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ABSTRACT 

The voltage-gated ion-channels within the membranes facilitate the excitability of 

neurons. These channels accommodate a multiple number of gates individually. The 

number of open channels fluctuates with profound effects on the transmembrane 

voltage activity in small-size excitable membrane patches. Two recent models that can 

capture the collective dynamics of ion channels in excitable membranes are: 

1.) The colored stochastic Hodgkin-Huxley equations [1] 

2.) The minimal diffusion formulation of Markov chain ensembles [2] 

In this thesis, a comparative study on these two models was performed by numerical 

simulations. The statistics of the mean inter-spike interval (ISI), coefficient of 

variation and spike latency were used in the investigation. The obtained results are 

useful for better understanding of the efficiency of these models. Computation times 

of the models were also investigated.  

Our study shows that the Minimal Diffusion model generally yields more accurate 

results than the already satisfactory Colored Noise model. To determine the accuracy 

of the models, the model results are assessed with reference to the corresponding 

Microscopic Simulation (Monte Carlo) model results. Our simulations confirm that 

the Minimal Diffusion model requires less computation time than the Colored Noise 

model. Our findings indicate that the Minimal Diffusion model should be preferred to 

the Colored Noise model. 

Keywords: Ion channel, Channel noise, Colored noise, Stochastic Hodgkin-Huxley, 

Markov Chain, Minimal diffusion formulation  
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ÖZ 

Hücre zarında bulunan ve voltaj bağımlı geçirgenlik sergileyen iyon kanalları nöron  

uyarılmasını sağlar. Her kanal birden fazla geçit içerir. Açık kanal sayısı zaman içinde 

gürültülü ve dalgalı bir görünüm sergiler ve   bu davranış küçük boyutlu nöron 

dinamiği üzerinde hayati etki yapabilmektedir. 

Son yıllarda, toplu nöron dinamiği üzerine ortaya konulan iki model şöyledir: 

1.) Renklendirilmiş stokastik Hodgkin-Huxley denklemleri [1] 

2.) Minimal difüzyon Markov zincir formülasyonu [2] 

Bu tezde, yukarıdaki iki model sayısal benzeşim yöntemiyle karşılaştırmalı olarak 

çalışılmıştır. Ortalama ateşleme aralığı (ISI), varyasyon katsayısı ve gecikme 

istatistikleri incelenmiştir. Ayrıca, iki modelinde hesaplama zamanı gereksinimleri 

ortaya konmuştur. Çalışmamız, Minimal difüzyon Markov zincir formülasyonu’nun 

Renklendirilmiş stokastik Hodgkin-Huxley denklemlerine göre daha iyi sonuçlar 

verdiğini göstermiştir. Karşılaştırmalar, mikroscopik benzeşim sonuçları baz  alınarak 

yapılmıştır. 

Anahtar Kelimeler: İyon kanalı, Kanal gürültüsü, Renkli gürültü, Stokastik Hodgkin-

Huxley, Markov zinciri, Minimal difüzyon formülasyonu 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

In all type of the cells, there is electrical potential between interior and exterior surface 

of the cell membrane. While this potential exists in all the cells in the body, it’s 

especially important in brain and nervous system; because, in these type of cells, 

membrane potential is used to transmit the information between the cells. Dynamics 

of the membrane mainly is the changes of this potential over the time. Studying on the 

dynamics of the neurons is not possible without considering the dynamics of the Ion-

Channels. These channels are playing a great role in the dynamic of the cell and 

specially in the membrane potential. The stochastic behavior of the channels has been 

considered for decays, especially in the recent years. Hodgkin and Huxley in 1952 

discovered a set a equations [3] that for a long time has been the most accepted 

equations for describing the behavior of a single neuron. For many years their 

formulation was in widespread use and, it’s still the basement for many other proposed 

methods. In their equations changes in membrane potential is calculated based on the 

current which is injected into the cell. They found out that the voltage of the membrane 

has direct relation to the number of open channels. However, it has been found later 

that opening and closing of the gates in an Ion-Channel is random [4]. and, small 

fluctuation in the number of open gates can directly affect the spike pattern [5]. 

Numerical simulations showed that in a small enough membrane these small 

fluctuations can cause spontaneous firing of spikes [5]. This experiment then repeated 
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in real neurons [6]. HH set of equations is unable to produce this spontaneous firing in 

absence of the input current and it was the motivation for others to improve their set 

of equations.  

In a paper, Kurtz [7] has been shown how to replace stochastic Markov chain process 

with a system of stochastic equations (an SDE Model). In 1994 Fox and Lu [8] 

rediscovered their approach to extended the Hodgkin-Huxley  (HH) equations to a set 

of Stochastic Differential Equations (SDE) [8]. They added additional Gaussian white 

noise terms to the original HH equations. The noise in their implementation is voltage-

dependent with mean zero. Although, their work was able to reproduce the ion-channel 

noise effect in the HH equations, its results were not accurate enough [9]. In 2013 

Güler [1] used Fox and Lu set of equations and extend it to a better estimation of the 

dynamics of the membrane. Before this work Güler introduced NCCP as the source 

of the noise in the neuron [10]. NCCP refers to the gate to channel uncertainty which 

exists when we are interested in the number of open channels, by having the number 

of open gates in hand. He showed that the number of open gates in the membrane is 

not suffice to know the number of open channels and, there is an uncertainty in this 

number which is the source of inaccuracy of the previously proposed methods. Then 

he implemented a set of equations which were aware of NCCP. He shows in that paper 

