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ABSTRACT

In this study we discuss the integral representation of the g-analogue of two special
functions, g-GF (gamma function) and g-BF (beta function). This discussion gives a
very attractive g-constant.Also, we get the proof of the famous Jacobi triple product
which contains the identity of Jacobi .After that we obtain a new proof for
Ramanujan’s equation. Furthermore, we introduce a new generalization of gamma
function and beta function that are: the (p,q)-GF and the (p, q)-BF. Finally, we

obtain an equivalent definitions for (p, q)-analogue for GF and BF.

Keywords: g-Gamma Function, g-Beta Function, (p, q¢)-Gamma Function, (p, q)-

Beta Function.



Oz

Bu c¢alismada, iki 6zel fonksiyon, g-gama fonksiyonu ve g-beta fonksiyonunun
integral formu tartisilmaktadir. Ayrica, (p, q) -gamma fonksiyonun ve (p, q) -beta
fonksiyonun yeni bir gama fonksiyonu ve beta fonksiyonu genellemesi elde
edilmistir. Son olarak, gama ve beta fonksiyonlar1 i¢in (p, q) -analog i¢in esdeger

tanimlar verilmistir.

Anahtar kelimeler: g-gama fonksiyonu, g-beta fonksiyonunun, (p, q) -gamma

fonksiyonun, (p, q) -beta fonksiyonun.
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Chapter 1

INTRODUCTION

Thomae introduced the (-analogue for Euler’s GF, Fq(n), by the following

formula

C@-q)y

= > 0<g<l t>0, (1.1)
(1-a)

q(n)

also, Jackson gave such a representation for I', (n)

Here and in the next parts of the study we consider the following equations

(s+t); =(s+t)(s+qt)...(s+q”]‘[)zﬁ(s+q"t), if nez,. (1.2)

(L+s); =ﬁ(1+ q"s). (1.3)

(1+s)”=(1+—s)qw, if neC. (1.4)
‘ (1+q“s)q

Note that, the infinite product (1.3) is convergent under our assumptions on (. Also,

the formulas (1.2) and (1.4) are consistent.

The authors sometimes avoided using the (-integral representation of the g-GF

despite what has been written about g-GF and its applications is more extensive.



Actually, it is not totally right to use (—integral representation as a rule. Here, we

introduce the first correct integral representation of ', (n)is

Ty (n)=[; X B dx

(1.5)

Now, we want to introduce the two types of (—analogue of the EF (Exponential

Function) are

X < j(j— XJ e}
Eq=2 /0" = (1+ (L-0)x);.

= [1]

0

x! 1
J_ZO[J]!‘ @-@A-q)x);

X
eq

The (—integral is given by the following notation

[0 £00d,x=(1-q) Y ba" f (boa"),

n=0

The q—BF was defined by Jackson and Thomae as

B (nt T (M, (1)
. (N, )—m-

and the(—integral representation of BF which is given by Euler’s is

B, (n.t)= j:x"*l (1—qx);_l dyX if n,t>0

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

but Jackson gave a different—analogue of integral representation for BF which

defined by

B(n,t)= J':ngx

1+x)™

(1.11)



Next, we present a (—integral representation of I’ (n) depend on the g-EF e;, and

present a (—integral representation of Bq(n,t)for (1.11). Futhermore, the two

representations are depend on the following important function

K (z,n)= 2 [1%)” (e 2), (112)

where this is a —constant function in z, it means that

K(gz,n)=K(z,n).

Moreover, for any n is an integer and it must independents on z, and it’s equivalent

n-1)

to q”( . On the other hand, if n €(0,1) this function does depend on z, while for

these n one has

H . __ 5N n-1
nggK(z,n)_z +2z"

Now we define our integral representations as

ol AL-G) 4
l“q(n):K(A;n)J.0 x"e."d, X (1.13)
and
B, (nt) =K (An) [ x ——d.x (1.14)
q ! ! 0 (1+X):+t q’ '
The improper integral is described by
[ 9@d,z=(1-0) Yo" @ (1.15)
. 9)0,z= quZquA, :



The integrals in the two formulas depend on A when K(A,n) dependents on A.

Jackson replaced “K (A,n)” by «q""Y2> in his formula which is acceptable only
for an integer n_

Remark: The integral representation of I’ (n) can be written also by using the

-t
improper integral (when E;™ =0for t<0)as

of(1-0) g
L ()= XEdyx, (1.16)
In Chapter 3, we obtain the integral representation of g—BF by using formula(1.14)
which is obviously symmetric in n and t .Also, we will get a g-analogue of TI
(translation invariance) for some improper integrals. Also, we want to prove formula

(1.13) which is corresponding to a family of triple product identities
(1—9j (1-2); (1-q); = i q (=) 2", (1.17)
Z), K=—o0

and formula (1.14) is corresponding to Ramanujan’s identity

ey 0[id ] ama;ara;
&(1-b), ~ (1-b); (1-ala), (1-x); (-b/ax); (118)

q
Also, we want to show that the following identity is corresponding to the symmetric

integral representation of the g —-BF

(1-q/ a):’ (1—q): (1—bc/q):
(1—0):: (1-b/a)’ (1-ac/q)’ ’

o0
q q

- (1-a),(1-a/a) (1-a) (1.19)
& (1-b), (1-e)  (1-b) |

a gla 8§

Finally, we will discuss the(p, q)-analogue of GF and BF and obtain the relation

between (p, q)-GF and (p, q)-BF.



Chapter 2

THE q-GAMMA FUNCTION AND THE g-BETA

FUNCTION

2.1 Definitions and preliminary results
In this study, we suppose 0 < q <1,where g is a fixed number.

Definition 1: The q—derivative of a function f is

(0,1)(1)--HE1E),

~ (a-1)z

Definition 2: The definite integral of Jackson for the function £ is

[0t (2)diz=(1-0a)cX q"f (ca),

k>0

Definition 3: The g—analogue of the product rule is

D, (9(2)h(2))=h(2)D,g(2)+9(a2) Dh(2),

Definition 4: The g-IBP (integration by parts) rule is given by

J,9(2)D,f (2)d,2= T (b)g (b)- ()3 (0)-,  (@)Dy0(2)d,2

Definition 5: The Jackson integral in a basic interval [a,b] is given by



J f(@dz=[ (2] f (22,

also, we define the improper integrals as:

.[:/Ag(z)dqz =(1—q)zqk%@l (qu (2.1.1)

ke
Remark: Notice that, the series in equation (2.1.1) in order to be convergent; f
must be satisfy the following conditions
|f(2)| < Dz#,vz € [0,¢), forsome D > 0,8 > —1,& > 0.

and

|f(2)] < Cz% Vz € [N, ), forsome C > 0,a < —1,N > 0.

Generally, if the two conditions are achieved, then the value of the summation in
(2.1.1) is dependent on the value of the “constant A». To make the integral
independent of the (-antiderivative of the function f should be has limits for (

z —> 0andZ — +0).

