the initial node 𝑁1 to the goal node 𝑁7 for the graph represented in 

Figure 2.  

Depth-first search has the following properties: 

Complete: No; 

Optimal: No; 

Time Complexity: )( mbO ; where b  is branching factor, and m is maximum depth 

of the tree; 

Space Complexity: )(bmO . 
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Figure 5: Graphical representation of order of node expansion in depth-first search 

from the initial node 𝑁1 to the goal node 𝑁7  

Depth-first search strategy doesn’t require so much memory as the breadth-first 

search strategy requires. Actually, the space complexity is linear. This search 

strategy is a time limited, but not space limited. Therefore there is always enough 

space to save the generated nodes although these may require a lot of time to be 

processed. The less shallow is the goal depth the less is space complexity and time 

complexity. 

The branching factor can be infinitely deep in this strategy, and a situation may occur 

that the algorithm may follow a path if it has infinitely many nodes. The goal is not 

guaranteed to be always found by this strategy if even it exists. This strategy gives no 

guarantee to always find the best solution of the problem.  
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3.3 Depth-limited search 

The depth-limited search is closer to the depth-first search. The only and not the least 

difference between these two search methods is that before performing the depth-

limited search, a limit length of the depth is defined, whereas in depth-first search, 

the search limit is not defined; this limit can sometimes be infinity. In order to set the 

depth of the search, the problem definition must be well known; otherwise this might 

lead to an inconsistent method.  

Figure 6 illustrates the graphical representation of order of node expansion in depth-

limited search from the initial node 𝑁1 to the goal node 𝑁7 for the graph represented 

in Figure 2, and the depth limit is 2. 

 
Figure 6: Graphical representation of order of node expansion in depth-limited search 

from the initial node 𝑁1 to the goal node 𝑁7   
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Depth-limited search has the following properties: 

Complete: No; 

Optimal: No; 

Time Complexity: )( lbO ; where b  is branching factor, and l is depth limit; 

Space Complexity: )(blO . 

3.4 Iterative deepening search  

This search method is also known as iterative deepening depth-first search. The 

method is a combination of two search techniques: the breadth-first search and the 

depth-first search. The limit of the depth is changed iteratively to best fit the problem 

definition and the goal sought.      

Figure 7 illustrates the order of the node expansion in iterative deepening search 

from the initial node 𝑁1 to the goal node 𝑁9 for the graph represented in Figure 2 

(four iterations are required to reach the goal). 

Iterative deepening search has the following properties: 

Complete: Yes; 

Optimal: Yes; 

Time Complexity: )( dbO ; where b  is branching factor and d  is depth of the 

solution; 

Space Complexity: )(bdO . 
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Figure 7: Graphical representation of order of node expansion in iterative deepening 

search from the initial node 𝑁1 to the goal node 𝑁9 

3.5 Uniform cost search  

The uniform cost search (UCS) is another uninformed search strategy. The 

specificity of this search technique is that it is optimal whenever the function 

evaluating the path length is defined. The uniform cost search implementation has 

the advantage that it can be done relaying to any generic or common search function.  

The following example is a clear illustration of how the uniform cost search is used 

on weighted digraph to find the optimal path from the initial node 𝑁1 to the goal 

node 𝑁5 (Figure 8). The prospectus paths are sought beside each other until the 

shortest one is selected. Actually, there are three possible paths to be followed. 

