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ABSTRACT

This thesis is aimed to study a new class of Bernoulli, Euler and Genocchi
polynomials in the means of quantum forms. To achieve this aim, we introduce a
new class of g-exponential function and using properties of this function; we reach to
the interesting formulae. The g-analogue of some familiar relations as an addition
theorem for these polynomials is found. Explicit relations between these classes of
polynomials are given. In addition, the new differential equations related to these
polynomials are studied. Moreover, improved g-exponential function creates a new
class of g-Bernoulli numbers and like the ordinary case, all the odd coefficient
becomes zero and leads us to the relation of these numbers and g-trigonometric
functions. At the end we introduce a unification form of g-exponential function. In
this way all the properties of these kinds of polynomials investigated in a general
case. We also focus on two important properties of g-exponential function that lead
us to the symmetric form of g- Euler, g-Bernoulli and g-Genocchi numbers. These

properties and the conditions of them are studied.

Keywords: g-Exponential Function, g-Calculus, g-Polynomials, g-Bernoulli, g-

Euler, g-Genocchi, g-Trigonometric Functions.



Oz

Bu tez kuantum formlar1 uasitasi ile Bernoulli, Euler ve Gennochi polinomlarin yeni
bir sinifin1 incelemeyi amacglamaktadir. Bu amaca ulagmak i¢in, g-iistel fonksiyonlar1
ve bu fonksiyonlarin 6zellikleri kullanilarak yeni bir sinif tanitilmistir.Bu polinomlar
icin baz1 bilindik iliskilerin g-uyarlamlari ek teorem olarak bulunmustur.

Bu tiir polinom siniflar1 arasindaki kapali iliskiler verilmistir. Ayrica bu polinomlarla
iliskili ~ yeni  diferansiyel denklemler c¢alistlmistir.  Gelistirilmis  q-Ustel
fonksiyonlarnin yeni bir g-Bernoulli sayisi olusturdugu da gosterilmistir. Buna gére
bilinen g-1 durumunda oldiigu gibi tim tek katsaylarin sifir olarak q-uUstel
fonksiyonlari, i¢in birlesme formu, elde edilmistir. Boylelikle, bu tiir polinomlarin
tim oOzellikleri genellestirilmistir. Ayrica, q-Euler, g-Bernoulli ve g-Gennochi
sayllamin simetri formlarini elde etmemizi sagloyon, iki 6nemli q-Ustel fonksiyon

ozelligine de odaklanilmistir.

Anahtar Kelimeler: g-Ustel Fonksiyonlar, g-Kalkiilis, g-Polinomlar, g-Bernoulli,

g-Euler, g-Genocchi, g-Trigonometrik Fonksiyonla.
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Chapter 1

INTRODUCTION

1.1 Classical Bernoulli Numbers

Two thousand years ago, Greek mathematician Pythagoras noted about triangle

numbers that is 1 4+ 2 + --- 4+ n. after that time, Archimedes proposed

1
1242° 4+ +n2= gn+H@2n+ D). (1.11)

Later, Aryabhata, The Indian mathematician, found out

2
1
P+2°++nd= (En(n + 1)) : (1.1.2)

But Jacobi was the first who gave the vigorous proof in 1834. AL-Khwarizm, the
Arabian mathematician found this summation’s result for the higher power. He

showed that

1
1" 4244t = 3+ D@+ H(En? +3n - 1). (1.1.3)

The more generalized formula for };}}_, k", where r is any natural number is studied
in the last few centuries. Among this investigation, the Bernoulli numbers are much
significant. In this chapter, we present an elementary examination of the
development of Bernoulli numbers throughout the time. We also aim to explore its
properties and its application in other fields of mathematics. In addition, by
introducing the generating function, we will take a look to the exponential function

and its generalization to the quantum form [12].



Swiss mathematician Jacob Bernoulli (1654-1705), was the person who found the

general formula for this kind of the summation. He found that [3]

o r! —
S (T') Z k k' mn k+1. (114)

The By’s numbers here are independent of r and named Bernoulli numbers. The first

few Bernoulli’s numbers are as following:

1 1 1 1
B():l, Blz—z, B2: 33:0, B4:—%, BSZO, B6:E,...

It is tempting to guess that |B,| — 0 as n — co. However, if we consider some other
numbers in the sequence,

5 _ 1 B_5B_ 691B_7B_3617
87 300 176 12T 27300 "M T "7 51077

We notice their values are general growing with alternative sign.

An equivalent definition of the Bernoulli’s numbers is obtained by using the series

expansion as a generating function

X & B, x"
= Z . (1.1.5)

n!
n=0

In fact, by writing the Taylor expansion for e** and adding them together, we have:

- tm 1—e® 1—e™ t
[ t 2t cee (n_l)t — — X
zosm(n)m! T+et+et4-te — — X
m:
_ <Z nkt_) Z ]ﬁ
I ]
k=1 fe j=0 J
[o¢] m
=z Z(m‘l'l)Bnm k+1 tr 1
L\ k k mm+1



This calculation, lead us to (1.1.4). This technique of proof is used temporary. In
addition, this definition of Bernoulli’s number connects them to the trigonometric

function as following:

X X X 2 xe*+1 «x X
ex—1+§_§<ex—1+1)_Eex—fic‘”h(i)' (1.1.6)
It can be rewritten
x Xy o By x2t
- Coth (3) = Z e (1.1.7)
n=0
If we substitute x with 2ix, then it gives
o (—1)"By, (22)20
xCot(x) = z (Z1)"Ban(22) X € [—m, m]. (1.1.8)
(2n)!
n=0
The following identities can be written
S 2(4" — 1) By, (2x) 271 T
tanh(x) = Z )] X € (_E'E)' (1.1.9)

n=1

[0e]

tan(x) = Z (D"

n=1

2(1 = 4")Byn (2x)*" 1 re (

T T
ool _E’E)' (1.1.10)

Another equivalent definition of Bernoulli number, which is useful, is the recurrence

formula for these numbers

n—1

Z (7) B;=0, nz2. (1.1.11)

This definition can be found easily from the series definition, by writing the Taylor
expansion for exponential function and using the Cauchy product. This formula can
be used to evaluate the Bernoulli numbers inductively (see [5] ).As we saw, the
exponential function made a main role in these definitions, and by changing the

alternative functions; we can reach to a new definitions. This idea was leading a lot

3



of mathematician to find a new version of the Bernoulli numbers; we also did one of

them.

The Bernoulli polynomials are defined in the means of Taylor expansion as

following

[0e]

ze®™ Bn(x)
n=

For each nonnegative integer n, these B, (x), are the polynomials with respect to x. Taking

derivative on both sides of (1.1.12) a derivative with respect to x, we get

(e¢]

Z B , _  ze™ Z Bn(®) ni1 (1.1.13)

n! ez—1 n!
n=0 n=0

Equating coefficient of z™, where n > 1, leads us to another important identity
B, (x) = nBp_1(x). (1.1.14)
The fact Bo(x) = 1, can be yield by tending z to zero at (1.1.13). This and the above
identity together, show that B,,(x) is a polynomial in degree of n and it begins with
the coefficient that is unity. If we use this identity and know what the constant terms
are, then we could evaluate B,(x) (Bernoulli polynomials) one by one. It is clear
that, by putting x = 0, we reach to the Bernoulli’s numbers. There are too many
interesting properties for this polynomials and numbers, which are studied in the last
few centuries. The application of them is going forward to the many branches of
mathematics and physics, as combinatorics, theory of numbers, quantum
information, etc. (see [20], [24]) We will list some of these properties without proof.
The proofs can be found at [14].
Bn,(x+1)—B,,(x) = mx™1, (1.1.15)

B,,(1—x) = (=1)™B,,(x), (1.1.16)



B, = Z ﬁ(Z(—l)r (f) rm>, (1.1.17)

k=0 r=0
| = Y -0k ("™ B (k), (1.1.18)
m ; (k)

[0e]

1
$) = ) — = 2¢(2m) = (D)™

n=1

(Zn)Zm
(2m)!