[1] that his formulation is much more accurate than the Fox and Lu equations. There, 

he argued that the failure of Fox and Lu’s stochastic HH equations to produce accurate 

enough spike generation statistics, is that these equations cannot capture NCCP. His 

result was much closer to the results from Microscopic Simulation in compare to the 

results from the Fox and Lu equations. Microscopic Simulation or Monte Carlo [11] 

is the most accurate method to describe the dynamics of the ion-channels in which, a 

continues time – discrete state Markov Chain is considering for each single channel 
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in the membrane patch. Any possible situation of the channel in a given time, then will 

be considered as a state of that chain, in that time. It enables high accuracy in 

calculation of the dynamics of the channel. However, the drawback of this method is 

computing efficiency. As the number of channels in the patch is growing, the 

computing time of the simulation is increasing almost linearly. For instance one second 

simulation of neuron behavior  for a membrane of size 1000𝜇𝑚ଶ can longs for a year 

in a normal computer. That was the motivation for the scientists to propose a method 

to estimate the membrane potential or any other interested parameter of the cell. SDEs 

(Stochastic Differential Equations) are widely used for that purpose. A stochastic 

differential equation (SDE) is a differential equation in which, one or more term(s) are 

stochastic. In estimation methods, the challenge is to develop a balance between the 

accuracy and computation time.  

Güler in 2013 [1] has extended Fox and Lu SDE equations. Here we did a comparison 

between this method (From now on we will call it Colored Noise model) and another 

method proposed by Güler in 2015 [2] (From now on we will call it Minimal Diffusion 

model). Minimal Diffusion is another approach of estimation. A Diffusion 

Approximation is a technique in which, an analytically untraceable and complicated 

stochastic process is replaced by a Diffusion Process. A diffusion process is a Markov 

process that has continues sample paths and, it’s more mathematically traceable than 

the original process. Güler in 2015 in his Minimal Diffusion model, has considered an 

ensemble of Markov Chains and proposed a model to estimate the dynamic of the ion-

channels using diffusion process. The chain in which, ensembles are assumed to evolve 

independent of each other.  
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When the number of ion-channels is big enough, Hodgkin-Huxley equations provide 

good description of behavior of the cell. In their formulation some parameters are 

related to the proportion of number of open channels over the total number of channels 

of that type. These parameters are based on the probability of the single gate in the 

channel to be open or close. This is the place that NCCP is happening. Because, as we 

mentioned above, the number of open gates is not sufficing for calculating the number 

of open channels. That will cause a fluctuation in number of open gates in channels 

and, this fluctuation is affecting the potential of the cell. It has been shown that even 

opening a single channel can directly affect pattern of spiking [5]. Major source of this 

noise is finite number of the ion-channels. Even in the big neurons, opening and 

closing small number of gates, can force the neuron to spike. [12] It can happen 

specially in the moments in which, membrane potential is near the threshold. In that 

moment the small number of gates are open, so opening or closing of a gate can make 

the neuron to spike or not; even in presence of large number of ion-channels. It has 

been found out that understanding dynamic of the neurons cannot be achieved without 

bringing this noise into consideration. The Minimal Diffusion model (MD) and 

Colored Noise model (Col), both are trying to describe evolution in membrane 

potential by considering this noise into the HH equations. In this paper, we numerically 

compared the efficiency and accuracy of these two models and, we did a comparison 

between the results of these two models and the results from Microscopic Simulation 

(MC).  

Widely used approach to calculate neuron simulation accuracy is measuring the mean 

of ISI in an acceptable duration (Spike Density). ISI or Inter Spike Interval is the time 

between two consecutive spikes. Because, the happening of the spikes is stochastic, 

they cannot be compared using the normal signal processing techniques. ISI mean and 
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Mean spiking rate are used widely to compare neuron simulation methods, although, 

they are not able to capture the difference between bursting or tonic firing. So we use 

another property to compare simulation methods. Coefficient of Variation measures 

the amount of variability from the mean and, it can capture this type of differences 

effectively. Also, we considered to plot ISI distribution of the different membrane sizes 

in different conditions for each simulation method. All the simulation results are 

compared to the Microscopic Simulation results to compare the accuracy. Simulations 

were run in the same environment and the time of simulations were chosen to be long 

enough for getting reliable results. 

It’s also useful to compare the computation time of each Model. Computation time is 

an important issue in simulations. To achieve this, we ran the simulation code of each 

model on the same device under the same conditions and we made a comparison 

among them in Chapter 4. 

In following chapters, we give a brief description about the Minimal Diffusion model 

and Colored Noise model. In Chapter 2 we explained “Stochastic Hodgkin-Huxley 

Equations with Colored Noise Terms in the Conductance” briefly (Colored Noise 

model); Minimal Diffusion model or precisely “Minimal diffusion formulation of 

Markov chain ensembles and its application to ion channel clusters” is described in 

Chapter 3. Chapter 4 is specified to the numerical results of the models and, the 

comparison between them. And we came to a conclusion in Chapter 5. 
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Chapter 2 

2 COLORED NOISE IN HODGKIN-HUXLEY 

EQUATIONS   

2.1 NCCP as a Source of the Ion-Channels Noise 

For better understanding of NCCP, suppose a toy cell with two Potassium channels. 

As we know, a channel is open only when all of its gates are open. There are 4 n-gates 

in a potassium channel. Suppose a state that this cell has 6 open gates. There are many 

possible states for a cell with this number of open gates. One of the states can be the 

situation in which, each of the two channels has 3 open gates and 1 close gate.  In that 

state, both channels are closed. Now, suppose other state of this cell in which, one 

channel has 4 open gates and the other channel has 2 open gates. Although, here the 

same number of gates are open, one channel is open and the other is closed (See Figure 

2.1). This example is pretty well showing that the number of open channels is not 

suffice to calculate the number of open channels in the membrane patch (See [10]). 