However, only one of them appears to be the shortest at the end.  
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Figure 8: Weighted digraph used for the uniform cost search 

The uniform cost search steps are used as follows: 

Initial step: {[𝑁1, 0]}; 

Step 1: {[𝑁1 𝑁2, 3], [𝑁1 𝑁5, 14]}; 

Step 2: {[𝑁1 𝑁2 𝑁3, 8], [𝑁1 𝑁2 𝑁4, 6], [𝑁1 𝑁5, 14]}; 

Step 3:  {[𝑁1 𝑁2 𝑁3 𝑁5, 13], [𝑁1 𝑁2 𝑁4 𝑁5, 10], [𝑁1𝑁5, 14]}; 

Step 4: Final result: The shortest path from the node 𝑁1  to the node 𝑁5 is defined as  

𝑁1 𝑁2 𝑁4𝑁5 

Uniform cost search has the following properties: 

Complete: Yes; 

Optimal: Yes; 
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Time Complexity: )( mbO ; where b  is branching factor and m  is maximum depth of 

the tree; 

Space Complexity: )( dbO ; where d  is depth of the solution. 

3.6 Bidirectional Search  

In this method the search has a running technique in two directions. Indeed, two 

searches run simultaneously. One of them is done in a forward direction from the 

initial state, and another one is done backward from the goal state.  The aim is that 

these two searches should join in the midway. The motivation of implementing such 

a search method is the following: if a search algorithm requires a complexity of “ db ” 

to reach the goal, splitting it into two sub-algorithms will require “ 2/2/ dd bb  ” of 

complexity which is significantly less than “ db ”, especially when the values of b  and 

d  increase. The goal is used as the starting state of the backward search. Therefore 

the goal test is replaced by a flag with the rule to check whether two searches have 

expanded up to their intersection point. Although the bidirectional search seems to be 

good in terms of complexity, difficulties occur in implementing the backward search.  

Bidirectional search has the following properties: 

Complete: Yes; 

Optimal: Yes; 

Time Complexity: 2/db ; where b  is branching factor and d  is depth of the solution; 

Space Complexity: 2/db . 

For example, for the branching factor b  = 8 and depth d  = 4, the breadth-first search 

needs time which is proportional to 8 4 = 4096 whereas the bidirectional search is 

more effective because of time which is proportional to 2*8 2 = 128 to reach the goal. 
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It is also to note that bidirectional search is not practical for using if the value of d  is 

large. 

 

 

 

 

 

 

 

 

   

 

 

 

 



24 

 

Chapter 4  

INFORMED SEARCH STRATEGIES 

This chapter focuses on a search family known as informed or heuristic search. The 

main difference between informed (heuristic) and uninformed search is that beyond a 

well-defined problem, the informed search method uses some problem specification 

whereas the uninformed search strategy performs the search in a blind mode, without 

any prior knowledge or specification of the problem.  The problem specification in 

heuristic search helps efficiently find a solution of the problem.  

4.1 Best-first search 

Best-first search is created by combining breadth-first and depth-first search 

techniques. Because of this reason the best-first search gets the advantages of both 

breadth-first and depth-first search techniques. The best-first search does not 

consider all the possible paths in graph, and this strategy finds the path which has no 

loop.  

In best-first search the evaluation function )(nf is used for each node to find out the 

desirability of a node; so the most promising and desirable unexpanded node is 

expanded. So the node to be chosen should have lowest value of the heuristic 

function )(nf . 

In the first stage of the best-first search the OPEN list with starting node and 

CLOSED list with empty set are defined. If the OPEN list has no successor then 
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there is no solution. If there are successors of the starting node, the node with best 

(minimum) heuristic value N is selected. If the node N is the goal node then the path 

from starting node to the goal node is defined. Otherwise each direct successor node 

of N, if it is in neither OPEN nor CLOSED list, is added to OPEN list and the node N 

is set as a parent node.  Afterwards the node N is deleted from the OPEN list, and 

added to the CLOSED list. This process will continue until goal node is found or 

OPEN list is empty.  

The most important property of best-first search is that after the most promising 

successor node is selected and the move is done towards this successor, other nodes 

can be taken into account to be visited later if required.  

It should be also noted that the heuristic function can sometimes lead to the costly 

path. 

In Figure 9 the graphical representation of steps of best-first search example is 

illustrated. The starting (initial) and goal nodes of undirected graph are 𝑁1 and  𝑁10, 

respectively.  