The following formulas are the reciprocation relations for one of them

ol A oA ]l 1
[ f(xdx=] = f (;jdqx, (2.1.2)
If u(x) = ax?, then

Lu((:)) f(u)dyu= Lb f (u(x))Dun(x)dqwx,



Definition 6: For any positive integer number, the g — analogue of numbers is given

by
:l-_qt t-1
t|= =1+q+..+ ,
[t] =g v g
. 1-q" . .
Generally, we will refer to [n]= g until for a non-integer n.

From the definitions (1.2), (1.3) and (1.4) of (s +t); we get the following lemma
Lemma2.1.1 Letn,t,s € Z, and a,b, A,BeR.

1. D,z°=[s]z"™"

2. D, (Ax+b) =[t]A(Ax+Db) "

3. D,(a+ Bx)tq =[t]B(a+ qu)t[;1
1

4. D, (1+Bx), =[n]B(1+Bax)

n—
q

AX' AX AX'
5. D = =[t] - B(]-[t)——=
TABx) (1B (1+Bx)"
k k-1 k
(1+ Bx)q (1+ qu)q 1+ Bx)q

7. (L1+ x):+j =(1+ x)';I (1+ q"x);

8. (1+x)°= 1 -
’ 1+q‘3x)q
t
i 1+ x n+t 1+an i
9 (1+q‘x)q_( )qt =( t)q( +x)q,
(1+x)q (1+x)q



Proof (1):

o, H@-t(@) qz-z

“ (@-Dz  (a-1z°
G M)
= =77 —
29-)  (9-Y)
=[s], 2"
Proof (5):
oA (180D, (AX)-(AqX)D, (14 )
T+ Bx) (1+Bx)" (1+ Bax)’
[t] AX(1+Bax)!  [n]BAq'x' (1+Bagx),

C[axt

(1+Bx)] (1+Bax)]  (1+Bx)] (1+Bgx)

n n
q q

[n]BAg'x" (1+ qu):_1

(1+Bx)

n
q

(1+Bg"x) Ax'™*

(1+BX)! (1+Bax). " (1+Bq"x)’

n
q

BAQ'x'

[

(1+Ba"x)(1+Bx)

(1+Bx)""

n
q q

t]| AX'" (1+ Bg"x)—[n|BAg'x"
[t] Ax (1+Bq"x) -[n]BAq

Athl

q

=[t]-([t]a"~[n]a")

(1+Bx)

(1+Bx)

n+l

q

ABX'

q



1

n+1

" (1+Bx)

q

AX[t] - BAX ([n] —[t])m.

q

Where:[t]q" —[n]q" ==—q" - —q,

N+t an _ n+t t qt_l _(qn_l)
_q -9 +q :( ) =[t]-[n].

q-1 q-1

Proof (6):

i k K :
D, (1+ Ax)" 1 (1+Bx), D, (1+Ax), _—(1+ Ax)_q D, (1+ Bx);
q q (1+ Bx) (1+ qu); (1.,. BX); )

A[K](1+ Agx); " (1+Bx), - B[ j](1+Bax). " (1+ Ax)
(1+BX)! (1+ Bax)

k
q

[K]A(1+ Agx); ™ [i]B(1+ Bax), " (1+ Ax);
(1+ Bax) (1+Bx); (1+ Bax)

j-1+1
q

[K]A(L+Aax), * [i]B(1+Ax)
(1+Bax) (1+Bx)

k
q

j+1

i
q q

Proof (7):
(1+ X)z” = (1+x)(1+ax)...(1+ %) (1+ ¢*x) (1+ ¢**x)...(1+ g* %),

=(1+ x): (1+9*x)(1+0ag*x)...(1+9’"g"x),

=(1+ x): (1+ qu); ,

We defined the (—analogues of the EF in chapter (1) .We proved the equivalence

between the infinite product expansion and the SE (Series Expansion) of e; and E;



(where the two expansions converge in the domain) after we take the limit in the

Heine’s and Gauss (—binomial formulas for n — oo.

Lemma 2.1.2 The q—EF properties are given by
(1) (i) Dy, =6,

Proof:

(ii) D.E}=EX.

Proof:

> - 1 > - _ 1
DqE; _ Zoqm(m l)/2Dqu _ qu(m l)/2Xm 1

n n+l)/2

o ( o
_N4 (nl)lqu
S e

n

_ - n(n-1)/2 (qx)n :qu
nzz(;q [n]q! q'

(2) ;B =Ee," =1,
Proof:

1
We know: € =————,

(1-(2-a)x);
and: E.' =(1—(1—Q)X):,

10



Then from these we get:  e/E.* =1.

2.2 The Definitions of —Gamma Function and g—Beta Function
Definition 1: For n,s >0, the GF and BF which introduced by Euler are defined in

the following formulas

F(n):j:zn_le‘zdz. (2.2.1)
B(n,s):jolznl(l—z)Sl dz, (2.2.2)

o 2.2.3
B(n,s) IO (1+Z)n+sdz. (2.2.3)

Note that (2.2.3) comes from (2.2.2) after changing the variable z=1/(1+y). B(n,s)

is symmetric in n and s we can see that clearly from the equation (2.2.2).

The most important properties of these functions are
[(s+1)=sI(s), I'(1)=1 (2.2.4)
B(s,n)=T(s)I'(n)/T(s+n). (2.2.5)
We are concerned in the (—analogue of these functions in this study. They are

clarified in the next definitions.

Definition 2 : (i) For s >0, , the (—GF is given by the following equation
V-9 1o
T, (s) :IO 2"'E d,z, (2.2.6)

(i) The g-BF for (n,s>0)is given by

1 5
Bq(n,s):Lzr‘*l(l—qz)q ldqz, (2.2.7)

11



where B, (n,s)is the g-analogue of BF and T, (s)is the g-analogues of the GF, if

q - 1,then they reduce toB(n,s) and T'(s)in that order and they satisfy the

properties analogues to the equations (2.2.4) and (2.2.5). This is explained in the next

theorem.

Theorem 2.2.1: (a) The relation between (-analogue for GF and BF are stated in the

following two formulas

B, (s,0)

I, (S) = (1_q)n !

(b) I, (s)can be expressed also as

B s1 1
I, (s)=0-q) W
specifically one has

Ty (1+s)=[s],T4(s),¥s>0,I(1)=1.
By using the definition of the g-GF we want to prove this property as

I, (1+s)= J.:/H) X°E,%d, X,

11

x=1/1-q 4 s -
= Jr[s”0 XE,"d X,

vi-q s —X ST —X
——jo x'd,E" =-XE,

Since, Eg =1 E;M‘q =0, we have

T, (s+1)= [s]ﬂll_q X E,%d,x =[s]T, (s),

and

12

(2.2.8)

(2.2.9)

(2.2.10)



Proof: a-(2.2.8)

1 n-1 0
Bq(n,oo):Lx (1—qx)q d,X
Now by formula
Ej =1+ (1-q)x);

We have:

B, ()= I:x”‘lEgl 'd. x

q

—gx
—q

Let x=(1-q)y then dx=(1-q)d,y

n

B,(n.)=(1-a)" [ (y) E;¥(1-a)d,y,

nopVg g
=(1-q) jo y 'E;"d,y,

~(-a)'r, ().