This phenomenon causes small differences between the calculated number of open 

channels in the simulation using HH equations and the number from the result of 

microscopic simulation. It has been shown that there is a correlation between 

fluctuation in number of open channels and fluctuation in membrane potential [10].  
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Figure 2.1: Showing two different states of a cell with two channels and six open 

gates. In state 𝑡ଵ both channels are closed and in state 𝑡ଶ one channel is open and the 
other is closed. Big white circles are close channels, Big grey circles are open 

channels, black small circles are open gates and white small circles are closed gates. 
Adopted from [10] 

2.2 Colored Noise Model 

In this model, dynamics of membrane potential is defined using this formulation [3]: 

𝐶𝑉̇ =  −𝑔௄𝜓௄(𝑉 −  𝐸௄) − 𝑔ே௔𝜓ே௔(𝑉 −  𝐸ே௔) − 𝑔௅(𝑉 −  𝐸௅) + 𝐼 (2.1)

Letter I in formulation denoted the injected input current and Table 2.1 contains the 

constants of this equation.  

Table 2.1: Membrane Constants 
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𝜓௄  and 𝜓ே௔ are variables corresponds to the dynamic of the channel. 𝜓௄  is the 

proportion of open potassium channels to all potassium channels and 𝜓ே௔  is the 

proportion of open sodium channels to all sodium channels. The value of 𝜓௄  in HH 

equations is determined by 𝑛ସ which 𝑛 is gating rate of potassium channels. Similarly, 

𝜓ே௔ is determined by 𝑚ଷℎ in which, 𝑚 and ℎ are the gating rate of sodium channel. 

In Colored Noise model, noise terms are added to this formulation and, these variable 

are approximated as a fraction of the number of open potassium and sodium channels. 

As the number of channels increases, noise terms are converging to zero and these 

variables converge to their deterministic values in HH equations. As we mentioned 

earlier, there is a correlation between the fluctuations produced by the uncertainty in 

the channels and the fluctuations in the potential of the membrane. In Colored Noise 

model, it has been shown that the autocorrelation time of the fluctuations is finite but 

not zero. Also, it’s stated that 𝜓௄ − [𝜓௄] shows this fluctuation; where […] denoted 

the average over all possible configuration of a cell having 4𝑁௄𝑛 open gates. For big 

enough membrane size [𝜓௄] ≈ 𝑛ସ. As it is illustrated in Figure 2.2 the algebraic sign 

of 𝜓௄ − [𝜓௄] doesn’t change for a long enough period.  

 
Figure 2.2: Variation in voltage of membrane and 𝜓௞ − [𝜓௞] in time. Adopted from 

[10] 
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It’s reasonable to describe the model for Potassium Channels and Sodium Channels 

separately.  

2.2.1 Dynamics of Potassium Channels 

We can define: 

𝜓௄ = [𝜓௄] +  𝑄௄ , (2.2)

Because the sign of 𝑄௄ doesn’t change in microscopic time step and 𝑄௄ is not zero. 

Then, 𝑄௄ would be a stochastic variable with autocorrelation greater than zero and 

zero expectation value at equilibrium. Therefore, it has the specification of a colored 

noise and, it can be approximated as: 

𝜓௄ = 𝑛ସ + 𝜎௄𝑞௄ (2.3)

Here 𝑞௄  is a new stochastic variable. 𝜎௄  is standard deviation of 𝜓௄  and can be 

calculated from all possible configurations of a membrane with 4𝑁௄𝑛 open gates; but 

for make it easier to calculate, the restriction of having exactly 4𝑁௄𝑛 open gates in 

each configuration has been omitted, and we suppose that in each configuration all 

gates open with the probability of 𝑛. Without considering these constraints 𝜎௄ would 

be: 

𝜎௄ =  ඨ
𝑛ସ(1 − 𝑛ସ)

𝑁௄
 (2.4)

Here, 𝑛ସ is the probability of a channel being open and, the formulation of random 

walk is employed. As we can see 𝜎௄ vanishes for small  𝑛 𝑁௄
ൗ  or in another word for 

large membrane patches. 

𝑞௄ is determined using the following Differential Equations: 
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𝜏𝑞̇௄ = 𝑝௄ 

 

𝜏𝑝̇௄ = −𝛾௄𝑝௄ − 𝜔௞
ଶ𝐷௡𝑞௄ + 𝜀௄ , 

(2.5)

Where  

𝐷௡ ≔ 𝛼௡(1 − 𝑛) + 𝛽௡𝑛, (2.6)

𝛼௡  and 𝛽௡  are described in Equation (2.10) and, 𝜀௄  is a Gaussian white noise with 

mean zero and variance: 

〈𝜀௄(𝑡)𝜀௄(𝑡́)〉 = 𝛾௄𝑇௞𝐷௡𝛿(𝑡 − 𝑡)ሖ . (2.7)

Parameter 𝜏 is corresponding to time unit. 𝛾௄, 𝜔௄  and 𝑇௞ are dimensionless constants 

which are defined in Table 2.2. 

Table 2.2: Colored Noise Constants For Potassium Channels 

𝛾௄ = 10 𝜔௄
ଶ = 150 𝑇௞ = 400 

We also need to care about the gate noise here. In Colored Noise model gating 

dynamics for Potassium channels is described in following terms: 

𝑛̇ =  𝛼௡(1 − 𝑛) − 𝛽௡𝑛 +  𝜂௡, (2.8)

Where 𝜂௡ is a Gaussian mean zero white noise with variance: 

〈𝜂௡(𝑡)𝜂௡(𝑡́)〉 =
𝐷௡

4𝑁௄
 𝛿(𝑡 − 𝑡)ሖ . (2.9)

𝛼௡ and 𝛽௡ in all above equation are defined as follows: 
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2.2.2 Dynamics of Sodium Channels 

Same formulation is valid for the Sodium channels as well: 

𝜓ே௔ = [𝜓ே௔] +  𝑄ே௔, (2.11)

So 𝜓ே௔ can be approximated as: 

𝜓ே௔ = 𝑚ଷh + ඨ
𝑚ଷ(1 − 𝑚ଷ)

𝑁ே௔
ℎ𝑞ே௔. (2.12)

Evaluation of the 𝑞ே௔ can be traced using the following SDEs: 

𝜏𝑞̇ே௔ = 𝑝ே௔ 
 

𝜏𝑝̇ே௔ = −𝛾ே௔𝑝ே௔ − 𝜔ே௔
ଶ 𝐷ே௔𝑞ே௔ + 𝜀ே௔ . 

