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ABSTRACT

In the present thesis, we prepare a summary of the existing theory of statistical,
lacunary statistical, A-statistical, A-statistical limit points and some related topics for

sequences of real numbers by using different research papers.

In Chapter 1, you can find a summary of the existing theory of convergent sequences.
The real number sequences and some of their important properties are all given in this

chapter.

In Chapter 2, we give the definitions and some important properties of statistical
convergence, lacunary, A and A-statistical convergence. In this chapter we also discuss
implication and inclusion relations between these new type convergences. All

implications and inclusions are illustrated by examples.

Chapter 3, is devoted to the main work of this thesis. This chapter starts with the
definitions of statistical limit point and statistical cluster point and continue with the
discussion of similarities and differences between statistical and ordinary limit points
of sequences of real numbers. Later the same study is repeated for lacunary statistical,

A-statistical and A-statistical limit points for sequences of real numbers.

Keywords: Statistical convergence, lacunary statistical convergence, A-statistical
convergence, A-statistical convergence, statistical limit points, lacunary statistical

limit points, A-statistical limit points, A-statistical limit points.



0z

Biz bu tezde mevcut teoride bilinen, istatistiksel limit noktalari, lacunary istatistiksel
limit noktalari, A-istatistiksel limit noktalar1 ve A-istatistiksel limit noktalar1 ve

bunlarla ilgili konularm bir derlemesini yaptik.

Birinci boliimde, yakinsak dizilerle ilgili mevcut teorinin bir 6zeti ile yakinsak reel

degerli diziler ve bunlarin 6nemli 6zelliklerinin igerildigi kisa bir 6zet bulabilirsiniz.

Ikinci boliimde istatistiksel yakmsaklik, lacunary istatistiksel yakinsaklik, A-
istatistiksel yakinsaklik ve A-istatistiksel yakinsaklik tanimlarmi ve bazi 6nemli
ozelliklerini verdik. Bu boliimde ayrica bu kavramlarla ilgili icerilme ve kapsanma

Ozellikleri tartisilmistir ve bu 6zellikler 6rneklendirilmistir.

Ucgiincii bdliim, tezin esas konusuna ayrilmistir. Bu boliim istatistiksel limit noktast ile
istatistiksel degme noktalariin tanimlar1 ile baslar ve istatistiksel limit noktalar1 ve
bilinen anlamda limit noktalarinin benzerlik ve farkliliklarmnin tartisilmasi ile devam
eder. Bu boliimiin devaminda benzer tartisma lacunary istatistiksel limit noktalari, A-

istatistiksel limit noktalar1 ve A-istatistiksel limit noktalar1 i¢cinde tekrarlanmustir.

Anahtar Kelimeler: Istatistiksel yakinsaklik, lacunary istatistiksel yakmsaklik, A-
istatistiksel yakisaklik, A-istatistiksel yakinsaklik, istatistiksel limit noktalari,
lacunary istatistiksel limit noktalari, A-istatistiksel limit noktalari, A-istatistiksel limit

noktalari.
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Chapter 1

INTRODUCTION

1.1 Sequences in Real Numbers

In this thesis we mainly focus on limit points of sequences of real numbers in statistical,
lacunary statistical, A-statistical and A-statistical sense. Therefore the present chapter
is devoted to a short summary of concepts of limit points in ordinary sense, infinite

matrices, matrix transformations and density functions.

Definition 1.1.1 ( [27] ) A sequence x(k) is a function whose domain is N. In general,
the sequence is represented by (xi) or {xi}y_,. Furthermore, it is worthwhile to note

that in this notation, k stands for the index of the sequence, and x;, is called the k' term

of (xx)-

@ represents the set of all real valued sequences.

Definition 1.1.2 ( [27] ) A sequence (x) is called bounded, if 3B € N, with |x;| < B

Vk € N.

Definition 1.1.3 ( /23] ) A sequence (xy) is called monotone increasing (or monotone
decreasing), if for every k,

X < X1 (0r X1 < ),
holds true.

Furthermore, a sequence (xi) is called strictly increasing (or strictly decreasing), if

1



for every k,
xp < X1 (07 X1 < X),

holds true.

Example 1.1.1 A sequence (x), which is defined as

50 =3)

is decreasing.

Example 1.1.2 A sequence (yy), which is defined as

(y) = 3*

is increasing.

Definition 1.1.4 ( [27] ) A sequence (xi) is convergent to 1, provided that Ve > 0,
JH (&), such that for every k > H(€),
e —nf <e.

This convergency is denoted by x; — N or lilznxk =1.

The set of all convergent sequences is represented by C.

Remark 1.1.1 Ifx — 1, then the set {k : |x; —n| > €} is a finite set for all € > 0.
Definition 1.1.5 ( [27] ) If a sequence is not convergent, then it is called divergent.
Theorem 1.1.1 ( [27] ) Limit of (xi) is unique, if (x;) € C.

Theorem 1.1.2 ( [27] ) If (xx) € C, then the sequence (x;) is bounded, but not the vice

versd.



Example 1.1.3 The sequence
(.Xk) = (07 1,0,1,0,1,-- )

is bounded but not convergent.

Definition 1.1.6 ( [I8] ) For a sequence (x), the real number b = supx, the supre-
mum (or least upper bound) of (xi), is a number that satisfies the following items;
1) For every k, x; < b

2) There exists xy provides, xy > b — €, for every € > 0.

Definition 1.1.7 ( [I8] ) For a sequence (x;), the real number a = infxy, the infimum
(or greatest lower bound) of (xi), is a number that satisfies the following items ;
1) For every k, a < xi

2) There exists xy provides, xy < a+ €, for every € > 0.

Example 1.1.4 Consider the sequence (x;) = % then infx; = 0 and supx; = 1.

Proposition 1.1.1 ( [/8] ) If a real valued sequence (xi) is bounded, then

infx; < supx.

Theorem 1.1.3 ( [27] )If a sequence (x;) is monotone and bounded, then (x;) is con-
vergent. Moreover, if a sequence (xi) is monotone increasing and bounded, then it
converges to supxy, and if a sequence (xi) is monotone decreasing and bounded, then

it converges to infxy.

Proof. Assume that (x;) € @ is bounded and increasing and let # = supx;. Then, from
the definition of supremum, Ve > 0, Jxy so that
t>xy>t—€.

3



But (x;) is increasing, therefore x; > xy for every k > N.
Thus, x; >t — € forevery k > N.
It indicates that,
t—e<x<t<t+e,
or
e — 1] <€,

which is the definition of lilgnxk =t.n

Theorem 1.1.4 ( [27] ) If a sequence (xi) is monotone increasing (decreasing) and

not bounded above(bounded below), then x;, — o (x;, — —o0), as k — oo,

Theorem 1.1.5 ( [27] ) Consider the convergent sequences (x;) and (y;), and a real

number c. Then,

(i) 11131(36/« +yk) = limog + limyg,
(ii) lilzn(cxk) = clilznxk,

i 1 _ limae. Tim s,
(iii) llgn(x/cyk) imox. limyy

(iv) Iflil?lyk =# 0, then

Definition 1.1.8 Consider the sequence (xy), let’s accept that (ky) is a strictly increas-

ing sequence of N. A sequence (x, ), whose n'" term is Xy, is called a subsequence of

(xz)-

Example 1.1.5 Consider the sequence (x;) := (1, %, %, ...), then the sequence

(Xa) = (

N
o0 | =
—_

t\)|’_‘
~_



is one of the subsequence of (xy).

Theorem 1.1.6 ( [27] ) Let (xy,) be a subsequence of (xi). If
(%) — 1,

then for every {k,},
(xg,) — 1.

In other words, if x is convergent to 1), every subsequence is convergent to 1].

Proposition 1.1.2 ( [I8] ) Let (x;,) be a subsequence of (xy),

1) If (xx) is bounded above, then supx;, < supxy,

2) If (xx) is bounded below, then infx; <infxy .

Definition 1.1.9 A real number p is called limit(accumulation) point of (x;) € @, if
(x) has at least one point different than p which is in the interval |x; — p| < € for all

> 0.

The above mentioned theorem shows that every bounded real valued sequence, which

has infinitely many terms, possesses at least one limit point.

Definition 1.1.10 ( [26] ) A real number o is called a cluster point of (x;) € @, if

Ve > 0, infinitely many terms of (xi) implies |x; — | < €.

A sequence having a cluster point does not specifically imply that it must have a limit.

Example 1.1.6 A real valued sequence (xi) = (—1)* is not convergent. However, the

numbers 1 and —1 are the cluster points of the sequence x.

5



Some sequences may not have a cluster point.

Example 1.1.7 A real valued sequence (x;) = é* has no cluster point.

Theorem 1.1.7 ( [26] ) If x € @ is bounded and a number © is the only cluster point

of x,then x — ©.

Boundedness condition can not be removed.

Example 1.1.8 Ler x € @ and defined by x; = {1,%,3, %,5, %, ...}, then 0 is the only

cluster point of x. However, x is not convergent.

Theorem 1.1.8 ( [27] ) Suppose that (xi), (yx) and (wy) are real valued sequences. If
X — X,
and
Ve — X,
as k — oo, and, if 3H € N such that
X < wi < yi, foreveryk > H
then,

Wp — X.

Theorem 1.1.9 ( [27] ) Every real valued and bounded sequence has a convergent

subsequence.