We derive two recurrence relations for B, (n,t)from g-IBP and using lemma 2.1.1,

we have

Forany n,t>0:

[ —

(i()B,(n+Lt)=B, (n,t+1)[1,

[t]

Proof:
1. t-1
Bq(n+1,t):J'0x (1—qx)0| dgX,
Let f(x)=x",g(x)=(1-x),.d,g(x)=—[t](1—ax), ", then apply q-IBP

13



1

—[t] jo X" (1- qx)tq_l d,x=- [n”ol(l— qx);x”’ldqx

—

n

t]’

[—

1 n _
.[0 X (1—qx)i1 ' d,x =B, (n,t+1)

—

(i) B, (n,t+1)=-q'B,(n+Lt)+B,(n,t),

Proof:

B, (nt+1)= [ X" (1-x)| dx,

_ I: X" (1-gx) " d,x :j: X" (1~ qx);_1 (1-q'%)dx,

q

. _ 1 _
jox 1(1—qx);ldqx—qtj'0x (1—qx)tqldqx,
=—q'B,(n+1t)+B,(n,t),

Now from (i) and (ii) we obtain

B, (n,t+1)=B,(n,t) [t[i]n]

Proof:

B, (n,t+1)=-q'B,(n+1t)+B(n,t),

) (1) B, (n),

:—q m

B, (n,t+1)+mthq (nt+1)=B(n,t),

[t]

14



Slncqu(n,1)=I xn_ldqx=ﬁ,
and

N
Bo(Mm2)=p g Be (M) =1y e
We get

For n > 0 any positive integer t

W21 )Y
[n][n+1]..[n+t-1] (qq“_—llj(q;q_—lljm[q”g‘jl—lj

(1-9), (1-q);"
(1_ q):+t—l

Bq(n’t)z

(-a) -
(t-a7),/(t-0) .

(2.2.11)

n+t-1
q

where (1-0)

_ n-1 n-1.\t Nt (l—(.]):+t71
=(1-q); " (1-q 1Q)q and(1-q )q=( —

When we take the limit for t — oo in the expression (2.2.11) we obtain

B, (n,%)=(1-q); " (1-q).

15



We want to prove (b-(2.2.10))

-1

B,(s.0) _(1-a)(1-a);" _(1-a),

I (S): s - s-1"
q (1-a) (1-a) (1-a)"
r,(nr,(t) . L
We are left to prove B, (n,t)= ﬁ (is true for any positive integer value
q n+

9

(1-a) (1-a)," @-q)"" @-q)"
(1-a)y™  @-q) (@1-q)"

B, (nt)=(1-q)

1 n-1 1 n+t-1 1
=(1-9), ——=(1-q) 1(1-a) T
T T (1) (L-a)""
1
= r (u)r
e O ()
The left hand side of (2.2.9) can be written like
1 _
Bq(n,t)zj'0 x”*l(l—qx);ldqx,
1-qgx
=J'1x"’1 (-9 )qoo d.x,
©(-ay)
Now, by apply q-integral formula we get
-0, = () a0
(1-a'), = (L-a'a),
i( k”) L _, (where b = q", ¢ = q°)
k=0 (1—ch)

q

and the right hand side of (2.2.9) as

16



1 - -
= ~(1-0q)(1-q); (1-9™) ,Let(d = q",c = q")
-, o) e

q

1 * 00
~(1-c); (1-d); (1-cd), (1-a)(t-a),

It can be considered the two equations as FPS (formal power series) in g with CRF

(coefficients rational functions) in ¢ and d.[J

2.3 The analogous definition for g~Gamma and q-Beta Functions
We obtained the definition of T(s) in the former section from equation (2.2.1) by

replacing the integral with the function e with its g—analogue E;* and Jackson

integral.

Now, we will explain a new function in the following way where (4 > 0)

ool A(l-q)

A
yg )(n) = L X"e, d,X. (2.3.1)
After we take the g—analogue of the integral equation (2.2.2) we obtained the
function B, (n,t) We will to explain the g-analogue for the integral term in equation

(2.2.3). Hence we define it as

win X"

ﬂ?(WU:L (2.3.2)

q

In this part, we want to show that the functions 72‘\) (n)and ,BZA) (n,t)are related to q-

analogue of GF and BF in that order .We will to use the reasoning in the results of

17



theorem (2.2.1) to »\” (n)and " (n,t).Firstly, in the definition of 8" (n,t)take

the limit t — oo and use the infinite product expansion of e; ,then replace x by y(1 —

q).We obtain
(A) lA X"t (A n g
Jip (n,w)_jo 4d(1+x)°o qx_jo x" e, x,
q
(Where; — e ¥*-ais the infinite product expansion of e;)
(1+x); ‘

Now change the variable x=(1-q)y, d,x=(1-q)d,y in the right- hand side we

get:

oo/A(l—q)

ﬁgA) (n,oo) _ (1—Q)J.:/A(l_q)e;y ((1_q) y)n_ldqy _ (1_q)J‘O e(;yynfl (1—Q)n_ldqy,

A(l—q

) v, one
e;’y"d,y,

~(-a)' [

7o (n)= By (ne0), (2.3.3)

Here we want to obtain the recursive relations for yff) (n)and ,BgA) (n,t)

I A(l-q)
ygA)(n +1) :_[0 i x"e,"d,X. (Now apply q-IBP)

Let f(x)=x",d,9(x)=¢,"d,x then g(x)=—€,"

J-oo/A(l—q) oof A(1-q)

x”eaxdqx:—[n”

0

-, "X"d X, (lety =0x,d,y =qd,X)

0

1aa-a)(y " y
0, —q _
") e

q

18



= MJ-OO/A(l_q) yn—le;)/dq y,

=[n]a "y (n).

we get: 7.7 (n+1) =g ™" [n] 77 ().

We used here the fact that x”e;X resort to zero as x —0and X —>+ . Since
]/E]A) (1) =1, then we can the following way (for all positive integer t and A>0)

@y (0 =[t-2t=r 1) (234)
Proof:
Since 7. (1) =1.