(2.13)

𝜀ே௔ is a zero mean Gaussian white noise with mean square: 

〈𝜀ே௔(𝑡)𝜀ே௔(𝑡́)〉 = 𝛾ே௔𝑇ே௔𝐷௠𝛿(𝑡 − 𝑡)ሖ  (2.14)

𝛾ே௔, 𝜔ே௔ and 𝑇ே௔ constants are defined in Table 2.3 and, 𝐷௠ and 𝐷௛ are as following: 

𝐷௠ ≔ 𝛼௠(1 − 𝑚) + 𝛽௠𝑚, 
 

𝐷௛ ≔ 𝛼௛(1 − ℎ) + 𝛽௛ℎ. 
(2.15)

Gating noise for sodium channels is described as: 

𝑚̇ =  𝛼௠(1 − 𝑚) −  𝛽௠𝑚 + 𝜂௠ 
 

ℎ̇ =  𝛼௛(1 − ℎ) −  𝛽௛ℎ +  𝜂௛, 
(2.16)

Where 𝜂௠ and 𝜂௛ are Gaussian white noise with mean zero and mean square: 

𝛼௡ =
(0.1 − 0.01𝑉)

𝑒(ଵି଴.ଵ௏) − 1
 

 

𝛽௡ = 0.125𝑒
ି௏
଼଴ . 

(2.10)
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〈𝜂௠(𝑡)𝜂௠(𝑡́)〉 =
𝐷௠

3𝑁ே௔
 𝛿(𝑡 − 𝑡)ሖ  

 

〈𝜂௛(𝑡)𝜂௛(𝑡́)〉 =
𝐷௛

𝑁ே௔
 𝛿(𝑡 − 𝑡)ሖ  

(2.17)

Where 𝐷௛  and 𝐷௠  are defined at Equation (2.15) and 𝛼௠ , 𝛼௛ , 𝛽௠  and 𝛽௛  in all of 

above equations are: 

𝛼௠ =
(2.5 − 0.1𝑉)

𝑒(ଶ.ହି଴.ଵ௏) − 1
 

 

𝛽௠ = 4𝑒ି
௏

ଵ଼ 
 

𝛼௛ = 0.07𝑒ି
௏

ଶ଴ 
 

𝛽௛ =
1

𝑒(ଷି଴.ଵ௏) + 1
 

(2.18)

For numerical simulations, it’s enough to generate white noises with described means 

and put them in the set of equations to get the membrane potential of the next time 

step. 

Table 2.3: Colored Noise Constants for Sodium Channels 

𝛾ே௔ = 10 𝜔ே௔
ଶ = 200 𝑇ே௔ = 800 
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Chapter 3 

3 MINIMAL DIFFUSION FOR ENSEMBLE OF 

MARKOV CHAIN 

3.1 Introduction 

In Minimal Diffusion model, an ensemble of Markov Chains is considered for 

simulating the dynamic of the ion-channels. Each chain is evolving independently 

from the other chains in the ensemble and, transition rates and rules is the same for of 

all these continues time Markov chains.  

Assume 𝑁  ergodic continues-time independent Markov chains with the same 

transition matrixes. States are finite and are denoted with numbers from 1 to 𝐿. Now 

let 𝜃௟   𝑙 ∈ {0, 1, … , 𝐿}  be the number of chains that are in state 𝑙 at particular time, and 

define density of state 𝑙   in that time, as 𝜓௟ =  
𝜃௟

𝑁ൗ  . This value is the subject of 

fluctuation in time and lets denote this fluctuation by 𝜙௟ . One property of Markov 

chain is that while time tends to infinity, the probability of finding chain in a state 

tends to a constant and, precisely to 〈𝜓௟〉 where 〈… 〉 shows the expected value. So 𝜙௟ 

can be defined as follows: 

𝜓௟ = 〈𝜓௟〉 +  𝜙௟          𝑙 ∈ {0, 1, … , 𝐿} (3.1)

Having constant transition rates is the requirement of having a stationary solution in 

finite space Markov chain. Here assume the rates in our chains are constant and later 

we can let them to have tiny changes in time.  
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Figure 3.1: Sample Markov Chain used to illustrate master equation adopted from [2]  

Figure 3.1 demonstrates a chain with three states. 𝑍 s are the transition rates between 

the states. For this sample chain the master equation reads as: 

𝑑 𝜓଴

𝑑 𝑡
= −𝑍଴ଵ〈𝜓଴〉 + 𝑍ଵ଴〈𝜓ଵ〉 

 

𝑑 𝜓଴

𝑑 𝑡
= 𝑍଴ଵ〈𝜓଴〉 − (𝑍ଵ଴ + 𝑍ଵଶ) 〈𝜓ଵ〉 + 𝑍ଶଵ〈𝜓ଶ〉 

 

𝑑 𝜓ଶ

𝑑 𝑡
= −𝑍ଶଵ〈𝜓ଶ〉 + 𝑍ଵଶ〈𝜓ଵ〉 

(3.2)

We now that for a Markov chain: 

෍〈𝜓௟〉 = 1

௅

௟ୀ଴

 (3.3)

It implies that: 

〈𝜓଴〉 + 〈𝜓ଵ〉 + 〈𝜓ଶ〉 = 1 (3.4)

And, in steady state: 

𝑑 〈𝜓଴〉

𝑑𝑡
=

𝑑〈𝜓ଵ〉

𝑑𝑡
=

𝑑〈 𝜓ଶ〉

𝑑𝑡
= 0 (3.5)

Two equations in equation set (3.2) are linearly independent. So [𝜓଴], [𝜓ଵ] and [𝜓ଶ] 

can be solved uniquely using (3.2) and (3.4).  
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3.2 State Density of a Special Case 

The special case is a Markov chain in which, only one state is directly connected to 

the relevant state. Say state “r” for relative state and, state “s” for the connected state. 