Bym. (1.1.19)

Where {(s) is known as Riemann-zeta function at (1.1.19).
1.2 Quantum Calculus and g-Exponential Function

The fascinate world of quantum calculus has been started by the definition of

derivative, where the limit has not been taken.

Consider the derivative expression without any limit, as M The familiar

%o
definition of derivative % of a function f(x) at x = x, can be yield by tending x

to xo. However, if we take x = gx, (where g # 1 and is a fixed number) and do not
take a limit, we will arrive at the world of quantum calculus. The corresponding
expression is a definition of the g-derivative of f(x). The theory of quantum calculus
can be traced back at a century ago to Euler and Gauss [7] [2]. Moreover, the
significant contributions of Jackson made a big role [9]. Recently in these days, a lot
of scientifics are working in this field to develop and apply the g-calculus in
mathematical physics, especially concerning quantum mechanics [18] and special
functions [10], many papers were mentioned the various models of elementary
functions, including trigonometric functions and exponential by deforming formula
of the functions in the means of quantum calculus [1]. For instance, many notions
and results is discovered along the traditional lines of ordinary calculus, the g-
derivative of x™ becomes [n]qx”‘l, where [n]qz%. This g-analogue of the

5



number helps us to define the new version of familiar functions such an exponential
one. We redefine these functions by their Taylor expansion and the different

notation. In this case, two kind of g-exponential functions are defined as follows

ex=i; ﬁ ! 0<lgl<1lxl<———, (121
T4 Lla-a-odm T—q

jG=1 J

Zq " l_[(1+<1 Qgx) 0<igl<lxec  (122)

These definitions are coming from g-Binomial theorem that will discuss in the next

chapter.

Many mathematicians encourage defining the g-functions for the preliminary
functions, such that, they coincide with the classic properties of them (1.2.1) and
(1.2.2) identities are discovered by Euler. In general efe) = e} ™. But additive
property of the g-exponentials holds true if x and y are not commutative i.e. yx =
qxy. It is rarely happened, and make a lot of restrictions to use them. So, we used the
improved exponential function as follows [6]

X

o S+ A+ A-9d)
ECI:eéEé:z J=1rq =1_[ 92(

(1.2.3)

For the remained, we assume that 0 < g < 1. The improved g-exponential function

is analytic in the disk |z| < ﬁ. The important property of this function is

1
gf== , |e&¥|=1 zeCx€eR (1.2.4)
&q

At the end, we will unify the g-exponential functions and investigate the properties

of this general case. In addition g-analogue of some classical relations will be given.



Chapter 2

PRELIMINARY AND DEFINITIONS

2.1 Definitions and Notations

In this section we introduce some definitions and also some related theorem about g-
calculus. Base of these information are [7], [14] and [24]. All of these definitions
and notations can be found there.
Definition 2.1. Let us assume that f(x) is an arbitrary function, then g-differential is
defined by the following expression

do(f(0) = f(gx) — f (0. (2.1.1)

We can call the following expression by g-derivative of f(x)

de(f(0) _ f(gx) — f(x)

Dy(f(x)) = Ix = @=Tx 0£x€eC |ql#1 (2.1.2)

Note that lim,_,- D, (f(x)) = d’;;x), where f(x) is a differentiable function. The g-

analogue of product rule and quotient rule can be demonstrated by

Dy(f(x)g(x)) = f(g@x)Dy(g(x)) + g(x)Dg(f(x)), (2.1.3)
b (f(x)> _ 90ID(f(@) = F6ID4(9(0) (2.1.4)
N\g) g(x)g(gx)

By symmetry, we can interchange f and g, and obtain another form of these

expressions as well. Let us introduce the g-number’s notation

1
[n], = =qv 1441, gqgeC\{1}L,neCq" #1. (2.1.5)

In a natural way [n],! can be defined by



[0],! =1, [n]g! = [n—1],! [nl, (2.1.6)
Remark 2.2. It is clear that

!;i—rﬁl[n]q =n, };ilr}[n]q! =n!. (2.1.7)

Definition 2.3. For any complex number b, we can define g-shifted factorial

inductively as following

b;o=1, b;@)n=b;p-1(1—q"b), neN. (2.1.8)

and in a case that n — oo, we have

[o¢]

B Poo = 1_[(1 —q*b), Iql<1,bEC. (2.1.9)
k=0

Definition 2.4. The g-binomial coefficient can be defined as follows

[n],!

n —
[k]q - m, k,n eN. (2.1.10)

We can present g-binomial coefficient by g-shifted factorial

n CHOS
_ 2.1.11
[k]q (@ Dn—1(@ D ( )

Theorem 2.5. Suppose that f is a real function on a closed interval [a,b],n is a
positive integer, £ (x) exists for every x € (a,b) and f™ P is continuous on this

interval. Let , B be two distinct numbers of this interval, and define

n-—1
f® (@)
P(x) = (x — @)k, (2.1.12)
2
Thus there exist a number y, such that « < y < f and
)]
fB)=pPP)+ ! n!(y ) (B — )™ (2.1.13)

Remark 2.6. The previous theorem is Taylor theorem [21], the general form of
theorem is presented next [24]. By using the next theorem we lead to the definitions

of classical g-exponential functions.



Theorem 2.7. Let b be an arbitrary number and D is defined as a linear operator on
the space of polynomials and {Py(x), P1(x), P, (x), ...} be a sequence of polynomials
satisfying three conditions:

1) Py(b)=1and P,(b) =0foranyn = 1;

2) Degree of P,,(x) isequal ton

3) Foranyn >1,D(1) = 0and D(B,(x)) = P,_1(x) .
Then, for any polynomial f(x) of degree N, one has the following generalized

Taylor formula:

) =Y O"N@P). (21.14)
n=0

Definition 2.8. The g-analogue of n-th power of (x + a) is (x + a)Z and defined by

the following expression

ifn=0

1
n —
(e + a)q - {(x +a)(x+qa)..(x+q"ta) ifn=1 (2.1.15)
Corollary 2.9. Gauss’s binomial formula can be presented by
oy G-
jG— S
@+a) = Z [j]q g haixr, (2.1.16)
=0

Definition 2.10. Suppose that 0 < g < 1. If for some 0 < ¥ < 1, value of |f(x)x?|
is bounded on the interval (0, B], then the following integral is defined by the series

that converged to a function F(x) on (0, B] and is called Jackson integral
[ r@dgr=a-aox ) aifcain, (2.1.17)
j=0

Definition 2.11. Classical g-exponential functions are defined by Euler [24]

o)

0= 2 [ 0<1ql < 1lxl <
eq(x) = — = ) q I
! L [mlg! 1 L1 —-(1-q)q™x0) 11—ql




1) m(m 1)/2

0=

m=0

1_[(1+(1—q)q x), 0<]q|l<1,x€C.
Proposition 2.12. Some properties of g-exponential functions are listed as follow
-1
@ (eq() =), ex(®) = Eg(),
q

(b) DqEq(x) = Eq(QX), quq(x) = eq(x);
(©) eq(x +y) =eg(x).eq(y) if yx=qxy
Definition 2.13. These g-exponential functions that defined at 2.11 generate two pair

of the g-trigonometric functions. We have

cosq(x) = ) +29q (_iX)' Cosq(x) = fal) +2Eq (—ix).

Proposition 2.14. We can easily derive some properties of standard g-trigonometric
functions by taking into account the properties of g-exponential function
(@) cosg(x)Cosq(x) + sing(x)Sing(x) = 1,

(b) Cosg(x)sing(x) = cosg(x)Sing(x),
(¢) Dq (sinq (x)) = cosq(x), Dq (cosq (x)) = —sing(x),

(d) Dg (Sinq (x)) = Cosq(qx), Dy (Cosq (x)) = —Sing(gx).
Remark 2.15. The corresponding tangents and cotangents coincide tang(x) =
Tang(x), cotq(x) = Coty(x).
2.2 Improved g-Exponential Function

Definition 2.16. Improved g-exponential function is defined as follows

o

1+(1-q)q"5
e () = eq (5) Ea (5) = [ q)qng' (2.2.1)

10



Theorem 2.17. The g-exponential function g,(x) which is defined at (2.2.1) is

analytic in the disk |x| < R,, where R, is as follows

2
T if 0<g<1

1-—

R, =< 2q

a —_— J > 1
-4 if q
o if q=1.