Theorem 1.1.10 ( [27] ) If (xx) — x and (y;) — y and FH € N such that, for every

k > H implies x; < yx. Then, x < y.



Definition 1.1.11 A sequence (x,) is called Cauchy, provided that Ve > 0, 3H (€) such

that Vn,m > H(€), implies |x, — x| < €.

Theorem 1.1.11 ( [27] ) If (xi) is a Cauchy sequence, then it is bounded.

Theorem 1.1.12 ( [27] ) (x) € C iff it is Cauchy.

Note that : if and only if is abreviated as iff.

Definition 1.1.12 ( [/8)] ) The set RU{-o0} is called extended real numbers.

Definition 1.1.13 ( [l/8] ) Suppose that (xi) represents a sequence of extended real

numbers.Then,

(1) xi —> oo, if for every real number P, 3H € N so that for every k > H, x; > P,

(2) xp —> —oo, if for every real number P,3H € N so that for every k > H, x; < P.

Definition 1.1.14 ( [27] ) Suppose that (x;) € @

(1) The limit superior of (x) is denoted by ]}im *x and defined as
—>00

lim*x; = lim [sup{x,|n > k}].
k k—>oo

(2) The limit inferior of (x;) is denoted by klim «Xi and defined as
—»00

lim,x; = lim [inf{x,|n > k}].
k k—yo0

Definition 1.1.15 ( [26)] ) For the real valued and bounded sequence x and M, repre-
sents the set of all cluster points of x. Then, limit inferior of x equals to the smallest

point of the set My and limit superior of x equals to the greatest point of the set M.
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Example 1.1.9 Let (x;) = (—1)%, then M, = {—1,1}. So,
l. * — _l,
im.x

and

lim*xk =1.
k

Theorem 1.1.13 ( [l/8] ) A sequence (x;) € C iff

lim ,.x;, = lim*x
. *Ak 3 k

Proof. If x; — n, then 7 is the only cluster point of x. Under this assumption, the
smallest and greatest point of the set of cluster point equals to 1.

So, lilgn X =1= lilgn*xk.

On the other hand, if lilgn Xp=T1N= li]?l*xk, then x is bounded and x has only one cluster

point and it is 1. From theorem 1.1.7, x is convergent to 7. ®

1.2 Matrix Representation

In this section, we briefly discuss infinite, conservative and regular matrices and matrix

transformations.

Definition 1.2.1 Suppose that C = (c,;) and D = (d,;) are two infinite matrices. Then,

the sum and scalar product of infinite matrices are defined as follows,

1) C+ D = (cux +dyx) (matrices addition)

2) AC = (Acyx) (scalar multiplication)

hold true, noting that A represents a constant number.

Definition 1.2.2 A non-negative, infinite matrix is defined as an infinite matrix with

non-negative components.



Definition 1.2.3 Let D := (d,) stand for an infinite matrix, the D-transform of a se-

quence (xy) is represented by Dx := (Dx),, and defined as

(o)

(Dx)n = Z dnkxk
k=1

if the series converges for all n.

Definition 1.2.4 An infinite matrix D is called conservative if Dx € C for each x € C.

There exist conditions to understand whether any infinite matrix is conservative or not.

Theorem 1.2.1 (Kojima-Shurer) Suppose that D = (dy;) is an infinite matrix. Then,
D = (d,y) is conservative iff

(i) sup, Yy |dnk| < oo,
(ii) lim, d,; = Uy for every k,

(iii) 1imy, Y5, dup = L.

For example, the following matrix is conservative,

0 0 1 0
1 1
; 030
2 1
0 10
3 3
H = (hy) =
1-10 Lo

Definition 1.2.5 An infinite matrix D is called regular matrix iff for each sequence
(xx) € C, with x — n, implies that

lim (Dx)k =1n.

k—roo



The necessary and sufficient conditions for regularity of an infinite matrix is known as

the Silverman-Toeplitz Theorem.

Definition 1.2.6 (Silverman-Toeplitz, [22]]) Consider an infinite matrix D = (dy),

then the matrix D is regular iff

(R']) sup, ZZO:I |dnk| < oo,
(R-2) lim, d,; = 0 for every k,
(R-3) lim, Y. ;> du =1

hold.

The set of all non-negative regular matrices is denoted by (C,C;1).

Example 1.2.1 ([8]) Let C; = (cui) € (C,C;n), where

L if1<k<n

Cnk =
0, otherwise
or equivalently,
1 0 0
1 1
72 0
Cnk — ’
11 1
n n n

is a regular matrix which is known as the Cesaro matrix of order one(or shortly, C).

Example 1.2.2 ([6l]) Let (1;) € @, and R = (ry) be a nonnegative matrix, regular

matrix with

& if1<k<n
Tk =

0, otherwise

10



where t, =Y _| .

The matrix R is a regular matrix and known as Riesz matrix.

Definition 1.2.7 (/24]) A sequence of numbers { f,}>_, is called Fibonacci numbers
if
Jon=Jn-1+fu2s n22,

and fo =0, fi =1 are hold.

Example 1.2.3 ([24]) The Fibonacci matrix F = (f,;) is a nonnegative infinite matrix,

which is defined as

fn+f2k—1’ if1<k<n

fnk:

0, otherwise

or equivalently,

B[ —
=

FNE
FN-
EEN] 8]
o
o
o

fnk:
1 1 2 3
7 7 5 57 00
11 2 3 5
12 12 12 12 12

is a regular matrix.

1.3 Density

The concept of statistical convergence and related topics are based on density func-
tions. Therefore, all readers needs to know the idea and at least basic properties of
density functions. For this reason, in the present section we introduced the definition

and some properties of density functions.

Definition 1.3.1 (/\§]) Let S,R C N, then the symmetric difference of S and R denoted

11



by SAR and defined as
SAR = (S\R)U(R\YS).
Moreover, if the symmetric difference of S and R is finite then S is called asymptotically

equal to R and denoted by S ~ R.

Definition 1.3.2 (/8]) A function § from the space of all subset of natural numbers to
the closed interval [0,1] is called an asymptotic density function (or density function),

if the following four axioms hold :
(D-1) IfS ~R, then §(S) = 8(R);

(D-2) IFSOR =0, then 8(S)+8(R) < §(SUR);
(D-3) Forevery S,R; 6(S)+0(R) <14+ 6(SNR);

(D-4) 8(N) = 1.

where S and R are subsets of natural numbers.

Definition 1.3.3 (/\8])If the density of any subset S C N is represented by 8(S), then

0(S), the upper density associated with 8(S), can be defined by

5(S) =1-8(N\S).

Proposition 1.3.1 (/8]) For sets S and R of natural numbers, consider & as a lower
asymptotic density, which has 8 as an associated upper density. Then, the following

propositions hold:

1) SCR=8(S) < 8(R),
2) SCR=68(S)<6(R),

12



3) §(SUR) < 8(S) + 8(R) forany S,R C N,

Proof. 1) Since SN (R\ S) = 0, then using (D-2) we have,
O0(S)+S8(R\S) <O(SU(R\S)).
From the assumption S C R,
O(SU(R\S))=96(R).
And, from the definition of density 8(R\ S) > 0, so that
0(S) <o(S)+8(R\S).
Thus,
0(S) < O(R).
2) Assume that S C R, then (N'\ S) D (N\ R). From (1)
(N\S) D (N\R) provides
O0(N\S) > d(N\R).
Multiply both sides by -1 and add 1. We get,
1-6(N\S) <1-06(N\R).
So, we conclude that
5(S) < 8(R).
3) From the definition of upper density,

5(S)=1-8(N\S),

13



and
S5(R) =1—8(N\R).

We get,

5(S)+8(R) =2—8(S)— 8(R)
=2—(6(N\S)+6(N\R))

=2 (1+8((N\S)N(N\R))).
Letuse (N\ S)N (N\R)) =N\ (SUR).

We conclude that,

5(S)+8(R)=1—8(N\ (SUR))

= 3(SUR).
4) Let use the property (D-2), we have

0(S)+68(R) <S8(SUR)
if SOR=0.
Assume that S = @, then we attain;
OUR =R,
and
ONR=0.
So, we can use this conclusions in the property (D-2),

5(0)+ 8(R) < S(0UR)

= Jd(R).
We conclude that, 6(0) < 0 and from the definition of density 8(0) > 0.

As aresult,

5(0) =0.

14



It is similar to prove 8(0) = 0, by using definition of upper density.
5) From the definition of S ~ R, we get
SAR = (R\ S)U(S\R)
= (NAS)\N(NAR)) U((N\R)\ (N\5))

= (N\S)AN\R),
which provides that,

O0(N\S)=8(N\R).
Thus, we get
S(S) :5(R).

6) From the definiton of upper density;
S(N)=1-§(N\N)

7) By the property (D-2), we have
0(S)+(R) <3(SUR),
when SNR = 0.

Choose (N'\ S) and S instead of S and R, respectively.

We get,
O(N\S)+0(S) <o((N\S)US)

=6(N)

=1.
Thus,

6(S) <1-5(N\S)
=4(S).

[
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Definition 1.3.4 (/8]) A subset K C N is called to have natural density with respect to

S, if
5(K) = §(K).

Example 1.3.1 Consider the asymptotic density function

§(K) = lim , <UD

n—oo n

where |K (n)| represents the number of elements in NN K, then

8(K)=68(K)
iff

This density function is known as natural density.