See Figure 3.2. The transition rates 𝛼 and 𝛽 are supposed to be constants but, it’s safe 

if they slightly change during the time. 

 
Figure 3.2: Special case in which, only one state is connected directly to relevant 

state. Adopted from [2] 

For this special case from equations (3.1) and (3.3) it determined that: 

෍ ∅௟

௅

௟ୀ଴

= 0 (3.6)

And  

〈∅௟〉 = 0   (𝑙 = 1, 2, … , 𝐿). (3.7)

Second moments of fluctuations are: 

〈∅ଶ〉 =
〈𝜓௟〉(1 − 〈𝜓௟〉)

𝑁
,   (𝑙 = 1, 2, … , 𝐿) (3.8)

And for different states j and k: 
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〈𝜙௝𝜙௞〉 = −
〈𝜙௝〉〈𝜙௞〉

𝑁
   𝑖𝑓 𝑗 ≠ 𝑘. (3.9)

If j and k assumed to be single combined state, then from Equation (3.8): 

〈൫𝜙௝ + 𝜙௞൯
ଶ

〉 =
൫〈𝜓௝〉 + 〈𝜓௞〉൯(1 − ൫〈𝜓௝〉 + 〈𝜓௞〉൯)

𝑁
 (3.10)

For this special case the fluctuations in in the relevant state, 𝜙௥, can be described using 

the following SDEs: 

𝜙௥̇ =  −𝛽𝜙௥ +  𝛼𝜙௦ +  𝜀 
 

𝜙௦̇ =  −𝛾𝜙௦ −  𝜀 +  𝜂. 

 

(3.11)

Here 𝜀  and 𝜂  independent Gaussian white noises. Mean of these white noises are 

described in Equation (3.21). 

3.3 State Density of the Other Cases  

For the other possible states, suppose the relevant state “r” is connected directly to two 

other states. Let’s say j and k. instead of working with these two states, we can 

substitute them with one single state. Transition rates of this state, namely “s”, can be 

defined using the transition rates of the state j and state k: 

𝛽 = 𝛽௝ + 𝛽௞ 
 

𝛼௝𝜙௝ + 𝛼௞𝜙௞ → 𝛼𝜙௦ 
(3.12)

In Minimal Diffusion model it has been shown that the previously discussed equations, 

can be also valid in the case that the relevant state is directly connected to more than 

one state, if we substitute parameters like this: 
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𝛼 = 𝐴 +
𝐴

𝐵
 (3.13)

 And 

〈𝜓௦〉 =
𝐴ଶ

𝐴ଶ + 𝐵
 (3.14)

Where  

𝐴 ≔  𝛼௝〈𝜓௝〉 + 𝛼௞〈𝜓௞〉 
 

𝐵 =  𝛼௝
ଶ〈𝜓௝〉൫1 − 〈𝜓௝〉൯ − 2𝛼௝𝛼௞〈𝜓௝〉〈𝜓௞〉 + 𝛼௞

ଶ〈𝜓௞〉(1 − 〈𝜓௞〉) 
(3.15)

In Minimal Diffusion model, the dynamics of the membrane is described as follows: 

 

𝐶𝑉̇ =  −𝑔௞𝜓௄(𝑉 −  𝐸௄) − 𝑔ே௔𝜓ே௔(𝑉 −  𝐸ே௔) − 𝑔௅(𝑉 −  𝐸௅) + 𝐼 

 

(3.16)

All the constants here are the constants mentioned in Table 2.1. 𝜓୏ in this equation, is 

different than its deterministic value in HH equations, by the noise terms  𝜙௥ and 𝜙௦. 

Same thing is true for 𝜓୒ୟ as well. The Dynamics of each type of channels can be 

considered separately, with slightly different equations. 

3.4 Dynamics of Potassium Channels 

Fluctuations in 𝜓୏ , are tracking by the stochastic variable 𝜙௥ and 𝜙௦.  

𝜓௄ =  〈𝜓௄〉 + 𝜙௥ . (3.17)

[𝜓௞] can be calculated as follows: 

〈𝜓௄〉 =  𝑛തସ, (3.18)

Where 𝑛ത is under the control of the this differential equation: 

𝑛ത̇ = −𝛽௡𝑛ത + 𝛼௡(1 − 𝑛ത). (3.19)
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The following equations are valid for 𝜙௥ and 𝜙௦. The evolution of these two variables 

in time, can be described using the following SDEs: 

𝜙௥̇ =  −𝛽𝜙௥ +  𝛼𝜙௦ +  𝜀 
 

𝜙௦̇ =  −𝛾𝜙௦ −  𝜀 +  𝜂. 