The best-first search has the following properties: 

Complete: No; 

Optimal: No; 

Time Complexity: )( mbO ; where b  is branching factor, and m  is maximum depth 

of the tree; 

Space Complexity: )( mbO . 
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Figure 9: Graphical representation of steps of best-first search example 
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4.2 Greedy best-first search 

This search strategy is a bit similar to breadth-first search method, and targets the 

goal by trying to expand the closest node to the goal. The heuristic function 

)()( nhnf   is used for the node evaluation. The heuristic describes the estimated 

cost from the particular node to the goal. 

Greedy best-first search algorithm stands as a special case of the best-first strategy. 

In comparison with the best-first search where the evaluation function )(nf  is used, 

the greedy best-first search uses the heuristic function )(nh and heuristic values to try 

to obtain the best (optimal) solution of the problem, but unfortunately the best 

solution is not guaranteed. This algorithm is recursive and therefore must be 

implemented with care to avoid the infinite loop.  

Greedy-best first search has the following properties: 

Complete: No; 

Optimal: No; 

Time Complexity: )( mbO ; where b  is branching factor, and m  is maximum depth 

of the tree; 

Space Complexity: )( mbO . 

Why is the greedy-best first search not optimal? To understand it, let’s consider the 

following example. The digraph has five nodes in which the initial node is 𝑁1 and the 

goal node is 𝑁5. The aim is to apply the greedy best-first search to find the shortest 

(best) path from the initial node 𝑁1 to the goal node 𝑁5, and the heuristic function 
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)(nh  describes the straight line distance from each node to the goal node 𝑁5 (Figure 

10).  

 
Figure 10: Digraph for the greedy best-first search with straight line distance from 

each node to the goal node 

The heuristic function here gives the estimated cost from each node to the goal node 

as follows: 𝑁1=10, 𝑁2=6, 𝑁3=8, 𝑁4 =7, 𝑁5=0 (Note: 𝑁1=10 means that the estimated 

straight line cost from 𝑁1 to  𝑁5 is 10, similarly, 𝑁5=0 means that the estimated 

straight line cost from 𝑁5 to 𝑁5 is 0 which is quite logical).  

The edge weight shows the distance between two adjacent nodes in a graph; so these 

nodes are endpoints of an edge.  

The figure 11 shows the steps of nodes’ expansion in digraph for the greedy best-first 

search (represented in Figure 10) until the goal is reached. 
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Figure 11: Steps of nodes’ expansion in digraph for the greedy best-first search 

According to the evaluation function )(nf = )(nh , the best path is found as 

𝑁1 𝑁2 𝑁5 with total heuristic cost 16, but this path is not admissible (optimal),  

because the solution cost which is a sum of edge costs of the path 𝑁1𝑁2 𝑁5 = 

7+5=12 is longer than a sum of edge costs of another available path 

𝑁1 𝑁3 𝑁4 𝑁5 = 3+2+6=11. 
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4.3 A* search strategy 

A* is another informed search strategy. A* search is actually the most popular best-

first search strategy adopted by scientists and researchers.  

A* search is a best-first search algorithm, but not greedy best-first algorithm. The 

evaluation function )(nf  in A* search strategy is represented as )()()( nhngnf  , 

where n  is the last node of the path, )(ng  is the cost of the path from the starting 

node to the node n , and )(nh  is heuristic used to estimate the cost from the node n

to the goal node.  

Combining )(ng and )(nh  leads to the estimation of )(nf  which is actually the 

optimal cost function used to reach a solution.  

The uniform cost search and best-first search are the special cases of A* search. If 

heuristic )(nh is equal to 0 in )()()( nhngnf  , then we get )()( ngnf  which is 

used in uniform cost search. If )(ng is equal to 0 in )()()( nhngnf  , then we get 

)()( nhnf   which is used in best-first search.  