Furthermore, recall that the characteristic sequence of K is represented by yx and it is

a sequence of 0’s and 1’s and the Cesaro matrix, which is denoted by C1, is defined as;

1 0 0

1 1

7 2 0
C) =

11 1

n n n

Then the n'" term of the sequence Cj yk is equal to ‘Ki—")‘ Therefore,

O(K) = lim (Cy. )k ),

and axioms (D-1)-(D-4) are satisfied for this function. In other words, the natural

density d(K) can be defined by using the Cesaro matrix Cj.

Example 1.3.2 Consider the set M = {m € N : m = k*} where k is natural number.

16



Clearly, M (n) < /n in which M (n) represents the number of elements belonging to set

M in the first n natural numbers. Then,

o(M) = limM

Example 1.3.3 [fT = {n € N:n =5k}, so that k € N. Then

§(T) = lim L)
R
—

Lemma 1.3.1 [fK={neN:n=ak+b} withk € N. So

1
5(K):h’£r15.

Example 1.3.4 If K is a finite subset of N, then obviously 6(K) = 0.

The example which is presented in Example 1.3.1 implies that one may create a density

with the aid of the summability method.

Proposition 1.3.2 ([8]) IfA € (C,C;n), then 84(K) which is defined by
6A(K) = lim (AXK)n

n—yoo

is called A-density of K.

17



Chapter 2

NEW TYPE CONVERGENCES

Statistical convergence has been initiated by H. Fast and H. Steinhaus independently
in 1951. After that, statistical convergence is used by many researchers in differ-
ent directions([7, 21} 16} [10]). Moreover some non-trivial extensions like lacunary
statistical convergence, A-statistical convergence, A-statistical convergence and o f3-
statistical convergence are introduced and discussed by different researchers. This

chapter is devoted to these new type convergences([[12} 19, [1]).

2.1 Statistical Convergence

As it is mentioned before, if the sequence Yk is the characteristic sequence of the set

K and the matrix C; = (¢, ) is defined by

L if1<k<n
Cnk - —
0, otherwise.

Then,
6([() = h}gn(anxK)n

is called the natural density of K.

Definition 2.1.1 (/[7]) Let x = (x.) € @. If (x;) satisfies the condition,
{keN:|x—nl>e}

n

0

O({keN:|xy—n|>¢€})=lim
n—soo

for all € > 0, then x is called statistically convergent to 1 and denoted by
Cy —limx =1 or xy — N(Cy). A sequence which is not statistically convergent called

statistically divergent.

18



The set of all statistical convergent sequences is denoted by Cy;.

Theorem 2.1.1 (/10]) "Ordinary convergence implies statistical convergence."

Proof. Assume that x; — 1, then this assumption implies that the set {k € N : |x; —
n| > €} is a finite set. Since the density of finite set is zero(Example 1.3.4), & ({k :
|xy — M| > €}) =0, Ve > 0. Therefore, x statistically convergent to 1. =

The most significant difference between ordinary and statistical convergence is given

by the next remark.

Remark 2.1.1 For the ordinary convergence, if x is convergent to 1M, then at most
finitely many terms of the sequence are allowed to be outside the all € - neighborhoods
of the limit 1. But in statistical sense, there can be infinitely many terms of the sequence
x = (xy) outside of each €-neighborhoods under the condition that their natural density

is zero.

Example 2.1.1 Consider the sequence x = (x;), where

3, if k=m’

Xk =

0, if k#*m’

since §({k> : k € N}) = 0, we have Cy — limx = 0 . However, since infinitely many
terms of (x;) are out of each € - neighborhoods, then x does not converge to 0 or 3 in

ordinary sense.

Another important difference between ordinary and statistical convergence is the bound-

edness condition. In the ordinary case, every convergent sequence has to be bounded.
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Whereas, in the statistical case, x € Ci need not to be bounded. The following example

demonstrates this difference.

Example 2.1.2 Forx = (x;) € @, where

K, if k=m?

Xk =
9, if k#m?

Obviously, Cg —limx =9 but x is not bounded, and this implies that x is not ordinary

convergent to 9.

Lemma 2.1.2 [fCy —limx = 1y and Cyy —limy = 1, then

(i) Cy —lim(x+y) = M + N2,
(ii) Cs; —lim(x.y) = 1’]1.7]2,

(iii) Cy —lim(c.x) = c.ny, for any c € R.

Proof.

(1) Ve > 0, the next inclusion holds,
€ €
k[t o) = (m+m)l 2 €f Sk foe—m| = ULk e—m2f = S}
Clearly, as a consequence of above inclusion we have,

Cy —lim(x+y) = ny +na.

(1) Since Cy —limx = 11, define a set F' such that,
S(F) = 8({k: bu—m|<1}) =1.
It is obvious that,
oy — M2l < Pl [ye — 2| + 2l — mil-
For every k € F, we have
| < ||+ 1.
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Therefore,
e —mm2| < (Imil =+ Dlyk — m2| + M2l —m|. (2.1.1)
Given € > 0, pick u such that,

0<2u< (2.1.2)

£
M1| 42|+ 1

Now define,
Gi={k:|xx—m[<u},
and
Gy = {k: |ye—m2| < u}.
It is obvious that
5(G1) = 8(Gy) =1,
because of
Cy —limx =,
and
Cy —limy =1n;.
Therefore, by using (D-2) of Definition 1.3.2, we get
O0(FNGINGy) =1,
or equivalently,
§(k: [xiye —mme| > €) =0,

which completes the proof of (i1).

(iii) In case of ¢ = 0, this condition is satisfied. Assuming ¢ # 0, and defining y; = ¢

for every k € N, the conclusion follows by (if).
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Example 2.1.3 Consider x = (x;) € @ and y = (yx) € @ which are defined as
(

1, k=m?

=90, k=m>+1

2, otherwise

and

% +1, otherwise
Yk - =
0, k =m?

respectively. Then, the sequences (xi) and (y) are not convergent in the ordinary
sense. But
Cy —limx = 2,
and
Cy —limy = 1.
From Lemma (2.1.2) we have,
Cy —lim(x+y) =3,
Cy —lim(x.y) =2,
and

Cy —lim(3x) = 6.

Definition 2.1.2 (/I0]) If a sequence x = (xi) provides property P for every k ¢ K
with 0(K) = 0, then it is said that (xi) satisfies P "almost all k", and it is abreviated

by "a.a.k.".

The next lemmas can be given as a result of this definition.

Lemma 2.1.3 ([10]) For a sequence (xi), Cs —limx =1 iff Ve > 0,

lxe —m| < € a.a.k.
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Theorem 2.1.4 (x;) — N (Cy) iff 3(ky) so that 6({k, :n € N}) =1 and klim X, = 1.
—»00

Definition 2.1.3 (/25)]) (x) € @ is called statistically divergent to o if VT € R,

S({keN:x>T)) =1.

Example 2.1.4 Consider (x;) € @ where

\/l;, otherwise
X = >
2, k=m?

then (x;) is statistically divergent to oo.

Definition 2.1.4 ([25]]) (x;) € @ is called statistically divergent to —oo if VM € R,

O0({keN:x <M})=1.

Example 2.1.5 Consider (x;) € @ where
—k, otherwise

\/E, k=m’

then (xy) is statistically divergent to —oo.

Xk =

Theorem 2.1.5 Any statistical divergent sequence to oo (or to —) is a divergent se-

quence.

Proof. Let (x;) be a statistically divergent to e (or —eo). Then for all real number 7',
O({keN: x| >T})=1(ord({keN:|x| <T})=1).

It is obvious that, the sequence (x;) is not bounded. So, the sequence (x;) can not be

convergent because every convergent sequence is bounded. Then, (x;) is a divergent

sequence. W
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Remark 2.1.2 A divergent sequence need not to be statistically divergent.

Example 2.1.6 Consider x := (x;) € @ where

k, ifk=n?

Xk =
6, otherwise.

Then, the sequence x is divergent but not statistically divergent.

Definition 2.1.5 (/lI0]) x := (x;) € @ is called statistically Cauchy sequence if Ve > 0,
JH = H(¢€) such that,

1
lim—|k <n:l|x—xg|>¢gl=0.
non

Theorem 2.1.6 ([10]) (x;) € @ is statistically Cauchy iff (x;) € Cy.

2.2 Lacunary Statistical Convergence

In this section we shall discuss lacunar statistically convergent sequences. We will also

discuss inclusion relations with statistical convergence.

Definition 2.2.1 ([/2]]) A lacunary sequence 0 = {k,} is an increasing sequence of

positive integers such that kg = 0 and h, = k, — k,_1 — o0 as r — oo. Furthermore,

I, := (ky—1,k;] and q, := kfil'
The set of all lacunary sequences is represented by ©.

Example 2.2.1 A sequence 0 = {r! — 1} is a lacunary sequence with

L=(r—D!'—=1,r1—1] andqu%-

Definition 2.2.2 (/5] 12]), Let the sequence Xk be the characteristic sequence of the
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set K and a matrix Co = (¢ )5y —, be defined by

hlr, if kel
Cnk - —
0, if ké¢lI,
Then,

S (K) = 1im(Cp Xk )n
is called the lacunary-density of K.