-n ~(A

then by 7% (n+1)=[n]q"7{" (n). we get

A @)= 107 )
A0 #2A" @)
A 0= g 2 [n-1= e -1

qn(n—l)IZy(A) n)=[n-1]!=T,(n).

q

Now consider the function ﬂgA) (n,t)then we get for n,t >0

19



o Il

[n+t]

A (n+1t)= 4" (nt)g

Proof:

wl A X"

(A)
n+1t)= —d x.
ﬂq ( ) jo (1+X);1+t+1 a

1 nro/A(qx)" [n +t]d

= n+t+1 qX'
[n+t] 0 (1+x)q
1 n+t
q_nJ. ( ) 4”“(1 x. (because D, et [ n+]t+1)
[n+t] "1+ 9) (l+x)q (1+x)q
Now apply (-1BP to find this integral
1 wn 1 1 ol A X"t
= M D X"d x= " n X
[n+t]q L (L+x)" [n+t]q 0 [](1+x):” !
n
=" (nt)g™ [rL]t]. (2.3.5)
For n =1 we have
1 (2.3.6)
ﬂ ( ) .[0 1 X)Hl qX m =
Now, fort > 0,n € Z, we get
1-9), d-q
R
Proof
(A) 1
1 —.
For n=14, (Lt) i
(A) 4,1 1
2,t)=q" = :
P (2029
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A 1 1 1 2 [n—1]
ﬁg )(n,t): q1+2+...+(n—1) m[t"'l] [t+2]m[t+n—1]’

1 [n—1]!
g2 [t+n-1]1

- ()
qn(n 1)/2ﬂq (n,t): -

We also have

Proof:

ol A 1

(A) n-1
n,t +1)= X ﬁd X,
IBCI ( ) J.O (1+ X)q t+1 ¢

qt wA 1 n+t-1 1
= n+t{x"™ " —d X,
[n+t] J‘O (qx)t[ ] (1+X):+t+l q

of A

= q I ! X d x
[n+t]70 (qx)t ‘ (l+x)n+t o

n+t n+t-1

here D, ————=|n+t|———.
(W ere q (1+ X):+t [ ](1+X):+t+1

21

by lemma 2.1.1 (5))
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Now from g-IBP we have

1 wlA 1 1
_[n+t]th'0 X tWDquqx’

[n+1] (1 x):H ‘
n+t] I ST ):+t o
-8 (nt)q! [n[:]t]. (2.3.8)

We need to compute B (n,1)

ol A

(A) n-1 1
n,l = X 4n+d X,
:Bq ( ) IO (1+X)q 179

_1 [ D,x qux (by lemma 2.1.1 (5) ) (2.3.9)

0 4 (

We have to be careful when we use the FTQC to calculate the right-hand side of

n

(2.3.9), and the limit of the function F(x)= does not exist when X —>+00

(1+ x)

.In contrast, by definition of Jackson integral and g-derivative, we get

N
! j— lim F[q—j.
Aq N > A

[ DF (x)dx = lim F[

22



We take the limit along the sequence of integer numbers N Then we obtain from

(2.3.9)

A 1 . NS 1 =\
ﬂg)(s,l)=m£,m0(Aq ) [1+ Aqu } . (2.3.10)

Let K(A, S) is the limit in (2.3.10), and using Lemma 2.1.1 (10) to get

a"Y
K(A;s)=A° hI‘iﬂ]@qNS [HTJ ,

q

S N
=A (1+1) lim g™ (l+q) ;N,(by using lemma 2.1.1(10))
A a N—o A a (qs

s 1+gA)"
=AS(1+lj lim g™ ( )qN,
A qN%oo
q

1+9°A
( )

s (1+qA) s
:As(1+gj &:A{Hij (1+an),,

A q (1+ qlﬁSA) q

q
1
(1+A)

s 1 ° —S —S —S
A (1+qu (1+A). . where (1+A).* =(1+ A)(1+0A) .

Now from (2.3.8) and (2.3.9) we can conclude: For all n>0 and positive integer t

then

() (- Ve

(1-q)=B,(n,t). (2.3.11)

We mention some properties in the next lemma for the function
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K(M;n)= (1+1|\/| ) M”(1+ﬁj: (1+M ):4'.

Lemma 2.3.1 (a) In the limit g —»1 and 0 we have
limK(M;n)=1, VYM,neR.
gq—1

MK (M;n)=M"+M"*, vne(0,1), M eR.
q—1

especially when K (M, n)<is not constant in M”.

(b) K(I\/I , n) satisfies the following recurrence relation (as a function of n)
K(M;n+1)=q"K(M;n).
Since clearly K(M ;O) = K(M ;1) =1. in particular we have for any positive integer t

K (M;t)=q""? (by comparing 2.3.7 and 2.3.11)

(c)Viewed as a function of M ,K(l\/l ; n) is a “(-constant”, that is
D,K(M;n)=0, vn,M eR.

In other expression K (q'M;n)=K(M;n) for all integer ¢.

Proof (a):
It’s obviously, the limit of K(M,n)for q—1 is equal 1. In the limit g—0 we

have, for any g >0

p (1+M) N (1+aM); N
(1+M)q—m—(l M)—(1+qﬂ|\/|)ﬂ — (1+M).

q
Forn € (0,1) we have
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. R 1 . 1Y n
L'L@K(M’“)—L'LQ(HM)M (1+qu(1+M)q )

=M”(1+ij.
M

Proof (b):

1 . 1 n+1 i
K(M;n+l):(1+M)M 1(1+VjG| 1+M)",

n "\ (1+M)"
__1 M”+1[1+ij 1+ |y emma2.1.1 (7))
MU M J(1+q ™)

Proof (c):

We want to prove K(gM;n) =K (M;n)

K (qM;n)=(gM )" (L+aM )} (1+2M){1+qiﬂ j

n

1
Now we can use lemma 2.1.1 (9 and 10) to find: [1+ q_Mj and (1+gM)."

q
q
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gM
o) = A e
.1 1 (1+g7m) (1 n
K(gM;n)=(qM) (1+qM)[q“ j M) (1+M), (_ QJ(M—l,
M

(1+qi/|](1+ q""M)

- q"K(M;n).

(1+qM )£1+qlﬁMj

n 1 -n

q (1+qMJ(1+q1 M)
1

(1+qM )(Hq“M ]

but

=1 so K(gqM;n)=K(M;n).

We conclude from (2.3.7), (2.3.11) and Lemma 23.1 the functions
K (M;n) 8 (n,t) and B, (n,t)“coincide” for all M >0 when either n or ¢ is a

non negative integer. Now we will to show that they are indeed “coincide” for any

n,t > 0.

Theorem 2.3.1. We have forall A,n,t>0

26



@K (An) " (n)=T,(n), (2.3.12)

B K (An) A (nt)=B, (nt), (2.3.13)

Proof (a):

7o (K (A n>=""((f_(;')?)1<(A:n>
but

,B( )(n,oo)K(A;n) =B, (n,x),
So,

7 (N)K(An)= ! [;’gA)(n,oo):Fq(n), (by Theorem 2.2.1)

Proof (b): It’s enough to show that K (A;n) ﬂgA) (n,t) enable to be composed as a FPS
in g with coefficients rational functions in a = gtandb = g™. Firstly, we have

oA X"E

K(An)a" (nt)= (1+1A) A" (1+J:J: (1+A)" | mdqx.

q

Now lety = Ax,dgy = Ad,x.