 

(3.20)

𝜀  and 𝜂 stand for Gaussian zero-mean white noises which are independent of each 

other. Variances of these two stochastic variables are: 

 

[𝜀(𝑡)𝜀(𝑡́)] =  
𝛼〈𝜓௦〉 + 𝛽〈𝜓௄〉

𝑁
𝛿(𝑡 − 𝑡́) 

 

[𝜂(𝑡)𝜂(𝑡́)] =  
𝛼〈𝜓௦〉𝐶ఈ + 𝛽〈𝜓௄〉𝐶ఉ

𝑁〈𝜓௄〉
𝛿(𝑡 − 𝑡́), 

(3.21)

Where 𝐶ఈ and 𝐶ఉ  are the notations for: 

𝐶ఈ = 2〈𝜓௦〉(1 − 〈𝜓௦〉) − 〈𝜓௄〉 
 

𝐶ఉ = 2(1 − 〈𝜓௦〉)ଶ − 〈𝜓௄〉. 
(3.22)

𝛾 is defined by the following formulation: 

𝛾 =  
𝛼〈𝜓௦〉ଶ +  𝛽〈𝜓௄〉(1 − 〈𝜓௦〉)

𝜓௦𝜓௄
, (3.23)

And at the end, the 𝛼 and 𝛽 needs to be substituted using the following formulations: 

𝛼 =  𝛼௡ 
 

𝛽 = 4𝛽௡. 
(3.24)

3.5 Dynamics of Sodium Channels 

In Sodium channels, the relevant state is directly connected to two states. State j and 

state k. So here as we mentioned earlier we need to do substitution and use A and B in 

the formulation. 
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Here 

〈𝜓ே௔〉 = 𝑚ഥ ଷℎത (3.26)

Where , 𝑚ഥ  and ℎത can be updated in each time step using the following differential 

equations: 

𝑚ഥ̇ = −𝛽௠𝑚ഥ + 𝛼௠(1 − 𝑚ഥ) 
 

ℎത̇ = −𝛽௛ℎത + 𝛼௛(1 − ℎത) 
(3.27)

Equation (3.20) is also valid for Sodium channels without any changes. White noises 

has also the same formulation, but [𝜓ே௔] needs be placed in the formulation: 

〈𝜀(𝑡)𝜀(𝑡́)〉 =  
𝛼〈𝜓௦〉 + 𝛽〈𝜓ே௔〉

𝑁
𝛿(𝑡 − 𝑡́) 

 

〈𝜂(𝑡)𝜂(𝑡́)〉 =  
𝛼〈𝜓௦〉𝐶ఈ + 𝛽〈𝜓ே௔〉𝐶ఉ

𝑁〈𝜓ே௔〉
𝛿(𝑡 − 𝑡́), 

(3.28)

And 

𝐶ఈ = 2〈𝜓௦〉(1 − 〈𝜓௦〉) − 〈𝜓ே௔〉 
 

𝐶ఉ = 2(1 − 〈𝜓௦〉)ଶ − 〈𝜓ே௔〉, 
(3.29)

 And 

𝛾 =  
𝛼〈𝜓௦〉ଶ +  𝛽〈𝜓ே௔〉(1 − 〈𝜓௦〉)

𝜓௦𝜓ே௔
. (3.30)

[𝜓௦],  𝛼  and 𝛽  are different than the corresponds formulation for the Potassium 

channels and, are dependent to the state j and state k: 

〈𝜓௦〉 =
𝐴ଶ

𝐴ଶ + 𝐵
, 

 

(3.31)

𝜓ே௔ =  〈𝜓ே௔〉 +  𝜙௥ (3.25)



 

20 
 

𝛼 =  
𝐴 + 𝐵

𝐴
, 

 

𝛽 =  𝛽௝ + 𝛽௞ , 

Where A and B are define in equation (3.15) and  

𝛽௝ = 𝛽௛     𝑎𝑛𝑑     𝛽௞ = 3𝛽௠       ,      𝛼௝ = 𝛼௛      𝑎𝑛𝑑      𝛼௞ = 𝛼௠. (3.32)
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Chapter 4 

4 NUMERICAL RESULTS 

4.1 Spontaneous Firing  

As we mentioned above, small membranes show spontaneous firing. The HH 

equations don’t produce any firing at all when, there is no input current available. 

However, Microscopic Simulations and the recorded neuron activities from biological 

neurons, prove that the neurons are spiking, even in absence of input current. We tested 

different size of the membranes to capture the ability of producing spontaneous firing 

for 1) Minimal Diffusion (MD) model, Colored Noise (Col) model and Microscopic 

Simulation (MC) model. All models showed spontaneous firing and, as it can be 

determined from the Figure 4.1 the firing rate is decreasing as the membrane size is 

increasing. This is exactly what we saw in the formulation of Minimal Diffusion and 

Colored Noise. In getting the results, we set the input current as constant and zero for 

all the simulations. We repeat the simulation for different sizes of the membrane from 

very small to very large. In all the cases, results from Minimal Diffusion was closer to 

the Microscopic Simulations. It means that Minimal Diffusion is more accurate than 

the Colored Formulation in stating spontaneous firing, although the colored 

formulation results are quiet acceptable. The size of simulated  membranes varied from 

1.67 𝜇𝑚ଶ  (30 Potassium channels, 100 Sodium channels) to 1215.0 𝜇𝑚ଶ  (24300 

Potassium channels, 81000 Sodium channels). For bigger membrane sizes, the results 

of both simulation methods are becoming closer to the Microscopic results.  
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Figure 4.1: Spontaneous firing mean frequency (Spike Density) for different 

membrane sizes. MC is the result from Microscopic Simulations. MD is minimal 
diffusion and Col is the colored formulation and the input current is zero. 

We also analyzed the results by conducting Coefficient of Variation. Coefficient of 

Variation is showing the coherence of the spikes and it’s defined by: 

ඥ〈𝑀ଶ〉 − 〈𝑀〉ଶ

〈𝑀〉
 (4.1)

Where 〈𝑀〉 is the mean and 〈𝑀ଶ〉 is the mean-squared of the inter spike length. The 

point of using coefficient of variation is that, we can tell the differences between 

different signals with the same mean. Figure 4.2 illustrates the coefficient of variation 

for different size of membranes, for all of our three models. We can see that spike 

coherence level is about the same in all models, although Minimal Diffusion model 

seems to be in the closer level to Microscopic model.  