The big advantage of A* search strategy that doesn’t exist in a greedy best-first 

search strategy is that A* search is complete. Moreover it is optimal. Therefore one 

can say that the A* search technique satisfies the goal of informed search strategy.   

The figure 12 represents the digraph for A* search with straight line distance from 

each node to the goal node. 
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Figure 12: Digraph for A* search with straight line distance from each node to the 

goal node 

Let’s find the shortest path from the initial (starting) node 𝑁1 to the goal node 𝑁5. 

𝑁1 , 𝑔 + ℎ = 0 + 10 = 10  

𝑁1 𝑁2 , 𝑔 + ℎ = (0 + 5) + 9 = 5 + 9 = 14  

𝑁1 𝑁4 , 𝑔 + ℎ = (0 + 5) + 8 = 5 + 8 = 13  

𝑁1 𝑁2 𝑁3 , 𝑔 + ℎ = (5 + 3) + 4 = 8 + 4 = 12  

𝑁1 𝑁2 𝑁4 , 𝑔 + ℎ = (5 + 2) + 8 = 7 + 8 = 15  

𝑁1 𝑁2 𝑁3 𝑁5 , 𝑔 + ℎ = (5 + 3 + 3) + 0 = 11 

𝑁1 𝑁2 𝑁4 𝑁5 , 𝑔 + ℎ = (5 + 2 + 7) + 0 = 14 
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𝑁1   
𝑁4 𝑁5 , 𝑔 + ℎ = (5 + 7) + 0 = 12 

Since 𝑁1 𝑁2 𝑁3 𝑁5  is the shortest path among available paths from the initial 

node 𝑁1 to the goal node  𝑁5, this path is optimal. 

The A* search strategy covers some lacks that are found in the best-first search and 

the greedy best-first search. The differences between these tree strategies are mostly 

observed in their properties.  

A* search has the following properties: 

Complete: Yes; 

Optimal: Yes; 

Time Complexity: )( dbO ; where b  is branching factor, and d  is depth of the 

solution; 

Space Complexity: )( dbO . 

A* search technique is also used to solve the 8-puzzle game. This game was invented 

by Loyd in 1870. The 8-puzzle game is a well-known game used for the evaluation 

and showcase of the power of Artificial Intelligence in general and search methods in 

particular.   

The game principle is described as follows: there are 8 sliding tiles which are 

numbered by digits from 1 to 8 to be located in an array with three rows and three 

columns; the number 0 represents the empty cell (blank space), and any numbered 

tile can slide into an empty sell. It means that the digit 0 can simply be replaced by 

the void. The initial state is made by a random positioning of the digits and the goal 
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state is usually defined in a way that the numbers from 1 to 8 can be read in 

ascending or descending order, following a unique direction. The number of different 

possible configurations the 8-puzzle game is equal to 9!=362880. The number of 

accessible state configurations in 8-puzzle game is just half of 9!; in other words 9!/2 

is the number of solvable (reachable) configurations in 8-puzzle sliding game. 

The following assumptions, notations and operators are used: Opr(Row, Column, 

Direction) with Row & Column = {1,2,3}; Direction = {U,D,L,R}, where U, D, L, 

and R represent Up, Down, Left, and Right, respectively. Explicitly Opr stands for 

operator. The row and column index values range from 1 to 3 (from the set {1,2,3}). 

The following are the possible directions: u = upper; d = down; l = left; r = right. As 

summary, the operator ‘Opr(Row, Column, Direction)’ has three parameters which 

are the row index, the column index and the direction toward which the located 

element is moved. 

The optimal solution of the 8-puzzle game (with a minimum number of moves) for 

the given initial and final states is described in Figure 13. 

8 Puzzle Solution Finder program was used to find the optimal solution of the 

problem for the given initial and goal states.  
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Figure 13: Optimal solution of the 8-puzzle game for the given initial and goal states 
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4.4 Hill climbing search 

Hill climbing is heuristic and local search technique, and in the initial stage we select 

the starting node, and then we move to the heuristically closest position which leads 

to the goal. This process continues until no better position remains to move.  