Furthermore,

. |-NK]|
m  —-.

r—e

0 (K) =

Definition 2.2.3 ([l/2)]) For a lacunary sequence 6 = {k,}, a number sequence

x := (xy) is called lacunary statistical convergent to 1 if Ve > 0

o1
S0(K(e)) = fim 2-{k € I;: v, —n] > e}

=0,
where K(€) = {k € N : |x; — n| > €}. Lacunary convergence of x to N is denoted by

Oy — limx =1 or xy — N (6Oy).
The set of all lacunary statistical convergent sequences is represented by 6;.

Example 2.2.2 Consider x = (x;) € @, where

1, if k=2

Xk =
0, if k#£2

and 6 = {k,} is a lacunary sequence and defined as {k,} = 2" — 1, where r is a natural
number.

We should check the limit

r—oo

s
r r—reo hy

for lacunary statistical convergence.
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Clearly,

hy=2""1.
Choose n = 1.
Then, the set K(€) N1, has 2"~! — 1 elements.

In other words,

K(e)NI| = [{k el | — 1] > €}

=211
So,
fim Hkel :|x—1| > ¢} 1
F—oo h,

Thus, 6g(K(€)) = 1 implies that (x;) is not lacunary statistical convergent to 1.
Choose n = 0.

Then, the set K(€) N1, has only one element for each r.

In other words for every r, |K(e)NI.| ={k €L : |x — 0| > €}| = 1.

So,

) 1
e

Thus, 69(K(€)) = 0 implies that (x;) is lacunary statistical convergent to 0.

Example 2.2.3 Consider 6 = {2" — 1} € ©, and x € ® which is defined as

2, if kiseven
Xk =

3, if kisodd.
It is obvious that h, =2""!.

Choose n = 2.

For every interval I, a set K(e) NI, ={k €L : |x; —2| > €} has 2r—;71 number of

elements.

So,




Therefore, 8g(K(€)) = % Then, the sequence (xy) is not lacunary statistically conver-
gent to 2.
Similarly, if we choose 1 =3, then 69(K(€)) = % such that (xy) is not lacunary statis-

tically convergent to 3.

Lemma 2.2.1 Suppose that 6;; —limx = 1y and Oy —limy = 1. Then,

(i) By —lim(x+y) =11+ 12,
(ii) By —lim(x.y) = 11.12,

(iii) Oy —lim(c.x) = c.m for any ¢ € R.

Definition 2.2.4 (x;) € @ is called lacunary statistical divergent to o if for every real

number K,

59({k€N:xk>K}) =1.

Example 2.2.4 Consider 6 = {k,} € ©, where {k,} = {2" — 1}. Assume that x € © is

defined as
0, ifk=r?

Xk =
k, otherwise.

So,
59({kENZ)Ck >K}):1
for every real number K. Consequently, the sequence x is lacunary statistical divergent

10 oo,

Definition 2.2.5 (x;) € @ is called lacunary statistical divergent to —oo if for every
real number M,
Op({keN:x <M})=1.
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Example 2.2.5 Let 0 = {k,} € ©, where {k,} = {r! — 1}. Assume that x := (x;) € ©®

is defined as
0, ifk=r!

Xk =
—2k, otherwise.
So,

59({k€N2xk<M}):1

for every real number M. Therefore, the sequence x is lacunary statistical divergent to

Lemma 2.2.2 ([I2]) For 0 € O, Cy —limx = 1 provides 04 —limx = n iff

lim,q, > 1.
r

Example 2.2.6 Consider 6 = {3"— 1} € ® and x = (x;) € @, where

3, ifk=r

X =
2, otherwise.

Let us check whether x € Oy or not. First of all, we have that lim.q, = 3. So, it is
r
enough to check whether x € Cy or not. Due to
0({keN:|x—2|>¢})=0,

x — 2(Cy). Therefore, x — 2(0y) from Lemma 2.2.2.

Lemma 2.2.3 ([2]) For 6 € ©, 6, —limx = 1 provides Cy¢ —limx = n iff

lim*g, < oo.
r

Example 2.2.7 Consider the lacunary sequence 6 = {r"} and define x where

1, if ke <k<2k_
Xk =

0, otherwise
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Since

kel :|xx—0|>¢ ke
lim [k € [ | =} < lim —~—— !
r—soo h, r h,

=0,
the sequence x is lacunary statistical convergent to 0.

On the other hand, the sequence x is not statitistical convergent.

Theorem 2.2.4 ([lI2]) Let 6 € ®,then

CSZ‘ —limx = Qst —limx = n

1 <lim,q, < lim*g, < oo.
r r

Theorem 2.2.5 ([12]) If x € Cy and x € Oy, then Cy —limx = Oy — limx.
2.3 A-Statistical Convergence

The concept of A —statistical convergence has been introduced by M. Mursaleen in
([19). Later, the concept of A—statistical convergence has been studied by differ-
ent authors in different ways. In this section we shall discuss briefly, the concept of
A —statistical convergence and its properties.

"Let A = (A4,) be a non-decreasing sequence of positive numbers tending to o such
that 4,11 <A, + 1, with Ay =1,and I, = [n— A, + 1,n].”

By using (A,), the A — density can be defined in as follows;

Definition 2.3.1 ([19]) Let K C N. Then, A-density of K is denoted by 8, (K), and

defined as,

5,(K) = lim |{keln:keK}|.

n—soo Ay

Remark 2.3.1 ([19])A sequence X is a characteristic sequence of the set K and a

matrix
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A = (Ank)y =1 is defined by

Then,

is called the A-density of K.

It shows that, A-density is a special condition of A- density.

Example 2.3.1 Let (A,) be a nonnegative real valued sequence defined as A, = \/n,

then the interval I, = [n — \/n+ 1,n|. Now, Consider the sequence (x;) which is
(

1,  ifk=3n

%=1 2, ifk=3n+1

3, ifk=3n+2.

\

If
K={3n:neN}, N={3n+1:neN}and M = {3n+2:n €N}, then
1
5, (K) ==
2 (K) 3
8 (N) =
A _37
and
5 (M) =+

Definition 2.3.2 ([/[19]) A sequence x = (x) is called A-statistically convergent to M
provided that Ve > 0 the set K(¢) = {k € N : |x; — n| > €} has A-density zero.

In other words,

5, (K(e)) = tim K E i b—nl = el _

n—yoo Ay

0.

In this case, this convergence is represented by Ay —limx =1 or x — N (Ag).
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The set of all A-statistically convergent sequences is represented by Ag.

Example 2.3.2 Let A, be a nonnegative real valued sequence defined as A, = \/n, then

I, = [n—\/n+ 1,n]. Consider the sequences (xi) and (yy) where

1, ifk=+n+1
Xk =
2, otherwise
and
4, if k=2n
Vi =

5, ifk=2n+1

ke b =22 e}

0
n o ’

o HkeLn—1>el
5 A ’

. Hke€l [y —4>¢€}| 1
hlgn A, =5

: -5 >
i K€D =5 =>¢e}| 1
n An 2

So, x; — 2(Ag) and (yi) is not A-statistically convergent.

Remark 2.3.2 ([19]) If A, = n, then 8, (K) is reduced to §(K) and A-statistical con-

vergence reduces to statistical convergence.

Example 2.3.3 Choose A, = n. Then, I, = [n— A, + 1,n| becomes I, = [1,n] and the
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matrix A = (Ay) becomes,

Loif1<k<n
)Lnk:

0, otherwise

which is equal to Cy. It indicates that,

62 (K) = lim(Au XK )n

= 5(K)

for any subset K, where Xk is the characteristic sequence of K.
Theorem 2.3.1 Ordinary convergence implies A-statistically convergence.

Proof. Let x — 7, then the set {k € N : |x; — 1| > €} is finite. Therefore,
{keN:|xp—n|>€e}D{kel,: |xpy—n|>¢€}
holds true. Thus,
ke N =] = )2 (ke b =l 2 e},

take limit on both sides as n — oo, completes the proof. m

Definition 2.3.3 (x;) € @ is called A-statistical divergent to o« if VK € R,

5@({k€N:xk>K}) =1.

Definition 2.3.4 (x;) € @ is called A-statistical divergent to —e if VM € R,

5&({](6 N :xy <M}) =1.
Theorem 2.3.2 ([19]) lim.% > 0 if and only if Cy C Ag.
n
Remark 2.3.3 (/19]) Under the condition lim*% = 0, above theorem does not hold.
n

Theorem 2.3.3 ([15)]) For a real valued sequence x, if A, implies lim% =1, then
n

A’Sl g Cst' 32



2.4 A-Statistical Convergence

In 1981, Freedman and Sember generalized the natural density function 6 which is

based on C1([8]). They replace C; by any non-negative, regular matrix A.

Definition 2.4.1 (/I8 [16]])Let K = {k;} be an index set and let Xk be the characteristic
sequence of K. In this case, the A — density of K is introduced as follows;
04(K) = lim (Axk)n
n—oo

in which A represents a non-negative regular matrix.

Furthermore,

84(K) = 1im Y a
kekK

= Jim L n
Lemma 2.4.1 [fAy; —limx =1y and Ay, — limy = M. Then,

(i) Ay —lim(x+y) =1, +n>,
(ii) Ay —lim(x.y) =1n1.M2,

(iii) Ag —lim(c.x) = c.m for any ¢ € R.