 

23 
 

  

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  10  100

C
o

ef
f V

a
r

Membrane Size ( mm2)

MC
Col
MD

 
Figure 4.2:  Coherence of the simulated spikes in 30ms interval for MD, Col and MC 
simulation methods. The size of membrane has changed from 1.67 𝜇𝑚ଶ to 135 𝜇𝑚ଶ 

and Input current is zero 

4.2 Constant Input Current – Varying Membrane Size 

In this part we obtain the results, by injecting constant current to the simulated 

membranes. In simulations 6 𝜇𝐴 𝑚ଶ⁄  constant current applied to different membrane 

sizes of 180 𝜇𝑚ଶ, 405 𝜇𝑚ଶ, 720 𝜇𝑚ଶ.  

Colored noise model is already compared in Rowat paper in 2014 [13] with other 

approximation models. We tried to choose the membrane sizes somehow to be close 

to the membrane sizes in that paper, to provide the chance of comparing the results of 

this paper with the results of Rowat paper for interested reader. Also we considered 

our limitation in computation time and resources (Some simulations took months to be 

finished).  Figure 4.3 demonstrates the ISI distribution for these simulations. 
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Figure 4.3:  ISI distribution. The injected current for all simulations is 6 𝜇𝐴 𝑚ଶ⁄ . 

Membrane sizes are varied Top: 180 𝜇𝑚ଶ, Middle: 405 𝜇𝑚ଶ and Bottom: 720 𝜇𝑚ଶ. 

To obtain this distribution we assumed 80 bins for each inter spike interval. For each 

bin we defined a minimum length and maximum length and, if the interval between a 
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spike and its previous one was between the minimum and maximum specified length 

of that bin, we put it in that bin.  We chose these maximum and minimums somehow, 

to have 80 bins with all lengths equal to 1ms. Then 500ms simulation was ran and we 

counted the number of ISIs which was placed in each bin. For instance, if the length 

between two spikes was 15.4 we placed it in bin number 15. The length between two 

spikes is measured by calculating the time between two successive upward cross of 

the signal from perfectly chosen point. This point is taken somehow that being 

included in all the spikes. In other words, if a spike happens, for sure it will pass from 

this point and also, this point is higher than level of all signals from a resting 

membrane. 

Top chart in Figure 4.3 is showing ISI distribution for a membrane with area size 

180 𝜇𝑚ଶ and middle one is a for a membrane with size 405 𝜇𝑚ଶ and the bottom chart 

is related to a membrane with size 720 𝜇𝑚ଶ. 

It can be seen from this figure that increasing the size of the membrane, may increase 

the minimum length of inter spikes a little. But more obvious thing is the shape of the 

curve, that is matching to a particular shape. All the three models have almost the same 

distribution and it seems that Minimal Diffusion model and Colored Noise model both 

perfectly introduce the same distribution as the Microscopic model. 

Mean spike frequency of the simulated models has been compared in the Figure 4.4. 

In that figure we can see that, again the results of Minimal Diffusion model are more 

exact and mean frequencies are near to Microscopic model. From this and Figure 4.1, 

one can claim that by making the membrane size bigger the mean frequency of spikes 

(Spike Density) is reducing, whether input current be available or not.  
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Figure 4.4: Spike density (Mean Frequency) of models MC, Col and MD for 

different sizes of membrane 
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Figure 4.5: Coefficient of variation of the results from 500ms simulations for all 

three models. 
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The coefficient of variations of the spikes in these simulations also considered and, 

Figure 4.5 is showing the comparison between the coherence of different models. Also 

in this, the Minimal Diffusion has very close level of coherence to the Microscopic 

model. Although the coherence level for Colored Noise model is near to the level of 

coherence of Microscopic model, in compare to Minimal Diffusion model it’s not 

accurate. 

4.3 Constant Membrane Size – Varying Input Current 

In this part we kept the membrane size the same and, we tried to study on the response 

of the cell to different input currents. For doing this, we chose a middle sized 

membrane with 6480 Potassium channels and 21600 Sodium channels (The size of 

membrane with this specification is 360 𝜇𝑚ଶ using the densities in Table 2.1). We 

repeated simulation with 2 𝜇𝐴/𝑚ଶ , 6 𝜇𝐴/𝑚ଶ  and 12 𝜇𝐴/𝑚ଶ  input currents. ISI 

distribution of this cell over different input current is plotted in Figure 4.6. We can see 

in this figure, by increasing the input current, the probability of producing lower 

frequency spikes is decreasing. That special shape of curve, also can be seen in these 

plots. Interesting thing about this shape is that, although the difference between lower 

and higher inter spike intervals is become shorter, the distance between local 

maximums of curve seems to be the same. One can detect this relation also in Figure 

4.3. It seems that the local maximums of ISI distribution are placed at special points 

with a difference about 12.7ms in all the simulations. This is not true when we have 

spontaneous firing and, as the spontaneous firing getting less (Membrane size become 

bigger or input current is increasing), the spikes are happening in some special 

frequencies. We didn’t prove it here, but it can be an interesting phenomenon to study 

about. 
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Figure 4.6: ISI Distribution of a middle size membrane in response to different input 

currents, for all three models.  
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Figure 4.7 illustrates spike frequency means (Spike Density) over different input 

currents for our mid- size membrane. Minimal diffusion results are so near to 

Microscopic results and it almost overlaps it. This shows the high accuracy of this 

model.  

And Figure 4.8 illustrates that Minimal Diffusion model is also accurate in coherence. 