The graphical representation of order of node expansion in hill climbing search is 

represented in Figure 14.  

 
Figure 14: Graphical representation of order of node expansion in  

hill climbing search 

From the Figure 14 it is seen that the search path after using hill climbing strategy is 

SACH. 
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Hill climbing search has the following properties: 

Complete: No; 

Optimal: No; 

Time complexity: )(O ; 

Space Complexity: )(bO , where b  is branching factor. 

By using the hill climbing search technique it is possible to expand exactly one 

successor node at a time regardless the number of successors the node has, and there 

is no effort to backtrack. In other words, hill climbing technique never tries to 

consider all rejected nodes. It seems that Hill climbing search puts less efforts to 

reach the goal state, but there is no guarantee that the quality of the solution of the 

problem will be complete.  

4.5 Dijkstra’s Algorithm 

There exists a well-known informed search algorithm called Djikstra’s algorithm.  

This algorithm is used in problems where the goal is to find the minimum cost path 

from the source (initial) node to all other nodes of the graph. We are discussing the 

search methods, and we can’t end without mentioning the properties of this powerful 

algorithm. 

This algorithm was invented and introduced by a Dutch scientist Edsger Dijkstra in 

1959.  His first idea which is the essence of the algorithm was to find the shortest 

path in graph with nonnegative values on the edges. The limitation of the Dijkstra’s 

algorithm is that this algorithm doesn’t handle with the negative weight edges.  
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Moreover, it is useful to consider the Dijkstra’s algorithm because it appears as an 

extension of A* search algorithm. So the Dijkstra’s algorithm is actually an extended 

form of A* search algorithm. 

The pseudo-code of Dijkstra’s algorithm is given below.  

Dijkstra Algorithm  

input:  Graph and weight /*A set of cities to visit*/ 

output: Minimum distance for a path 

Distance [t]0         /* initial distance is set to 0 */ 

for all  u from U-{t} do 

Distance[u] infinity             /*All other distances are set to infinity.*/ 

end for  

Sity .                           /*All the cities to be visited */ 

QueueU; 

while Queue≠  do 

dminimum_distance(Queue, Distance) 

SiteSite  {d} 

for all t from neighborhoods[d] do  

if Distance [t] > Distance [d]+weight (t,d) then  

dist(t)dist(d) + weight (t,d) 

end if 

end for 

end while 

return Distance 

end. 
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The efficiency of the Dijkstra’s algorithm can be evaluated in terms of its 

complexity. Due to the fact that it is a graph based algorithm, the number of nodes 

and edges is important for the evaluation of the complexity.  

Let’s consider a graph with n vertices and k edges.  The time complexity of running 

of Dijkstra’s algorithm on such graph is )( 2nO .  More usually when we pose the 

assumption of a graph made of a binary and well-balanced tree, the Fibonacci heap is 

used to evaluate the complexity. In this case the mentioned complexity is of order

))log(( nnkO  .  

It is to note that one of the inconveniences of applying the Dijkstra’s algorithm is that 

it is not backtracking, and therefore it may fall into an infinite loop if it finds a forked 

node.  

In Figure 15 the initial form of weighted digraph used for Dijkstra’s algorithm is 

represented. 

We consider all the steps of Dijkstra algorithm for the graph represented in Figure 15 

to compute the shortest paths from the initial node 𝑁1 to all other nodes 𝑁2, 𝑁3, 𝑁4, 

𝑁5 and 𝑁6.     
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Figure 15: Initial form of weighted digraph used for Dijkstra’s algorithm 

Initial Step 0:  

Distance [𝑁1]0   /*Distance from the initial state to itself*/ 

Distance [𝑁2]∞; Distance [𝑁3]∞; Distance [𝑁4]∞; Distance [𝑁5]∞; 

Distance [𝑁6]∞; /*The distances between the nodes which are yet to be processed 

are set to infinity*/. 