If 84 (K) is known, then 4 (N\K) can be found by

SA(N\K) = 1 — 84 (K).

Example 2.4.1 Consider the matrix A = (a,), where

1, k=n
Ank = .
0, k#n
Let choose,

Ky ={keN:k=n"},
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and
Ky ={keN:k#n*}.

Therefore, 64(K1) = 1 and 84(K,) = 0.

Definition 2.4.2 ([l/6l])A sequence x is called A-statistical convergent to n, if Ve > 0,

6a(K(€)) = 8a({k €N: b —n| > €})

=0.

In that case, this convergency can be written as Ag —limx = 1.

The set Ay represents all A-statistical convergent sequences.

Remark 2.4.1 Ifa matrix A € (C,C;1n) is equals to C| which is Cesaro matrix, then A-
statistical density is reduced to natural density. Furthermore, A-statistical convergence

is reduced to statistical convergence([16l]).

Example 2.4.2 Consider C; = (¢,

) €
1
P k <n
Cnk =
0, otherwise,

which is known as Cesaro matrix.

(C,C;n) where

Let a sequence x is defined as

2, if kisodd
X =

3, if kiseven
Let the set K(€) is defined as

K(e)={keN:|x—2| > ¢},
and the set M(€) is defined as

M(e)={keN:|x—3|>¢€}.
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Then, Ve > 0 we get,
oc,(K(g)) = oc,({k e N: [x —2| > €})

(Cl XK)n

= lim
n—oo
1

=3
where Xk is characteristic sequence of K(€).

Therefore, x is not Cy-statistically convergent to 2.

And,
e, (M(€)) = 8, ({k € N: [xc— 3] > €})

(Cixm)n

= lim
n—oo
1

=2

where X is characteristic sequence of M(€).

Similarly, x is not Ci-statistically convergent to 3.

From the above example, x is not Cj-statistical convergent does not mean that it is not

A-statistical convergent for other non-negative regular matrix.

Example 2.4.3 Let a matrix A = (ay) € (C,C;n) be defined as
1 if  k=2n

Ank =
0, if otherwise

And, let a sequence x is defined from above theorem.

Likewise, K (&) and M (&) is defined from above theorem.

Then,
6a(K(€)) = 0a({k e N: |x, —2[ > €})
:}}EEO(AXK)n
=1.
And,
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oa(M(e)) = a({k € Nt |xp =3[ > €})

= lim (AXM)n

n—yoo

=0.
This equality implies that x — 3(Ay).

Remark 2.4.2 If a matrix A € (C,C;1n) is equal to Cy, which is defined in Definition
2.2.2, then A-density becomes lacunary density. Furthermore, A-statistical conver-

gence becomes lacunary statistical convergence([J]).

Example 2.4.4 Considering matrix Cg = (cux), where

%, ifkel,
Cnk =
0, if otherwise,

and 0 = {3" — 1} € ©. Let x € @, which is defined as

1, k=3
X =

0, k43,
and the sets M(€) and N(&€) are defined as

M(e)={keN:|x—1|> ¢},
and
N(e)={keN:|x—0| > ¢€}.
Then, we get for every € > 0,
Oc,(M(€)) =6c,({k €I, : |xp— 1| > €})
= lim(Cotm)n

=1,

where Xy represents the characteristic sequence of M(€).
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In the same way,
8¢, (N()) = &, ({k € Iy : [xi| = €})
= lim(Coxn)n

=0,

where Xn represents the characteristic sequence of N(€).

Therefore, x is Cg-statistically(lacunary statistically) convergent to 0.(Or, x — 0(6y).)

Remark 2.4.3 IfA € (C,C;n) is equal to A = (Ay), which is defined in Remark 2.3.1,
then A-density becomes A-density. Moreover, A-statistical convergence becomes A-

statistical convergence([19]).

Example 2.4.5 Considering matrix A = (Ay) in which

t, ifkel,
A‘nk:

0, otherwise,

and suppose that A = (A,) is defined as A, = /n.

Let a sequence x be defined as

3, ifk=+\n+2

X =
4, otherwise,
and the sets K(€) and L(g) are defined as

K(e) ={keN:|x—3| > e},
and
L(e)={keN:|x;—4|>¢€}.
Thus, we get for all € > 0,
O (K(€)) = lim(A xx )

=1.

where yk represents the characteristic sequence of K(€).

So, x is not Cy-statistically(A-statistically) convergent to 3. Similarly, we get for all
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e>0,

8 (L(e)) = lim(Ax0)n

=0.

where X1, represents the characteristic sequence of L(€).

Therefore, x is Cy -statistically(A-statistically) convergent to 3.(0r, x — 3(Ag).)

Remark 2.4.4 If a matrix A € (C,C;n) is equal to I, which is identity matrix, then

A-statistical convergence becomes ordinary convergence.

Example 2.4.6 Let I = (1) be a identity matrix, which is defined as
1, k=n

0, otherwise.
Obviously, I € (C,C;n).

Assume that x € © is defined as
3, k=+/n

4, otherwise

Xk —

Define the sets M(€) and N(€) as

M(e) ={keN:|x—3| > ¢},
and

N(e)={keN:|x—4|>¢€}.
So,

6 (M(e)) = 6;({k e N : | — 3[ > €})

= li}gn(] I )n
does not exists.

Similarly,
6(N(e)) =6 ({k e N: [x, — 4] > £})

= lil’n(I%N)n
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does not exists.

As a result, x is not I-statistically convergent(ordinary convergent) to any number.

Example 2.4.7 Consider a matrix A = (ay) € (C,C;n) is defined as
(

1, if k=n?

Apk =

0, if otherwise
\

And, let a sequence x is defined as

3, if k=n?
Xk —

4, if otherwise
\
ForasetM(€) ={keN: |x; —4| > €},

SA(M(€)) = Sa({k € N : |x — 4] > €})

= lim (AXM)n

n—soo

=1.
Similarly, for a set K(€) ={k € N: |x; —3| > €},

oa(K(€)) = da({k € N: b — 3| > €})
= lim (AXK)n

n—oo

=0.

Therefore, x is A-statistically convergent to 3.

For different nonnegative regular matrices a sequence x can converge to different

points.

Example 2.4.8 If we replace the nonnegative regular matrix A = (a,y), in the above

example by the matrix where;

1, ifk=n*+1
Apk =
0, if otherwise.
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Then, we have,

0a(K(€)) = 0a({k € N: [xp — 3] > £})
= 11}{[1(14%[()”

=1.

Moreover;

O0a(M(e)) = 0a({k e N:|x; — 4| > €})
= h,{n(A%M)n

=0.
Therefore, x — 4(Ay).

Remark 2.4.5 According to one nonnegative regular matrix A, x is A-statistically con-
vergent does not mean that x is A-statistically convergent for every nonnegative regular

matrix A.

Example 2.4.9 Let us to change the nonnegative regular matrix A = (ay) in Example

2.4.7 by

Ank = %, k=n’>+1

0, otherwise.

\
For the sequence x in Example 2.4.7, we have

Su(K(€)) = Ss({k €Nt |xp —3| > €))

= lim(AxK)n

In a similar way,

8u(M(e) = S4({k €N: |y, —4| > £})

= lim (A )n

1
5
40



Hence, x ¢ Ag.

Definition 2.4.3 (x;) € @ is called A-statistically divergent to o if for all P € R,

0a({keN:x,>P})=1.

Example 2.4.10 Consider a matrix A = (a,;) € (C,C;n), where

1, if k=2n
ank =
0, if otherwise.
Define a sequence x as,
k*, ifk=2n
Xk —

3, otherwise.
Then,

SA({kENixk>P}):l

for all real number P. Therefore, x is A-statistically divergent to oo.

Definition 2.4.4 (x;) € @ is called A-statistically divergent to —oo if for all real num-

ber T,

oA({keN:x <T})=1.
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Chapter 3

LIMIT POINTS IN STATISTICAL SENSE

3.1 Statistical Limit Points

Consider a sequence x, the range of x is represented by {x; : k € N}.
For K = {k(j) : j € N} the sequence {x;;} is called a subsequence of x, and it is

denoted by {x}.

Definition 3.1.1 (/l/1l]) The subsequence {x}k is said to be a thin subsequence (or
subsequence of density zero) if 8(K) = 0. Otherwise, the subsequence {x} is said to

be a nonthin subsequence of x.

Note that: K is a nonthin subset of N, if §(K) > 0 or §(K) is undefined.

Definition 3.1.2 (/11l]) The real number A is called a statistical limit point of x € @,
if there exists a nonthin subsequence of x, which converges to A.
For x € ©, A, and L, represents the set of all statistical limit points and the set of all

ordinary limit points of x, respectively.

Example 3.1.1 Define x € @ by

2, if k=n?
Xk —

1, if otherwise.
So, Ly = {1,2} but A, = {1}.

For any sequence x, it is clear that A, C L,, but in general converse implication does
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not hold. Moreover, for some cases the sets A, and L, can be very different. The next

example shows such a difference.

Example 3.1.2 ([11]) Consider that x € @ is defined as

tn, if k=n?
Xk —

k, otherwise

where {t,}7>_, is a sequence whose range is the set of all rational numbers.
It follows that Ly = R, because the set {t; : k € N} is dense in R. However, A, = 0
because the set of squares has density zero and on the set of nonsquares of x is not

convergent.