Moreover, we can write the following expansion for &, (x) [6]

£, (x) = Z ull ( L q)" (2.2.2)

n=0

Theorem 2.18. For z € C ,x € R, improved g-exponential function g,(z), has the

following property

@ (&) = el=2, |e@0|=1

() &) = (), D, (2 (2)) = L2202
Remark 2.19. As we mentioned it before, in a general casee,(x +y) #
eq(x).eq(y). One of the advantages of using improved g-exponential is the property
(@) at the previous theorem. The form of improved g-exponential, motivates us to

define the following

Definition 2.20. The g-addition and g-subtraction can be defined as follow

n = -1; -1;,q)n-
(x®qy) =Z[Z] CLodLa) SxkynE, n=012,., (2.23)
q

n
k=0

n - -1; -1;,q)n-
(x©qv) ==Z[Z]q( q)"gn 2 Exk(=y)m %, n=0,12,.. (2.24)
k=0

The direct consequence of this definition is the following identity

tn

(6 £(6) = ) (10)"

(2.2.5)
o

11



Remark 2.21. The properties that mentioned at (2.18) encourage some
mathematicians to use this improved g-exponential in their works [11], [17].
Recently, we are working on other applications of improved g-exponential.

2.3 The New Class of g-Polynomials

In this section, we study a new class of g-polynomials including g-Bernoulli, g-Euler
and g-Genocchi polynomials. First, we discuss about the classic definitions of them.

Definition 2.22. Classic Bernoulli, Euler and Genocchi polynomials can be defined
by their generating functions as following. We named them B, (x), E,,(x) and G, (x)

repectively.

te™ < N 2e™ <O ol 2te”™ N
et—l_Z) "(X)H’ e‘+1_Z) "(X)E' et+1_z ”(")E'
n= n=

If we putx =0, we have B,(0) =b,, E,(0) =e,, G,(0)=g,, which we call

them Bernoulli numbers, Euler numbers and Genocchi numbers respectively. Also
we can define them by the recurrence formula, which is coming from the Cauchy
product of both sides of generating function. Main idea of introducing the new
version of these polynomials is coming from these definitions. The g-Bernoulli
numbers and polynomials have been studied by Carlitz, when he modified the form
of recurrence formula. [4] Srivastava and Pint’er demonstrated a few theorems and
they found the explicit relations that exist between the Euler polynomials and
Bernoulli polynomials in [19]. Also they generalize some of these polynomials.
Some properties of the g-analogues of Bernoulli polynomials and Euler polynomials
and Genocchi polynomials are found by Kim et al. In [23], [13]. Some recurrence
relations were given in these papers. In addition, the extension of Genocchi numbers

in the means of quantum is studied by Cenkci et al. in a different manner at [15].

12



Definition 2.23. Assume that q is a complex number that 0 < |g| < 1. Then we can
define g-Bernoulli numbers b, , and polynomials B, 4(x,y) as follows by using

generating functions

t oo
te,\—=
B;:: tq( 2) . :g(t)—l anq Where |t|
a(z) = ea(-2) * n=0 (23.0)
< 2m,
t g,(tx) g,(ty)
ng(t) & Z By (x, y) -where |¢] < 2. (2.3.2)

Definition 2.24. Assume that g is a complex number that 0 < |g| < 1. Then we can
define g-Euler numbers e, , and polynomials E, ,(x,y) as follows by using

generating functions

2eq (_ _) 2 . t"
Yo 2
Eq = = = Y e,,—— where |t|<m, (2.3.2)
L t ) +1 z ™4 ], !
eq (7) + eq (— 7) Sq( ) n=o [n]q
2 g4(tx) g4(ty)
e (O +1 Z Enq(x ” | where |t] < 2m. (233)

Definition 2.25 Assume that g is a complex number that 0 < |g| < 1. Then in a
same way, we can define g-Genocchi numbers g, , and polynomials G, ,(x,y) as

follows by using generating functions

- 2te (—E)
Gq = N (%)j— eqz( t) = eq(t)+1 Zgnq where It <m, (2.3.4)

2t g4 (tx) g,(ty)
Zq 0 +q1 Z Gn,q (X, y) ; where [t <. (2.3.5)

Definition 2.26. Like the previous definitions, we will assume that g is a complex

number that 0 < |gq| < 1. The g-tangent numbers ¥, , can be defined as following

by using generating functions as following

13



tanh,t = itan,(it) =

eq(t) - eq(—t) _ Eq(zt) -1 _ i (—1)ne2ntt
eq(®) + eg(—t)  g(2t) +1 2n+1,q —[Zn ETNE

Remark 2.27. The previous definitions are g-analogue of classic definitions of
Bernoulli, Euler and Genocchi polynomials. By tending g to 1 from the left side, we

derive to the classic form of these polynomials. That means

Jim Brg() = Ba(), - Jim-bng = b, (238)
N Eng() = Ea(x), Jim eng = ey, 238)
Jim Gug(0) = 6,0, lim g,,, =g, (2.3.7)

In the next chapter, we will introduce some theorems and we reach to a few

properties of these new g-analogues of Bernoulli, Euler and Genocchi polynomials.

14



Chapter 3

APPROACH TO THE NEW CLASS OF g-BERNOULLI,
g-EULER AND g-GENNOCHI POLYNOMIALS

3.1 Relations to The g-Trigonometric Functions

This chapter is based on [17], we discovered some new results corresponding to the
new definition of g-Bernoulli, g-Euler and g-Genocchi polynomials. The results are
presented one by one as a lemma and propositions. Here, the details of proof and
techniques are given.

Lemma 3.1. Following recurrence formula is satisfied by g-Bernoulli numbers b,, ,

L @Dn-k 1, n=1,
z [k T oon—k big = bng = {0, n>1. (3.1.1)

Proof. The statement can be found by the simple multiplication on generating
function of g-Bernoulli numbers (2.3.1). We have
B,(0)e,(6) = t + B,(t)

This implies that

Comparing t™-coefficient observe the expression.

Similar relations are hold for g-Euler and g-Genocchi numbers. If we do the same

thing to their generating functions, we will find the following recurrence formulae

15



n

n] (L Onk 2, n=0,
Z [k]q on—k _ cka T eng = {0’ n>o, (3.1.2)
k=0

n

(=1, @n—k 2, n=1,
2 [, e v ana =[5 5y (319

=0

These recurrence formulae help us to evaluate these numbers inductively. The first
few g-Bernoulli, g-Euler, g-Genocchi numbers are given as following. The
interesting thing over here is that, these values coincide with the classic values better
than the previous one. Actually, the odd terms of g-Bernoulli numbers are zero as
classic Bernoulli numbers and lead us to make a connection to a relation with

trigonometric functions.

boq:]_, bl,q__i’ qu_ 4[3q , b3,q:0
q(1+q)
eO,q == 1, el,q == _E, ezlq - O, e3'q = 8 )
q+1
Yoq = 0, 9I1q = 1, 92,4 = T 93,q = 0.

Lemma 3.2. The odd coefficients of the g-Bernoulli numbers except the first one are
zero, which means that b, , = 0 for n =2r + 1,7 € N.

Proof. It is the direct consequence of the fact, that the function

FO=3 oot =gt s =5 (Z9H) g
P! [n],! g =1 2 2\g()-1
is even, and the coefficient of t™ in the McLaurin series of any arbitrary even
function like f(t), for all odd power n will be vanished. It’s based on this fact that if
f is an even function, then for any n we have f™(t) = (=1)"f ™ (—t) therefore
for any oddn we lead to f™(0) = (—1)"f™(0). Since g,(—t) = (eq(t))_l, It
could be happen.