The shortest paths after the initial step 0 of Dijkstra’s algorithm are given in Table 1:  

   Table 1: Shortest paths after the initial step 0 of Dijkstra’s algorithm 

Node Shortest paths from the  

node 𝑁1 

Previous node 

𝑁1 0 - 

𝑁2 ∞ - 

𝑁3 ∞ - 

𝑁4 ∞ - 

𝑁5 ∞ - 

𝑁6 ∞ - 



40 

 

 

Step 1:  

The nodes 𝑁2, 𝑁3 and 𝑁5 can be directly reached from the node 𝑁1. The update 

distances are given below. 

Distance [𝑁2]18; Distance [𝑁3]10; Distance [𝑁5]16. 

The update procedure is based on the following paradigm: if the calculated distance 

from the initial node to a given node is smaller than the known distance in the 

previous step, then the distance is updated.  

Figure 16 represents the weighted digraph after the step 1 of Dijkstra’s algorithm, 

and the shortest paths after the step 1 of Dijkstra’s algorithm are given in Table 2. 

 
Figure 16: Weighted digraph after the step 1 of Dijkstra’s algorithm 
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    Table 2: Shortest paths after the step 1 of Dijkstra’s algorithm 

Node Shortest paths from the 

node 𝑁1 

Previous node 

𝑁1 0 - 

𝑁2 18 𝑁1 

𝑁3 10  𝑁1 

𝑁4 ∞ - 

𝑁5 16 𝑁1 

𝑁6 ∞ - 

 

Step 2:  

Choose the node with the shortest distance among the known distances and explore 

the neighborhood nodes.  

From 𝑁3 one can directly visit 𝑁4 and 𝑁5.  The path 𝑁3𝑁4 has a minimum distance 

10. Let us find the distance from 𝑁1 to 𝑁4 through 𝑁3. The known distance from 𝑁1 

to 𝑁4 in Table 2 was infinity, we then update this distance to 0+10+7=17.  

The distance from 𝑁1 to 𝑁5 was 16 in Table 2 which is less than the distance from 𝑁1 

to 𝑁5 through 𝑁3 which is 10+13=23, so no need to update the distance between 𝑁1 

and 𝑁5.  

Figure 17 represents the weighted digraph after the step 2 of Dijkstra’s algorithm, 

and the shortest paths after the step 2 of Dijkstra’s algorithm are given in Table 3. 
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Figure 17: Weighted digraph after the step 2 of Dijkstra’s algorithm 

   Table 3: Shortest paths after the step 2 of Dijkstra’s algorithm 

Node Shortest paths from the  

node 𝑁1 

Previous node 

𝑁1 0 - 

𝑁2 18 𝑁1 

𝑁3 10 𝑁1 

𝑁4 17 𝑁3 

𝑁5 16 𝑁1 

𝑁6 ∞ - 

 

Step 3:  

We again choose the node with the shortest distance among the known distances and 

explore the possible neighborhood nodes.   
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The node 𝑁3 cannot be chosen because this node was already visited. We therefore 

choose the node 𝑁5. The node that can be visited from 𝑁5 is 𝑁6. The known distance 

from 𝑁1 to 𝑁6 in Table 3 was infinity; we then update it to the distance 0+16+17=33. 

Figure 18 represents the weighted digraph after the step 3 of Dijkstra’s algorithm, 

and the shortest paths after the step 3 of Dijkstra’s algorithm are given in Table 4. 