Definition 3.1.3 (/l/1|]) A real number v is called a statistical cluster point of x € @ if
Ve >0,

O({keN:|x—vl<e})#0.

For any x € @, the set I', represents the set of all statistical cluster points of the se-
quence x.

Clearly, I'y C Ly,for all x € @.
Proposition 3.1.1 (//1]) For any sequence x, Ay C T';.

Proof. Assume that A € A,. It means that there exists a nonthin subsequence {x;( )}

of x such that limx,( ;) = A, and
J

j N—Al <€
im*HJ Py — A <ed
n n

1

c>0

Furthermore, the set
1t oy — Al > €}
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is finite because of lim x;y = 4. So,
Jore

{k(j):jeN}\ {finite set} C{keN:|x—A| <&}

Then,
[{k<n:lu—Al<e}| | {k()<n:jeN}  O(1)
n - n n
c
> _
-2
£0

for infinitely many n.
Therefore,
O0({keN:|xx—A|<e})#0.

It indicates that, A € T',. &
Remark 3.1.1 (//1]]) For some real valued sequence x , I'y, may not be a subset of A,.

Example 3.1.3 Choose a uniformly distributed sequence in [0, 1], which is defined as
{0,0,0,1,0, %, 1,0, %, %, 1,0,...}. Then density of xi in any subinterval with length c, is
equal to c.
Therefore, for any real number A in any subinterval of 0, 1],

S({keN:|x—A|<e})>e>0.
So, I'y = [0, 1]. However, select a real number 7y € [0, 1] and a subsequence {x}y which
is ordinarily convergent to y. V€ > 0 and infinitely many n, M,, can be written as

M, C{meM,:|xn,—y| <etU{meM,:|x,—v| > e},

where {m € My, : |x,, — Y| > €} is a finite set, because of {x}y is ordinarily convergent
t0y.
If density is taken for both sides,

|Mn|—|—0< H{me M, : |x,—A| <€} +|{m€M,,:|xm—M > e}
n - n n

<2e+40(1).
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As a result (M) < 2¢, and because of € is arbitrary number, (M) = 0.

So, Ay = 0.

Theorem 3.1.1 Assume that x — 1 (Cy ), then A, ={n} and Ty = {n}.

Proof. Assume that Cy; —limx = 1, then
o HkEN: n—n| >

8(K(e)) = it ‘
=0.
It causes,
S(N\K(E)) — lim |{k eN: |xk_n| < 8}|
n n
=1.
So, n €Ty.

For the uniqueness of the statistical cluster point, assume that 1 is an other statistical
cluster point then, by using the fact that Cy; —limx =1 ,we getn =n; so [, = {n}.
Similarly in a parallel way one can show that A, = {n} .

Remark 3.1.2 A, = {n} and I'x = {n} does not means that x — 1 (Cg).

Example 3.1.4 Say that x € ®@ is defined as x; = [1 + (—1) k. Then, A, =T, = {0}.

But, x is not statistically convergent.

Proposition 3.1.2 ([11]]) The set Iy is a closed point set.

Proof. This theorem will be proved using the property, which is Ty = T, UT",.. Say
that ¢ is any accumulation point of I',. From the definition of accumulation point,
dp € (c—¢€,c+¢€)NT, for every € > 0.
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Pick, &’ > 0,sothat (p—¢',p+¢€') C (c—¢,c+e¢).
Because of p € Iy,
S({keN:x e (p—¢€,p+e)}) #0,
and this implies that,
O0({keN:x; €(c—¢€,c+¢€)})#0.
Hence ¢ € Ty, then I, C T’y = I, where I, is the closure of I’y and I';, is the set of all

accumulation points of the set ;.. m

Theorem 3.1.2 ([11]) If x,y € @ implies that x; = yy for a.a.k., then Ay = A, and

Proof. Considering that 3 ({k € N : x; # y¢}) =0, and let & € A, be an arbitrary ele-
ment. It provides that there exists a nonthin subsequence {x}s of x which is ordinarily
convergent to .
Therefore;
Mn{k € N:xg #yi} C{k € N # yi}

so that,

S(MN{keN:xe#y}) < 6({k € N:xy # yi}).
Hence, M' = MU {k € N : x; = y; } does not have density zero.
Hence, {y},y is a nonthin subsequence of {y}, which is ordinarily convergent to .
So, a € Ay and A, C A,.
Similarly one can show that A, C A,. The assertion that I'y =I'y can be proved in a
parallel way. m

A sufficient connection between A, and I'; is given by next theorem.

Theorem 3.1.3 ([/1]) For a sequence x, there exists a sequence y implying L, = I'y
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and yy = xy for almost all k. Furthermore, the range of y is a subset of x.

Remark 3.1.3 ([11]) If Ty is replaced by A,, the above theorem may not be true be-

cause Ly is closed set but A, need not to be closed.

Example 3.1.5 For the sequence x, which is defined as
1
Xy = — where k=2""1(2t+1),
r

where r — 1 is the number of factors of 2 in the prime factorization of k.

Clearly we have,

Thus, Ay = {%}:0:1
Furthermore,
O({k:0<x < 1})— !
. Xk . = 2r'
It follows that 0 € T'y. Therefore T’y = {0} U {%}:021 :
If we can show that 0 ¢ Ay, then we prove that A, is not closed set. If {x}y is a
subsequence of x, that has limit zero, then we can demonstrate that (M) = 0.
For every r,
1 1
[Ma| = |1k € My 22 2 —}[ +[{k € Myt <}
1
<O()+{keN:x < ;}|

n
<o(l)+5;.

Therefore, §(M) < 5, and for arbitrary number r, §(M) = 0.

Definition 3.1.4 ([2]) A sequence (xi) is called statistically monotonic increasing (de-
creasing) iff
1. There exists K C N, such that
K={ki<ky<ks<..} withd(K)=1,
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2. (xx,) is monotonically increasing (decreasing) sequence.

Example 3.1.6 Assume that x;, € @ is defined by

5, k=n?
Xk —

2k, k+#n?
and K = {k € N: k# n*}. It is clear that §(K) = 1. Furthermore, (x;,) = {4,6,10,...}

is monotonically increasing. Therefore, the sequence x is statistically monotonic in-

creasing.

Example 3.1.7 Consider (x;) € @, where

2k, k=n?
Xk =

5, k#n?

then there is no any K C N such that {x}k is monotonically increasing with §(K) = 1.

Proposition 3.1.3 ([/1]) Assume that x € ® and K := {k € N : x; < x;11} with

O0(K) = 1. If x is bounded sequence on K, then x € Cy.

Theorem 3.1.4 (//1]) For x € @, if x has a bounded nonthin subsequence, then x has

a statistical cluster point.

Proof. For a sequence x, Theorem 3.1.3 guarrantees that there exists a real valued se-
quence y, which implies L, = I'y with 6 ({k € N : y; # x;}) = 0. Thus, the sequence y
must have a bounded nonthin subsequence, because of the Bolzano-Weierstrass Theo-

rem L, # 0. Therefore, I'y #0. m

Definition 3.1.5 (/l/3)]) A sequence x is called statistically bounded provided that AM &
R so that
O({keN: x| >M})=0.
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Theorem 3.1.5 "Every bounded sequence is statistically bounded."

Proof. Say that the seqeuence x is bounded. From the definiton of boundedness con-
dition, IM € R such that |x;| < M Vk € N.
It shows that,
O({keN: x| <M})=1.
Then,
O0({keN:|x| >M})=0.

Therefore, x is statistically bounded. m

Remark 3.1.4 Statistically boundedness does not satisfies boundedness in the ordi-

nary sense.

Example 3.1.8 Consider x := (x;) € @ which is defined by

k2, if k=n?
Xk —
3, if k#n2
Then,

S({keN:|x|>3})=0.

So, x is statistically bounded but it is not bounded in the ordinary sense.

Theorem 3.1.6 "Every statistical convergent sequence is statistically bounded."

Proof. Assume that Cy; — limx = 1. This implies that, for all € > 0,
keN:|xz—n|>¢€
L HkEN: -l > e}

n—oo n

0.

Moreover,

{keN:|x|>n|+e} C{keN:|xx—n|>¢€}.
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From the subset property of density,
6({keN:|u|=[nl+e}) =0
because of

S({keN:|x—n|>e})=0.

As aresult, x is statistically bounded. m
Let choose the sequence x as (x;) = (—2)K. In this case, x is statistically bounded
but not statistically convergent. So statistically boundedness condition does not imply

statistical convergence.

Theorem 3.1.7 Forx = (x;) € @, the sequence x is statistically bounded iff there exists
a statistically bounded sequence y = (y;) such that,

X = yi a.a.k.

Remark 3.1.5 In ordinary case, all subsequence of a bounded sequence is bounded.
On the other hand, in statistical case, every subsequence of a statistically bounded

sequence need not to be statistically bounded.

Example 3.1.9 Consider x € ® where

2k, if k=n?

Xk =

4, if k#n?

Then, x is statistically bounded. However, (yi) = (x;2), which is defined as

(vk) =12,8,18,32,...}, is a subsequence of x, but it is not statistically bounded.

Definition 3.1.6 (//3|]) Considering the sets,
Ex={ecR:8({k:x; >e})#0},
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and
Fo={feR:8({k:xx < f}) #0},
forx € @.