16



Corollary 3.3. The following identity is true
—byg=-1n>1 (3.1.5)

Proof. Since b,,_14 = 0 forn > 1, and by, = 1, simple substitution at recurrence

formula lead us to this expression.

Next lemma shows g-trigonometric functions with g-Bernoulli and g-Genocchi’s
demonstration. We will expand tanh, (x) and cot,(x) in terms of g-Genocchi and g-
Bernoulli numbers respectively

Lemma 3.4. The following identities are hold

(__ )n 2n
2n],!

tcotg(x) =1+ Z bpg——=——"tanh,(x)

(3.1.6)

(Zt)2n+1
Z 92424 Ton ¥ 211

Proof. Substitute t by 2it at the generating function of g-Bernoulli number and

remenmber that £, (2it) = e (it) Ey(it) = eq(it) ((eq(—it)) .

v QD" w2 2it
1—lt+2bn’q [n]':anq——B(Zt)— -
n=2 a n=o

[n],! gq(2it) — 1

Cteg(—it) ¢ (3.1.7)

- sing (t) _sinq(t)

(cosq (t) — ising (t))

= tcot,(t) —

17



Since tcot,(t) is even and the odd coefficient of b, , are zero, the first expression is

true. For the next one, putting z = 2it at (2.3.4) which is the generating function for

g-Genocchi numbers and we reach to

) = (2it)" = 2it)" 4it
21t+zgn,q [n],! =zgnq__6(2 it) = ;
n=2 T

- [n]g! gq(2it) +1
(3.1.8)
teq(—it)
- cosg(t)
In a same way, we reach totan,(t) =Xy, gn,qw. To find the

[2n]q!
expression, put x = it instead of x at tan,(x). This and writing g-tangent numbers

as the following, together lead us to the interesting identity, which is presented as

follow

tanh,t = —itan,(it) =

eq(t) —eq(—t)  e4(2t) — 1 Z N (~Dkezntt 1)kg2n+1
eq(t) +eq(—t)  £,(2t) +1 LA on + 1]q

And at the end,

(_1)k—122n+1
Ton+1,q = G2n+24q izl (3.1.9)

3.2 Addition and Difference Equations and Corollaries

In this section, by using the g-addition formula, we approach to the new formula for
g-polynomials including g-Bernoulli, g-Euler and g-Genocchi polynomials. This is
the g-analogue of classic expression for these polynomials. In addition, by taking the
ordinary differentiation and g-derivative, we will present some new results as well.
Next lemma presents the g-analogue of additional theorem.

Lemma 3.5. For any complex numbers x, y, the following statements are true

18



n
Bn,q (x, y) = z [Z]q bk,q (x®qY)n_k, Bn,q(x, V)
k=0

=, S B

k=0

En,q (x» y) = Z [Z]q ek,q (XEBq}I)n_k, En,q(x, y)
k=0
2 [k] = ;nq)kn g ()"
n
Gq(x,y) = Z [Z]q k.q (x®qy)n_k' Gn,q(x,¥)
k=0

= 2B, S e

k=0
Proof. The proof is on a base of definition of g-addition, we will do it for g-Bernoulli

polynomials and the remained will be as the same. It is the consequence of the

following identity

4 t" t
;Bn.q (X, J’) [n]q! = & (t) -1 &q (tX)Eq (ty)

had tn n—k tTL
= Z bn,q [n]q! Z(x®qy) qu (321)

This is the direct consequence of the definition of g-addition. Actually, g-addition

was defined such that to make g-improved exponential commutative, that means

according to this definition, we can reach to e, (tx)e, (ty) = 2 o(x®qy)" k%,
q:
because the simple calculation for the expansion of &, (tx) and &, (ty) respectively

shows
19



e (E)e. (1) = (z( L,q)n (tx)"><z( 1q>m(ty>m>

_ Z”;[k] (-1, q)k(nl » Dn-k X E}:];tn (32.2)

c n—k t"
= Z(x®qy) [Tl] "
n=0 a
Corollary 3. 6 For any complex number , we have the foIIowing statements

Brg(x) = Z [k] Z’n")k" £ bqx™™*,  Bpq(x,1) = Z ], 2’,?),;‘ £ Broa (%)

OEDY [Z]q(_;l#ek,qx”_k, Epq(x,1) = 2 [” = ;nq)k" £ Ee o (%)

k=0

Gy () = z [n (- ;nCI)kn kgk,qxn—k, G (2, 1) = Z [Z]q%gqu(x)
k=0

Proof. It’s easy to substitute y by the suitable values to reach the statements, first
put y = 0 then put y = 1, at the previous lemma complete the proof.

Actually, these formulae are the g-analogue of the classic forms, which are

Bux+ D) = ) () B, EnC+ D= () B, Gulx + 1)
k=0 k=0
-3 (e
k=0

Corollary 3.7. g-derivative of g-Bernoulli polynomial is as following

Dq (Bn,q (x)) = [nl, Bno1q () J;B”‘l'q(xq) (3.2.3)

Proof. According to the previous corollary, if we know the value of g-Bernoulli
numbers, then we can present g-Bernoulli polynomials in terms of them. Therefore,

by taking g-derivatives from the summation we lead to

20



n-1

— z [n’]q' (_1r Q)n—k bk xn_k_l
Lilklg In—k =11 2nk Tk

If we change the order of the summation, we have

PN Ut P o 1) A AR
Dy (Bng()) = zqkz[k]q![n—kq— 1! gt (L@ Dbgx™
=0

Il -1 (L@ekr, e
o2 (Z[k]q![n—k—l]q! gnk-1 Pka* ‘

k=0

[n — 1]‘1! (-1, q)n—k—l
[k]g![n—k—1],! 2n-k-1

bk,q (qx)n—k—1>

— [n]q Bn—l,q(x) ‘l'ZBn—l,q (xCI)

In a same way, we can demonstrate the g-derivative of E, ,(x) and G, ,(x) by the

following identities

Dq (En,q (x)) = % (En—1,q (x) + Epn_14 (XQ)) , ( |
3.24
Dq (Gn,q (X)) = % (Gn—l,q (x) + Gn—l,q(XQ))-

Next lemma shows another property of these polynomials, which we named them

difference equations.

Lemma 3.8. The following identities are true

_1’ _
_1'
Erg (1) — Eng () = 2 an)” (nlx" n=>0, (3.2.6)
_1’ _
Gn,q(x; 1) - Gn,q(x) = 2% [n]qxn—l n=>1. (327)

21



Proof. Since proofs of all statements are similar, we prove it only for g-Bernoulli

difference equation. This can be found from the identity

teq(t)
g(0) -1

gq(tx) = teq(tx) + gq(tx) (3.2.8)

t
g() -1

It follows that

S 3 [r], Chntp, oy Ll ZBq(x)

n=0 k=0 n=0

Equating the coefficient of t"™ completes the proof.

The following familiar expansions will be demonstrated to the means of g-calculus in

the following corollary

X" n ;\j ) B0, (3.2.9)
k=
- % Z Eo(x) + E, () |, (3.2.10)
k=0
1 n+1
x" = m Z (Tl ?C- 1) Gk(X) + Gn+1(X) . (3211)
k=0

Corollary 3.9. The following identities hold true

n

2" n+1] CLDnv1-k
n_____« (=1L @n+1-k
i _[n]q(_l;CI)n;)[ k ]q i1k Bra(), (3.2.12)

1
= Z["] kg )4 B ), @219
n\ =

22



n+1

2n-1 n+1 (-1, q)n+1—k
n _ —_—
TR THE WON Z_[ e | G

(3.2.14)

+ Gn+1,q (x)

Proof. Evaluate x™ at the difference equation (3.2.5) and use corollary 3.6 then the
last terms at the summation is vanished and equation is yield.