R 1 o, 1Y pen(yIA)YT 1
K(An)A, (n,t)=(1+A)A (HZJ (1+A)" | ( A) —d.y.
: (wj
A q
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n "1 wll 1
=(1+ A): (1+—J IO y 1—n+tdqy. (2.3.14)
)
A q
Fix A>0. Here we want to rewrite the factor in the forward of the integral after

letting b = g™as the following notation

23,
(1+ A)q A q 1

(1+ qt?j: (1+2)w (l+ A)

q

It’s obviously a FPS in § with CRF in a and b. After that we want to explain the

integral term in the expression (2.3.14) which can be written as

n-1 n-1

1 y oo/l y
Jor ey + [ oy, (2.3.15)
T B
A q A q
Now use g-integral in the first term in (2.3.15) and after that let a = q* and b = g™.

iy iy = (=) Xt (¢")"

ﬂ'
[1+y) k>0 1+i
A, A

1 qk+n+t @
=(1- b 1 ,
ot ]

k>0 (1+q]
A q

1 q<)
=(1-q)) b ——— (1+ab—} :
( )gﬁ (1+q"/A)q A),

This is manifestly a FPS in ( with CRF in a and b. Now rewrite the other term of

(2.3.15) as

J-q X d x
ntt gt (2316)
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First, using the relation (2.1.2) to find the integral. We see that in the following

expression

= J-Oq ” n+t qu,
o
Ax ),
g X
=I . —0d, X (here we multiplied by x'* to get the result)

Now we make recall for the definition of K (X;n)to get the last result

t+n
K (Axin+t) = (A" (1+ A" L (1+1j

L+ AU Ax),

X" (1+ijn+t B K(AX; n+t)(l+ Ax)

n+ 1-n-t
Aq A1+ AX),
1 l 1on—t An+t
= 1 A AN
MR [1+ 1 jn” (1+ Ax)( +AX), K(Axn+t) (The result)
AXJ,

The most important note is that, although K (Ax;n+t)is “not constant” in x,

K(Ag“;n+t)=K(An+t),vk Z,by lemma (2.3.1), so the inside of Jackson

integral able to be consider as a “constant” so we can rewrite (2.3.16) like

A" J‘q 1

1-n—-t
d x. 2.3.17
K(An+t)% (1+ Ax) g (23.17)

q q

X (1+ Ax)
Finally we want to rewrite the first factor in (2.3.17)
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1 n+t '
(1+ ] (1+A) " A
A q

Now by (1+ a): o1 (1+a); , then we get

o0

(1+ q”a)q

= ! (1+a—bj (1+%) (1+ A).(Where b=gq™and=q") (2.3.18)
" A a ab a
q

and we rewrite the integral in (2.3.17) by using g-integral

a4 i 1 1-n-t i+ i\t 41 \n-t 1
[ g (A0 =) T (@) A0

=(1- ) (1+ Agq’™)” (1+ Aq')” : ,
( q);(q ) ( +AgQ )q( +Aq )q (1+qu+1)‘:(1+qu+lq1—n—t):

=(1-q)> a" (1+Ag’*?*) —————, (where b = g™ and a = ¢°) (2.3.19)
=0 q [1_'_ AqJ+2j
ab q

Obviously the two expressions (2.3.18) and (2.3.19) are a FPS in  with CRF in b

anda .O
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Chapter 3

APPLICATIONS

3.1 Integral expression which is symmetric in n and t for g—Beta

Function

We can see from theorem (2.2.1) the g-analouge of BF symmetric in n and ¢, but
from the integral term in (2.2.7) this is not clear. Now we will apply theorem (2.3.1)
then we obtain the integral equation for g-analouge of BF be “symmetric” under the

interchange of n and t.

If A> 0 then by theorem (2.3.1) we obtain that,

B, (n,t)zK(A;n)I:/A(ledqx. (3.1.1)

q

By using the results of Lemma 2.1.1 and the definition of “K(X;n)”we obtain

1 n+t 1 q ' ny\t
—(1+x) :K(—;nj[HT] (1+q x) . (3.1.2)
X d X g% ), a
Proof:
1 n+t 1 n n ot
F(ler)q :F(l+ X):(L+q x)q,
. 1 1-n o 1
(1+x), (1+qu (1+q x)q (Hx)

1-n
X X

q
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:%K %;n (1+q”x); 1+§ ,
Ay [l [15)

:%K(i;n)(Hq”x);,

o)
X aq

(e w1 q )
_(1+q x)qK(X,nj(l+Xq )q.

Hence by Lemma 2.3.1 we obtain

After we substitute (3.1.2) back into (3.1.1) and then alteration the variable Yy =("X,

we get
B,(nt)=]" 4.y, Va>0. (3.13)
y(1+q] (1+ y);
y q
Proof:
1+x)"
) IR L S
n q n t
X [Hq“xl (1+q x)q
Now substitute K (A;n) in
win X"t
B, (nt) =K (Am) [
° (1+ x)q
d
then change of variable x= q—yn,dqx = qqny :



After that we get:

:Jm/a ! Edqy, Va>0.

0 n
q y
(1+ yj (1+ y);

q

Remark: The integral equation of g-analouge of BF is clearly “symmetric” in n and
t, after changing the variable (X = %).

3.2 Interpretation invariance of a specific kind of improper integrals

Jackson’s integral failed because there is no analogue for the TI identity

Lb g(x)dx = Lbﬂ g(x—c)dx.

That is clearly true for “classical” integrals. We qualified to obtain a g-analogue of

T1 for improper integrals for specific type function which is x” /(1+ x): by using

Theorem 2.3.1.

In particular we will prove the following corollary

Corollary 3.2.1. For § > 0and @ > f + 1 then

B
I”’ﬂ ! _xfdx=—9J r”liaxﬁ(l_lj dgX. (3.2.1)
0 (1+X)q K(A B)g* "0 x X

q

Remark: We changed X — X—1 in the “classical” limit g = 1 in the left-hand side
of (3.2.1) to get the right—hand side

Proof;

33



Bq(n,t)zj (1= qx)”ldqx,

w1 n-t (A w/A 1 1
:Iq l t+1 (1_%jq dqxl (byjo f(X)qu _Zf (—quX)

a’A ¥ X

n-1
ol 1 q J . X
_ 1-—| qd,y, (by letting y =—,d,x=qd,Y.)
J‘ ( qy q q y g q q a

n-1
1 en 1 1
gy @

q

n-1 n-1
:itjlooll y (1—:;/ y)q . (322)
q y
and from Theorem 2.3.1 we have
win X"t
By () =K (AN) [ ——dyx (3.2.3)
° (1+ x)q

Now make comparison between (3.2.2) and (3.2.3) and letting p=n-1,a =n+t.