Then, statistical limit superior and statistical limit inferior of x is defined as;

Sup EXa lf Ex 7é @7

Cy — lim*x =
—, if Ex=0,
and
infFy, if F,#0,
Cy — lim,x =
+oo, if F,=0,
respectively.

Example 3.1.10 Suppose that x € @ is defined as

k2, if k is an even square

2, if k is an even nonsquare

Xk
k3, if k is an odd square

4, if k is an odd nonsquare
Thus Ty ={2,4} = A,.

Because of
O0({keN:|x| >4})=0,
x is statistically bounded.
Furthermore, E, = (—oo,4) satisfies that
Cy — lim*x = 4,
and F, = (2,0) satisfies that

Cy — limx = 2.

Remark 3.1.6 For a sequence x, if Cy; —lim*x and Cg — lim,x are finite numbers, then

the Cy; —lim*x is the greatest value of T'y, and similarly Cy — lim,x is the lowest value
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of T'y.

Theorem 3.1.8 (/l/3]) Suppose that Cy; —lim*x = B is a finite number, then for each
€ >0,

S({keN:x > B —e})£0, (3.1.1)
and

S({keN:x;>B+e})=0. (3.1.2)

On the other hand, if (3.1.1) and (3.1.2) holds for all € > 0, then Cy; —lim*x = 3.

Theorem 3.1.9 ([13]) Suppose that Cy —lim,x = & is a finite number, then for each
e>0,

O({keN:xy <a+e})#0, (3.1.3)
and

0{keN:xy <a—¢€})=0. (3.14)

On the other hand, if (3.1.3) and (3.1.4) holds for all € > 0, then Cy — lim,x = «.

Theorem 3.1.10 (/l/3)]) For every x € @,

Cy — limyx < Cy — lim*x.

Proof. Case 1 : Suppose that Cy; — lim*x = f3 is a finite number, and say
o := Cy — lim,x. Given € > 0, we demonstrate that § + o € F, so that o < 3 + €.
We know that
5({keN:xk>ﬁ+§}) —0,
because of Cy; — lim*x = 8 and using Theorem 3.1.8.
It follows that,
5({keN:xkgﬁ+§}) —1
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which provides that,
5({k€N:xk<B+§}) =1.
Thus, B+ o € F;.
From the definition o = inf F;, then we conclude that o« < 8 + €. Therefore, for arbi-
trary € > 0, gives us o < f3.
Case 2 : Suppose that Cy; — lim*x = —oo, then that provides E, = 0. It indicates that,
0({keN:x>e})=0
Ve € R.
This satisfies,
O0({keN:x <e})=1.
So,Vf € R,
0({keN:xx < f})#0.
Thus, Cg — limyx = —oo.

Case 3 : The case Cy; — lim*x = oo is clear. m

Remark 3.1.7 ([13)]) Statistical boundedness condition provides that Cy —lim*x and

Cy; — lim,x are finite, for x € ©.

Theorem 3.1.11 (/l/3)]) If x € Cy is statistically bounded, then

CSZ — hm*x = Csl — hm*x

Proof. Let o := Cy; — lim,x and 8 := Cy; — lim™*x.
Necessity. Assume that Cy; — limx = 1, then Ve > 0,
0({keN:|x;—n|>¢€})=0.
So;
0{keN:xy>n+e})=0,
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and

0({keN:xy <n—e})=0.
These two sets, each having density zero, provides that § <7 and n < a. Thus, f < «.
From theorem 3.1.10, o < 3. So, o = 3.
Sufficiency. Let @ = 3. Define 1 := . Then, for € > 0, and from Theorem 3.1.8
and 3.1.9 provides that 5({k e N:xy >n+5}) =0and §({keN:x <n—-5})=0
respectively. Thus Cy —limx=7n. =
3.2 Lacunary Statistical Limit Points

Definition 3.2.1 ([[I2)])Let {x}k be a subsequence of x, where K = {k(j) : j € N}, and

0 be a lacunary sequence. The subsequence {x}k is called lacunary thin subsequence

if

0 (K) = 0.

F—yo0 h,

Otherwise, the subsequence {x} is called lacunary nonthin subsequence of x.

Example 3.2.1 Let 6 € ©, which is defined as 0 = {2" — 1} where r is a natural
number.
Then, I, = (2"~ —1,2" — 1] and h, = 2"~ 1.

Let the real valued sequence x := (x;) be defined as

2, if  k=3n

=43, if k=3n+1

k, if k=3n+2.
and assume that K = {3k : k € N}, M = {3k+1:k € N} and N = {3k+2: k€ N}.

Then
1
O (K) = 3 #0.

So, we can say that {x}g is lacunary nonthin subsequnce of x.
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In a similar way, we have 8g(M) = % and 6g(N) = % then {x}y and {x}y are also

lacunary nonthin subsequences of x.

Definition 3.2.2 (/5]]) A number A is called a lacunary statistical limit point of x if

there exists a lacunary nonthin subsequence of x, which is ordinarily convergent to A.

The set Af represents the set of all lacunary statistical limit points of x.

Example 3.2.2 Let 60 € © and x € ©@ which are defined in the previous example. We
picked and found 3 lacunary nonthin subsequence of x. We should check if these sub-

sequence of x are ordinarily convergent or not.

Then,
]ime = 2,
k
lime =3
k
and
li = oo,
lian

As a result, A% = {2,3}.

Definition 3.2.3 (/5)])Consider the sequence x, v is called a lacunary statistical cluster

point of x if
{k el —vl <ée}|
hy

#0
in which Ke = {k € N: [x — 7] < €}.

A set 'Y represents all lacunary cluster points of x.
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Example 3.2.3 Consider 6 = {r!—1} € ©, then I, = ((r—1)! — 1,r! — 1] and
hy=(r—1)!(r—1).

Assume that x € © is defined by

2 ifk=rl+1
Xk =

3 otherwise
Say that, Mg = {k € N: |x; —2| < €} and Ne = {k € N : |x; — 3| < e}. Clearly,

0g(M¢) = 0.
So,2¢T?.
In a similar way, we can check

8 (Ne) = 1.

Consequently, 3 € T'9. Thus, T9 = {3}.

Example 3.2.4 Let 6 = {2" — 1} where r € N. In this case, I, = (2"~' —1,2" —1].

Define x = (xi.), where
(

: r—1 r—1 2r—21h
2, if ke (2711 2 o1 B
=% 4  if ke (2r—1 ) 2r—1)

0, otherwise.

\

Obviously, T = A% = {2,4}. On the other hand, L, = {0,2,4}.

Proposition 3.2.1 For any sequence x, A% C T?.

Definition 3.2.4 (/5)]) x € @ is called lacunary statistically bounded provided that
there exists M € R and a subsequence {x}g of x implies that

Og({keK:|xi| <M})=1.
In other words, if AM € R such that 8g({k € N : |x¢| > M}) = 0, then x is called

lacunary statistically bounded.
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Example 3.2.5 Consider the lacunary seqeuence 0, which is defined as {k,} =2"—1,

and let a sequence x be,

K2, ifk=r
Xk =

3, ifk#r?
We can pick a subsequence xy of x, which is defined as M = {k € N : k # r2} where r

is a natural number.

Then for T > 3,
HkeM:kel}
2r71

Og({keM: |x| <T}) = li_>m

=1.

Thus, x is lacunary statistical bounded.

Lemma 3.2.1 (/5]) Consider the lacunary sequence 0,

1. Ag(x) C A(x), in case of lim,q, > 1,
r

2. A(x) C Ag(x), in case of lim*q, < eo.
r

Lemma 3.2.2 (/5|]) Consider the lacunary sequence 0,

1. Tg(x) C I'(x), in case of lim..q, > 1,
r

2. T'(x) C Tg(x), in case of lim*gq, < oo.
r

Theorem 3.2.3 (/5]) Consider the lacunary sequence 0,

1. Ag(x) =A(x), iff, 1 <lim,q, <lim"g, < oo,
r r
2. I'(x) =Tg(x), iff, 1 <lim,q, <lim*g, < oo.
r r
Definition 3.2.5 (/5)]) Considering

EV ={ecR:8({kel :x; >e})#0}
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and
Fo={feR:8({kel x < f})+#0}
forx € @.

Then, lacunary statistical limit superior and lacunary statistical limit inferior of x is

defined by;
(
supEY, if E}#0,
6, — lim*x :=
- lf Exe = 07
\
and
.
infF?, if FEP+#0,
0, — limyx :=
doo, if F9=0
\

A real number 6y, — lim,.x is the least value of Ff and Oy — lim*x is the greatest value

of T2 ([3]).

Example 3.2.6 For 6 ={2"—1} € ©,

let,
2, if k=4r

4, ifk=4r+1
Xk =

6, ifk=dr+2

8, ifk=4r+3.

\
Thus, A? = {2,4,6,8} =T?. Also, the sequence x is lacunary statistical bounded.
E® = (—,8), so that

Oy — lim*x = 8,

and FP = (2,), so that

Oy — lim,x = 2.
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Example 3.2.7 For 6 = {2" — 1} € O, consider x which is defined by
(
3, if ke <2H R —(2"32’*1)}

%=1 4 if ke (2’—1 e +—2(2r‘32r71)]

5, if ke(zr—1—1+2(2’+2’_'),2r—1].
\

So, A® =T = {3,4,5}. It indicates that, E® = (—,5) and F? = (3,).