Lemma 3.10. The following identities hold true

C 1, n— n—
z k] = an)k “Biq (5, 3) = Bng(x,) = [nlg(x@q)" ", (3.2.15)
=0

n 1 - )
[Z]q(zn#Ek,q(x' V) + Eng(x,y) = 2(x®,y) (3.2.16)
k=0
i n (_1'q)n—k
[k]qzn——ka.q(x'y) Grg (6, 3) = 2[n]y (x®y)" (3.2.17)
k=0

Proof. The same technique that we used at (3.8), leads us to these expressions. In

fact, we will use the following identity

teq(t)

g () — 1 gq(tx) g, (ty) = tey(tx)g,(ty) +

t
Sq(t)——lgq (tX)Eq (ty), (3.2.18)

It follows that

OOy (<L e tn
2.2 Ky 5t BN oy

n=0 k=0

tn+1 had n

LD L Dk, t
- Z 2n Y k[n]q!+;B”’q(x'y)W'

q:

By equating the coefficient of t", we complete the proof.
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3.3 Differential Equations Related to g-Bernoulli Polynomials

1+a

The classical Cayley transformation z —» Cay(z, a) = 1_;, is a good reason to

motivate us to interpret the new formula for £, (qt). This result leads us to a new
generation of formulae, that we called them g-differential equations for g-Bernoulli
polynomials. Similar results can be done for another g-function. We will start it by

the next proposition.

Proposition 3.11. Assume that n > 1 is a positive integer, then we have

n

z k] bkq n-— qu

k=0

n-—
n q n - 1
- —qz [ ] by,qen- kq o 1 a5 bk,qen—k—l,q [n]q
k=0
Proof. By knowing the definition of the improved g-exponential as a production of

some terms, we can write

=1+ q5(1-q)7 1+(1-q)7
e =] | £ a0 =— — &
k=0 1= (1= )y 1-(1-q)3 (33.1)

= Cay (—%,1 — q) gq(t)

Now use this expression at generating function of g-Bernoulli numbers (2.3.1) and
multiplies it by itself,

1
1-qet)+1

B,(qt)B,(t) = <§; (qt) — qBy(t) (1 +(1-9q) %)) (33.2)

The last terms of the above expression can be demonstrated by g-Euler numbers, this

expression lead us to the identity that we assumed at the proposition.
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Proposition 3.12. For all n > 1, we have

2n

Z [zkn] bk,qbZn—k,q qk

k=0 q
Z[zn] = ;z?zk" % breq Lk — 114 (—1)%

1- - 1,q)2n 1
q( q)z 2n 1] (- ZZZ)klk biglk — 1], (1%,

2n+1
2n+1
Z [ nk ] bk.qbZn—k+1,q qk
q
k=0
2n+1 ( 1 )
2n+1 —1,q _
=4 z [ nk ] 22n—2k7-l|-1k+1 bk,q [k — 1]q(_1)k
k=0 a
(1 —q) 2 1,q)
Z n] 22n— an : bqu[k - 1]q(_1)k-

Proof. By knowing quotient rule for g-derivative, take g-derivative from the

generating function (2.3.1), also using (3.3.1) and the fact that Dq(eq(t)) =

% ( gq(qt) + &4 (t)) together, we reach

2+ (1 —g)t

2¢,(0(q -1 (4B, (®) — By (a0)) (3.3.3)
q

B,(qt)B,(t) =

Expanding the above expression, and equating t™-coefficient, leads us to the
proposition. Also we can do the same thing for q-Genocchi and g-Euler generators to

find similar identities.

Proposition 3.13. The following differential equations hold true

o __ (1 A-qeg®(< 4q"
2P0 =B s -5 (;4_ a _q)quk) (3.3.4)
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9 . o 4t (kg“ — (k + 1)q"*)
5250 = B, 0 0 (Z T ) (3.3.5)

k=0

Proof. First and second identity can be reached by taking the normal derivatives
respect to t and q respectively. We used product rule temporarily, and demonstrate it
as a summation of these expressions. (3.3.6) is the combination of the (3.3.4) and

(3.3.5).

aTf(t) a]?(t)
ot 1@ aq 17

(3.3.6)

AR AGING) (i 46(kq*™" — (k +1)g") — g*(1 - q))

— (1 — 2,2k
t t £ 4—-(1-qg)%q

3.4 Explicit Relationship Between qg-Bernoulli and g-Euler
Polynomials

We will study a few numbers of explicit relationships that exist between g-analogues
of two new classes of Euler and Bernoulli polynomials in this section. For this
reason, we will investigate some g-analogues of known results, and some new
formulae and their special cases will be obtained in the following. We demonstrate

some g-extensions of the formulae that are given before at [16].

Theorem 3.14. For any positive integer n, we have the following relationships

n
1 n _

Bn,q(x,:)’) = _Z [k] mk" Bk,q(x)
Zk_O a

(3.4.1)

k

k1 (=1,q@)k-j Bjq(x)

+ Z [] 2k—j mk—J En—k,q(m:V)
j=0 ~ 4
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= %i mk—n <Bk,q (X) + By g (x, %)) Ey_q(my).

k=0

Proof. To reach (3.4.1), let us start with the following identity

t
sq(t)——lgq(tx)gq(ty)
t (3.4.2)
__ ¢t Qw1 2 t
_gq(t)_lgq(tx). > .gq (£)+1.sq (Emy>
m

Now expanding the above expression leads us to

[e/0) tn
nZ;)Bn,q(x:y)W
C (-Lg), t" < t"
ZZEnq(my) 2, 2 [n]q_;Bn,q(x)Wq!

ZZEnq( J’) ] Z nq(x)[] =L+

We assumed the first part of addition as I; and the second part as I,. Indeed, for the

second part we have

ZZEnquny) ol Z nq(x)[]

10N\ -
"2 2l a5

n=0 k=0

On the other hand, the first part or I;, can be rewritten as

_1 0 i © n ( 1,9),_ (-1, Q- en
Il_E;E”'q(my)m"[n] ,ZZ o7 Bia() e ifnl,!

q n=0 j=0

= Sk (L@ Big(x) th
Z [k]q En—kq (my) ZO []]q 2k—j  mn—kmk—J [n]q! .
=

0 k=0

[N

1
2

S
I
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Now if we combine the results at I; and I, ,we lead to the expression that is equal

t0 Yo B (%, ¥) [;_]q' That means

> B
Bn,q(xry)_|
P [n]q.
1 v
n _
=522[k]qm" "\ Bra®) (343)
n=0 k=0
Skl (<L @i Big (@) (
L Yk-jPjq
+2; 2T i | Eneka M)
Jj=0

It remains to equating t™-coefficient to complete the proof.

Corollary 3.15. For any nonnegative integer n, we have the following statement

n _1’ .
BugGoy) = ) [k, (Bk,q (@) + (2+)" [k]qu_1> En-iq®).  (34.4)
k=0

Proof. This is the special case of previous theorem, where m = 1. It can be assumed
as a g-analogue of Cheon’s main result [22]
Theorem 3.16. For any positive integer n, the following relationship between g-

analogue of Bernoulli polynomials and Euler polynomials is true

n+1 k

E. (xy)= 1 Z 1 [n+1] Z[k] (=1, q)k-j Ej 4(x)
nq\ X%,y [n+1]q k_Omn+1—k k ¢ jq 2k—j mk—J

j=0

(3.4.5)

- Ek,q (y) Bn+1—k,q (mx)

Proof. Like the previous theorem, we start by the similar identity. In fact, we can

reach to the proof by using the following identity
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2 2 € (L) -1 t t
—eq(t) T gq(tx)g,(ty) = —eq(t) 1 gq(ty). i "; .gq (i) - 1.sq (me)

According to the definition of g-Euler polynomials, by substituting and expanding

the terms we have

z En,q(xr }’)#

n 1 n n—1
ZEM(y) t_ (mn;’,3 t ZBnq(mx) o

an@) Zgnqu) g =k

n_

Indeed,

100

——EE
t 4
n=0

[0e]

Z nq(mx) ]q!

n=0

n

:%22[ - e Erg 0B kq(’”")[th!

=0 k=0
© n+1
1 Tl+ 1 tn
=Z[n+1] Z[ ] mnti- kEkq(Y)Bnﬂ kq(mx)[ ik
n=0 qk=0 q!