We get

B
K(A;ﬂ+1)jow/ﬂ( L wdx=—1 r’”i(l_l) X"d,x.

1 x“

B
I /ﬂ#xﬂd X = 1 I ﬂi(l—lj NG d,x.

° (1+x); g K (A B+ x U x),

1 oo/l 1 1 "
= 1-=| x’d_x.(by the fact K(A S+1)=0¢"K(A ).
K(A,ﬂ)qﬂqaﬁlj Xa( qu X qu (byt e a'Ct ( IB-I_ ) q ( ﬂ) )

B
.

q
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3.3 ldentitie

When we rewrite the equations (2.3.12), (2.3.13) and (3.1.3) by utilizing the
definition of improper integrals, they give us a several interesting identities including

(—-BS (Bilateral Series).

The equation (2.3.12) can be considered as

o0

(1-q); (1+q"/ A): (1+qA/q“): =(1+9A); (l—q“): > g™ (1+1/A)§. (3.3.1)

k=—o0

Proof:

Ty (n)=K(An)y, (n),

oo/ A(l-q) 1

r,(n)=K(A; —=—x""d x.
A
" k | A(1- n-1 _A\1
A (1417 AY (1 A (1-0) Y g /A q)l sl
(1+A) ‘ a & (1-g)A (1+ q" /A)q (1-q)
L 1 —(1+1/ A) (1+A) g = A-q))™
(1+ A) — (1+qk/A)q q q
11A > 1+4) w(1+1/A):(1+qA);“qk”:a_—q)qw.
(1+ )k=—w(1+q /A)q (1+q /A)q (1—q )q
(1+0A) (1-9")" i—(“l/A): " =(1+q"/ A) (1+0A/Q") A-0);
+( -q -9 =(1+q +gA/q —0),-
a R (1+ qk / A)q K ‘ ’

i o (1+1/ A); (1+0A); (1-a"), =@-a); (1+a"/ A) (1+aA/q")

0 0
k=—o0 a q

Lettingx = —q™/A in equation (3.3.1) we get

35



(1-a); (1-x); (1-a/x); =(L+gA); (1+Ax); kZ‘;O 1+1/A) . (3.3.2)
Note that
lim A" (1+1/ A); =",
It means that, if A =0,then the equation (3.3.2) becomes the famous Jacobi triple

product identity (1.17).

We can rewrite the equation (2.3.13) as

o (+1/A) | (-a); (1-g™); (L1+a"/A), (L+aAlq");

k (3.3.3)
= (1+qn+t / A)q (1_{_qn+t / A)q (]_+ qA) ( —q ) ( -q )

Proof;
. (K (An) =B, (nt),

L) (- a),"(1-a); "

but B, (n,t)= T (D o (1-a)
So
A (1)K (Ain)- (l_g)j_q(;;?)q_ 1-q),
N X_(l—fll);’l(l—q):‘1 )
Kaml, o T g
AP (AL @ (@A e
A (1 1/A)q(1 A)q (+ )(1 q)k;oA(1+qk/A)n (1_ ):+t1 (1 q)
n a1 < 1 nk (1_ Q); 1 (1_ q ):_l
(1+1/A)q(1+A)q (1+A)k w(1+q /A) (1_ ):+t—1



. nk 1 = n-1 1

—_(1+9A) "(1+1/A) =(1-q) (1-q)  ————,
ot (1+qk/A) t( )q ( )q ( )q ( )q (l_q)qtl

q

- 1 (1+1/A) (1+0A); 1 I
(1 k/At+nqk 1 ”/Aqw 1+qA/ 7 ) @y e e
= (1a s A) T (1+aT A) (LAl e) | (1-07) @-a);
- 1-9) (1+9"/ A) (1+9A/q") @1-q™)z.
> wqk“(1+1/A)Zo(1+qkq“/A)w=( i 1+ w)q(“‘ Q)Qi T
S T weeaiw
N ;qkn (1+1/ A) (Lo 1 A) @-a);(@-9"); (1+q"/ A): (1+ qA/q“):

- _ - .
k=—00 (1+qn+t/A)q d q (1_qn)q (1_qt)c: (1+QA)q
- 1-g")7 (1+q"/ A) (1+9A/q") @A-q)*
T e UL LS N
o (1+9™/ A)q (1-q" )q (L-q")7 (1+q™/ A)q (1+0A),

Now, letting: a=-1/Ab=-q""/AXx=0". inthis formula we have:

" (1—q)‘:(1_2]:(1_ax):(1_q/ax):

& (1-b), (1-b); (1-a/a); (1-x); (1-b/ax);

Clearly, we get Ramanujan’s identity (1.18). We conclude that, proof of theorem

(2.3.1) it is also a proof for Ramanujan’s identity.

At the end of this section we able to rewrite equation (3.1.3) as

- (1+1/a): (1+ qa);k i (1-q), (1_qn+t ): 1+l a), (1+qa), (330
K X . " — —. 3.
k=0 (1+ q' /05)0I (1+ q”*la>q (l—qt)e| (1—q“)q (l+ q /og)q (1+ q“*la)

q

Proof;
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ey (1-q), (1-9)(1-a);"
(1_ q)gﬁ—l

RS 1 oy (-9, A-a)a-a)”
a q)kz—;c(q"/a)(1+qk/a);(l+qa/qk): (o /e) (1-q)""

i 1 1 n-1 t-1
= 1- 1-

k;o(uqk/a)‘q (1+aa/q"). (1—q);+”‘1( Vo G-

< (1+qkqt /0(): (1+ql+nq—k )OO — (1_q):(1_qn+t):3 )

= (1+qaq™ ) (1+9* /a) ’ (1—q”): @-a');

» (1+9""a) (1+qa) (1+9'/a) (1+1l/a

Z( , ) ( ) ( ) ( ) :( wl 1_q);c>(1_qn+l);o.
k:,w(1+q+"a) (1+qa); (1+0' /a) (1+la)] (1-9") @-a);

= 1 1+ga) (1+1/a), A-q);@-9"");
> (1+la) (1+ga),  ——————— = (1+92), : ) — _
K=o (1+q /a)q(1+q a) ( - )q (1—q) (1+q 0!) (l+q /0!)
Finally, letting: a = —i,b = —%t,c = —q™1a in this equation we get equation
(1.19)

(1-a/a), (1-q), (1-a) (1-bc/q)
(1- b)q( )q (1- b/a)::(l—ac/q):

. . k )
2 (1-b);, (1-¢); (1-a),(1-a/2), =

We conclude that equation (3.3.4) reduces to equation (1.19).
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Chapter 4

THE (p, 9)-GAMMA FUNCTION AND (p, q)-BETA

FUNCTION

4.1 Notations and miscellaneous relations
Before we study the new generalization of GF and BF, which is (p,q) -analogue for

each one. As of now some notations and definitions of (p,q)-calculus will be

introduced in this section.