As we can see in this figure it completely overlaps Microscopic model curve.  
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Figure 4.7: Spike density (Mean Frequency) for a 400 𝜇𝑚ଶ membrane over input 

current for all three models. MD model almost overlaps MC. 
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Figure 4.8: Coefficient of Variation of all three models over the input current. MC 

line is completely overlapped by MD line. 

4.4 Pulse Input Current 

All the previous simulations in this paper was measured under the constant current 

inputs. In this section we applied a pulse stimulus in the simulated neurons to measure 

the latency of the spikes. The latency is time between presenting a current and the time 

that the first spike is occurred. A membrane patch of 1800 Potassium channels and 

6000 Sodium channels was tested in 4000 trials.  
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Figure 4.9: Latency of spikes over input current for all three models in a membrane 

patch with size of 100 𝜇𝑚ଶ. 

We presented input current every 25ms for 2ms duration. The reason for choosing that 

pulse duration was because we found it enough time for the membrane to reach back 

to the steady state and, the duration of the pulse is chosen somehow to force the neuron 

to spike for almost all of the injected pulses, even for the lowest one which was 

5 𝜇𝐴/𝑚ଶ. In this state 4000 pulses made the neuron to spike about 3900 times. The 

time between a rise of input current signal and the time that membrane potential 

reaching threshold were collected and then, its divided to the number of spikes.  

In Figure 4.9 it can be determined that, by more powerful stimulus the response time 

of the cell in decreased. Also it seems that the Minimal Diffusion model showed better 

and closer results to Microscopic Simulation model for lower input currents, precisely 

for input currents less than 7 however, for the currents more than this both Colored 

Noise model and Minimal Diffusion model had exactly the same results. In principle, 

the results of both models was closer to Microscopic results for lower input currents. 
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4.5 Simulation Time 

The motivation behind development of estimation methods is twofold: 1) to obtain an 

analytic description. 2) to speed up the simulations. In many situations, the 

Microscopic simulation can be terribly slow. The advantage of using estimation 

methods like Minimal Diffusion model and Colored Noise model is that, one can study 

on the dynamics of the neuron, without having to wait a long time for simulation to be 

finished. But, the question is how fast these methods are? In this part, we measured 

the average time which is needed for each step of simulation for all three models. We 

made these measurements on a computer with intel Core I7 – 6700HQ CPU and 12 

GB of memory. However, we should mention that, these type of simulation software 

are CPU consuming and they don’t consume a lot of memory. In our implemented 

software, before calling the function corresponds to each model we stored the time and 

compared it to the time of returning from that function. We also counted the number 

of times that the functions are called. Then we divide total time to this number. The 

results are shown in Table 4.1.  

Table 4.1: Average Time of Calculating One Iteration in Simulation, Based on the 
Number of Ion-Channels of the Membrane, for Different Methods. MC is the 

Microscopic Model, MD is Minimal Diffusion Model and Col is Colored Noise 
Model. 

Number of ION-Channels MC MD Col 

1000 374.00ms 1.49ms 4.07ms 

5000 1870.11ms 1.53ms 4.10ms 

10000 3913.58ms 1.65ms 4.27ms 

15000 6040.95ms 1.69ms 4.41ms 

20000 7999.57ms 1.68ms 4.44ms 
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It seems that the time needed for calculating each iteration of Microscopic simulation 

is increasing linearly, with the increase in the number of ion channels in the simulation. 

Computation time of the Minimal Diffusion and Colored Noise models, don’t change 

in principle with increase in the number of ion channels of the membrane.  

Table 4.1 has illustrated in Figure 4.10 and show it well that, how much Minimal 

Diffusion and Colored Noise models are faster than Microscopic model. 
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Figure 4.10: Computation Time over Number of Ion Channels in the cell for three 
models. Lines of Colored model and MD are close to zero and in the scale of this 

figure they overlapped each other.  
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Chapter 5 

5 CONCLUSION 

5.1 Conclusions  

In concern to the dynamics of the ion-channels a lot of different methods have been 

developed, especially in the recent years. These methods have been compared by other 

people to find out the pros and cons of each. Here we chose Minimal Diffusion 

approximation for ion-channels as a new approach of simulation and, we compared it 

numerically with a little older method called Colored Noise model. To obtain the 

accuracy of each model we also chose Microscopic Simulation method to compare to. 

This article can be useful for the one who is interested to study about the dynamics of 

the neuron, to help him/her to choose among these simulation methods.  

After doing numerical analysis, we have found that the Minimal Diffusion model in 

all the situations showing a better result over the already satisfactory Colored Noise 

model. Also it’s faster and needs less computation resources than the Colored Noise 

model. So, it can be a good candidate for the one who interested to study on the 

dynamics of ion-channels. 

ISI Distribution for all models was almost the same although, for longer inter spikes 

lengths longer simulation times are needed. So Minimal Diffusion model can be used 

to run the simulation for the times much more longer and, we have shown here that the 

result can be trusted with a very high accuracy. 
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Spike Density (Mean Frequency) of the Minimal Diffusion model also was more 

accurate than the Colored Noise model although, for very small membrane size there 

is noticeable difference between results and the result from Microscopic simulations. 

So, it’s not irrelevant, if someone use the Microscopic simulation for very small 

patches, instead of using approximation models mentioned above. The reason is that 

Microscopic simulation for small patches can be done in a reasonable time with very 

high accuracy. 

Theoretically, it was expected that the Minimal Diffusion be faster than the Colored 

Noise model since, in its implementation only three noise terms are involved, in 

compare to the Colored noise model that has five noise terms. We used Box-Muller 

method in our implementation to generate a white noise but, still generating Gaussian 

white noise in our simulation for both models, in average took about 25 percent of our 

simulation time. It’s clear that less number of the noise terms, can result a better 

performance. 
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