In addition for I, we have

Tl

1w " O (-1, )n
1 oo
=22,

n=0

B, k,q(mx)Z[k] - ;k‘i)jk—j Ej;.q(}’)_. t"

Ko K
mnkmk=J [n],!

M:

by
Il
o

n+1

Ms

2j-k mnti-k [n]q!.

j
n+1 i1 (L @)k Exq(y) t"
T Buagatmn Y [J] T e
q £ titlg

0

S
1l

Combining I; and I,, and equating t™- coefficient together complete the proof.
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Theorem 3.17. For any nonnegative integer n, the relationship between g-analogue

of Bernoulli polynomials and Genocchi polynomials can be described as following

ooty Sl (B S5

(3.4.6)
- Gk,q (X) Bn+1—k,q (my)
n+1 k
_ 1 n+1 k1 (=1, @)k-jBjq(x)
Bn,q(x’y)_z[n_l_l] kzmn k[ ] ]ZO[]]CI 2k—j mk—J
(3.4.7)

+ By g (%) | Gpi1—kq(my)

Proof. At this theorem, we use the same technique to find a relationship between g-
analogue of Genocchi and Bernoulli polynomials, which is completely new.
Proof is straightforward. Like the previous one, first assume the following identity,

2t

m gq(tx) g, (ty)

L
= gq(tz)%sq(tx). (sq (%) - 1)%.#. &q (%my)

Now, substitute the generating function (2.3.4). A simple calculation shows that

;Gn,q(x,y)[i—;,
mEGnqm - Z(mlné?" tn iwmy) o

n

mz a7 Z Bug(m) T

30




By using the Cauchy product of two series, it can be rewritten

Z Gn,q(x, ) Tl
n=0
n b n

( 1, )n t t
mz<z [k v 1?271 L onk g )= Gnq(x)>[ ]q_Z)Bn,q(mJ’)W

n=
n
n

05l (Y1, S 600 g

n=0 k=0
o n+1
1 1 1 k1 (-1,¢) t"
=,Z;[n+11q;mn-k["Z | 2[] g} 000G | B eq m)

Now equating t™- coefficient to find the first identity. The second one can be proved

in a same way.

We will finish the chapter by focusing on the symmetric properties of the given
polynomials. In fact, part (b) at theorem (2.17) and definition of g-polynomials by
the generating function (2.3.1) leads us to the following proposition

Proposition 3.18. g-Bernoulli, g-Euler and g-Gennoci numbers has the following
property

_ e, = Gg. = (3.4.8)
ng — bn,q‘1 , q \2epq = €nq1! and q \2 Ing = Inq? e

n
Proof. The proof is based on the fact that [n],-1! = q_(Z)[n]q!. Since g4(2) =
€1(z), we have

q

(o8] (o8]

t t"
gg(®) —1 ; ™ [n],! Sq—l(t) —1- £ ™4 [n]g-a! ( )

Equating t™-coefficient, leads us to (3.4.1).
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Remark 3.19. The previous proposition, gives us a tool to evaluate the

corresponding values of b, ,-1 by knowingby, ;.
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Chapter 4

UNIFICATION OF g-EXPONENTIAL FUNCTION AND
RELATED POLYNOMIALS

4.1 Preliminary Results

We will define the new class of g-exponential function in this section. In fact, we
will add a parameter to the old definition. In this way, we reach to the unification of
g-exponential function and by changing this parameter; we lead to the different kind
of the g-exponential functions that defined before. Moreover, this parameter helps us
to lead to a group of new g-exponential functions as well. We will study the
important properties of g-exponential function, by taking some restrictions on this

parameter.

Definition 4.1. Let a(q, n) be a function of q and n, such that a(q,n) = 1, where q

tends to one from the left side. We define new general g-exponential function as

following
[ee] Zn
£q.a(2) = Z -a(q,n) (4.1.1)
o] [n],!
: ) (-1Dn
In the special case where a(q,n) = 1, a(q,n) = q\2/ and a(q,n) = —n - we reach

to e, (2), Eq(2) and g,(z) respectively.

At the next lemma, we will discuss about the conditions that make &, ,(z)

convergent. There are some restrictions, which have to be considered. Since g ,(z)

33



is the g-analogue of exponential function, a(q, n) approaches to 1, where g tends one
from the left side.

a(gn+1)

Lemma 4.2. If limy, .o, [ s
Ja(a,

| does exist and is equal to [ ,then &, ,(2) as a g-

exponential function is analytic in the region |z| < 171,
Proof. Radius of convergence can be obtained by computing the following limit

z"la(g,n+ 1)
[n+1],!

a(gn+1)
[n+1],'a(g,n)

[n],!

z"a(q,n)

|| (4.1.2)

n—->oo n—-oo

Then, for g # 1 we can use d'Alembert's test and we find the radius of convergence.

Example 4.3. Leta(q,n) =1, a(q,n) = q(Z) and a(gq,n) = q)” , then we reach
to, e,(2), E4(z) and improved g-exponential function &,(z) respectively. Then the
radius of convergence becomes — | pri infinity and — respectlvely where 0 < |g| <

1.
Now, with this g-exponential function, we define the new class of g-Bernoulli
numbers and polynomials. Next definition denotes a general class of these new g-

numbers and polynomials.

Definition 4.4. Assume that g is a complex number such that 0 < |g| < 1. Then we
can define g-analogue of the following functions in the meaning of generating
function including Bernoulli numbers b, ; , and polynomials B, ; ,(x,y) and Euler
numbers e, , , and polynomials E, , ,(x,y) and the Genocchi numbers g, ,, and

polynomials Gy, 4 . (x,y) in two variables x, y respectively

By=—— gqa(t) Z bnqa . |tl < 2m, (4.1.3)

n=0
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t

sq «(tx) €44 (ty) = Z Bngo(%,y) =, |t| <2m, (4.1.4)

gq,a(t)_ [ ] "
Fp=——e= ) engerry <7, 4.15
q Eqa(t)+1 4 b s (4.1.9)
: () 600 = Y Fugaten T, <2 (419
—_—— ¢ xX) € = X, V) ——, M, 1.
Eqa(t) +1 97 q.a\ty 4 nqa X,y [n],!
n
Goi=—— z |t <, 417
a eqa(t)+1 Inaay n],! (4.1.7)
2 o) ) = Y Ggaon) T, W <m @419
————— £,4(tx) £, 4(ty) = a6 Y)——, . 1.
Eqa(t) +1 "PET7 704 L T ]!

If the convergence conditions are hold for g-exponential function, it is obvious that
by tending g to 1 from the left side, we lead to the classic definition of these
polynomials. We mention that a(q, n) is respect to g and n. In addition by tending q

to 17, 4,,(2) approach to the ordinary exponential function. That means
bn,q,a = Bn,q,a (0), qh_>n11_ Bn,q,a (x,y) = By(x,y), qll_)l’{l_ bn,q,a = by, (4.1.9)
enga = En,q,a (0), qll)l’{l_ En,q,a (x, y) = En(x,y), qh_)r{l_ nqga = €n (4.1.10)

Inga = Gn,q,a (0), qanll_ Gn,q,a(x: y) =Gy (x, _'Y), qllgl_ Inqga = YIn- (4.1.11)

Our purpose in this chapter is presenting a few results and relations for the newly
defined g-Bernoulli and g-Euler polynomials. In the next section we will discuss
about some restriction for a(q, n), such that the familar results discovered. we will
focus on two main properties of g-exponential function, first in which situation

£q.a(2) = g4-14(2), second we investigate the conditions for a(q,n) such that

sq,a(—z)z(gq,a(z)) . A lot of classical results are found by these two
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properties.The form of new type of g-exponential function, motivate us to define a

new g-addition and g-subtraction like a Daehee formula as follow

n
(x®qy)" = z (Z)q a(qn—ka(g k)x*y"™* n=012,.. (4.1.12)
k=0

(x©qy)" =

NEE

(Z) algn—kalq x*(—y)" % n=012.. (41.13)
q
k=0

4.2 New Exponential Function and Its Properties

We shall provide some conditions on a(q,n) to reach two main properties that
discussed before. First we try to find out, in which situation g, ,(z) = £4-1,(2).
Following lemma is related to this property.