Definitionl: for any positive integer number, the (p, q) -numbers define as

[t] =P +p P+ p°g" +..+ pg P +q" = pp:g (4.1.2)
] t_gt
since [t],,, = pp_z

Clearly, we can also write [t], 4 as: [t],q = P tlgp

Definition2: For t € N the (p, q)-factorial is given by:
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[t]pyqlzlj[n]pyq!, t>1 [0] -1

Definition3: The (p,q) -binomial coefficient is defined as

M[él][b] O<b<a.

Clearly, we can see by definition that

a a
H { } . o<b<a.
b a-b

p.q p.q

Definition 4: The (p,q) -powers is given by
(z@® b)E g = (z+b)(pz+bq) ... (2p* ™ + bg* ™) = [1f5(zp’ + 4’b)

(z© b)jq = (z—b)(pz = bq) ... (zp* ™" = bg*™") = [1}Z5(2p’ — a’D)

These definitions are extended to the following expressions
(z @ b)y, = (z+ b)(pz + bq)(zp* + bq?) ... = ]‘[j’;o(zpj +q’b)
(z© b)gg = (z = b)(pz — bq) (zp* — bq?) ... = [1720(2p’ — ¢/ b)

Note that, the convergence is required in these equations.

Definition 5: the (p,q) -derivative of the function g is given by

9(pz)-g(az)

, 0.
(p—q)z 7+

D;,9 (Z) =

(4.1.2)

(4.1.3)

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

(4.1.8)

and if g is differentiable at 0, then D,,g(0)=g’(0).Also notice that for p=1, the

(p, q) -derivative minimize to the g-derivative.
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The following is the product rules for the (p,q) -derivative
D,,(9(z) f(2))=9(pz) D, (2)+ f (az)D,49(2), (4.1.9)

Dyq(9(2) (2))=f(P2)Dy40(2)+9(az) Dy f (2). (4.1.10)

Proposition 4.1.1: For any integer t > 1, we have
(1) Dpg(z © b)y q = [tl o (02 © b)y (4.1.11)
(2) Dpg(b © 2)5, ¢ = —[t]q(b © q2)54, (4.1.12)

Note that, D, ,(z © b)p , = 0,

Proof (1):
By using the (p, q) -derivative definition (4.1.8) we have

(pz© b)pq — (qz © b)y 4
-9z '

Dpq(z© by g =

_(pz— b)(p?*z — qb) ...(p*z — q*~'b) — (qz — b)(qpz — qb) ... (qp* 'z — q*"'b)
-z '

_(pz=b)(p’z—qb) ... (p" 2 — q"*b)(p'z — ¢""'b) — (qz = b)q(pz — b)q(p*z — qb) .. a(p" "z

—q"*b)

-9z
_(pz-b)@p’z—qb) .. 0"z —q"*b)(p'z — q"*b — q* "' (qz — b))
-z '
(pz—b)(p z—qb)..(p" 'z —q'2b)(p'z — q""'b — q'z + q*~ 1b)
-9z
— (b2 = )Pz — qb) . (2 — q-2b) LD
-9z’
— n—-1 (pt — qt) — n-1
- (pZ e b)p,q T - [t](PZ e b)p,q ’

-q)

Proof (2):

(b ©p2)s,— (b OSq2),
»—-q)z '

Dpq(b © 2)pq =
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_ (b—pz)(bp — pqz) (bp* — pq’z) ... (bp" ™" —pq"'2z) — (b — q2)(bp — ¢*2)(bp® — ¢°2) .. (bp'™" — q"2)

-z
_(gz—b)(g*z—bp) ... (a""z — bp"*)(q"z — bp"™") — (pz — b)p(qz — b)p(q*z — bp) ...p(¢" "'z — bp"™*)
-z '
_(gz - b)(q*z — bp) ...(q" 'z — bp*~*)(q*z — bp*™* — (pz — b)p*™)
-9z '
_(gz—b)(q*z—bp) ...(¢""z — bp"*)(a" —p")
-9 '
=D 4 np - g2 pt — qt12)
-9 '

= _[t]p,q(b © qz)gj,_ql

Proposition 4.1.2: 1t’s easily to verify the following identities

(Set)&)q
(spkotak) >’

1) so t)l}g,q =

2) s OO = (s © Ok ,(sp* © tg")],,,

' sev),  (sp/ote)
k k) rq p.q
@) (sp* O a"), = o0k,
ke (sovk
M (sp S git)< = EO9%8a
@ (s’ © a't), g

Proof (1):
(O g _ (s—8)(sp—qb) ..(sp" " — ¢* ') (sp" © tq")7,
(sp* © tq")y, (sp* © tq")y,
= (05,
Proof (2):

(s© t);;j = (s—t)(sp — qV) ... (sp¥* — ¢*71t) (sp* — tq") ... (sp*H?
_ tqk+j_1),

= (s © )k ,(sp* — ") ... (sp*H~t — tq*HI™Y),
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= (s © )} q(sP* © ")} 4

Proof (3):
: . k
(s© g = (O D)4(sp' ©tq’)
(s © Ok (sp* O tg")], = (s8], (sp’ © tqf):q,

O (v O,
(s © X, '

Proof (4):
j i\ j i\ j+k i+
(spf OS¢ t)p,q B (spf O q]t)p,q (spf Sq t)p.q’

_(redy,, ceolicens, ek,
spkOqkt), (00,00l (el

Definition 6: The (p, g)-integral of g(x) on [0, b] is given by

jg(x)dpqx—(p q)b Z

q’
ng( 1+1b>' 0<g<p<l1

Definition 7: The (p,q) -1BP is given by

J: f(pz)D,,9(2)d,,z=f(c)g(c)-f (b)g(b)—J.bcg (9z)D,,f(2)d, 42z, (4.1.13)
4.2 The Definitons of (p, q)-Gamma and (p, q)-Beta Functions
Definition 1: The(p,q)-GF for a nonnegative integer z is given by

_(pOD)pq 1-z _ @ODF4
pq( ) zeqz)oo ( ) = —(p—q) f 0< q<p. (421)

Remark: Notice that if p = 1, then T, ,(2) is reduces to I';(2).
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Lemma 4.2.1. For all z € N, the (p, q)- GF obtain the fundamental relation

ez + 1) =[z], .42, (4.2.2)
Proof:
» Oy 2
Fp'q(Z + 1) = (pz+1 e qzz-lo-f)%Oq (P - q)
1, @O Dpy (®” © 4%)pq

=(@—-9

P? O q)yq P O 7 Vg0 —q@)

(P* © q%)pq % =) P* 8 ¢,
= . = F
pa(?) P Q¢ 5 —q) ™ ) ™1 © q" g — @)

»* —q%)
=D (2) ———— = [z]p 4[4 (D).
P.q — p.alpaq
We obtain also
Lo(z+1) = 29%ba _ 1L, o (2) = [z],.!, 0<q< 423
pa(z+1) = - [z][z — 11T, q(2) = [z]pq! q<Db (4.2.3)