                                                
Figure 18: Weighted digraph after the step 3 of Dijkstra’s algorithm 

Table 4: Shortest paths after the step 3 of Dijkstra’s algorithm 

Node Shortest paths from the  

node  𝑁1 

Previous node 

𝑁1 0 - 

𝑁2 18 𝑁1 

𝑁3 10 𝑁1 

𝑁4  17 𝑁3 

𝑁5 16 𝑁1 

𝑁6 33 𝑁5 
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Step 4:  

The node with the shortest distance among the known distances is chosen and the 

possible visited neighbor nodes are explored. The nodes 𝑁3 and 𝑁5 cannot be chosen 

because these nodes were already visited. We therefore choose the node 𝑁4. The 

node that can be directly visited from the node 𝑁4 is 𝑁6. The known distance from 

the node 𝑁1 to the node 𝑁6 in Table 3 was 33. The current distance from the node 𝑁1 

to the node 𝑁6 through 𝑁4  is 0+10+7+14=31. Since 31<33, we update the previous 

distance from the node 𝑁1 to the node 𝑁6 to make it equal to the current distance 31. 

So all the shortest paths from the nodes 𝑁1 to all other nodes  𝑁2, 𝑁3, 𝑁4, 𝑁5 and  𝑁6 

are defined, and there will be no updates anymore. 

Figure 19 represents the weighted digraph after the step 4 of Dijkstra’s algorithm, 

and the shortest paths after completing all the steps of Dijkstra’s algorithm are given 

in Table 5. 

 

 
Figure 19: Weighted digraph after the step 4 of Dijkstra’s algorithm 
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Table 5: Shortest paths after completing all the steps of Dijkstra’s algorithm 

Node Shortest paths from the 

node 𝑁1 

Previous node 

𝑁1 0 - 

𝑁2 18 𝑁1 

𝑁3 10 𝑁1 

𝑁4 17 𝑁3 

𝑁5 16 𝑁1 

𝑁6 31 𝑁4 

 

Dijkstra’s algorithm has many real life applications. In the communication area, for 

instance, networks are made of routers and connected links among them. Considering 

routers and links as nodes and edges respectively, it appears that one may find the 

shortest path from the initial node to all other nodes. In communication such path is 

called a min-delay path.  

Dijkstra’s algorithm has proven its successful application in the fields of traffic 

planning, path optimization for a mobile robot; transports and flight scheduling 

management etc.  
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Chapter 5 

CONCLUSION 

Artificial Intelligence aims designing and implementing strategies that can help solve 

problems efficiently.  

Search techniques are the main tools through which Artificial Intelligence acts. The 

time and the space complexities are the main properties used to evaluate the 

searching algorithms. The search methods can be uni-objective or multi-objective.  

In a uni-objective search, there is only one variable and the goal has less constraints. 

The uni-objective was the first search method developed.  

The multi-objective search is based on many parameters and many constraints. This 

type of search can be considered as an extension of the uni-objective search.  Indeed, 

the multi-objective search problems’ solutions are usually derived from a similar 

technique used in uni-objective problems.   

The search strategies are classified as uninformed search and informed search 

strategies. The uninformed search strategy is considered as a blind search, because 

no prior knowledge or assumption which can help easily reach the goal is available. 

The strategy is given in the following form: all the elements from the possible 

solution set are compared with the prospective solution (the goal). The search ends 

when the goal is found or if all the elements have been checked. This search strategy 
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is a bit primitive and might properly work in using the uni-objective search. The 

strategy is time and space consuming. The time complexity in the worst case is very 

high.  An improvement of this strategy consists of sorting the elements of the search 

space. However many problems involve multiples goals. This is the geneses of the 

multi-objective also called multi-agent search strategy.  

The informed search strategy is mostly used for problems with multiple parameters. 

The solution might be difficult to find if an uninformed strategy is used. A prior 

knowledge to the solution is used to define a heuristic function. The heuristic 

function acts like a guide. It considerably reduces the time and space complexity of 

the strategy.  

The informed search strategy tries to act like a human brain; this search strategy tries 

to use all the knowledge and properties of a given problem to reduce the time and 

space consumption to reach the goal. However, many advances are still required for 

implementing an intelligence system that might act exactly like a human brain.   
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