Lemma 4.5. The new g-exponential function ¢, ,(z), satisfy &, ,(2) = €4-1,(2), if

n
and only if q(Z)a(q‘l,n) = a(q,n).

n

Proof. The proof is based on the fact that [n],-:! = q_(Z)[n]q!, therefore

(o]
n

€4t ()@ = Z [n]zq_1! a(q-bn) = Z [j]q! a(qn) = ega(z)  (42.1)
n=0

Corollary 4.6. If a(q,n) is in a form of polynomial that means a(q,n) = ¥, a;q",

to satisfy e, o (2) = €,-1,(2), we have

n . n
deg(alam) =m=(3) =< (3)
(4.2.2)
Ajyk = Ay and k =0,1,...,m —j
Where j is the leading index, such that a; # 0 and for 0 < k < j,a, = 0.
Proof. First, we want to mention that /%, a; = 1, becuase a(q,n) approches to 1,

where q tends one from the left side. In addition as we assumed a(q,n) = X, a; q',

by substituting q* instead of g we have
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q(;l)a(q‘l, n) = q(;l)_m Z a;q" = a(q,n) = Z a;q' (4.2.3)
i=0 i=0

Now equate the coefficient of g*, to reach the statement.

Example 4.7. Simplest example of the previous corollary will be happened when

(2)
(g,n) = qL This case leads us to the following exponential function
oo n
L
gq.a(2) = Eq—l’a(q—l)(Z) = gg44(2) (4.2.4)
n=0
2 n
Another example will be occurred if a(gq,n) = Lo _ (+a)(1+a)-Atq ) Now use

2n 2n—1

i(i-1)
g-binomial formula (2.8) to reach a(q,n) =2in2?=o (rll) q 2
q

. As we expect,
where g tends 1 from the left side, a(q, n) approach to 1. This presentation is not in a

form of previous corollary, however q( )a(q ,n) = a(q,n). This parameter leads

us to the improved g-exponential function as following

£q(2) = g44(2) = Z ( q)n & g4-1(2) = €4(2) (4.2.5)

n=0

Some properties of g-Bernoulli polynomials that are corresponding to this improved

g-exponential function were studied at previous chapter.

Remark 4.8. It's obvious that if we substitute g to g%, in any kind of g-exponential

function and derive to another g-analogue of exponential function, the parameter

n
a(q,n) will change to (q,n), and q(Z)a(q_l,n) = B(q,n). The famous case is

standard g-exponential function

[ce

eq1(2) = Eqm1 o(q1) () = Z — Z z” =E(2)  (426)

0
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d@atg,m) = ¢ = pg,m (4.2.7)

Proposition 4.9. The general g-exponential function ¢,,(z) satisfy g, ,(—2) =

1
(eq,a(z)) ,if and only if

p—1
23 (3) (“Dralgn-Ba@l = (,) DPYa*@ e
per q (4.2.8)
a(q,0) = +1 wheren=2pandp =1,2,..
Proof. This condition can be rewritten as (19, 1)n =0 for anyn € N. Since
gq.a(—2)€q4(z) = 1 has to be hold, we write the expansion for this equation, then

Eqa(~2)eqa(2) = Z (Z (Z)q (—D*a(g,n — Ka(q, k)) =1 (429

n=0 \k=0

Let call the expression on a bracket as S 4. If nis an odd number, then

—k _
frosa = (1), O Saan = Deta )
q
n
- (%), (1¥atan—eta. 210
q
== Prg wherek =0,1,...,n
Therefore, for n as an odd number, we have the trivial equation. Since (n ; k) =
q

(Z) The same discussion for even n and equating z"-coefficient together lead us to
q

the proof.

Remark 4.10. The previous proposition can be rewritten as a system of nonlinear
equations. For instance, let write a(q, k) as ay, then the following system shows a

condition for ;.. We mention that aj, = 1 where g —» 1~ and a, = +1.
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2a,01 — (i)q aoayo =0

20,01 — 2 (;L)q aza, + (;)q ara, =0

A

2aq01 — 2 (?)q asa, + 2 (g)q azaz — 2 (g)q azaz =0

n n—2 . n n .
k26(,1051 -2 (1)q Ap_10y + 2 ( 2 )q Ap_ptz — -+ (—1) /2 (n/2>q an/, an;, = 0

For even n, we have ”/2 equations and n unknown variables. In this case we can find
a;, respect to "/2 parameters by the recurence formula. For example, some few terms

can be found as follow

( [ il
_1+q1
NG
4 3],!
4 ay = Z[Q]lqz <[2]qa3 - [432 )
_ (6 6\ 16\ (1+q 1\(I[4] [3]4!
<= (1), (), 3| ), (5 =) <2afz (121 ‘ﬁ))

The familiar solution of this system is a(q, k) = (_;;,f)". This a(q, k) leads us to the

improved exponential function. On the other hand, we can assume that all «; for odd

k are 1. Then by solving the system for these parameters, we reach to another
- - - - _1

exponential function that satisfies e, ,(—z) = (gq,a(z)) .

In the next lemma, we will discuss about the g-derivative of this g-exponential
function. Here, we assume the special case, which covers well known g-exponential
functions.

Lemma 4.11. If % can be demonstrated as a polynomial of g, that means

a(gn+1) k B K
a(@@n) Yk=o @ q", then Dq ( Eq‘a(z)) = Y=o Ak Eq.a (zqn).
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Proof. We can prove it by using the following identity

eq a(Z) = i a(q, i

(3]

n=1 n=0 k=0
(4.2.11)
no (an> m )
= z ay z a(q,n) = Z Ak €q,a (ZCﬁ) .
k=0 n=0 k=0
Example 4.12. Fora(q,n) =1, a(q,n) = q(g) and a(q,n) = —q)” the ratio of

“(qnﬂ) becomes 1,¢™ and ((1+ q")/2) respectively. Therefore the following

a(gn
derivatives hold true

gq(2) + g4(2q)
2

Dy (€q(2)) = eq(2) & Dy ((Eq(2)) = Eq(2q) & Dy (£4(2)) =
4.3 Related g-Bernoulli Polynomial

In this section, we will study the related g-Bernoulli polynomials, g-Euler
polynomials and g-Genocchi polynomials. The discussion of properties of general g-
exponential at the previous section, give us the proper tools to reach to the general

properties of these polynomials related to a(q, n).

-1
Lemma 4.13. The condition gq_a(—z)=(eq_a(z)) and a(q,1) =1 together

provides that the odd coefficient of related g-Bernoulli numbers except the first one
becomes zero. That means by, , , = 0 wheren = 2r + 1,7 € N.
Proof. The proof is similar to (3.2) and based on the fact that the following function

is even. | mention that the condition a(q,1) =1 and (4.2.8) together imply

that bqu'a = -z
t t t(ega®)+1
t ) . LA A 43.1
( ) = z nqa ! 1qa gq’a(t)—l-l_z Z(Eq‘a(t)—:l) ( )
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Lemma 4.14. If a(q,n) as a parameter of &, ,(z) satisfy “S('Tn:)l) = Yt ar g5,
then we have
m
k
Dq (Bn,q,a(x)) = [n]q Z 295 Bn—l,q,a (an> (4.3.2)
k=0

Proof. Use lemma 4.11 similar corollary 3.7, we reach to the relation. Moreover in a

same way for g-Euler and g-Genocchi polynomials we have

m

Dy (Enga() = Inly Y. @i Ensqa (xan) 433
k=0

Dq (Gn,q,a(x)) = [n]q Z Ay Gn-1,qa (xq%> (4.3.4)
k=0

4.4 Unification of g-Numbers

In this section, we study some properties of related g-numbers including g-Bernoulli,
g-Euler and g-Gennochi numbers. For this reason we investigate these numbers that
is generated by the unified g-exponential numbers. We reach to the general case of
these numbers. In addition, any new definition of these g-numbers can be
demonstrate in this form and we can study the general case of them by applying that

two properties of g-exponential function which is discussed in the previous sections.