Definition 2: The (p,q)-BF for s,t e N is given by

By (s, t) = fol(pz)s_l(p O pqgz)s4 dpq2. (4.2.4)

Theorem 4.2.1. The relation between (p,q)-GF and (p,q)-BF for s,t e N is defined

by

_ [t@s+t—2)+t-2]/2 [p.a®)pq®
Byq(s,t) =p T (4.2.5)

Proof:

First, for s,t € N we have:

1
Bpq(s,t) = f ®2)* ™ (p © paz)pg dpq7,
0

_ (0Op2)pgq
p[t]p,q

Now, apply (p, q)-integral by parts for f(x) = z5"tand g(x) =

’
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where D, ;(p © p2)5 4 = —[tlp (P © Pq2)4 4,

then we get
[ s=2
pq(s t) - p—t (pZ) (p 9 pqz)p q qu
[s—1]
= 551[5‘1 Bpg(s —1,t+1), (4.2.6)

We can write, for positive integer :

Bp(s,t+1) = j (P2)*" (p © P42)yg " dpq2,
1
- fo (02)*1(p © paD)5 (0 © patz)dy 2,

1 1
= Ptf (pz)* (6 qu)g._qldp.qz - ch (p2)°(p © pqz)g,_qldp,qz
0 0

=p'Byg(s,t) —q'B, (s + 1,1) (4.2.7)

After that, using (4.2.6) to get

Lha g (s,t+1), (4.2.8)

Bp,q(s, t+1) = pth’q (s,t) — T

which mean

s
Byq(s,t+1) (1 +qt []i) =p'By4(s, 1),

p3[tlpq

p°(p'—q") +q'(p° — qs))
B, (s, t+ 1)( =p'B, ,(s,1),
pa ps(pt —qb) P Pra

B,q(s,t+1) = ps+t%qu(s, t), (4.2.9)

We know
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pS—l

[slp.q ’

Bpq(s, 1) = [, (p2)° ' dpqz = (4.2.10)

For t positive integer we get

@' -q"
(pt+s—1 _ qt+s—1) Bp,q (s,t —1),

Bp’q(s; t) — pS+t—1

- - t-2 t—2
— S+t-1 G, s+t—2 @™ -q97) B, (st —2)
=p (pt+s—1 _ qt+s—1) p (pt+s—2 _ qt+s—2) p.q\> ’

' =q¢D .., @?*-q¢"? a1 -9

= ps+t—1 (pt+s—1 _ qt+s—1) (pt+s—2 _ qt+s—2) (ps+1 — qs+1) Bp‘q (S’ 1)‘
_ pei-1 (' —-q"h psti-2 (P'?-q"%) e 0@ p*!
(pt+s—1 _ qt+s—1) (pt+s—2 _ qt+s—2) (ps+1 _ qs+1) [S]p,q

_ p(s—1)+(s)+(s+1)+---+(s+t—1) (p e Q)g,_ql

ps 0 © q%)% 4 =),

It mean that

m @O

Bpa(s,t) =p" ¢ g @ — @) (4.2.11)

Letting m=[t(2s +t—2) +t — 2]/2.

By using proposition (4.1.2) part (2) and (4.2.11) we have

PO Py
Bpq(s,t) =p™ —; sptq
P © q°)pq

(r—a)
m @O Vg PO Vg - (-}

@-O - (PO Mg O g »—a),

@O Dy PO Dpd -t _ o pa®hq(s)
-t - T pO P q(s+0)
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4.3 The analogous definition of (p,q)-Gamma and (p,q)-Beta
Functions

We defined the (p, g)-analogue for GF and BF and we found the relation between

them in the previous section. In this section we want to study a new functions
(namely T, (z)=T,,(z) and B, (s,t)=B,,(s.t)) and we will show how these

functions are relevant to (p, q)-GF and (p, q)-BF.

Definition 1: For (0<qg < p <1) we get

D,,9(z2)=D,,9(z/p), (4.3.1)

Proof: By definition of the (p, q)-derivative we know

g(pz)-g(az)

, 0.
(0-0)z z#

Dp,qg(z):

Q(ZPZJ—Q(DZ)

Definition 2: For (0 <q < p <1) we get

b b
[ 9@)d, 2= 9@/ p)y,z

Proof:

. B q’
_[0 9(2)d; 42 :(p_q)bz pj+1g(bﬁj'

—
Il
o
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-womS(2)o(3]3)

:I g(Z/ p)dq/p

Definition 3: The (q/ p)-IBP is given by

[, 0D, (42 =0T =[] £ DD, 8002 (432

Definition 4: For (0<q/ p <1) we get

q oo}
~ D 1-z
L@ = Ta(2) = — - (1-1) (433)
’ <1_(5) >q/p
Proposition 4.3.1: For positive integer z we have
[pq(2) =p* ' Te(2), 0<p<qg<1 (4.3.4)

Proof:

- —oo(l — 2)1—2 ?0=1(1 - (Q/P)j) (1 q>1—z,

- (@/p™H\ p

w (D-q) S
72 pf) -2 . [0 -¢)

_ 1-z
o (p]'+Z._q]'+Z) pl—z =p H?Ozo(pj-'_z _ qj+z) (p q) ’
Jj=0 pi+z
(» © 9y, q
21— — P (p— )12 =p?7IL, 1 (2), 0<—-<L1
(P © 993y P pa D

Definition 5: For s,t > 0, then
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~ 1 o4 q t—-1
Bpq(s,0) = Bals,0) = [ z (1- E)q,p dg/p2

also we can write the previous expression as:

_ Tg(s)Tq(t)
By q(s,t) = Ba(s,t) = 2—F— (4.3.5)
P

Fg(5+t) !
14

Proposition 4.3.2: For s,t > 0, we have

Bpq(s,t) = Byq(s0), (4.3.6)

Proof: By using the equation (4.3.4) we get

Ta(s)Ta(t) 25-17 (S)p2t-1T. (¢
B,,(s,t) = Ba(s,t) = —2 p p,a($)p p.q(0)
P

F%(s e p2st2-in, (s+t)

— ll—‘p,q (S)Fp:q (t) _ l (S t)
p Ly qa(s +t) p P4V
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Chapter 5

CONCLUSION

At the end of this sudy, we explained the integral representation of the g-analogue of
two special functions, g-GF and g-BF which gave a very attractive g-constant.Also,
we found the proof of the famous Jacobi triple product, containing the identity of
Jacobi and after that we obtained a new proof for Ramanujan’s equation.
Furthermore, we introduced a new generalization of GF and BF that were: the (p, q)-
GF and the (p, q)-BF. Finally, we obtained equivalent definitions for (p, g)-analogue
for GF and BF. My contribution was to briefly explain and proof all the formulas in a
simple way, where the readers can easily understand the final results and we obtained

a new equivalent definitions for (p, q)-analogue for GF and BF.
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