Therefore,0; —lim*x = 5, and 6y, — lim,x = 3.

Theorem 3.2.4 ([5]) If a sequence x is lacunary statistically bounded, then 05y —lim,x

and Oy —lim*x are finite numbers.

Theorem 3.2.5 (/5])Lacunary statistically bounded sequence x is lacunary statisti-
cally convergent to a real number 1N iff Oy — lim,x = By — lim*x = 1.
3.3 A-Statistical Limit Points

Definition 3.3.1 ([/9]) Let {x} g be a subsequence of x, where K = {k(j) : j € N}, and
consider I, = [n— A, + 1,n|, A = (A,) which is defined in Section 2.3. The subsequence

Xk is said to be A-thin subsequence if

8, (K) = lim [{k()) 621:] € N}|
=0.

Conversely, xx is called A-nonthin subsequence of x if d),(K) # 0.

Example 3.3.1 For (A,) =+/n and x € @, suppose that {x} g is a subsequence of x, in

which K := {2k : k € N}. Thus,

. [{keK:kel,}
500 = Jim S

1

2
such that xg is a A-nonthin subsequence of x.
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Definition 3.3.2 A real number A is called a A-statistical limit point of x, if there exists

a A-nonthin subsequence of x which convergent to A in ordinary sense.

The set of all A-statistical limit points of x is represented by Aﬁ”.

Example 3.3.2 Let A = (A,) be a nonnegative real valued sequence and defined as

Ay = \/n. Assume that a sequence x is defined as
1, if k=2n
Xk =
-1, ifk=2n+1,
and, consider the sets K = {2k : k € N} and L = {2k+ 1 : k € N}.

Then,
o (K) = lirgn(lx]()n
1

2
where Xk represents the characteristic sequence of K. Also, the subsequence {x}g

convergent to 1.

And,

where )1, represents the characteristic sequence of K. Also, the subsequence {x} is

ordinarily convergent to —1. Therefore, A* = {—1,1}.

Definition 3.3.3 Consider the sequence x, a real number v is called A-statistical clus-

ter point of x provided that &) (K¢) # 0 in which K¢ = {k € N : |x;, — 7| < €}.

The set of all A-statistical cluster points of x is represented by I" j}
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Example 3.3.3 Consider (A,) € @, where A, = \/n. And, x € @ where
2, ifk=n*

Xk =
3, otherwise.
Let, Ke ={keN:|x; —2| <e}and Le = {k e N: |x, — 3| < €}

Then,
6. (Ke) =6 ({keN: [y —2[ <¢€})

= hm(/'LxK)n

=0,

where Xk is the characteristic function of K.

And,
0. (Le) =8 ({keN: |x —3| <¢})

= hm(le)n

=1,

where X is the characteristic function of L. Therefore, l"f ={3}.
Theorem 3.3.1 Ifx € @,then A} C T*.
Theorem 3.3.2 If x € @,then Fj} C L,

Theorem 3.3.3 If (xi), (yx) € @ implies that lirlln|{kel+w =0, then Af; = A;l and

It =r?.

Definition 3.3.4 If any M € R implies that 6) ({k € N: |x;| > M}) =0,

then x = (xi) € @ is called A-statistically bounded.

Example 3.3.4 Let A = (A,) be defined as A, = \/n. Consider a sequence x, where

k, ifk=n+1
Xk =
1, otherwise.
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Then,
0),({keN:|x|>1})=0.

Thus, the sequence x is A-statistically bounded.

Definition 3.3.5 Considering
EM={ecR:8 ({kel,: x> e}) #0}
and
Fr={feR: & ({kel:x < f}) #0}
forx € @.

Then, A-statistical limit superior and A-statistical limit inferior of x is defined as;
(

swpE}, if El}#0,
A«sl — llm*.x =

| e E} =0,

and .
infF*, if F}+£0,
+oo, if Fr=0,

\

respectively.

A real number A — lim,x is the least value of Ff;, and Ay — lim*x is the greatest value
of I},

3.4 A-Statistical Limit Points

Definition 3.4.1 (/4|]) For a matrix A € (C,C;n), consider {x}k is a subsequence of
X, the subsequence {x} is called A-thin subsequence (or subsequence of A-density
zero) in case of 64(K) = 0. Otherwise, the subsequence {x}k is called A-nonthin sub-

sequence of x.
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Example 3.4.1 Consider A = (a,;) € (C,C;n), where

1 1

L' 0100 0 0
0 O

0 0 O

B[ —
B[—

N[ —
N[ —

k=10 0 0 O O O

8=

and x € @, where
7, ifk=2n
Xk =
8, otherwise.
Define, S = {2k : k € N}, and R = {2k+ 1 : k € N}. So,
5A (S) = llrll‘n(AxS)n =0.
Similarly,

5A (R) = lim(AxR)n =1.

It indicates that, {x}s is A-thin and {x}g is A-nonthin subsequence x.

Definition 3.4.2 ([3]) A number A is called A-statistically limit point of x if there exists

a A-nonthin subsequence of x, which is ordinarily convergent to A.

The set A represents all A-statistical limit points of x.
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Example 3.4.2 Let a nonnegative regular matrix A = (ayy) be defined as

1 00 00 0O
0 3 0000
101 013100
=1 1 1 1 1
Onk 3 0.3 0 7 0 4
50 5 05 03

1 1 1 1

s 05 05 0 35

and a sequence x is defined as

2, if kisodd
Xk =
-2, if kiseven
For the subset K ={k € N: |x; —2| > €},
04(K) = lim (Axk)n
n—oo

=0

where Xk is characteristic function of K.
A subsequence {x} is not A-nonthin subsequence, then 2 ¢ 2.
However, for the subset M = {k € N : |x; +2| > €},

04 (M) = lim (A)p)n

=1.

A subsequence {x} ) is A-nonthin subsequence of x, because of 64(M) = 1. Moreover,
the subsequence {x}y is ordinarily convergent to —2.

Finally, the number —2 is A-limit point of x. As a result, A} = {—2}.

Definition 3.4.3 (/3)]) For a sequence x, a real number v is called A-statistical cluster
point of x if 64(K¢) # 0 in which Ke = {k € N : |x;, — 7] < €}.
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It must be noted that 4(K¢) # 0 means not only positive number but also does not
have A-density.

A set T represents all A-statistically cluster points of x.

Example 3.4.3 For a matrix A € (C,C;1n), where

;3 3 0000
0 5 5 3 000
oo+ 1 1 oo

0 0 O

Wal—

Wl

W=
=

anpk =

[SSTIEY

and, let a sequence x which is defined as
3 ,if kiseven
X =
5 ,if kisodd
For a set Ke = {k € N : |x; — 3| < €}, 0a(Ke) does not exist.

And, for a set Mg = {k € N : |x; — 5| < €}, 04(Mg) does not exist. Therefore, the real

numbers 3 and 5 are A-statistical cluster points of x, then T4 = {3,5}.

Proposition 3.4.1 For any sequence x, N4 C T4,

Definition 3.4.4 (/3)]) A sequence x is called A-statistically bounded provided that
there exists a subsequence {xk} of x implies 64(K) = 1.

In other words, if any M € R implies that 64({k € N : |x;| > M}) =0, then x is called
A-statistically bounded.
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Example 3.4.4 Consider the nonnegative regular matrix A = (a,;) which is defined as

1, ifk=n?
Ank =
0, otherwise

and for a sequence x which is defined as

5, ifk=n?
X —

k%, otherwise

Choose a set K = {k* : k € N}, then a subsequence xx is bounded with
oA(K) = 1.

So, a sequence x is A-statistically bounded.

Definition 3.4.5 (/3)]) Considering the sets,

E} ={ecR:8;({k:x. > e}) #0},
and

Fl={feR:8({k:x < f}) #0},
forx e @.

Then, A-statistical limit superior and A-statistical limit inferior of x is defined as;

(
supEy, if E}#0,
Ag —lim*x =
—oo, if E2=0,
\
and
)
infFA, if FA#0,
Ag —limx =
too, if FA=0.

\

A real number A — lim,x is the least valuef of F‘;‘ and Ay —lim*x is the greatest value

of T4,

Example 3.4.5 Consider a nonnegative regular matrix A = (ay) which is defined as
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Al—
FN.
Al—
FNE.
(@]
o
(@]

1 1 1 1
00 7 3 3 30
1 1 1 1
00 0 3 3 7 3

anpk =

Let x be a sequence, where

1, ifk=dn

2, ifk=dn+1

Xk =

3, ifk=4n+2

4, if k=dn+3.
\
Thus, T4 = {1,2,3,4} = AL, Also, EX = (—o0,4) and FA = (1,00). It follows that,

ASl — hm*.x - 4,

and

AS[ - lim*x - 1.

Theorem 3.4.1 (/3]) If a sequence x is A-statistically bounded, then Ay — lim,x and

Ag —lim*x are finite numbers.

Theorem 3.4.2 (/5]) A-statistically bounded sequence x is A-statistically convergent
to a real number 1 iff

Ay —lim,x = Ay — lim*x = 7.
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Example 3.4.6 Consider A € (C,C;n) and x € @, which are defined in Example 3.4.4.
Clearly, T4 = {5}. So,
Ast — hm*x :ASZ — hm* =35.

From Theorem 3.4.2, x; — 5(Ay).
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