As | mention it before, all the lemma and propositions at the previous chapter can be
interpreted in a new way. The proofs and techniques are as the same. Only some
format of the polynomials will be changed. For example the symmetric proposition

can be rewritten as following

Proposition 4.15. If the symmetric condition is hold, that means &, (2) = €4-1,(2),

then g-Bernoulli, g-Euler and g-Gennoci numbers has the following property
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n n

- -6 ()
q \2byga=bpg14, @ \Penga=eng1gand q \2)Gna0 = Gngta (4.4.1)
Since the proof is similar, it is not given. The symmetric conditions for &, ,(z) can

be hold from 4.5 to 4.8.

Another interesting property of these numbers can be found in the next lemma. We
can demonstrate all g-Bernoulli numbers by knowing their values where g belongs to
the interval of [0, 1]. When q is a real number, we can assume this interval as a space

of the range of the probability random variable.

Lemma 4.16. If the symmetric condition is hold, that means g, ,(2) = €,-1 ,(2),
then related g-Bernoulli, gq-Euler and g-Gennochi numbers can be found if we have
the value of them for 0 < |gq| < 1.

Proof. If 0 < |q| < 1, then by the assumption of lemma, the value of b, ; 4, €n g«
and gn q,, are known. If g is outside of this region, g~ * will be inside of this region

and by using the previous proposition we can compute the value of these numbers.

In the middle of the last century, g-analogues of the Bernoulli numbers were
introduced by Carlitz [4]. The recurrence relation that he used for these numbers was

as following

m
kZo (7‘1) Beq"*" = Bn = {(1) 2 i }t (4.4.2)

In the next proposition we will give the recurrence formulae for the related g-
Bernoulli numbers and another g-numbers as well. These presentations are based on
the generating function of these numbers by using the unification of g-exponential

function.
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Proposition 4.17. Related g-Bernoulli numbers, g-Euler numbers and g-Gennochi
numbers to the new g-exponential function can be evaluated by the following

recurrence formulae

n
n 1, n=
Z (k)q a(qn = k)biga = bnga = {0, n>1, (4.4.3)
k=0
n
> (0) a@n—eqqq + S (4.4.4)
k qa an rga T Cnga = 0, n>0, 4.
k=0
n
n (2, n=1,
Z (k)q a(g,n—k)grga+ Inga = {0' n>1 (4.4.5)

&
I
o

Proof. Related g-numbers are defined by the means of the generating function at
(4.1.3), (4.1.5) and (4.1.7) respectively. If we multiply each side by the
corresponding terms and using Cauchy product of the series, we reach to these

recurrence relations.

Remark 4.18. The previous proposition can be used to evaluate these numbers one
by one. In this case, by assuming that a, = a(q,0) = 1, few numbers of related g-

Bernoulli, g-Euler and g-Gennochi numbers can be obtained as following

a, 1 < as (“2)2[3]q>

1
boga =5 b=~y P = e\ "7 Y ey
I o 2 R R E A W A P

a, 1 (sz)z[z]q
€o0,ga = 1, €1,qa = _?' €2q,a = E T —ay |
q+1
Joga = 0, I1,qa = 1, 92,90 = — 2 aq.

If we continue to evaluate the sequence of g-Bernoulli numbers, we can see that the
lemma 4.13 hold true. That means the odd coefficients of the general g-Bernoulli
numbers are zero, in a condition that the related g-exponential function has the

symmetric property. In addition, by knowing the recurrence relation of the g-
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Bernoulli numbers we can reach to the corresponding g-exponential function. For
instance, the g-Bernoulli numbers that were introduced by Carlitz can be traced in a
same way. By comparing the terms we can see that

[n—klg![k],! n!

G K gt (4.4.6)

a(g,n—k) =

Now, we can also find the corresponding g-exponential function such that this
relation is hold. This form of unification leads us to a lot of new g-exponential

function with interesting properties.

This unification of g-exponential function gives us a tool to redefine the generating
functions according to this g-exponential function. In addition we can change the
form of generating function to lead a general class of these polynomials as well.

For instance, we can assume the following definition.

Definition 4.19. For the polynomial of a degree m B, (t), we can define the sequence

of numbers {y,,} by the means of generating function as follows

_h(@®
qa(D £ 1 Z Yn

In the special case, when the degree of B, (t) is one and simply is equal to t, 2 and 2t

(4.4.7)

we can reach to the g-Bernoulli, g-Euler and g-Gennochi numbers respectively. In a
case that the degree of B,,(t) is higher than one, these numbers can be demonstrated

as a combination of these numbers.

44



REFERENCES

[1] Kwa sniewski, A. K.(2001). On g-difference equations and Zn decompositions.

Adv. Appl. Clifford Alg. 11, 39-61

[2] Kupershmidt, B. A. (2000). g-Newton binomial: from Euler to Gauss. J. Nonlin.

Math., 244-262

[3] Bernoulli, J. (1713). Ars Conjectandi. (The Art of Conjecturing)

[4] Carlitz, L. (1941). Generalized Bernoulli and Euler numbers. Duke Math J. 8,

585-589

[5] Carlitz, L. (1961). The Staudt-Clausen theorem. Mathematics Magazine 34, no. 3

[6] Cieslinski, J. L. (2011). Improved g-exponential and g-trigonometric functions.

Applied Mathematics Letters, Volume 24, Issue 12, 2110-2114

[7] Ernst, T. (2000). The history of g-calculus and a new method. Dept. Math

Uppsala Univ

[8] Euler, L. (1750). Consideratio quarumdam serierum quae singularibus
proprietatibus sunt praeditae. Novi Commentarii Academiae Scientiarum

Petropolitanae 3, pp. 10-12, 86-108

45



[9] Jackson, F. H. (1904). A basic-sine and cosine with symbolical solutions of

certain differential. Proc. Edin. Math. Soc. 22, 28-38

[10] Cherednik, I. (2009). Whittaker limits of difference spherical functions. Int.

Math. Res., 3793-3842

[11] Cie’sli'nski, J. L. (2009). New definitions of exponential, hyperbolic and

trigonometric function on time scales. preprint arXiv: 1003.0697

[12] Katz, V. (1998). A History of Mathematics-An Introduction. Addison-Wesley

[13] Kim, D. (2013). A note on g-Frobenius-Euler numbers and polynomials. Adv.

StudiesTheo. Phys., vol. 17, 18, 881-889

[14] Abramowitz, M. (1964). Handbook of Mathematical Functions. New york

[15] Cenkci, M. (2006). g-extensions of Genocchi numbers. J. Korean Math. Soc.43 ,

183-198

[16] Luo, Q.M. (2006). Some relationships between the Apostol-Bernoulli and

Apostol-Euler. Comp. Math. App., 51, 631-642

[17] Mahmudov, N. ,& Momenzadeh, M. (2014). On a Class of g-Bernoulli, g-
Euler, and g-Genocchi Polynomials. Abstract and Applied Analysis, Volume

2014 (2014), Article ID 696454, p 10

46



[18] Atakishiyev, N.M. (2008). A discrete quantum model of the harmonic. J. Phys.

A: Math. Theor. 41, 085201 (14pp)

[19] Pint"er, H. M. (2004). Remarks on some relationships between the Bernoulli and

Euler polynomials. Appl. Math. Lett. 17, no. 4, 375-380

[20] Sprugnoli, R. (2006). An Introduction to Mathematical Methods in

Combinatorics. Firenze(ltaly)

[21] rudin, w. (1964). principal of mathematical analysis. united state of america:

McGraw-Hill

[22] Cheon, G.S. (2003). A note on the Bernoulli and Euler polynomials. Appl. Math.

Letter, 16, 365-368

[23] Kim, T. (2006). g-Generalized Euler numbers and polynomials. Russ. J. Math.

Phys., 13, 293-298

[24] kac, v. (2000). quantum calculus. springer

47



